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Introduction

This special issue of Model Theory is in honour of Ehud Hrushovski (Oxford
University). A conference to celebrate Hrushovski’s 60th birthday, entitled “Model
theory: from geometric stability to tame geometry”, was originally scheduled for
8–12 June 2020 at the CIRM, Luminy, France. Owing to the Covid-19 pandemic, it
was postponed until 13–17 December 2021, where it was held as a hybrid workshop
of the same title at the Fields Institute in Toronto, as part of the Fields Institute
Thematic Program on Trends in Pure and Applied Model Theory. This special
issue arose from that workshop, with all workshop speakers invited to contribute an
article.

Over almost 40 years, Hrushovski’s influence on model theory, and on its rela-
tionships to other parts of mathematics, has been phenomenal. We cannot here do
justice to this, but pick out a few highlights where his highly original contributions
have astonished our community and spawned riches for many. We do not touch on
his most recent work, which has comparable potential but is less widely absorbed.

Throughout his career, starting with his Berkeley Ph.D. thesis, geometric stability
theory (definable groups, minimal types, internality and binding groups, orthogo-
nality, canonical bases, imaginaries, often in unstable contexts) has been a guiding
theme; an example is his 2000 paper with Hart and Laskowski The uncountable
spectra of countable theories, a culmination of classification theory over countable
languages. “Hrushovski constructions” first appeared in his talks in 1988 to give
counterexamples to conjectures of Lachlan and Zilber but the ideas since then have
yielded countless other important examples, as well as Zilber’s pseudo-exponential
field. His 1996 paper Zariski geometries with Zilber exhibits a natural context
where Zilber’s trichotomy conjecture holds (so is a counterpart to the Hrushovski
constructions), and was a key ingredient to his subsequent work on diophantine
geometry. Early drafts of his monograph with Cherlin, Finite structures with few
types, as well as work on PAC structures, gave versions of the independence theorem
which underpins simple theories.

On the more applied side of model theory, Hrushovski’s work with Chatzidakis
and Peterzil on ACFA opened up difference algebra as an area of model-theoretic ap-
plications, reinforced by his manuscript on the nonstandard Frobenius. Hrushovski
startled not just the model theory community when he found applications of large
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134 THE EDITORS

chunks of geometric stability theory in diophantine geometry: he obtained for
example a model-theoretic proof of the geometric Mordell–Lang conjecture, in all
characteristics (a new result for function fields in characteristic p), and a new proof
of the Manin–Mumford conjecture, with explicit bounds. A series of joint papers
with Pillay in the late 2000s (one paper also with Peterzil, another also with Simon)
yielded new ways of thinking about NIP theories model-theoretically, proved the
Pillay conjecture on definable groups in o-minimal expansions of ordered fields,
exhibited the significance of Keisler measures, and found model-theoretic applica-
tions of Vapnik–Chervonenkis theory; it has yielded many further developments
in definable dynamics by Hrushovski and others. His 2009 paper on approximate
subgroups led to the Breuillard–Green–Tao classification of finite approximate
subgroups and to many other riches. Over the last 25 years, the model theory
of valued fields has been a major theme of his work, with ideas from stability
theory feeding into our understanding of algebraically closed valued fields, with
applications in motivic integration (Hrushovski and Kazhdan), nonarchimedean
tame topology and Berkovich space (Hrushovski and Loeser), and zeta functions
for groups (Hrushovski, Martin, and Rideau-Kikuchi).

We do not here comment on all the articles in this issue, but note how several of
them reflect or grew out of Hrushovski’s work.

The paper Residue field domination in some henselian valued fields by C. Ealy,
D. Haskell, and P. Simon builds directly on the monograph Stable domination and
independence in algebraically closed valued fields by Haskell, Hrushovski, and
Macpherson, which developed “stable domination” as an abstraction of the way,
in algebraically closed valued fields, certain types (e.g., the generic type of the
valuation ring) are governed by their trace in the residue field. The analogue to
Berkovich analytification developed by Hrushovski and Loeser was the space of
stably dominated types concentrating on a variety. The Ealy–Haskell–Simon paper
develops an analogue of stable domination for other henselian valued fields.

Kamensky’s Higher internal covers grew from Hrushovski’s influential paper
Groupoids, imaginaries, and internal covers.

Remarks around the nonexistence of difference-closure by Chatzidakis shows
that difference fields do not in general have a difference closure, but develops a
stronger notion of κ-closure which, under extra hypotheses, exists and is unique up
to isomorphism. This paper is a natural development of the body of work initiated
by Chatzidakis and Hrushovski (one paper also with Peterzil) on the theory ACFA,
the model companion of the theory of difference fields.

Breuillard’s An exposition of Jordan’s original proof of this theorem on finite
subgroups of GLn(C) is in part historical. It has connections to a number of
important themes in Hrushovski’s work: finite approximate subgroups, pseudofinite
dimension (originating in a paper of Hrushovski and Wagner), and a model-theoretic
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approach to the Larsen–Pink strengthening of Jordan’s theorem, using the “dimen-
sion comparison lemma” of Hrushovski–Wagner.

In Rigid differentially closed fields, Marker constructs differentially closed fields
of characteristic 0 with no nontrivial automorphisms. The construction makes
essential use of the Hrushovski–Sokolovic analysis of strongly minimal sets in
differentially closed fields, itself a key ingredient for his work on Mordell–Lang.

Higher amalgamation properties in measured structures by Evans builds on sev-
eral themes in Hrushovski’s work. Higher amalgamation is central in Hrushovski’s
“Groupoids” paper, and this paper by Evans focuses on ω-categorical Hrushovski
constructions as a source of examples. Measures in model theory are also a persistent
theme in Hrushovski’s work, for example in his paper on approximate subgroups,
in the above-mentioned NIP papers, and in much more recent work.

Measures in model theory are also central to Definable convolution and idempo-
tent measures, II by Chernikov and Gannon. This article develops many ideas from
the NIP papers of Hrushovski and Pillay, also involving Peterzil and Simon.

We believe the articles in this special issue are both important in their own right,
and a fitting tribute to Hrushovski’s impact on model theory and its applications.

The Editors
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Mock hyperbolic reflection spaces
and Frobenius groups of finite Morley rank

Tim Clausen and Katrin Tent

We define the notion of mock hyperbolic reflection spaces and use it to study
Frobenius groups. These turn out to be particularly useful in the context of
Frobenius groups of finite Morley rank including the so-called bad groups. We
show that connected Frobenius groups of finite Morley rank and odd type with
nilpotent complement split or interpret a bad field of characteristic zero. Further-
more, we show that mock hyperbolic reflection spaces of finite Morley rank satisfy
certain rank inequalities, implying, in particular, that any connected Frobenius
group of odd type and Morley rank at most ten either splits or is a simple nonsplit
sharply 2-transitive group of characteristic ̸= 2 of Morley rank 8 or 10.
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3. Sharply 2-transitive groups 146
4. Uniquely 2-divisible Frobenius groups 149
5. Mock hyperbolic reflection spaces in groups of finite Morley rank 154
6. Frobenius groups of finite Morley rank 161
7. Sharply 2-transitive groups of finite Morley rank 170
8. Further remarks 172
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1. Introduction

This paper contributes to the study of groups acting on geometries arising naturally
from conjugacy classes of involutions. We define the notion of a mock hyperbolic
reflection space and use it to study certain Frobenius groups. Such an approach to
the classification of groups and their underlying geometries based on involutions
was developed by Bachmann [1959]. Mock hyperbolic reflection spaces generalize
real hyperbolic spaces and their definition is motivated by the geometry arising
from the involutions in certain nonsplit sharply 2-transitive groups.
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Keywords: Frobenius groups, sharply 2-transitive groups, groups of finite Morley rank, Bachmann
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138 TIM CLAUSEN AND KATRIN TENT

The points of such a mock hyperbolic space are given by a conjugacy class of
involutions, and we view the conjugation action by an involution in the space as a
point-reflection. More precisely, a conjugacy class of involutions in a group forms
a mock hyperbolic reflection space if it admits the structure of a linear space such
that three axioms are satisfied: three points are collinear if and only if the product
of their point-reflections is a point-reflection, for any two points there is a unique
midpoint, i.e., a unique point reflecting one point to the other, and given two distinct
lines there is at most one point reflecting one line to the other.

We will consider in particular mock hyperbolic reflection spaces arising from
Frobenius groups of finite Morley rank. One of the main open problems about
groups of finite Morley rank is the algebraicity conjecture, which states that any
infinite simple group of finite Morley rank should be an algebraic group over an
algebraically closed field. While the conjecture was proved by Altınel, Borovik,
and Cherlin [Altınel et al. 2008] in the characteristic 2 setting, it is still wide open
in general and in particular in the situation of small (Tits) rank. The conjecture
would in fact imply that any sharply 2-transitive group of finite Morley rank and,
more generally, any Frobenius group of finite Morley rank splits.

A Frobenius group is a group G together with a proper nontrivial malnormal sub-
group H , i.e., a subgroup H such that H ∩ H g

={1} for all g ∈ G\ H . (If G is a bad
group of finite Morley rank with Borel subgroup B then B < G is a Frobenius group.)
A classical result due to Frobenius states that finite Frobenius groups split, i.e., they
can be written as a semidirect product of a normal subgroup and the subgroup H . In
the setting of finite groups the methods used by Frobenius play an important role in
the classification of CA-groups, CN-groups, and groups of odd order. For groups of
finite Morley rank, all the corresponding classification problems are still wide open.

Sharply 2-transitive groups of finite Morley rank came to renewed attention
when recently the first sharply 2-transitive groups without nontrivial abelian normal
subgroup were constructed in characteristic 2 in [Rips et al. 2017] (see also [Tent
and Ziegler 2016]) and in characteristic 0 in [Rips and Tent 2019]. However, as
we show below, these groups do not have finite Morley rank. We also show that
specific nonsplit sharply 2-transitive groups of finite Morley rank would indeed be
direct counterexamples to the algebraicity conjecture.

We prove the following splitting criteria for groups with an associated mock
hyperbolic reflection space:

Theorem 1.1. If G is a group with an associated mock hyperbolic reflection
space J , then the following are equivalent:

(a) G ∼= A⋊Cen(q) for some abelian normal subgroup A and any q ∈ J .

(b) J is a (possibly degenerate) projective plane.

(c) J consists of a single line.
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We show a rank inequality for mock hyperbolic reflection spaces in groups of
finite Morley rank: if J is a mock hyperbolic reflection space of Morley rank n such
that lines are infinite and of Morley rank k, then n ≤ 2k implies that J consists of a
single line (and hence n = k). If n = 2k + 1, then there exists a normal subgroup
similar to the one in the above theorem (see Theorem 6.11).

We then consider mock hyperbolic reflection spaces arising from Frobenius
groups. A connected Frobenius group G of finite Morley rank with Frobenius
complement H falls into one of three classes: it is either degenerate or of odd
or of even type depending on whether or not G and H contain involutions (see
Section 4). A connected Frobenius group is of odd type if and only if the Frobenius
complement contains an involution. In particular, every sharply 2-transitive group
of finite Morley rank and characteristic different from 2 is a Frobenius group of
odd type. We show:

Theorem 1.2. Let H < G be a connected Frobenius group of finite Morley rank
and odd type.

(a) The involutions J in G form a mock hyperbolic reflection space and all lines
are infinite.

(b) If a generic pair of involutions is contained in a line of Morley rank k and
MR(J ) ≤ 2k + 1, then H < G splits.

(c) If G does not split and a generic pair of involutions is contained in a line of
Morley rank 1, then G is a simple sharply 2-transitive group of characteris-
tic ̸= 2 and hence a direct counterexample to the algebraicity conjecture.

(d) If MR(G) ≤ 10, then either G splits or G is a simple nonsplit sharply 2
transitive group of characteristic ̸= 2 and MR(G) is either 8 or 10.

For nilpotent Frobenius complements we show the following splitting criteria:

Theorem 1.3. If H < G is a connected Frobenius group of finite Morley rank and
odd type with nilpotent complement H , then any of the following conditions implies
that H < G splits:

• H is a minimal group.

• The lines in the associated mock hyperbolic reflection space have Morley
rank 1.

• G does not interpret a bad field of characteristic 0.

If G is a uniquely 2-divisible Frobenius group, then G does not contain involu-
tions. However if the complement H is abelian, then we can use a construction from
the theory of K-loops to extend G to a group containing involutions and if H < G
is full, i.e., if G =

⋃
g∈G H g, then the involutions in this extended group will again

form a mock hyperbolic reflection space (see Section 4).
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This construction allows us to use mock hyperbolic reflection spaces to study
Frobenius groups of finite Morley rank and degenerate type. This class contains
potential bad groups. Frécon [2018] showed that bad groups of Morley rank 3
do not exist. Subsequently, Wagner [2017] used Frécon’s methods to show more
generally that if H < G is a simple full Frobenius group of Morley rank n with
abelian Frobenius complement H of Morley rank k, then n > 2k + 1. Note that
the existence of full Frobenius groups was claimed by Ivanov and Olshanski, but
to the authors’ best knowledge no published proof exists (see also [Jaligot 2001,
Fact 3.1]).

If H < G is a not necessarily full or simple Frobenius group of finite Morley
rank and degenerate type, we obtain a weaker version of mock hyperbolic reflection
spaces which still allows us to extend Frécon’s and Wagner’s results:

Theorem 1.4. If H < G is a connected Frobenius group of Morley rank n and
degenerate type with abelian Frobenius complement H of Morley rank k, then
n ≥ 2k + 1.

If n = 2k + 1, then G splits as G = N ⋊ H for some definable connected normal
subgroup N. Moreover, if N is solvable, then there is an interpretable field K
of characteristic ̸= 2 such that G = K+ ⋊ H , H ≤ K ∗, and H acts on K+ by
multiplication.

2. Mock hyperbolic reflection spaces

We now introduce the notion of mock hyperbolic reflection spaces, which will
be central to our work. The motivating example for our construction comes from
sharply 2-transitive groups in characteristic different from 2 (see Section 3) in which
the involutions have a rich geometric structure, which is reflected in the following
definition.

Let G be a group and J ⊂ G a conjugacy class of involutions in G, and let
3 ⊂ P(J ) be a G-invariant family of subsets of J such that each λ ∈ 3 contains at
least two elements. We view involutions in J as points and elements of 3 as lines,
so that the conjugation action of J on itself corresponds to point reflections.

For involutions i ̸= j ∈ J , we write

ℓi j = {k ∈ J : i j ∈ k J },

and we say that the line ℓi j exists in 3 if ℓi j ∈ 3.

Definition 2.1. Let G be a group, let J ⊂ G be a conjugacy class of involutions
in G, and let 3 ⊂ P(J ) be G-invariant and such that each λ ∈ 3 contains at least
two elements. The pair (J, 3) is a partial mock hyperbolic reflection space if the
following conditions are satisfied:
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(a) For all λ ∈ 3 and i ̸= j ∈ λ, we have

λ = ℓi j = {k ∈ J : i j ∈ k J }.

In particular, if i ̸= j are contained in lines λ, δ ∈3, then λ=ℓi j = δ. Therefore
any two points are contained in at most one line.

(b) Midpoints exist and are unique; i.e., given i, j in J there is a unique k ∈ J
such that ik

= j .

(c) Given two distinct lines there is at most one point reflecting one line to the
other. In other words, if λi

= λ j for i ̸= j in J , then λi
= λ = λ j .

We say that (J, 3) is a mock hyperbolic reflection space if it satisfies (a)–(c) and
furthermore ℓi j ∈ 3 for all i ̸= j ∈ J .

Given a group G and a conjugacy class J of involutions in G, in light of
Definition 2.1 and in a slight abuse of notation, we say that J forms a mock
hyperbolic reflection space if (J, {ℓi j : i ̸= j ∈ J }) is a mock hyperbolic reflection
space.

For a group G and subset A ⊂ G, we write

A·n
= {a1 · · · an | a1, . . . , an ∈ A} ⊆ G.

Remark 2.2. Let (J, 3) be a partial mock hyperbolic reflection space. We say that
involutions i, j, k ∈ J are collinear if there is some λ ∈ 3 with i, j, k ∈ λ.

Furthermore, if J is a conjugacy class of involutions in G and 3 ⊂ P is such
that every λ ∈ 3 contains at least two elements, we will see below that if (a) and (b)
hold, then (c) is equivalent to either of the following conditions:

(c′) If λi
= λ j for i ̸= j in J and λ ∈ 3, then i, j ∈ λ.

(c′′) For every line λ ∈ 3, we have NG(λ) ∩ J ·2
= λ·2.

If 3 = {ℓi j : i ̸= j ∈ J }, then (a) is equivalent to

i, j, k ∈ J are collinear if and only if i jk ∈ J.

Example 2.3. Let Hn be the n-dimensional real hyperbolic space. Then Isom(Hn),
the group of all isometries of Hn , contains the point-reflections as a conjugacy
class J of involutions. J can be identified with Hn , and hence J forms a mock
hyperbolic reflection space. In case n = 2 the simple group PSL2(R) consists of
all orientation-preserving isometries of H2. PSL2(R) is generated by the point-
reflections and the point-reflections are the only involutions.

Example 2.4. Let A be a uniquely 2-divisible abelian group, and let ϵ ∈ Aut(A)

be given by ϵ(x) = x−1. Put G = A⋊ ⟨ϵ⟩. Then the set of involutions in G is given
by J = A × {ϵ} and J forms a mock hyperbolic reflection space consisting of a
single line.
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Other examples arise from sharply 2-transitive groups (Section 3) or can be
constructed from a class of uniquely 2-divisible Frobenius groups (Section 4).

Lemma 2.5. Let G be a group and J a conjugacy class of involutions in G such
that J acts regularly on itself by conjugation, i.e., J satisfies condition (b) in
Definition 2.1. Then the following holds for any i ∈ J :

(a) i J is uniquely 2-divisible.

(b) J ·2
∩ Cen(i) = {1}.

(c) G = (i J ) Cen(i) and every g ∈ G can be written uniquely as g = i jh with j ∈ J
and h ∈ Cen(i).

Proof. (a) Fix ia ∈ i J . We have to show that there is a unique b ∈ J such that

ia = (ib)2
= ibib = i ib.

This is exactly condition (b) in Definition 2.1.

(b) Suppose a and b are involutions in J such that iab
= i . Then ia

= ib, and
hence a = b by the uniqueness in condition (b). Hence ab = 1.

(c) Let g ∈ G, and set k = i g−1
. Then there is a unique j ∈ J such that ki j

= i .
Now put h = j ig. Then g = i jh and, we have

ki j
= i = kg

= ki jh
= ih,

and therefore h ∈ Cen(i). This shows existence of such a decomposition, and
uniqueness follows from part (b). □

In accordance with the terminology from real hyperbolic spaces or from sharply
2-transitive groups, we call elements of the set

S = {σ ∈ J ·2
\ {1} : ℓσ exists in 3} ∪ {1}

translations. Then (b) of Lemma 2.5 implies that nontrivial translations have no
fixed points (in their action on J ).

B. H. Neumann [1940] showed that a uniquely 2-divisible group admitting a
fixed-point-free involutionary automorphism must be abelian. More generally,
uniquely 2-divisible groups with involutionary automorphisms can be decomposed
as follows:

Proposition 2.6 [Borovik and Nesin 1994, Exercise 14 on p. 73]. Let G be a
uniquely 2-divisible group, and let α ∈ Aut(G) be an involutionary automorphism.
Define the sets Inv(α) = {g ∈ G : gα

= g−1
} and Cen(α) = {g ∈ G : gα

= g}.
Then G = Inv(α) Cen(α), and for every g ∈ G there are unique a ∈ Inv(α) and

b ∈ Cen(α) such that g = ab. In particular, if α has no fixed points, then G is
abelian and α acts by inversion.
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Lemma 2.7. Suppose (J, 3) satisfies conditions (a) and (b) in Definition 2.1. Let λ

be a line in 3.

(a) NG(λ) ∩ J = λ.

(b) If i ∈ λ, then λ·2
= iλ.

(c) If a and b are distinct involutions in J such that ab ∈ λ·2, then a, b ∈ λ.

(d) λ·2 is a uniquely 2-divisible abelian group.

(e) If i, j, k ∈ J are such that ℓi j and ℓ jk exist in 3, then ℓ·2i j ·ℓ·2jk = ℓi j ·ℓ jk ⊆ J ·2.

(f) NG(λ) = NG(λ·2).

Proof. (a) We first show λ ⊆ NG(λ): If λ = ℓi j , then j i
= i j i , and hence i j ∈ j i J .

Therefore j i
∈ λ.

Now assume k ∈ NG(λ)∩ J and λ = ℓi j . We may assume k ̸= i . Then i ̸= ik
∈ λ,

and hence λ = ℓik i . Now iki = kki , so iki ∈ k J , and therefore k ∈ λ.

(b) Fix a ̸= b in λ. Then ab ∈ i J , and hence ab = i j for some j ∈ J . It remains
to show j ∈ λ: we have ab = i j ∈ J j = j J , and hence j ∈ λ.

(c) Suppose ab = i j and λ = ℓi j . Then (i j)a
= (i j)−1

= j i , and therefore λa
= λ,

so a ∈ NG(λ) ∩ J = λ. Now aλ = λ·2, and hence b ∈ λ.

(d) We first show that λ·2
= iλ is uniquely 2-divisible. Since we know that i J

is uniquely 2-divisible, it remains to show that iλ is 2-divisible. Fix ia ∈ iλ, say
ia = (ib)2 for some b ∈ J . Then ia = i ib, so a = ib, and thus b ∈ NG(λ) ∩ J = λ.

It remains to show that λ·2
= iλ is an abelian group. Note that iλ = λi , and hence

λ·2 is closed under multiplication and taking inverses. Therefore λ·2 is a uniquely
2-divisible group. Moreover, i acts on λ·2 as an involutionary automorphism without
fixed points. Now Proposition 2.6 implies that λ·2 is abelian.

(e) Since j normalizes ℓi j , we have ℓ·2i j = ℓi j j by (b), and hence the claim follows.

(f) We only need to show that NG(λ·2) ⊆ NG(λ). Take g ∈ NG(λ·2) \ {1} and
fix i ̸= j ∈ λ. Then i j ∈ λ·2, and hence i g j g

∈ λ·2. Therefore i g, j g
∈ λ by (c), and

thus λg
= λ. □

Lemma 2.8. Suppose (J, 3) satisfies (a) and (b) in Definition 2.1. Then the
following are equivalent:

(a) (J, 3) is a partial mock hyperbolic reflection space.

(b) Every line λ ∈ 3 satisfies NG(λ) ∩ J ·2
= λ·2.

Proof. Suppose that (J, 3) forms a partial mock hyperbolic reflection space and
fix i j ∈ NG(λ) ∩ J ·2 and assume i ̸= j ∈ J . Then λi

= λ = λ j , and therefore
i, j ∈ NG(λ) ∩ J = λ. Thus NG(λ) ∩ J ·2

= λ·2.
Conversely, assume NG(λ)∩ J ·2

= λ·2 and λi
= λ j for i ̸= j ∈ J . Then i j ∈ λ·2,

and hence i, j ∈ λ by Lemma 2.7(c). This shows λi
= λ = λ j . □
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Proposition 2.9. Let G be a group and J a conjugacy class of involutions in G, and
suppose (J, 3) is a partial mock hyperbolic reflection space. Then the following
holds:

(a) If λ = ℓi j ∈ 3, then λ·2
= i J ∩ j J = Cen(i j) ∩ J ·2.

(b) The set S \ {1} = {i j ∈ J ·2
\ {1} : ℓi j exists in 3} is partitioned by the family

{λ·2
\ {1} : λ ∈ 3}.

Proof. By Lemma 2.7, (b) follows from (a). In order to prove (a), we first show
λ·2

= i J ∩ j J . Fix ia = jb ∈ i J ∩ j J . Then ab = i j ∈ λ·2, and hence a, b ∈ λ by
Lemma 2.7(c). This shows i J ∩ j J ⊆ λ·2. Moreover, we have λ·2

= iλ = jλ, and
hence λ·2

⊆ i J ∩ j J . Thus λ·2
= i J ∩ j J .

The group λ·2 is abelian and contains i j . Hence λ·2
⊆Cen(i j)∩ J ·2. Any element

g ∈ Cen(i j) normalizes λ = ℓi j = ℓ j i . Thus Cen(i j) ∩ J ·2
⊆ NG(λ) ∩ J ·2

= λ·2

(Lemma 2.8), and hence Cen(i j) ∩ J ·2
= λ·2. □

If i is an involution in J , then we define 3i = {λ ∈ 3 : i ∈ λ} to be the set of all
lines that contain i .

Proposition 2.10. Suppose (J, 3) forms a partial mock hyperbolic reflection space.

(a) Suppose λ ∩ λ j
̸= ∅ for a line λ and an involution j in J . Then j ∈ λ, and

therefore λ = λ j .

(b) G acts transitively on 3 if and only if Cen(i) acts transitively on 3i for
each i ∈ J .

Proof. (a) Suppose {i} = λ ∩ λ j . Then i = i j and therefore j = i ∈ λ.

(b) If Cen(i) acts transitively on 3i , then G is transitive on 3, because all involu-
tions in J are conjugate.

Now assume G acts transitively on 3 and suppose i ∈ λ ∩ λg for some g ∈ G.
By Lemma 2.5, g can be written as g = i jh for some j ∈ J and h ∈ Cen(i). Note
that λg

= λi jh
= λ jh , because i is contained in λ.

Since h ∈ Cen(i), this implies that i must be contained in λ j , and hence

i ∈ λ ∩ λ j .

Therefore (a) implies that j must be contained in λ, and hence λ = λ j . Hence
λg

= λh . Since g was arbitrary, this shows that Cen(i) acts transitively on 3i . □

The geometry of a mock hyperbolic reflection space. Recall that a mock hyperbolic
reflection space is a partial hyperbolic space such that any two points are contained
in a line. As a first step, we show that the geometry of a mock hyperbolic reflection
space cannot contain a proper projective plane:

Lemma 2.11. Suppose that (J, 3) is a mock hyperbolic reflection space in a
group G and that X ⊆ J is a projective plane. That is, suppose
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(a) for all i ̸= j ∈ X the line ℓi j is contained in X , and

(b) if λ and δ are lines contained in X then λ ∩ δ ̸= ∅.

Then X ·2 is a uniquely 2-divisible subgroup of G.

Proof. The set X ·2 is a group by Lemma 2.7(e). This group is uniquely 2-divisible
by Lemma 2.7(d) and Proposition 2.9(b). □

Lemma 2.12. Suppose J forms a mock hyperbolic reflection space in a group G,
and let H ⊆ J ·2 be a subgroup of G which is uniquely 2-divisible and normalized
by an involution i ∈ J . Then H ⊆ Cen(σ ) for some σ ∈ J ·2

\ {1}.

Proof. Since H is uniquely 2-divisible and i acts as an involutionary automorphism
without fixed points, Proposition 2.6 implies that H is abelian and hence must be
contained in the centralizer of some translation. □

Proposition 2.13. If J is a mock hyperbolic reflection space in a group G, then it
does not contain a proper projective plane. That is, if X ⊆ J is a projective plane,
then X contains at most one line.

Proof. By Lemma 2.11, the set X ·2 is a uniquely 2-divisible subgroup of G. By
Lemma 2.5(b), each j ∈ X acts on X ·2 as an involutionary automorphism without
fixed points. By the previous lemma, X ·2

≤ Cen(σ ) for some σ ∈ J ·2
\ {1}, and

hence X ⊆ ℓσ by Lemma 2.7(c). □

Theorem 2.14. Suppose J forms a mock hyperbolic reflection space in a group G.
Then the following are equivalent:

(a) 3 consists of a single line.

(b) J is a projective plane.

(c) G has an abelian normal subgroup A ̸⊆
⋂

i∈J Cen(i).

(d) J ·2
= i J for any involution i ∈ J .

(e) i J is commutative for any involution i ∈ J .

(f) i J is a subgroup of G for any involution i ∈ J .

(g) J ·2 is a subgroup of G.

(h) i J is an abelian normal subgroup of G, and G splits as G = i J ⋊Cen(i) for
any involution i ∈ J .

Proof. We show the following implications:

(d) ⇐⇒ (a) =⇒ (b) =⇒ (g) =⇒ (e) =⇒ (f) =⇒ (h) =⇒ (c) =⇒ (a).

To show (a) ⇐⇒ (d), assume (d) and fix a line λ = ℓi j . Then

iλ = λ·2
= i J ∩ j J = J ·2

= i J,
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and hence λ = J is the only line. Conversely, assume (a) holds and λ = J is the
unique line. Then J ·2

= λ·2
= iλ = i J by Lemma 2.7.

(a) =⇒ (b) is trivial.
(b) =⇒ (g) holds by Lemma 2.11.
Now assume (g) holds. By Proposition 2.9, J ·2

\ {1} is partitioned by the family
{λ·2

\ {1} : λ ∈ 3}. Each λ·2 is a uniquely 2-divisible abelian group by Lemma 2.7.
Therefore J ·2 is uniquely 2-divisible. If i is any involution, then i normalizes J ·2

and acts by conjugation as an involutionary automorphism without fixed points.
Therefore J ·2 is an abelian group by Proposition 2.6. In particular, i J ⊆ J ·2 is
commutative. This shows (e).

Now assume (e). i J is partitioned by {λ·2
: λ ∈ 3, i ∈ λ} and if λ = ℓi j , then

λ·2
= i J ∩ j J = Cen(i j)∩ J ·2 by Proposition 2.9(a). Since i J is commutative, this

implies i J = λ·2, and hence i J is a subgroup of G by Lemma 2.7. This shows (f).
We next show (f) =⇒ (h): i J is a uniquely 2-divisible group and i acts as an

involutionary automorphism without fixed points. Therefore i J is an abelian
subgroup of G by Proposition 2.6. Note that NG(i J ) contains Cen(i) and i J .
Therefore G = i J Cen(i) = NG(i J ) by Lemma 2.5. Hence i J is an abelian normal
subgroup of G, and therefore G = i J ⋊Cen(i) by Lemma 2.5.

(h) =⇒ (c) is obvious.
To see that (c) implies (a), let i ∈ J and a ∈ A \ Cen(i). Then

1 ̸= a−1ai
= iai ∈ A ∩ i J.

In particular, A ∩ i J is nontrivial. Now fix σ ∈ (A ∩ i J )\ {1}, and set λ = ℓσ . Then

Cen(σ ) ∩ J ·2
= λ·2,

so A ∩ J ·2
⊆ λ·2. This implies that λ·2 is a normal subset of G, and hence λ is a

normal subset of G by Lemma 2.7. Therefore λ = J by Lemma 2.7. □

3. Sharply 2-transitive groups

In this section we consider a particular class of Frobenius groups: a permutation
group G acting on a set X , where |X | ≥ 2, is called sharply 2-transitive if it acts
regularly on pairs of distinct points, or equivalently, if G acts transitively on X
and for each x ∈ X the point stabilizer Gx acts regularly on X \ {x}. Thus, a
sharply 2-transitive group splits if it can be written as a semidirect product of a
regular normal subgroup with a point-stabilizer. For two distinct elements x, y ∈ X
the unique g ∈ G such that (x, y)g

= (y, x) is an involution. Hence the set J of
involutions in G is nonempty and forms a conjugacy class.

The (permutation) characteristic of a group G acting sharply 2-transitively on a
set X is defined as follows: put char(G) = 2 if and only if involutions have no fixed



MOCK HYPERBOLIC REFLECTION SPACES AND FROBENIUS GROUPS 147

points. If involutions have a (necessarily unique) fixed point, the G-equivariant
bijection i 7→ fix(i) allows us to identify the given action of G on X with the
conjugation action of G on J . Thus, in this case, the set S \ {1} of nontrivial
translations also forms a single conjugacy class. We put char(G) = p (or 0) if
translations have order p (or infinite order, respectively). For the standard examples
of sharply 2-transitive groups, namely K ⋊ K ∗ for some field K , this definition of
characteristic agrees with the characteristic of the field K .

Remark 3.1. Let G be a sharply 2-transitive group of characteristic char(G) ̸= 2.
Since G acts sharply 2-transitively by conjugation on the set J of involutions in G,
the following properties are easy to see:

(a) Cen(i) acts regularly on J \ {i}.

(b) The set J acts regularly on itself by conjugation, that is, condition (b) of
Definition 2.1 holds.

(c) J ·2
∩ Cen(i) = {1} for all i ∈ J .

In particular, a nontrivial translation does not have a fixed point.

In order to define the lines for a mock hyperbolic reflection space on J , we need
the following equivalent conditions to be satisfied:

Proposition 3.2. If G is a sharply 2-transitive group of characteristic different
from 2, the following conditions are equivalent:

(a) Commuting is transitive on J ·2
\ {1}.

(b) i J ∩ k J is uniquely 2-divisible for all involutions i ̸= k ∈ J .

(c) Cen(ik) = i J ∩ k J is abelian and is inverted by k for all i ̸= k ∈ J .

(d) The set {Cen(σ ) \ {1} : σ ∈ J ·2
\ {1}} forms a partition of J ·2

\ {1}.

Note that these conditions are satisfied in split sharply 2-transitive groups by
Theorem 3.5 whenever char(G) = p ̸= 0, 2 or if G satisfies the descending chain
condition for centralizers, so in particular if G has finite Morley rank by [Borovik
and Nesin 1994, Lemma 11.50].

Proof. For (a) =⇒ (b), note that since (i j)2
= i i j

∈ i J every element of i J has a
unique square root in i J . Let τ ∈ i J ∩k J . Since commuting is transitive, the group
A = ⟨Cen(τ ) ∩ J ·2

⟩ ≤ Cen(τ ) is abelian. Moreover, A ∩ J = ∅ by Remark 3.1.
Hence the square map is an injective group homomorphism from A to A.

There is σi ∈ i J such that σ 2
i = τ and so σi ∈ Cen(τ ) ∩ i J . Similarly we find

σk ∈ Cen(τ ) ∩ k J such that σ 2
k = τ . Since the square map is injective, it follows

that σi = σk ∈ i J ∩ k J . Therefore i J ∩ k J is uniquely 2-divisible.
(b) =⇒ (c) is contained in [Borovik and Nesin 1994, Lemma 11.50(iv)].
(c) =⇒ (d) and (d) =⇒ (a) are obvious. □
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The examples constructed in [Rips et al. 2017] (see also [Tent and Ziegler 2016])
show that in characteristic 2 these conditions need not be satisfied. The nonsplit
examples in characteristic 0 constructed in [Rips and Tent 2019] satisfy the assump-
tions and it is an open question whether nonsplit sharply 2-transitive groups exist in
characteristic 0 which fail to satisfy these conditions. Note that [Rips and Tent 2019,
Lemmas 2.3 and 5.3] imply that the maximal near-field in these examples is planar.

Assume now that the conditions of Proposition 3.2 are satisfied. Then for i ̸= j ∈ J
we put

ℓi j = {k ∈ J : i j ∈ k J } and 3 = {ℓi j : i ̸= j ∈ J }.

By Remark 3.1(b), (J, 3) satisfies conditions (a) and (b) of Definition 2.1 and by
Proposition 3.2, we have

ℓi j = {k ∈ J : i j ∈ k J } = i Cen(i j) = {k ∈ J : (i j)k
= j i}.

The point-line geometry (J, 3) is equivalent to the incidence geometry consid-
ered by Borovik and Nesin [1994, Section 11.4].

If λ = ℓi j is a line, then NG(λ) = NG(Cen(i j)) is a split sharply 2-transitive
group,

NG(λ) = Cen(i j)⋊ NCen(i)(λ),

and corresponds to the maximal near-field (see, e.g., [Kerby 1974] or [Borovik and
Nesin 1994, Chapter 11]). The maximal near-field is called planar if

NG(λ) = Cen(i j) ∪

⋃
k∈λ

NCen(k)(λ),

i.e., if Cen(i j) coincides with the set of fixed-point-free elements of NG(λ).

Lemma 3.3. Assume that G is sharply 2-transitive and char(G) ̸= 2, and if
char(G) = 0, assume furthermore that G satisfies the descending chain condition on
centralizers. Assume moreover that the maximal near-field is planar. If λ ∈ 3 and
i ̸= j ∈ J such that λi

= λ j , then i, j ∈ λ and so λi
= λ = λ j , and thus condition (c)

of Definition 2.1 holds.

Proof. This is contained in the proof of [Borovik and Nesin 1994, Theorem 11.51].
Since our definition of lines is slightly different from the one given in that work,
we include a proof. If λi

= λ j then i j ∈ NG(λ), and hence i j ∈ NG(λ·2). By
Propositions 2.9(a) and 3.2(c), we have λ·2

= Cen(σ ) for some σ ∈ J ·2
\ {1} such

that λ = ℓσ . Fix s ∈ λ. The group NG(Cen(σ )) = Cen(σ )⋊ NCen(s)(Cen(σ )) is
split sharply 2-transitive by [Borovik and Nesin 1994, Proposition 11.51]. Since
the maximal near-field is planar, we have

i j ∈ NG(Cen(σ )) ∩ J ·2
= Cen(σ ),

and therefore i, j ∈ ℓσ = λ. □
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Corollary 3.4. Let G be a sharply 2-transitive group. Then the set of involutions
J ⊂ G forms a mock hyperbolic reflection space in any of the following cases:

(a) G is a split sharply 2-transitive group corresponding to a planar near-field of
characteristic ̸= 2;

(b) char(G) = p ̸= 0, 2 and the maximal near-field is planar; or

(c) char(G) = 0, G satisfies the descending chain condition for centralizers, and
the maximal near-field is planar.

In particular, if char(G) ̸= 2 and G is of finite Morley rank, then the involutions
in G form a mock hyperbolic reflection space.

In the case of sharply 2-transitive groups, Theorem 2.14 reduces to the following
well-known result of Neumann [1940]:

Theorem 3.5. A sharply 2-transitive group G splits if and only if the set of transla-
tions J ·2 is a subgroup of G (and in that case, J ·2 must in fact be abelian).

4. Uniquely 2-divisible Frobenius groups

In this section we will construct (partial) mock hyperbolic reflection spaces from
uniquely 2-divisible Frobenius groups with abelian Frobenius complement. This
construction makes use of K-loops and quasidirect products.

K-loops and quasidirect products. K-loops are nonassociative generalizations of
abelian groups. They are also known as Bruck loops and gyrocommutative gy-
rogroups. We mostly follow Kiechle’s book [2002].

Definition 4.1. A groupoid (L , · , 1) is a K-loop if

(a) it is a loop, i.e., the equations

ax = b and xa = b

have unique solutions for all a, b ∈ L ,

(b) it satisfies the Bol condition, i.e.,

a(b · ac) = (a · ba)c

for all a, b, c ∈ L , and

(c) it satisfies the automorphic inverse property, i.e., all elements of L have inverses,
and we have

(ab)−1
= a−1b−1

for all a, b ∈ L .

Given a ∈ L , let λa : L → L be defined by λa(x) = ax . Given a, b ∈ L , we
define the precession map

δa,b = λ−1
ab λaλb.
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These maps are characterized by

a · bx = ab · δa,b(x) for all x ∈ L .

If L is a K-loop, then the precession maps are automorphisms, and we set

D = D(L) = ⟨δa,b : a, b ∈ L⟩ ≤ Aut(L).

The following identities will be used in this section:

Proposition 4.2. Let L be a K-loop, a, b ∈ L , and α ∈ Aut(L). Then the following
identities hold:

(a) [Kiechle 2002, 2.4(2)] α−1δa,bα = δα−1(a),α−1(b).

(b) [Kiechle 2002, 6.1(1)] δa,a−1 = id.

(c) [Kiechle 2002, Theorem 6.4(1)(VI)] δa,ba = δa,b.

(d) [Kiechle 2002, part of Theorem 3.7] δa,b = δ−1
b,a = δa−1,b−1 .

Definition 4.3. Let G be a group. A subset L ⊆ G is a twisted subgroup of G if
and only if 1 ∈ L , L−1

⊆ L , and aLa ⊆ L for all a ∈ L .

Note that twisted subgroups are closed under the square map. A twisted subgroup
is uniquely 2-divisible if the square map is bijective.

Proposition 4.4 [Kiechle 2002, Theorem 6.14]. Let G be a group with a uniquely
2-divisible twisted subgroup L ⊆ G. Then

a ⊗ b = a1/2ba1/2

makes L into a K-loop (L , ⊗ , 1) and integer powers of elements in L agree in G
and (L , ⊗). Given a, b ∈ L , the precession map δa,b is given by conjugation with

da,b = b1/2a1/2(a1/2ba1/2)−1/2.

Proof. The formula for the precession maps follows from simple calculation.
Everything else is contained in [Kiechle 2002, Theorem 6.14]. □

Proposition 4.5 [Kiechle 2002, Theorem 2.13]. Let L be a K-loop, and let A ≤

Aut(L) be a group of automorphisms such that D(L) ⊆ A. Then:

(a) The quasidirect product L ⋊Q A given by the set L × A together with the
multiplication

(a, α)(b, β) = (a · α(b), δa,α(b)αβ)

forms a group with neutral element (1, id). Inverses are given by

(a, α)−1
= (α−1(a−1), α−1).

(b) L ⋊Q A acts faithfully and transitively on L by

(a, α)(x) = aα(x) for all (a, α) ∈ L ⋊Q A and x ∈ L .
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Mock hyperbolic reflection spaces from uniquely 2-divisible Frobenius groups.
Let H < G be a uniquely 2-divisible Frobenius group with abelian complement H .

We set L to be the K-loop L = (G, ⊗), where ⊗ is defined by

a ⊗ b = a1/2ba1/2.

Set A = G × ⟨ϵ⟩ < Aut(L), where ϵ inverts all elements of L . Put G = L ⋊Q A.
Let J be the set of all involutions in G, and put ι = (1, ϵ) ∈ J .

Lemma 4.6. (a) J = L × {ϵ}.

(b) Cen(ι) = 1 ×A.

(c) For all i, j ∈ J , there is a unique k ∈ J such that j = ik .

Proof. L is a K-loop by Proposition 4.4.

(a) Fix (a, α) ∈ G such that (a, α)2
= (1, id). Note that

(a, α)(a, α) = (a ⊗ α(a), δa,α(a)α
2).

Now a ⊗ α(a) = 1 implies α(a) = a−1, and therefore δa,α(a) = id. Hence we must
have α2

= id.
If α = id, then a ⊗ α(a) = a2, so a2

= 1, and thus a = 1. In that case, (a, α) =

(1, id) is the neutral element in G.
This shows J = L × {ϵ}, because ϵ is the only involution in A.

(b) Fix (a, α) ∈ Cen(ι). We have

(a, α)(1, ϵ) = (a, αϵ) and (1, ϵ)(a, α) = (a−1, ϵα).

Hence (a, α) ∈ Cen(ι) if and only if a = a−1 if and only if a = 1.

(c) Take involutions (a, ϵ), (b, ϵ), (c, ϵ) ∈ J = L × {ϵ}. Then

(b, ϵ)(a, ϵ)(b, ϵ) = (b, ϵ)(a ⊗ b−1, δa,b−1)

= (b ⊗ (a−1
⊗ b), δb,a−1⊗bδa,b−1ϵ)

= ((b ⊗ a−1/2)2, ϵ).

Hence we have (a, ϵ)(b,ϵ)
= (c, ϵ) if and only if b ⊗ a−1/2

= c1/2. The loop
conditions ensure that for all a, c ∈ L there is a unique b satisfying this equation. □

Now set λ0 = H ×{ϵ} ⊆ J , and put 3 = {λ
g
0 : g ∈ G}. We view elements of 3

as lines, and we view involutions as points. Note that 3 is G-invariant and all lines
are conjugate.

The following will be shown in this section:
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Theorem 4.7. (a) (J, 3) is a partial mock hyperbolic reflection space in G.

(b) If G is full, i.e., if G =
⋃

g∈G H g, then (J, 3) is a mock hyperbolic reflection
space.

(c) Suppose i, j, k ∈ J are pairwise distinct such that the lines ℓi j and ℓik exist,
and assume that i, j, k are not collinear. Then CenG(i, j, k) = 1. In particular,
G acts faithfully on J .

Lemma 4.8. Let λ be a line containing ι. Then λ is of the form

λ = H g
× {ϵ}

for some g ∈ G.

Proof. We have λ = λ
g
0 for some g = (a, α) ∈ G. So elements of λ are of the form

(α−1(a−1), α−1)(c, ϵ)(a, α)

= (α−1(a−1), α−1)(c ⊗ a−1, δc,a−1ϵα)

=
(
α−1(a−1) ⊗ α−1(c ⊗ a−1), δα−1(a−1),α−1(c⊗a−1)α

−1δc,a−1αϵ
)

=
(
α−1(a−1

⊗ (c ⊗ a−1)), α−1δa−1,c⊗a−1δc,a−1αϵ
)

for some c ∈ H , where the last equality holds by Proposition 4.2(a).
Note that a−1

⊗ (c ⊗ a−1) = (a−1
⊗ c1/2)2. We assume ι ∈ λ. Hence

1 = a−1
⊗ c1/2

for some c ∈ H , and thus a = c1/2
∈ H . This implies λ = (α−1(H), ϵ) ⊆ J . □

Corollary 4.9. Any two distinct points are contained in at most one line.

Lemma 4.10. Fix distinct involutions i, j ∈ J and suppose ℓi j exists in 3. Then

ℓi j = {k ∈ J : i j ∈ k J }

= {k ∈ J : (i j)k
= (i j)−1

}.

Proof. We may assume that ℓi j = H × {ϵ} and i j = (c, 1) for some c ∈ H \ {1}.
The second equality is easy, and therefore we only show the first equality.

We first show ℓi j ⊆ {k ∈ J : i j ∈ k J }: Take d ∈ H \ {1}. Then

(d, ϵ)(c, 1)(d, ϵ) = (d, ϵ)(c ⊗ d, δc,dϵ) = (d ⊗ (c ⊗ d)−1, δd,(c⊗d)−1δc,d).

The Frobenius complement H is abelian, and therefore

(d ⊗ (c ⊗ d)−1, δd,(c⊗d)−1δc,d) = (c−1, 1).

This shows (c, 1)(d,ϵ)
= (c, 1)−1, and hence ℓi j ⊆ {k ∈ J : i j ∈ k J }.
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We now show ⊇ for the first equality: Suppose (c, 1) = (a, ϵ)(b, ϵ). We have to
show that a is an element of H . We have

(c, 1) = (a, ϵ)(b, ϵ) = (a ⊗ b−1, δa,b−1),

and hence a1/2b−1a1/2
= a ⊗b−1

= c ∈ H and δa,b−1 = id. By Proposition 4.4, this
implies

b−1/2a1/2(a ⊗ b−1)−1/2
= 1.

So b−1/2a1/2
=c1/2, and since c=a1/2b−1a1/2, this implies a1/2b−1/2

=c1/2. Hence

c1/2
= b−1/2a1/2

= (a1/2b−1/2)a1/2
= (c1/2)a1/2

,

and therefore a1/2
∈ Cen(c) = H . □

Lemma 4.11. Suppose (a, α) ∈ NG(λ0). Then a ∈ H and α normalizes H.

Proof. Given c ∈ H , we have

(a, α)−1(c, ϵ)(a, α)=(α−1(a−1), α−1)(c⊗a−1, δc,a−1ϵα)

=
(
α−1(a−1)⊗α−1(c⊗a−1), δα−1(a−1),α−1(c⊗a−1)α

−1δc,a−1αϵ
)

=
(
α−1(a−1

⊗(c⊗a−1)), α−1δa−1,c⊗a−1δc,a−1αϵ
)

=
(
α−1(a−1

⊗(c⊗a−1)), ϵ
)
.

We have (1, ϵ) ∈ λ0, and therefore

1 = a−1
⊗ (c0 ⊗ a−1)

for some c0 ∈ H . Note that

a−1
⊗ (c0 ⊗ a−1) = (a−1/2c1/2

0 a−1/2)2
= (a−1

⊗ c1/2
0 )2,

and therefore 1 = a−1
⊗ c1/2

0 . This shows a = c1/2
0 ∈ H .

Moreover, α−1(a−1
⊗(c⊗a−1))∈ H for all c ∈ H , and hence α normalizes H . □

Proposition 4.12. NG(λ0) ∩ J ·2
= λ·2

0 .

Proof. Fix a ̸= b in L such that (a, ϵ)(b, ϵ) = (a ⊗ b−1, δa,b−1) ∈ NG(λ0). By
Lemma 4.11, we have a ⊗ b−1

∈ H and δa,b−1 normalizes H .
By Proposition 4.4, the latter is equivalent to

b−1/2a1/2(a1/2b−1a1/2)−1/2
∈ H.

Since a1/2b−1a1/2
= a ⊗ b−1

∈ H , this implies b−1/2a1/2
∈ H , and therefore

a1/2b−1/2
= a1/2b−1a1/2(b−1/2a1/2)−1

∈ H .
This shows

b−1/2a1/2
= (a1/2b−1/2)b1/2

∈ H ∩ H b1/2
.

Thus b1/2
∈ h and a1/2

= (a1/2b−1/2)b1/2
∈ H , because H is malnormal in G. □
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Proposition 4.13. Suppose i, j, k ∈ J are pairwise distinct such that the lines
ℓi j and ℓik exist in 3, and assume that i, j, k are not collinear. Then Cen(i, j, k)=1.

Proof. Let i = (1, ϵ) and fix j = (a, ϵ) ∈ J \ {i}. We already know Cen(i) = 1×A.
Now fix (1, β) ∈ Cen(i) ∩ Cen( j). Then

(β(a), ϵβ) = (1, β)(a, ϵ) = (a, ϵ)(1, β) = (a, ϵβ).

Therefore β ∈ CenA(a) = 1 × CenG(a), and hence Cen(i, j) = 1 × CenG(a). This
shows the claim, because G is a Frobenius group. □

Proof of Theorem 4.7. We start by checking conditions (a) and (b) of Definition 2.1.
Condition (a) follows from Corollary 4.9 and Lemma 4.10. Condition (b) is part (c)
of Lemma 4.6.

Now Proposition 4.12 and Lemma 2.8 imply that (J, 3) is a partial mock hyper-
bolic reflection space.

If the Frobenius group is full, then it follows from Lemma 4.8 and from the
definition of λ0 that all lines exist and hence that J forms a mock hyperbolic
reflection space.

The final statement is Proposition 4.13. □

5. Mock hyperbolic reflection spaces in groups of finite Morley rank

We now turn to the finite Morley rank setting. We refer the reader to [Borovik
and Nesin 1994; Poizat 1987] for a general introduction to groups of finite Morley
rank. If X is a definable set of finite Morley rank, then we denote its Morley rank
by MR(X) and its Morley degree by MD(X).

Convention. In the context of finite Morley rank, we say that a definable property P
holds for Morley rank k many elements if the set defined by P has Morley rank k.
In a slight abuse, we may also say that P holds for generically many elements of a
definable set X if the set of elements in S not satisfying P has smaller Morley rank
than X .

We will repeatedly make use of the following:

Proposition 5.1 [Borovik and Nesin 1994, Exercises 11 and 12 on p. 72]. If G
is a group of finite Morley rank and G does not contain an involution, then G is
uniquely 2-divisible.

Now let G be a group of finite Morley rank, and let J be a conjugacy class
of involutions such that MD(J ) = 1. Moreover, we assume that 3 ⊆ P(J ) is a
G-invariant definable family of subsets of J such that each λ ∈ 3 is of the form

λ = {k ∈ J : i j ∈ k J }

for any i ̸= j ∈ λ.
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Definition 5.2. We call (J, 3) a generic mock hyperbolic reflection space if (J, 3)

is a partial mock hyperbolic reflection space and for each i ∈ J the set

{ j ∈ J : ℓi j ∈ 3}

is generic in J .

Remark 5.3. Let (J, 3) be a generic mock hyperbolic reflection space.

(a) The condition in the above definition is equivalent to the statement that

{(i, j) ∈ J 2
: i ̸= j and ℓi j exists in 3} ⊆ J × J

is a generic subset of J 2.

(b) Write
3(k) = {λ ∈ 3 : MR(λ) = k}.

Fix i ∈ J , and set B(k)(i) = { j ∈ J \ {i} : ℓi j ∈ 3(k)}. Since MD(J ) = 1,
there is exactly one k ≤ n such that B(k)(i) is a generic subset of J . In that
case (J, 3(k)) is a generic mock hyperbolic reflection space. Hence we may
assume from now on that all lines in 3 have the same Morley rank.

(c) If (J, 3) is a generic mock hyperbolic reflection space of finite Morley rank
in which all lines have Morley rank k, then we have MR(3) = 2n − 2k and
MD(3) = 1 for n = MR(J ). The set of translations

S = {σ ∈ J ·2
\ {1} : ℓσ exists in 3} ∪ {1}

has Morley rank 2n − k and Morley degree 1.

If X and Y are definable sets, then we write X ≈ Y if X and Y coincide up to a
set of smaller rank, i.e., if the sets X , Y , and X ∩ Y all have the same Morley rank
and Morley degree. This defines an equivalence relation on the family of definable
sets. One important property of this equivalence relation is the following:

Proposition 5.4 [Wagner 2017, Lemma 4.3]. Let G be a group acting definably on
a set X in an ω-stable structure. Let Y be a definable subset of X such that gY ≈ Y
for all g ∈ G. Then there is a G-invariant set Z ⊆ X such that Z ≈ Y .

By Theorem 2.14, a mock hyperbolic reflection space consists of one line if
and only if the set of translations forms a normal subgroup. For generic mock
hyperbolic reflection spaces the following will be shown in this section:

Theorem 5.5. Suppose (J, 3) is a generic mock hyperbolic reflection space such
that J has Morley rank MR(J ) = n. Assume that 3 consists of more than one line
and that all lines λ ∈ 3 are infinite and of Morley rank MR(λ) = k. Then n ≥ 2k +1.

If n = 2k + 1, then the translations almost form a normal subgroup: G has a
definable connected normal subgroup N of Morley rank MR(N ) = 2n − k such
that N ≈ S. Moreover, MR(N ∩ Cen(i)) = n − k for any involution i ∈ J .
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For the remainder of this section we assume that (J, 3) is a generic mock
hyperbolic reflection space in a group of finite Morley rank G such that (J, 3)

satisfies the assumptions in Theorem 5.5. In particular, n > k ≥ 1.
Note that we do not state any assumption about the Morley degree of lines.

Generic projective planes.

Definition 5.6. A definable subset X ⊆ J is a generic projective plane if

(a) MR(X) = 2k and MD(X) = 1, and

(b) MR(3X ) = 2k and MD(3X ) = 1,

where 3X is the set of all lines λ ⊆ J such that MR(λ ∩ X) = k.

The next lemma follows from easy counting arguments.

Lemma 5.7. Let X ⊆ J be a definable set of Morley rank 2k and Morley degree 1.
The following are equivalent:

(a) X is a generic projective plane.

(b) MR(3X ) ≥ 2k.

(c) The set of x ∈ X such that MR({λ ∈ 3X : x ∈ λ}) = k is generic in X.

Proof. (a) =⇒ (b) This holds by definition.

(b) =⇒ (c) Given x ∈ X consider L x = {λ ∈ 3X : x ∈ λ} and note that

MR
(⋃

L x

)
= MR(L x) + k

holds for each x ∈ X . In particular, MR(L x) ≤ k, since MR(X) = 2k. Moreover,
MR(3X ) ≥ 2k and each λ ∈ 3X is contained in rank k many sets of the form L x .
Hence we must have MR(L x) = k for generically many x ∈ X .

(c) =⇒ (b) We have MR(X) = 2k and MR(L x) = k for generically many x ∈ X .
Moreover, each λ ∈ 3X contains rank k many points from X . Thus MR(3X ) ≥ 2k.

(b) =⇒ (a) Consider the set

P = {(x, y) ∈ X × X : x ̸= y and ℓxy ∈ 3X }.

Note that each λ ∈ 3X has rank 2k many preimages in P . Since X has rank 2k and
degree 1, this implies MR(3X ) = 2k and MD(3X ) = 1. □

Lemma 5.8. Suppose X ⊆ J is a generic projective plane. Then set of x ∈ X such
that X x

≈ X is generic in X.

Proof. Let λ ∈ 3X be a line. Recall that λ·2 is a group by Lemma 2.7(d). For i ∈ λ,
set

λi = { j ∈ λ : i j ∈ (λ·2)0
} = i(λ·2)0.
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Then {λi : i ∈ λ} is a partition of λ into sets of rank k and degree 1. Moreover, we
have (λi )

i
= λi for all i ∈ λ. In particular, if λi ∩ X ≈ λi , then (λi ∩ X)i

∩ X ≈ λi .
Hence for all λ ∈ 3X the set

Xλ = {x ∈ λ ∩ X : MR((λ ∩ X)x
∩ X) = k}

has Morley rank k. Moreover, each x ∈ X is contained in at most rank k many lines
in 3X and hence is contained in at most rank k many sets Xλ.

We have MR(3X ) = 2k, and hence the set

{(x, λ) ∈ X × 3X : x ∈ Xλ}

has Morley rank 3k. Since MR(X) = 2k, this implies that the set of x ∈ X contained
in rank k many sets Xλ is generic in X .

Now if x ∈ Xλ for rank k many λ, then

X x
∩ X ⊇

( ⋃
λ:x∈Xλ

λ ∩ X
)x

∩ X =

⋃
λ:x∈Xλ

(λ ∩ X)x
∩ X

must have Morley rank 2k, and hence X x
≈ X . □

Lemma 5.9. If X ⊆ J is a generic projective plane and Z ⊆ J is a definable subset
with X ≈ Z , then Z is a generic projective plane.

Proof. For x ∈ X put 3x ={λ∈3X : x ∈λ}. If MR(3x)= k, then B(x)=
⋃

3x ≈ X .
In particular, B(x) ≈ Z for a generic set of x ∈ X ∩ Z . If B(x) ≈ Z , then 3x ∩3Z

must have Morley rank k. Hence it follows from Lemma 5.7 that Z must be a
generic projective plane. □

Lemma 5.10. Let H ≤ G be a definable subgroup such that MR(H ∩ J ) = 2k
and MD(H ∩ J ) = 1. Then MR(3H∩J ) < 2k, i.e., H ∩ J does not form a generic
projective plane.

Proof. This is proved in the same way as [Borovik and Nesin 1994, Proposition
11.71]. Put Z = H ∩ J .

Assume towards contradiction that MR(3Z )≥ 2k. Then Z is a generic projective
plane, and hence MR(3Z ) = 2k and MD(3Z ) = 1 (Lemma 5.7).

Let λ ∈ 3Z be a line. By Proposition 2.10, the family {λi
: i ∈ Z \ λ} con-

sists of Morley rank 2k many lines which do not intersect λ. Therefore the set
{δ ∈ 3Z : λ ∩ δ = ∅} ⊆ 3Z is a generic subset of 3Z .

We aim to find a line which intersects Morley rank 2k many lines contradicting
MD(3) = 1. For x ∈ Z , set 3x = {λ ∈ 3Z : x ∈ λ}, and set B(x) =

⋃
3x ∩ Z ⊆ Z .

Note that MR(B(x)) = MR(3x) + k, and hence MR(3x) ≤ k for all x ∈ Z . Since
each λ ∈ 3 contains Morley rank k many points, we must have MR(3x) = k for a
generic set of x ∈ Z .
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Fix x0 ∈ Z such that 3x0 has Morley rank 2k. Then B(x0) ⊆ Z is generic, and
hence MR(3x) = k for a generic set of x ∈ B(x0). Since B(x0) =

⋃
3x0 , we can

find a line λ ∈ 3x0 such that MR(3x) = k for a generic set of x ∈ λ. But then λ

intersects Morley rank 2k many lines in 3Z . □

Proposition 5.11. J does not contain a generic projective plane X.

Proof. Assume X ⊆ J is a generic projective plane, and put

H = N≈

G (X) = {g ∈ G : X g
≈ X}.

By Lemma 5.8, the set X ∩ H is generic in X . Hence MR(H ∩ J ) ≥ 2k.
Now consider the action of G on J by conjugation. Note that, by Proposition 5.4,

there is a definable subset Z ⊆ J , X ≈ Z , such that H normalizes Z . Since J
forms a generic mock hyperbolic space, J acts regularly on itself, and hence
MR(H ∩ J ) ≤ MR(Z) = 2k. Therefore MR(H ∩ J ) = 2k and MD(H ∩ J ) = 1
(since MD(Z) = 1). This contradicts Lemma 5.10. □

A rank inequality and a normal subgroup. A line λ ∈ 3 is called complete for
some i ∈ J \ λ if the set { j ∈ λ : ℓi j ∈ 3} is a generic subset of λ.

Definition 5.12. Let (i, j, p) be a triple of noncollinear involutions in J .

• (i, j, p) is good if ℓi j , ℓ j p exist and ℓi j is complete for p.

• (i, j, p) is perfect if ℓi j , ℓ j p exist and

{ j ′
∈ ℓ j p : ℓi j ′ ∈ 3 is complete for p′

= j ′ j p}

is generic in ℓ j p.

Lemma 5.13. A generic triple (i, j, p) ∈ J 3 is good. In particular, for any i ∈ J a
generic element of {i} × J 2 is good.

Proof. Fix i ∈ J , and put B(i) = { j ∈ J : ℓi j ∈ 3}. Then B(i) is a generic subset J .
Now fix p ∈ J \ {i}. We aim to show that (i, j, p) must be good for generically
many j ∈ J \ {i, p}.

Note that B(i) and B(p) are generic subsets of J . Therefore B(i) ∩ B(p) must
be generic in B(i) and B(i) \ B(p) is not generic in B(i). Note that

B(i) ∩ B(p) =

⋃
λ∈3i

(λ ∩ B(p)) and B(i) \ B(p) =

⋃
λ∈3i

(λ \ B(p)).

Since MR(J ) = MR(3i ) + p, the set

{λ ∈ 3i : MR(λ \ B(p)) < p}

must be generic in 3i .
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Hence λ ∩ B(p) ≈ λ for generically many λ ∈ 3i . Moreover, if λ ∩ B(p) ≈ λ

for some λ ∈ 3i and j is contained in λ \ {i, p}, then (i, j, p) is good. The last
sentence follows since all elements in J are conjugate. □

Proposition 5.14. A generic triple (i, j, p) ∈ J 3 is perfect, and for any i ∈ J a
generic element of {i} × J 2 is perfect.

Proof. Since J is a generic mock hyperbolic reflection space, the set U = {( j, p) :

j p ∈ S \ {1}} ⊆ J 2 is generic in J 2. For σ ∈ S put Uσ = {( j, p) : j p = σ }. Then
each Uσ has Morley rank p and U is the disjoint union

U =

⋃
σ∈S

Uσ ⊆ J × J.

Now fix i ∈ J . A generic triple in {i} × U is good, and we have MD({i} × U ) = 1.
Since MD(S) = 1, this implies that for generically many σ ∈ S the set

{(i, r, s) ∈ {i} × Uσ : (i, r, s) is good}

is a generic subset of {i} × Uσ .
Moreover, if a generic triple in {i}×Uσ is good, then a generic triple in {i}×Uσ

must be perfect. This proves the lemma. □

Now let µ : J 3
→ G be the multiplication map, and put

T = {(i, j, p) ∈ J 3
: ℓ j p exists} and Tperf = {(i, j, p) ∈ J 3

: (i, j, p) is perfect}.

Note that Tperf ⊆ T . If (J, 3) is a mock hyperbolic reflection space, i.e., if all lines
exist, then Tperf consists of all triples of noncollinear involutions in J .

Lemma 5.15. MR(µ(Tperf)) ≥ 2n − k.

Proof. For any i ∈ J the set {( j, p) ∈ J 2
: (i, j, p) is perfect} has Morley rank 2n

by Proposition 5.14. Clearly i j p = i j ′ p′ if and only if j p = j ′ p′. If ℓ j p exists, the
set {( j ′, p′) ∈ J 2

: j p = j ′ p′
} has Morley rank k. Hence µ(Tperf) has Morley rank

at least 2n − k. □

Proposition 5.16. Suppose MR(µ(Tperf)) = 2n − k. Then G has a definable con-
nected normal subgroup N of Morley rank MR(N ) = 2n − k such that N ≈ S.
Moreover, MR(N ∩ Cen(i)) = n − k for any involution i ∈ J .

Proof. Set d = MD(µ(Tperf)) and write µ(Tperf) as a disjoint union

µ(Tperf) = Y1 ∪ · · · ∪ Yd ,

where each Yr has rank 2n − k and degree 1. Put Ti = Tperf ∩ ({i} × J × J ).
Then each Ti has rank 2n and degree 1 by Proposition 5.14. Moreover, µ(Ti ) has
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rank 2n − k and degree 1. We can find 1 ≤ f ≤ d such that

µ(Ti ) ≈ Y f

for generically many i ∈ J . Put Y = Y f , set N = Stab≈(Y ) = {g ∈ G : gY ≈ Y },
and note that N must be a normal subgroup of G, because Y is G-normal up
to ≈-equivalence.

Now, by Proposition 5.4, there is some Z ≈Y such that N ⊆Stab(Z). In particular,
N has rank ≤ 2n − k, since MR(Z) = 2n − k. Moreover, if MR(N ) = 2n − k, then
we must have N = Stab(Z), since MD(Z) = 1.

Let JY = {i ∈ J : µ(Ti ) ≈ Y }. Given i ̸= j ∈ JY , we have

i jµ(T j ) ≈ µ(Ti ),

and hence i j ∈ N . Therefore J ·2
Y ⊆ N . Since JY is a generic subset of J , we

have 3JY ≈ 3, and therefore J ·2
Y ∩ S ≈ S. Thus MR(N ) = 2n − k, and hence

N = Stab(Z) is connected. In particular, J ·2
Y ∩ S is generic in both N and S, and

hence N ≈ S.
We now show MR(N ∩Cen(i))= n−k for any involution i ∈ J : Fix an involution

i ∈ J . If i ∈ N , then i J ⊆ N , and hence N = i J (N ∩ Cen(i)) by Lemma 2.5, and
therefore MR(N ∩ Cen(i)) = n − k.

If i ̸∈ N , then note that i J ∩ N must be a generic subset of i J , and therefore the
conjugacy class i N is generic in J . This implies that N ⋊ ⟨i⟩ must contain J , and
hence is a normal subgroup of G. Now argue as in the first case. □

For α ∈ µ(T ), we set

Xα = {i ∈ J : ∃( j, p) ∈ J × J such that (i, j, p) ∈ T and i j p = α}.

Note that MR(µ−1(α) ∩ T ) = MR(Xα) + k.
If A and B are definable sets, then we write A ⊂

∼
B if A is almost contained in B,

i.e., if A ∩ B ≈ A.

Lemma 5.17. Fix a triple (i, j, p) ∈ T .

(a) If (i, j, p) is good, then ℓi j ⊂
∼

X i j p.

(b) If (i, j, p) is perfect, then ℓi t ⊂∼ X i j p for generically many t ∈ℓ j p. In particular,
MR(X i j p) ≥ 2k.

Proof. (a) Since (i, j, p) is good, the line ℓi j is p-complete. Hence ℓ j ′ p exists for
generically many j ′

∈ ℓi j . Fix such an j ′ and write i j = i ′ j ′. Then (i ′, j ′, p) is
good, and hence i ′

∈ X i j p.

(b) This follows immediately from (a). □

Lemma 5.18. Set l = MR(µ(Tperf)) − (2n − k). Then 2k ≤ MR(Xα) ≤ n − l for
generically many α ∈ µ(Tperf). In particular, n ≥ 2k + l.
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Proof. We have that MR(µ−1(α)∩T ) = MR(Xα)+k for each α ∈ µ(T ) and that T
has rank 3n, and we trivially have⋃

α∈µ(Tperf)

µ−1(α) ∩ T ⊆ T .

Therefore a generic α ∈ µ(Tperf) must satisfy the inequality

MR(µ(Tperf)) + MR(Xα) + k ≤ MR(T ) = 3n.

Moreover, we have MR(Xα) ≥ 2k by Lemma 5.17. Hence

2k ≤ MR(Xα) ≤ MR(T ) − k − MR(µ(Tperf)) = n − l

for generically many α ∈ µ(Tperf). □

Proposition 5.19. Set l = MR(µ(Tperf))− (2n −k). Then n > 2k + l. In particular,
n > 2k.

Proof. Assume not. Then n = 2k + l and MR(Xα) = 2k for generically many
α ∈ µ(Tperf). Set M = {α ∈ µ(Tperf) : MR(Xα) = 2k}. This is a generic subset
of µ(Tperf). We have

MR
( ⋃

α∈M

µ−1(α) ∩ T
)

= (2n − k + l) + 3k = 6k + 3l = 3n.

So
⋃

α∈M µ−1(α) ∩ T is a generic subset of J × J × J . Note MR(M) = 3k + 3l.
Therefore we can find α ∈ M such that µ−1(α) ∩ T has rank 3k and contains
rank 3k many perfect triples. Set X = Xα and 3X = {λ ∈ 3 : λ ⊂

∼
X}. Now

Lemma 5.17 implies that for a generic i ∈ X the set

{λ ∈ 3X : i ∈ λ}

has Morley rank k. Hence MR(3X ) = 2k, and therefore a degree 1 component
of X must be a generic projective plane. This contradicts Proposition 5.11. □

Proof of Theorem 5.5. Set l = MR(µ(Tperf)) − (2n − k). By Proposition 5.19, we
have 2k + 1 = n > 2k + l, and hence l = 0. Now Proposition 5.16 implies the
theorem. □

6. Frobenius groups of finite Morley rank

We now consider Frobenius groups of finite Morley rank. If G is a group of
finite Morley rank and H is a Frobenius complement in G, then H is definable by
[Borovik and Nesin 1994, Proposition 11.19]. If G splits as G = N ⋊ H , then N is
also definable by [Borovik and Nesin 1994, Proposition 11.23].
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Epstein and Nesin showed that if H < G is a Frobenius group of finite Morley
rank and H is finite, then H < G splits [Borovik and Nesin 1994, Theorem 11.25].
As a consequence it suffices to consider connected Frobenius groups of finite Morley
rank [Borovik and Nesin 1994, Corollary 11.27].

Solvable Frobenius groups of finite Morley rank split and their structure is well
understood [Borovik and Nesin 1994, Theorem 11.32].

Lemma 6.1. Let H < G be a connected Frobenius group of finite Morley rank with
Frobenius complement H , and let X ⊆ H \{1} be a definable H-normal subset such
that MR(X) = MR(H). Then

⋃
b∈G Xb

⊆ G is a generic subset of G.

Proof. Set n = MR(G) and k = MR(H). Consider the map α : G × X → G,
(b, x) 7→ xb. If xb

= yc for x, y ∈ X and b, c ∈ G, then bc−1 must be contained
in NG(H) = H . Therefore we have

α−1(xb) = {(c, xbc−1
) ∈ G × X : bc−1

∈ H}.

Hence all fibers of α have Morley rank k. This shows that α(G × X) =
⋃

b∈G Xb

must have Morley rank n, and hence is a generic subset of G. □

Groups of finite Morley rank can be classified by the structure of their 2-Sylow
subgroups. In case of Frobenius groups this classification is simpler:

Proposition 6.2. Let G be a connected Frobenius group of finite Morley rank with
Frobenius complement H. Then H is connected and G lies in one of the following
mutually exclusive cases:

(a) H contains a unique involution, and G is of odd type;

(b) G does not contain any involutions, and in particular, G is of degenerate type;

(c) G \
(⋃

g∈G H g
)

contains involutions, and G is of even type.

Proof. We first show that H must be connected: if H is not connected, then⋃
g∈G(H 0

\ {1})g and
⋃

g∈G(H \ H 0)g would be two disjoint generic subsets of G.
This is impossible, because G is connected.

If H contains an involution, then Delahan and Nesin showed this involution must
be unique and moreover all involutions in G are conjugate, so G\

(⋃
g∈G H g

)
cannot

contain any involution [Borovik and Nesin 1994, Lemma 11.20]. In particular, G
is of odd type, because the connected subgroup H contains a unique involution.

If G \
(⋃

g∈G Cg
)

contains an involution, then the proof of [Altınel et al. 2019,
Theorem 2] shows that G is of even type. □

Remark 6.3. If H < G is of even type, then Altınel, Berkman, and Wagner showed
in [Altınel et al. 2019] that there is a definable normal subgroup N such that
N ∩ H = 1 and N contains all involutions of G. By [Borovik and Nesin 1994,
Lemma 11.38], either G = N ⋊ H splits or H N/N < G/N is a Frobenius group of
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finite Morley rank. Now if H N/N < G/N splits, then it is easy to see that H < G
must split. Hence a nonsplit Frobenius group of minimal Morley rank cannot be of
even type. Therefore to show that all Frobenius groups of finite Morley rank split,
it suffices to consider Frobenius groups of odd and degenerate type.

Frobenius groups of odd type. Let H < G be a connected Frobenius group of
finite Morley rank and odd type. Note that G contains a single conjugacy class of
involutions, which we denote by J . Moreover, J has Morley degree 1.

Proposition 6.4 [Borovik and Nesin 1994, Proposition 11.18]. Let H < G be a
connected Frobenius group of finite Morley rank and odd type and J its set of
involutions. If a ∈ J ·2

\ {1} and i ∈ J , then Cen(a) ∩ Cen(i) = {1}.

Lemma 6.5. Let H < G be a connected Frobenius group of finite Morley rank and
odd type and J its set of involutions. Fix distinct involutions i, j ∈ J .

(a) If a ∈ i J \ {1}, then Cen(a) ⊆ i J is a uniquely 2-divisible abelian group.

(b) i J is uniquely 2-divisible.

(c) J acts regularly on itself ; i.e., given i, j ∈ J there is a unique p ∈ J such
that j = i p.

(d) i J ∩ j J is uniquely 2-divisible.

(e) Cen(i j) = i J ∩ j J .

(f) The family {Cen(a) \ {1} : a ∈ J ·2
\ {1}} forms a partition of J ·2

\ {1}.

Proof. (a) By the previous proposition, we have Cen(a)∩Cen(k) = {1} for all invo-
lutions k. In particular, Cen(a) does not contain an involution and hence is uniquely
2-divisible by Proposition 5.1. Note that i acts on Cen(a) as a fixed-point-free
involutionary automorphism. Hence, by Proposition 2.6, Cen(a) is abelian and
inverted by i , therefore i Cen(a) ⊆ J , and we have Cen(a) ⊆ i J .

(b) Fix a = i p ∈ i J \ {1}. Since Cen(a) ⊆ i J is uniquely 2-divisible, we have
a = b2 for some b = iq ∈ i J . If a = c2 for another element c = ir ∈ i J , then
i iq

= i ir , and hence qr ∈ Cen(i) ∩ J ·2
= {1}. Thus b = c.

(c) Note that j = i p if and only if i j = i i p
= (i p)2. Since i J is uniquely 2-divisible,

p exists and is unique.

(d) It suffices to show that i J ∩ j J is 2-divisible. Given a ∈ i J ∩ j J , we have
Cen(a) ⊆ i J ∩ j J , and hence a = b2 for some b ∈ Cen(a) ⊆ i J ∩ j J .

(e) By (a), we have Cen(i j) ⊆ i J ∩ j J . Hence it remains to show that i J ∩ j J ⊆

Cen(i j). Given a ∈ i J ∩ j J , a is inverted by i and j , and hence a ∈ Cen(i j).

(f) Suppose c ∈ Cen(a)∩ Cen(b) for some c ̸= 1. Then a, b ∈ Cen(c), and hence
a ∈ Cen(b), because Cen(c) is abelian. This implies Cen(b) ⊆ Cen(a), because
Cen(b) is abelian. Hence Cen(a) = Cen(b) by symmetry. This implies (f). □
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Given two distinct involutions i ̸= j in J , we define the line

ℓi j = {p ∈ J : (i j)p
= (i j)−1

}.

Lemma 6.6. Let H < G be a connected Frobenius group of finite Morley rank and
odd type and J its set of involutions. Let i ̸= j ∈ J . Then iℓi j = Cen(i j).

Proof. Clearly iℓi j ⊆ Cen(i j). On the other hand, we have Cen(i j) ⊆ i J by
Lemma 6.5(e). Given σ = i p ∈ Cen(i j), we have

( j i)p
= (i j)i p

= (i j)σ = i j.

Therefore (i j)p
= (i j)−1, and thus p ∈ ℓi j . □

Lemma 6.7. Let H < G be a connected Frobenius group of finite Morley rank and
odd type and J its set of involutions. Fix i ̸= j ∈ J , and let p, q ∈ ℓi j be distinct
involutions. Then ℓpq = ℓi j .

Proof. We have pq ∈ Cen(i j), and hence Cen(pq) = Cen(i j). Moreover, i p ∈

Cen(i j) = Cen(pq), and hence

ℓpq = p Cen(pq) = i Cen(i j) = ℓi j . □

Hence the set J together with the above notion of lines satisfies conditions
(a) and (b) of Definition 2.1.

Lemma 6.8. Let H < G be a connected Frobenius group of finite Morley rank and
odd type and J its set of involutions. Let i, j ∈ J be distinct involutions, and let T
be a subgroup of G such that Cen(i j) ≤ T ≤ NG(Cen(i j)). Then T can be written
as a semidirect product T = Cen(i j)(T ∩ Cen(i)).

Proof. Note G can be decomposed as G = i J Cen(i), and put λ = ℓi j . Given t ∈ T ,
we can write t = i pg for (unique) elements k ∈ J and g ∈ Cen(i). Then

λ = λt
= λpg.

In particular, i ∈ λp
∩ λ. If λp

∩ λ = {i}, then p = i ∈ λ. If λp
= λ, then p ∈ λ by

part (a) of Lemma 2.7. Therefore t = i pg ∈ Cen(i j)(T ∩ Cen(i)). □

We will make use of the following result about conjugacy of complements:

Proposition 6.9 [Borovik and Nesin 1994, Theorem 9.11]. Let G be a group of
finite Morley rank and H ◁ G be a definable normal nilpotent subgroup. Assume
that G/H is abelian and Cen(g) = 1 for some g ∈ G. Then G = H ⋊Cen(g) and
any two complements of H in G are H-conjugate. Furthermore, [H, g] = H.

Proposition 6.10. Let H < G be a connected Frobenius group of finite Morley rank
and odd type and J its set of involutions. If i ̸= j are two distinct involutions in J ,
then

NG(Cen(i j)) ∩ J ·2
= Cen(i j).
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Proof. Assume there is a ∈
(
NG(Cen(i j)) ∩ J ·2

)
\ Cen(i j) and consider the group

A = Cen(a) ∩ NG(Cen(i j)). Note that A and Cen(i j) are abelian by Lemma 6.5,
and by Lemma 6.5(f), we obtain a semidirect product K = Cen(i j)⋊ A. Moreover,
K is a solvable subgroup of NG(Cen(i j)). By Lemma 6.8, we have K = Cen(i j)⋊
(K ∩ Cen(i)). Now Proposition 6.9 implies that A and K ∩ Cen(i) are conjugate.
This is impossible by Proposition 6.4. □

Theorem 6.11. Let H < G be a connected Frobenius group of Morley rank n and
odd type, and let J be the set of all involutions in G.

(a) J forms a mock hyperbolic reflection space, and all lines in J are infinite.

(b) Choose 3 such that (J, 3) is a generic mock hyperbolic reflection space such
that all lines are of Morley rank k, and set n = MR(J ). If n ≤ 2k + 1, then G
splits.

Proof. (a) We first show that J forms a mock hyperbolic reflection space. We
already know that conditions (a) and (b) of Definition 2.1 are satisfied. Fix a
line λ = ℓi j . Then λ·2

= iλ by Lemma 2.7, and hence λ·2
= Cen(i j) by Lemma 6.6.

Therefore J forms a mock hyperbolic reflection space by Lemma 2.8.
Moreover, by [Borovik et al. 2007, Proposition 1.1], the centralizer of any element

in a connected nontrivial group of finite Morley rank is infinite. In particular, Cen(i j)
is infinite, and therefore all lines in J must be infinite.

(b) Note that if the mock hyperbolic reflection space J consists of a single line,
then H < G splits by Theorem 2.14. Hence, by Theorem 5.5, we may assume
n = 2k + 1. Then again by Theorem 5.5, B has a connected normal subgroup N of
rank 2n − k such that N ≈ S, where

S = {σ ∈ J ·2
\ {1} : ℓσ exists} ∪ {1}

is the set of translations. Recall that MR(S) = 2n − k and MD(S) = 1.
On the other hand N ∩ Cen(i) < N is a connected Frobenius group of finite

Morley rank, and hence
⋃

i∈J N ∩ Cen(i) ⊆ N is a generic subset of N . This
contradicts N ≈ S. □

As a direct consequence, we get the following known corollary (which also
follows from [Borovik and Nesin 1994, Lemma 11.21 and Theorem 11.32]).

Corollary 6.12. Let H < G be a connected Frobenius group of finite Morley rank
of odd type. If G has a nontrivial abelian normal subgroup, then G splits.

Proof. This follows directly from Theorem 2.14. □

Proposition 6.13. Let H < G be a connected nonsplit Frobenius group of finite
Morley rank and odd type, and let (J, 3) be the associated mock hyperbolic re-
flection space. If generic lines have Morley rank 1, then G is a nonsplit sharply
2-transitive group of characteristic ̸= 2.
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Proof. Set n = MR(J ). The set of translations has Morley rank 2n − 1 and is
not generic in G. On the other hand, Cen(i) acts on J \ {i} without fixed points.
Therefore MR(Cen(i)) ≤ 2n. Hence G = i J Cen(i) must have Morley rank 2n and
Cen(i) has Morley rank n. This implies that Cen(i) acts regularly on J \ {1}, and
hence G is a sharply 2-transitive group. □

Remark 6.14. We will see in Corollary 7.5 that the group in the above proposition
must in fact be simple.

Proposition 6.15. Let H < G be a connected Frobenius group of Morley rank at
most 10 and odd type. Then either H < G splits or G is a simple nonsplit sharply
2-transitive group of Morley rank 8 or 10.

Proof. Assume G does not split. Suppose the set of involutions has Morley rank n
and the lines in the associated generic mock hyperbolic reflection space have rank k.
Since the set of translations is not generic in G, we have MR(G)>2n−k. Moreover,
we know n > 2k +1 and k ≥ 1. This shows MR(G) > 2(2k +2)−k = 3k +4. Since
MR(G) ≤ 10, we obtain k = 1 and MR(G) > 7. The previous proposition and the
remark show that G is a simple sharply 2-transitive group, and hence MR(G) must
be an even number, so MR(G) is either 8 or 10. □

Frobenius groups of odd type with nilpotent complement. Delahan and Nesin
showed that a sharply 2-transitive group of finite Morley rank of characteristic ̸= 2
with nilpotent point stabilizer must split [Borovik and Nesin 1994, Theorem 11.73].
We will show that the same is true for a Frobenius group of odd type if the lines
in the associated mock hyperbolic reflection geometry are strongly minimal or if
there is no interpretable bad field of characteristic 0.

We fix a connected Frobenius group H < G of finite Morley rank of odd type,
and we denote the set of involutions by J . By Theorem 6.11, J forms a mock
hyperbolic reflection space with infinite lines. Note that H = Cen(i) if i is the
unique involution in H . If λ is a line containing i , then NG(λ) = λ·2 ⋊ NH (λ) is a
split Frobenius group by Theorem 2.14.

Lemma 6.16. If i and j are involutions with i ̸= j , then Cen(i j) has infinite index
in NG(Cen(i j)). In particular, NCen(i)(ℓi j ) is infinite.

Proof. Otherwise
⋃

g∈G Cen(i j)g
⊆ J ·2 by Lemma 6.5, and hence J ·2 would be

generic in G. This is impossible, since
⋃

i∈J Cen(i) =
⋃

g∈G H g is generic in G
and the elements of J ·2 do not have fixed points by Lemma 2.5. Therefore Cen(i j)
has infinite index in NG(Cen(i j)).

Now NG(Cen(i j)) = NG(ℓi j ), and NG(ℓi j ) ∩ J = ℓi j forms a mock hyperbolic
reflection space (consisting of one line). Therefore NG(Cen(i j)) = iℓi j NCen(i)(ℓi j ),
and thus NCen(i)(ℓi j ) is infinite. □
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If the point stabilizer in a sharply 2-transitive group of characteristic ̸= 2 with
planar maximal near-field contains an element g ̸∈ {1, i} such that g normalizes
all lines containing i , then by [Sozutov et al. 2014] the sharply 2-transitive group
splits. We are going to prove a similar result for Frobenius groups of finite Morley
rank of odd type.

If A is a group, then we write A∗
= A \ {1}.

Lemma 6.17. Let λ be a line containing i ∈ J and fix a definable solvable subgroup
A ≤ NCen(i)(λ). Then A∗iλ ∪ {1} = Aλ.

Proof. Note that H = λ·2 ⋊ A is a solvable Frobenius group of finite Morley rank.
By [Borovik and Nesin 1994, Theorem 11.32], we have H = λ·2

∪
⋃

j∈λ A j . This
proves the lemma. □

Proposition 6.18. Let 3 be a set of lines on J such that (J, 3) forms a generic
mock hyperbolic reflection space. Suppose there exists a definable infinite solvable
normal subgroup A ⊴ Cen(i) such that A ≤

⋂
λ∈3i

NCen(i)(λ). Then H < G splits.

Proof. We may assume that all lines in 3 have Morley rank k. Since i is central
in Cen(i), we may also assume that i ∈ A.

Now set Ji =
⋃

λ∈3i
λ = { j ∈ J \ {i} : ℓi j exists} ∪ {i}. By the previous lemma,

we have A∗iλ ∪ {1} = Aλ for all λ ∈ 3i . Hence we have

A∗i Ji ∪ {1} =

⋃
λ∈3i

A∗iλ ∪ {1} =

⋃
λ∈3i

Aλ
= AJi .

We have A∗i Ji ≈ A∗i J as a consequence of Lemma 2.5 and AJi ≈ AJ , since J acts
regularly on the set of conjugates of H and hence also on the set of conjugates of A.

Therefore

A∗i J ∪ {1} ≈ A∗i Ji ∪ {1} = AJi ≈ AJ
= ACen(i)J

= AG .

Put N = Stab≈(AG). Then A ≤ N and N ⊴ G is a normal subgroup. Hence
AG

≤ N . Now Proposition 5.4 implies that AG
≈ N . Note that

MR(N ) = MR(J ) + MR(A).

Moreover, J ⊆ N , therefore J ·2
⊆ N and thus MR(N ) ≥ 2n − k. Note that A acts

without fixed points on any line λ ∈ 3i , and therefore MR(A) ≤ k. In conclusion

n − k ≤ MR(N ) − MR(J ) = MR(A) ≤ k,

and therefore n ≤ 2k. Now Proposition 5.19 implies that H < G splits. □

Corollary 6.19. Let H < G be a connected Frobenius group of finite Morley rank
and odd type. If H is a minimal group, i.e., if H does not contain an infinite proper
definable subgroup, then H < G splits.
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Proof. The assumptions and Lemma 6.16 imply that NCen(i)(λ) = Cen(i) holds for
all i in J and λ ∈ 3i . If H = Cen(i), then H =

⋂
λ∈3i

NH (λ) and H is abelian.
Therefore Proposition 6.18 implies that H < G splits. □

We can use Zilber’s field theorem to find interpretable fields in Frobenius groups
of odd type.

Proposition 6.20 [Borovik and Nesin 1994, Theorem 9.1]. Let G = A ⋊ H be a
group of finite Morley rank, where A and H are infinite definable abelian subgroups
and A is H-minimal, i.e., there are no definable infinite H-invariant subgroups.
Assume that H acts faithfully on A. Then there is an interpretable field K such that
A ∼= K+, H ≤ K ∗, and H acts by multiplication.

Let λ = ℓi j be a line. Then NCen(i)(λ) is infinite and acts on λ·2
= Cen(i j) by

conjugation. Take a minimal subgroup A ≤ NCen(i)(λ). Since the action of A on
Cen(i j) has no fixed points, we can find an infinite A-minimal subgroup B ≤Cen(i j)
on which A acts faithfully. Moreover, B must be abelian, because Cen(i j) is an
abelian group. Hence, by Proposition 6.20, there is an interpretable field K such
that B ∼= K+, A ≤ K ∗, and A acts by multiplication.

In particular, if the line λ is strongly minimal, then K is strongly minimal and
A ∼= K ∗.

If A is a proper subgroup of K ∗, then K is a bad field, i.e., an infinite field
of finite Morley rank such that K ∗ has a proper infinite definable subgroup. By
[Baudisch et al. 2009], bad fields of characteristic 0 exist. However, it follows from
work of Wagner [2001] that if char(K ) ̸= 0, then K ∗ is a good torus, i.e., every
definable subgroup of K ∗ is the definable hull of its torsion subgroup. We refer to
[Cherlin 2005] for properties of these good tori.

Theorem 6.21. Let H < G be a connected Frobenius group of finite Morley rank
and odd type. Fix 3 such that (J, 3) is a generic mock hyperbolic reflection space.
Moreover, assume that H has a definable nilpotent normal subgroup N such that
N ∩ NH (λ) is infinite for all λ ∈ 3i .

If all lines in 3 are strongly minimal or if G does not interpret a bad field of
characteristic 0, then H < G splits.

Proof. We may assume that N is connected. Let T be a maximal good torus in N .
As a consequence of the structure of nilpotent groups of finite Morley rank [Borovik
and Nesin 1994, Theorems 6.8 and 6.9], T must be central in N . By [Cherlin 2005,
Theorem 1], any two maximal good tori are conjugate. Therefore T is the unique
maximal good torus in N . Since a connected subgroup of a good torus is a good
torus, the assumptions (and the previous discussion) imply that NH (λ)∩T is infinite
for all lines λ ∈ 3i . By [Cherlin 2005, Lemma 2], the family {NH (λ)∩ T : λ ∈ 3i }

is finite. Hence, after replacing 3 by a generic subset 3′
⊆ 3, we may assume
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that {NH (λ) ∩ T : λ ∈ 3i } consists of a unique infinite abelian normal subgroup
of H . Now Proposition 6.18 implies that H < G splits. □

Frobenius groups of degenerate type. We now use mock hyperbolic spaces to
study Frobenius groups of finite Morley rank and degenerate type. A geometry
with similar properties, but defined on the whole group, was used by Frécon in his
result on the nonexistence of bad groups of Morley rank 3.

Lemma 6.22. Let H < G be a connected Frobenius group of Morley rank n and of
degenerate type. Suppose the Frobenius complement H is abelian and of Morley
rank k. Then n ≥ 2k + 1, and if n = 2k + 1, then G contains a definable normal
subgroup N of Morley rank k + 1.

Proof. Note that G is uniquely 2-divisible, and hence a ⊗ b = a1/2ba1/2 defines a
K-loop structure on G. Let L = (G, ⊗) denote the corresponding K-loop, and set
A= G ×⟨ϵ⟩ < Aut(L), where ϵ is given by inversion. Now let G be the quasidirect
product G = L ⋊Q A.

By Theorem 4.7, the involutions J in G form a partial mock hyperbolic reflection
space, and since

⋃
g∈G H g

⊆ G is a generic subset of G, the involutions must form
a generic mock hyperbolic reflection space. Moreover, MR(J ) = n and each line
has Morley rank k. Now the lemma follows from Theorem 5.5. □

Theorem 6.23. Let H < G be a connected Frobenius group of Morley rank n and
of degenerate type. Suppose the Frobenius complement H is abelian and of Morley
rank k. Then n ≥ 2k + 1.

If n = 2k + 1, then G splits as G = N ⋊ H for some definable connected normal
subgroup N of Morley rank k + 1. Moreover, if N is solvable, then there is an
interpretable field K of characteristic ̸= 2 such that G = K+ ⋊ H , H ≤ K ∗, and H
acts on K+ by multiplication.

Proof. By the previous lemma, we may assume n = 2k + 1. Then G contains a
definable normal subgroup N of rank k+1, and we may assume that N is connected.

Note that MR
(⋃

g∈G(N ∩ H)g
)

= k + 1 + MR(N ∩ H) and MR(N ) = k + 1.
Therefore N ∩ H must be finite. If N ∩ H is nontrivial, then (N ∩ H) < N is
a connected Frobenius group, and hence N ∩ H must be connected. Therefore
N ∩ H = {1}.

The semidirect product N ⋊ H has rank 2k + 1, and hence is generic in G.
Therefore G = N ⋊ H splits.

Now assume that N is solvable. Then N is nilpotent since, by [Borovik and Nesin
1994, Theorem 11.29], a solvable complement of a split Frobenius group of finite
Morley rank is nilpotent. Moreover, Cen(u) ≤ N for all u ∈ N \ {1} by [Borovik
and Nesin 1994, Theorem 11.32] (since G is solvable). Note that uG cannot be
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generic in N , because G does not contain involutions. Therefore MR(uG) ≤ k, and
hence MR(Cen(u)) ≥ k + 1. Thus Cen(u) = N , so N is abelian.

We now show that N is H -minimal: Let A ≤ N be a H -invariant subgroup. We
may assume that A is connected. Given a ∈ A \ {1}, we have Cen(a) ∩ H = {1},
and therefore aH

⊆ A has rank k. If A has rank k, then aH is generic in A, and
therefore A must contain an involution. This is a contradiction. Therefore A = {1}

or A = N , and hence N is H -minimal.
By Proposition 6.20, there must be an interpretable field K such that N = K+,

H ≤ K ∗, and H acts on N by multiplication. □

7. Sharply 2-transitive groups of finite Morley rank

Let G be a sharply 2-transitive group of finite Morley rank with char(G) ̸= 2, and
let J denote the set of involutions in G. By Corollary 3.4 (or by Theorem 6.11),
the set J forms a mock hyperbolic reflection space.

We set n = MR(J ) and k = MR(Cen(i j)) for involutions i ̸= j ∈ J . Note that k
does not depend on the choice of i , and j and k = n if and only if G is split.

Now we assume that G is not split. By [Borovik and Nesin 1994, Proposition
11.71], we have 0 < 2k < n, and we will improve this inequality below.

Since G acts sharply 2-transitively on J , it is easy to see that MR(G) = 2n and
MR(J ·2) = 2n − k. Moreover, G and Cen(i j) have Morley degree 1 by [Borovik
and Nesin 1994, Lemma 11.60].

Proposition 7.1. (a) The set i J is indecomposable for all i ∈ J .

(b) ⟨J ·2
⟩ is a definable connected subgroup. In particular, there is a bound m

such that any g ∈ ⟨J ·2
⟩ is a product of at most m translations.

Proof. (a) Since MD(G) = 1, the set J is indecomposable by [Borovik and Nesin
1994, Corollary 5.25], and hence i J is indecomposable too.

(b) Since ⟨J ·2
⟩ = ⟨i J ⟩, (b) follows from Zilber’s indecomposability theorem

using (a). □

Remark 7.2. By Proposition 7.1(b), it is easy to see that the nonsplit examples of
sharply 2-transitive groups of characteristic 0 constructed in [Rips and Tent 2019]
do not have finite Morley rank.

Lemma 7.3. For any g ∈ G \ J , the set {i ∈ J : gi has a fixed point} is generic in J .

Proof. Let g ∈ G. For any j ∈ J there is a unique i j ∈ J swapping j and j g.
Then gi j centralizes j , so has a fixed point. If i j = i p for some j ̸= p ∈ J , then by
sharp 2-transitivity it follows that g = i j = i p ∈ J . Hence for g ̸∈ J , the i j for j ∈ J
are pairwise distinct, and hence {i j : j ∈ J } has Morley rank n. □

Let µ : G3
→ G be the multiplication map, i.e., µ(g1, g2, g3) = g1g2g3.
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Lemma 7.4. MR(J ·3) > MR(J ·2).

Proof. Note that MR(J ·3) = MR(i J ·3) ≥ MR(J ·2) > MR(J ) = n, and hence J is
not a generic subset of J ·3.

For α ∈ J ·3, we let Xα = {i ∈ J : iα ∈ J ·2
} be the set of all involutions i such

that iα is a translation. By Lemma 7.3 and Remark 3.1, MR(Xα) < n for all
α ∈ J ·3

\ J .
Let MR(J ·3) = 2n − k + l for some l ≥ 0. There is a generic set of α ∈ J ·3

\ J
such that MR(µ−1(α)∩(J × J × J ))= n+k−l. Set X = Xα for such an α ∈ J ·3

\ J .
If irs = α, then MR({ j ∈ J : rs ∈ j J }) = k, and hence MR(µ−1(α)) = MR(X)+k.
Therefore we have MR(X) = n − l, and hence l ≥ 1 by Lemma 7.3. □

Corollary 7.5. Let G be a nonsplit sharply 2-transitive group of finite Morley rank.
If the lines are strongly minimal, then G is simple and a counterexample to the
Cherlin–Zilber conjecture.

Proof. Let N ⊴ G be a normal subgroup. If N contains an involution, then J ⊆ N ,
and hence J ·2

⊆ N . Now assume N does not contain an involution. Fix u ∈ N
and i ∈ J . Then 1 ̸= u−1iui ∈ N ∩ J ·2, and hence J ·2

⊆ N , since all translations
are conjugate. Therefore J ·2

⊆ N holds true in both cases. Since i J ·3
⊆ ⟨i J ⟩ ⊆ N

and MR(J ·2) = 2n −1 < MR(J ·3) = MR(i J ·3) ≤ MR(G) = 2n (Lemma 7.4), this
implies N = G. This shows that G must be simple.

Assume towards a contradiction that G is an algebraic group over an algebraically
closed field K . If the K -rank of G is at least 2, then the torus contains commuting
involutions, contradicting Remark 3.1(c). If the K -rank of G is 1, then G is
isomorphic to PSL2(K ) and also contains commuting involutions, e.g., x 7→ −1/x
and x 7→ −x are commuting involutions in PSL2(K ). □

Note that a sharply 2-transitive group of finite Morley rank in characteristic differ-
ent from 2 is not a bad group in the sense of Cherlin, since for any translation σ ∈ J ·2

the group NG(Cen(σ )) = Cen(σ )⋊ NCen(σ )(Cen(σ )) is solvable, but not nilpotent.
If G is a sharply 2-transitive group of finite Morley rank and char(G) ̸= 2

with n, k and J be as before, then by Theorem 6.11, G splits if n ≤ 2k + 1. Thus,
we obtain:

Corollary 7.6. If G is a sharply 2-transitive group and MR(G) = 6, then G is of
the form AGL1(K ) for some algebraically closed field K of Morley rank 3.

Proof. If char(G) ̸= 2, then, by Theorem 6.11, G splits and the result follows from
[Altınel et al. 2019]. If char(G) = 2, then G is split by [Altınel et al. 2019] and any
point stabilizer has Morley rank 3. Since the point stabilizers do not contain involu-
tions, they are solvable by [Frécon 2018]. By [Borovik and Nesin 1994, Corollary
11.66], an infinite split sharply 2-transitive group of finite Morley rank whose point
stabilizer contains an infinite normal solvable subgroup must be standard. □
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8. Further remarks

A finite uniquely 2-divisible K-loop is the same as a finite B-loop in the sense
of Glauberman [1964]. As a consequence of Glauberman’s Z∗-theorem [1966]
finite B-loops are solvable. Following Glauberman, we say that a K-loop L is half-
embedded in some group G if it is isomorphic to a K-loop arising from a uniquely
2-divisible twisted subgroup of G as in Proposition 4.4. B-loops and uniquely
2-divisible K-loops can always be half-embedded in some group and that group
can be chosen to be finite if the loop is finite [Glauberman 1964, Theorem 1 and
Corollary 1]. This allows us to restate Glauberman’s result for twisted subgroups:

Proposition 8.1 [Glauberman 1966]. Let G be a group, and let L ⊆ G be a finite
uniquely 2-divisible twisted subgroup. Then ⟨L⟩ is solvable.

As a consequence finite mock hyperbolic spaces must consist of a single line:

Proposition 8.2. Suppose J forms a finite mock hyperbolic reflection space in a
group G. Then J consists of a single line.

Proof. We may assume that G acts faithfully on J . Let i ∈ J be an involution.
Since J acts regularly on itself, the square map on i J must be injective and hence
bijective as a consequence of finiteness. Now it is easy to check that i J is a
finite uniquely 2-divisible twisted subgroup in G. Therefore ⟨i J ⟩ is solvable by
Proposition 8.1. Moreover, Cen(i) ≤ NG(⟨i J ⟩) and G can be decomposed as
G = i J Cen(i). Therefore ⟨i J ⟩ is a solvable normal subgroup of G. It follows
that G contains a nontrivial abelian normal subgroup. Now Theorem 2.14 implies
that J consists of a single line. □

In the context of groups of finite Morley rank, we do not know if every uniquely
2-divisible K-loop of finite Morley rank can be definably half-embedded into a
group of finite Morley rank. The following would be a finite Morley rank version
of Glauberman’s theorem:

Conjecture 8.3. Let G be a connected group of finite Morley rank with a definable
uniquely 2-divisible twisted subgroup L of Morley degree 1 such that G = ⟨L⟩.
Then G is solvable.

Note that this conjecture would imply the Feit–Thompson theorem for connected
groups of finite Morley rank: if G is a connected group of finite Morley rank of
degenerate type, then G is uniquely 2-divisible, and hence Conjecture 8.3 (applied
to L = G) would imply that G is solvable.

Moreover, it would imply that Frobenius groups of finite Morley rank split: for
Frobenius groups of degenerate type this would follow from solvability. If G is a
connected Frobenius group of finite Morley rank and odd type with involutions J
and lines 3, then it suffices to show that G has a nontrivial definable solvable normal
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subgroup (in that case G has a nontrivial abelian normal subgroup and hence splits
by Theorem 2.14). Note that i J is a uniquely 2-divisible twisted subgroup. If G is
sharply 2-transitive, then Proposition 7.1 shows that ⟨i J ⟩ is definable and connected
and hence should be solvable by Conjecture 8.3.

For the general case consider the family Fi = {Cen(i j)0
: j ∈ J \ {i}}. By

Zilber’s indecomposability theorem the subgroup N = ⟨H : H ∈ Fi ⟩ is definable
and connected. Moreover, it is easy to see that N ∩ i J must be generic in i J
and N must be normalized by Cen(i). Therefore N must be a normal subgroup of
G = i J Cen(i), and clearly N = ⟨N ∩ i J ⟩. Therefore Conjecture 8.3 would imply
that N is solvable.

If Frobenius groups of odd and degenerate type split, then Remark 6.3 shows
that Frobenius groups of even type also split.

If the twisted subgroup in the statement of Conjecture 8.3 is strongly minimal,
then we show that G must be 2-nilpotent:

Proposition 8.4. Let G be a connected group of finite Morley rank with a definable
strongly minimal uniquely 2-divisible twisted subgroup L such that G = ⟨L⟩. Then
G is 2-nilpotent.

Proof. Let x ⊗ y = x1/2 yx1/2 be the corresponding K-loop structure on L . If
(L , ⊗) is an abelian group, then [Kiechle 2002, Theorem 6.14, part (3)] implies
[[a, b], c] = 1 for all a, b, c ∈ L , and therefore G = ⟨L⟩ must be 2-nilpotent.
Therefore it suffices to show that (L , ⊗) is an abelian group.

Put T = NG(L)/ Cen(L). Then T ≤ Aut((L , ⊗)), and we may consider the
quasidirect product G = L⋊Q T . As stated in Proposition 4.5, the group G = L⋊Q T
acts transitively and faithfully on L by

(a, α)(x) = a ⊗ α(x),

and T is the stabilizer of 1 ∈ L . Note that L ′
= L × {1} is a uniquely 2-divisible

twisted subgroup of G. Hence a ⊗
′ b = a1/2ba1/2 defines a K-loop structure on L ′.

By [Kiechle 2002, Theorem 6.15], the K-loops (L , ⊗) and (L ′, ⊗′) are isomorphic.
Therefore it suffices to show that (L ′, ⊗′) is an abelian group.

Hrushovski’s analysis of groups acting on strongly minimal sets [Borovik and
Nesin 1994, Theorem 11.98] shows that MR(G) ≤ 3. Moreover, if MR(G) = 3,
then T acts sharply 2-transitively on L \{1}, which is impossible, since T is a group
of automorphisms of (L , ⊗).

If MR(G)= 2, then L⋊Q T is a standard sharply 2-transitive group K+⋊K ∗ (and
the corresponding permutation groups coincide). Since L ′ acts without fixed points
and the fixed-point-free elements of K+ ⋊ K ∗ are precisely the elements of K+,
L ′ is contained in K+. Therefore ⊗

′ agrees with the group structure on K+, and
hence (L ′, ⊗′) is an abelian group.
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Now assume MR(G) = 1. We argue similarly to the proof of [Glauberman 1964,
Lemma 5, part (v)].

Consider the finite twisted subgroup L ′′
= {aG0

: a ∈ L ′
} of G/G0. Since L ′

is uniquely 2-divisible, the map L ′′
→ L ′′, a 7→ a2 is surjective and hence a

bijection, since L ′′ is finite. Hence we may define a K-loop structure xG0
⊗

′′ yG0
=

x1/2 yx1/2G0 on L ′′. The natural map L ′
→ L ′′ is a surjective homomorphism

from (L ′, ⊗′) to (L ′′, ⊗′′) with kernel L ′
∩G0.

In particular, L ′
∩ G0 is a normal subloop of L ′. Since L ′/(L ′

∩ G0) is finite
and MD(L ′) = 1, this implies L ′

= L ′
∩ G0, and hence L ′

⊆ G0. The group G0 is
strongly minimal and thus abelian. Therefore ⊗

′ agrees with the group structure
on G0, and therefore (L ′, ⊗′) is an abelian group. □

The proof of Proposition 8.4 in fact shows the following:

Corollary 8.5. Let G be a group of finite Morley rank, and let L ⊆ G be a definable
uniquely 2-divisible twisted subgroup of G.

(a) If MD(L) = 1, then L ⊆ G0.

(b) If L is strongly minimal, then the associated K-loop (L , ⊗) is an abelian group,
and hence ⟨L⟩ is 2-nilpotent (without assuming that ⟨L⟩ is definable).

In particular, if (L , ⊗) is a strongly minimal uniquely 2-divisible K-loop such
that L can be definably half-embedded into a group of finite Morley rank, then
(L , ⊗) is an abelian group.

Question 8.6. This suggests the following two questions:

(a) Suppose G and L satisfy the assumptions of Proposition 8.4. Must G be
abelian?

(b) Is every strongly minimal (uniquely 2-divisible) K-loop an abelian group?

References

[Altınel et al. 2008] T. Altınel, A. V. Borovik, and G. Cherlin, Simple groups of finite Morley rank,
Mathematical Surveys and Monographs 145, American Mathematical Society, Providence, RI, 2008.
MR Zbl

[Altınel et al. 2019] T. Altınel, A. Berkman, and F. O. Wagner, “Sharply 2-transitive groups of finite
Morley rank”, preprint, 2019, available at https://hal.archives-ouvertes.fr/hal-01935537.

[Bachmann 1959] F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff, Springer, 1959.
MR Zbl

[Baudisch et al. 2009] A. Baudisch, M. Hils, A. Martin-Pizarro, and F. O. Wagner, “Die böse Farbe”,
J. Inst. Math. Jussieu 8:3 (2009), 415–443. MR Zbl

[Borovik and Nesin 1994] A. Borovik and A. Nesin, Groups of finite Morley rank, Oxford Logic
Guides 26, Clarendon, 1994. MR Zbl

[Borovik et al. 2007] A. Borovik, J. Burdges, and G. Cherlin, “Involutions in groups of finite Morley
rank of degenerate type”, Selecta Math. (N.S.) 13:1 (2007), 1–22. MR Zbl

http://dx.doi.org/10.1090/surv/145
http://msp.org/idx/mr/2400564
http://msp.org/idx/zbl/1160.20024
https://hal.archives-ouvertes.fr/hal-01935537
https://hal.archives-ouvertes.fr/hal-01935537
http://msp.org/idx/mr/0107835
http://msp.org/idx/zbl/0085.14502
http://dx.doi.org/10.1017/S1474748008000091
http://msp.org/idx/mr/2516302
http://msp.org/idx/zbl/1179.03041
http://msp.org/idx/mr/1321141
http://msp.org/idx/zbl/0816.20001
http://dx.doi.org/10.1007/s00029-007-0030-z
http://dx.doi.org/10.1007/s00029-007-0030-z
http://msp.org/idx/mr/2330585
http://msp.org/idx/zbl/1185.20038


MOCK HYPERBOLIC REFLECTION SPACES AND FROBENIUS GROUPS 175

[Cherlin 2005] G. Cherlin, “Good tori in groups of finite Morley rank”, J. Group Theory 8:5 (2005),
613–621. MR Zbl

[Frécon 2018] O. Frécon, “Simple groups of Morley rank 3 are algebraic”, J. Amer. Math. Soc. 31:3
(2018), 643–659. MR Zbl

[Glauberman 1964] G. Glauberman, “On loops of odd order”, J. Algebra 1 (1964), 374–396. MR
Zbl

[Glauberman 1966] G. Glauberman, “Central elements in core-free groups”, J. Algebra 4 (1966),
403–420. MR Zbl

[Jaligot 2001] E. Jaligot, “Full Frobenius groups of finite Morley rank and the Feit–Thompson
theorem”, Bull. Symbolic Logic 7:3 (2001), 315–328. MR Zbl

[Kerby 1974] W. Kerby, On infinite sharply multiply transitive groups, Hamburger Mathematische
Einzelschriften 6, Vandenhoeck & Ruprecht, Göttingen, 1974. MR Zbl

[Kiechle 2002] H. Kiechle, Theory of K -loops, Lecture Notes in Mathematics 1778, Springer, 2002.
MR Zbl

[Neumann 1940] B. H. Neumann, “On the commutativity of addition”, J. London Math Soc. 15
(1940), 203–208. MR Zbl

[Poizat 1987] B. Poizat, Groupes stables: une tentative de conciliation entre la géométrie algébrique
et la logique mathématique, Nur al-Mantiq wal-Ma’rifah 2, Bruno Poizat, Lyon, 1987. MR Zbl

[Rips and Tent 2019] E. Rips and K. Tent, “Sharply 2-transitive groups of characteristic 0”, J. Reine
Angew. Math. 750 (2019), 227–238. MR Zbl

[Rips et al. 2017] E. Rips, Y. Segev, and K. Tent, “A sharply 2-transitive group without a non-trivial
abelian normal subgroup”, J. Eur. Math. Soc. 19:10 (2017), 2895–2910. MR Zbl

[Sozutov et al. 2014] A. I. Sozutov, E. B. Durakov, and E. V. Bugaeva, “On some near-domains and
sharply doubly transitive groups”, Tr. Inst. Mat. Mekh. 20:2 (2014), 277–283. In Russian. MR

[Tent and Ziegler 2016] K. Tent and M. Ziegler, “Sharply 2-transitive groups”, Adv. Geom. 16:1
(2016), 131–134. MR Zbl

[Wagner 2001] F. Wagner, “Fields of finite Morley rank”, J. Symbolic Logic 66:2 (2001), 703–706.
MR Zbl

[Wagner 2017] F. Wagner, “Bad groups”, preprint, 2017. arXiv 1703.01764

Received 12 Jan 2022. Revised 19 Jun 2022.

TIM CLAUSEN:

tim.clausen@mailbox.org
Duesseldorf, Germany

KATRIN TENT:

tent@wwu.de
Universitaet Muenster, Muenster, Germany

msp

http://dx.doi.org/10.1515/jgth.2005.8.5.613
http://msp.org/idx/mr/2165294
http://msp.org/idx/zbl/1083.20026
http://dx.doi.org/10.1090/jams/892
http://msp.org/idx/mr/3787404
http://msp.org/idx/zbl/06870168
http://dx.doi.org/10.1016/0021-8693(64)90017-1
http://msp.org/idx/mr/175991
http://msp.org/idx/zbl/0123.01502
http://dx.doi.org/10.1016/0021-8693(66)90030-5
http://msp.org/idx/mr/202822
http://msp.org/idx/zbl/0145.02802
http://dx.doi.org/10.2307/2687751
http://dx.doi.org/10.2307/2687751
http://msp.org/idx/mr/1860607
http://msp.org/idx/zbl/1002.03024
http://msp.org/idx/mr/0384938
http://msp.org/idx/zbl/0291.20039
http://dx.doi.org/10.1007/b83276
http://msp.org/idx/mr/1899153
http://msp.org/idx/zbl/0997.20059
http://dx.doi.org/10.1112/jlms/s1-15.3.203
http://msp.org/idx/mr/0002851
http://msp.org/idx/zbl/0027.15401
http://msp.org/idx/mr/902156
http://msp.org/idx/zbl/0626.03025
http://dx.doi.org/10.1515/crelle-2016-0054
http://msp.org/idx/mr/3943322
http://msp.org/idx/zbl/1453.20004
http://dx.doi.org/10.4171/JEMS/730
http://dx.doi.org/10.4171/JEMS/730
http://msp.org/idx/mr/3712996
http://msp.org/idx/zbl/1483.20002
http://mi.mathnet.ru/eng/timm/v20/i2/p277
http://mi.mathnet.ru/eng/timm/v20/i2/p277
http://msp.org/idx/mr/3364158
http://dx.doi.org/10.1515/advgeom-2015-0047
http://msp.org/idx/mr/3451269
http://msp.org/idx/zbl/1343.20002
http://dx.doi.org/10.2307/2695038
http://msp.org/idx/mr/1833472
http://msp.org/idx/zbl/1026.03022
http://msp.org/idx/arx/1703.01764
mailto:tim.clausen@mailbox.org
mailto:tent@wwu.de
http://msp.org




msp
Model Theory
Vol. 2, No. 2, 2023

https://doi.org/10.2140/mt.2023.2.177

Rigid differentially closed fields

David Marker

Using ideas from geometric stability theory we construct differentially closed
fields of characteristic 0 with no nontrivial automorphisms.

1. Introduction

Our goal is to construct countable differentially closed fields of characteristic 0
(DCF0) with no nontrivial automorphisms. We refer to such fields as rigid. This
answers a question posed by Russell Miller. I will say something about Miller’s
motivation in my closing remarks. This may at first seem surprising. One often,
naively, thinks that differentially closed fields should behave like algebraically
closed fields, where there are always many automorphisms. Also, differential
closures of proper differential subfields always have nontrivial automorphisms. We
sketch the proof of this using ideas from Shelah’s proof [18] of the uniqueness
of prime models for ω-stable theories (see [12, §6.4] or [21, §9.2]). This is a
well-known construction.

Proposition 1.1. Let k be a differential field with differential closure K ⊃ k. Then
there are nontrivial automorphisms of K/k.

Proof. First note that if d ∈ K n and k⟨d⟩ is the differential field generated by d
over k, then K is a differential closure of k⟨d⟩. This follows from the fact that in
an ω-stable theory M is prime over A ⊂ M if and only if M is atomic over A and
there are no uncountable sets of indiscernibles (see [21, Theorem 9.2.1]).

Let a ∈ K \k. Since K is the differential closure of k, tp(a/k) is isolated by some
formula φ(v) with parameters from k. If a is the only element of K satisfying φ,
then a is in dcl(k) = k, a contradiction. Thus there is b ∈ K such that a ̸= b
and φ(b).

Since a and b realize the same type over k, there are L |H DCF0 with k⟨b⟩ ⊆ L
and σ : K → L an isomorphism such that σ | k is the identity and σ(a)= b.
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K is a differential closure of both k⟨a⟩ and k⟨b⟩. Thus L is a differential closure of
k⟨b⟩ and, by uniqueness of differential closures, there is an isomorphism τ : L → K
that is the identity on k⟨b⟩. Then τ ◦σ is an automorphism of K sending a to b. □

Remarks. • This argument really shows that if T is an ω-stable theory, A is a
definably closed substructure of a model of T that is not a model of T and M is a
prime model extension of A, then there is a nontrivial automorphism of M fixing
A pointwise.

• While this argument guarantees the existence of a nontrivial automorphism of K/k,
it is possible that there is only one. If k is a model of Singer’s theory of closed
ordered differential fields [20], then kdiff

= k(i) and complex conjugation is the
only nontrivial automorphism of kdiff/k.

Omar León Sánchez pointed out that the construction of rigid differentially closed
fields gives the first known examples of differentially closed fields K such that
K ̸= k(i) for any closed ordered differential field k ⊂ K .

• Proposition 1.1 tells us that the rigid differentially closed fields we construct are
not the differential closure of any proper differential subfield.

Our construction of rigid differentially closed fields uses ideas from geometric
stability theory and work on strongly minimal sets in differentially closed fields
of Rosenlicht [17] and Hrushovski and Sokolović [9]. We describe the results we
need in Section 2 and construct rigid differentially closed fields in Section 3. We
begin Section 3 with a warm up constructing arbitrarily large rigid models and then
give the more subtle construction of rigid countable models. We refer the reader to
[15] for unexplained model theoretic concepts.

2. Preliminaries

We work in K |H DCF, a monster model of the theory of differentially closed fields
of characteristic zero with a single derivation. The constant field C is {x ∈K : x ′

=0}.
If k is a differential field and X ⊂ Kn is definable over k, we let X (k) denote the
k-points of X , i.e., X (k) = kn

∩ X . Of course, by quantifier elimination, X is
quantifier-free definable over k

Our main tool will be the strongly minimal sets known as Manin kernels of
elliptic curves. Manin kernels arose in Manin’s proof [10] of the Mordell conjecture
for function fields in characteristic zero and were central to both Buium’s [2]
and Hrushovski’s [8] proofs of the Mordell–Lang conjecture for function fields
in characteristic zero. The model theoretic importance of Manin kernels was
developed in the beautiful unpublished preprint of Hrushovski and Sokolović [9].
Proofs of the results from [9] that we will need all appear in Pillay’s survey [16],
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and [11] is another survey on the construction and some of the basic properties of
Manin kernels.

For a ∈ K , let Ea be the elliptic curve Y 2
= X (X − 1)(X − a). Let E♯a be the

minimal definable differential subgroup of E . E♯a is the closure of Tor(Ea) in the
Kolchin topology.

Theorem 2.1 (Hrushovski–Sokolović). (i) If a′
̸= 0, then E♯a is a nontrivial locally

modular strongly minimal set.

(ii) The Manin kernels E♯a and E♯b are nonorthogonal if and only if Ea and Eb are
isogenous. In particular, if a and b are algebraically independent over Q then E♯a
and E♯b are orthogonal.

In particular, Manin kernels are orthogonal to the field of constants C ={x : x ′
=0}.

More generally, if A is a simple abelian variety that is not isomorphic to an
abelian variety defined over the constants we can construct a Manin kernel A♯

which is the Kolchin closure of the torsion of A and a minimal infinite definable
subgroup of A. A♯ is nontrivial locally modular strongly minimal and Hrushovski
and Sokolović also showed that if X is any nontrivial locally modular strongly
minimal subset of a differentially closed field, then X ̸⊥ A♯ for some abelian
variety A.

The other building blocks of our construction are strongly minimal sets introduced
by Rosenlicht [17] in his proof that the differential closure of a differential field k
need not be minimal.

Let f (X)= X/(1 + X). For a ̸= 0, let Xa = {x : x ′
= a f (x), x ̸= 0}.

Theorem 2.2 (Rosenlicht). (i) If a ∈ k and x ∈ Xa \ k, then C(k)= C(k⟨x⟩).

(ii) Suppose k ⊂ K are differential fields, with C(K )⊆ C(k)alg. Suppose a, b ∈ k×,
x ∈ Xa(K ), y ∈ Xb(K ) and x and y are algebraically dependent over k. Then
x, y are algebraic over k or x = y. In particular, if a ̸= b, then Xa and Xb are
orthogonal.

Part (i) follows from Proposition 2 of [17] while (ii) is a slight generalization
of Proposition 1 of [17] and Gramain [5]. These results appear as Theorems 6.12
and 6.2 of [13].

Corollary 2.3. Each Xa is a trivial strongly minimal set.

Proof. By Theorem 2.2(i), Xa is orthogonal to the constants. If Xa were nontrivial,
then Xa ̸⊥ A♯, the Manin kernel of a simple abelian variety. But if x ∈ Xa \

kalg, then k⟨x⟩ = k(x) is a transcendence degree 1 extension. But by results of
Buium [2], Manin kernels, or anything nonorthogonal to one, give rise to extensions
of transcendence degree at least 2. Thus Xa is trivial. □
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3. Constructing rigid differentially closed fields

Warm up.

Proposition 3.1. There are arbitrarily large rigid differentially closed fields.

For this construction we only need Rosenlicht strongly minimal sets. Let κ be a
cardinal with κ = ℵκ . We construct a differentially closed field K of cardinality
κ such that |Xa(K )| ̸= |Xb(K )| for each nonzero a ̸= b, guaranteeing there is no
automorphism sending a 7→ b.

We build a chain of differentially closed fields K0 ⊂ K1 ⊂ · · · ⊂ Kα ⊂ · · · for
α < κ such that |Kα| = ℵα. We simultaneously build an injective enumeration
a0, a1, . . . , aα, . . . of K ×, where K =

⋃
Kα.

We construct K as follows.

(i) K0 = Qdiff.

(ii) Given Kα and aα ∈ Kα , build Kα+1 by adding ℵα+1 new independent elements
of Xaα and taking the differential closure.

(iii) If α is a limit ordinal, let Kα =
⋃
β<α Kβ .1

Since Xaα ⊥ Xaβ for α<β, adding new elements to Xaβ and taking the differential
closure adds no new elements to Xaα . Thus Xaα (K ) = Xaα (Kα+1). In particular,
|Xaα (K )| = ℵα+1. Thus there is no automorphism of K with aα 7→ aβ for α ̸= β.

One might worry that we have contradicted Proposition 1.1. Let Bα be all of the
independent realizations of Xaα that we added at stage α. Then K is the differential
closure of k = Q⟨Bα : α < κ⟩. But, if b ∈ Xaα , then aα = b′(b + 1)/b ∈ Q⟨b⟩.
Thus k = K .

The countable case. To construct a countable differentially closed field with no
automorphisms, we need a more subtle mixture of Rosenlicht extensions with
extensions of Manin kernels.

Suppose b ̸∈ C . Let dim E♯b(k) be the number of independent realizations in k of
the generic type of E♯b over Q⟨b⟩. Manin kernels are useful to us as they can have
any countable dimension. We build a countable K |H DCF0 such that for each a ̸= 0,
there is a natural number

na = max
b∈Xa(K )

dim E♯b(K )

such that na ̸= nb for a ̸= b. This guarantees that there is no automorphism
with a 7→ b.

1To build the desired enumeration, let a0, a1, . . . be an injective enumeration of K0 and, at
stage α+ 1, let (aγ : ωα ≤ γ < ωα+1) be an injective enumeration of Kα+1 \ Kα .
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Freitag and Scanlon [4], and more generally, Casale, Freitag and Nagloo [3],
have given constructions of trivial strongly minimal sets which can take on any
countable dimension. Presumably these could be used in an alternative construction.

We build a chain K0 ⊂ K1 ⊂ · · ·⊂ Kn ⊂ · · · , an injective enumeration a0, a1, . . .

of K ×
=

⋃
K ×

n and a sequence of natural numbers 0 = n0 < n1 < · · · such that

(1) C(Ki )= C(K0);

(2) Xai (K )= Xai (Ki+1);

(3) if b ∈ Xai (K ), then E♯b(K )= E♯b(Ki+1);

(4) ni+1 = maxb∈Xai (K ) dim E♯b.2

If we can do that we will have guaranteed that there are no automorphisms of K .
Let K0 = Qdiff. At stage s we choose a new as ∈ Ks . Let bs be an element of

Xas generic over Ks , let x be ns−1 + 1 independent realizations of the generic of
E♯bs

over Ks⟨bs⟩ = Ks(bs) and let Ks+1 = Ks⟨bs, x⟩
diff.

By orthogonality considerations, it’s clear that conditions (1)–(3) hold, as after
stage i+1 we only add realizations of types orthogonal to Xai and E♯b, for b∈ Xai (K ).
To prove (4) we need to show that there is ns = maxd∈Xas

dim E♯d(Ks+1). We have
arranged things so that if there is a bound ns then ns > ns−1.

We need two preliminary lemmas.

Lemma 3.2. If b′
̸= 0, then dim E♯b(Q⟨b⟩

diff)= 0.

Proof. Suppose x ∈ E♯b(Q⟨b⟩
diff). All torsion points of Eb are in Q(b)alg, so we

can suppose x is a nontorsion point. But x realizes an isolated type over Q⟨b⟩. Let
ψ isolate the type of x over Q⟨b⟩. No torsion point can satisfy ψ . Thus by strong
minimality ψ defines a finite set and x ∈ Q⟨b⟩

alg. □

Although we do not need it, we can say more in the special case that Q⟨b⟩=Q(b),
such as if b ∈ Xa for some a ∈ Q. In this case Manin’s theorem of the kernel [10]
implies that E♯b(Q⟨b⟩

alg)= Tor(Eb); see [1, Corollary K.3].

Lemma 3.3. Suppose K is a differentially closed field, b, d ∈ K and Eb and Ed

are isogenous. Then dim E♯b(K )= dim E♯d(K ).

Proof. If Ed and Eb are isogenous, then d and b are interalgebraic over Q and
the isogeny f is defined over Q(d)alg

= Q(b)alg. Since f : Tor(Ed)→ Tor(Eb) is
finite-to-one and the torsion is Kolchin dense in a Manin kernel, f : E♯d → E♯b is
finite-to-one. It follows that dim E♯d(K )= dim E♯b(K ). □

The next lemma shows that we have the necessary bounds.

2Building the enumeration takes a bit more bookkeeping in this case. Let d0,0, d0,1, . . . be an
injective enumeration of K0 and let di,0, di,1, . . . be an injective enumeration of Ki \ Ki−1. Start
our enumeration of K by letting a0 = d0,0. Suppose we start stage i with the partial enumeration
a0, . . . , aM . Then for j = 0, . . . , i , let aM+ j+1 = d(i, i − j).
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Lemma 3.4. Suppose K is a differentially closed field constructed in a finite itera-
tion Qdiff

= k0 ⊂ k1 ⊂ · · · ⊂ km = K , where either

(1) ki+1 = ki ⟨a⟩
diff, where a realizes a trivial type over ki , or

(2) ki+1 = ki ⟨xi ⟩
diff, where xi consists of ni independent realizations of the generic

type of a Manin kernel E♯bi
, where bi ∈ ki and E♯bi

⊥ E♯b j
for i ̸= j .

If d ∈ K \ C , then dim E♯d(K )= ni for some i .

Proof. We first argue that this is true for each E♯bt
. Define l0 ⊆ l1 ⊆ · · · ⊆ lt such

that li = ki ⟨bt ⟩
diff. Note that lt = kt

By Lemma 3.2, dim E♯bt
(l0)= 0. As we construct l1, . . . , lt we are either doing

nothing (if ai or xi ∈ li−1) or adding realizations of types orthogonal to E♯bt
. Thus

dim E♯bt
(kt)= 0 and dim E♯bt

(kt+1)= nt . Since for i > t all ai and xi realize types
orthogonal to E♯bt

, dim E♯bt
(K )= nt .

Suppose d ∈ K \ C . If Ed is isogenous to some Ebi , then, by Lemma 3.3,
dim E♯d(K )= dim E♯bi

(K )= ni . So we may assume E♯d ⊥ E♯bi
for all i . We claim

that in this case, dim E♯d(K )= 0. For i ≤ m, we let li = ki ⟨d⟩
diff. By Lemma 3.2,

dim E♯d(l0)= 0. As we continue the construction, as above, at each stage we either
do nothing or realize types that are orthogonal to E♯d . Thus we add no new elements
of E♯d and dim E♯d(K )= 0. □

We can interweave a many models construction. In [9] the authors noted that
Manin kernels could be used to show that DCF0 has eni-dop and concluded that
there are 2ℵ0 nonisomorphic countable differentially closed fields. An explicit
version of this construction coding graphs into models is used in [14]. We can fold
that coding into our construction of a rigid model.

Theorem 3.5. There are 2ℵ0 nonisomorphic countable rigid differentially closed
fields. Each of these fields is not the differential closure of a proper differential
subfield.

Consider X = X1(Q
diff). This is an infinite set of algebraically independent

elements. Let G = (X, R) be a graph with vertex set X and edge relation R. Let
({ui , vi } : i = 0, 1, . . . ) be an enumeration of two element subsets of X . We modify
our construction such that at stage s we also add a generic element of E♯ui +vi

if
and only if (ui , vi ) ∈ R. We can still apply Lemma 3.4 and our construction will
produce a rigid differentially closed field K . From K we can recover the graph in
an Lω1,ω-definable way. Thus nonisomorphic graphs give rise to nonisomorphic
rigid differentially closed fields.

Similarly, we could interweave graph coding steps in the proof of Proposition 3.1
and build 2κ nonisomorphic rigid differentially closed fields of cardinality κ

when κ = ℵκ .
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4. Remarks and Questions

In [6; 7] the authors introduce the notion of computable and Borel functors between
classes of countable structures. For example, in Theorem 3.5, recovering the graph
from the differentially closed field is a Borel functor from differentially closed
fields to graphs. Miller wondered if there could be invertible functors between these
classes. If there is an invertible functor F from graphs to differentially closed fields,
then the authors show that the corresponding automorphism groups Aut(G) and
Aut(F(G)) would be isomorphic. Miller’s original idea was that, since there are
rigid graphs, one could show there was no such functor by showing that there are
no rigid differentially closed fields. While our construction shows that this idea
does not work, nevertheless, one can show there is no such functor by looking
at possible automorphism groups. It is easy to construct a countable graph with
an automorphism of order n > 2. But no differentially closed field can have an
automorphism of order n > 2. Suppose K is differentially closed and σ is an
automorphism of order n > 2. Let F be the fixed field of σ . Then K/F is an
algebraic extension of order n>2. By the Artin–Schreier theorem, this is impossible
for K algebraically closed.

Question 1. Is there a differentially closed field K where |Aut(K )| = 2? If so, is
the fixed field a model of CODF? More generally, if K is a real closed differential
field and K (i) is differentially closed, must K be a model of CODF?

Question 2. Are there rigid differentially closed fields of cardinality ℵ1?

The construction of such a model would require a new strategy. Perhaps it would
help to assume the set theoretic principle ♦? Or perhaps one could use the methods
of [19].
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[9] E. Hrushovski and Z. Sokolović, “Minimal subsets of differentially closed fields”, preprint,
1994.

[10] Y. I. Manin, “Proof of an analogue of Mordell’s conjecture for algebraic curves over function
fields”, Dokl. Akad. Nauk SSSR 152 (1963), 1061–1063. In Russian. MR

[11] D. Marker, “Manin kernels”, pp. 1–21 in Connections between model theory and algebraic and
analytic geometry, edited by A. Macintyre, Quad. Mat. 6, Dept. Math., Seconda Univ. Napoli,
Caserta, 2000. MR Zbl

[12] D. Marker, Model theory, Grad. Texts in Math. 217, Springer, 2002. MR Zbl

[13] D. Marker, “Model theory of differential fields”, pp. 41–113 in Model theory of fields, 2nd ed.,
Lect. Notes in Logic 5, Association for Symbolic Logic, La Jolla, CA, 2006. MR Zbl

[14] D. Marker and R. Miller, “Turing degree spectra of differentially closed fields”, J. Symb. Log.
82:1 (2017), 1–25. MR Zbl

[15] A. Pillay, Geometric stability theory, Oxford Logic Guides 32, Oxford Univ. Press, 1996. MR
Zbl

[16] A. Pillay, “Differential algebraic groups and the number of countable differentially closed fields”,
pp. 114–134 in Model theory of fields, 2nd ed., Lect. Notes in Logic 5, Association for Symbolic
Logic, La Jolla, CA, 2006. MR Zbl

[17] M. Rosenlicht, “The nonminimality of the differential closure”, Pacific J. Math. 52 (1974),
529–537. MR Zbl

[18] S. Shelah, “Differentially closed fields”, Israel J. Math. 16 (1973), 314–328. MR Zbl

[19] S. Shelah, “Models with second order properties, IV: A general method and eliminating dia-
monds”, Ann. Pure Appl. Logic 25:2 (1983), 183–212. MR Zbl

[20] M. F. Singer, “The model theory of ordered differential fields”, J. Symbolic Logic 43:1 (1978),
82–91. MR Zbl

[21] K. Tent and M. Ziegler, A course in model theory, Lect. Notes in Logic 40, Association for
Symbolic Logic, La Jolla, CA, 2012. MR Zbl

Received 17 Jan 2022. Revised 16 Dec 2022.

DAVID MARKER:

marker@uic.edu
Mathematics, Statistics, and Computer Science, University of Illinois Chicago, Chicago, IL,
United States

msp

http://dx.doi.org/10.4171/JEMS/761
http://msp.org/idx/mr/3743238
http://msp.org/idx/zbl/1484.03064
http://msp.org/idx/mr/717767
http://msp.org/idx/zbl/0509.03017
http://dx.doi.org/10.1017/jsl.2016.12
http://dx.doi.org/10.1017/jsl.2016.12
http://msp.org/idx/mr/3625736
http://msp.org/idx/zbl/1390.03034
http://dx.doi.org/10.1017/jsl.2017.81
http://msp.org/idx/mr/3893282
http://msp.org/idx/zbl/06997547
http://dx.doi.org/10.1090/S0894-0347-96-00202-0
http://msp.org/idx/mr/1333294
http://msp.org/idx/zbl/0864.03026
http://msp.org/idx/mr/0154868
http://msp.org/idx/mr/1930680
http://msp.org/idx/zbl/1100.14522
http://msp.org/idx/mr/1924282
http://msp.org/idx/zbl/1003.03034
http://msp.org/idx/mr/2215060
http://msp.org/idx/zbl/1104.12006
http://dx.doi.org/10.1017/jsl.2016.73
http://msp.org/idx/mr/3631274
http://msp.org/idx/zbl/1419.03039
http://msp.org/idx/mr/1429864
http://msp.org/idx/zbl/0871.03023
http://msp.org/idx/mr/2215060
http://msp.org/idx/zbl/1104.12006
http://dx.doi.org/10.2140/pjm.1974.52.529
http://msp.org/idx/mr/352068
http://msp.org/idx/zbl/0257.12107
http://dx.doi.org/10.1007/BF02756711
http://msp.org/idx/mr/344116
http://msp.org/idx/zbl/0306.12105
http://dx.doi.org/10.1016/0168-0072(83)90013-1
http://dx.doi.org/10.1016/0168-0072(83)90013-1
http://msp.org/idx/mr/725733
http://msp.org/idx/zbl/0558.03014
http://dx.doi.org/10.2307/2271951
http://msp.org/idx/mr/495120
http://msp.org/idx/zbl/0396.03031
http://dx.doi.org/10.1017/CBO9781139015417
http://msp.org/idx/mr/2908005
http://msp.org/idx/zbl/1245.03002
mailto:marker@uic.edu
http://msp.org


msp
Model Theory
Vol. 2, No. 2, 2023

https://doi.org/10.2140/mt.2023.2.185

Definable convolution and idempotent Keisler measures, II

Artem Chernikov and Kyle Gannon

With gratitude to Ehud Hrushovski, whose beautiful ideas have deeply influenced the authors.

We study convolution semigroups of invariant/finitely satisfiable Keisler measures
in NIP groups. We show that the ideal (Ellis) subgroups are always trivial
and describe minimal left ideals in the definably amenable case, demonstrating
that they always form a Bauer simplex. Under some assumptions, we give an
explicit construction of a minimal left ideal in the semigroup of measures from a
minimal left ideal in the corresponding semigroup of types (this includes the case
of SL2(R), which is not definably amenable). We also show that the canonical
pushforward map is a homomorphism from definable convolution on G to classical
convolution on the compact group G/G00, and use it to classify G00-invariant
idempotent measures.

1. Introduction

This paper is a continuation of [Chernikov and Gannon 2022], but with a focus
on NIP groups and the dynamical systems associated to the definable convolution
operation. It was demonstrated in [Chernikov and Gannon 2022] that when T is
an NIP theory expanding a group, G is a monster model of T , and G ≺ G, the
spaces of global Aut(G/G)-invariant Keisler measures and Keisler measures which
are finitely satisfiable in G (denoted by Minv

x (G,G) and Mfs
x (G,G), respectively)

form left-continuous compact Hausdorff semigroups under definable convolution ∗

(see Fact 2.29). Equivalently, the semigroup (Mfs
x (G,G), ∗) can be described as

the Ellis semigroup of the dynamical system given by the action of conv(G), the
convex hull of G in the space of global measures finitely satisfiable in G, on the
space of measures Mfs

x (G,G) (see [Chernikov and Gannon 2022, Theorem 6.10
and Remark 6.11]). The main purpose of this paper is to study the structure of
these semigroups, as well as to provide a description of idempotent measures via
type-definable subgroups in some cases.

In Section 2 we review some preliminaries and basic facts on convolution in
compact topological groups (Section 2A), model theory (Section 2B), Keisler
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measures (Section 2C), definable convolution in NIP groups (Section 2D), Ellis
semigroups (Section 2E) and Choquet theory (Section 2F).

In Section 3 we study the relationship between the semigroups Minv
x (G,G) and

Mfs
x (G,G) (under definable convolution) and the classical convolution semigroup

of regular Borel probability measures on the compact topological group G/G00. We
demonstrate that the pushforward along the quotient map is a surjective, continuous,
semigroup homomorphisms from definable convolution to classical convolution
on G/G00 (Theorem 3.10), mapping idempotent Keisler measures onto idempotent
Borel measures on G/G00 (Corollaries 3.11 and 3.12).

We have shown in [Chernikov and Gannon 2022, Theorem 5.8] that, by analogy
to the classical theorem of Kawada and Itô for compact groups (Fact 2.8), which
was later rediscovered by Wendel, there is a one-to-one correspondence between
idempotent measures on a stable group and its type-definable subgroups (namely,
every idempotent measure is the unique translation-invariant measure on its type-
definable stabilizer group). In NIP groups, this correspondence fails (Example 4.5),
but revised versions of this statement can be recovered in some cases. In particular,
using the results of Section 3, we demonstrate in Section 4 that a G00-invariant
idempotent measure in an NIP group G is a (not necessarily unique) invariant
measure on its type-definable stabilizer group. In future work, we examine further
cases of the classification of idempotent measures in NIP groups, including the
generically stable case.

In Section 5 we study the semigroups (Minv
x (G,G), ∗) and (Mfs

x (G,G), ∗) for
an NIP group G through the lens of Ellis theory. We demonstrate that the ideal
subgroups of any minimal left ideal (in either Mfs

x (G,G) or Minv
x (G,G)) are always

trivial (Proposition 5.10). This is due to the presence of the convex structure, in
contrast to the case of types in definably amenable NIP groups (where, due to
the proof of the Ellis group conjecture in [Chernikov and Simon 2018], the ideal
subgroups are isomorphic to G/G00). We also classify minimal left ideals in both
Mfs

x (G,G) and Minv
x (G,G)when G is definably amenable. In this case, any minimal

left ideal in Mfs
x (G,G) is also trivial (Proposition 5.16), while Minv

x (G,G) contains a
unique minimal left ideal (which is also two-sided). This unique ideal is precisely the
collection of measures in Minv

x (G,G) which are G-right-invariant (Proposition 5.18;
this is in contrast to minimal left ideals in Mfs

x (G,G) corresponding to G-left-
invariant measures). It is also a compact convex set, and moreover a Bauer simplex
(see Definition 2.38). In particular, the set of its extreme points is closed, and
consists precisely of the lifts µp of the Haar measure on G/G00 for p ∈ Sinv

x (G,G) an
f -generic type of G (Corollary 5.21). If the group G is fsg, this minimal ideal is also
trivial (Corollary 5.24). We also observe that if G is not definably amenable, then the
minimal left ideal of Mx(G,G) has infinitely many extreme points (Remark 5.26).
See Theorem 5.1 for a more precise summary of the results of the section.
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In Section 6 we isolate certain conditions on G, applicable in particular to some
nondefinably amenable groups, which allows us to describe a minimal left ideal
of M†

x(G,G) for † ∈ {fs, inv} in terms of a minimal ideal in the corresponding
semigroup of types. We prove the following two results. Suppose that I is a minimal
left ideal of S†

x (G,G) and u is an idempotent in I such that u ∗ I is a compact group
under the induced topology (we refer to this condition as CIG1; see Definition 6.5).
Then M(I ) ∗µu∗I is a minimal left ideal of M†

x(G,G), where µu∗I is the Keisler
measure corresponding to the normalized Haar measure on u∗ I and M(I ) is the set
of Keisler measures supported on I (Theorem 6.11). Under a stronger assumption,
CIG2, on G (see Definition 6.14), we show that a minimal left ideal of M†

x(G,G)
is affinely homeomorphic to a collection of regular Borel probability measures
over a natural quotient of I ; specifically, it is a Bauer simplex (Theorem 6.20). In
particular, SL2(R) falls into both of these categories (Example 6.23).

2. Preliminaries

Given r1, r2 ∈ R and ε ∈ R>0, we write r1 ≈ε r2 if |r1 − r2| < ε. For n ∈ N≥1,
[n] = {1, 2, . . . , n}.

2A. The classical setting. Before discussing the model-theoretic setting, we recall
some classical facts concerning compact Hausdorff spaces, measures, and compact
topological groups.

Fact 2.1. Let X, Y be compact Hausdorff spaces and f : X → Y .

(i) Let M(X) be the set of all regular Borel probability measures on X. Then
M(X) is a compact Hausdorff space under the weak-∗ topology, with the basic
open sets of the form

n⋂
i=1

{
µ ∈ M(X) : ri <

∫
X

fi dµ < si

}
for n ∈ N, ri < si ∈ R and fi : X → R continuous for i ∈ [n].

(ii) A net of measures (µi )i∈I in M(X) converges to a measure µ if and only if for
any continuous f : X → R,

lim
i∈I

∫
X

f dµi =

∫
X

f dµ.

(iii) A (Borel) measurable map f : X → Y induces the pushforward map

f∗ : M(X)→ M(Y )

given by f∗(µ)(A) = µ( f −1(A)) for any Borel subset A ⊆ Y . Then for any
Borel function h : Y → R such that h ∈ L1( f∗(µ)),∫

Y
h d f∗(µ)=

∫
X
(h ◦ f ) dµ.
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Moreover, the map f∗ is affine: for any r1, . . . , rn ∈ [0, 1] with
∑n

i=1 ri = 1
and µ1, . . . , µn ∈ M(X),

f∗

( n∑
i=1

riµi

)
=

n∑
i=1

ri f∗(µi ).

(iv) If f : X → Y is continuous, then f∗ : M(X) → M(Y ) is continuous. If
f : X → Y is also surjective, then f∗ is also surjective.

Remark 2.2. Let X be any compact Hausdorff space and let C(X) be the collection
of continuous functions from X to R. We consider C(X) as a normed vector space
with the ∥ · ∥∞ norm, i.e., ∥ f ∥∞ = supx∈X | f (x)|. The dual of C(X), denoted
by C(X)∗, is the space of all continuous linear functionals, i.e., maps from C(X)
to R which are continuous with respect to the norm topology on C(X). The
weak-∗ topology on C(X)∗ is the coarsest topology such that for any a ∈ X , the
map Ea : C(X)→ R given by Ea( f )= f (a) is continuous. We remark that M(X)
can be naturally viewed as a subset of C(X)∗ via µ 7→

∫
−dµ. The topology

induced from C(X)∗ on M(X) is both compact and Hausdorff. Moreover, M(X)
forms a convex subset of C(X)∗.

Convention 2.3. If f : X → R is a measurable function, we sometimes write∫
X f dµ simply as µ( f ).

Definition 2.4. Let X be a compact Hausdorff space and µ ∈ M(X). The support
of µ is supp(µ) := {a ∈ X : µ(U ) > 0 for any open neighborhood U of a}. Then
supp(µ) is a nonempty closed subset of X . We remark that µ(supp(µ))= 1.

By a compact group we mean a compact Hausdorff topological group where both
the multiplication −·− : G ×G → G and inverse −1

: G → G maps are continuous.

Definition 2.5. Let G be a compact group andµ, ν ∈M(G). Then their convolution
product1 µ⋆ν is the unique regular Borel measure on G such that for any continuous
function f : G → R,∫

G
f (z) d(µ ⋆ ν)(z)=

∫
G

∫
G

f (x · y) dµ(x) dν(y).

Equivalently, µ⋆ν is the unique regular Borel measure on G such that for any Borel
subset E of G,

µ⋆ ν(E)=

∫
G
µ(Ex−1) dν(x).

See, e.g., [Stromberg 1959] for a proof the this equivalence.

Remark 2.6. Let G be a compact group.

(1) If a, b ∈ G, then δa·b = δa ⋆ δb (where δa denotes the Dirac measure on a).

1To stay consistent with the notation in [Chernikov and Gannon 2022], we will use “∗” to denote
definable convolution (defined later in this section) and “⋆” to denote classical convolution.
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(2) The space M(G) is a compact topological semigroup under convolution. In
particular, the map ⋆ :M(G)×M(G)→M(G) is associative and continuous.

(3) The map δ : G → M(G), a 7→ δa is an embedding of topological semigroups.

Definition 2.7. Suppose that G is a compact group and λ ∈ M(G). We say that λ
is idempotent if λ ⋆ λ= λ.

The following theorem classifies idempotent measures on compact groups. The
first proof of this theorem is due to Kawada and Itô [1940, Theorem 3] and uses
representation theory of compact groups. This result was rediscovered a decade-
and-a-half later by Wendel [1954, Theorem 1] using semigroup theory.

Fact 2.8. Suppose G is a compact group and λ ∈ M(G). Then the following are
equivalent:

(1) λ is idempotent.

(2) supp(λ) is a closed subgroup of G and λ|supp(λ) is the normalized Haar measure
on supp(λ).

We are interested in which ways this theorem can be recovered for Keisler
measures on definable groups. However, finding subgroups of a monster model is
more difficult than directly applying this classification theorem since the support of
an idempotent Keisler measure is a collection of types and not a subgroup of the
model. Instead, we will also need to take into account a measure’s stabilizer. This
distinction does not arise in the compact group setting since the stabilizer of an
idempotent probability measure is the same as its support. We take a moment to be
precise about this statement.

Definition 2.9. Suppose G is a compact group and λ ∈ M(G). Its right stabilizer
is Stab(λ) := {a ∈ G : λ(B · a)= λ(B) for any Borel set B ⊆ G}.

Lemma 2.10. Let G be a compact group and λ ∈ M(G). If λ is idempotent, then
supp(λ)= Stab(λ).

Proof. Suppose a ∈ supp(λ). By Fact 2.8, supp(λ) is a closed subgroup of G and
λ|supp(λ) is the normalized Haar measure on supp(λ). Hence λ(C · a) = λ(C) for
any Borel subset C of supp(λ). Let X be a Borel subset of G. Then

λ(X ·a)= λ
(
(X ·a)∩ supp(λ)

)
= λ

(
(X ∩ supp(λ)) ·a

)
= λ(X ∩ supp(λ))= λ(X),

and hence a ∈ Stab(λ).
Conversely, suppose a ∈ Stab(λ), but a ̸∈ supp(λ). By Fact 2.8, this implies that

(supp(λ) · a)∩ supp(λ)= ∅. However λ(supp(λ))= 1 and also

λ(supp(λ) · a)= λ
(
supp(λ) · a ∩ supp(λ)

)
= λ(∅)= 0,

a contradiction. □



190 ARTEM CHERNIKOV AND KYLE GANNON

Finally, we recall a couple of facts on integrating functions over compact groups.

Fact 2.11. Suppose that G is a compact group and H is a closed subgroup of G
with normalized Haar measure λH . Let h ∈ H , and let f : G → R be a Borel
function such that f |H ∈ L1(λH ), i.e., the restriction of f to H is integrable. Then∫

G
f (x) dλ(x)=

∫
G

f (x · h) dλ(x),

where λ is the measure on G defined by λ(X)= λH (X ∩ H).

The next fact appears hard to find explicitly stated in the literature, so we provide
a proof for completeness.

Lemma 2.12. Let G be a compact group and assume that f : G → R is continuous.
Let µ ∈ M(G). Then the map b 7→

∫
G f (x · b) dµ from G to R is continuous.

Proof. Define h : G →R via h(b)=
∫

G f (x ·b) dµ. We first show that for every ε>0
there exists an open neighborhood U of the identity e ∈ G such that for any b ∈ U ,
supx∈G | f (x)− f (x · b)|< ε. Fix ε > 0, and suppose the statement does not hold.
Then for every neighborhood U of e there exist some bU ∈ U and cU ∈ G such that
| f (cU )− f (cU ·bU )|≥ ε. Let N be the set of all open neighborhoods of e. Then N is
a directed set under reverse inclusion and (cU ·bU )U∈N is a net. Since G is compact,
we may pass to a convergent subnet N ′ of N so that (cU · bU )U∈N ′ converges.
Note also that still limU∈N ′ bU = e. Since the nets (cU · bU )U∈N ′ and (bU )U∈N ′

both converge and G is a topological group, the net (cU )U∈N ′ also converges. Let
c := limU∈N ′ cU . By continuity of f ,

lim
U∈N ′

f (cU )= f (c)= lim
U∈N ′

f (cU · bU ).

Then limU∈N ′ | f (cU )− f (cU · bU )| = 0, but | f (cU )− f (cU · bU )| ≥ ε for each
U ∈ N ′ by assumption, a contradiction.

We now show that h is continuous. Let (r, s) ⊆ R, g0 ∈ h−1((r, s)), and
ε := min{|h(g0)− r |, |h(g0)− s|}. By the paragraph above, there exists an open
neighborhood of the identity U such that supx∈G | f (x)− f (x · b)| < ε/2 for any
b ∈ U . We will show that the open set g0 ·U is a subset of h−1((r, s)) containing g0.
Note that g0 ∈ g0 ·U since e ∈ U . Now suppose that g1 ∈ g0 ·U , so that g1 = g0 ·b1

for some b1 ∈ U . Since, for any g ∈ G, the action k(x) 7→ k(x · g) of G on the
space C(G) of continuous functions from G to R preserves the uniform norm,
acting on the right by g0 derives supx∈G | f (x · g0)− f (x · g0 ·b1)|< ε/2. Therefore

h(g1)=

∫
G

f (x · g1) dµ=

∫
G

f (x · g0 · b1) dµ≈ε/2

∫
G

f (x · g0) dµ= h(g0).

Hence h(g1) ∈ (r, s) and thus g0 · U is an open subset of h−1((r, s)). Therefore
h−1((r, s)) is also open, and the map h is continuous. □
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2B. Model-theoretic setting. For the most part, our notation is standard. Let T be
a complete first-order theory in a language L and assume that U is a sufficiently
saturated and homogeneous model of T . While the rest of the paper is focused on
the setting where T expands the theory of a group, this section contains results about
arbitrary theories. We write x, y, z, . . . to denote arbitrary finite tuples of variables.
If x is a tuple of variables and A ⊆ U , then Lx(A) is the collection of formulas
with free variables in x and parameters from A, modulo logical equivalence. We
write Lx for Lx(∅). Given a partitioned formula ϕ(x; y) with object variables x
and parameter variables y, we let ϕ∗(y; x) := ϕ(x; y) be the partitioned formula
with the roles of x and y reversed.

As usual, Sx(A) denotes the space of types over A, and if A ⊆ B ⊆ U then
Sfs

x (B, A) (respectively, Sinv
x (B, A)) denotes the closed set of types in Sx(B) that

are finitely satisfiable in A (respectively, invariant over A). Throughout this paper,
we will want to discuss the spaces Sinv

x (B, A) and Sfs
x (B, A) simultaneously, so

we let S†
x (B, A) denote “either Sfs

x (B, A) or Sinv
x (B, A)”. If ϕ(x) ∈ Lx(U), then

[ϕ(x)] = {p ∈ Sx(U) : ϕ(x) ∈ p}. Given a set X ⊂ U x and A ⊆ U a small set of
parameters, we say that X is

∨
-definable over A (respectively,

∧
- or type-definable

over A) if for some {ψi (x)}i∈I with ψi (x) ∈ Lx(A) we have X =
⋃

i∈I ψi (U)
(respectively, X =

⋂
i∈I ψi (U)). And X is

∨
-definable (respectively, type-definable)

if it is
∨

-definable (respectively, type-definable) over A for some small A ⊆ U .

Definition 2.13. If X is a
∨

-definable subset of U x , we let [X ] :=
⋃

i∈I [ψi (x)]
where

∨
i∈I ψi (x) is any

∨
-definition of X . Likewise, if X is a type-definable

subset of U x , we let [X ] :=
⋂

i∈I [φ j (x)], where
∧

i∈I φ j (x) is any
∧

-definition
of X . Note that [X ] does not depend on the choice of the small set of formulas
defining X .

In the next fact, (1) follows by considering the preimages of half-open intervals,
and for a proof of (2) see, e.g., [Gannon 2019, Fact 2.10].

Fact 2.14. Let S be a topological space and f : S → R a function.

(1) Assume f is bounded and Borel. Then for every ε > 0 there exist r1, . . . , rn ∈ R

and Borel sets B1, . . . , Bn such that {Bi }
n
i=1 partition S and

sup
a∈S

∣∣∣∣ f (a)−
n∑

i=1

ri 1Bi (a)
∣∣∣∣< ε.

(2) Assume S is a Stone space and f is continuous. Then for every ε > 0 there
exists clopen sets C1, . . . ,Cn ⊆ S and r1, . . . , rn ∈ R such that

sup
a∈S

∣∣∣∣ f (a)−
n∑

i=1

ri 1Ci (a)
∣∣∣∣< ε.
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2C. Keisler measures. For any A ⊆ U , a Keisler measure over A in variables x
is a finitely additive probability measure on Lx(A). We denote the space of Keisler
measures over A (in variables x) as Mx(A). Every µ ∈ Mx(A) extends uniquely
to a regular Borel probability measure µ̃ on the space Sx(A), and we will routinely
use this correspondence. If A ⊆ B ⊆ U , then there is an obvious restriction
map r0 : Mx(B)→ Mx(A) and we denote r0(µ) simply as µ|A. Conversely, every
µ∈Mx(A) admits an extension to some µ′

∈Mx(B) (not necessarily a unique one).

Definition 2.15. Let B ⊆ U and µ ∈ Mx(U). We say that µ is

(1) invariant over B if for any formula ϕ(x, y) ∈ Lx,y(B) and elements a, b ∈ U y

such that a ≡B b we have µ(ϕ(x, b))= µ(ϕ(x, a));

(2) finitely satisfiable in B if for any formula ϕ(x)∈Lx(U) such that µ(ϕ(x)) > 0,
there exists some b ∈ B such that |H ϕ(b).

We let Mfs
x (U, B) (respectively, Minv

x (U, B)) denote the closed set of Keisler
measures in Mx(U) that are finitely satisfiable in B (respectively, invariant over B).

Just as with types, we let M†
x(U, B) mean “Mfs

x (U, B) or Minv
x (U, B)”. The

support of µ ∈ Mx(B) is the nonempty closed set of types

sup(µ)= {p ∈ Sx(B) : µ(ϕ(x)) > 0 for any ϕ(x) ∈ p}.

Given p̄ = (p1, . . . , pn) with pi ∈ Sx(A), we let Av( p̄) ∈ Mx(A) be defined by
Av( p̄)(ϕ(x)) := |{i ∈ [n] : ϕ(x) ∈ pi }|/n, and given ā = (a1, . . . , an) ∈ U x , we let
Av(ā) := Av

(
tp(a1/U), . . . , tp(an/U)

)
. We refer to, e.g., [Chernikov and Gannon

2022, Section 2] for a more detailed discussion of the aforementioned notions.

Definition 2.16. Let X ⊆ Sx(U). We let M(X) := {µ ∈ Mx(U) : sup(µ)⊆ X} be
the set of Keisler measures supported on X. If X is a closed subset of Sx(U), we let
M(X) denote the set of regular Borel probability measures on X, with the topology
on X induced from Sx(U). When we consider M(X) as a topological space, we
will always consider it with the weak-∗ topology.

The space of Keisler measures Mx(A) is a (closed convex) subset of a real
locally convex topological vector space of bounded charges on Lx(A) (see, e.g.,
[Bhaskara Rao and Bhaskara Rao 1983] for the details).

Lemma 2.17. Assume that X is a closed subset of Sx(U). Then M(X) is a closed
convex subset of Mx(U).
Proof. Suppose M(X) is not closed. Then limi∈I µi = µ for some µ ̸∈ M(X)

and some net (µi )i∈I with µi ∈ M(X). Then there exists a type p ∈ sup(µ) \ X.
Since X is closed, the set U := Sx(U)\X is open. Hence U =

⋃
j∈J [ϕ j (x)] for

some set of formulas {ϕ j } j∈J and there is some j ∈ J such that ϕ j (x) ∈ p. Then
[ϕ j (x)] ∩ X = ∅ and µ(ϕ j (x)) > 0 (since p ∈ sup(µ)). Thus limi∈I µi (ϕ j (x)) =

limi∈I 0 = 0< µ(ϕ j (x)), a contradiction.
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The space M(X) is convex since if r, s ∈ R>0 with r + s = 1, and µ, ν ∈ M(X),
then sup(rµ+ sν)= sup(µ)∪ sup(ν)⊆ X. □

In the later sections, we will need to discuss maps from the space of Keisler
measures to other spaces of measures. The following definition is an appropriate
notion of an isomorphism in this context (and will be denoted by ∼=).

Definition 2.18. Let V1, V2 be two locally convex topological vector spaces. Sup-
pose that C1 and C2 are closed convex subsets of V1 and V2, respectively. A map
f : C1 → C2 is an affine homeomorphism if f is a homeomorphism from C1 to C2

(with the induced topologies) and for any a1, . . . , an ∈ C1 and r1, . . . , rn ∈ R≥0

with
∑n

i=1 ri = 1 we have

f
( n∑

i=1

ri ai

)
=

n∑
i=1

ri f (ai ).

Definition 2.19. Let A be a subset of a locally convex topological vector space, V ,
and let b ∈ V . We say that b is extreme in A (or an extreme point of A) if b ∈ A
and b cannot be written as rc1+(1−r)c2 for c1, c2 ∈ A where c1 ̸= c2 and r ∈ (0, 1).
We let ex(A) := {c ∈ A : c is extreme in A}.

Fact 2.20 (Krein–Milman theorem). Let A be a convex compact subset of a locally
convex topological vector space V . Then the convex hull of ex(A) is a dense subset
of A.

Proposition 2.21. Let X ⊆ Sx(U) be a closed set. Then there exists an affine
homeomorphism γ :M(X)→M(X) such that for any ϕ(x)∈Lx(U) and µ∈M(X),

µ(ϕ(x))= γ (µ)([ϕ(x)] ∩ X).

Moreover, sup(µ)= supp(γ (µ)).

Proof. This follows directly from the fact that every Keisler measure µ in Mx(U)
extends uniquely to a regular Borel probability measure µ̃ on Sx(U). We let
γ (µ) := µ̃ ↾X, i.e., the restriction of the measure µ̃ to the collection of Borel subsets
of X. See, e.g., [Simon 2015, page 99] for the details. □

For a proof of the following fact, see [Chernikov and Gannon 2022, Lemma
2.10].

Fact 2.22. (1) µ ∈ Mfs
x (U,M) if and only if p ∈ Sfs

x (U,M) for all p ∈ sup(µ).

(2) (T is NIP) µ∈Minv
x (U,M) if and only if p ∈ Sinv

x (U,M) for every p ∈ sup(µ).

Combining Proposition 2.21 and Fact 2.22 we have the following.

Corollary 2.23. (1) If T is any theory, then Mfs
x (U,M) = M(Sfs

x (U,M)) ∼=

M(Sfs
x (U,M)).

(2) If T is NIP, then Minv
x (U,M)= M(Sinv

x (U,M))∼= M(Sinv
x (U,M)).
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Remark 2.24. It is not true that M(Sinv
x (U,M)) = Minv

x (U,M) in an arbitrary
theory; see [Chernikov and Gannon 2022, Lemma 2.10(4)].

Lemma 2.25. For any µ∈Mx(U), there exists a net of measures (ν j ) j∈J in Mx(U)
such that

(1) for each j ∈ J , ν j = Av( p̄ j ) for some p̄ j = (p j1, . . . , p jm ) with p ji ∈ sup(µ);

(2) lim j∈J ν j = µ.

Moreover, if µ is finitely satisfiable in M ⪯ U , then we can take ν j of the form
Av(ā j ) for some ā j ∈ (M x)<ω.

Proof. Consider a basic open subset O of Mx(U), of the form

O =

n⋂
i=1

{ν ∈ Mx(U) : ri < ν(θi (x)) < si }.

Suppose that µ ∈ O . Let B be the (finite) Boolean algebra generated by the
sets {θ1(x), . . . , θn(x)}, and let {σ1(x), . . . , σm(x)} be the set of its atoms. For
each atom σi (x) such that µ(σi (x)) > 0, there exists some pi ∈ sup(µ) such that
σi (x) ∈ pi . Consider the measure

λ :=

∑
{i∈[n]:µ(σi (x))>0}

µ(σi (x))δpi .

Then λ(θi (x)) = µ(θi (x)) for every i ∈ [n], and hence λ ∈ O . We can choose a
sufficiently large t ∈ N and si ∈ N so that si/t is sufficiently close to µ(σi (x)), so
that νO :=

∑
{i∈[n]:µ(σi (x))>0}

(si/t)δpi ∈ O (taking p̄O to be the tuple of types of
length t with pi repeated si times, we see that νO = Av( p̄O)). Then we can take
the net (νO)µ∈O .

And if µ is finitely satisfiable in M and µ(σi (x)) > 0, then |H σi (ai ) for some
ai ∈ M x , and we can take pi := tp(ai/U) (see [Chernikov and Gannon 2022,
Proposition 2.11]). □

2D. Definable convolution in NIP groups. In this section, we assume that T is an
L-theory expanding a group, we denote by G a sufficiently saturated model of T
and by G a small elementary submodel; x, y, . . . denote singleton variables; and
for any ϕ(x) ∈ Lx(G), we let ϕ′(x, y) := ϕ(x · y).

Definition 2.26 (T is NIP). Suppose that µ, ν ∈ Minv
x (G,G). Then we define

µ ∗ ν to be the unique Keisler measure in Minv
x (G,G) such that for any formula

ϕ(x) ∈ Lx(G),

µ ∗ ν(ϕ(x))= µx ⊗ νy(ϕ(x · y))=

∫
Sy(G ′)

Fϕ
′

µ,G ′ d(νG ′),

where G ′ is a small model containing G and all parameters from ϕ, the map Fϕ
′

µ,G ′ :

Sy(G ′)→ [0, 1] is given by Fϕ
′

µ,G ′(q) = µ(ϕ(x · b)) for some (equivalently, any)
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b ∈ G with b |H q, and νG ′ is the regular Borel probability measure on Sy(G ′)

corresponding to the Keisler measure ν|G ′ . We will routinely suppress notation and
write this integral as

∫
Sy(G ′)

Fϕ
′

µ dν.

Remark 2.27. This integral is well defined since invariant measures in NIP are
Borel-definable, so the maps which are being integrated are measurable, and does
not depend on the choice of G ′. For more details about definable convolution and its
basic properties we refer the reader to [Chernikov and Gannon 2022, Section 3.2].
In particular, we will freely use [Chernikov and Gannon 2022, Proposition 3.14].

The following is well known; see, e.g., [Chernikov and Gannon 2022, Fact 3.11].

Fact 2.28. Both (Sinv
x (G,G), ∗) and (Sfs

x (G,G), ∗) are left continuous (i.e., p 7→

p ∗ q is a continuous map for every q) compact Hausdorff semigroups.

The next fact is from [Chernikov and Gannon 2022, Propositions 6.2(3) and 6.4].

Fact 2.29 (T is NIP). Both (Minv
x (G,G), ∗) and (Mfs

x (G,G), ∗) are left continuous
(i.e., µ 7→ µ ∗ ν is a continuous map for every ν) compact Hausdorff semigroups.

Moreover, for any fixed ν and ϕ(x)∈Lx(G), the map µ 7→ (µ∗ν)(ϕ(x))∈ [0, 1]

is continuous.

We also have right continuity when multiplying by a definable measure (but not
in general).

Lemma 2.30. If ν ∈ Minv
x (G,G) is a definable measure, then the map µ 7→ ν ∗µ

from Minv
x (G,G) to Minv

x (G,G) is continuous.

Proof. Let O be a basic open subset of Minv
x (G,G), that is,

O =

n⋂
i=1

{µ ∈ Minv
x (G,G) : ri < µ(ϕi (x)) < si }

for some ri , si ∈ R and ϕi (x) ∈ Lx(G). We have

(ν ∗ −)−1(O)=

n⋂
i=1

{µ ∈ Minv
x (G,G) : ri < (ν ∗µ)(ϕi (x)) < si }

=

n⋂
i=1

{µ ∈ Minv
x (G,G) : ri < (νz ⊗µx)(ϕi (z · x)) < si }

=

n⋂
i=1

((
(νz ⊗ −)(ϕi (z · x))

)−1
(ri , si )

)
,

where νz is simply νx with change of variables to z and (ri , si ) is an open subinterval
of [0, 1]. By, e.g., [Conant et al. 2021, Lemma 5.4], the map µx ∈ Mx(G) 7→

(νz ⊗µx)(ϕi (z · x)) ∈ [0, 1] is continuous, so its restriction to Minv
x (G,G) remains

continuous. Thus O is open, as the intersection of finitely many open sets. □
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Definition 2.31. A measure µ ∈ Minv
x (G,G) is idempotent if µ ∗µ= µ.

The following simple observation will be frequently used in computations.

Fact 2.32. Let µ ∈ Minv
x (G,G) and f : Sx(G)→ R be a bounded Borel function.

Let r : Sx(G)→ Sx(G), p 7→ p|G be the restriction map. Then∫
Sx (G)

f dµG =

∫
Sx (G)

( f ◦ r) dµ.

2E. Some facts from Ellis semigroup theory.

Definition 2.33. Suppose that (X, ∗) is a semigroup. A nonempty subset I of X is
a left ideal if X I = {x ∗ i : x ∈ X, i ∈ I } ⊆ I . We say that I is a minimal left ideal
if I does not properly contain any other left ideal.

The next fact summarizes the results that we will need from the theory of Ellis
semigroups. See [Ellis et al. 2001, Proposition 4.2; Glasner 2007, Proposition 2.4].

Fact 2.34. Suppose that X is a compact Hausdorff space and (X, ∗) is a left
continuous semigroup, i.e., for each q ∈ X , the map − ∗ q : X → X is continuous.
Then there exists a minimal left ideal I , and any minimal left ideal is closed. We let
id(I )= {u ∈ I : u2

= u} be the set of idempotents in I .

(1) id(I ) is nonempty.

(2) For every p ∈ I and u ∈ id(I ), p ∗ u = p.

(3) For every u ∈ id(I ), u ∗ I = {u ∗ p : p ∈ I } = {p ∈ I : u ∗ p = p} is a subgroup
of I with identity element u. For every u′

∈ id(I ), the map ρu,u′ := (u′
∗−)|u∗I

is a group isomorphism from u ∗ I to u′
∗ I . In view of this, we refer to u ∗ I as

the ideal group.

(4) I =
⋃

{u ∗ I : u ∈ id(I )}, where the sets in the union are pairwise disjoint, and
each set u · I is a subgroup of I with identity u.

(5) For any q ∈ X , I ∗ q is a minimal left ideal; and if p ∈ I , then X ∗ p = I .

(6) Let J be another minimal left ideal of X and u ∈ id(I ). Then there exists
a unique idempotent u′

∈ id(J ) such that u ∗ u′
= u′ and u′

∗ u = u. The
map ρI,J := (− ∗ u′)|I is a homeomorphism from I to J (with the induced
topologies) mapping u ∗ I to u′

∗ J .

The following is a celebrated theorem of Ellis [1957, Theorems 1 and 2] (see
also [Lawson 1974, Corollary 5.2]).

Fact 2.35 (Ellis joint continuity theorem). (1) Let G be a locally compact Haus-
dorff semitopological group (i.e., G is equipped with a group structure such
that the maps x 7→ y · x and x 7→ x · y from G into G are continuous for any
fixed y ∈ G), and let X be a locally compact Hausdorff topological space.
Then every separately continuous action of G on X is (jointly) continuous.
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(2) If G is a locally compact Hausdorff semitopological group, then G is a topo-
logical group.

2F. Some facts from Choquet theory. We recall some notions and facts from
Choquet theory for not necessarily metrizable compact Hausdorff spaces (we use
[Phelps 2001] as a general reference). Let E be a locally convex real topological
vector space. The following generalizes the usual notion of a simplex in Rn to the
infinite-dimensional context.

Definition 2.36 [Phelps 2001, Section 10]. (1) A set P ⊆ E is a convex cone if
P + P ⊆ P and λP ⊆ P for every scalar λ > 0 in R.

(2) A set X ⊆ P is the base of a convex cone P if for every y ∈ P there exists a
unique scalar λ ≥ 0 in R and x ∈ X such that y = λx (not all convex cones
have a base).

(3) A convex cone P in E induces a translation-invariant partial ordering on E :
x ≥ y if and only if x − y ∈ P . When P admits a base, P ∩ (−P)= {0}, and
hence x ≥ y ∧ y ≥ x =⇒ x = y.

(4) A nonempty compact convex set X ⊆ E is a Choquet simplex, or just simplex,
if X is the base of a convex cone P ⊆ E such that P is a lattice with respect to
the ordering induced by P . That is, for every x, y ∈ P there exists a greatest
lower bound z ∈ P (i.e., z ≤ x and z ≤ y, and for every z′

∈ P with z′
≤ x

and z′
≤ y, z′

≤ z). The greatest lower bound z of x and y is unique and
denoted by x ∧ y.

We could not find a direct quote for the following fact, so we provide a short
argument combining several standard results in the literature.

Fact 2.37. Let S be a compact Hausdorff space and T a family of continuous func-
tions from S into S. Then the set of all regular T -invariant (that is, µ(T −1(A))=

µ(A) for every Borel A ⊆ S and T ∈ T ) Borel probability measures on S, denoted
by MT (S), is a Choquet simplex (assuming it is nonempty).

Proof. By the Riesz representation theorem, we can view the set M+(S) of all
regular Borel nonnegative finite measures on S as a subset of C(S)∗, the dual (real
topological vector) space of the topological vector space of continuous functions
on S, with the weak-∗ topology. Let MT (S) (respectively, M+

T (S)) be the set of
regular Borel T -invariant probability (respectively, finite nonnegative) measures
on S. Then MT (S) ⊆ M+

T (S) ⊆ M+(S) are compact convex subsets (by Borel
measurability of the maps in T ; see [Phelps 2001, page 76]). Moreover, M+

T (S) is
a convex cone with the base MT (S). It is well known that M+(S) forms a lattice:
for µ, ν ∈ M+(S), their greatest lower bound µ∧ ν ∈ M+(S) can be defined via
(µ∧ν)(A)= infB∈S,B⊆A{µ(B)+ν(A\ B)} (see, e.g., [Dales et al. 2016, page 111];
it is easy to verify from this definition that if µ, ν are regular, then µ∧ ν is also
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regular). Finally, [Phelps 2001, Proposition 12.3] shows that if µ, ν ∈ M+(S) are
T -invariant, then µ∧ ν is also T -invariant (using an equivalent definition of the
lower bound in terms of the Radon–Nikodym derivative). Hence M+

T (S) is a lattice,
and so MT (S) is a Choquet simplex. □

Definition 2.38 (see [Phelps 2001, Section 11] or [Alfsen 1971, Chapter 2, §4]). A
compact convex set X ⊆ E is a Bauer simplex if X is a Choquet simplex and ex(X)
is closed.

Definition 2.39. A point x ∈ E is the barycenter of a regular Borel probability
measure µ on X if f (x) = µ( f ) :=

∫
X f dµ for any continuous linear function

f : E → R.

Remark 2.40. Both the property of being a Choquet simplex and the property
of being a Bauer simplex are preserved under affine homeomorphisms (see, e.g.,
[Phelps 2001, pages 52–53]).

Fact 2.41. (1) [Phelps 2001, Proposition 11.1] X is a Bauer simplex if and only
if the map sending a regular Borel probability measure µ on ex(X) (the
closure of the extreme points) to its barycenter is an affine homeomorphism of
M(ex(X)) and X (and thus a posteriori of M(ex(X)) and X ).

(2) [Alfsen 1971, Corollary II.4.4] Up to affine homeomorphisms, Bauer simplices
are exactly the sets of the form M(X) for X a compact Hausdorff space (where
ex(M(X))= {δx : x ∈ X}).

3. Definable convolution on G and convolution on G/G00

Throughout the rest of the paper, T is a complete NIP theory expanding a group, G
is a monster model of T , G is a small elementary submodel of G, x, y, . . . denote
singleton variables, and for any ϕ(x) ∈ Lx(G), ϕ′(x, y) = ϕ(x · y). We define
and study a natural pushforward map from Mx(G) to M(G/G00). We demonstrate
that this map is a homomorphism from the semigroup (Minv

x (G,G), ∗) of invariant
Keisler measures with definable convolution onto the semigroup (M(G/G00), ⋆)

of regular Borel probability measures on the compact group G/G00 with classical
convolution. In particular, the image of an idempotent, invariant Keisler measure
on G is an idempotent measure on the compact group G/G00. The proofs of these
theorems are primarily analytic, and the NIP assumption is used to ensure that G00

exists and definable convolution is well defined. We begin by recalling some
properties of G/G00 and define the corresponding pushforward map.

Fact 3.1. Suppose that T is NIP.

(i) There exists a smallest type-definable subgroup of G of bounded index, denoted
by G00. Moreover, G00 is a normal subgroup of G type-definable over ∅. Let
π : G → G/G00 be the quotient map, i.e., π(a)= aG00.
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(ii) G/G00 is a compact group with the logic topology: a subset B of G/G00 is
closed if and only if π−1(B) is type-definable over some/any small submodel
of G.

(iii) The map π : G → G/G00 induces a continuous map π̂ : Sx(G) → G/G00 via
π̂(q) := π(a), where a |H q|G and G is some/any elementary submodel of G.
Therefore, we can consider the pushforward π̂∗ : M(Sx(G)) → M(G/G00).
By Proposition 2.21, Mx(G) is affinely homeomorphic to M(Sx(G)) and so
(formally) we let π∗ : Mx(G) → M(G/G00) be the composition of π̂∗ and
this homeomorphism. We will primarily work with π∗, and usually identify
π̂∗ and π∗ without comment.

(iv) The map π∗ : Mx(G)→ M(G/G00) is continuous, affine, and surjective.

Proof. (i) This is a theorem of Shelah [2008].

(ii) This is from [Pillay 2004] (see also [Simon 2015, Section 8]).

(iii) First, π̂ is well defined. Indeed, let G1,G2 ≺G be small elementary submodels
and q ∈ Sx(G) be such that ai |Hq|Gi for i ∈{1, 2}. It suffices to show π(a1)=π(a2).
Let U be an open subset of G/G00 such that π(a1) ∈ U , and we show that then
also π(a2) ∈ U . Since U is open, π−1(U ) is

∨
-definable over both G1 and G2.

Let
∨

j∈Ii
ψ i

j (x) be a definition of π−1(U ) over Gi . Hence there is some j1 ∈ I1

such that U |H ψ j1(a1), so ψ j1(x) ∈ q. As
⋃

j∈I1
[ψ1

j (x)] =
⋃

j∈I2
[ψ2

j (x)] (see
Definition 2.13), there exists some j2 ∈ I2 so that ψ j2(x) ∈ q. Now

a2 ∈ ψ2
j2(U)⊆

⋃
j∈I2

ψ2
j (U)= π−1(U )=⇒ π(a2) ∈ U.

Since G/G00 is Hausdorff and π(a1) and π(a2) are in the same open sets, we
conclude that π(a1)= π(a2).

By the previous paragraph, π̂ = f ◦ rG , where G is any small submodel, the
map rG : Sx(G)→ Sx(G) is the restriction map, and f : Sx(G)→ G/G00 is defined
via f (q)= π(a), where a |H q . Both f and rG are continuous maps and so π̂ is a
continuous map (the map f is continuous by (ii)).

(iv) This is by Fact 2.1(iii),(iv) and Proposition 2.21. □

Definition 3.2. We let π fs
G,∗ := π∗ ↾Mfs

x (G,G) and π inv
G,∗ := π∗ ↾Minv

x (G,G). We will
typically write π inv

G,∗ simply as π inv
∗

when G is clear from the context, and π†
∗

to
mean “either π inv

∗
or π fs

∗
”.

Remark 3.3. Both π inv
∗

and π fs
∗

are continuous and affine since these maps are
restrictions of π∗ to a closed convex subspace.

Proposition 3.4. The map π†
∗

: M†
x(G,G)→ M(G/G00) is surjective.

Proof. Since Mfs
x (G,G)⊆Minv

x (G,G), it suffices to show that π fs
∗

is surjective. Fix
ν ∈ M(G/G00). By the Krein–Milman theorem, the convex hull of the extreme
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points of M(G/G00) is dense inside M(G/G00). The extreme points of M(G/G00)

are the Dirac measures concentrating on the elements of G/G00 (see, e.g., [Simon
2011, Example 8.16]). Thus there exists a net (νi )i∈I of measures in M(G/G00)

such that limi∈I νi = ν and for each i ∈ I , νi =
∑ni

j=1 r i
jδbi

j
for some ni ∈ N,

bi
j ∈ G/G00 and r i

j ∈ R>0 with
∑ni

j=1 r i
j = 1. Since the map π is surjective, for

each bi
j there exists some ai

j ∈ G such that π(ai
j ) = bi

j . Let pi
j ∈ Sfs

x (G,G) be
a global coheir of tp(ai

j/G), and let µi :=
∑ni

j=1 r i
jδpi

j
. Then π∗(µi ) = νi . Now

(µi )i∈I is a net in the compact space Mfs
x (G,G), so, passing to a subnet, we may

assume that it converges and let µ := limi∈I µi . Then

π∗(µ)= π∗(lim
i∈I
µi )= lim

i∈I
π∗(µi )= lim

i∈I
νi = ν,

where the second equality follows from continuity of π∗. Hence π fs
∗

is surjective. □

Lemma 3.5. Let p, q ∈ Sinv
x (G,G). Then

(i) π̂(p) · π̂(q)= π̂(p ∗ q),

(ii) π∗(δp)= δπ̂(p),

(iii) π∗(δp ∗ δq)= π∗(δp) ⋆ π∗(δq).

Proof. (i) Let b |H q|G and a |H p|Gb. By definition (a · b) |H p ∗ q|G , and hence

π̂(p ∗ q)= π(a · b)= π(a) ·π(b)= π̂(p) · π̂(q).

(ii) Let f : G/G00
→ R be a continuous function. Then

π∗(δp)( f )=

∫
( f ◦ π̂) dδp = f (π̂(p))=

∫
f dδπ̂(p) = δπ̂(p)( f ).

Since π∗(δp) and δπ̂(p) agree on all continuous functions, by Fact 2.1(i) they belong
to the same open sets in a Hausdorff space, so π∗(δp)= δπ̂(p).

(iii) We have

π∗(δp ∗ δq)= π∗(δp∗q)= δπ̂(p∗q) = δπ̂(p)·π̂(q) = δπ̂(p) ⋆ δπ̂(q).

Here the first equality follows from [Chernikov and Gannon 2022, Proposition
3.12], the second and third equalities follow from (ii) and (i) respectively, and the
last equality is by Remark 2.6. □

To show that π inv
∗

is a homomorphism, we first observe some basic properties
of the action of G on its space of types and, in turn, on the space of continuous
functions from Sx(G) to R.

Definition 3.6. Let G be a model of T . For a ∈ G and p ∈ Sx(G), let p · a :=

{ϕ(x · a−1) : ϕ(x) ∈ p} ∈ Sx(G) and a · p = {ϕ(a−1
· x) : ϕ(x) ∈ p} ∈ Sx(G). This

defines a right (respectively, left) action of G on Sx(G) by homeomorphisms.
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Lemma 3.7. For any a ∈ G and q ∈ Sx(G) we have π(a) · π̂(p) = π̂(a · p) and
π̂(p) ·π(a)= π̂(p · a).

Proof. We notice that

π̂(p) ·π(a)= π̂(p) · π̂(tp(a/G))= π̂(p ∗ tp(a/G))= π̂(p · a),

where the second equality is by Lemma 3.5(i). The other computation is similar. □

Lemma 3.8. Let G be any model of T . Let h : Sx(G)→ R be a function, {[ψi ]}i∈[n]

a partition of Sx(G) with ψi ∈ Lx(G), ε ∈ R>0 and r1, . . . , rn ∈ R such that
supq∈Sx (G)

∣∣h(q)−∑n
i=1 ri 1[ψi ](q)

∣∣<ε. For a ∈ G, we define the functions h·a, a·h :

Sx(G)→ R via (h · a)(p)= h(p · a) and (a · h)(p)= h(a · p). Then

sup
q∈Sx (G)

∣∣∣∣(h · a)(q)−
n∑

i=1

ri 1[ψi (x ·a)](q)
∣∣∣∣< ε,

sup
q∈Sx (G)

∣∣∣∣(a · h)(q)−
n∑

i=1

ri 1[ψi (a·x)](q)
∣∣∣∣< ε.

In particular, if h is continuous, then h · a and a · h are both continuous maps from
Sx(G) to R (as uniform limits of continuous functions, using in item (2) of Fact 2.14).

Proof. We only prove the lemma for h · a (the case of a · h is similar). Assume the
conclusion fails. Then there exists some q ∈ Sx(G) such that∣∣∣∣(h · a)(q)−

n∑
i=1

ri 1[ψi (x ·a)](q)
∣∣∣∣> ε.

Since {[ψi (x)]}i∈[n] is a partition, so is {[ψi (x · a)]}i∈[n]. For precisely one k ∈ [n],
we have that ψk(x ·a)∈q and

∑n
i=1 ri 1[ψi (x ·a)](q)= rk . So ψk(x ·a−1

·a)∈q ·a, and
thus ψk(x)∈ q ·a. Since {[ψi (x)]}i∈[n] forms a partition,

∑n
i=1 ri 1[ψi (x)](q ·a)= rk .

Then ε >
∣∣h(q ·a)−

∑n
i=1 ri 1[ψi (x)](q ·a)

∣∣ = |(h ·a)(q)− rk |> ε by assumption, a
contradiction. □

Remark 3.9. The previous lemma follows also from the more general observation
that both the left and right action of G on (RSx (G), ∥ · ∥∞) are by isometries, where
RSx (G) is the space of all functions from Sx(G) to R with the uniform norm.

Theorem 3.10. Suppose µ, ν ∈ Minv
x (G,G). Then π∗(µ ∗ ν)= π∗(µ) ⋆ π∗(ν).

Proof. It suffices to show that for any continuous function f : G/G00
→ R we

have π∗(µ ∗ ν)( f ) = π∗(µ) ⋆ π∗(ν)( f ). Fix a continuous f : G/G00
→ R. Let

r : Sx(G) → Sx(G), p 7→ p|G be the restriction map. Fix ε > 0. Then f ◦ π̂

is a continuous function from Sx(G) to R (which factors through Sx(G)), so by
Fact 2.14(2) there exists a partition {[ψi (x)]}i∈[n] of Sx(G) with ψi (x) ∈ Lx(G)
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and r1, . . . , rn ∈ R such that

sup
p∈Sx (G)

∣∣∣∣( f ◦ π̂)(p)−
n∑

i=1

ri 1[ψi (x)](p)
∣∣∣∣< ε.

We now have the following computation for π∗(µ ∗ ν)( f ):

π∗(µ ∗ ν)( f )=

∫
G/G00

f dπ∗(µ ∗ ν)=

∫
Sx (G)

( f ◦ π̂) d(µ ∗ ν)

≈ε

∫
Sx (G)

( n∑
i=1

ri 1[ψi (x)]

)
d(µ ∗ ν)=

n∑
i=1

ri
(
(µ ∗ ν)(ψi (x))

)
=

n∑
i=1

ri
(
(µx ⊗ νy)(ψi (x · y)

)
=

n∑
i=1

ri

∫
Sy(G)

F
ψ ′

i
µ,G d(νG)

(∗)
=

n∑
i=1

ri

∫
Sy(G)

(F
ψ ′

i
µ,G ◦ r) dν =

∫
Sy(G)

(( n∑
i=1

ri F
ψ ′

i
µ,G

)
◦ r

)
dν.

The equality (∗) is justified by Fact 2.32.
Next we will show that the convolution product (π∗(µ)⋆π∗(ν))( f ) in M(G/G00)

is close to the final term in the above computation. Define h : G/G00
→ R via

h(a) =
∫
G/G00 f (x · a) dπ∗(µ). By Lemma 2.12, h is continuous. Fix p ∈ Sy(G)

and let b := π̂(p) ∈ G/G00 and b |H r(p) ∈ G. By definition, π̂(p)= π(b)= b. By
Lemmas 3.5 and 3.8, we have the following computation:

(h ◦ π̂)(p)= h(b)

=

∫
G/G00

f (x · b) dπ∗(µ)=

∫
q∈Sx (G)

f (π̂(q) · b) dµ

=

∫
q∈Sx (G)

f (π̂(q) ·π(b)) dµ=

∫
q∈Sx (G)

f (π̂(q · b)) dµ=

∫
Sx (G)

(( f ◦ π̂) · b) dµ

≈ε

∫
Sx (G)

n∑
i=1

ri 1[ψi (x ·b)] dµ=

n∑
i=1

riµ(ψi (x · b))=

(( n∑
i=1

ri F
ψ ′

i
µ,G

)
◦ r

)
(p).

Since p was arbitrary in Sy(G), we conclude that

sup
p∈Sy(G)

∣∣∣∣(h ◦ π̂)(p)−
(( n∑

i=1

ri Fψ
′

µ,G

)
◦ r

)
(p)

∣∣∣∣< ε.
Therefore,

(π∗(µ) ⋆ π∗(ν))( f )=

∫
G/G00

h dπ∗(ν)=

∫
Sy(G)

(h ◦ π̂) dν

≈ε

∫
Sy(G)

(( n∑
i=1

ri Fψ
′

µ,G

)
◦ r

)
dν ≈ε π∗(µ ∗ ν)( f ).

Since ε was arbitrary, we conclude that π∗(µ ∗ ν)( f )= (π∗(µ) ⋆ π∗(ν))( f ). □
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Corollary 3.11. If µ ∈ Minv
x (G,G) and µ is idempotent, then π∗(µ) is an idempo-

tent measure on G/G00.

Proof. By Theorem 3.10 we have π∗(µ) ⋆ π∗(µ)= π∗(µ ∗µ)= π∗(µ). □

Corollary 3.12. Let λ ∈ M(G/G00) and assume that λ is idempotent. Then there
exists a measure ν ∈ Mfs

x (G,G) such that π∗(ν)= λ and ν is idempotent.

Proof. By Proposition 3.4, the set A := {η ∈ Mfs
x (G,G) : π∗(η)= λ} is nonempty.

Since π∗ is continuous by Fact 3.1(iv), A is a closed subset of Mfs
x (G,G). And for

any η1, η2 ∈ A we have η1 ∗ η2 ∈ A, as π∗(η1 ∗ η2)= π∗(η1) ⋆ π∗(η2)= λ ⋆ λ= λ

by Theorem 3.10. Hence (A, ∗) is a compact left-continuous semigroup (using
Fact 2.29). By Fact 2.34, (A, ∗) contains an idempotent. □

4. G00-invariant idempotent measures and type-definable subgroups

In this section we use the properties of the pushforward map established in Section 3
to prove that if µ is idempotent, G00-right-invariant, and automorphism-invariant
over a small model, then µ is a translation-invariant measure on its type-definable
stabilizer subgroup of G.

Definition 4.1. (1) Let µ ∈ Mx(G). The right stabilizer of µ, denoted as Stab(µ),
is the subgroup of G defined by

Stab(µ) :=

⋂
ϕ∈Lx (G)

{g ∈ G : µ(ϕ(x))= µ(ϕ(x · g))}.

(2) Let H be a subgroup of G (not necessarily definable). We say that µ ∈ Mx(G)
is H-right-invariant (respectively, H-left-invariant) if for every formula ϕ(x)∈
Lx(G) and h ∈ H we have µ(ϕ(x · h))= µ(ϕ(x))

(
respectively, µ(ϕ(h · x))=

µ(ϕ(x))
)
. We say that µ is H-invariant if µ is both H-left-invariant and

H-right-invariant.

(3) Let H be a type-definable subgroup of G. We say that H is definably amenable
if there exists some µ ∈ Mx(G) such that µ̃([H])= 1 (where µ̃ is the unique
regular Borel probability measure extending µ) and µ is H-right-invariant.
Moreover, in this case we say that (H, µ) is an amenable pair.

The next proposition shows that if a Keisler measure witnesses the definable
amenability of some type-definable subgroup of G, then this subgroup must be its
stabilizer:

Proposition 4.2. Suppose that µ ∈Mx(G) and H is a type-definable subgroup of G.
Suppose that µ̃([H])= 1 and H ⊆ Stab(µ). Then H = Stab(µ).

Proof. Suppose H ̸= Stab(µ), and let g ∈ Stab(µ)\H. The subsets [H] and [H] · g
of Sx(G) are disjoint and µ̃([H] ∪ ([H] · g)) = 2, where µ̃ is the unique regular
Borel probability measure extending µ to Sx(G). This is a contradiction. □
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Definition 4.3. An idempotent measure µ ∈ Minv
x (G,G) is said to be pairless

if there does not exist a type-definable subgroup H of G such that (H, µ) is an
amenable pair.

Remark 4.4. By Proposition 4.2, if Stab(µ) is type-definable, then µ is pairless if
and only if µ([Stab(µ)]) ̸= 1.

We now give two examples of pairless idempotent measures (in fact, types) in
NIP groups (one definable, the other finitely satisfiable). Our third example shows
that there can be many measures forming an amenable pair with a given group.

Example 4.5. Let T be the (complete) theory of divisible ordered abelian groups,
let G := (R,+, <) |H T , and let G ≻ G be a monster model of T .

(1) Let p0+ be the unique global definable (over R) type extending

{x < a : a > 0, a ∈ G} ∪ {x > a : a ≤ 0, a ∈ R}.

Then δp0+
∈ Minv

x (G,G) is idempotent and pairless.

(2) Let pR+ be the unique global type finitely satisfiable in R and extending

{x > a : a ∈ R}.

Then δpR+
∈ Mfs

x (G,G) is idempotent and pairless.

(3) Let p+∞ and p−∞ be the unique global heirs (over R) extending the types

2+(x) := {x > a : a ∈ R} and 2−(x) := {x < a : a ∈ R},

respectively. Then (G, µr ) is an amenable pair for any r ∈ [0, 1], where

µr = rδp−∞
+ (1 − r)δp+∞

.

Proof. (1) Note that Stab(δp0+
) = {0} and δp0+

({0}) = 0, so δp+

0
is pairless by

Proposition 4.2. We now check that δp0+
is idempotent. Fix some a ∈ G, some

small G ′
≺ G containing a and R, and a realization c |H p0+ |G ′ in G. Note that

(p0+ ∗ p0+)(x < a)= (p0+ ⊗ p0+)(x + y < a)= p0+(x < a − c).

We now have two cases:

(a) If a > 0, then a − c > 0 and so (p0+ ∗ p0+)(x < a)= 1.

(b) If a ≤ 0, then a − c < 0 and so (p0+ ∗ p0+)(x < a)= 0.

Hence, using quantifier-elimination, p0+ ∗ p0+ = p0+ , and so δp0+
∗ δp0+

= δp0+
.

(2) The measure δpR+
is idempotent by a computation analogous to the one in (1).

We have
Stab(δpR+

)= {a ∈ G : −n < a < n for some n ∈ N}.

We note that Stab(δpR+
) is a

∨
-definable subset of G, but is not definable, so it

is not type-definable. Now suppose that there exists a type-definable subgroup H
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of G such that (H, δpR+
) is an amenable pair. Then, by definition, H ⊆ Stab(δpR+

)

and δpR+
([H])= 1. By Proposition 4.2, we conclude that H = Stab(δpR+

). Hence
Stab(δpR+

) is type-definable, a contradiction. Alternatively, we get a contradiction
by regularity of the measure:

δpR+
([Stab(δpR+

)])= sup{δpR+
([−n < x < n]) : n ∈ N} = 0.

(3) Note that p+∞ and p−∞ are (left- and right-) G-invariant. Hence

µr := rδp−∞
+ (1 − r)δp+∞

∈ Mx(G)

is G-invariant for any r ∈ [0, 1]. Since µr is G-invariant, (G, µr ) is an amenable
pairing for every r ∈ [0, 1]. □

In the rest of this section we show that in an NIP group G, for any G00-invariant
idempotent µ ∈ Minv

x (G,G), Stab(µ) is type-definable and (Stab(µ), µ) is an
amenable pair.

Definition 4.6. Assume that µ ∈ Minv
x (G,G) is idempotent. By Corollary 3.11,

the measure π∗(µ) ∈ M(G/G00) is idempotent, and by Fact 2.8, supp(π∗(µ)) is a
closed subgroup of G/G00 and π∗(µ) ↾supp(π∗(µ)) is the normalized Haar measure on
this closed subgroup. Then π−1

(
supp(π∗(µ))

)
is a type-definable subgroup of G.

We let HL(µ) := π−1
(
supp(π∗(µ))

)
.

Proposition 4.7. Suppose µ ∈ Minv
x (G,G) is idempotent and G00-right-invariant.

(i) If p ∈ sup(µ), then π̂(p) ∈ supp(π∗(µ)) (see Fact 3.1 for the definition of π̂ ).

(ii) If p ∈ sup(µ), then p ∈ [HL(µ)].

(iii) µ([HL(µ)])= 1.

(iv) If b ∈ Stab(µ), then π(b) ∈ Stab(π∗(µ)).

Proof. (i) Let U be an open subset of G/G00 containing π̂(p). Then π−1(U ) is∨
-definable, so π−1(U ) =

∨
i∈I ψi (x) for some ψi ∈ Lx(G). Hence there exists

some i ∈ I so that ψi (x) ∈ p. Since p ∈ sup(µ), we have that µ(ψi (x)) > 0. Then

π∗(µ)(U )= µ̃([π̂−1(U )])≥ µ(ψi (x)) > 0,

where µ̃ is the unique regular Borel probability measures extending µ. Therefore
π̂(p) ∈ supp(π∗(µ)).

(ii) This is obvious by (i).

(iii) Assume not. Thenµ(Sx(G)\[HL(µ)])>0. This set is open and so by regularity
there exists some [ψ(x)] ⊂ Sx(G) \ [HL(µ)] such that µ(ψ(x)) > 0. Then there
exists some p ∈ sup(µ) so that ψ(x) ∈ p. This contradicts (ii).

(iv) By Theorem 3.10,

π∗(µ) ·π(b)= π∗(µ) ⋆ δπ(b) = π∗(µ ∗ δb)= π∗(µ). □
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Lemma 4.8. Assume that f : Sx(G)→ R is Borel and factors through π̂ : Sx(G)→
G/G00, and let f⋆ : G/G00

→ R be the factor map. Then f⋆ is Borel.

Proof. The map π̂ : Sx(G)→G/G00 is a continuous surjective map between compact
Hausdorff spaces. If the map f = f⋆ ◦ π̂ is Borel, then f⋆ is Borel by [Holický
and Spurný 2003, Theorem 10] (see [Conant et al. 2021, Theorem 2.1] for an
explanation). □

Lemma 4.9. Assume that µ ∈ Minv
x (G,G) is idempotent and G00-right-invariant.

Suppose that p ∈ sup(µ|G) and a |H p in G. Then µ(ϕ(x)) = µ(ϕ(x · a)) for any
ϕ(x) ∈ Lx(G).

Proof. Fix p ∈ sup(µ|G), ϕ(x) ∈ Lx(G) and a ∈ G such that a |H p. Fix a small
model G ′

≺ G such that G ′ contains G, a, and all of the parameters of ϕ. Let
r : Sy(G)→ Sy(G ′), q 7→ q|G ′ be the restriction map. Since µ is idempotent,

µ(ϕ(x · a))= µ ∗µ(ϕ(x · a))=

∫
Sy(G ′)

Fϕ
′
a

µ,G ′ dµG ′ =

∫
Sy(G)

(Fϕ
′
a

µ,G ′ ◦ r) dµ,

where ϕa(x) := ϕ(x · a), so ϕ′
a(x, y) = ϕ(x · y · a) and Fϕ

′
a

µ,G ′(q) = µ(ϕ(x · c · a))
for some/any c |H q (see Definition 2.26). Let f := Fϕ

′
a

µ,G ′ ◦ r and h := Fϕ
′

µ,G ′ ◦ r .

Claim 1: Both f and h factor through π̂ : Sy(G)→ G/G00.

Proof. The proofs are essentially the same, so we only show that f factors through π̂ .
Fixing q1, q2 ∈ Sy(G)with π̂(q1)= π̂(q2), we want to show that then f (q1)= f (q2).
Let b1, b2 ∈ G be such that b1 |H r(q1) and b2 |H r(q2). Then π(b1)= π(b2). Since
G00 is a normal subgroup of G, we then have b1 = d · b2 for some d ∈ G00. Hence

f (q1)= (Fϕ
′
a

µ,G ′ ◦ r)(q1)= µ(ϕ(x · b1 · a))= µ(ϕ(x · d · b2 · a)).

And since µ is G00-right-invariant, we have µ(ψ(x · d)) = µ(ψ(x)) for ψ(x) :=

ϕ(x · b2 · a), that is,

µ(ϕ(x · d · b2 · a))= µ(ϕ(x · b2 · a))= (Fϕ
′
a

µ,G ′ ◦ r)(q2)= f (q2). □

We let f⋆ and h⋆ be the associated factor maps from G/G00 to R.

Claim 2: We have h⋆ · π(a) = f⋆, where h⋆ · π(a) : G/G00
→ R is the function

defined by (h⋆ ·π(a))(b) := h⋆(b ·π(a)) for any b ∈ G/G00.

Proof. Fix b ∈ G/G00 and b ∈ G such that π(b)= b. Then

(h⋆ ·π(a))(b)

= (h⋆)(b ·π(a))= (h⋆)(π(b · a))= (Fϕ
′

µ,G ′ ◦ r)(tp(b · a/G))

= Fϕ
′

µ,G ′(tp(b · a/G ′))= µ(ϕ(x · b · a))= Fϕ
′
a

µ,G ′(tp(b/G ′))= f⋆(b). □

Claim 3: µ(ϕ(x · a))= µ(ϕ(x)).
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Proof. The maps f⋆, h⋆ : G/G00
→ R are Borel by Lemma 4.8. By assumption

a |H p with p ∈ sup(µ|G). Then there exists p̂ ∈ sup(µ) such that p̂|G = p (see,
e.g., [Chernikov and Gannon 2022, Proposition 2.8]). By Proposition 4.7(i) we
then have π(a) = π̂( p̂) ∈ supp(π∗(µ)). The measure π∗(µ) is idempotent by
Corollary 3.11. Applying Fact 2.11 (to the compact group G/G00 and its closed
subgroup supp(π∗(µ)) ∋ π(a)) we get∫

G/G00
(h⋆ ·π(a)) dπ∗(µ)=

∫
G/G00

h⋆ dπ∗(µ).

Using this and Claim 2 we have the following computation:

µ(ϕ(x · a))= (µ ∗µ)(ϕ(x · a))

=

∫
Sy(G)

f dµ=

∫
G/G00

f⋆ dπ∗(µ)

=

∫
G/G00

(h⋆ ·π(a)) dπ∗(µ)=

∫
G/G00

h⋆ dπ∗(µ)

=

∫
Sy(G)

h dµ=

∫
Sy(G ′)

Fϕ
′

µ,G ′ dµG ′ = (µ ∗µ)(ϕ(x))= µ(ϕ(x)). □

This concludes the proof of Lemma 4.9. □

Lemma 4.10. Suppose that g ∈ supp(π∗(µ)). Then there exists some p ∈ sup(µ|G)

such that for any b |H p we have π(b)= g.

Proof. We use the fact that π∗ : M(Sx(G)) → M(G/G00) is a pushforward map.
Let µ̃ be the unique extension of µ to a regular Borel probability measure on Sx(G).
Let g ∈ supp(π∗(µ)) and let U ⊆ G/G00 be an open set containing g. Because
g ∈ supp(π∗(µ)), we have that 0< π∗(µ)(U )= µ̃([π−1(U )]). Then there exists
some pU ∈ supp(µ̃) such that pU ∈ [π−1(U )]. The collection of open sets in G/G00

containing g forms a directed family under reverse inclusion, and we can consider
the net (pU )g∈U . Since supp(µ̃) is closed and hence compact, there exists a con-
vergent subnet (qi )i∈I with a limit in supp(µ̃). Let q := limi∈I qi . By continuity of
π̂ : Sx(G)→ G/G00, we have that π̂(q)= g. Since sup(µ)= supp(µ̃) we conclude
that q ∈ sup(µ). By definition of π̂ we have π̂(q)= π(b) for any b |H q|G , so the
lemma holds with p := q|G . □

Theorem 4.11. Suppose that µ∈Minv
x (G,G) is idempotent and G00-right-invariant.

Then

(1) Stab(µ)= HL(µ) (see Definition 4.6);

(2) Stab(µ) is a type-definable subgroup of G;

(3) (Stab(µ), µ) is an amenable pair.
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Proof. (1) As HL(µ) is a type-definable subgroup of G, by Proposition 4.2 it suffices
to show thatµ is HL(µ)-right-invariant andµ([HL(µ)])=1. By Proposition 4.7(iii),
we have µ([HL(µ)]) = 1, so it remains to show that HL(µ) ⊆ Stab(µ). Fix
a ∈ HL(µ). Then g := π(a) ∈ supp(π∗(µ)) by Proposition 4.7(i). By Lemma 4.10,
there exists some p ∈ sup(µ|G) and b |H p such that π(b) = g. In particular,
a ·G00

= b ·G00, so a = c · b for some c ∈ G00. Now we have

µ(ϕ(x · a))= µ(ϕ(x · c · b))= µ(ϕ(x · b))= µ(ϕ(x)).

The second equality follows from the fact that µ is G00-right-invariant and the fourth
equality follows from Lemma 4.9.

(2) This follows from the fact that Stab(µ)= HL(µ) and HL(µ) is type-definable.

(3) This follows since µ([Stab(µ)])= µ([HL(µ)])= 1. □

5. The structure of convolution semigroups

By Fact 2.29, if T is an NIP theory expanding a group, then both (Minv
x (G,G), ∗)

and (Mfs
x (G,G), ∗) are left-continuous compact Hausdorff semigroups (and hence

satisfy the assumption of Fact 2.34). In this section we describe some properties
of the minimal left ideals and ideal groups which arise in this setting. Unlike the
better studied case of the semigroup (Sfs

x (G,G), ∗), we demonstrate that the ideal
subgroups of any minimal left ideal (in either Mfs

x (G,G) or Minv(G,G)) are always
trivial, i.e., isomorphic to the group with a single element. The following theorem
summarizes the properties that we will prove in this section.

Theorem 5.1. Assume that G is NIP, and let I be a minimal left ideal of M†
x(G,G)

(which exists by Fact 2.34). Then we have the following:

(1) I is a closed convex subset of M†
x(G,G) (Proposition 5.3).

(2) For any µ ∈ I , π∗(µ)= h, where h is the normalized Haar measure on G/G00

(Proposition 5.5).

(3) If G/G00 is nontrivial, then I does not contain any types (Proposition 5.7).

(4) For any idempotent u ∈ I , we have u ∗ I ∼= (e, · ). In other words, the ideal
group is always trivial (Proposition 5.10).

(5) Every element of I is an idempotent (Proposition 5.11).

(6) If µ, ν ∈ I then µ ∗ ν = µ (Proposition 5.11).

(7) For any µ ∈ I , I = {ν ∈ M†
x(G,G) : ν ∗µ= ν} (Corollary 5.12).

(8) For any definable measure ν ∈ M†
x(G,G) there exists a measure µ ∈ I such

that ν ∗µ= µ. In particular, for any g ∈ G there exists a measure µ ∈ I such
that δg ∗µ= g ·µ= µ (Proposition 5.13).
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(9) Assume that G is definably amenable.

(a) If † = fs, then I = {ν}, where ν ∈Mfs
x (G,G) is a G-left-invariant measure

(Proposition 5.16).
(b) If † = inv, then

I = {µ ∈ Minv
x (G,G) : µ is G-right-invariant}.

Moreover, I is a two-sided ideal, and is the unique minimal left ideal
(Proposition 5.18). The set ex(I ) of extreme points of I is closed and
equal to {µp : p ∈ Sinv

x (G,G) is right f -generic}, and I is a Bauer simplex
(Corollary 5.21).

(10) If G is fsg and µ ∈Mx(G) is the unique G-left-invariant measure, then I = {µ}

is the unique minimal left (in fact, two-sided) ideal in both Minv
x (G,G) and

Mfs
x (G,G) (Corollary 5.24).

(11) If G is not definably amenable, then the closed convex set I has infinitely many
extreme points (Remark 5.26).

We remark that (5) and (11) of Theorem 5.1 guarantee the existence of many
idempotent measures in nondefinably amenable NIP groups. All previous “con-
structions” of idempotent measures either explicitly or implicitly use definable
amenability or amenability of closed subgroups of G/G00. A priori, the idempotent
measures we find here have no connection to type-definable subgroups.

5A. General structure. Our first goal is to show that any minimal left ideal
of M†

x(G,G) is convex. We begin by showing that convolution is affine in both
arguments and therefore preserves convexity on both sides.

Lemma 5.2. Assume µ, λ1, λ2 ∈M†
x(G,G) and r, s ∈ R>0 with r +s = 1. We have:

(1) (rλ1 + sλ2) ∗µ= r(λ1 ∗µ)+ s(λ2 ∗µ).

(2) µ ∗ (rλ1 + sλ2)= r(µ ∗ λ1)+ s(µ ∗ λ2).

(3) If A ⊆ M†
x(G,G) is convex, then both µ ∗ A and A ∗µ are convex.

Proof. Parts (1) and (2) were stated in [Chernikov and Gannon 2022, Proposition
3.14(4)], but no proof was provided there, so we take the opportunity to provide it
here.

(1) Fix a formula ϕ(x) ∈ Lx(G) and let G ′ be a small model containing G and the
parameters of ϕ. Then

((rλ1 + sλ2) ∗µ)(ϕ(x))

=

∫
Sy(G ′)

Fϕ
′

rλ1+sλ2
dµG ′ =

∫
Sy(G ′)

(r Fϕ
′

λ1
+ s Fϕ

′

λ2
) dµG ′
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= r
∫

Sy(G ′)

Fϕ
′

λ1
dµG ′ + s

∫
Sy(G ′)

Fϕ
′

λ2
dµG ′

= r(λ1 ∗µ)(ϕ(x))+ s(λ2 ∗µ)(ϕ(x))

= (r(λ1 ∗µ)+ s(λ2 ∗µ))(ϕ(x)).

(2) Fix a formula ϕ(x) ∈ Lx(G) and a small model G ′ containing G and the
parameters of ϕ. Then the map Fϕ

′

µ : Sy(G ′)→ [0, 1] is a bounded Borel function,
so for any ε > 0 there exist Borel subsets B1, . . . , Bn of Sy(G ′) and real numbers
k1, . . . , kn such that

sup
q∈Sy(G)

∣∣∣∣Fϕ′

µ (q)−
n∑

i=1

ki 1Bi (q)
∣∣∣∣< ε.

Now we compute the product:

(µ ∗ (rλ1 + sλ2))(ϕ(x))

=

∫
Sy(G ′)

Fϕ
′

µ d(rλ1 + sλ2)

≈ε

∫
Sy(G ′)

( n∑
i=1

ki 1Bi

)
d(rλ1 + sλ2)= r

n∑
i=1

kiλ1(Bi )+ s
n∑

i=1

kiλ2(Bi )

= r
∫

Sy(G ′)

( n∑
i=1

ki 1Bi

)
dλ1 + s

∫
Sy(G ′)

( n∑
i=1

ki 1Bi

)
dλ2

≈ε r
∫

Sy(G ′)

Fϕ
′

µ dλ1 + s
∫

Sy(G ′)

Fϕ
′

µ dλ2 = (r(µ ∗ λ1)+ s(µ ∗ λ2))(ϕ(x)).

(3) We first prove that A ∗µ is convex. Letting ν1, ν2 ∈ A ∗µ and r, s ∈ R>0 with
r + s = 1 be given, we need to show that rν1 + sν2 ∈ A ∗µ. By assumption there
exist some λ1, λ2 ∈ A such that λi ∗µ = νi for i ∈ {1, 2}. Since A is convex, we
have that rλ1 + sλ2 ∈ A. It follows by (1) that rν1 + sν2 = (rλ1 + sλ2)∗µ ∈ A ∗µ.

Now we prove that µ ∗ A is convex. Similarly, let ν1, ν2 ∈ µ ∗ A and r, s ∈ R>0

with r + s = 1 be given, and let λ1, λ2 ∈ A be such that µ ∗ λi = νi . Consider the
measure rλ1+sλ2 ∈ A. It follows by (2) that rν1+sν2 =µ∗(rλ1+sλ2)∈µ∗ A. □

Proposition 5.3. If I is a minimal left ideal in M†
x(G,G), then I is closed and

convex.

Proof. Any minimal left ideal is closed by Fact 2.34. Choose µ∈ I . By Fact 2.34(5),
we have M†

x(G,G) ∗µ= I . By Lemma 5.2 and the convexity of M†
x(G,G), I is

convex. □

We now consider the interaction between the pushforward map to G/G00 and the
minimal left ideal. The following lemma is standard.
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Lemma 5.4. Let S be a semigroup, L a minimal left ideal of S, and H a two-sided
ideal in S. Then L ⊆ H.

Proof. Note that L ′
:= L ∩ H is nonempty (for l ∈ L and h ∈ H , h · l ∈ L ∩ H )

and is a left ideal (as an intersection of two left ideals). As L ′
⊆ L , by minimality

L = L ′
⊆ H . □

Proposition 5.5. Let I be a minimal left ideal in M†
x(G,G). Then for every ν ∈ I

we have π†
∗
(ν)= h, where h is the normalized Haar measure on G/G00.

Proof. Since π†
∗

is surjective (Proposition 3.4) and continuous (Remark 3.3), the
set A := (π†

∗
)−1({h}) is a nonempty closed subset of M†

x(G,G). Moreover, A is a
two-sided ideal: since π†

∗
is a homomorphism (Theorem 3.10) and h is both left-

and right-invariant, for any µ ∈ A and ν ∈ M†
x(G,G), we have

π†
∗
(ν ∗µ)= π†

∗
(ν) ⋆ π†

∗
(µ)= π†

∗
(ν) ⋆ h = h,

and a similar computation also shows that A is a right ideal. By Lemma 5.4 we
have I ⊆ A, which completes the proof. □

Definition 5.6. Let µ ∈Mx(G). We say µ is strongly continuous if for every ε > 0,
there exists a finite partition {[ψ(x)]}i<n of Sx(G) with ψi ∈ Lx(G) such that
µ(ψ(x)) < ε for all i < n.

Proposition 5.7. Let I be a minimal left ideal in M†
x(G,G).

(1) If G/G00 is nontrivial, then I does not contain any types.

(2) If G/G00 is infinite, then every measure in I is strongly continuous.

Proof. (1) By Lemma 3.5(2) we have π†
∗
(δp) = δπ̂(p), which does not equal

the normalized Haar measure on G/G00 when it is nontrivial. This contradicts
Proposition 5.5.

(2) If G/G00 is infinite then the normalized Haar measure h on G/G00 is zero on
every point. Suppose that ν ∈M†

x(G,G) is not strongly continuous. By compactness
and [Bhaskara Rao and Bhaskara Rao 1983, Theorem 5.2.7], ν can be written as

ν = r0µ0 +

∑
i∈ω

riδpi ,

where µ0 ∈ M†
x(G,G) is strongly continuous, ri ∈ [0, 1] and pi ∈ S†

x (G,G) for
each i ∈ω, and

∑
i∈ω ri = 1. We then must have ri∗ > 0 for some i∗

∈ω\{0}. Since
the pushforward map is affine (Remark 3.3), we have

π∗(ν)= r0π∗(µ0)+
∑
i∈ω

riδπ̂(pi ).

Hence π∗(ν)({π̂(pi∗)})= ri∗ > 0, so π∗(ν) ̸= h, contradicting Proposition 5.5. □
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We now show that the ideal subgroup of any minimal left ideal is trivial. A
related result appears in [Cohen and Collins 1959, Theorem 3], but we are working
in a semigroup which is only left-continuous. Our proof is a generalization of the
proof that there do not exist any nontrivial convex compact groups and follows
[Abodayeh and Murphy 1997, Lemmas 3.1 and 3.2]. In particular, compactness
is used only to get an extreme point in some ideal subgroup. Some elementary
algebra is then used to show that the only possible ideal subgroups are isomorphic
to a single point.

Lemma 5.8. If I is a minimal left ideal in M†
x(G,G), then ex(I ) ̸= ∅.

Proof. By Proposition 5.3, I is a compact convex set. By the Krein–Milman
theorem, I contains an extreme point. □

Lemma 5.9. If I is a minimal left ideal in M†
x(G,G), then there exists an idempo-

tent µ in I such that µ ∈ ex(µ ∗ I ).

Proof. By Lemma 5.8, there exists a measure ν ∈ I which is extreme in I . By
Fact 2.34(4), there exists an idempotent µ in I such that ν ∈ µ ∗ I . Towards a
contradiction, suppose that µ ̸∈ ex(µ ∗ I ). Then there exist distinct η1, η2 ∈ µ ∗ I
and r ∈ (0, 1) such that rη1 + (1−r)η2 =µ. As µ is the identity of the group µ∗ I
by Fact 2.34(3), we get

ν = ν ∗µ= r(ν ∗ η1)+ (1 − r)(ν ∗ η2).

Since ν ∈ ex(I ) and ν ∗ηi ∈ I as I is a left ideal, it follows that ν = ν ∗η1 = ν ∗η2.
Since ν, η1, η2 ∈ µ ∗ I and µ ∗ I is a group, this implies η1 = η2, contradicting the
assumption. Hence µ ∈ ex(µ ∗ I ). □

Proposition 5.10. The ideal subgroup of M†
x(G,G) is trivial.

Proof. Let I be a minimal left ideal of M†
x(G,G). By Lemma 5.9, there exists

an idempotent µ ∈ I such that µ is extreme in µ ∗ I . Let η1, η2 ∈ µ ∗ I . We will
show that η1 = η2. By Lemma 5.2 and Proposition 5.3, µ ∗ I is convex. Hence
α :=

1
2(η1 +η2) ∈ µ∗ I . Since µ∗ I is a group with identity µ, µ∗ I contains α−1

(i.e., α−1
∗α = α ∗α−1

= µ). Then

µ= α−1
∗α = α−1

∗
( 1

2η1 +
1
2η2

)
=

1
2(α

−1
∗ η1)+

1
2(α

−1
∗ η2).

Since µ is extreme in µ ∗ I and α−1
∗ ηi ∈ µ ∗ I , we get µ= α−1

∗ η1 = α−1
∗ η2

and hence η1 = η2. □

We have shown that any ideal subgroup of M†
x(G,G) is trivial. Since the minimal

left ideals can be partitioned into their ideal subgroups, it follows that the convolution
operation is trivial when restricted to a minimal left ideal.

Proposition 5.11. Let I be a minimal left ideal in M†
x(G,G). Then every element

of I is an idempotent. Moreover, for any elements µ, ν ∈ I , we have that µ∗ ν = µ.
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Proof. By Fact 2.34(4) and Proposition 5.10,

I =

⊔
µ∈id(I )

µ ∗ I =

⊔
µ∈id(I )

{µ} = id(I ).

The “moreover” part also follows from the observation that µ ∗ I = {µ}. □

Corollary 5.12. Let I be a minimal left ideal of M†
x(G,G) and assume that µ ∈ I .

Then I = {ν ∈ M†
x(G,G) : ν ∗µ= ν}.

Proof. By Proposition 5.11 we have I ⊆ {ν ∈ M†
x(G,G) : ν ∗µ= ν}. And since I

is a left ideal and µ ∈ I , we have {ν ∈ M†
x(G,G) : ν ∗µ= ν} ⊆ I . □

We also observe that the action of the underlying group G on the minimal left
ideal is far from being a free action (this is of course trivial in the definably amenable
case, but is meaningful when G is not definably amenable).

Proposition 5.13. Let I be a minimal left ideal of M†
x(G,G). For any definable

measure ν ∈ M†(G,G) there exists a measure µ ∈ I such that ν ∗ µ = µ. In
particular, for every element g ∈ G, there exists a measureµ∈ I such that δg∗µ=µ.

Proof. Consider the map ν∗− :M†
x(G,G)→M†

x(G,G) sending λ to ν∗λ. Since I
is a minimal left ideal, the image of (ν ∗−)|I is contained in I . Since ν is definable,
the map (ν∗−)|I : I → I is continuous by Lemma 2.30. By Lemma 5.2, this map is
also affine. By the Markov–Kakutani fixed-point theorem, there exists some µ ∈ I
such that ν∗µ=µ. The “in particular” part of the statement follows since δg, g ∈ G
is a definable measure. □

5B. Definably amenable groups. We now shift our focus to the dividing line of de-
finable amenability. We first describe all minimal left ideals in both (Mfs

x (G,G), ∗)
and (Minv

x (G,G), ∗) when G is definably amenable. We then make an observation
about what happens outside of the definably amenable case. Recall that T is a
complete NIP theory expanding a group, G is a monster model of T , G is a small
elementary submodel of G. The group G is definably amenable if there exists
µ ∈ Mx(G) such that µ is G-left-invariant.

Remark 5.14. (1) The group G is definably amenable if and only if for some
G ′

|H T there exists a G ′-left-invariant µ ∈ Mx(G ′), if and only if for every
G ′

|H T there exists a G ′-left-invariant µ ∈ Mx(G ′) (see [Hrushovski et al.
2008, Section 5]).

(2) If G ′
⪯G and µ∈Mx(G ′) is G ′-left-invariant, then the measure µ−1

∈Mx(G ′)

defined byµ−1(ϕ(x))=µ(ϕ(x−1)) for any ϕ(x)∈Lx(G ′) is G ′-right-invariant,
and vice versa. If µ ∈ M†

x(G,G), then also µ−1
∈ M†

x(G,G) (see [Chernikov
and Simon 2018, Lemma 6.2]).

We will need the following fact.
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Fact 5.15. Assume that G is definably amenable and NIP.

(i) [Chernikov et al. 2014, Proposition 3.5] For any G-left-invariant measure
µ0 ∈ Mx(G) (which exists by Remark 5.14(1)) there exists µ ∈ Minv

x (G,G)
such that µ is G-left-invariant and extends µ0. The same holds for right-
invariant measures by item (2) of Remark 5.14.

(ii) [Chernikov et al. 2014, Theorem 3.17] There exists ν ∈ Mfs
x (G,G) such that ν

is G-left-invariant (but not necessarily G-left-invariant).

We remark that Fact 5.15(ii) follows from [Chernikov et al. 2014, Theorem 3.17]
as Sfs

x (G,G)= Sx(Gext) (where Gext is the Shelah’s expansion of G by all externally
definable subsets) and M(Sfs

x (G,G))= Mfs
x (G,G) (see Corollary 2.23). We now

compute the minimal left ideals in definably amenable NIP groups, first in the
finitely satisfiable case and then in the invariant case.

Proposition 5.16. The group G is definably amenable if and only if |I | = 1 for
some (equivalently, every) minimal left ideal I in Mfs

x (G,G). And if G is definably
amenable, then the minimal left ideals of Mfs

x (G,G) are precisely of the form {ν}

for ν a G-left-invariant measure in Mfs
x (G,G).

Proof. Let I be a minimal left ideal, and assume that I = {µ}. Then for any
g ∈ G we have g ·µ= δg ∗µ= µ, so µ is G-left-invariant. In particular, µ|G is a
G-left-invariant measure on Mx(G), so G is definably amenable by Remark 5.14(1).
And all minimal left ideals have the same cardinality by Fact 2.34(6).

Conversely, assume that G is definably amenable. By Fact 5.15(2) there exists
some µ ∈ Mfs

x (G,G) such that µ is G-left-invariant. We claim that for any such µ,
{µ} is a minimal left ideal of Mfs

x (G,G). Let ν be any measure in Mfs
x (G,G).

Since ν is finitely satisfiable in G, by Lemma 2.25 there exists a net of measures
in Mfs

x (G,G) of the form (Av(āi ))i∈I such that each āi = (ai,1, . . . , ai,ni ) ∈ (G
x)ni

for some ni ∈ N and limi∈I (Av(āi ))= ν. Fix any ϕ(x) ∈Lx(G). By the “moreover”
part of Fact 2.29, the map λ ∈ Mfs

x (G,G) 7→ (λ ∗µ)(ϕ(x)) ∈ [0, 1] is continuous.
Therefore,

(ν ∗µ)(ϕ(x))= lim
i∈I

(
(Av(āi ) ∗µ)(ϕ(x))

)
= lim

i∈I

(
1
ni

ni∑
j=1

µ(ϕ(ai, j · x))
)

(a)
= lim

i∈I
µ(ϕ(x))= µ(ϕ(x)).

Equality (a) follows as µ is G-left-invariant and each ai, j is in G. It follows that
ν ∗µ= µ, and hence {µ} is a left ideal. □

We now compute the minimal left ideals in the invariant case, but first we record
an auxiliary lemma.
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Lemma 5.17. Assume that f : Sx(G)→ [0, 1] is a Borel function. For any b ∈ G,
we define the function f · b : Sx(G) → [0, 1] via ( f · b)(p) := f (p · b) (recall
Lemma 3.8). If µ ∈ Mx(G) is G-right-invariant then∫

Sx (G)
f dµ=

∫
Sx (G)

( f · b) dµ.

Proof. For b ∈ G, consider the map γb : Sx(G)→ Sx(G) defined by γb(p) := p · b.
The map γb is a continuous bijection. Hence we can consider the pushforward map
(γb)∗ : Mx(G)→ Mx(G). Denote (γb)∗(µ) as µb. Fix a formula ϕ(x) ∈ Lx(G).
We claim that γ−1

b ([ϕ(x)])= [ϕ(x · b)].
We first show that (γb)

−1([ϕ(x)])= [ϕ(x ·b)]. Assume that p ∈ [ϕ(x ·b)]. Then
ϕ(x) ∈ p ·b and so p ·b ∈ [ϕ(x)]. Hence (γb)

−1(p ·b) ∈ (γ−1
b )([ϕ(x)]). Since γb is

a bijection, we have that p = γ−1
b (p ·b), which implies that p ∈ (γ−1

b )([ϕ(x)]). So
[ϕ(x · b)] ⊆ (γb)

−1([ϕ(x)]). Now assume that p ∈ (γb)
−1([ϕ(x)]). Then γb(p) ∈

[ϕ(x)], and hence p ·b ∈ [ϕ(x)], so ϕ(x)∈ p ·b. By definition, ϕ(x ·b)∈ (p ·b)·b−1,
and since (p ·b) ·b−1

= p, we conclude that ϕ(x ·b) ∈ p. Hence p ∈ [ϕ(x ·b)] and
(γb)

−1([ϕ(x)])= [ϕ(x · b)].
Now we show that µb = µ. Indeed, by G-right-invariance of µ and the previous

paragraph we have

µb(ϕ(x))= µ(γ−1
b [ϕ(x)])= µ(ϕ(x · b))= µ(ϕ(x)).

And so by Fact 2.1(iii) we have∫
Sx (G)

f dµ=

∫
Sx (G)

f dµb =

∫
Sx (G)

( f ◦ γb) dµ=

∫
Sx (G)

( f · b) dµ. □

Proposition 5.18. Assume that G is definably amenable. Let

I inv
G := {µ ∈ Minv

x (G,G) : µ is G-right-invariant}.

Then I inv
G is a closed, nonempty, two-sided ideal. Moreover, I inv

G is the unique
minimal left ideal in Mx(G,G).

Proof. The set I inv
G is closed since it is the complement of the union of basic open

sets in Minv
x (G,G):

Minv
x (G,G)\ I inv

G =

⋃
ϕ(x)∈Lx (G)

⋃
s<t∈[0,1]

⋃
g∈G

(
{µ :µ(ϕ(x))< s}∩{µ :µ(ϕ(x ·g))> t}

)
.

By Fact 5.15(1), we know that the set I inv
G is nonempty. We first show that I inv

G is a
left ideal. Let µ ∈ I inv

G and ν ∈ Minv
x (G,G). It suffices to show that the measure

ν ∗ µ is G-right-invariant. That is, we need to show that for any ϕ(x) ∈ Lx(G)
and b ∈ G we have (ν ∗µ)(ϕ(x · b))= (ν ∗µ)(ϕ(x)). Let G ′

≺ G be a small model
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containing G, b and the parameters of ϕ. For any q ∈ Sy(G ′) and a |H q in G,
letting ϕb(x) := ϕ(x · b) and noting that a · b |H q · b, we have

F
ϕ′

b
ν,G ′(q)= ν(ϕ(x · a · b))= Fϕ

′

ν,G ′(q · b)= (Fϕ
′

ν,G ′(q)) · b.

Hence, by Lemma 5.17,

(ν ∗µ)(ϕ(x · b))=

∫
Sy(G ′)

F
ϕ′

b
ν dµG ′

=

∫
Sy(G ′)

((Fϕ
′

ν ) · b) dµG ′ =

∫
Sy(G ′)

Fϕ
′

ν dµG ′ = (ν ∗µ)(ϕ(x)).

We now argue that I inv
G is a right ideal. Again let µ ∈ I inv

G and ν ∈ Minv
x (G,G),

and fix ϕ(x) ∈ Lx(G) and G ′
≺ G containing G and the parameters of ϕ. Using

G-right-invariance of µ, we have

(µ ∗ ν)(ϕ(x))=

∫
Sy(G ′)

Fϕ
′

µ dνG ′ =

∫
Sy(G ′)

µ(ϕ(x)) dνG ′ = µ(ϕ(x)).

Hence I inv
G is a two-sided ideal.

Note that the previous computation shows that µ ∗ ν = µ for any µ ∈ I inv
G and

ν ∈ Minv
x (G,G). So if J is any minimal left ideal of Minv

x (G,G), then I inv
G ⊆ J .

Since I inv
G is two-sided, we have that J ⊆ I inv

G (by Lemma 5.4). Hence J = I inv
G ,

and I inv
G is the unique minimal left ideal. □

We recall some terminology and results from [Chernikov and Simon 2018]
(switching from the action on the left to the action on the right everywhere).

Definition 5.19. (1) A type p ∈ Sx(G) is right f -generic if for every ϕ(x) ∈ p
there is some small model G ≺ G such that for any g ∈ G, ϕ(x · g) does not
fork over G.

(2) A type p ∈ Sx(G) is strongly right f -generic if there exists some small G ≺ G
such that p · g ∈ Sinv

x (G,G) for all g ∈ G. This is equivalent to the definition in
[Chernikov and Simon 2018] since in NIP theories, a global type p does not
fork over a model M if and only if p is M-invariant (see, e.g., [Hrushovski
and Pillay 2011, Proposition 2.1]).

(3) Given a right f -generic p, let µp be defined via

µp(ϕ(x)) := h
(
{π(g) ∈ G/G00

: g ∈ G, ϕ(x) ∈ p · g}
)
,

where π :G →G/G00 is the quotient map and ϕ(x)∈Lx(G). Then µp ∈Mx(G)
and, assuming additionally that G is definably amenable, µp is G00-right-
invariant (see [Chernikov and Simon 2018, Definition 3.16] for the details).

Fact 5.20. Assume that G is definably amenable NIP.
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(1) If p ∈ Sinv
x (G,G) is right f -generic then p is strongly right f -generic over G

and µp ∈Minv
x (G,G). The set of all right f -generic types in Sx(G) (and hence

in Sinv
x (G,G)) is closed.

(2) Let I(G) be the (closed convex) set of all G-right-invariant measures in Mx(G).
Then the set ex(I(G)) of the extreme points of I(G) is the set of all measures
of the form µp for some right f -generic p ∈ Sx(G).

(3) The map p 7→ µp from the (closed) set of global right f -generic types to the
(closed) set of global G-right-invariant measures is continuous.

Proof. (1) Any f -generic p∈ Sinv
x (G,G) is strongly f -generic over G by [Chernikov

and Simon 2018, Proposition 3.9]. For any f -generic p, sup(µp)⊆ p ·G, where X
is the topological closure of X in Sx(G) and p · G = {p · g ∈ Sx(G) : g ∈ G} is the
orbit of p under the right action of G (by [Chernikov and Simon 2018, Remark
3.17(2)]). As p is strongly f -generic over G, we have p ·G ⊆ Sinv

x (G,G), and thus
sup(µp)⊆ Sinv

x (G,G)= Sinv
x (G,G). Hence µp ∈ Minv

x (G,G) by Fact 2.22(2).

(2) This is [Chernikov and Simon 2018, Theorem 4.5].

(3) This is [Chernikov and Simon 2018, Proposition 4.3]. □

Adapting the proof of [Chernikov and Simon 2018, Theorem 4.5], we can
describe the extreme points of the minimal ideal I inv

G .

Corollary 5.21. Assume that G is definably amenable NIP. Then

(1) ex(I inv
G )= {µp : p ∈ Sinv

x (G,G) is right f -generic};

(2) ex(I inv
G ) is a closed subset of I inv

G , and I inv
G is a Bauer simplex.

Proof. If p ∈ Sinv
x (G,G) is right f -generic, then µp is G-right-invariant and

µp ∈ Minv
x (G,G) by Fact 5.20(1), so µp ∈ I inv

G . By Fact 5.20(2), µp is extreme
in I(G), and thus, in particular, it is extreme in I inv

G ⊆ I(G).
Conversely, assume that µ ∈ ex(I inv

G ), and let

S := {µp : p ∈ Sinv
x (G,G) is right f -generic}.

Let conv(S) be the closed convex hull of S. Then conv(S)⊆ I inv
G by Propositions

5.3 and 5.18. As µ is G-right-invariant, by [Chernikov and Simon 2018, Lemma
3.26], for any ε > 0 and ϕ1(x), . . . , ϕk(x)∈Lx(G), there exist some right f -generic
p1, . . . , pn ∈ sup(µ) such that µ(ϕ j (x))≈ε (1/n)

∑n
i=1 µpi (ϕ j (x)) for all j ∈ [k].

While [Chernikov and Simon 2018, Lemma 3.26] is stated for a single formula, it
also applies to finitely many formulas by encoding them as appropriate instances of
a single formula — formally, we apply [Chernikov and Simon 2018, Lemma 3.26]
to the formula

θ(x; y0, . . . , yk) :=
∨k

i=1(y0 = yi ∧ϕk(x)).
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As we have pi ∈ Sinv
x (G,G) for all i ∈[n], by Fact 2.22(2), it follows thatµ∈conv(S),

and it is still an extreme point of conv(S) ⊆ I inv
G . It follows that µ ∈ S, by the

(partial) converse to the Krein–Milman theorem (see, e.g., [Chernikov and Simon
2018, Fact 4.1] applied to C := conv(S)). By Fact 5.20(3), the map p 7→ µp from
Sinv

x (G,G) to Minv
x (G,G) is a continuous map from a compact to a Hausdorff space

and thus also a closed map. It follows that S = S, so µ ∈ S.
By Corollary 2.23(2), we have an affine homeomorphism between Minv

x (G,G)
and M(Sinv

x (G,G)), which restricts to an affine homeomorphism between I inv
G and

the set MG(Sinv
x (G,G)) of all right-G-invariant regular Borel probability measures

on Sinv
x (G,G). By Fact 2.37, MG(Sinv

x (G,G)) is a Choquet simplex, so I inv
G is a

Bauer simplex (using Remark 2.40). □

Question 5.22. Can every Bauer simplex of the form M(X) with X a com-
pact Hausdorff totally disconnected space be realized as a minimal left ideal
of (Minv

x (G,G), ∗) for some definably amenable NIP group G?

Example 5.23. Let G := (R;<,+), and let G ≻ G be a monster model. As G
is abelian, it is amenable as a discrete group and hence definably amenable. By
Proposition 5.18, Minv

x (G,R) has a unique minimal left ideal I inv
G . One checks

directly that p−∞ (the unique type extending {x < a : a ∈ G}) and p+∞ (the
unique type extending {x > a : a ∈ G}) are the right f -generics in Sinv

x (G,G), and
µp+∞

= δp+∞
, µp−∞

= δp−∞
. Hence, by Corollary 5.21, |ex(I inv

G )| = 2 and

I inv
G = {rδp+∞

+ (1 − r)δp−∞
: r ∈ [0, 1]}.

(See also Example 6.21(1).)

Recall that G is uniquely ergodic if it admits a unique G-left-invariant measure
µ ∈ Mx(G) (see [Chernikov and Simon 2018, Section 3.4]). Recall that G is fsg
if there exists a small G ≺ G and p ∈ Sx(G) such that g · p is finitely satisfiable
in G for all g ∈ G. All fsg groups are uniquely ergodic (see, e.g., [Simon 2015,
Proposition 8.32]), but there exist uniquely ergodic NIP groups which are not fsg
(see [Chernikov and Simon 2018, Remark 3.38]).

Corollary 5.24. (1) If G is uniquely ergodic, then I inv
G = {µ}, where µ is the

unique G-left-invariant measure.

(2) If G is, moreover, fsg, letting µ ∈ Mx(G) be the unique G-left-invariant
measure, {µ} is the unique minimal left ideal of Mfs

x (G,G) (which is also
two-sided).

Proof. (1) For any G-left-invariant measure µ, the measure µ−1 is G-right-invariant
(see Remark 5.14(2)), and vice versa. Moreover, from the definition, µ1 =µ2 if and
only if µ−1

1 =µ−1
2 . It follows that if there exists a unique G-left-invariant measure µ,

then there exists a unique G-right-invariant measure µ−1. By [Chernikov and Simon
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2018, Lemma 6.2] there also exists a measure ν which is simultaneously G-left-
invariant and G-right-invariant. But then µ= ν=µ−1, so µ is also G-right-invariant.
And µ ∈ Minv

x (G,G) by Fact 5.15 and uniqueness, so I inv
G = {µ}.

(2) By, e.g., [Simon 2015, Propositions 8.32, 8.33], G is fsg if and only if there exists
a G-left-invariant generically stable measure µ ∈ Mx(G), and then G is uniquely
ergodic, so µ is also the unique G-right-invariant measure. By Fact 5.15(i) and
uniqueness of µ it follows that µ is invariant over G and hence generically stable
over G (in fact, over an arbitrary small model). In particular, µ ∈ Mfs

x (G,G), and
it is the unique measure in Minv

x (G,G) extending µ|G (by [Hrushovski et al. 2013,
Proposition 3.3]). Now assume that ν ∈ Mfs

x (G,G) is an arbitrary G-left-invariant
measure. We have ν|G =µ|G , as by Fact 5.15(i) there exists some G-left-invariant ν ′

extending ν|G , and thus ν ′
=µ, so ν|G =ν ′

|G =µ|G . But as µ is the unique measure
in Minv

x (G,G) extending µ|G , it follows that ν = µ. If follows by Proposition 5.16
that {µ} is the unique minimal left ideal of Mfs

x (G,G). Finally, in any semigroup, if
the union of its minimal left ideals is nonempty, then it is a two-sided ideal [Clifford
1948]. Hence in our case {µ} is a two-sided ideal. □

Question 5.25. Can the fsg assumption be relaxed to unique ergodicity in Corollary
5.24(2)?

Our final observation in this section deals with nondefinably amenable groups.

Remark 5.26. Assume that G is not definably amenable. Let I be a minimal left
ideal in M†(G,G). Then ex(I ) is infinite.

Proof. For any g ∈ G, the map δg∗−:ex(I )→ex(I ) is a bijection. Towards a contra-
diction, assume that ex(I ) is finite, say ex(I )={µ1, . . . , µn}. Consider the measure
λ∈M†

x(G,G) defined by λ=
∑n

i=1(1/n)µi . Then for any g ∈ G we have δg ∗λ=λ.
Hence the measure λ|G is in Mx(G) and is G-left-invariant. This contradicts the
assumption that G is not definably amenable, by (1) and (2) of Remark 5.14. □

6. Constructing minimal left ideals

In this section, under some assumptions on the semigroup (S†
x (G,G), ∗) (applicable

to some nondefinably amenable groups, e.g., SL2(R)), we construct a minimal
left ideal of (M†

x(G,G), ∗) using a minimal left ideal and an ideal subgroup
of (S†

x (G,G), ∗), and demonstrate that this minimal left ideal is parametrized by a
space of regular Borel probability measures over a compact Hausdorff space.

6A. Basic lemmas. We will need some auxiliary lemmas connecting convolution
and left ideals. We assume that T = Th(G) is NIP throughout.

Lemma 6.1. Let µ, ν ∈ M†
x(G,G). If µ ∗ δp = µ for every p ∈ sup(ν), then

µ ∗ ν = µ.
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Proof. Fix a formula ϕ(x) ∈ Lx(G). Let G ′
≺ G be a small model containing G and

the parameters of ϕ. We have

(µ ∗ ν)(ϕ(x))=

∫
sup(ν|G′ )

Fϕ
′

µ,G ′ d(νG ′).

By Fact 2.22, sup(ν) is a subset of S†
x (G,G). For any q ∈ sup(ν)we have Fϕ

′

µ,G ′(q)=
µ(ϕ(x · b))= (µ ∗ δp)(ϕ(x))= µ(ϕ(x)), where b |H q . Hence∫

sup(ν|G′ )

Fϕ
′

µ,G ′ d(νG ′)=

∫
Sy(G ′)

µ(ϕ(x)) d(νG ′)= µ(ϕ(x)),

so µ ∗ ν = µ. □

Lemma 6.2 (T is NIP). Assume that I is a left ideal of (S†
x (G,G), ∗). Then M(I )

(see Definition 2.16) is a left ideal of (M†
x(G,G), ∗).

Proof. Let p ∈ S†
x (G,G) and µ ∈ M(I ). We first argue that δp ∗ µ ∈ M(I ).

Assume towards a contradiction that δp ∗ µ ̸∈ M(I ). Then there exists some
q ∈ sup(δp ∗µ) such that q ̸∈ I . Then there exists ψ(x)∈Lx(G) such that ψ(x)∈ q
and [ψ(x)]∩ I =∅. Sinceψ(x)∈q and q ∈ sup(δp∗µ), we have (δp∗µ)(ψ(x))>0.
Let now G ′

≺ G be a small model containing G and the parameters of ψ . Then

(δp ∗µ)(ψ(x))=

∫
Fψ

′

δp,G ′ d(µG ′) > 0,

so there exists some t ∈ sup(µ|G ′) such that Fψ
′

δp,G ′(t) = 1. Fix t̂ ∈ sup(µ) such
that t̂ |G ′ = t (which exists by, e.g., [Chernikov and Gannon 2022, Proposition 2.8]),
and since µ ∈M(I ) we have t̂ ∈ supp(µ)⊆ I ⊆ S†

x (G,G). Unpacking the notation,
we conclude that ψ(x) ∈ p ∗ t̂ . Since t̂ ∈ I , it also follows that p ∗ t̂ ∈ I . Hence
[ψ(x)] ∩ I ̸= ∅, a contradiction.

Now letting ν ∈M†
x(G,G), we want to show that ν ∗µ∈M(I ). By Lemma 2.25,

we have that ν = limi∈I Av( p̄i ) for some net I , with p̄i = (pi,1, . . . , pi,ni ) ∈ I ni ,
ni ∈ N for each i ∈ I . By left continuity of convolution (Fact 2.29) we have

ν ∗µ= lim
i∈I
(Av( p̄i ) ∗µ)= lim

i∈I

(
1
ni

ni∑
j=1

(δp j ∗µ)

)
.

By the previous paragraph δp ji
∗ µ ∈ M(I ) for each i ∈ I . Then by convexity

of M(I ) (Lemma 2.17), also Av( p̄i ) ∗µ ∈ M(I ) for each i ∈ I . Since M(I ) is
closed (again, Lemma 2.17), ν ∗µ= limi∈I (Av( p̄i ) ∗µ) ∈ M(I ). Therefore M(I )
is a left ideal. □

Remark 6.3. We remark that minimality of the left ideal need not be preserved
in Lemma 6.2. Indeed, let G := (S1, · ,−1 ,C(x, y, z)) be the standard unit circle
group over R, with C the cyclic clockwise ordering, and let TO be the corresponding
theory. If G is a monster model of TO , then the semigroup (Sfs

x (G, S1), ∗) has a
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unique proper (and hence minimal) left ideal I := Sfs
x (G, S1) \ {tp(a/G) : a ∈ S1

}.
Let λ be the Keisler measure corresponding to the normalized Haar measure
on S1. The measure λ is smooth and right-invariant; in particular, G is fsg (see
[Chernikov and Gannon 2022, Example 4.2] and [Simon 2015, Proposition 8.33]).
By Lemma 6.2, M(I ) is a left ideal of (Mfs

x (G,G), ∗). Note that Mfs
x (G, S1) con-

tains a unique minimal left ideal {λ} by Corollary 5.24(2), and {λ}⊊M(I ) since the
latter contains δp for every global type p finitely satisfiable in S1 but not realized in it.

We now recall how the ideal subgroups act on a minimal left ideal. The fol-
lowing is true in any compact left topological semigroup; we include a proof for
completeness in our setting.

Corollary 6.4. Let I be a minimal left ideal in S†
x (G,G) and u an idempotent in I .

Let p be any element in I . Then the map (−∗ p)|u∗I : u ∗ I → u ∗ I is a continuous
bijection. Moreover, (− ∗ p)|u∗I = (− ∗ (u ∗ p))|u∗I .

Proof. We have (u ∗ I )∗ p = u ∗ (I ∗ p)= u ∗ I as I ∗ p = I by Fact 2.34(5) (using
Fact 2.28).

To show surjectivity, fix r ∈ u ∗ I ; as u ∗ p ∈ u ∗ I and u ∗ I is a group with
identity u, there exists some s ∈ u ∗ I such that s ∗ (u ∗ p)= u; then r ∗ s ∈ u ∗ I ,
and (r ∗ s) ∗ p = (r ∗ s ∗ u) ∗ p = r ∗ (s ∗ (u ∗ p))= r ∗ u = r . To show injectivity,
assume r ∗ p = t ∗ p for some r, t ∈ u ∗ I ; as also r ∗ u = r and t ∗ u = t , we have
r ∗ (u ∗ p)= t ∗ (u ∗ p), and therefore, taking inverses in the group u ∗ I , we have
r ∗ (u ∗ p)∗ (u ∗ p)−1

= t ∗ (u ∗ p)∗ (u ∗ p)−1, so r ∗u = t ∗u, so r = t . Finally, the
map is continuous as a restriction of a continuous map −∗ p : S†

x (G,G)→ S†
x (G,G).

The “moreover” part follows directly from associativity. □

6B. Compact ideal subgroups (CIG1). We define CIG1 semigroups and show that
under this assumption, we can describe a minimal left ideal of the semigroup of
measures.

Definition 6.5. We say that the semigroup (S†
x (G,G), ∗) is CIG1 (or “admits com-

pact ideal subgroups”) if there exists some minimal left ideal I and idempotent u ∈ I
such that u ∗ I is a compact group with the induced topology from I . We let hu∗I

denote the normalized Haar measure on u ∗ I , and define the Keisler measure
µu∗I ∈ Mx(G) as follows:

µu∗I (ϕ(x)) := hu∗I ([ϕ(x)] ∩ u ∗ I ).

Remark 6.6. Suppose that (S†
x (G,G), ∗) is CIG1. Then any minimal left ideal

witnesses this property, i.e., for any minimal left ideal J of S†
x (G,G) there exists

an idempotent v ∈ J such that v ∗ J is a compact group with the induced topology.

Proof. Suppose (S†
x (G,G), ∗) is CIG1. Fix a minimal left ideal I and an idempo-

tent u in I such that u ∗ I is a compact group. Let J be any other minimal left ideal.
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By Fact 2.34(6) there exists an idempotent v ∈ J such that u ∗ v = v, v ∗ u = u,
and the map (− ∗ v)|I : I → J is a homeomorphism mapping u ∗ I to v ∗ J . Note
that the restriction to u ∗ I is a group homomorphism (indeed, for p1, p2 ∈ u ∗ I ,
(p1∗v)∗(p2∗v)= p1∗v∗u∗ p2∗v= p1∗u∗ p2∗v= (p1∗ p2)∗v) and hence a con-
tinuous group isomorphism. Since it is also a homeomorphism onto its range v ∗ J ,
as the restriction of a homeomorphism, it follows that v ∗ J is a compact group. □

Lemma 6.7. The semigroup (S†
x (G,G), ∗) is CIG1 if either of the following holds:

(1) For some minimal left ideal I , every p ∈ I is definable.

(2) The ideal group of S†
x (G,G) is finite.

Proof. (1) Fix p ∈ I and let u ∈ I be the unique idempotent such that p ∈ u ∗ I (by
Fact 2.34(4)). Since p is definable, the map (p ∗ −)|I : I → I is continuous (by
Lemma 2.30) and hence also closed. Since I is compact, the image of (p ∗ −)|I is
compact and is equal to u ∗ I . Hence (u ∗ I, ∗) is a compact Hausdorff space, an
abstract group, and both left multiplication and right multiplication are continuous.
By Fact 2.35, (u ∗ I, ∗) is a compact group.

(2) This is obvious. □

Example 6.8. (1) Let G := (Z,+, <), and consider the sets

I +
:= {q ∈ Sinv

x (G,Z) : (a < x) ∈ q for all a ∈ G},

I −
:= {q ∈ Sinv

x (G,Z) : (x < a) ∈ q for all a ∈ G}.

Then I := I +
∪ I − is the unique minimal left ideal of (Sinv

x (G,Z), ∗). Note that
every type in I is definable (over Z). By Lemma 6.7, the semigroup (Sinv

x (G,Z), ∗)

is CIG1. The ideal subgroups are (I −, ∗) and (I +, ∗), both isomorphic to Ẑ as
topological groups.

(2) Consider G := SL2(R) as a definable subgroup in (R, ·,+). If I is a minimal
left ideal of

(
Sfs

x (G,SL2(R)), ∗
)

and u is an idempotent in I , then u ∗ I ∼= Z/2Z by
[Gismatullin et al. 2015, Theorem 3.17], so the semigroup is CIG1. Note that SL2(R)

is not definably amenable [Hrushovski et al. 2008, Remark 5.2; Conversano and
Pillay 2012, Lemma 4.4(1)].

(3) There exist fsg groups that are not CIG1. Consider the circle group from
Remark 6.3. The minimal left ideal of (Sfs(G, S1), ∗) is precisely Sfs(G, S1). As
in (1), this left ideal can be decomposed into two ideal subgroups as follows. Let
st : G → S1 be the standard part map. Consider the sets

I R
:= {q ∈ Sfs

x (G,G) : if b |H q , then C(st(b), b, a) for any a ∈ S1
},

I L
:= {q ∈ Sfs

x (G,G) : if b |H q , then C(a, b, st(b)) for any a ∈ S1
}.

Then both I R and I L are ideal subgroups which are isomorphic (as abstract
groups) to S1, and Sfs

x (G, S1)= I R
⊔ I L . Moreover, I R and I L are dense subsets
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of Sfs
x (G, S1). Note that if I R were compact (with the induced topology), we would

have I R
= Sfs

x (G, S1), a contradiction. The same argument applies to I L . Therefore,(
Sfs

x (G,SL2(R)), ∗
)

is not CIG1.

Lemma 6.9. Assume that (S†
x (G,G), ∗) is CIG1. Let I ⊆ S†

x (G,G) be a minimal
left ideal and u an idempotent in I such that u ∗ I is a compact group. Then for any
p ∈ u ∗ I we have µu∗I ∗ δp = µu∗I and δp ∗µu∗I = µu∗I .

Proof. Fix p ∈ u ∗ I and ϕ(x) ∈ Lx(G). Let G ′
≺ G be a small model containing G

and the parameters of ϕ. Let a |H p|G ′ , and let p−1 be the unique element of the
group u ∗ I such that p ∗ p−1

= u.

Claim 1: (µu∗I ∗ δp)(ϕ(x))= µu∗I (ϕ(x)).

Proof. We have the following computation, using right-invariance of the Haar
measure hu∗I on u ∗ I :

(µu∗I ∗ δp)(ϕ(x))

=

∫
Sy(G ′)

Fϕ
′

µu∗I
d(δp|G ′)= Fϕ

′

µu∗I
(p|G ′)= µu∗I (ϕ(x · a))

= hu∗I
(
[ϕ(x · a)] ∩ u ∗ I

)
= hu∗I

(
{q ∈ u ∗ I : ϕ(x · a) ∈ q}

)
= hu∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ q ∗ p}

)
= hu∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ q} ∗ p−1)

= hu∗I
(
{q ∈ u ∗ I : ϕ(x) ∈ q}

)
= µu∗I (ϕ(x)). □

Claim 2: (δp ∗µu∗I )(ϕ(x))= µu∗I (ϕ(x)).

Proof. Let r : Sy(G) → Sy(G ′) be the restriction map. Let µ̃u∗I be the exten-
sion of µu∗I to a regular Borel probability measure on Sx(G). By construction,
supp(µ̃u∗I )= sup(µu∗I )= u ∗ I and µ̃u∗I |u∗I = hu∗I . Using left-invariance of hu∗I

we have

(δp ∗µu∗I )(ϕ(x))

=

∫
Sy(G ′)

Fϕ
′

δp
d(µu∗I |G ′)=

∫
Sy(G)

(Fϕ
′

δp
◦ r) dµu∗I

= µ̃u∗I
(
{q ∈ Sx(G) : (Fϕ

′

δp
◦ r)(q)= 1}

)
= µ̃u∗I

(
{q ∈ Sx(G) : ϕ(x) ∈ p ∗ q}

)
= µ̃u∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ p ∗ q}

)
= hu∗I

(
p−1

∗ {q ∈ u ∗ I : ϕ(x) ∈ q}
)

= hu∗I
(
{q ∈ u ∗ I : ϕ(x) ∈ q}

)
= µu∗I (ϕ(x)). □

Hence the statement holds. □

Lemma 6.10. Assume that (S†
x (G,G), ∗) is CIG1. Let I ⊆ S†

x (G,G) be a minimal
left ideal and u an idempotent in I such that u ∗ I is a compact group. Then for
any p ∈ I we have µu∗I ∗ δp = µu∗I .
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Proof. For any p ∈ I we have

µu∗I ∗ δp = (µu∗I ∗ δu) ∗ δp = µu∗I ∗ (δu ∗ δp)= µu∗I ∗ δu∗p = µu∗I ,

where the first and the last equalities are by Lemma 6.9, as u, u ∗ p ∈ u ∗ I . □

Theorem 6.11. Assume (S†
x (G,G), ∗) is CIG1. Let I ⊆ S†

x (G,G) be a minimal left
ideal and u an idempotent in I such that u∗ I is a compact group. Then M(I )∗µu∗I

is a minimal left ideal of (M†
x(G,G), ∗), containing an idempotent µu∗I .

Proof. We first argue thatµu∗I is an element of some minimal left ideal of M†
x(G,G).

We know that M(I ) is a closed (by Fact 2.34 and Lemma 2.17) left ideal of
(M†

x(G,G), ∗) (by Lemma 6.2). Hence there exists some L ⊆ M(I ) such that L is
a minimal left ideal of (M†

x(G,G), ∗), and we show that µu∗I ∈ L . Let ν ∈M(I ) be
arbitrary. If p ∈ sup(ν), then p ∈ I . By Lemma 6.10, we then have µu∗I ∗δp =µu∗I

for every p ∈ sup(ν). By Lemma 6.1 this implies µu∗I ∗ ν = µu∗I , and therefore
µu∗I ∗M(I )= {µu∗I }. In particular, µu∗I ∗ L = {µu∗I }, and since L is a left ideal
this implies µu∗I ∈ L (and also that µu∗I is an idempotent).

Then M†
x(G,G) ∗µu∗I = L by Fact 2.34(5). We also have that L ∗µu∗I = L

since µu∗I ∈ L and L is a minimal left-ideal. Thus

L = L ∗µu∗I ⊆ M(I ) ∗µu∗I ⊆ M†
x(G,G) ∗µu∗I = L .

Hence M(I )∗µu∗I = L , so M(I )∗µu∗I is a minimal left ideal of (M†
x(G,G), ∗). □

Corollary 6.12. Suppose that (S†
x (G,G), ∗) is CIG1. Let I be a minimal left ideal

and u an idempotent in I such that u ∗ I is a compact group. Let J be any minimal
left ideal of (M†

x(G,G), ∗). Then J and M(I ) ∗µu∗I are affinely homeomorphic.

Proof. By Fact 2.34(6), Lemma 5.2, and Theorem 6.11. □

6C. Compact ideal subgroups in minimal ideals with Hausdorff quotients (CIG2).
In this section we define CIG2 semigroups and show that under this stronger
assumption, any minimal left ideal of (M†

x(G,G), ∗) is affinely homeomorphic to
the space of regular Borel probability measures over a certain compact Hausdorff
space given by a quotient of a minimal left ideal in (S†

x (G,G), ∗).

Definition 6.13. Let I be a minimal left ideal in (S†
x (G,G), ∗). We define the

quotient space K I := I/ ∼, where p ∼ q if and only if p and q are elements
of the same ideal subgroup of I , i.e., there exists some idempotent u ∈ I such
that p, q ∈ u ∗ I . We endow K I with the induced quotient topology and write
elements of K as [u ∗ I ], where u is an idempotent in I .

The quotient topology on K I is automatically compact, but may not be Hausdorff.
CIG2 stipulates that this quotient is Hausdorff.
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Definition 6.14. We say that the semigroup (S†
x (G,G), ∗) is CIG2 if there exists a

minimal left ideal I such that

(i) for any idempotent u ∈ I , u ∗ I is compact;

(ii) for any p ∈ I and u′
∈ id(I ), the map (p ∗−)|u′∗I is continuous (note that the

range of this map is u ∗ I , where u ∈ id(I ) is such that p ∈ u ∗ I );

(iii) K I is Hausdorff.

We remark that in the above definition, (i) follows from (iii) since each u ∗ I is a
preimage of a point (and hence a closed set) in K I under the quotient map.

Lemma 6.15.2 The semigroup (S†
x (G,G), ∗) is CIG2 if either of the following holds:

(1) The ideal group of (S†
x (G,G), ∗) is finite.

(2) For some minimal ideal I ⊆ S†
x (G,G), every p ∈ I is definable.

Proof. (1) Assume that the ideal group of (S†
x (G,G), ∗) is finite. Then the first two

conditions of CIG2 are clearly satisfied, and we show (iii) from Definition 6.14.
Suppose that I is a minimal left ideal in (S†

x (G,G), ∗), and let u be an idempotent
in I . Let us denote elements of u ∗ I as g. Then u ∗ I acts on I on the right via
p · g := p ∗ g, and the orbit equivalence relation under this group action is the
same as the equivalence relation ∼ in the definition of K I . Indeed, u is the identity
of u ∗ I and p ∗ u = p for all p ∈ I by Fact 2.34(2); if p · g = q and p ∈ u′

∗ I
for some u′

∈ id(I ), then q = p ∗ g ∈ (u′
∗ I ) ∗ g = u′

∗ (I ∗ g) ⊆ u′
∗ I ; and

conversely, if p, q ∈ u′
∗ I , using that u′

∗ I is a group and Fact 2.34(2), we have
p = (q ∗q−1)∗ p = q ∗(q−1

∗ p)= q ∗(u′
∗r)= q ∗(u′

∗u)∗r = (q ∗u′)∗(u ∗r)=
q ∗ (u ∗ r)= q · g for some r ∈ I and g := u ∗ r . This action is continuous by left
continuity of convolution.

So K I = I/(u ∗ I ), and the quotient of any Hausdorff space by a continuous
finite group action remains Hausdorff. Hence K I is Hausdorff.

(2) The conditions (i) and (ii) of CIG2 hold since every type in the minimal left
ideal I is definable, as in the proof of Lemma 6.7(1). Let u ∈ I be an idempotent.
Arguing as in (1) we get K I = I/(u ∗ I ). The right action of the group u ∗ I on I is
continuous on the right, and by the assumption and Lemma 2.30 it is also continuous
on the left and therefore continuous by the Ellis joint continuity theorem (Fact 2.35).
Thus I/(u ∗ I ) is Hausdorff, as the quotient of a Hausdorff space by the continuous
action of a compact group. □

The next fact follows directly from the definitions and Fact 2.35.

Remark 6.16. If (S†
x (G,G), ∗) is CIG2, then it is CIG1. Moreover, if I is a minimal

left ideal of (S†
x (G,G), ∗) witnessing CIG2, then for any idempotent u ∈ I , u ∗ I is

2We thank the referee for pointing out a more general version of Lemma 6.15, as well as
Remark 6.17.
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a compact group with the induced topology. Thus for every idempotent u in I , the
measure µu∗I is well defined.

Remark 6.17. (1) In the proof of Lemma 6.15(2), it suffices to assume that for
some idempotent u ∈ I , u ∗ I is closed and that for all p ∈ I , the map p∗−|u∗I

is continuous.

(2) We also have the following equivalence: CIG2 holds if and only if CIG1 holds,
and the map u′

∗−|u∗I is continuous for some u witnessing CIG1 and every
idempotent u′

∈ I .
Indeed, since u ∗ I is compact, it follows that each u′

∗ I is compact, and
thus closed and u′

∗ −|u∗I is a homeomorphism. Since it is also a group
isomorphism, each u′

∗ I is a compact group. Now, given any p ∈ u′
∗ I , we

have p = u′
∗ p = u′

∗ u ∗ p, so left multiplication by p of elements of u ∗ I is
the composition of left multiplication by u ∗ p ∈ u ∗ I (continuous since u ∗ I is
a topological group) and left multiplication by u′ (continuous by assumption),
and therefore it is continuous and we conclude by (1).

Example 6.18. Both examples (1) and (2) from Example 6.8 are CIG2.

(1) The semigroup (Sinv
x (G,Z), ∗) is CIG2 by Lemma 6.15(2) as all types in I are

definable (note that we have |K I | = 2).

(2) The ideal group of
(
Sfs

x (G,SL2(R)), ∗
)

is finite (∼= Z/2Z), so it is CIG2 by
Lemma 6.15(1).

Lemma 6.19. Assume that (S†
x (G,G), ∗) is CIG2, and let I be a minimal left ideal

witnessing it. Then for any p ∈ I and u ∈ id(I ) we have δp ∗µu∗I =µu′∗I , where u′

is the unique idempotent in I such that p ∈ u′
∗ I .

Proof. Fix u, u′
∈ id(I ). Then the transition map ρu,u′ := (u′

∗−)|u∗I : u∗ I → u′
∗ I

is an isomorphism of topological groups (it is a group isomorphism by Fact 2.34(3)
and continuous by (ii) in CIG2, and ρu′,u ◦ ρu,u′ = idu∗I ). Let 8u,u′ : M(u ∗ I )→

M(u′
∗ I ) be the corresponding pushforward map. Note that8u′,u◦8u,u′ = idM(u∗I ).

Moreover, 8u,u′(hu∗I ) = hu′∗I because 8u,u′(hu∗I ) is a regular Borel probability
measure on u′

∗ I which is right-invariant, and this property characterizes the
normalized Haar measure. By a computation similar to the proof of Claim 2 in
Lemma 6.9, for any ϕ(x) ∈ Lx(G) we have

(δu ∗µu′∗I )(ϕ(x))= hu′∗I
(
{q ∈ u′

∗ I : ϕ(x) ∈ u ∗ q}
)

= (8u,u′(hu∗I ))
(
{q ∈ u′

∗ I : ϕ(x) ∈ u ∗ q}
)

= hu∗I
(
ρ−1

u,u′

(
{q ∈ u′

∗ I : ϕ(x) ∈ u ∗ q}
))

= hu∗I
(
u ∗ {q ∈ u′

∗ I : ϕ(x) ∈ u ∗ q}
)

= hu∗I
(
{q ∈ u ∗ I : ϕ(x) ∈ q}

)
= µu∗I (ϕ(x)),
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and hence δu ∗µu′∗I = µu∗I . Now let p ∈ u′
∗ I . By Lemma 6.9 and the above

computation, using that p = p ∗ u′ by Fact 2.34(2), we have

δp∗µu∗I = δp∗u′ ∗µu∗I = (δp∗δu′)∗µu∗I = δp∗(δu′ ∗µu∗I )= δp∗µu′∗I =µu′∗I . □

Theorem 6.20. Suppose that (S†
x (G,G), ∗) is CIG2. Let I ⊆ S†

x (G,G) be a min-
imal left ideal witnessing CIG2. Then all minimal left ideals of (M†

x(G,G), ∗)
are affinely homeomorphic to M(K I ) (in particular, they are Bauer simplices by
item (2) of Fact 2.41).

Proof. Let u ∈ id(I ). By Remark 6.16 and Corollary 6.12, it suffices to show
that M(I ) ∗µu∗I ∼= M(K I ). For ease of notation, denote the minimal left ideal
M(I ) ∗ µu∗I as L . Let q : I → K I denote the (continuous) quotient map, and
q∗ :M(I )→M(K I ) the corresponding pushforward map. Note that q∗ is affine by
Fact 2.1(iii). By Proposition 2.21, we have an affine homeomorphism γ : M(I )→

M(I ). Let 8 := (q∗ ◦ γ )|L . We claim that 8 is an affine homeomorphism. Note
that 8 is the restriction of the composition of two continuous affine maps, so 8
itself is a continuous affine map. It suffices to show that 8 is a bijection (since it is
automatically a closed map as L is compact and M(K I ) is Hausdorff by Fact 2.1(i)
as K I is compact Hausdorff by CIG2).

Claim 1: 8 is surjective.

Proof. The extreme points of M(K I ) are the Dirac measures concentrating on the
elements of K I (see, e.g., [Simon 2011, Example 8.16]). By the Krein–Milman
theorem, the set{ n∑

i=1

riδ[ui ∗I ] : [ui ∗ I ] ∈ K I , ri ∈ R>0,

n∑
i=1

ri = 1, n ∈ N

}
is dense in M(K I ). Fix some u1, . . . , un ∈ id(I ) and r1, . . . , rn ∈ R>0 such that∑n

i=1 ri = 1. It suffices to find some µ ∈ L such that 8(µ)=
∑n

i=1 riδ[ui ∗I ] (as 8
is a closed map, it will follow that 8(L)= M(K I )).

Let λ :=
∑n

i=1 riδui ∈ M†
x(G,G). Since µu∗I ∈ L (by Theorem 6.11) and L is a

left ideal, also λ ∗µu∗I ∈ L . By Lemmas 5.2 and 6.19, we have

λ ∗µu∗I =

( n∑
i=1

riδui

)
∗µu∗I =

n∑
i=1

ri (δui ∗µu∗I )=

n∑
i=1

riµui ∗I ,

and as γ and q∗ are affine this implies

8(λ ∗µu∗I )=8

( n∑
i=1

riµui ∗I

)
=

n∑
i=1

ri q∗(µ̃ui ∗I )=

n∑
i=1

riδ[ui ∗I ],

where µ̃ui ∗I ∈ M(I ) is the unique regular Borel probability measure extending
µui ∗I , i.e., µ̃ui ∗I (X) = hui ∗I (X ∩ ui ∗ I ) for any Borel X ⊆ I , where hui ∗I is the
Haar measure on ui ∗ I . Hence 8 is surjective. □
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Claim 2: 8 is injective.

Proof. Suppose that λ and ν are in L and λ ̸= ν. It suffices to find a continuous
function f : K I → R such that∫

K I

f d(8(λ)) ̸=

∫
K I

f d(8(ν)).

Since λ ̸=ν, there exists someψ(x)∈Lx(G) such that λ(ψ(x)) ̸=ν(ψ(x)). Consider
the function fψ : I → R defined via fψ(p) := (δp ∗ µu∗I )(ψ(x)). This map is
continuous since the map (− ∗ µu∗I )(ψ(x)) : M†

x(G,G) → R is continuous by
the “moreover” part of Fact 2.29 (and the map p ∈ S†

x (G,G) 7→ δp ∈ M†
x(G,G) is

continuous). Moreover, fψ factors through q. Indeed, assume that q(p1)= q(p2)

for some p1, p2 ∈ I . Then there exists some w ∈ id(I ) such that p1, p2 ∈ w ∗ I .
Then by Lemma 6.19 we have

fψ(p1)= (δp1 ∗µu∗I )(ψ(x))= µw∗I (ψ(x))= (δp2 ∗µu∗I )(ψ(x))= fψ(p2).

By the universal property of quotient maps, there exists a unique continuous func-
tion f : K I → R such that fψ = f ◦ q. Since λ ∈ L ⊆ M(I ) (by the proof of
Theorem 6.11), by Lemma 2.25 there exists a net of measures (Av( p̄ j )) j∈J such that
p̄ j = (p j,1, . . . , p j,n j ) ∈ I n j and lim j∈J Av( p̄ j )= λ for each j ∈ J . Because γ is
an affine homeomorphism, we then have γ (λ)= lim j∈J

(
(1/n j )

∑n j
k=1 δp j,k

)
. Hence

we have the following computation:∫
K I

f d(8(λ))

=

∫
K I

f d
(
q∗(γ (λ))

)
=

∫
I
( f ◦ q) d(γ (λ))=

∫
I

fψ d(γ (λ))

=

∫
Sx (G)

fψ d(γ (λ))=
∫

Sx (G)
fψ d

(
lim
j∈J

(
1
n j

n j∑
k=1

δp j,k

))

= lim
j∈J

∫
Sx (G)

fψ d
(

1
n j

n j∑
k=1

δp j,k

)
= lim

j∈J

(
Av( p̄ j )∗µu∗I (ψ(x))

)
(by Fact 2.1(ii))

=
(
(lim

j∈J
Av( p̄ j ))∗µu∗I

)
(ψ(x))= (λ∗µu∗I )(ψ(x))=λ(ψ(x)),

where the last equality holds by Fact 2.34(2), as µu∗I is an idempotent in L . A
similar computation shows that

∫
K I

f d(8(ν)) = ν(ψ(x)) ̸= λ(ψ(x)), so 8 is
injective. □

Claims 1 and 2 establish the theorem. □

Example 6.21. (1) Let G := (R,+, <). Then the semigroup Sinv
x (G,R) is CIG2.

Indeed, the unique minimal left ideal of Sinv
x (G,R) is I = {p−∞, p+∞}, and both

elements of I are idempotents (see Example 4.5(3)). The ideal subgroups of I
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are {p−∞} and {p+∞}, both of which are obviously compact groups under induced
topology. We have M(I ) = {rδp−∞

+ (1 − r)δp+∞
: r ∈ [0, 1]}, and if u = p±∞

then µu∗I = δp±∞
.

Now we let ν ∈ M(I ), and then ν = rδp−∞
+ sδp+∞

for some r, s ∈ [0, 1] with
r +s = 1. Then ν∗µp±∞∗I = (rδp−∞

+sδp+∞
)∗µp±∞∗I = (rδp−∞

+sδp+∞
)∗δp±∞

=

r(δp−∞
∗δp±∞

)+s(δp+∞
∗δp±∞

)=rδp−∞
+sδp+∞

. Therefore M(I )∗µp±∞∗I =M(I ),
and so M(I ) ∗µp±∞∗I ∼= M({0, 1}) is a minimal ideal of (Minv

x (G,R), ∗).

(2) Let G := (Z,+, <). Then the semigroup Sinv
x (G,Z) is CIG2, the unique minimal

left ideal of Sinv
x (G,Z) is I = I +

⊔ I − and the ideal subgroups of I are I + and I −

(see Examples 6.8 and 6.18). Both ideal subgroups are compact groups under
induced topology, isomorphic to Ẑ as a topological group.

Let u+
∈ I + and u−

∈ I − be the identity group elements in I − and I +, respectively.
Then µu±∗I is the Haar measure on I ± ∼= Ẑ. For every ν ∈ M(I ) we can write
ν = rν−

+ sν+ for the measures ν− and ν+ defined by

ν−(ϕ(x))=
ν(ϕ(x)∧ x < b)

ν(x < b)
, ν+(ϕ(x))=

ν(ϕ(x)∧ x > c)
ν(x > c)

and b < Z< c.

We also have ν ∗µu±∗I = (rν−
+ sν+)∗µu±∗I = r(ν−

∗µu±∗I )+ s(ν+
∗µu±∗I )=

rµu−∗I + sµu+∗I . Therefore M(I ) ∗µu±∞∗I = {rµu−∗I + sµu+∗I : r + s = 1} ∼=

M({0, 1}) is a minimal ideal of (Minv
x (G,R), ∗).

Fact 6.22 [Gismatullin et al. 2015]. Let R ≺ R be a saturated real closed field,
G := SL2(R) and G := SL2(R). Consider the definable subgroups of G given by

T :=

{([
x −y
y x

])
: x2

+ y2
= 1

}
and H :=

{([
b c
0 b−1

])
: b ∈ R>0, c ∈ R

}
.

Let p0 := tp((b, c)/R) such that b > R and c > dcl(R ∪ {b}). We view p0 as a
type in SH(R)3 identifying (b, c) with the matrix

[ b
0

c
b−1

]
. Let q0 := tp((x, y)/R),

where y is positive infinitesimal and x > 0 is the positive square root of 1 − y2.
We view q0 as a type in ST (R) identifying (x, y) with the matrix

[ x
y

−y
x

]
. We let r0

be tp(t ·h/R)∈ SG(R), where h ∈H realizes p0 and t ∈ T realizes the unique coheir
of q0 over R ∪ {h}. Then

(1) Sfs
G (R,R) ∗ r0 is a minimal left ideal of Sfs

G (R,R);

(2) any ideal subgroup of Sfs
G (R,R)∗r0 is isomorphic to Z/2Z; in particular, if we

let r1 be the unique element in Sfs
G (R,R)∗ r0 such that r1 ∗ r1 = r0 and r1 ̸= r0,

then {r0, r1} is an ideal subgroup.

3As usual, we denote by SH(−) the space of types concentrating on the definable set H; all of our
results can be modified in an obvious manner to apply to definable groups in an arbitrary theory, as
opposed to theories expanding a group.
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Example 6.23. Let G = SL2(R) and Sfs
G (R,R) be the collection of global types

concentrated on G which are finitely satisfiable in SL2(R). By Fact 6.22, {r0, r1} is
an ideal subgroup of Sfs

G (R,R) which is trivially a compact group with the induced
topology, and 1

2(δr0 + δr1) is the normalized Haar measure on it. By Theorem 6.11,
M(Sfs

G (R,R)∗r0)∗
1
2(δr0 +δr1) is a minimal left ideal in Mfs

G (R,R). Moreover, this
minimal left ideal is affinely homeomorphic to M(KSfs

G (R,R)∗r0
) by Theorem 6.20

(see the notation there), which is a Bauer simplex with infinitely many extreme
points (by Remark 5.26).

More generally, we have:4

Remark 6.24. If G is NIP, not definably amenable and (S†
x (G,G), ∗) is CIG2,

then the quotient K I is infinite for each minimal ideal I in (S†
x (G,G), ∗), and the

minimal ideals in (M†
x(G,G), ∗) are Bauer simplices, each with infinitely many

extreme points (by Fact 2.41(2), Remark 5.26 and Theorem 6.20).

Remark 6.25. Assume that G is NIP and (Sfs
x (G,G), ∗) is CIG2. Then the following

are equivalent:

(1) G is definably amenable.

(2) |K I | = 1 for each minimal left ideal I in Sfs
x (G,G).

(3) K I is finite for some minimal left ideal I in Sfs
x (G,G).

Proof. (1) ⇒ (2) By definable amenability and Proposition 5.16, |J | = 1 for
every minimal left ideal J in (Mfs

x (G,G), ∗). By Theorem 6.20, J is affinely
homeomorphic to M(K I ) for some minimal left ideal I of (Sfs

x (G,G), ∗) and
therefore |K I | = 1 also. By Fact 2.34(6), we have |K I ′ | = 1 for every minimal left
ideal I ′ of (Sfs

x (G,G), ∗).

(2)⇒ (3) This is trivial.

(3)⇒ (1) This is by Remark 6.24 applied for † = fs. □

Remark 6.26. The implication (1) ⇒ (2) in Remark 6.25 does not hold when
(Sfs

x (G,G), ∗) is replaced by (Sinv
x (G,G), ∗). Indeed, (Z,+, <) is NIP, definably

amenable, CIG2, but |K I | = 2 (see Example 6.18(1)).

Question 6.27. It would be interesting to describe minimal left ideals of the
semigroup (M†

x(G,G), ∗) for some nondefinably amenable groups G where a
description of the minimal left ideals/ideal subgroups of (S†

x (G,G), ∗) is known
(other than SL2(R)), including certain algebraic groups definable in Qp [Penazzi
et al. 2019; Bao and Yao 2022] or in certain dp-minimal fields [Jagiella 2021].

Question 6.28. Is the set of extreme points of a minimal left ideal of (M†
x(G,G), ∗)

always closed, or at least Borel, in a (not necessarily definably amenable) NIP
group G?

4We thank the referee for suggesting the following two remarks.
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Higher amalgamation properties in measured structures

David M. Evans

Using an infinitary version of the hypergraph removal lemma due to Towsner, we
prove a model-theoretic higher amalgamation result. In particular, we obtain an
independent amalgamation property which holds in structures that are measurable
in the sense of Macpherson and Steinhorn, but which is not generally true in
structures that are supersimple of finite SU-rank. We use this to show that some
of Hrushovski’s non-locally-modular, supersimple ω-categorical structures are
not MS-measurable.

1. Introduction

Towsner [2018] gives an infinitary version of the hypergraph removal lemma (quoted
as Theorem 2.3 here), stated as a rather general measure-theoretic result. We use
this to prove a model-theoretic higher amalgamation result (Theorem 2.4), again
in the presence of a definable measure. In particular, we obtain an independent
amalgamation property (Corollary 3.2; quoted below as Corollary 1.1) which holds
in structures that are measurable in the sense of Macpherson and Steinhorn.

The statement of this independent amalgamation property makes no mention of
measure and it makes sense in any supersimple structure of finite SU-rank. However,
it is not generally true in structures which are supersimple of finite SU-rank. In
Theorem 4.7, we use a Hrushovski construction to produce a structure which is
ω-categorical, supersimple of SU-rank 1 and which does not satisfy the conclusion
of Corollary 3.2. It follows that this structure is not MS-measurable.

The question of whether any (nontrivial) ω-categorical Hrushovski construction
can be MS-measurable is open, and this is an important special case of the more
general question of whether ω-categorical MS-measurable structures are necessarily
one-based. Paolo Marimon [2022a; 2022b] has used a different and more generally
applicable approach to show that a much wider class of ω-categorical, supersimple
Hrushovski constructions are not MS-measurable. It is also unknown whether any
of the ω-categorical Hrushovski constructions can be pseudofinite. In Remarks 4.6
we note that, as a by-product of our approach to non-MS-measurability, we obtain
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information about what coarse pseudofinite dimension would have to be in such a
structure, if it were pseudofinite.

We begin with a rough outline of what we mean by a “higher amalgamation
property”. This is adapted to the form of the Towsner’s paper, so is slightly different
from other presentations (for example in [Hrushovski 2012]).

Suppose L is a first-order language and M is an L-structure with domain M
and C ⊆ M . Let T denote the theory of M. We will assume that M is “large” (for
example ℵ1-saturated, if L is countable) and C has smaller cardinality than that
of M . Suppose n ≥ 2 is a natural number. In an n-amalgamation problem over C
we are looking for an n-tuple b̄ = (b1, . . . , bn) which satisfies certain constraints on
subtuples b̄I = (bi : i ∈ I ) with I ⊆ [n] = {1, . . . , n} of size n − 1. The constraints
should be in terms of the parameters C , say in the form of satisfying a type, or
partial type, 8I (x̄ I ), over C . Here, x̄ = (x1, . . . , xn) is an n-tuple of variables
and x I = (xi : i ∈ I ). So, subject to reasonable compatibility requirements, such
as 8I (x̄ I ) and 8J (x̄ J ) having the same restriction to x̄ I∩J , we are looking for a
solution b̄ |H

∧
I 8I (x̄ I ), or, in terms of the sets AI = {ā ∈ Mn

: M |H8I (ā)}, an
element of

⋂
I AI . If the 8I are complete types over C , we might refer to this as a

type-amalgamation problem.
There are well-known variations on this. If M carries a notion of independence

(or dimension on definable sets) then in an independent n-amalgamation problem
over C , we are also looking for the bi to be independent over C . Of course,
in this case, the individual constraints 8I (x̄ I ) should have solutions which are
independent over C . For example, if T is stable, then for all n, any independent
type-amalgamation problem over a model (with n complete types over the model)
has a solution. If T is simple, then this is true for n = 2, 3 (the case n = 3
is of course the independence theorem of Kim and Pillay). However, there are
examples of supersimple theories of finite SU-rank which do not have independent
4-amalgamation over a model.

Our main result, Theorem 2.4, is an n-amalgamation property which holds in a
general context where the set of n-tuples from which we are looking for a solution
carries a well-behaved probability measure (see Section 2A for a precise statement).
The general form of the statement is that we assume there our n-amalgamation
problem has “degenerate” solutions b̄ = (b1, . . . , bn), where the bi are interalgebraic
over C . The conclusion is that the set of all solutions is of positive measure (and in
particular, there are solutions where the bi are not interalgebraic). Of course, for
this to work, we need to ensure that there are enough solutions to the 8I : in the
above notation, we require that the measure of AI is positive, for each (n−1)-set I .

If M is an MS-measurable structure (see Section 3B for definitions and back-
ground) there is a strong interaction between dimension and measure. The struc-
ture M is supersimple of finite SU-rank and each definable subset has an associated
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dimension (which can be taken as SU-rank for the purposes of this introduction).
Each definable set also carries a (definable) probability measure on its definable
subsets with the property that a subset has positive measure if and only if it has the
same dimension as the ambient definable set.

From Theorem 2.4 we obtain the following independent amalgamation result
(Corollary 3.2), which holds in any MS-measurable M .

Corollary 1.1. Suppose M is an MS-measurable structure and S1, . . . , Sn are
infinite C-definable sets, for some finite C ⊂ M. Let S = S1 × · · · × Sn and for
I ⊂ [n] = {1, . . . , n}, let πI : S →

∏
i∈I Si be the projection map. Suppose E ⊆ S

is a C-definable subset such that

(a) if I ⊂ [n] and |I | = n − 1, then dim(πI (E))=
∑

i∈I dim(Si ), and

(b) if (b1, . . . , bn) ∈ E , then bi ∈ acl(C ∪ {b j : j ̸= i}).

Then

dim
{
b̄ ∈ S : πI (b̄) ∈ πI (E) for all I with |I | = n − 1

}
= dim(S).

Note that this does not tell us anything if M has trivial algebraic closure. Note
also that it does not refer to the measure, so it makes sense in any supersimple theory
(more properly, any S1-theory) of finite SU-rank. In Section 4 we give an example
of a supersimple structure of SU-rank 1 which does not satisfy the above result:
so we have an independent amalgamation result which holds in MS-measurable
structures, but which is not generally true in finite rank supersimple structures.

This paper is a revised version of some unpublished notes written in 2011–2012.
The original version made use of Towsner’s unpublished article [2010] and proved
Theorem 2.4 under stronger assumptions on the definability of the measure and the
behaviour of the measure under projection maps with finite fibres. In 2019, I sent a
copy of the notes to Ehud Hrushovski, who observed that these assumptions could
be weakened. He also gave examples of additional contexts in which the weaker
assumptions would hold: see Section 3C here.

Towsner’s published paper [2018] contains a reworking of [Towsner 2010] which
involves a weaker assumption on the definability of the measure. In revising the
original notes, I have therefore rewritten the proof of Theorem 2.4 to follow the
approach and notation of [Towsner 2018].

The structure of the paper is as follows. In Section 2A we give the necessary
notation and background to state Towsner’s version of the hypergraph removal
lemma from [Towsner 2018]. In Section 2B we deduce the main result, Theorem 2.4,
from this. Our result is related to a standard deduction of Szemerédi’s theorem from
the hypergraph removal lemma: we make this explicit in Section 3A. In Section 3B,
we discuss MS-measurability and prove Corollary 3.2, stated above. Additional
examples in NIP theories are mentioned briefly in Section 3C. In Section 4, we
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discuss the ω-categorical Hrushovski constructions and their relationship to various
open questions around MS-measurable ω-categorical structures. The main result of
the section is Theorem 4.7, where we construct an ω-categorical structure which is
of SU-rank 1 and which does not satisfy the amalgamation property in Corollary 3.2.

2. An amalgamation theorem for measured structures

2A. Measured structures. The following setup is taken from Towsner’s paper
[2018]. Chapter 1 of [Kallenberg 1997] is a convenient reference for the basic
measure theory we need.

We work with a structure M with domain M . The following notation is introduced
in [Towsner 2018, Section 2]. If V is a finite set of indices, then a V -tuple from M
is a function āV : V → M and we denote the set of these by MV . A V -tuple of
variables will generally be denoted by x̄V . If I ⊆ V then āI ∈ M I is the restriction
of this to I . If U and W are disjoint sets, we write āU ∪ āW for the (U∪W )-tuple
extending āU and āW . If B ⊆ MU∪W and āW ∈ MW , then B(āW ) denotes the fibre
(or “slice”) {āU ∈ MU

: āU ∪ āW ∈ B}.
In what follows, V is a fixed finite set of indices V = {1, . . . , n} = [n] for

some n ∈N. We often denote āV or x̄V simply by ā or x̄ , dropping the reference to V .

Definition 2.1 [Towsner 2018, Definition 4.1]. Suppose that for each U ⊆ V we
have a Boolean algebra B0

U of subsets of MU such that

• ∅ ∈ B0
U ;

• B0
U ×B0

W ⊆ B0
U∪W for disjoint U,W ⊆ V ;

• if U,W ⊆ V are disjoint, āW ∈ MW and B ∈ B0
U∪W , then B(āW ) ∈ B0

U .

For I ⊆ V we define B0
V,I to be the Boolean algebra generated by subsets

{āV ∈ MV
: āI ∈ B},

where B ∈ B0
I .

In all cases we will drop the superscript 0 to indicate the σ -algebra generated by
the Boolean algebra.

The main result we need from [Towsner 2018] is Theorem 2.3 below. When we
use this, B0

V will consist of the parameter-definable subsets of MV , so the reader
may assume this from now on. We then refer to the elements of BV as Borel sets.
If X ⊆ M , then B0

V (X) will denote the X -definable subsets of MV , and we use a
corresponding variation in the notation for the algebras introduced above. We will
assume sufficient saturation, so that it makes sense to identify a formula defining
a Borel set with its solution set in M . In particular, if the language is countable,
we assume that M is ℵ1-saturated. If the model is multisorted, then we can restrict
each variable to having values in a particular sort.
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Suppose, with the above notation, that ν = νV is a probability measure on
(MV

;BV ). If I ⊆ V , let ν I denote the pushforward measure on (M I
;BI ). So for

A ∈BI , we have ν I (A)= ν(π−1
I (A)), where πI : MV

→ M I is the projection map.
Recall that if ν is a probability measure on a σ -algebra B of subsets of a set N ,

then L∞(B) denotes the space of B-measurable functions N → R which are
essentially bounded, that is, are bounded outside a set of measure 0.

Henceforth, we shall assume that the following conditions on ν hold.
• Definability: For all J ⊆ V and B ∈ BV , the function x J 7→ νV \J (B(x J )) is
BJ -measurable.

• Fubini: Suppose J ⊆ V and f ∈ L∞(νV ). Then
∫

f dνV
=

∫∫
f dν J dνV \J .

Remarks 2.2. (1) It would be more correct to refer to the definability condition as
“Borel definability”, but we will not do this.

(2) It suffices to check that the definability property holds for all B ∈ B0
V , as the

set of elements of BV for which it holds is a σ -subalgebra.

(3) The definability property is a weaker requirement than asking that ν be invariant
(over the empty set, or a small submodel).

(4) The definability property implies that, in the statement of the Fubini condition,
the map

x̄V \J 7→

∫
f (x̄ J x̄V \J ) dν J (x̄ J )

is BV \J -measurable for almost all x̄V \J ∈ MV \J . This is a standard argument using
approximation by indicator functions of sets in BV . The same sort of argument
shows that it suffices to check the Fubini condition in the case where f is the
indicator function 1B of a set B ∈ B0

V .

The following is Towsner’s infinitary analogue of the hypergraph removal lemma.
We refer to Towsner [2010; 2018] for a discussion of the origins of the proof and
the finitary versions of this. The statement follows by combining Theorem 5.3 and
Lemma 5.4 of [Towsner 2018]. Theorem 5.3 of [Towsner 2018] holds under weaker
conditions than the Fubini property (involving the notion of J -regularity of νV ),
but we will not make use of this. Lemma 5.4 of [Towsner 2018] states that the
definability and Fubini conditions imply J -regularity of νV for all J ⊆ V .

Theorem 2.3 [Towsner 2018, Theorem 5.3]. Suppose M is sufficiently saturated and
B0

V consists of the definable subsets of MV . Suppose νV is a probability measure
on BV which satisfies the definability and Fubini conditions. Let k < n = |V | and
J = [V ]

k , the set of k-subsets from V .
Let AI ∈ BV,I for I ∈ J. Suppose there is δ > 0 such that whenever BI ∈ B0

V,I
are such that νV(AI \ BI ) < δ, then

⋂
I∈J BI ̸= ∅.

Then νV
(⋂

I∈J AI
)
> 0. □
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2B. A model-theoretic corollary. In the following, we give model-theoretic condi-
tions which allows us to verify the hypotheses in Theorem 2.3. The setup is:

• M is an ℵ1-saturated structure in a countable language L .

• V = {1, . . . , n} is a set of indices (each associated to a particular sort); we let
J = {1, . . . , n − 1} ⊆ V , and J is the set of (n−1)-subsets of V .

• For each I ⊆ V , B0
I is the Boolean algebra of M-definable subsets of M I .

• ν = νV is a probability measure on BV which satisfies the definability and
Fubini conditions.

For I ⊆ V let πI denote the projection map MV
→ M I and denote by ν I the

pushforward measure induced on BI by ν. Each ν I also satisfies the corresponding
definability and Fubini properties.

Theorem 2.4. With the above notation and assumptions, suppose E ∈ BV is such
that

(a) ν J (πJ (E)) > 0;

(b) there is l ∈ N such that for all I ∈ J and ā ∈ M I , we have that π−1
I (ā)∩ E has

at most l elements;

(c) there is k > 0 such that if F ∈B0
V , then ν J (πJ (F ∩ E))≤ kν I (πI (F ∩ E)) for

all I ∈ J.

Then νV({b̄ ∈ MV
: πI (b̄) ∈ πI (E) for all I ∈ J}) > 0.

Remarks 2.5. We make some comments about the conditions on E . By the second
condition, we should not expect that ν(E) > 0. However, suppose that we also have
a measure λ on the definable subsets of E with λ(E) > 0 and r, s > 0 such that for
all F ∈ BV

0 and I ̸= J we have

rν J (πJ (F ∩ E))≤ λ(F ∩ E)≤ sν I (πI (F ∩ E)).

Then ν J (π(F ∩ E))≤ (s/r)ν I (πI (F ∩ E)), so the third condition holds.
In general, without assuming the existence of such a λ, we can define a measure ν J

I
on πJ (E) by setting ν J

I (X)= ν I
(
πI (π

−1
J (X)∩ E)

)
. Condition (c) implies that ν J

is absolutely continuous with respect to ν J
I and k is a bound on the Radon–Nikodým

derivative.

Before proving Theorem 2.4 we note the following lemmas.

Lemma 2.6. With the notation as in Theorem 2.4, suppose F ⊆ E is a countable
intersection of sets in B0

V with E. Then:

(1) ν J (πJ (F))≤ kν I (πI (F)).

(2) If J ̸= I ∈ J and C ∈ B0
I then

ν J (πJ (F \π−1
I (C))

)
≥ ν J (πJ (F))− kν I (C ∩πI (F)).
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(3) If J ̸= I ∈ J and B ∈ B0
I , then

ν J (πJ (F ∩π−1
I (B))

)
≥ ν J (πJ (F))− kν I (πI (F) \ B).

Proof. (1) Write F = E ∩
⋂

i<ω Fi , where each Fi is in B0
V . We can assume that

Fi ⊇ Fi+1. Then ℵ1-saturation implies πJ (F)=
⋂

i<ω πJ (E∩Fi ) and ν J (πJ (F))=
inf{ν J (πJ (E ∩ Fi )) : i < ω}. By assumption on E , we have ν J (πJ (E ∩ Fi )) ≤

kν I (πI (E ∩ Fi )) for each i ; taking the limit gives what we require.

(2) By (1) we have

ν J (πJ (π
−1
I (C)∩ F)

)
≤ kν I (πI (F)∩ C).

Of course, πJ (F)= πJ (π
−1
I (C)∩ F)∪πJ (F \π−1

I (C)), so

ν J (πJ (F))≤ ν J (πJ (π
−1
I (C)∩ F)

)
+ ν J (πJ (F \π−1

I (C))
)
.

Putting these together gives the required result.

(3) Apply (2), taking C to be the complement of B. □

Lemma 2.7. Suppose E ∈ BV with ν J (πJ (E)) > 0 and, for all ā ∈ E , we have
that π−1

J (πJ (ā))∩ E has at most l elements. Let X ⊆ M be a countable set over
which E is definable.

(1) There is some F ∈ BV (X) with F ⊆ E , a natural number r and an L(X)-
formula ψ(x̄) such that ν J (πJ (F)) > 0, and if ā ∈ F , then ψ(āJ , xn) isolates
tpM(an/āJ X), and this type has precisely r solutions in M. The set F can be
taken to be a countable intersection of sets in B0

V (X) with E.

(2) If X is chosen so that r in (1) is minimal, then for countable Y ⊇ X and for
almost all āJ ∈ πJ (F), if (āJ , an) ∈ F , then ψ(āJ , xn) isolates tpM(an/āJ Y )
(and therefore this type has the same solutions as tpM(an/āJ X)).

Proof. (1) For each V -variable formulaψ(x̄)∈ L(X) and r ≤ l, consider the set Eψ,r
consisting of those (a1, . . . , an) ∈ E such that the formula ψ(a1, . . . , an−1, xn)

isolates tp(an/a1, . . . , an−1, X) and this type has r solutions in M. As E is defined
over X , all of these solutions lie in E . Note that Eψ,r is defined by the conjunction
of E , and∧
χ∈L(X)

(
ψ(x1, . . . , xn)∧ (∃

=r xn)ψ(x1, . . . , xn)

∧ (∀y)
(
ψ(x1, . . . , xn−1, y)→

(
χ(x1, . . . , xn)↔χ(x1, . . . , xn−1, y)

)))
,

so is in BV (X). Moreover,
⋃
ψ; r≤l Eψ,r = E (by the algebraicity). So as this is a

countable union, there are ψ and r ≤ l with ν J (πJ (Eψ,r )) > 0. Then F = Eψ,r has
the required properties.
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(2) Let Y ⊇ X be a countable subset of M and consider

E ′
= {ā ∈ F : ψ(āJ , xn) does not isolate tp(an/āJ Y )}.

As in (1), we have E ′
∈ BV (Y ). Suppose for a contradiction that ν J (πJ (E ′)) > 0.

Applying (1) we obtain F ′
∈BV (Y ) with F ′

⊆ E ′ and ν J (πJ (F ′))> 0, some r ′
∈ N

and an L(Y )-formula ψ ′ such that for all ā ∈ F ′, ψ ′(āJ , xn) isolates tp(an/āJ Y )
and the latter has r ′ solutions. By definition of E ′ we have r ′< r and this contradicts
the choice of r . Thus ν J (πJ (E ′))= 0 and the result follows. □

We now prove Theorem 2.4.

Proof of Theorem 2.4. From Lemma 2.7(2), there is a countable subset X of M
containing the parameters for E and a countable intersection F of X -definable sets
with E such that

• ν J (πJ (F)) > 0;

• if (a1, . . . , an−1, an), (a1, . . . , an−1, a′
n)∈ F , then tpM(an/a1, . . . , an−1, X)=

tpM(a′
n/a1, . . . , an−1, X);

• if Y ⊇ X is countable, then for almost all ā ∈ F , the types tpM(an/āJ X) and
tpM(an/āJ Y ) have the same solutions.

To see the second point here, note that the two types are isolated by the same
formula, so must be equal. The other points are directly from Lemma 2.7.

For I ∈ J, let AI = π−1
I (πI (F)). So of course, AI ∈ BV,I and F ⊆

⋂
I∈J AI .

We verify that the hypotheses of Theorem 2.3 hold.
Let δ > 0 (to be fixed later) and BI ∈ B0

V,I with νV (AI \ BI ) < δ. Note that
νV(AI )= ν I (πI (F)) and similarly ν I (πI (F) \πI (BI ))= νV(AI \ BI ). Therefore,
with k as in condition (c) of Theorem 2.4 and I ̸= J , Lemma 2.6(3) gives

ν J (πJ (F ∩ BI ))≥ ν J (πJ (F))− kν I (πI (F) \πI (BI )) > ν
J (πJ (F))− kδ.

This also holds with I = J , as k ≥ 1.
Now let η = ν J (πJ (F)) (so η > 0, by choice of F) and δ =

1
2ηkn. We obtain,

for all I ∈ J,
ν J (πJ (F ∩ BI ))≥

(
1 −

1
2 n

)
η.

The measure of the union of the complements of the sets πJ (F ∩ BI ) in πJ (F)
is therefore at most 1

2η, and so

ν J
( ⋂

I∈J

πJ (F ∩ BI )

)
≥

1
2η.

Let Y be the union of X and the parameter sets of the BI . Then we can find
b̄J = (b1, . . . , bn−1) ∈

⋂
I πJ (F ∩ BI ) such that if (b̄J , bn) ∈ F and (b̄J , b′

n) ∈ F ,
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then they have the same type over Y . Indeed, almost all b̄J ∈ πJ (F) have this
property, by our conditions on F .

Take bn ∈ M with b̄ = (b1, . . . , bn−1, bn) ∈ F . We show that (b1, . . . , bn) ∈⋂
I BI , and thus the hypotheses of Theorem 2.3 hold.
Clearly b̄ ∈ BJ . Take I ̸= J . Because (b1, . . . , bn−1) ∈ πJ (F ∩ BI ), there is

(b′

1, b′

2, . . . , b′
n) ∈ F ∩ BI such that (b′

1, . . . , b′

n−1) = (b1, . . . , bn−1). Therefore
(b1, . . . , bn−1, bn), (b1, . . . , bn−1, b′

n) ∈ F , and thus bn and b′
n have the same type

over Y ∪ {b1, . . . , bn−1}. As BI is defined over Y and (b1, . . . , bn−1, b′
n) ∈ BI , it

follows that (b1, . . . , bn−1, bn) ∈ BI , as required.
We have shown

⋂
I BI ̸= ∅, so Theorem 2.3 applies to give that ν

(⋂
I AI

)
> 0.

As
⋂

I AI ⊆ {b̄ ∈ MV
: πI (b̄) ∈ πI (E) for all I ∈ J}, we have the result. □

3. Examples and applications

3A. Pseudofinite structures and Szemerédi’s theorem. In [Towsner 2010] (and
[Towsner 2018, Section 5]), the structure M is an ultraproduct of finite structures
(Fi : i < ω) and the measures arise by taking the standard part of ultraproducts
of normalised counting measures on the Fi . The original language is enriched to
ensure definability of the measure. The Fubini property then follows, as we are
dealing with counting measures.

In [Towsner 2010, Section 2], Szemerédi’s theorem is deduced from Theorem 2.3
in the following way (we do not give the details: the point is to explain where the
statement of Theorem 2.4 comes from). The original language is that of abelian
groups (written additively) and there is a predicate A( · ) for a subset of the group.
Each Fi is cyclic of prime order (increasing with i) and A[Fi ] is some subset of Fi .
Denoting the ultraproduct (in the enriched language) by G, the main assumption is
that the measure of A[G] is strictly positive.

So (G,+) is a torsion-free, divisible abelian group, and if n ∈ N and n ≥ 3,
we have a definable measure νn on the definable subsets of Gn which satisfies the
hypotheses of Theorem 2.4. The measure is invariant under definable bijections (in
particular, under translations and taking i-th roots). Let

E =

{(
x1, . . . , xn−1,

∑
i<n

xi

)
:

∑
i<n

i xi ∈ A
}
.

This is definable, and in the notation of Theorem 2.4, πJ (E)= ν1(A) > 0 (using
the divisibility of G and invariance of the measure under definable bijections). The
projection maps πI (with |I | = n − 1) are injective on E and thus the remaining
two conditions in Theorem 2.4 hold (with k = l = 1).

So, by Theorem 2.4, there is some b̄ = (b1, . . . , bn)∈ Gn such that πI (b̄)∈πI (E)
for all I of size n−1, and by positivity of the measure, we can take d =bn−

∑
i<n b j
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to be nonzero. The definition of E means that if we set a =
∑

i<n ibi , then
a, a + d, . . . , a + (n − 1)d ∈ A. Therefore, as d ̸= 0, we have an n-term arithmetic
progression in A.

3B. An amalgamation result in MS-measurable structures. The notion of a mea-
surable structure was introduced by Macpherson and Steinhorn [2008], following on
from observations of Chatzidakis, van den Dries and Macintyre in [Chatzidakis et al.
1992]. Elwes and Macpherson [2008] give a survey of results and open questions.
Following [Kestner and Pillay 2011], we refer to this notion as MS-measurability.

We recall the definition of MS-measurability [Macpherson and Steinhorn 2008,
Definition 5.1]. For a (first-order) L-structure M we denote by Def(M) the collec-
tion of all nonempty parameter definable subsets of Mn (for all n ≥ 1).

Definition 3.1. A structure M is MS-measurable if there is a dimension–measure
function h : Def(M)→ N × R>0 satisfying the following, where we write h(X)=

(dim(X), µ(X)):

(i) If X is finite (and nonempty) then h(X)= (0, |X |).

(ii) For every formula φ(x̄, ȳ) there is a finite set Dφ ⊆ N×R>0 of possible values
for h(φ(x̄, ā)) (with ā ∈ Mn), and for each such value, the set of ā giving this
value is 0-definable.

(iii) Fubini property: Suppose X, Y ∈ Def(M) and f : X → Y is a definable surjec-
tion. By (ii), Y can be partitioned into disjoint definable sets Y1, . . . , Yr such
that h( f −1(y)) is constant, equal to (di ,mi ), for y ∈ Yi . Let h(Yi )= (ei , ni ).
Let c be the maximum of di + ei and suppose this is attained for i = 1, . . . , s.
Then h(X)= (c,m1n1 + · · · + msns).

In the above, dim(X) is the dimension and µ(X) the measure of X . Clearly
we can normalise and assume that µ(M) = 1. We also extend the definition so
that µ(∅) = 0. Note that MS-measurability is a property of the theory of M ,
so any elementary extension or submodel of M is MS-measurable if M is. As
observed in [Macpherson and Steinhorn 2008, Remark 5.2], measurability implies
supersimplicity and dimension dominates D-rank, but is not necessarily equal to it.
By [Macpherson and Steinhorn 2008, Proposition 5.10], the dimension–measure
function extends to definable subsets of Meq.

We suppose (for convenience) that L is countable and suppose that M is an ℵ1-
saturated MS-measurable structure with dimension–measure function h = (dim, µ).
Let S ∈ Def(M) be infinite and let B0

S denote the set of definable subsets of S.
For D ∈ B0

S we define

νS(D)=

{
µ(D)/µ(S) if dim(D)= dim(S),

0 otherwise.
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If X1, X2 ∈ B0
S are disjoint, then (iii) of Definition 3.1 (with Y a two-point set)

shows that νS(X1 ∪ X2)= νS(X1)+ν
S(X2). So νS is a finitely additive probability

measure on B0
S and it therefore extends uniquely to a probability measure on BS ,

which we will also denote by νS .
Now suppose that S1, . . . , Sn ∈ Def(M) are infinite and S = S1 × · · · × Sn . If

I ⊆ V = {1, . . . , n}, let SI be the product of the Si for i ∈ I . As previously,
πI : S → SI is the projection map. By considering this, (iii) in Definition 3.1 gives
that dim(S)= dim(SI )+ dim(SV \I ) and µ(S)= µ(SI )µ(SV \I ).

Let ν = νV
= νS . If I ⊆ V , then the pushforward measure ν I on BSI obtained

from ν and πI is equal to νSI , as defined above. Indeed, it suffices to check this
for D ∈ B0

SI
. If dim(D)= dim(SI ), then

ν I (D)= νV(D × SV \I )

= µ(D × SV \I )/µ(S)= µ(D)µ(SV \I )/µ(S)= µ(D)/µ(SI ),

and this is equal to νSI (D). If dim(D) < dim(SI ), then dim(D × SV \I ) < dim(S),
so both ν I (D) and νSI (D) are zero.

The definability and Fubini properties given in Section 2A hold for the ν I , using
(ii) and (iii) of Definition 3.1 (see Remarks 2.2).

From Theorem 2.4 we obtain the following, which can be seen as a weak form
of independent n-amalgamation:

Corollary 3.2. Suppose M is an MS-measurable structure and S1, . . . , Sn ∈Def(M)
are infinite and defined over a finite set C ⊂ M. Let S = S1 × · · · × Sn and suppose
E ⊆ S is a C-definable subset such that

(a) dim(πI (E))=
∑

i∈I dim(Si ) for all I ∈ [n]
n−1, and

(b) if (b1, . . . , bn) ∈ E , then bi ∈ acl(C ∪ {b j : j ̸= i}).

Then
dim

{
b̄ ∈ S : πI (b̄) ∈ πI (E) for all I ∈ [n]

n−1}
= dim(S).

Remarks 3.3. Assumptions (a) and (b) in Corollary 3.2 imply that the Si have the
same dimension. Indeed,

∑
j<n dim(S j )=dim(πJ (E))=dim(E)=dim(πI (E))=∑

i∈I dim(Si ) for all I ∈ [n]
n−1. So dim(S j )= dim(Sn) for all j < n.

We now prove Corollary 3.2.

Proof. We may assume that M is ℵ1-saturated. We check that the three conditions
of Theorem 2.4 hold.

By (a), dim(πJ (E))= dim(SJ ), so ν J (πJ (E))= µ(πJ (E))/µ(SJ ) > 0.
As E is definable, by compactness we have a uniform bound l on the algebraicity

in assumption (b). This gives the second condition required by Theorem 2.4.
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Suppose I ∈ [n]
n−1. The restriction of the projection map E → πI (E) has finite

fibres, of size at most l. Suppose X ⊆ E is definable. If we decompose πI (X)
according to the size of the fibres X →πI (X) and apply (i) and (iii) of Definition 3.1,
we obtain

µ(πI (X))≤ µ(X)≤ lµ(πI (X)).

Thus
µ(πJ (X))≤ µ(X)≤ lµ(πI (X)).

If dim(X)= dim(E), then dim(πI (X))= dim(πI (E))= dim(SI ) (by (a)) and we
obtain

ν J (πJ (X))≤ l
µ(SI )

µ(SJ )
ν I (πI (X)).

If dim(X) < dim(E) then the inequality is also true, as both sides are zero. So we
have the third condition required by Theorem 2.4.

So, by Theorem 2.4,

νV({b̄ ∈ S : πI (b̄) ∈ πI (E) for all I ∈ [n]
n−1

}) > 0,

and the conclusion follows. □

3C. Further examples. If Th(M) is NIP, then generically stable measures (see
[Hrushovski and Pillay 2011] or [Simon 2015]) provide examples of measures sat-
isfying the definability and Fubini conditions. More precisely, suppose νx1, . . . , νxn

are generically stable measures for M (in the indicated variables) and let νV
=

νx1 ⊗ · · · ⊗ νxn . Then νV has the definability and Fubini properties, and therefore
Theorems 2.3 and 2.4 hold. It would be interesting to know whether either of these
results is saying something new, or at least nontrivial, in this context.

4. MS-measurability and the Hrushovski construction

In [Elwes and Macpherson 2008, Definition 3.13], a complete theory is defined
to be unimodular if in any model M, whenever fi : X → Y are definable ki -to-1
surjections in Meq (for i = 1, 2), then k1 = k2. (See [Kestner and Pillay 2011] for
comments on this and, in particular, on why it should more properly be termed
weak unimodularlity.) An MS-measurable structure is necessarily superstable of
finite SU-rank and unimodular, and Question 7 of [Elwes and Macpherson 2008]
asks whether the converse holds. Unimodularity is implied by ω-categoricity
[Elwes and Macpherson 2008, Proposition 3.16], and in a similar vein, Question 2
of [Elwes and Macpherson 2008] asks whether a MS-measurable ω-categorical
structure is necessarily one-based. For both of these questions the key examples
to be considered are Hrushovski’s non-locally-modular supersimple ω-categorical
structures [1997; 1988]. In this section we apply Corollary 3.2 to show that some
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of Hrushovski’s examples are not MS-measurable. In particular, this answers
Question 7 of [Elwes and Macpherson 2008]: there is a supersimple, finite rank
unimodular theory (even, ω-categorical, SU-rank 1) which is not MS-measurable.

4A. The Hrushovski construction for ω-categorical structures. We recall briefly
some details of the construction method. The original version is in [Hrushovski
1988], where it is used to provide a counterexample to Lachlan’s conjecture, and
in [Hrushovski 1997], where it is used to construct a nonmodular, supersimple
ℵ0-categorical structure. The book [Wagner 2000] is a very convenient reference for
this (see Section 6.2.1). Generalisations and reworkings of the method (particularly
relating to simple theories) are also to be found in [Evans 2002]. We will restrict
to the simplest form of the construction appropriate for producing ω-categorical
structures of SU-rank 1.

We work with a finite relational language L = {Ri : i ≤ m}. For later use, it will
be convenient to assume that this contains some 3-ary relation R. Recall that if
B and C are L-structures with a common substructure A then the free amalgam
B ⨿A C of B and C over A is the L-structure whose domain is the disjoint union
of B and C over A and whose atomic relations are precisely those of B together
with those of C . Let K be the class of L-structures and denote by K the finite
structures in K.

For A ∈ K define the predimension δ(A) to be equal to |A| −
∑

i |Ri [A]|. If
A ⊆ B ∈K write A ≤ B to mean δ(A) < δ(B ′) for all A ⊂ B ′

⊆ B. (We sometimes
say that A is self-sufficient in B.) For structures in K, one has

• if X ⊆ B and A ≤ B, then X ∩ A ≤ X ;

• if A ≤ B ≤ C , then A ≤ C .

Consequently (see [Wagner 2000, Corollary 6.2.8]), for each B ∈ K there is a
closure operation given by clB(X)=

⋂
{A : X ⊆ A ≤ B} ≤ B for X ⊆ B. Of course,

if B ≤ C ∈ K and X ⊆ B, then clB(X)= clC(X).
The relation ≤ can be extended to infinite structures so that the above properties

still hold: if M ∈K and A ⊆ M , write A ≤ M to mean that A ∩ X ≤ X for all finite
X ⊆ M .

If A, B ∈ K, an embedding α : A → B with α(A)≤ B is called a ≤-embedding.
Now consider K0, the class of B ∈K with ∅≤ B. Equivalently, if A ⊆ B is finite

and nonempty, then δ(A)> 0. Let K0 be the finite structures in K0. Any structure B
in K0 carries a notion of dimension d B associated to the predimension δ and a
notion of d B-independence. If X, Y ⊆ B are finite, write d B(X) = δ(clB(X)) =

min{δ(Y ) : X ⊆ Y ⊆ B} and d B(X/Y ) = d B(X ∪ Y )− d B(Y ). If the ambient
structure B is clear from the context, then we omit it from the notation. Say that
finite X and Z are d-independent over Y (in B) if d B(X/Y Z) = d B(X/Y ). In
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particular, this implies clB(XY ) ∩ clB(Y Z) = clB(Y ). (Here, we use the usual
shorthand of Y Z for Y ∪ Z .) For the particular predimension which we have given,
it can be shown that clB satisfies the exchange condition, and therefore gives a
pregeometry; furthermore, d B is the dimension in this pregeometry.

We look at a version of the construction (also from [Hrushovski 1997]) where
closure is uniformly locally finite. For this, we have a continuous, increasing
f : R≥0

→ R with f (x) → ∞ as x → ∞ and we consider K f = {A ∈ K0 :

δ(X) ≥ f (|X |) for all X ⊆ A}. For suitable choice of f (call these good f ),
(K f ,≤) has the free ≤-amalgamation property: if A0 ≤ A1, A2 ∈ K f , then Ai ≤

A1 ⨿A0 A2 ∈ K f . In this case we have an associated generic structure M f (see
[Wagner 2000, Theorem 6.2.13]). This is a countable structure characterised by the
following properties:

(i) M f is the union of a chain of finite self-sufficient substructures, all in K f .

(ii) ≤-extension property: If A ≤ M f is finite and A ≤ B ∈ K f , then there is
a ≤-embedding β : B → M f with β(a)= a for all a ∈ A.

Equivalently, K f is the class of finite substructures of M f , and isomorphisms
between finite self-sufficient substructures of M f extend to automorphisms of M f

(we refer to the latter property as ≤-homogeneity). Because of the function f ,
closure in M f is uniformly locally finite and (using free amalgamation and the
≤-extension property) it is equal to algebraic closure [Wagner 2000, Lemma 6.2.17].
It then follows from ≤-homogeneity that M f is ω-categorical and the type of a
tuple is determined by the isomorphism type of its closure.

Remarks 4.1. To construct good functions, we can take f which are piecewise
smooth, and where the right derivative f ′ satisfies f ′(x)≤ 1/(x + 1) and is nonin-
creasing. The latter condition implies that f (x + y)≤ f (x)+ y f ′(x) (for y ≥ 0). It
can be shown that under these conditions, K f has the free ≤-amalgamation property.
(This is originally from [Hrushovski 1988]; see also [Wagner 2000, Example 6.2.27]
or [Evans 2002, Lemma 3.3].)

Remarks 4.2 ([Hrushovski 1997]; see also [Wagner 2000, Example 6.2.27; Evans
2002, Corollary 2.24, Theorem 3.6]). If f also satisfies the slower growth condition

f (3x)≤ f (x)+ 1,

then the structure M f is supersimple of SU-rank 1. Moreover, for tuples ā and b̄
in M f , we have SU(tp(b̄/ā))= d(b̄/ā). To see the latter, note that (by additivity
of both sides) it suffices to prove this when b̄ is a single element b. Now, d(b/ā)
is a natural number and at most δ(b), so is 0 or 1. If it is 0, then b ∈ acl(ā)
so SU(b/ā) = 0. Thus, it suffices to show that if tp(b/ā) divides over ∅, then
d(b/ā) < d(b/∅). This is done (in greater generality) in the above references.
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4B. The dimension function. For the rest of the section suppose that f is a good
function as in Remarks 4.1 and M f is the corresponding generic structure. We
suppose that h = (dim, µ) : Def(M f )→ R>0 is a dimension–measure function. In
this subsection we relate dim to the dimension d coming from the predimension
(which will be the same as SU-rank if M f is simple), and the measure will not be
used.

Notation 4.3. For tuples ā and b̄ in M f , let loc(b̄/ā), the locus of b̄ over ā, be the
set of realisations in M f of tpL(b̄/ā), the L-type of b̄ over ā. By ω-categoricity,
this is definable by an L-formula with parameters from ā. Let dim(b̄/ā) denote the
dimension of this set.

The Fubini property in MS-measurability implies that dim is additive: dim(b̄/ā)=
dim(āb̄/∅)−dim(ā/∅). We also have dim(Mn

f )= n dim(M f ). Note the existence
of dim-generic points: if D ∈ Def(M f ) is definable over a finite tuple ā, then
dim(D)= max{dim(b̄/ā) : b̄ ∈ D}. From this we deduce that if D′

⊆ D is definable,
then dim(D′)≤ dim(D). A further property of dim which we require is the weak
algebraicity property that if b̄ ∈ acl(ā), then dim(b̄/ā)= 0. Of course, d also has
these properties.

Under these assumptions on dim (and the given conditions on f ) we will show
that dim is just a scaled version of the dimension d .

Theorem 4.4. Suppose f ′(x) ≤
1
2(1/(x + 1)). If ā and b̄ are finite tuples in M f ,

then we have
dim(b̄/ā)= dim(M f )d(b̄/ā).

The theorem follows from the following (always assuming the given condition
on f ).

Proposition 4.5. Let ā, b ∈ M f with b ̸∈ acl(ā) and P = loc(b/ā). Then, for
every r ∈ N and ȳ ∈ Mr , there is some x̄ ∈ Pr+2 with ȳ ∈ acl(x̄ ā).

We note that Marimon (unpublished work) shows that Theorem 4.4 holds for a
wider class of Hrushovski constructions than we give here.

First we show how Theorem 4.4 follows from the proposition.

Proof of Theorem 4.4. By the additivity property of both dim and d , it will suffice
to prove the statement when b̄ = b is a single element. If b ∈ acl(ā), then the
statement holds as both sides of the equation are zero, by the weak algebraicity
property of dim and d. So now suppose that b ̸∈ acl(ā). Let P = loc(b/ā), as in
Proposition 4.5. Consider

Y = {ȳ = (y1, . . . , yr ) ∈ Mr
f : y1, . . . , yr ∈ acl(x̄ ā) for some x̄ ∈ P2+r

}.

By ω-categoricity, this set is definable by an L-formula with parameters from ā (for
example, it is invariant under automorphisms of M f fixing ā). Thus (by existence
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of generic points for dim) there is c̄ ∈ Y with dim(Y ) = dim(c̄/ā). By definition
of Y , there are b1, . . . , br+2 ∈ P with c̄ ∈ acl(āb1 · · · br+2). It follows (using weak
algebraicity) that

dim(Y )= dim(c̄/ā)≤ dim(b1 · · · br+2/ā)≤ dim(Mr+2
f )= (r + 2) dim(M f ).

But, by Proposition 4.5, we have Y = Mr
f . So

r dim(M f )= dim(Mr
f )= dim(Y )≤ (r + 2) dim(M f ).

Dividing by (r + 2) and letting r → ∞, we obtain that dim(b/ā)= dim(M f ). As
d(b/ā)= 1, this gives dim(b/ā)= dim(M f )d(b/ā), as required. □

The proof of Proposition 4.5 is a technical argument with Hrushovski construc-
tions, so we relegate it to a separate section (Section 4D). Marimon’s approach
[2022a; 2022b] to proving non-MS-measurability of other examples of ω-categorical
Hrushovski constructions avoids the need for a result such as Theorem 4.4.

Remarks 4.6. It is an open problem to determine whether any of the M f are (or
are not) pseudofinite. We note that Theorem 4.4 provides some information relevant
to this question. Suppose that f is a good function with f ′(x) ≤

1
2(1/(x + 1))

and K f is the corresponding amalgamation class with generic structure M f . Assume
that M f is elementarily equivalent to an ultraproduct M=

∏
U Fi of finite structures.

Following [Hrushovski 2013], if 8(x̄) is a formula with parameters from M , then
the coarse pseudofinite dimension 1(8(x̄)) is the standard part of the nonstandard
real

∏
U log|8(Fi )|/ log|Fi |. We will show that for every L-formula8(x̄) (without

parameters), we have 1(8(x̄))= d(8(x̄)).
In principle, we could deduce the result from Theorem 4.4 as 1 has the prop-

erties required in the proof of Theorem 4.4, as long as we expand the language
by dimension quantifiers so that it becomes continuous (see [Hrushovski 2013,
Section 2.7]). However, it seems clearer to give a fuller argument which is essentially
a modification of that given for Theorem 4.4.

If ā is a finite tuple in M f , let 8ā(x̄) denote an L-formula isolating tp(ā/∅)
(the L-type of ā in M f ). Such a formula exists, by ω-categoricity. If b̄ is another
tuple, then 8āb̄(ā, ȳ) isolates tp(b̄/ā).

Claim. Suppose ā is a k-tuple in M f and b ∈ M f . Suppose ū is a k-tuple in M and
M |H8ā(ū). Then 1(8āb(ū, y))= d(b/ā).

Proof of claim. If d(b/ā) = 0 then b is algebraic over ā. The size of acl(ā) is
bounded uniformly (actually, in k), so 8āb(ū, y) has finitely many solutions in M.
Thus its pseudofinite dimension is 0.

Now suppose that b ̸∈ acl(ā), so that d(b/ā)= 1. Let r ∈ N. There is a formula
Cr (y, x1 · · · xr+2 z̄) such that if8āb(ā′bi ) (for i ≤r+2), then Cr (M f , b1 · · · br+2, ā′)

is acl(b1 · · · br+2, ā′). Let K (r) bound the size of this algebraic closure.
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The set Y in the proof of Theorem 4.4 is defined by Y (ȳ, ā), where Y (ȳ, z̄) is
the formula

∃x1, . . . , xr+2
∧

i≤r+2

8āb(z̄xi )∧
∧
j≤r

Cr (y j , x1 · · · xr+2 z̄).

Moreover, by Proposition 4.5,

M f |H (∀z̄)
(
8ā(z̄)→ ∀y1, . . . , yr Y (y1 · · · yr z̄)

)
,

so this formula also holds in M.
Suppose ū ∈ M and M |H8ā(ū). Denote by ūi the k-tuple of i-th coordinates

(in Fi ) in ū. From the definition of Y , for almost all i , we have

|Y (Fi , ūi )| ≤ K (r)r |8āb(ūi , Fi )|
r+2.

Thus, as Y (M, ū)= Mr , for almost all i ,

K (r)r |8āb(ūi , Fi )|
r+2

≥ |Fi |
r .

As |Fi | → ∞, we obtain 1(8āb(ū, y))≥ r/(r + 2). But r here is arbitrary, and
thus 1(8āb(ū, y))≥ 1. The reverse inequality is trivial, so we have the claim. □

Now suppose that b̄ = (b1, . . . , bn) is an n-tuple in M f . We show that if ū is a
tuple in M and M |H8ā(ū), then1(8āb̄(ū, ȳ))= d(b̄/ā). The required formula for
general L-definable sets follows as each such is a finite union of pairwise disjoint sets
of this form. We may assume that d(b̄/ā)= n and we prove the result by induction
on n. Let D be 8āb̄(ū,M) ⊆ Mn and E = 8āb1···bn−1(ū,M). Let f : D → E
be projection onto the first n − 1 coordinates. By the claim, the fibres of f have
coarse pseudofinite dimension d(bn/b1 · · · bn−1ā)= 1. By the induction hypothesis,
1(E)= n−1. Thus, by Lemma 2.8(4) of [Hrushovski 2013],1(D)= n−1+1 = n,
as required. (In order to apply the results from [Hrushovski 2013], we need to first
enrich the language so that 1 becomes continuous, but this has no effect on the
dimension of formulas in the original language.)

4C. A structure which is not MS-measurable.

Theorem 4.7. There is an ω-categorical, supersimple structure M f of SU-rank 1
which does not satisfy the amalgamation property in Corollary 3.2. In particular,
M f is not MS-measurable.

Proof. We choose f so that K f is a free amalgamation class; the generic M f is
supersimple of SU-rank 1; the independent amalgamation property, Corollary 3.2,
does not hold. We are only interested in providing an example, so we choose
economy of effort over elegance.

Take L to have a 3-ary relation R, a 10-ary relation S and a 11-ary relation U . Let
f (x)= log8(x + 1). Then f ′(x)=

1
ln 8(1/(x + 1)) < 1

2(1/(x + 1)), and therefore,



250 DAVID M. EVANS

by Remarks 4.1, K f is a free amalgamation class and the hypothesis on f in
Theorem 4.4 holds. We also have f (3x) ≤ f (x) + 1, so by Remarks 4.2, the
generic M f is supersimple, with d-independence being the same as nonforking,
and M f is of SU-rank 1.

Consider the L-structure A with points a1, . . . , a10, u1, . . . , ur , where r =89
−11,

and relations S(a1, . . . , a10) and U (a1, . . . , a10, ui ) (for i ≤ r). Then δ(A) = 9
and |A| = 89

− 1, so δ(A) ≥ f (|A|). It is easy to check that for any X ⊂ A we
have δ(X)≥ f (|X |), so A ∈ K f . Moreover (in the notation of Corollary 3.2), for
each I ∈ [10]

9, the tuple āI is d-independent (in A) and has closure A. Note also
that if I ∈ [10]

8, then āI ≤ A.
Suppose, for a contradiction, that the conclusion of Corollary 3.2 holds, where

dim is given by SU-rank (in this case, given by the dimension function d). We will
apply this where n = 10, S = M10

f and

E = {α(a1 · · · a10) | α : A → M f is an ≤-embedding}.

Note that E is ∅-definable, the algebraic closure (equal to the ≤-closure) of every
element of E is isomorphic to A, and (by the ≤-homogeneity of M f ) all elements
of E have the same type over ∅.

Therefore, if the conclusion of Corollary 3.2 holds, there exists a d-independent
set B0 = {b1, . . . , b10} of distinct elements of M f with the property that for
each I ∈ [10]

9 we have aclM f (BI ) ∼= A (via an isomorphism taking b̄i 7→ āi ),
where BI = {bi : i ∈ I }. Let B = acl(B0). By the d-independence, δ(B)= 10 and
we have acl(BI )∩ acl(BI ′)= BI ∩ BI ′ = BI∩I ′ for I ̸= I ′

∈ [10]
9.

Thus

|B| ≥ |B0| +

∣∣∣∣ ⋃
I∈[10]9

acl(BI ) \ B0

∣∣∣∣
= |B0| +

∑
I∈[10]9

|acl(BI ) \ B0|

≥ 10 + 10(89
− 1 − 9)= 10.89

− 90.
So

f (|B|)≥ log8(10.89
− 89) > 10 = δ(B),

and thus B ̸∈ K f , a contradiction. So the amalgamation property in the conclusion
of Corollary 3.2 does not hold, and in particular, M f is not MS-measurable. □

4D. Proof of Proposition 4.5. Before the proof, we give a technical lemma.

Lemma 4.8. Suppose R is a 3-ary relation in L and f ′(x) ≤
1
2(1/(x + 1)). Let

A ≤ C, T ∈ K f (with A ̸= C, T ), and let E be the free amalgam of C and T
over A. Suppose t1, . . . , tr ∈ T \ A are d-independent over A, and let c ∈ C \ A.
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Let F = E ∪{s1, . . . , sr } with additional relations R(c, si , ti ) ( for 1 ≤ i ≤ r ). Then
As1 · · · sr ,C, T ≤ F and F ∈ K f .

Proof. Suppose C ⊂ V ⊆ F . If V ∩ T = A, then (by construction) δ(V ) =

δ(C)+ |V \ C |; if V ∩ T ⊃ A then δ(V ) ≥ δ(C)+ δ(V ∩ T )− δ(A) > δ(C). In
either case, δ(V ) > δ(C), so C ≤ F . A similar argument shows T ≤ F .

By free amalgamation, it is enough to prove the rest of the lemma in the case
where T = clT (At1 · · · tr ) and C = clC(Ac). So henceforth assume this. Suppose
As1 · · · sr ⊂ V ⊆ F has δ(V ) ≤ δ(As1 · · · sr ) = δ(A)+ r . We can assume that
V ≤ F . Clearly c ∈ V and therefore t1, . . . , tr ∈ V . It follows that V = F . But
δ(F)= δ(A)+ r + 1, a contradiction.

Finally we show that F ∈ K f . Let X ⊆ F . We need to show δ(X) ≥ f (|X |).
As X ∩ (T ∪ C) is the free amalgamation of X ∩ T and X ∩ C over X ∩ A, the
structure X is of the same form as F (possibly together with some points si not
lying in any relation in X ). So it will suffice to prove that δ(F)≥ f (|F |).

Case 1: Suppose |T \ A| ≤ r |C \ A|.
Note that |F | = |C | + |T \ A| + r and δ(F) = δ(C)+ r . As C ∈ K f we have

δ(C)≥ f (|C |). Furthermore, as the graph of f lies below its tangent at any point,
and f ′(x)≤

1
2(1/(x + 1))≤ 1/(x + 1), we have

f (|F |)≤ f (|C |)+ (|T \ A| + r) f ′(|C |)

≤ f (|C |)+
1

(|C |+1)
r(|C \ A| + 1)≤ δ(C)+ r = δ(F),

as required.

Case 2: Suppose |T \ A| ≥ r |C \ A|.
This is similar. We have |F | = |T | + |C \ A| + r and δ(F)= δ(T )+ 1. Then

f (|F |)≤ f (|T |)+ (|C \ A| + r) f ′(|T |)

≤ f (|T |)+
1

2|T |
(|C \ A| + r)≤ δ(T )+ 1 = δ(F),

using the fact that |T \ A| ≥ |C \ A|, r . □

Proof of Proposition 4.5. Recall that we are assuming that the language L contains
a 3-ary relation symbol R, so we can use the previous lemma. Let A = acl(ā) and
B = acl(Ab).

First, we note that it is enough to prove the proposition in the case where ȳ
is d-independent over ā (that is, d(ȳ/ā) = r). To see this, take ȳ1 ⊆ ȳ which
is d-independent over ā and has ȳ ∈ acl(ȳ1ā); extend this to an r-tuple ȳ′ which
is d-independent over ā. If x̄ ∈ Pr+2 has ȳ1 ∈ acl(ā x̄), then ȳ ∈ acl(ā x̄).

Step 1: We first assume that ȳ = (s1, . . . , sr ) is d-independent over ā and Aȳ ≤ M f .
We shall show that there is (b0, . . . , br ) ∈ Pr+1 with ȳ ∈ acl(ā, b0, . . . , br ).
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We apply Lemma 4.8 with T the free amalgam of r copies B j (1 ≤ j ≤ r ) of B
over A and C another copy of B. Let b1, . . . , br , b0 be the corresponding copies
of b (over A) inside B1, . . . , Br ,C respectively. Let F be the disjoint union over A
of Aȳ, C and T , but with the extra relations R(b j , s j , b0), where 1 ≤ j ≤ r , as in
the lemma. Then, by the lemma,

(i) Aȳ ≤ F ;

(ii) B j ≤ F ; and

(iii) F ∈ K f .

Then by (i), (iii) and the ≤-extension property we can assume F ≤ M f ; by (ii), we
then have x̄ = (b0, b1, . . . , br ) ∈ Pr+1; then, because of the relations R(b j , s j , b0)

we have s j ∈ acl(b0, b j , A), so ȳ ∈ acl(ā x̄), as required.

Step 2: Now let ȳ = (t1, . . . , tr ) be d-independent over A and let T = acl(Aȳ).
Let C be a copy of B over A with c the copy of b over A inside C , and let F be
constructed as in the lemma. As in Step 1, we can assume that F ≤ M f . So c ∈ P and
ȳ ∈ acl(ā, c, s1, . . . , sr ). But by Step 1 (and As1 · · · sr ≤ F) the tuple (s1, . . . , sr )

is in acl(āz̄) for some z̄ ∈ Pr+1. The result follows. □
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Residue field domination in some henselian valued fields

Clifton Ealy, Deirdre Haskell and Pierre Simon

We generalize previous results about stable domination and residue field domina-
tion to henselian valued fields of equicharacteristic 0 with bounded Galois group,
and we provide an alternate characterization of stable domination in algebraically
closed valued fields for types over parameters in the field sort.

1. Introduction

The notion of domination of a type by its stable part was introduced and studied
in the book [HHM 2008] and examined especially in the case of an algebraically
closed valued field. The utility of the notion has been further demonstrated; for
example, the space of stably dominated types in an algebraically closed valued
field was analyzed in the book [Hrushovski and Loeser 2016] as an approach to
understanding Berkovich spaces, and some structure theory has been developed
for groups with a stably dominated generic type [Hrushovski and Rideau-Kikuchi
2019]. However, the stable part of a structure can seem like an unwieldy and
abstract object. Since the stable sorts in an algebraically closed valued field are
essentially those which are internal to the residue field, the intuition behind stable
domination is that a stably dominated type is controlled by its trace in the residue
field. By turning attention to the residue field instead of to the stable part, the hope
is that this intuition could be used in two ways. The first is to develop a notion of
domination that applies in more general valued fields in which the residue field is
not necessarily stable. The second is to find a domination statement involving a
simpler collection of sorts. This program was started in [Ealy et al. 2019], where
we considered domination by sorts that are internal to the residue field in a real
closed valued field. The present paper continues the project in the greater generality
of henselian valued fields of equicharacteristic 0, provided that the Galois group is
bounded. Details of the notation are given later; in the theorems quoted below, U is
a monster model of the theory of valued fields in which we are working.

In our definition of residue field domination, we reduce the collection of sorts
that are used for domination to the residue field itself, rather than the sorts that are
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internal to the residue field. This may seem to be an unreasonably strong property,
but we are able to show that it does hold in many cases, either assuming some
algebraic conditions, or assuming stable domination, as in the following statements.

Theorem 4.5. Let C ⊆ U be a subfield and let a be a (possibly infinite) tuple of
field elements such that the field generated by Ca is an unramified extension of C
with the good separated basis property over C , and such that k(Ca) is a regular
extension of k(C). Then tp(a/C) is residue field dominated.

Theorem 4.6. Let C ⊆ U be a subfield, let a ∈ U , and let Ũ be the algebraic closure
of U . Assume that tp(a/C) is stably dominated in the structure Ũ . Then in the
structure U , tp(a/C+) is residue field dominated, where C+

= acl(C)∩ dcl(Ca).

There are, however, important examples, when the base of a type is not in the
field sort, where stable domination does not reduce to residue field domination. For
instance, a major theme of stable domination is that types (with a few caveats) are
always stably dominated over the value group. However, they need not be residue
field dominated over the value group. In addition to the residue field, one needs
information from sorts that are internal to the residue field. These turn out to be
given by fibers of the valuation map in RV. We thus introduce another notion,
RV-domination, and show that types are RV-dominated over their value groups.

Theorem 3.11. Let L , M be subfields of U with C ⊆ L ∩ M a valued subfield.
Assume that k(L) is a regular extension of k(C), 0L ⊆ 0M , 0L/0C is torsion free
and that L has the good separated basis property over C. Then tp(L/C0L) is
RV-dominated.

An important insight of this paper is that one key step in proving domination
results is the existence of a separated basis. This insight allows us to distinguish
between purely algebraic concepts and the more model-theoretic ones. In particular,
we derive the following algebraic characterization of stable domination for types in
the field sort in an algebraically closed valued field.

Theorem 3.6. Suppose that U is algebraically closed. Let C ⊂ U be a subfield, let
a be a tuple of valued field elements, and let L be the definable closure of Ca in
the valued field sort. Assume L is a regular extension of C. Then the following are
equivalent.

(i) tp(a/C) is stably dominated.

(ii) L has the good separated basis property over C and L is an unramified
extension of C.

When restricted to the main sort, the domination statements can be given a purely
valuation-theoretic form, as asserting the existence of automorphisms under certain
hypotheses; these are Proposition 3.1 and Theorem 3.10.
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In the time since this paper was originally submitted, further work has been
done by several authors. We mention in particular the work of Vicaria [2021],
which uses, and to some extent generalizes, the results of this paper. She does
not need the hypothesis that the Galois group of the field is bounded. However,
she uses a rather different language, with sorts for the cosets of the subgroups of
the n-th powers in RV. Also relevant is the work of Cubides Kovacsics, Hils and
Ye [Cubides Kovacsics et al. 2021], which independently obtains type implication
results using the existence of a separated basis (there called being vs-defectless).

The outline of the paper is as follows. In the remainder of the introduction
we state a quantifier elimination result for the theory in which we work, give the
definition of domination and some associated properties, and recall some elementary
properties of type implication and regular field extensions. In Section 2, we define
the notion of a good separated basis over a base field C and some consequences,
in particular the relation to the assumption that C is a maximal field. In Section 3,
we prove some preliminary results towards residue field domination, using the
separated basis hypothesis. Finally, in Section 4 we derive the full domination
results, after showing that the geometric sorts can be resolved in the field sort.

Notation. We work in two languages, L and L̃, and two structures, U and Ũ .
We fix K , a henselian valued field of equicharacteristic 0 with bounded Galois

group. The first language, L, is described in Proposition 1.3 below; it depends on K .
We fix the theory T of K in the language L. We let U be a monster model of T .

The second language, L̃, is the language often used for algebraically closed
valued fields. We equip the field sort with the usual ring language and use the
notation k for the residue field sort in the usual ring language, 0 for the value group
sort in the language of ordered abelian groups and RV for the RV sort with the
induced multiplicative group structure. We include the geometric sorts required
to eliminate imaginaries, namely

⋃
∞

n=1 Sn for the lattices and
⋃

∞

n=1 Tn for their
torsors. However, the resolution results of Theorem 4.2 below and Chapter 11 of
[HHM 2008] allow us to avoid working with the geometric sorts directly in this
paper, and thus we omit their (rather lengthy) definition; a detailed description can
be found in [HHM 2006, Section 3.1; 2008, Section 7.4].

We let Ũ be a monster model of ACVF such that the field sort of U embeds
into the field sort of Ũ , and such that every automorphism of U extends to an
automorphism of Ũ (e.g., Ũ could be the algebraic closure of U). Throughout
the paper, we use a subscript L̃ to indicate not just that we are working in the
language L̃, but that we are also working in the algebraically closed valued field Ũ
(for instance, when taking definable closure, or specifying a type); no subscript
indicates that we are working in the language L and in U .
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Given any definable set S and set of parameters C , we write S(C)= dcl(C)∩S.
If C is a substructure of U , we write SC =C∩S. For any field, we use the superscript
alg to denote its field-theoretic algebraic closure. On any field, and in particular on
the residue field k, we have an independence relation |⌣

alg: for A, B ⊆ k, A |⌣
alg
C B

means that any finite subset of k(AC) that is field algebraically independent over
k(C) remains so over k(BC).

Quantifier elimination. The language L is chosen so that the theory of the valued
field that we are working with has quantifier elimination. This is derived from
the following results as described below. The first is a result of Chernikov and
Simon translated into the notation of valued fields. Note that bounded Galois group
implies that the n-th powers have finite index in the field [Fehm and Jahnke 2016]
and hence also in RV. This is our paper’s only use of the assumption of bounded
Galois group. One may construct henselian fields of equicharacteristic 0 where
n-th powers have finite index in RV but which do not have bounded Galois group
[Fehm and Jahnke 2016, Proposition 5.1]. Our results apply to these fields as well.

Fact 1.1 [Chernikov and Simon 2019, Proposition 3.1]. Let K be a henselian valued
field of equicharacteristic 0 with bounded Galois group. Assume the language L is
chosen so that

• RV has its multiplicative group structure, a predicate for k as a multiplicative
subgroup, n-th power predicates, constants naming a countable subgroup
containing representatives of the (finitely many) cosets of the n-th powers for
n < ω (where representatives of classes which intersect k are chosen in k), a
sort for 0, and a map v : RV → 0;

• the language of 0 expands the structure induced from K , has no function
symbols apart from +, and eliminates quantifiers;

• the language of k expands the structure induced from K , has no function
symbols apart from · , and eliminates quantifiers.

Then (RV, 0, k) has quantifier elimination.

Fact 1.2 [Pas 1989, Theorem 4.1]. Let T be the theory of a henselian valued field
of equicharacteristic 0, in the language with sorts for k and 0, expanded by the
angular component map. Then T has elimination of field quantifiers.

One can show (e.g., [Cluckers and Loeser 2007; Rideau-Kikuchi 2017, Theo-
rem A; Scanlon 2003, Corollary 5.8, assuming the trivial derivation]) that elimination
of field quantifiers with an angular component map implies elimination of field
quantifiers relative to RV. In our case, RV itself eliminates quantifiers as in Fact 1.1,
and thus we may conclude Proposition 1.3 below. We remark that the form in which
this proposition is generally used is the following: if A, B ⊂ U are valued fields,
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and σ : A → B is a valued field isomorphism which induces an isomorphism of
RV-structures RVA → RVB , then σ extends to an automorphism of U .

Proposition 1.3. Let K be a henselian valued field of equicharacteristic 0 with
bounded Galois group. Work in the language with

• the language of rings on K ,

• a sort for RV and a sort for 0, each in the language of groups,

• a predicate for k ⊂ RV,

• a map rv : K → RV,

• a map v : RV → 0,

• predicates for every subset of km and 0m definable without parameters in the
structure induced from K ,

• predicates for the n-th powers in RV, and

• constants for a countable subgroup of RV containing coset representatives for
each of the n-th power subgroups of RV, chosen in k where possible.

Then K has quantifier elimination.

Remark 1.4. It follows from this proposition that the value group and residue field
are stably embedded in the following strong form: if ϕ(x, a) defines a subset of kn ,
then there is a term t and quantifier-free formula θ such that θ(x, t (a)) defines
the same subset. Given that θ is quantifier free, it is clear that t (a) lies in the
RV-structure (either in RV itself or in 0). It is easy to check that t (a) can be chosen
to lie in the residue field. The same argument also shows that if X is a subset of
0 defined over a then it is also defined over t (a) ∈ 0 for some term t . Note that
this is slightly stronger than the definition of stable embeddedness, which does not
require the parameter in the stably embedded set to be in dcl(a).

We would not in general expect this strong form of stable embeddedness to hold
for an individual fiber in RV, which we write as RVγ = {x ∈ RV : v(x)= γ }. For
consider the subset of RVγ × RVγ defined by x · y−1

= a, where a ∈ k. However,
if one assumes that RVγ contains some point a0 that is expressible as a term t0(a),
then it is again true that any definable subset of RVγ

n defined over a is defined over
a term t (a) with t (a) ∈ RVγ . For if X is such a set, X · a0

−1 is a definable subset
of the residue field, and therefore definable over t ′(a) ∈ k for some term t ′. Hence
X · a0

−1 is also definable over t ′(a) · t0(a) ∈ RVγ , and so is X .
Lastly, the quantifier elimination result implies that the residue field and value

group are orthogonal to each other.

Domination: definition and basic properties. Residue field domination is defined
by analogy with stable domination, which we now recall [HHM 2008, Definition 3.9].
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Given a set of parameters C in Ũ , let StC be the multisorted structure whose sorts
are the C-definable stable, stably embedded subsets of Ũ . The structure StC is itself
stable, so stable forking gives an independence relation |⌣.

Definition 1.5. We say that tpL̃(a/C) is stably dominated if for any b ∈ Ũ , whenever
StC(aC) |⌣C StC(bC) we have tpL̃(b/CStC(aC)) ⊢ tpL̃(b/Ca).

The definition captures our intuition that a stably dominated type should have no
interaction with the value group in the following sense.

Fact 1.6 [HHM 2008, Corollary 10.8]. The type tpL̃(a/C) is stably dominated if
and only if it is orthogonal to 0.

Notice that Corollary 10.8 and the definition of orthogonality in [HHM 2008,
Definition 10.1] are only given in the original for the case when a is a unary sequence.
However they both can be stated in more generality, since for any element s and
any set C in the geometric sorts of a valued field, there is a unary sequence, a,
with the same L̃-definable closure over C [HHM 2006, Proposition 2.3.10; 2008,
Proposition 7.14]. For such an s and a, one may define tp(s/C) to be orthogonal
to 0 if tp(a/C) is orthogonal to 0, noting by [HHM 2008, Lemma 10.9] that this
is independent of the choice of a.

The structure StC can be defined in any structure, but it may be trivial or hard
to identify. In an algebraically closed valued field, StC is interdefinable with the
collection of sorts internal to the residue field, which are themselves interdefinable
(with parameters) with the residue field. This motivates the following definition for
a valued field that is not necessarily algebraically closed. Notice that residue field
domination as defined here is a very strong property, since the independence notion
we are working with is very weak. It is thus surprising that we can prove instances
of residue field domination in Section 4.

Definition 1.7. We say that tp(a/C) is residue field dominated if for any b ∈ U , if
k(aC) |⌣

alg
C k(bC), then tp(b/Ck(Ca)) ⊢ tp(b/Ca).

When U is itself algebraically closed, it is immediate that residue field domination
implies stable domination. If U is, for example, a real closed valued field, this
implication does not hold. The converse is not true even when U is algebraically
closed, as the following example illustrates. In particular, this example shows that
issues may arise when the type is over parameters in the value group sort.

Example 1.8. Let C = Q and let a ∈ U be a field element of positive valuation.
Then C is maximal because it is trivially valued, L = dcl(a) has kL = kC and
hence is automatically a regular extension, and 0L is a torsion-free extension of
0C (which is the trivial group). So by [HHM 2006, Theorem 12.18], tp(a/C0L) is
stably dominated. However, tp(a/C0L) is not residue field dominated. For if we
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take M = L , the independence condition holds trivially since kM = kL = kC , but it
is not the case that tp(L/C0LkL) implies tp(L/M)= tp(L/L).

We are able to prove a version of [HHM 2006, Theorem 12.18], involving RV-
domination instead of residue field domination, which we define in Definition 3.8.

In [HHM 2006], it is shown that stable domination is insensitive to whether or
not the base is algebraically closed.

Fact 1.9 [HHM 2006, Corollary 3.31]. The type tp(a/C) is stably dominated if and
only if tp(a/ acl(C)) is stably dominated.

This is not true for residue field domination, as the following example illustrates.
We make use here, and many times later, of the following basic fact.

Fact 1.10. Let C ⊂ Ũ , a ∈ Ũ . Then dclL̃(Ca) (restricted to the field sort) is the
henselization of the field generated by a over C.

Example 1.11. Let K be an algebraically closed valued field of characteristic 0,
let t be an element of positive valuation, and consider C = dcl(Q(t)). We note
that

√
t cannot be in C since the definable closure of Q(t) is the henselization

of Q(t), which is an immediate extension. Let a =
√

t . Clearly tp(a/ acl(C)) is
stably dominated and residue field dominated. Yet tp(a/C) is stably dominated
but not residue field dominated. To see the second statement, choose b = a. One
has k(aC) |⌣

alg
C k(aC) since a ∈ acl(C). Since

√
t generates a ramified extension

of C , k(Ca)= k(C). Thus tp(a/Ck(Ca))= tp(a/C), and clearly tp(a/C) cannot
imply tp(a/Ca).

On the other hand, tp(a/C) is stably dominated. Since a ∈ acl(C), a is in
a C-definable stable, stably embedded set, i.e., is in St(C). So automatically
tp(b/CStC(a)) implies tp(b/Ca) for any b.

However we do get the following, slightly weaker, statement. The proof uses
Proposition 1.15 below.

Proposition 1.12. For C ⊂U and a ∈U , let C+
=acl(C)∩dcl(Ca). Then tp(a/C+)

is residue field dominated if and only if tp(a/ acl(C)) is residue field dominated.

Proof. For the right-to-left direction, choose b such that k(C+a) |⌣
alg
C+ k(C+b).

Since fields code finite sets, if d1 ∈ acl(C) and the orbit of d1 over C is d1, . . . , dn ,
then {d1, . . . , dn} ∈ dcl(C) and d1, . . . , dn ∈ alg(dcl(C)), where alg denotes the
field-theoretic algebraic closure. Thus acl(C) ⊆ alg(C+). Note that we have the
implications

k(C+a) |⌣
alg
C+ k(C+b)=⇒ alg(k(C+a)) |⌣

alg
alg(C+)

alg(k(C+b))

=⇒ k(alg(C+a)) |⌣
alg
alg(C+)

k(alg(C+b))

=⇒ k(acl(C)a) |⌣
alg
acl(C) k(acl(C)b).
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Therefore, we have tp(b/ acl(C)k(acl(C)a)) ⊢ tp(b/ acl(C)a), and we want
tp(b/C) ⊢ tp(b/C+a). Choose ϕ(x, a) ∈ tp(b/C+a). This is implied by some
ψ(x, c, d) ∈ tp(b/ acl(C)k(acl(C)a)), with c ∈ acl(C) and d ∈ k(acl(C)a). Let
X = {σ(c)σ (d) : σ ∈ Aut(U/C+a)}. Notice that X1 = {σ(c) : σ ∈ Aut(U/C+a)} is
finite, so Ca-definable, and in acl(C), hence fixed by any automorphism fixing C+.
Also X2 = {σ(d) : σ ∈ Aut(U/C+a)} is C+a-definable and in the residue field, and
thus X2 ∈ k(C+a).

Thus, the formula θ0 given by∨
σ(c)∈X1

∨
σ ′(d)∈X2

ψ(x, σ (c), σ ′(d))

is over C+k(C+a) as desired, and for any σ(c)σ (d) in X , we haveψ(x, σ (c), σ (d))
implies ϕ(x, a). However, if σ ′ is some other automorphism fixing C+a, it
may be the case that ψ(x, σ (c), σ ′(d)) does not imply ϕ(x, a), and so we must
tweak θ0. If σ ′ is such an isomorphism, then σ(c)σ ′(d) ̸≡C+a σ(c)σ (d) and thus
σ ′(d) ̸≡σ(c)k(C+a) σ(d). For each σ ∈ Aut(U/C+a), let eσ(c) be the orbit of σ(d)
over σ(c)k(C+a). Then the formula, θ , given by∨

σ(c)∈X1

∨
d ′∈eσ(c)

ψ(x, σ (c), d ′)

implies ϕ(x, a).
We claim that {σ(c)eσ (c) :σ ∈ Aut(U/C+a)} is C+k(C+a)-definable, and hence

the displayed formula above gives the required domination statement. Consider τ
an automorphism fixing C+k(C+a). Since τ fixes C+, τ maps X1 to itself, so there
is an automorphism σ fixing C+a such that τ(c)= σ(c). It suffices to show that
τ(d) ∈ eσ(c). By definition, σ(d) ∈ eσ(c). Now τ ◦σ−1 fixes σ(c) and k(C+a), and
τ ◦ σ−1(σ (d))= τ(d), which hence lies in the Aut(U/σ(c)k(C+a))-orbit of σ(d),
as required.

For the other direction, take b with k(acl(C)a) |⌣
alg
acl(C) k(acl(C)b). It suffices,

by Proposition 1.15, to show that tp(a/ acl(C)k(acl(C)b)) ⊢ tp(a/ acl(C)b). Note
that, by replacing the set k(acl(C)a) with a subset and replacing the set acl(C) in
the base with something interalgebraic with it, we have

k(C+a) |⌣
alg
C+ k(acl(C)b).

Thus we may apply residue field domination of tp(a/C+), where our tuple from U
is acl(C)b, obtaining (again applying Proposition 1.15)

tp(a/C+k(acl(C)b)) ⊢ tp(a/ acl(C)b).
So certainly

tp(a/ acl(C)k(acl(C)b)) ⊢ tp(a/ acl(C)b)
as well. □
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Type implications. Since many of our arguments involve showing type implications,
it is useful to make the following very general observations.

Lemma 1.13. Let A, B, C be subsets of a monster model U in some language, with
C ⊆ A ∩ B. Then

(i) tp(A/C) ⊢ tp(A/B) is equivalent to tp(B/C) ⊢ tp(B/A);

(ii) if tp(A/C) ⊢ tp(A/B) and tp(B ′/C)= tp(B/C), then tp(A/C) ⊢ tp(A/B ′).

Proof. (i) Suppose that tp(A/C) ⊢ tp(A/B) and tp(B ′/C) = tp(B/C). Let
σ ∈Aut(U/C)with σ(B ′)= B. As tp(σ (A)/C)= tp(A/C), by the type implication
assumption, also tp(σ (A)/B) = tp(A/B). Thus there is τ ∈ Aut(U/B) such that
τ(σ (A))= A. Then τ(σ (B ′))= B, so tp(B ′/A)= tp(B/A).

(ii) By (i), it is equivalent to show that tp(B ′/C) ⊢ tp(B ′/A), which is the same
statement as tp(B/C) ⊢ tp(B ′/A). Also by (i), we have tp(B/C) ⊢ tp(B/A).
So we need only establish that tp(B ′/A) = tp(B/A). But since we know that
tp(B/C) ⊢ tp(B/A), we know that anything (e.g., B ′) that realizes tp(B/C) must
also realize tp(B/A). Thus B ′

|H tp(B/A) and tp(B ′/A)= tp(B/A). □

The following lemma is stated in [HHM 2008, Remark 3.7] for the stable part
of a structure. We prove it here using Remark 1.4 which allows us to avoid the
assumption of elimination of imaginaries. Let S be any definable set that is stably
embedded in the strong sense defined in Remark 1.4. Later we will take S to be the
residue field, the value group, or some collection of fibers of RV, where for each γ ,
RVγ (CB) is nonempty.

Lemma 1.14. For any sets A, B, C in U , tp(B/CS(CB))⊢ tp(B/CS(CB)S(CA)).

Proof. We may assume B is finite. Take B ′
≡CS(CB) B. We wish to show that

B ′
≡CS(CB)S(CA) B, so take ϕ(x, a, b) ∈ tp(B/CS(CA)S(CB)) with a ∈ S(CA)

and b ∈ S(CB). We wish to show that ϕ(B ′, a, b) holds.
Consider the set defined by ϕ(B, y, b). This is a subset of S, defined over CB,

and hence definable by some θ(y, b̃), where b̃ ∈ S(CB) as described in Remark 1.4.
Thus ∀y [θ(y, b̃)→ ϕ(x, y, b)] ∈ tp(B/CS(CB)).

Since ∀y [θ(y, b̃) → ϕ(B ′, y, b)] holds and θ(a, b̃) also holds, it follows that
ϕ(B ′, a, b) holds. □

From this, we derive equivalences for the type implication in the definition of
residue field domination.

Proposition 1.15. For any a, b,C in U the following are equivalent:

(i) tp(b/CS(Ca)) ⊢ tp(b/Ca).

(ii) tp(a/CS(Cb)) ⊢ tp(a/Cb).

(iii) tp(S(bC)/CS(Ca))∪ tp(b/C) ⊢ tp(b/Ca).
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(iv) tp(a/CS(Ca)S(Cb)) ⊢ tp(a/Cb).

(v) tp(a/CS(Ca)) ⊢ tp(a/Cb).

Proof. The proof of the equivalence of (i), (ii) and (iii) is exactly the proof of [HHM
2008, Lemma 3.8], replacing the stable, stably embedded sorts with the definable
set S, and referring to Lemma 1.14 in lieu of [HHM 2008, Remark 3.7]. The fact
that (ii) implies (iv) is trivial, and that (iv) implies (v) is immediate by Lemma 1.14.

To prove that (v) implies (i), assume (v). Take b, b′
|H tp(b/CS(Ca)) and σ

witnessing this. Suppose that σ−1(a)= ã and note that a, ã |H tp(a/CS(Ca)), and
thus by (v) they both satisfy tp(a/Cb). Choose τ : a 7→ ã witnessing this. Thus
(σ ◦τ)(a)=σ(ã)=a and (σ ◦τ)(b)=σ(b)= b′, and we have b, b′

|H tp(b/Ca). □

We will have need of the following result, which we will use in the form of the
subsequent lemma.

Fact 1.16 [HHM 2008, Proposition 8.22(ii)]. Let C ⊆ A, B be algebraically closed
valued fields and suppose that 0(C)= 0(A), the transcendence degree of B over
C is 1, and there is no embedding of B into A over C. Then 0(AB)= 0(B).

Recall that we use 0(C) to mean dcl(C)∩0. In the following lemma, as we are
working in Ũ , the definable closure is taken in L̃.

Lemma 1.17. Let C ⊆ F, L be valued fields contained in Ũ such that L is tran-
scendence degree at least 1 over C , tpL̃(L/C) ⊢ tpL̃(L/F), and 0(F) = 0(C).
Then 0(LF)= 0(L).

Proof. We proceed by induction on the transcendence degree n of L over C .
Assume n =1. Since tpL̃(L/C)⊢ tpL̃(L/F), no ℓ∈ L\aclL̃(C) can be embedded

into aclL̃(F) over C . For suppose that ℓ ≡C ℓ
′. Then also ℓ ≡F ℓ

′. If ℓ′ could
be chosen in aclL̃(F), then ℓ would be an element of the finite set of elements
realizing tpL̃(ℓ

′/F). But this applies equally to any element of tpL̃(ℓ/C), and hence
this type has finitely many realizations. Then ℓ would be in aclL̃(C). Hence there
is no embedding of aclL̃(L) into aclL̃(F) over aclL̃(C), and we apply Fact 1.16 to
obtain 0(aclL̃(L) aclL̃(F))= 0(aclL̃(L)). Recalling that we have defined 0(A) to
be the definable closure of the value group of A, we have 0(LF)= 0(L).

Assume the result for m < n and suppose L has transcendence degree n over C .
Let C ⊆ C ′

⊆ L be such that L is transcendence degree 1 over C ′. Note that
tpL̃(L/C ′) ⊢ tpL̃(L/FC ′), since

ℓ≡C ′ ℓ′ =⇒ ℓC ′
≡C ℓ

′C ′
=⇒ ℓC ′

≡F ℓ
′C ′

=⇒ ℓ≡C ′ F ℓ
′.

Thus, by our inductive hypothesis, 0(C ′F) = 0(C ′). Now one may repeat the
argument of the n = 1 case with C ′ playing the role of C and C ′F playing the role
of F . □
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Regular extensions. The following three properties of regular extensions of fields
are implicit in many of our arguments.

Fact 1.18 [Lang 2002, VIII, 4.12]. Suppose C is a field, L is a regular field extension
of C and M is any field extension of C , all contained in Ũ . Then L |⌣

alg
C M implies

L and M are linearly disjoint over C.

Lemma 1.19. Let C and L be valued fields contained in Ũ such that C ⊆ L is a
regular extension of fields and L is henselian. Then tpL̃(L/C) ⊢ tpL̃(L/ aclL̃(C)).

Proof. Note that we may restrict our attention to the valued field sort of Ũ . Let
a ∈ L be a finite tuple. Let X be an aclL̃(C)-definable set containing a and let
X = X1, . . . , Xn be the conjugates of X over C . We may assume that the X i are
pairwise disjoint (consider the boolean algebra generated by the X i and replace X
by the atom containing a).

Suppose that X1 is defined by ϕ(x, b) with b ∈ aclL̃(C). Consider the set B of
conjugates {b = b1, . . . , bk} of b over C , noting that k could be larger than n. Let
S1 be the subset of B consisting of those bi such that ϕ(x, bi ) defines X1. Since
fields code finite sets, there is a tuple d1 ∈ aclL̃(C) that is a code for S1. Consider
the conjugates D = {d1, . . . , dn} of d1 over C . Note that X1 is definable over d1,
so it suffices to show that d1 ∈ C .

Since D is L̃-definable over C , d1 is L̃-definable over Ca. Since in an alge-
braically closed valued field of characteristic 0, the definable closure of a set of
field elements is the henselization of the field generated by those elements, d1 is in
the henselian closure of Ca, which is included in L . Since L is a regular extension
of C and d1 is algebraic over C , we conclude d1 ∈ C and hence X is L̃-definable
over C . □

Lemma 1.20. Let C, F and L be valued fields contained in Ũ such that C ⊆ F ∩ L ,
L is a regular extension of F , tpL̃(L/C) ⊢ tpL̃(L/F), and C is not trivially valued.
Then L and F are linearly disjoint over C.

Proof. By Lemma 1.13(i), since tpL̃(L/C)⊢ tpL̃(L/F), also tpL̃(F/C)⊢ tpL̃(F/L).
Suppose that there are ℓ⃗ ∈ L and f⃗ ∈ F such that ℓ⃗ · f⃗ = 0 with ℓ⃗, f⃗ ̸= 0, and let
ϕ(x⃗, ℓ⃗) express this of x⃗ . As ϕ(x⃗, ℓ⃗) ∈ tpL̃(F/L), it is implied by some formula
ψ(x⃗, c) ∈ tpL̃(F/C). As aclL̃(C) is a model, there is some d⃗ ∈ aclL̃(C) such
that ψ(d⃗, c). Hence, ϕ(d⃗, ℓ⃗) holds, i.e., ℓ⃗ · d⃗ = 0 and d⃗ ̸= 0. Note that C ⊆ L is a
regular extension of fields (in characteristic 0) if and only if L is linearly disjoint
from aclL̃(C) over C . So there must also be c⃗ ∈ C with ℓ⃗ · c⃗ = 0. □

2. Separated bases

The notion of a good separated basis was isolated in [HHM 2008], based on
earlier observations by many different authors. In this section, we show that a field
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extension can often be assumed to have the separated basis property and that some
type implications imply that the property can be lifted to a larger underlying field. In
the subsequent section, we deduce strong consequences towards domination results
from the separated basis property. Many results in earlier papers on domination
used the assumption that the base C is maximal. Recall that a valued field is
maximal (also called maximally complete or spherically complete) if it has no
proper immediate extension. Here we show that this assumption can be replaced by
the weaker assumption that there is a good separated basis over C .

Definition 2.1. Let M be a valued field extension of C . Let V ⊆ M be a C-vector
space. Let m1, . . . ,mk be elements of V , m⃗ = (m1, . . . ,mk), and write C · m⃗ for
the C-vector subspace of V generated by m1, . . . ,mk . We say that {m1, . . . ,mk}

is a separated basis over C if for all c1, . . . , ck in C ,

v

( k∑
i=1

ci mi

)
= min{v(ci mi ) : 1 ≤ i ≤ k}

(and so, in particular, it forms a basis for C · m⃗). We say that the separated basis is
good if in addition for all 1 ≤ i, j ≤ k, either v(mi )= v(m j ) or v(mi )−v(m j ) /∈0C .
We say that V has the (good) separated basis property over C if every finite-
dimensional C-subspace of V has a (good) separated basis.

By the next two lemmas, if the base C is either maximal or trivially valued, then
any field extension has the good separated basis property.

Lemma 2.2 [HHM 2008, Proposition 12.1]. Let C be a nontrivially valued maximal
field and M a valued field extension. Then M has the good separated basis property
over C.

Lemma 2.3. Let C be a trivially valued field, and M a nontrivially valued field
extension. Then M has the good separated basis property over C.

Proof. Since v(c) = 0 for every c ∈ C , the condition for being good is vacuous.
To construct separated bases, let V be a finite-dimensional C-subspace of M , and
proceed by induction on dim(V ). If dim(V ) = 1 then any basis is automatically
separated.

Assume the result is true for any ℓ-dimensional subspace, and let {m1, . . . ,mℓ} be
a separated basis for C ·m⃗, the vector space that m⃗ = (m1, . . . ,mℓ) generates over C .
Assume without loss of generality that v(m1)≤ v(m2)≤ · · · ≤ v(mℓ). Notice that,
for all m ∈ C · m⃗, v(m) ∈ {v(m1), . . . , v(mℓ)}. First suppose there is m ∈ V \C · m⃗
with v(m) /∈ {v(m1), . . . , v(mℓ)}. Then {m1, . . . ,mℓ,m} is linearly independent
and is separated. For suppose not. Then there are c1, . . . , cℓ+1 such that v(cℓ+1m)=
v
(∑ℓ

i=1 ci mi
)
. Since v(cℓ+1m) = v(m) and v

(∑ℓ
i=1 ci mi

)
∈ {v(m1), . . . , v(mℓ)},

this contradicts the hypothesis on m.
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Now suppose there is no such m. Let i0 be the greatest i ≤ ℓ for which there is
m ∈ V \ C · m⃗ with v(m)= v(mi0). We claim that {m1, . . . ,mℓ,m} is a separated
basis. Suppose not. Then there are some c1, . . . , cℓ, cℓ+1 for which the valuation of
the sum is not given by the minimum. Write I = {i : v(mi )= v(mi0)}. In particular
we must have (by induction)

v

(∑
i∈I

ci mi + cℓ+1m
)
> v(mi0)

and cℓ+1 ̸= 0. But then m̃ =
∑

i∈I ci mi + cℓ+1m must have valuation that is not
among the valuations of m1, . . . ,mℓ, or it must have valuation equal to v(mk)

with k > i0, which in either case contradicts our choice of m. □

Proposition 2.4. Let C be a field and L a regular extension. Assume there is F
a maximal immediate extension of Calg such that tpL̃(L/C) ⊢ tpL̃(L/F). Then L
has the good separated basis property over C. Moreover, if C ′ is any algebraically
closed field with C ⊆ C ′

⊆ F , then the C ′-vector space generated by L inside LF
also has the good separated basis property over C ′.

Proof. If C is trivially valued, then the conclusion follows immediately from
Lemma 2.3. So assume that C is not trivially valued.

The proof is by induction on the dimension of a finitely generated vector subspace
of L over C . The base case is immediate, so assume for the induction hypothesis
that ℓ1, . . . , ln+1 are linearly independent over C and that ℓ⃗= (ℓ1, . . . , ℓn) is a good
separated basis not only for the space it generates over C but also for the space
it generates over any algebraically closed C ′ with C ⊆ C ′

⊆ F . By Lemma 1.20,
ℓ1, . . . , ln+1 are linearly independent over F . As F is maximal (see the claim in
the proof of [HHM 2008, Proposition 12.1]), there is a closest element of F · ℓ⃗ to
ℓn+1; say

v

( n∑
i=1

biℓi − ℓn+1

)
= γ

realizes this maximal valuation. Note that 0F = 0Calg by choice of F and that
0(C) = dclL̃(C) ∩ 0 = 0(Calg). Thus we may apply Lemma 1.17 to see that
0(LF) = 0(L), and hence γ ∈ 0(L). In fact, applying Lemma 1.17 with L
replaced by L0 = C(ℓ1, . . . , ℓn+1) one sees that γ ∈ dclL̃(C(ℓ1, . . . , ℓn+1)).

Claim. There is b′
∈ Calg

· ℓ⃗ with v(b′
− ℓn+1)= γ .

Proof of claim. Let k = trdeg(b1, . . . , bn/C), assume that k is the minimum
transcendence degree of any tuple in d⃗ ∈ F such that v(d⃗ · ℓ⃗−ℓn+1)= γ and assume
for contradiction that k ≥ 1. Fix an algebraically closed C ′

⊆ C(b1, . . . , bn)
alg

such that trdeg(C ′(b1, . . . , bn)/C ′) = 1 and, without loss of generality, assume
that b1 /∈ C ′, that b2, . . . , bk ∈ C ′ are algebraically independent over C , and that
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ψ(b1, . . . , bk, xk+1, . . . , xn) is a formula which holds of bk+1, . . . , bn and implies
the algebraicity of bk+1, . . . , bn over C, b1, . . . , bk .

Note that b1 is also transcendental over C ′L . For, since tp(L/C ′)⊢ tp(L/F), we
have that tp(LC ′/C ′)⊢ tp(LC ′/F) and so tp(F/C ′)⊢ tp(F/C ′L) by Lemma 1.13.
Hence if b1 were algebraic over C ′L , it would also be algebraic over C ′, which it
is not.

Let ϕ(x1) be the formula

∃xk+1 . . . ∃xn

(
v

(
x1ℓ1 +

k∑
i=2

biℓi +

n∑
i=k+1

xiℓi − ℓn+1

)
= γ

)
∧ψ(x1, b2, . . . , bk, xk+1, . . . , xn)

over C ′ℓ1 . . . ℓn+1. Since ϕ(b1) holds, and b1 is not algebraic over C ′ℓ⃗ℓn+1, we may
assume that ϕ(x1) defines a finite union of aclL̃(C

′ℓ⃗ℓn+1)-definable swiss cheeses.
Suppose for contradiction the swiss cheese containing b1 does not intersect C ′.

First note that all the points contained in it have the same L̃-type over C ′. For
suppose not. Then the outer ball of the swiss cheese contains a C ′-definable closed
ball of radius β. This closed ball contains infinitely many points of C ′ of distance
β apart, which therefore cannot all be contained in the excluded balls of the swiss
cheese, and hence at least one satisfies ϕ. It follows in particular that all extensions
of C ′ generated by an element of this swiss cheese are isomorphic over C ′.

There is a d ∈ aclL̃(C
′ℓ⃗ℓn+1) realizing ϕ(x1), since this is a model. Because

tp(d/C ′)= tp(b1/C ′) and tp(b1/C ′)⊢ tp(b1/C ′L), we have tp(d/C ′L)= tp(b1/C ′L).
However, the extension C ′(d) cannot be isomorphic over C ′ℓ⃗ℓn+1 to C ′(b1), as b1

is transcendental over C ′(ℓ⃗ℓn+1).
This contradiction shows that there is b′

1 ∈ C ′ realizing ϕ(x1) and hence also
b′

k+1, . . . , b′
n such that

v

(
b′

1ℓ1 +

k∑
i=2

biℓi +

n∑
i=k+1

b′

iℓi − ℓn+1

)
= γ.

Since the formula ψ(b′

1, b2, . . . , bk, xk+1, . . . , xn) holds of b′

k+1, . . . , b′
n , it follows

that b′

k+1, . . . , b′
n ∈ C ′. Thus b′

1, b2, . . . , bk, b′

k+1, . . . , b′
n is a tuple in C ′ which

witnesses the contradiction with the definition of k. □

Claim. There is b′′
∈ C · ℓ⃗ with v(b′′

− ℓn+1)= γ .

Proof of claim. We have b′
=

∑n
i=1 b′

iℓi ∈ Calg
· ℓ⃗ with v(b′

− ℓn+1) = γ . Let
Aut(Calg/C) act on b′

1, . . . , b′
n and let b1

= b′, . . . , bm be the conjugates of b′

under this action. As tpL̃(L/C) ⊢ tpL̃(L/Calg) by assumption, and therefore
tp(Calg/C) ⊢ tp(Calg/L), we have that for every j < m, v(b j

− ℓn+1) = γ . Let
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b′′
=

1
m

∑
j≤m b j (using the equicharacteristic 0 assumption). Then

v(b′′
− ℓn+1)= v

(
1
m

∑
j≤m

(b j
− ℓn+1)

)
= min

j≤m
{v(b j

− ℓn+1)} = γ,

as the valuation cannot be greater than γ , by its definition. □

Now the argument is a straightforward calculation, as in [HHM 2008, Proposi-
tion 12.1]. We let ℓ′n+1 = ℓn+1−b′′. Then (ℓ⃗, ℓ′n+1) is a separated basis for the space
it generates over F and hence also for the space generated over any subset of F , in
particular for any C ′ with C ⊆ C ′

⊆ F . Then, as in [HHM 2008, Lemma 12.2], the
basis can be made into a good separated basis. □

As a corollary, we can show that the good separated basis property follows from
stable domination. In the next section, we will prove that this characterizes stable
domination.

Corollary 2.5. Let a be a tuple of valued field elements, let C be a subfield of U ,
and suppose that L = dclL̃(Ca) is a regular extension of C. If tpL̃(a/C) is stably
dominated then L has the good separated basis property over C.

Proof. Working in Ũ , let F be any immediate extension of Calg. Because StC(F)=
StC(Calg) and thus StC(F)⊆ aclL̃(StC(C)), we have

StC(L) |⌣C StC(F).

Because tpL̃(L/C) is stably dominated (and Proposition 1.15), we therefore have
tpL̃(L/CStC(F)) ⊢ tpL̃(L/F). Clearly, tpL̃(L/Calg) ⊢ tpL̃(L/CStC(F)) and as
tpL̃(L/C) ⊢ tpL̃(L/Calg) by Lemma 1.19, we have tpL̃(L/C) ⊢ tpL̃(L/F). If F is
also maximal then we are in the situation of Proposition 2.4. □

The following lemma is stated as a claim in the proof of Proposition 12.11 of
[HHM 2008] and the subsequent lemma is part of the statement of that proposition.
However, in [HHM 2008], C is assumed to be maximal. We repeat the proofs here
in order to clarify that the maximality of C is only used to obtain a separated basis.

Lemma 2.6. Let L , M be valued fields with C ⊆ L ∩ M a valued subfield. Assume
that 0L ∩0M = 0C , kL and kM are linearly disjoint over kC , and L has the good
separated basis property over C. Choose {ℓ1, . . . , ℓk} a good separated basis for
the subspace of L it generates over C. Then {ℓ1, . . . , ℓk} is still a good separated
basis for the subspace of LM that it generates over M.

Proof. Suppose, for a contradiction, that there are m1, . . . ,mk in M such that

v

( k∑
i=1

ℓi mi

)
>min{v(ℓi mi ) : 1 ≤ i ≤ k} = γ.
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Let I ⊆ {1, . . . , k} be the set of indices with v(ℓi mi ) = γ for i ∈ I . Note that
|I |> 1 and for all i, j in I , v(ℓi )−v(ℓ j )= v(m j )−v(mi ) ∈ 0L ∩0M = 0C . Thus
v(ℓi )= v(ℓ j ) as the basis is good. Fix j ∈ I and write I ′

= I \ { j}. Now

v

(∑
i∈I

ℓi mi

)
> γ =⇒ v

(
1 +

∑
i∈I ′

ℓi mi

ℓ j m j

)
> 0

and hence res
(
1+

∑
i∈I ′ ℓi mi/ℓ j m j

)
= 0. As v(ℓi/ℓ j )= v(mi/m j )= 0, the residue

map is a ring homomorphism, and hence

1 +

∑
i∈I ′

res(ℓi/ℓ j ) res(mi/m j )= 0.

As kL , kM are linearly disjoint over kC , there must be ci ∈ C for i ∈ I ′ with res(ci )

not all zero such that res(c j )+
∑

i∈I ′ res(ℓi/ℓ j ) res(ci ) = 0. Lifting back to the
field gives v

(∑
i∈I ′ ℓi ci

)
> v(ℓ j ), which contradicts the assumption that {ℓi : i ∈ I }

is separated over C . The basis is clearly good, as the value groups of L and M are
disjoint over the value group of C . □

Lemma 2.6 gives the following purely algebraic statement.

Proposition 2.7. Let L , M be valued fields with C ⊆ L ∩ M a valued subfield.
Assume that 0L ∩0M = 0C , that kL and kM are linearly disjoint over kC and that
L or M has the good separated basis property over C. Then L and M are linearly
disjoint over C , 0LM is the group generated by 0L and 0M over 0C and kLM is the
field generated by kL and kM over kC .

Proof. Without loss of generality, L has the good separated basis property over C .
To prove the linear disjointness, it suffices to show that any finite tuple ℓ1, . . . , ℓk

from L which is linearly independent over C is also linearly independent over M
(recall that we are working inside some ambient structure, so this statement makes
sense). This follows from the conclusion of Lemma 2.6.

Now let x be in the ring generated by L and M over C . Then x =
∑k

i=1 ℓi mi

for some ℓi ∈ L , mi ∈ M and we may assume that the ℓi form a good separated
basis for the C-vector subspace of L that they generate. By Lemma 2.6 the tuple
is also separated over M and hence v(x)= v(ℓ j )+ v(m j ) for some j ∈ {1, . . . , l}.
Thus 0LM = 0L ⊕0C 0M . Suppose that res(x) ̸= 0. Let I = {i : v(ℓi mi )= 0}. Then
res(x)= res

(∑
i∈I ℓi mi

)
=

∑
i∈I res(ℓi mi ), and hence the residue field of kLM is

generated by kL and kM . □

3. Preliminary domination results

In this section, we show that a separated basis is strong enough to imply statements
which are almost residue field domination results. The conclusion of Proposition 3.1
is not quite the statement of residue field domination for two reasons. Firstly, the
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type implication should be over the residue field of M , rather than the residue field
of L . This is addressed in Corollary 3.2. Secondly, the type implication needs to be
proved for subsets of any sort, not just the field sort. This is addressed in Section 4.

The first proposition shows that the good separated basis property is exactly
what is needed in order to show type implication. The first part is a statement
about Ũ and is Proposition 12.11 of [HHM 2008], except with the assumption of
a good separated basis replacing the maximality of C . The further conclusion of
this proposition is proved in [Ealy et al. 2019, Theorem 2.5] in the case of real
closed valued fields. The proof given here is very similar, and illuminates the key
properties to verify that the isomorphism of valued fields is actually an isomorphism
of the full structure.

Proposition 3.1. Let L , M be valued fields with C ⊆ L ∩ M a valued subfield.
Assume that 0L ∩ 0M = 0C , that kL and kM are linearly disjoint over kC and
that L or M has the good separated basis property over C. Let σ : L → L ′

be a valued field isomorphism which is the identity on C , 0L and kL . Then σ
extends by the identity on M to a valued field isomorphism from LM to L ′M , and
thus tpL̃(L/CkL0L) ⊢ tpL̃(L/M).

Suppose further that L and M are substructures of U and σ is an L-isomorphism.
Then σ is an isomorphism of RVLM to RVL ′M , and thus tp(L/CkL0L) ⊢ tp(L/M).

Proof. By Proposition 2.7, L and M are linearly disjoint over C . Since k ′

L = kL ,
0′

L = 0L , and L ′ has the good separated basis property over C whenever L does,
Proposition 2.7 also implies that L ′ and M are linearly disjoint over C . Hence σ
extends to a field isomorphism on LM given by σ

(∑
ℓi mi

)
=

∑
σ(ℓi )mi for any

ℓi ∈ L , mi ∈ M .
To show that σ preserves the valuation on LM , choose x in the ring generated by L

and M over C and write x =
∑k

i=1 ℓi mi . First suppose that L has the good separated
basis property over C . We may assume that {ℓ1, . . . , ℓk} is separated over C and,
as σ is a valued field isomorphism on L , this implies also that {σ(ℓ1), . . . , σ (ℓk)}

is separated over C . Hence, by Lemma 2.6, both bases are separated over M . Then

v(x)= min
1≤i≤k

{v(ℓi )+ v(mi )} = min
1≤i≤k

{v(σ (ℓi ))+ v(mi )} = v(σ (x)),

as required. On the other hand, if we suppose that M has the good separated basis
property over C , we may assume that {m1, . . . ,mk} is separated over C and hence,
by Lemma 2.6, separated over L and L ′. Then, as before,

v(x)= min
1≤i≤k

{v(ℓi )+ v(mi )} = min
1≤i≤k

{v(σ (ℓi ))+ v(mi )} = v(σ (x)),

as required.
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Note that σ is the identity on kL and kM and hence by Proposition 2.7 on kLM .
Likewise, it is the identity on 0LM . Since σ : LM → L ′M is a valued field isomor-
phism, it automatically preserves the group structure on RVLM . Hence, to show
that σ : RVLM → RVL ′M is an isomorphism it suffices, by the quantifier elimination
result in Proposition 1.3 and the fact that σ is the identity on 0LM and kLM , to prove
that the n-th power predicates are preserved; that is, Pn(rv(a))⇐⇒ Pn(σ (rv(a))).
For each n, we have assumed there is a finite set of constants {λ} which are
representatives for the cosets of Pn . Of course, σ(λL) = λL ′ . Consider a coset
representative ρ. Since for any x, y ∈ RV , whether or not xy is in the same coset
as ρ depends only on the coset of x and the coset of y, we have for each ρ a finite
set of pairs 3ρ,n = {(λ, µ)} such that

Pn(ρ
−1xy)⇐⇒

∨
(λ,µ)∈3ρ,n

Pn(λx)& Pn(µy).

Claim. Suppose a = ℓm for some ℓ ∈ L , m ∈ M. Then for every n,

Pn(ρ
−1σ(rv(a)))⇐⇒ Pn(ρ

−1 rv(a)).

Proof of claim. We have

Pn(ρ
−1 rv(a))⇐⇒

∨
(λ,µ)∈3ρ,n

Pn(λ rv(ℓ))& Pn(µ rv(m))

⇐⇒

∨
(λ,µ)∈3ρ,n

Pn(σ (λ rv(ℓ)))& Pn(σ (µ rv(m)))

(as σ |L is an isomorphism and σ |M = Id)

⇐⇒

∨
(λ,µ)∈3ρ,n

Pn(λ rv(σ (ℓ)))& Pn(µ rv(m))

⇐⇒ Pn(ρ
−1σ(rv(a))). □

Now let a =
∑n

i=1 ℓi mi for some n > 1. By Proposition 2.7, v(a) is in the group
generated by 0L and 0M , so there are ℓ ∈ L and m ∈ M with v(a)= v(ℓm). Write
a = ℓma0, where v(a0) = 0, and note that a0 ∈ LM . Then rv(a0) = res(a0). As
σ is the identity on kLM , σ(res(a0)) = res(a0), and therefore σ(rv(a0)) = rv(a0).
Thus Pn(σ (rv(a0)))⇐⇒ Pn(rv(a0)). Hence

Pn(rv(a))⇐⇒

∨
(λ,µ)∈31,n

Pn(λ rv(ℓm))& Pn(µ rv(a0))

⇐⇒

∨
(λ,µ)∈31,n

Pn(λσ(rv(ℓm)))& Pn(µσ(rv(a0)))

(by the claim and the above)

⇐⇒ Pn(σ (rv(a))). □
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As in [Ealy et al. 2019], it is helpful to state the following corollary, which means
in particular that we can change the hypothesis on σ to assume that it fixes the
value group and residue field of M instead of those of L .

Corollary 3.2. Let L , M be substructures of U with C ⊆ L∩M a valued subfield. As-
sume that 0L ∩0M =0C , that kL and kM are linearly disjoint over kC , and that L or
M has the good separated basis property over C. Then tp(L/C0M kM) ⊢ tp(L/M).
Similarly, if L and M are substructures of Ũ satisfying the same hypotheses, then
tpL̃(L/C0M kM) ⊢ tp L̃(L/M).

Proof. By Proposition 3.1, we have tp(L/C0LkL) ⊢ tp(L/M). Applying (v)⇒(ii)
of Proposition 1.15, we obtain tp(L/C0M kM) ⊢ tp(L/M). □

Remark 3.3. If, in the preceding corollary, L could be taken from any sort, we
would have proven the following: if k(M) is a regular extension of k(C), 0M =0C ,
and M has the good separated basis property over C , then tp(M/C) is residue field
dominated.

Corollary 3.2 often has implications for how forking behaves. When T is such
that forking and dividing are the same, Corollary 3.2 describes circumstances in
which forking in U can be reduced to forking in the residue field and value group,
which is presumably easier to understand.

Corollary 3.4. Assume that T implies that forking and dividing are the same over C ,
and assume further that k(Ca) is a regular extension of kC , 0(Ca)/0C is torsion
free, and either dcl(Ca) or dcl(Cb) has the good separated basis property over C.
Then a |⌣C b if and only if k(Ca)0(Ca) |⌣C k(Cb)0(Cb).

Proof. The proof is exactly that of Lemma 3.3(i) and Theorem 3.4(ii) of [Ealy et al.
2019], with the reference to Corollary 2.8 of that paper replaced by Corollary 3.2
of this one, and the use of elimination of imaginaries in the residue field replaced
by strong stable embeddedness as in Remark 1.4. □

As a further corollary, we give a purely algebraic characterization of stable
domination in ACVF (at least for a regular extension). We first note the following
lemma.

Lemma 3.5. Let C, L be valued fields with C ⊆ L and suppose that L is henselian
and an unramified regular extension of C. Then the following are equivalent:

(1) L has the good separated basis property over C.

(2) tpL̃(L/C) ⊢ tpL̃(L/F) for some maximal immediate extension F of Calg.

(3) tpL̃(L/C) ⊢ tpL̃(L/F) for any maximal immediate extension F of Calg.

Proof. The implication (3)⇒ (2) is clear and (2)⇒ (1) is Proposition 2.4.
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Let F be any maximal immediate extension of Calg and assume that L has the
good separated basis property over C . We apply Lemma 2.6 with Calg replacing M .
The lemma applies because L being henselian and regular implies that kL is a
regular extension of kC : otherwise, there would be a polynomial with coefficients
in kC with a root in kL , which would then lift to a polynomial over C with a
root in L (as L is henselian and the residue characteristic is zero), contradict-
ing the regularity of L over C . Applying Corollary 3.2, with LCalg playing the
role of L , Calg playing the role of C , and F playing the role of M , we see that
tpL̃(LCalg/Calg)⊢ tpL̃(LCalg/F), and hence tpL̃(L/Calg)⊢ tpL̃(L/F). Now apply
Lemma 1.19 to obtain that tpL̃(L/C) ⊢ tpL̃(L/F). □

Theorem 3.6. Suppose that U is algebraically closed. Let C ⊂ U be a subfield, let
a be a tuple of valued field elements, and let L be the definable closure of Ca in
the valued field sort. Assume L is a regular extension of C. Then the following are
equivalent:

(i) tpL̃(a/C) is stably dominated.

(ii) L has the good separated basis property over C and L is an unramified
extension of C.

Proof. First assume (ii). Since L is definably closed, it is henselian. Thus we may
apply Lemma 3.5 to see that tpL̃(L/C) ⊢ tpL̃(L/F) for some maximal extension
F of Calg. Applying Proposition 2.7, we see that 0LCalg = 0Calg . It follows that
0(LCalg)= 0(Calg), as both are equal to 0Calg . By [HHM 2008, Proposition 12.5],
it follows that tp(a/Calg) is orthogonal to 0, which by Fact 1.6 is equivalent to
being stably dominated. By Fact 1.9, tpL̃(a/C) is stably dominated as tpL̃(a/Calg)

is stably dominated.
The converse is handled by Corollary 2.5 along with the fact that stable domina-

tion implies orthogonality to the value group. □

RV-domination. As we recalled in Example 1.8, stable domination over the value
group in an algebraically closed valued field [HHM 2008, Theorem 12.18] is implied
by the assumptions that the base C is maximal, k(L) is a regular extension of k(C),
and 0L/0C is torsion free. We have already noted that this is not enough to get
residue field domination over the value group. Here we introduce a notion of
RV-domination, a property which does hold for the above example, and which in
some ways feels closer to stable domination.

The analogue to the stable part of an algebraically closed valued field is here
given by an infinite collection of definable subsets of RV, each of which is internal
to the residue field. Let M ⊇ C and S ⊂ 0. Recall that RVγ (M) is the fiber of
the valuation map in RV(M) above γ , for γ ∈ S. Although this might seem to
be very different from StC(M), in fact, by [HHM 2008, Lemma 12.9], when C
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and M are algebraically closed and S is definably closed, aclL̃({RVγ (M)}γ∈S) is
essentially StC S(M). Furthermore, [HHM 2008, Lemma 12.10] gives equivalent
conditions for independence over C0L of StC0L (L) and StC0L (M). We take one of
these equivalent conditions and use it as the definition of algebraic independence
in RV.

Definition 3.7. Let L , M be subfields of U with C ⊆ L ∩ M a valued subfield.
Assume that 0L ⊆ 0M and 0L/0C is torsion free. We say that {RVγ (L)}γ∈0L is
algebraically independent from {RVγ (M)}γ∈0L over C0L if the following condition
holds: for every sequence (ai ), (bi ) of elements of L , and (ei ) of elements of M
such that

-: (v(ai )) is a Q-basis for 0(L) over 0(C),

-: (res(bi )) is a transcendence basis of kL over kC , and

-: for all i , v(ai )= v(ei ),

the sequence (res(ai/ei ), res(b j )) is algebraically independent over k(M).

Definition 3.8. Let C ⊆ L be subfields of U such that 0L/0C is torsion free. We
say tp(L/C0L) is RV-dominated if for any subfield M ⊇ C such that 0M ⊃ 0L , if
{RVγ (L)}γ∈0L is algebraically independent from {RVγ (M)}γ∈0L over C0L then

tp(M/C{RVγ (L)}γ∈0L ) ⊢ tp(M/L).

We note that this is not quite domination by RV, which is not a stable set in an
algebraically closed valued field, but rather domination by a collection of k-internal
sets. However, the more accurate name “RVγ where γ ranges over 0L domination”
is too unwieldy.

In order to prove a domination theorem, we first prove a result about extending
isomorphisms. The following theorem was originally given in [HHM 2008, Propo-
sition 12.15] in the case of algebraically closed valued fields, and then in [Ealy et al.
2019, Theorem 2.9] for real closed valued fields. The proof is somewhat subtle,
and it is not completely obvious that the changes that are required for the current,
more general, context carry through the machinery. For this reason, we repeat the
proof in this paper, but postpone it to the Appendix.

Theorem 3.9. Let L , M be subfields of Ũ with C ⊆ L ∩ M a valued subfield, k(L)
a regular extension of k(C), and 0L/0C torsion free. Assume that 0L ⊆ 0M , that
{RVγ (L)}γ∈0L is algebraically independent from {RVγ (M)}γ∈0L over C0L and
that L has the good separated basis property over C. Let σ be an automorphism
of Ũ mapping L to L ′, which is the identity on C , 0L , and kM . Then σ |L can be
extended to a valued field isomorphism from LM to L ′M which is the identity on M.
Furthermore, if σ is additionally the identity on RVL , then σ may be extended to
LM so that it is the identity on RVLM .
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Theorem 3.10. Let L , M be subfields of U with C ⊆ L ∩ M a valued subfield,
k(L) a regular extension of k(C), 0L ⊆ 0M and 0L/0C torsion free. Assume
that {RVγ (L)}γ∈0L is algebraically independent from {RVγ (M)}γ∈0L over C0L

and that L has the good separated basis property over C. Let σ : L → L ′ be an
L-isomorphism which is the identity on C , {RVγ (M)}γ∈0L . Then σ can be extended
by the identity on M to an automorphism of U .

Proof. We wish to show that tp(L/C{RVγ (M)}γ∈0L ) implies tp(L/M). Observe
that for each γ ∈0L , both RVγ (L) and RVγ (M) are nonempty. This (by Remark 1.4)
allows us to apply (iv)⇒(i) of Proposition 1.15, and we see that it suffices to show
that

tp(L/C{RVγ (L)}γ∈0L {RVγ (M)}γ∈0L ) ⊢ tp(L/M).

The assumption that σ fixes {RVγ (M)}γ∈0(L) implies that σ fixes kM and 0L . By
the above, we may assume that σ fixes {RVγ (L)}γ∈0L as well. Thus we may apply
Theorem 3.9 to get a valued field isomorphism σ : LM → L ′M which is the identity
on M and on RVLM . In order to show that σ extends to an automorphism of U , it
suffices to show that it induces an isomorphism from the structure RVLM to RVL ′M ,
which is clear as the induced map is the identity. □

Theorem 3.11. Let L be a subfield of U with C ⊆ L a valued subfield. Assume that
k(L) is a regular extension of k(C), 0L/0C is torsion free and that L has the good
separated basis property over C. Then tp(L/C0L) is RV-dominated.

Proof. Let M be a subfield of U as required in Definition 3.8. Theorem 3.10 gives us
that tp(L/C{RVγ (M)}γ∈0L )⊢ tp(L/M). As in the proof of Theorem 3.10, we may
apply (i)⇔(ii) of Proposition 1.15 to obtain the type implication in the definition of
RV-domination. □

4. The geometric sorts and domination

In the previous section, we worked within the field sort. However, our definition of
residue field domination requires us to consider independent sets in any of the sorts.
We thus need a mechanism to pull a hypothesis on an arbitrary geometric sort back
to the field. This is given to us by the notion of a resolution.

The only sorts in U , apart from the main sort, are RV and 0. Of course, if one
wanted to eliminate imaginaries, one would add more sorts including, but perhaps
not limited to, the geometric sorts used to eliminate imaginaries in ACVF. The
results in this section, proven as they are by carrying out the arguments of [HHM
2008] inside of U , apply also to the geometric sorts. Thus for the remainder of this
section, we take U to also refer to that portion of Ueq consisting of the geometric
sorts.
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Definition 4.1. Let A be a subset of U . We say that a set B in the field sort
is a resolution of A if B is algebraically closed (in the sense of L) in the field
sort and A ⊆ dcl(B). The resolution is prime if B embeds over A into any other
resolution.

In [HHM 2008, Theorem 11.14], the existence of prime resolutions is shown for
algebraically closed valued fields. Thus, given A ⊂ U ⊂ Ũ , we have a resolution
B ⊆ Ũ , though it is not a priori clear that B would be contained in U . Below, we
give a careful analysis of the proof of the existence of resolutions, to see that the
resolution can be constructed within U . Since the proof involves checking that the
arguments of various parts of Chapter 11 of [HHM 2008] never involve choosing
something in Ũ that necessarily lies outside of U , we follow the notation of [HHM
2008] as we walk the reader through this process. In particular, K refers to the field
sort and R to the valuation ring.

Theorem 4.2. Let C ⊆ U be a subfield, and let e ∈ U or more generally, in the
geometric sorts of U . Then Ce admits a resolution B with k(B) = k(acl(Ce))
and 0(B)= 0(Ce).

Proof. We follow the construction in Chapter 11 of [HHM 2008], with the no-
tation there. First, as in Theorem 11.14, we can assume that e = (a, b), where
a ∈ Bn(K )/Bn(R) and b ∈ Bm(K )/Bm,m(R). The next step is to replace e with an
opaque layering of it (in the sense of ACVF). We need not concern ourselves here
with the precise details of this, because we follow the construction in Lemmas 11.10
to 11.13 exactly. We need only check that the construction can be carried out
in U and does not require elements of Ũ \ U . Through multiple applications of
Lemma 11.10 and Corollary 11.11, a = gBn(R) is replaced successively by pairs
(h(H ∩ F), ℓ(N ∩ Fh)), where H, F are subgroups of Bn(K ), N is a normal
subgroup of Bn(K ), h ∈ H , ℓ ∈ N . Those subgroups are some of the Gi and Hi

defined in Lemma 11.12, and are defined over Z. The decomposition asserted in
that lemma holds over any ring; in particular, it holds over our field K (U). This
shows that we can at each step take h and ℓ in K (U). The same is true for b.

So we have replaced e by a sequence ā = (a0, . . . , aN−1) satisfying the condi-
tions of Lemma 11.4 in the sense of ACVF and lying in U . We therefore have
dclL̃(Cā)= dclL̃(Ce). Then we can find C ⊆ D ⊆ K (U) such that Cā ⊂ aclL̃(D)
and D is atomic over Cā (in L̃). This is by Lemma 11.4: all we do is take
representatives of the equivalence relations defining the ai (here D = B0 ∪ C in
the notation of Lemma 11.4). We can find such elements in K (U) since ā is in U .
Note that by the construction in Lemma 11.4, each representative is either in D or
algebraic over D. In particular, each representative is contained in aclL̃(D)∩ K (U).

Next, we want to expand D so that it remains atomic, but so that Cā lies in the
definable closure rather than the algebraic closure. We follow exactly the argument
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of Corollary 11.9, needing only to check that the construction does not leave U . We
know that ā is in the definable closure of some b ∈ aclL̃(D)∩ K (U) (namely the
tuple of representatives). The orbit (in the sense of Ũ) of b over Dā is finite, and
hence coded by some b′

∈ K (Ũ). As b′ is definable over a subset of U , in particular
b′ is in K (U). We thus have b′

∈ dclL̃(Dā) with ā ∈ dclL̃(Db′) and tpL̃(Db′/Cā)
is isolated. (Note that our b is denoted e in Corollary 11.9, and our b′ is denoted e′.)

From Corollary 11.16, we know that Ce admits a dcl-resolution B0 such that
dclL̃(B0) ∩ k = dclL̃(Ce) ∩ k and dclL̃(B0) ∩ 0 = dclL̃(Ce) ∩ 0. Referring to
the proof of Corollary 11.16, we see that this dcl-resolution is the one obtained in
Corollary 11.9. That is, B0 = Db′, with D and b′ as above. Let B =acl(Db′)∩K (U).
To see that B is the required resolution, we just need to verify that k(B)=k(acl(Ce))
and 0(B)= 0(Ce).

First we show that k(B0) = k(Ce). It is clear that k(B0) ⊇ k(Ce), so take
d ∈ k(B0), witnessed by ϕ. By quantifier elimination, ϕ is an L-formula in the
RV-sort and has the form ϕ(x, rv(t (Db′))), where t is a term. Since there are no addi-
tional terms in L in the field sort, this is an L̃ term, and thus rv(t (Db′))∈ dclL̃(Db′).
From the proof that k is a stably embedded subset of RV, we may assume rv(t (Db′))

is in k, and thus in dclL̃(B0)∩k =dclL̃(Ce)∩k. Thus ϕ also witnesses that d ∈k(Ce).
Since it is clear that k(B) ⊇ k(acl(Ce)), take d1 ∈ acl(B0) ∩ k. Suppose the

conjugates of d1 over B0 are d1, . . . , dn . Then the set {d1, . . . , dn} is in the definable
closure of B0 and, as fields code finite imaginaries, the set is coded by an element
of k(B0)= k(Ce). Thus d1 ∈ acl(Ce), as desired.

A similar argument shows that 0(B)= 0(dclL̃(Ce)). □

By the following lemma, we see that proving a type implication for such a
resolution is sufficient to give us the desired type implication that we need in the
definition of residue field domination.

Lemma 4.3. Fix a set of parameters C. Suppose that B is a resolution of Cb with
k(B)= k(acl(Cb)), and suppose that tp(a/Ck(B)) ⊢ tp(a/CB). Then

tp(a/Ck(Cb)) ⊢ tp(a/Cb).

Proof. Take ϕ(x, b)∈ tp(a/Cb). Since b ∈dcl(B), there isψ(x, d1)∈ tp(a/Ck(B)),
which implies ϕ(x, b). Consider the set D = {d1, . . . , dn} of conjugates of d1

over Cb. This set is definable over Cb, and thus so is
∨

di ∈D ψ(x, di ). This latter
formula is in tp(a/Ck(Cb)) and implies ϕ(x, b) as desired. □

The following lemma allows us to assume that elements are in the main sort
when trying to prove domination results..

Lemma 4.4. Fix tp(a/C). The following are equivalent:

(i) For any b ∈ U , if k(aC) |⌣
alg
k(C) k(bC), then tp(b/Ck(Ca)) ⊢ tp(b/Ca).
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(ii) For any b in the field sort of U , if k(aC) |⌣
alg
k(C) k(bC), then tp(b/Ck(Ca)) ⊢

tp(b/Ca).

Proof. Clearly, (i) implies (ii). For the other direction, assume (ii) and choose b ∈ U
such that k(aC) |⌣

alg
k(C) k(bC). Choose a resolution B of Cb with k(B)=k(acl(Cb)).

As k(aC) |⌣
alg
k(C) k(B), we conclude by (ii) that tp(B/Ck(Ca))⊢ tp(B/Ca) and thus

by the equivalence of (i) and (ii) in Proposition 1.15 that tp(a/Ck(B))⊢ tp(a/CB).
Then we may apply Lemma 4.3 to obtain tp(a/Ck(Cb)) ⊢ tp(a/Cb). We apply
Proposition 1.15 again to obtain tp(b/Ck(Ca)) ⊢ tp(b/Ca). □

As noted in Remark 3.3, Lemma 4.4 together with Corollary 3.2 gives us the
following residue field domination result.

Theorem 4.5. Let C ⊆ U be a subfield and let a be a (possibly infinite) tuple of
field elements such that the field generated by Ca is an unramified extension of C
with the good separated basis property over C , and such that k(Ca) is a regular
extension of k(C). Then tp(a/C) is residue field dominated.

Using Theorem 4.5 (or rather its component pieces: Corollary 3.2 and Lemma 4.4)
we are able to push the above result a bit further and relate stable domination in the
algebraically closed field to residue field domination in the henselian field. Recall
that we write C+

= acl(C)∩ dcl(Ca).

Theorem 4.6. Let C ⊆ U be a subfield and let a ∈ U . Assume that tpL̃(a/C) is
stably dominated. Then tp(a/C+) is residue field dominated.

Proof. First assume that a is a field element. By Fact 1.9, also tpL̃(a/ acl(C)) is
stably dominated. Choose b with k(acl(C)a) |⌣

alg
acl(C) k(acl(C)b). By Lemma 4.4,

we may assume that b is a field element. Let L be dcl(acl(C)b) and let M
be dcl(acl(C)a). Since M is definably closed in L and thus also in L̃, it is a
henselian valued field, and trivially M is a regular extension of acl(C), so we may
use Corollary 2.5 to see that M has the good separated basis property over acl(C).
Note that 0M = 0acl(C) by stable domination, so trivially 0L ∩0M = 0acl(C). Since
k(acl(C)a) |⌣

alg
acl(C) k(acl(C)b), Fact 1.18 implies kL and kM are linearly disjoint

over acl(C). Thus Corollary 3.2 implies that

tp(b/ acl(C)k(acl(C)a)) ⊢ tp(b/ acl(C)a)

and hence tp(a/ acl(C)) is residue field dominated. By Proposition 1.12, tp(a/C+)

is residue field dominated.
Now let a be in any of the sorts. By Facts 1.9 and 1.6, tpL̃(a/acl(C)) is orthogonal

to 0. By [HHM 2008, Lemma 10.14], there is a resolution B of acl(C)a such
that tp(B/C) is orthogonal to 0. On the other hand, we know by Theorem 4.2
and [HHM 2008, Theorem 11.14], that acl(C)a has a prime resolution A that
only adds algebraic elements to k(Ca) and lies in U . By primality, A embeds
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into B and hence its L̃-type is also orthogonal to 0, so also stably dominated. By
Theorem 4.6, tp(A/C+) is residue field dominated. Consider any b ∈ U such that
k(C+b) |⌣

alg
C+ k(C+a). Since k(A) = acl(k(C+a)), we have k(C+b) |⌣

alg
C+ k(A).

By residue field domination for tp(A/C+), we have tp(b/C+k(A)) ⊢ tp(b/C+ A).
Now apply Lemma 4.3 to see that tp(b/C+k(C+a)) ⊢ tp(b/C+ A). □

Appendix: Proof of Theorem 3.9

This proof is essentially the same as that given in [HHM 2008, Proposition 12.15]
in the case of algebraically closed valued fields, and then in [Ealy et al. 2019,
Theorem 2.9] for real closed valued fields. In the other two papers, the fields L , M ,
and C are assumed to be algebraically (respectively real) closed. We show that this
hypothesis is not really needed. We also show that the prior assumption that C
is maximal can be replaced with the good separated basis property for L over C .
Furthermore, we prove the additional conclusion that if σ is the identity on RVL as
well, then σ extends by the identity to all of RVLM .

Theorem 3.9. Let L , M be subfields of Ũ with C ⊆ L ∩ M a valued subfield, k(L)
a regular extension of k(C), and 0L/0C torsion free. Assume that 0L ⊆ 0M , that
{RVγ (L)}γ∈0L is algebraically independent from {RVγ (M)}γ∈0L over C0L , and
that L has the good separated basis property over C. Let σ be an automorphism
of Ũ mapping L to L ′ which is the identity on C , 0L , and kM . Then σ |L can be
extended to a valued field isomorphism from LM to L ′M which is the identity on M.
Furthermore, if σ is additionally the identity on RVL , then σ may be extended to
LM so that it is the identity on RVLM .

Proof. In outline, we begin by perturbing the valuation to a finer one, v′, which satis-
fies the hypothesis that 0(L ,v′)∩0(M,v′) =0(C,v′). We can then apply Proposition 3.1
to extend σ |L to a v′-valued field isomorphism from LM to L ′M which extends the
identity on M . An analysis of the construction shows that this is also a v-valued
field isomorphism. Finally, we use the separated basis hypothesis to show that σ is
also an isomorphism on RVLM .

The first statement to be proved can be rephrased as saying

tpL̃(L/CkM0L) ⊢ tpL̃(L/M).

To prove this, we claim that it suffices to prove tpL̃(L/CkM0L0M) ⊢ tpL̃(L/M).
For, by Lemma 1.14, with CkM replacing C , and 0 replacing S, we know that
tpL̃(L/CkM0(kM L)) ⊢ tpL̃(L/CkM0(kM L)0(M)). Thus, we just need to verify
that 0(kM L)= 0(L)= 0L . This follows by orthogonality of the value group and
residue field. Thus we may assume that σ fixes 0M as well.

Choose a1, . . . , ar from L and e1, . . . , er from M such that, for each 1 ≤ i ≤ r ,
v(ai )= v(ei ) and {v(ai )} forms a Q-basis for 0L modulo 0C . Choose b1, . . . , bs
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from L such that {res(b1), . . . , res(bs)} is a transcendence basis for kL over kC . By
Definition 3.7, the elements

res(a1/e1), . . . , res(ar/er ), res(b1), . . . , res(bs)

are algebraically independent over kM . For 0 ≤ j ≤ r , let

R( j)
= acl(kM , res(a1/e1), . . . , res(a j/e j ), res(b1), . . . , res(bs))∩ kLM .

In particular,

R(0) = acl(kM , res(b1), . . . , res(bs))∩ kLM = acl(kM , kL)∩ kLM ,

R(r) = acl(kM , res(a1/e1), . . . , res(ar/er ), kL)∩ kLM .

For each 0 ≤ j ≤ r − 1, choose a place p( j)
: R( j+1)

→ R( j) fixing R( j) and such
that p( j)(res(a j+1/e j+1)) = 0, which is possible by the algebraic independence
of res(a1/e1), . . . , res(ar/er ) over kM . Also choose a place p∗

: kLM → R(r)

fixing R(r). (Later we will show that kLM = R(r) and thus p∗ will be seen to be
the identity.) Write pv : LM → kLM for the place corresponding to our given
valuation v. Define pv′ : LM → R(0) to be the composition

pv′ = p(0) ◦ · · · ◦ p(r−1)
◦ p∗

◦ pv.

Let v′ be a valuation associated to the place pv′ . Notice that all the places p( j)

and p∗ are the identity on kM , so we may identify (M, v) and (M, v′), including
identifying the value groups 0M and 0(M,v′). Similarly, the places are all the identity
on kL , so the value groups 0L and 0(L ,v′) are isomorphic, but we shall see that we
cannot simultaneously identify 0M with 0(M,v′) and 0L with 0(L ,v′).

We now have two valuations v and v′ on LM . If x ∈ M ⊆ LM , then v(x)= v′(x),
and if x, y ∈ L ⊆ LM then v(x) ≤ v(y) implies v′(x) ≤ v′(y). Furthermore, the
construction has ensured that for any x ∈ M with v(x) > 0, and any w such that
res(w) is a nonzero element of kLM mapped to zero by p∗,

0< v′(a1/e1)≪ · · · ≪ v′(ar/er )≪ v(w)≪ v′(x),

where γ ≪ δ means that nγ < δ for any n ∈ N (and hence 0(L ,v′) ̸= 0L ). Let 1 be
the subgroup of 0(LM,v′) generated by v′(a1/e1), . . . , v

′(ar/er ) together with v(w)
for all such w. Then 1 is a convex subgroup of 0(LM,v′) and 0(LM,v′) =1⊕0LM ,
where the right-hand group is ordered lexicographically. (See, e.g., Theorem 15,
Theorem 17, and the associated discussion in Chapter VI of [Zariski and Samuel
1975]).

To see that 0(L ,v′) ∩ 0(M,v′) = 0(C,v′), let m ∈ M and ℓ ∈ L be such that
v′(m)= v′(ℓ). Set v′(ai/ei )= δi and v′(ei )= ϵi . As (v(ai )) generates 0L over 0C ,
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and 0L and 0(L ,v′) are isomorphic,

v′(ℓ)=

r∑
i=1

piv
′(ai )+ γ =

r∑
i=1

piδi +

r∑
i=1

piϵi + γ,

where pi ∈ Q and γ ∈ 0C . The set

{δ1, . . . , δr , ϵ1, . . . , ϵr }

is algebraically independent over 0C since 0(LM,v′) = 1⊕0LM . Next, note that
since v′(ei )= v(ei ), {v′(ei )} forms a Q-basis of 0L ⊆ 0M = 0(M,v′) over 0C . Let
µ1, . . . , µt be such that {ϵi } ∪ {µ j } forms a Q-basis of 0M over 0C . Then

v′(m)=

r∑
i=1

p′

iϵi +

t∑
i=1

qiµi + γ ′,

where qi ∈ Q and γ ′
∈ 0C . It follows that each pi = p′

i = 0 and each qi = 0, hence
v′(ℓ)= v′(m) ∈ 0C .

Next we must check that k(L ,v′) and k(M,v′) are linearly disjoint. Our definition
of RV-independence implies that kL and kM are independent over kC , and using
that kL is a regular extension of kC and Fact 1.18 we obtain that kL and kM are
linearly disjoint over kC . As already observed, the place

p(0) ◦ · · · ◦ p(r−1)
◦ p∗

: kLM → acl(kM , kL)∩ kLM

is the identity on kM and kL . Thus this place is also the identity on their compositum,
and kLkM = k(L ,v′)k(M,v′). Thus kL and kM being linearly disjoint over kC implies
linear disjointness of k(L ,v′) and k(M,v′) over k(C,v′).

Hence we can apply Corollary 3.2 to deduce that the isomorphism σ |L extends to
a valued field isomorphism from (LM, v′) to (L ′M, v′) which is the identity on M .
As v′ is a refinement of v, σ is also an isomorphism of (LM, v).

Moreover, by Proposition 2.7, we know that 0(LM,v′) is the sum of 0(L ,v′) and
0(M,v′), and k(LM,v′) = k(L ,v′)k(M,v′). Since 0(LM,v′) is also 1⊕0LM , we see both
that 1 must be generated by δ1, . . . , δr and that 0LM = 0M . Since 1 is generated
by δ1, . . . , δr , in particular this means that there is no w such that res(w) is a
nonzero element mapped to zero by p∗. This implies that p∗ is the identity, and
that kLM = acl(kM , res(a1/e1), . . . , res(ar/er ), kL)∩ kLM .

It remains to show that if σ is the identity on RVL , then it is also the identity
on RVLM . Take an element of LM , say

(∑
i<n ℓi mi

)
/
(∑

j<n ℓ j m′

i

)
. By the hy-

pothesis, we may assume that the {ℓi } forms a good separated basis over C with
respect to v for the subspace it generates, and also with respect to v′, since (L , v)
and (L , v′) are isomorphic. By Lemma 2.6, this basis is still separated over M with
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respect to v′. Hence, it is even separated over M with respect to v, as the following
calculation shows:

v

(∑
i<n

miℓi

)
= v′

(∑
i<n

miℓi

)
/1= (min

i<n
{v′(miℓi )})/1

= min
i<n

{v′(miℓi )/1} = min
i<n

{v(miℓi )}.

Since the basis is separated, we can calculate the rv of an element of RVLM as
below. Let I be the set of indices when v(miℓi ) attains its minimum. Then

rv
(∑

i<n

miℓi

)
= rv

(∑
i∈I

miℓi

)
=

∑
i∈I

rv(miℓi )=

∑
i∈I

rv(mi ) rv(ℓi ).

As σ fixes RVL and M , we see that σ fixes rv of any element of the form
∑

i<n miℓi .
Hence σ fixes rv of any element which is a quotient of such elements, i.e., any
element of LM . □

Acknowledgements

We thank Mariana Vicaria for comments on previous versions of this paper and in
particular for pointing out a mistake in the statement of Theorem 3.10. We also
thank the referee for very carefully reading the paper and compiling an exhaustive
list of comments which resulted in great improvements to the exposition.

References

[Chernikov and Simon 2019] A. Chernikov and P. Simon, “Henselian valued fields and inp-minimality”,
J. Symb. Log. 84:4 (2019), 1510–1526. MR Zbl

[Cluckers and Loeser 2007] R. Cluckers and F. Loeser, “b-minimality”, J. Math. Log. 7:2 (2007),
195–227. MR Zbl

[Cubides Kovacsics et al. 2021] P. Cubides Kovacsics, M. Hils, and J. Ye, “Beautiful pairs”, preprint,
2021. arXiv 2112.00651

[Ealy et al. 2019] C. Ealy, D. Haskell, and J. Maříková, “Residue field domination in real closed
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Star sorts, Lelek fans, and the reconstruction of
non-ℵ0-categorical theories in continuous logic

Itaï Ben Yaacov

We prove a reconstruction theorem valid for arbitrary theories in continuous (or
classical) logic in a countable language, that is to say that we provide a complete
bi-interpretation invariant for such theories, taking the form of an open Polish
topological groupoid.

More explicitly, for every such theory T we construct a groupoid G∗(T ) that
only depends on the bi-interpretation class of T , and conversely, we reconstruct
from G∗(T ) a theory that is bi-interpretable with T . The basis of G∗(T ) (namely,
the set of objects, when viewed as a category) is always homeomorphic to the
Lelek fan.

We break the construction of the invariant into two steps. In the second step
we construct a groupoid from any sort of codes for models, while in the first
step such a sort is constructed. This allows us to place our result in a common
framework with previously established ones, which only differ by their different
choice of sort of codes.
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Introduction

This paper deals with what we have come to refer to as reconstruction theorems.
By this we mean a procedure that associates to a theory T (possibly under some
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hypotheses) a topological group-like object that is a complete bi-interpretation
invariant for T . In other words, if T ′ is bi-interpretable with T , then we associate
to it the same object (up to an appropriate notion of isomorphism), and conversely,
the isomorphism class of this object determines the bi-interpretation class of T .

The best-known result of this kind is due to Coquand, and appears in [Ahlbrandt
and Ziegler 1986]. It states that if T is an ℵ0-categorical theory (in a countable
language), then the topological group G(T ) = Aut(M), where M is the unique
countable model, is such an invariant. This was originally proved for theories in
classical (Boolean-valued) logic, and subsequently extended by Kaïchouh and the
author [Ben Yaacov and Kaïchouh 2016] to continuous (real-valued) logic.

In [Ben Yaacov 2022] we proposed a reconstruction result that also covers some
non-ℵ0-categorical theories, using a topological groupoid (rather than a group) as
invariant. The result was presented in two forms, first for classical logic and then for
the more general continuous logic. This was not done for the sake of presentation
(doing the more familiar case first), but because of a fundamental difference between
the two cases. In classical logic, we have a straightforward construction of a sort of
“codes of models” (more about this later). In continuous logic, on the other hand,
no such construction exists in general, and we were reduced to assuming that such
a sort (satisfying appropriate axioms) existed, and was given to us. Worse still, we
gave an example of a theory for which no such sort existed, and consequently, for
which our reconstruction theorem was inapplicable.

In the present paper we seek to remedy this deficiency, proposing a reconstruction
theorem that holds for all theories (in a countable language). This time, we work
exclusively in continuous logic, keeping in mind that this contains classical logic
as a special case.

In Section 1 we provide a few reminders regarding continuous logic in general,
and interpretable sorts in particular. We (re)define the notions of interpretation and
bi-interpretation, in a manner that is particularly appropriate for the use we shall
make of them, and that avoids the rather tedious notions of interpretation schemes.

In Section 2 we discuss various ways in which one sort E can be “coded” in
another sort D, both uniform (e.g., E is interpretable in D) and nonuniform (e.g.,
each a ∈ E is in the definable closure of some b ∈ D). We define a coding sort D
as a sort which codes models. Every sort is coded in a coding sort in a nonuniform
fashion, and therefore in a uniform fashion as well.

In Section 3 we associate to a coding sort D a topological groupoid GD(T ), from
which a theory T2D , bi-interpretable with T , can be recovered. In particular, GD(T )
determines the bi-interpretation class of T . If, in addition, D only depends on the
bi-interpretation class of T , then so does GD(T ), in which case it is a complete
bi-interpretation invariant. We point out, rather briefly, how previous reconstruction
theorems fit in this general setting.
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In Sections 4 and 5 we define star spaces and star sorts. These, by their very
nature, require us to work in continuous (rather than classical) logic. In particular,
we define a notion of a universal star sort, and show that if it exists, then it is unique
up to definable bijection, and only depends on the bi-interpretation class of T .

In Section 6 we use the star sort formalism to give a construction that is analogous
to, though not a direct generalisation of, the construction of the coding sort for
classical theories in [Ben Yaacov 2022]. We then prove that the resulting sort is a
universal star sort, so one always exists. Moreover, the construction is independent
of the theory: we simply construct, for any countable language L, a star sort D∗

that is universal in any L-theory, complete or incomplete.
We conclude in Section 7, showing that the universal star sort must be a coding

sort, whence our most general reconstruction theorem: in a countable language,
the groupoid GD∗(T ) is a complete bi-interpretation invariant for T . We also show
that the type-space of the sort D∗, relative to any complete theory T , is the Lelek
fan L . Finally, in case T does fall into one of the cases covered by previous results,
we show that our last result can be viewed as some kind of generalisation. More
precisely, using the Lelek fan, we can recover the coding sort D∗, and therefore the
corresponding groupoid GD∗(T ), from those given by the earlier results.

1. Sorts and interpretations

As said in the introduction, we work exclusively in continuous first order logic, and
assume that the reader is familiar with it. For a general exposition, see [Ben Yaacov
and Usvyatsov 2010; Ben Yaacov et al. 2008]. We allow formulas to take truth
values in arbitrary compact subsets of R, so connectives are arbitrary continuous
functions from Rn to R. For a countable family of connectives, it suffices to take all
rational constants, addition and multiplication, to which we add the absolute value
operation. Closing these under composition yields a (countable) family of functions
that is dense among all continuous functions on each compact subset of Rn .

Notation 1.1. Using the absolute value operation we may define maximum and
minimum directly (i.e., without passing to a limit). We use infix notation ∨ and ∧
for those. We also write t −. s for the truncated subtraction (t − s)∨ 0.

We allow the language to be many-sorted. Some of the time we also require
the language to be countable, which means in particular that the set of sorts is
countable, although this is not a requirement for the present section.

We are going to talk quite a bit about sorts and interpretations, so let us begin
with a few reminders. By a sort we mean an interpretable sort in the sense of
continuous logic, as discussed, for example, in [Ben Yaacov and Kaïchouh 2016;
Ben Yaacov 2022]. Sorts are obtained by closing the family of basic sorts (namely,
sorts named in the language) by
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• adding the constant sort {0, 1} (so it is always implicitly interpretable),

• countable product,

• quotient by a definable pseudodistance (in a model that is not saturated, this
may also require a passage to the completion), and

• nonempty definable subset.

We follow the convention that a natural number n ∈ N is coded by the set
{0, . . . , n− 1}, so {0, 1} may sometimes be denoted by 2 (this is especially true of
its powers: the Cantor space is 2N).

Throughout, by definable we mean definable by a formula, without parameters
(unless parameters are given explicitly). Any function {0, 1} → R is a formula on
the sort {0, 1}. Formulas on a finite product of sorts are constructed in the usual way,
using function and predicate symbols, connectives and quantifiers, and closing the
lot under uniform limits. In particular, if ϕi (x) are formulas on a sort D for i < 2n ,
then ϕ(i, x) = ϕi (x) is a formula on 2n

× D. Formulas on an infinite product of
sorts consist of all formulas on finite subproducts (extended to the whole product
through the addition of dummy variables), as well as all uniform limits of such
(where the subproducts through which they factor may vary). If d is a definable
pseudodistance on a sort D (defined by a formula on D× D), then formulas on the
quotient (D, d) are formulas on D that are uniformly continuous with respect to d ,
and similarly for formulas on a product of several quotient sorts.

Finally, we recall that a definable subset of a sort D is a subset E ⊆ D, the
distance to which is definable (this is significantly more involved than the notion
of a definable subset in classical logic). Equivalently, if for every formula ϕ(x, y),
where x is a variable in D and y is a tuple of variables in arbitrary sorts, the
predicate supx∈E ϕ(x, y) is definable by a formula ψ(y). Formulas on a product of
definable subsets of sorts are restrictions of formulas on the corresponding product
of ambient sorts.

Notice that every compact metric space is a quotient space of 2N by a continuous
pseudodistance, and therefore a sort, on which the formulas are the continuous
functions. Conversely, we could have chosen any nontrivial compact metric space
as a basic constant sort in place of {0, 1} (the other obvious candidate being [0, 1]),
and realise {0, 1} as any two-point set therein.

Remark 1.2. An obvious, yet crucial remark, is that if ϕ(x, y) is an arbitrary
formula on E × D, then

dϕ(y, y′)= sup
x∈E
|ϕ(x, y)−ϕ(x, y′)|

defines a pseudodistance on D. In addition, if D = E , and ϕ happens to define a
pseudodistance on D, then it agrees with dϕ .
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This has numerous useful consequences, let us state two of them explicitly.
First of all, one may be bothered by the fact that a formula ϕ(x, y) defining a
pseudodistance on a sort D may depend on the structure(s) under consideration.
However, we may restrict the “quotient by a pseudodistance” step to pseudodistances
of the form dϕ , that always define pseudodistances, without any loss of generality.

A second consequence is that if E ⊆ D are two sorts, then every definable
pseudodistance d on E extends to one on D. Indeed, extend it first in an arbitrary
fashion to a formula ϕ(x, y) on E × D. Then dϕ is a pseudodistance on D, and it
agrees with d on E .

Remark 1.3. A formula ψ(x) defining the distance to a subset is another property
that depends on the structure under consideration, or on its theory. However, we do
not know a general construction of definable sets from arbitrary formulas, analogous
to that of Remark 1.2, and have good reason to believe that none such exists.

In other words, as far as we know, the set of interpretable sorts depends in
a nontrivial way on the theory. This makes it all the more noteworthy that our
construction of the universal star sort as D∗8 can be carried out in a manner that
depends only on the language, and not on the theory.

A definable map between two sorts σ : D→ E is one whose graph is the zero-
set of some formula. Composing a formula with a definable map yields another
formula. A special case of such a composition is the formula d(σ (x), y), on the
product D×E , whose zero-set is indeed the graph of σ . Every formula is uniformly
continuous in its arguments, and d(σ (x), y) is no exception. It follows that every
definable map σ : D→ E is uniformly continuous.

Two sorts that admit a definable bijection are, for most intents and purposes (in
particular, for those of the present paper) one and the same. Moreover, every sort
is in definable bijection with one obtained from the basic sorts by applying each
of the operations once, in the given order, so we may pretend that every sort is
indeed of this form. Similarly, we may say that a sort D (which may be a basic
sort, or one that has already been obtained through some interpretation procedure)
is interpretable in a family of sorts (Ei ) if we can construct from this family (Ei ) a
sort D′ that admits a definable bijection with D.

Consider two languages L⊆L′, where L′ is allowed to add not only symbols, but
also sorts. If M ′ is an L′-structure, and M is the L-structure obtained by dropping
the sorts and symbols not present in L, then M is the L-reduct of M ′ and M ′ is an
L′-expansion of M . If T ′ is an L′-theory and T is the collection of L-sentences
in T ′, then T is also the theory of all L-reducts of models of T ′ (notice, however,
that an arbitrary model of T need only admit an elementary extension that is a
reduct of a model of T ′). In this situation we say that T is the L-reduct of T ′ and
that T ′ is an L′-expansion of T .
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One special case of an expansion is a definitional expansion, in which L and L′

have the same sorts, and each new symbol of L′ admits an L-definition in T ′. In this
case, T ′ is entirely determined by T together with these definitions. A more general
case is that of an interpretational expansion of T , where T ′ identifies each new sort
of L′ with an interpretable sort of T , and gives L-definitions to all new symbols
in L′ (for this to work we also require L′ to contain, in particular, those new symbols
that allow T ′ to identify the new sorts with the corresponding interpretable ones).
Again, T , together with the list of interpretations of the new sorts and definitions of
the new symbols, determine T ′. Moreover, unlike the general situation described in
the previous paragraph, here every model of T expands to a model of T ′.

Definition 1.4. Let T and T ′ be two theories, say in disjoint languages. We say that
T ′ is interpretable in T if T ′ is a reduct of an interpretational expansion of T . The
two theories are bi-interpretable if they admit a common interpretational expansion
(which is stronger than just each being interpretable in the other).

A theory has the same sorts (up to a natural identification) as an interpretational
expansion. Therefore, somewhat informally, we may say that two theories are
bi-interpretable if and only if they have the same sorts.

Let us consider a few more possible constructions of sorts that will become
useful at later stages, and show that they can be reduced to the basic construction
steps that we allow.

Lemma 1.5. Let
D0

π0↞− D1
π1↞− · · ·

be an inverse system of sorts with surjective definable maps πn : Dn+1 ↠ Dn . Then
the inverse limit D = lim

←−−
Dn ⊆

∏
Dn is again a sort, which we may equip with the

distance
d(x, y)=

∑
n

(2−n
∧ d(xn, yn)) (1)

(or with the restriction of any other definable distance on
∏

Dn).

Proof. Indeed, D is the zero-set in
∏

Dn of the formula

ϕ(x)=
∑

n

(
2−n
∧ d(xn, πn(xn+1))

)
.

Let ε > 0, and choose N ∈ N large enough depending on ε, and δ > 0 small
enough depending on both. Let a ∈

∏
Dn , and assume that ϕ(a) < δ. Since the

maps are surjective, there exists b ∈ D such that bN = aN . This determines bn for
all n ≤ N , and having chosen δ small enough, we have d(an, bn) as small as desired
for all n ≤ N . Having chosen N large enough, this yields d(a, D)≤ d(a, b) < ε.
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In other words, we have found a formula ϕ(x) that vanishes on D, such that
ϕ(x) < δ = δ(ε) implies ϕ(x, D) < ε. This implies that D is a definable subset
(see [Ben Yaacov et al. 2008]). □

Proposition 1.6. Assume that (Dn) is a sequence of sorts, equipped with isometric
definable embeddings Dn ↪→ Dn+1. For convenience, let us pretend these embed-
dings are the identity map, so D0 ⊆ D1 ⊆ · · · ⊆ Dn ⊆ · · · is a chain. Assume
moreover that the sequence is Cauchy in the Hausdorff distance. In other words,
assume that if n is large enough and n ≤ m, then

d H (Dn, Dm)= sup
x∈Dm

inf
y∈Dn

d(x, y)

is as small as desired.
Then the completion E =

⋃̂
Dk is a sort (with definable isometric embedding

Dn ⊆ E). If ϕ(x, y) is a formula on E × F , for some sort (or product of sorts) F ,
and ϕn is its restriction to Dn×F , then (ϕn) is an equicontinuous compatible family
(by compatible, we mean that each ϕn is the restriction of ϕn+1). Conversely, every
such family arises from a unique formula on E × F.

Proof. Assume first that we have a large ambient sort E1 and compatible iso-
metric embeddings Dn ⊆ E1. Since each Dn is a sort, the distance d(x, Dn) =

infy∈Dn d(x, y) is definable in E1. By hypothesis, these formulas converge uni-
formly, and their limit is d(x, E). Then E is a definable subset of E1, and therefore
a sort.

In the general case, we construct E1 as a quotient of E0 =
∏

Dn , whose mem-
bers we may view as sequences in E . We may freely pass to a subsequence,
and assume that d H (Dn, Dn+1) < 2−n−1. Say that a ∈ E0 converges quickly if
d(an, am)≤ 2−n

+ 2−m , or equivalently, if d(an, b)≤ 2−n where an→ b in E . By
our hypothesis regarding the rate of convergence of (Dn), every b ∈ E is the limit
of a quickly converging sequence.

Recall the forced limit construction from [Ben Yaacov and Usvyatsov 2010].
Formally, it consists of a continuous function limF

: RN
→ R which is monotone,

1-Lipschitz in the supremum norm on RN, and most importantly, if tn → s fast
enough (say |tn − s| ≤ 2−n), then limF(tn : n ∈ N)= s. We render the expression
limF(tn : n ∈ N) as limF

n→∞ tn , considering it a limit construct. Since limF is
continuous, we may apply it to formulas.

Let us fix n, and define on Dn × E0 a formula

ρn(x, y)= limF
m→∞

d(x, ym).

If b ∈ E0 converges quickly to c ∈ E , then ρn(a, b) = d(a, c) for every a ∈ Dn .
When b ∈ E0 does not converge quickly (or possibly, at all), the value ρn(a, b) is
well defined, but potentially meaningless. If n ≤ k, then ρn is the restriction of ρk ,
so we may just denote all of them by ρ.
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As in Remark 1.2, we define pseudodistances on E0 by

dρn (y, y′)= sup
x∈Dn

|ρ(x, y)− ρ(x, y′)|.

The sequence of formulas (dρn ) is increasing. Moreover, if x, y ∈ Dn and z ∈ E0,
then

|ρ(x, z)− ρ(y, z)| ≤ sup
m
|d(x, zm)− d(y, zm)| ≤ d(x, y),

so dρn ≤ dρn+1 ≤ dρn + 2−n . Therefore, the sequence (dρn ) converges uniformly
to a formula dρ on E0 × E0, which must define a pseudodistance as well. Let
E1 = (E0, dρ) be the quotient sort. By definition, each ρn(x, y) is 1-Lipschitz in
y with respect to dρ , so it may be viewed as a formula on Dn × E1. It is also
1-Lipschitz in x with respect to the distance on Dn .

Consider a ∈ Dk and b, c ∈ E1, and assume that bn→ a quickly (but c may be
quite arbitrary). We have already observed that ρ(x, b)= d(x, a) for every x ∈ Dn ,
for every n. Then, for every n ≥ k,

dρn (b, c)= sup
x∈Dn

|ρ(x, b)− ρ(x, c)| = sup
x∈Dn

|d(x, a)− ρ(x, c)| = ρ(a, c),

so dρ(b, c)= ρ(a, c)= ρk(a, c). If follows that the class of b in E1 only depends
on a. Moreover, the map σk : Dk→ E1, which sends a to the class of any b ∈ E0

that converges quickly to a, is definable, by dρ(σk(x), y)= ρk(x, y).
If b, b′ ∈ E0 both converge quickly to a, a′ ∈ Dk , respectively, then the same

reasoning as above yields dρn (b, b′) = d(a, a′) for every n ≥ k, and therefore
dρ(b, b′)= d(a, a′). Therefore, σk : Dk→ E1 is an isometric embedding for each k.
Since the ρk are restrictions of one another, these embeddings are compatible, and
we have successfully reduced to the special case treated in the beginning of the
proof.

Regarding formulas, the only thing we need to prove is that any compatible
equicontinuous family of formulas ϕn(x, y) on Dn × F is the restriction of a
formula on E × F . Notice that our hypotheses imply that the formulas ϕn are
uniformly bounded, say |ϕn| ≤ M . We may now construct an inverse modulus
of continuity, namely a continuous function 1−1

: (0,∞) → (0,∞) such that
|ϕn(x, y)− ϕn(x ′, y)| ≤ 1−1

◦ d(x, x ′) (see [Ben Yaacov and Usvyatsov 2010];
since the family is equicontinuous, we can do this simultaneously for all ϕn). Define
on E × F formulas

ψn(x, y)= inf
x ′∈Dn

(ϕn(x ′, y)+1−1
◦ d(x, x ′)).

Thenψn agrees with ϕn on Dn×F , and equicontinuity together with the convergence
of (Dn) in d H implies that (ψn) converges uniformly to a formula ψ(x, y) on E×F
that must extend each ϕn , as claimed. □
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It was pointed out by James Hanson that our Proposition 1.6 already appeared
in his Ph.D. thesis [Hanson 2020, Proposition 3.4.8]. Similarly, in [Hanson 2020,
Remark 3.5.7] he asserts (without proof) something that, to the extent that we
understand it (terminology and notation being somewhat nonstandard), is related to
our Proposition 2.1.

2. Coding sorts in other sorts

If a and b are two elements in sorts E and D in some structure (model of T ), then
a is definable from b, or lies in the definable closure of b — in symbols a ∈ dcl(b)—
if a is the unique realisation of tp(a/b) in that structure, as well as in any elementary
extension. This implies, and indeed is equivalent to, the predicate d(x, a) being
definable with b as parameter, say by a formula ϕ(x, b) (see [Ben Yaacov 2010]).

Let us consider two sorts D and E . In what sense(s) can E be coded in D?
A fairly uniform fashion for this to happen is if E is interpretable in D, i.e., if
it embeds definably in a quotient of DN, or, at the very worst, DN

× 2N. This
would imply a nonuniform version: for every a ∈ E there exists b ∈ DN such
that a ∈ dcl(b). In fact, the converse implication holds as well; this follows fairly
easily from Proposition 2.1 below, together with the presentation of

⋃̂
Dn as a

subset of a quotient of
∏

Dn .
In any case, we want to explore a stronger condition of “nonuniform coding”, by

singletons in D.

Proposition 2.1. Let E and D be sorts of a theory T . Assume that for every a ∈ E
(in a model of T ) there exists b ∈ D (possibly in an elementary extension) such
that a ∈ dcl(b). Then E can be embedded in a limit sort of the form

⋃̂
Dn , as per

Proposition 1.6, where each Dn is a quotient of D× 2N.

Proof. Consider a type p ∈ SE(T ), so p = tp(a) for some a ∈ E in a model of T .
We may assume that b ∈ D in the same model is such that a ∈ dcl(b), as witnessed
by d(x, a)= ϕp(x, b).

For ε > 0, let
ψp(x, y)= sup

x ′
|d(x, x ′)−ϕp(x ′, y)|,

χp,ε(y)= 1−.
(
inf

x
ψp(x, y)/ε−. 1

)
.

The formula ψp(x, y) measures the extent to which ϕp(x ′, y) fails to give us the
distance to x . The formula χp,ε(y) tells us whether x ′ 7→ ϕp(x ′, y) is close to being
the distance to some x ∈ E : χp,ε(y) = 1 if y codes some x quite well (error less
than ε), vanishes if y does not code anything well enough (error at least 2ε), and
in all cases its value lies in [0, 1]. Of course, ψp(a, b) = 0, so infy ψp(x, y) < ε
defines an open neighbourhood of p.
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Let us fix ε > 0 and let p vary. Then the conditions infy ψp(x, y) < ε define an
open covering of SE(T ). By compactness, there exists a family (pi : i < n) such
that for every q ∈ SE(T ), infy ψpi (q, y) < ε for at least one i < n. Repeating this,
with smaller and smaller ε, we may construct a sequence of types (pn), as well as
εn→ 0 such that for every n0, the open conditions infy ψpn (x, y) < εn for n ≥ n0

cover SE(T ).
Let n ∈N. We view n={0, . . . , n−1} as a quotient of 2N, and similarly for [0, 1].

Therefore, D×n×[0, 1] is a quotient of D×2N. For (x, y, k, t)∈ E×D×n×[0, 1],
define

ρn(x, y, k, t)= t ·χpk ,εk (y) ·ϕpk (x, y).

This is indeed a formula, giving rise to a pseudodistance on D× n×[0, 1]:

dρn (y, k, t, y′, k ′, t ′)= sup
x∈E
|ρn(x, y, k, t)− ρn(x, y′, k ′, t ′)|.

In fact, we may drop n and just write ρ and dρ : the only role played by n is being
greater than k.

Let Dn be the quotient (D×n×[0, 1], dρ) (which is, in turn, a quotient of D×2N).
The inclusion D×n×[0, 1] ⊆ D×(n+1)×[0, 1] induces an isometric embedding
Dn ↪→ Dn+1. Therefore, in order to show that the hypotheses of Proposition 1.6
are satisfied, all we need to show is that for n ≤ m large enough, every member of
Dm is close to some member of Dn .

Let ε > 0 be given. Find n0 such that εn < ε for n ≥ n0. Then, by compact-
ness, find n1 > n0 such that infy ψpn (x, y) < εn for n0 ≤ n < n1 cover SE(T ).
Assume now that n1 ≤ m, and let [b, k, t] be some class in Dm . If k < n1, then
[b, k, t] ∈ Dn1 . If infx ψpk (x, b) ≥ 2εk , then ρn(x, b, k, t) = 0 regardless of x , so
[b, k, t] = [b, 0, 0] ∈ Dn1 . We may therefore assume that n1 ≤ k < m and there
exists a ∈ E such that ψpk (a, b) < 2εk .

By our hypothesis regarding the covering of SE(T ), there exists n0 ≤ ℓ < n1

such that infy ψpℓ(a, y) < εℓ. Let c ∈ D be such that ψpℓ(a, c) < εℓ, and let
s = t ·χpk ,εk (b). Then

inf
x
ψpℓ(x, c) < εℓ, χpℓ,εℓ(c)= 1, ρ(x, c, ℓ, s)= s ·ϕpℓ(x, c),

so

dρ(b, k, t, c, ℓ, s)= s · sup
x
|ϕpk (x, b)−ϕpℓ(x, c)|

≤ sup
x
|ϕpk (x, b)− d(x, a)| + sup

x
|d(x, a)−ϕpℓ(x, c)|

= ψpk (a, b)+ψpℓ(a, c) < 2εk + εℓ < 3ε.

Then [c, ℓ, s] ∈ Dn1 is close enough to [b, k, t]. By Proposition 1.6, a limit sort
F =

⋃̂
Dn exists.
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Now let us embed E ↪→ F . We have already constructed a family (ρn) of
formulas on E × Dn; let us write them as ρn(x, z). Each is 1-Lipschitz in z by
definition of the distance on Dn , and they are compatible, so they extend to a
formula ρ(x, z) on E × F .

Consider a ∈ E , and let ε > 0. As above, there exists ℓ such that εℓ < ε, and
c ∈ D such that ψpℓ(a, c) < εℓ. Let a′ = [c, ℓ, 1] ∈ Dℓ+1 ⊆ F . Again, as above,
χpℓ,εℓ(c)= 1, so ρ(x, a′)= ϕpℓ(x, c), and

sup
x
|d(x, a)− ρ(x, a′)| = sup

x
|d(x, a)−ϕpℓ(x, c)| = ψpℓ(a, c) < εℓ < ε.

Doing this with ε→ 0, we obtain a sequence (an) in F such that ρ(x, an) converges
uniformly to d(x, a). By definition of the distance on F as dρ , this sequence is
Cauchy, with limit ã ∈ F , say, and ρ(x, ã)= d(x, a). In particular, for z ∈ F ,

d(z, ã)= sup
x
|ρ(x, z)− ρ(x, ã)| = sup

x
|ρ(x, z)− d(x, a)|,

so a 7→ ã is definable. By the same reasoning, if a, a′ ∈ E , then

d(ã, ã′)= sup
x
|ρ(x, ã)− ρ(x, ã′)| = sup

x
|d(x, a)− d(x, a′)| = d(a, a′),

so the embedding is isometric, completing the proof. □

Remark 2.2. A closer inspection of the proof can yield a necessary and sufficient
condition (but we shall not use this): A sort E can be embedded in a limit sort of the
form

⋃̂
Dn , where each Dn is a quotient of D× 2N, if and only if, for every a ∈ E

and ε > 0, there exists b ∈ D and a formula ϕ(x, b) that approximates d(x, a) with
error at most ε.

In Proposition 2.1, we cannot replace D× 2N with just D (if D is a singleton,
then any increasing union of quotients of D is a singleton, and yet E = {0, 1}
satisfies the hypothesis of Proposition 2.1). Instead, let us prove that this does not
change much, in the sense that formulas on D× 2N or on just D are almost the
same thing.

Lemma 2.3. Let D and E be sorts, and let ϕ(x, t, y) be a formula on D× 2N
× E.

Then ϕ can be expressed as a uniform limit of continuous combinations of formulas
on D× E and on 2N separately (recalling that formulas on 2N are just continuous
functions 2N

→ R).

Proof. For n ∈N and k ∈ 2n , let δn,k(t)= 1 if t extends k, and 0 otherwise. Let also
k̃ ∈ 2N be the extension of k by zeros, and ϕn,k(x, y)= ϕ(x, k̃, y).

Then ϕn,k is a formula on D× E and δn,k is a formula on 2N, so we may define
a formula

ϕn(x, t, y)=
∑

k∈{0,1}n
δn,k(t)ϕn,k(x, y).

Since ϕ(x, t, y) is uniformly continuous in t , ϕn→ ϕ uniformly. □
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Definition 2.4. Let T be a theory, D a sort, and D0
⊆ D a definable subset (or

even type-definable, namely, the zero-set of a formula). We say that D is a coding
sort, with exceptional set D0, if the following hold:

(i) Coding models: if M ⊨ T and a ∈ D(M)∖ D0(M), then there exists N ⪯ M
such that dcl(a)= dcl(N ). We then say that a codes N .

(ii) Density: if M ⊨ T is separable, then the set of those a ∈ D(M)∖ D0(M) that
code M is dense in D(M).

We may denote a coding sort by D alone, considering D0 as implicitly given
together with D.

The need for an exceptional set will arise at a later stage; for the time being, we
are simply going to ensure that its presence does not cause any trouble.

Definition 2.5. Let T be a theory in a language L, and let D be a coding sort for T .
We define a single-sorted language L2D to consist of a binary predicate symbol

for each formula on D × D (possibly restricting this to a dense family of such
formulas). We define T2D as the L2D-theory of D — namely, the theory of all D(M),
viewed naturally as L2D-structures, where M varies over models of T .

Clearly, T2D is interpretable from T . The 2 is there to remind us that only binary
predicates on D are named in the language.

Our aim, in the end, is to recover from a groupoid the theory of some coding
sort D, and show that it is bi-interpretable with T . In particular, we need to recover
the definable predicates on D from the groupoid. In [Ben Yaacov 2022] we managed
to recover predicates of all arities, at the price of some additional work. In the
present paper we choose to follow a different path, recovering only binary predicates
(i.e., only T2D), and instead show that these suffice.

Proposition 2.6. Let T be a theory in a language L, and let D be a coding sort
for T . Then T2D is bi-interpretable with T .

Proof. Consider T ′, obtained from T by adjoining D as a new sort, and naming the
full induced structure. It is, by definition, an interpretational expansion of T , and it
suffices to show that it is also an interpretational expansion of T2D .

By Lemma 2.3, every formula on (D× 2N)× (D× 2N) is definable in T2D . In
particular, every quotient of D× 2N is interpretable in T2D , as is every embedding
of one such quotient in another. Therefore, if (Dn) is an increasing chain of
quotients of D× 2N that converges in the sense of Proposition 1.6, then E =

⋃̂
Dn

is interpretable in T2D .
Consider now a sort E of T . Every member of E belongs to a separable model

of T and is therefore definable from a member of D. By Proposition 2.1, we may
embed E in a sort Ẽ which is of the form

⋃̂
Dn , for appropriate quotients of D×2N,
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as in the previous paragraph. This presentation of E need not be unique, so let us
just fix one such.

Say E ′ is another sort of T , so E ′ ⊆ Ẽ ′ =
⋃̂

D′n as above. Any formula on
Ẽ × Ẽ ′ is, by Proposition 1.6, coded by a sequence of formulas on Dn × D′n (its
restrictions), i.e., by formulas on (D× 2N)2. It is therefore definable in T2D. In
particular, the distance to (the copy of) E in Ẽ is definable in T2D , so each sort E of
T can be interpreted in T2D (or at least, some isometric copy of E is interpretable).
Similarly, every formula on E × E ′, can be extended to a formula on Ẽ × Ẽ ′, so it
is definable in T2D (on the copies of E and E ′).

Consider now a finite product E =
∏

i<n Ei of sorts of T . We have already
chosen embeddings E ⊆ Ẽ and Ei ⊆ Ẽi as above. The projection map πi : E→ Ei

can be coded by a formula on E × Ei , namely

0πi (x, y)= dEi (xi , y),

where 0 stands for “graph”. We have already observed that such a formula is
definable in T2D . It follows that the structure of E as a product of the Ei is definable
in T2D . Finally, any formula on E0× · · ·× En−1 can be viewed as a unary formula
on the product E , which is, again, definable in T2D .

In conclusion, we can interpret every sort of T in T2D, and recover the full
structure on these sorts. In other words, T ′ is indeed an interpretational expansion
of T2D , completing the proof. □

3. Groupoid constructions and reconstruction strategies

In this section we propose a general framework for “reconstruction theorems”. To
any coding sort D (see Definition 2.4) we associate a topological groupoid GD(T )
from which the theory T2D of Proposition 2.6 can be reconstructed. Since T is
bi-interpretable with T2D, the groupoid GD(T ) determines the bi-interpretation
class of T . If the coding sort is moreover determined by the bi-interpretation class
of T (up to definable bijection), then the groupoid is a bi-interpretation invariant.
Various previously known constructions fit in this framework, as well as the one
towards which the present paper aims.

For a general treatment of topological groupoids, we refer the reader to [Macken-
zie 1987], or, for the bare essentials we need here, to [Ben Yaacov 2022]. We recall
that a groupoid G is defined either as a small category in which all morphisms are
invertible, or algebraically, as a single set (of all morphisms), equipped with a partial
composition law and a total inversion map, satisfying appropriate axioms. When
viewed as a category, the set of objects can be identified with the set of identity
morphisms, and we call it the basis B of G. In the algebraic formalism, which we
follow here, the basis is B = {e ∈ G : e2

= e} ⊆ G. If g ∈ G, then s(g)= g−1g and
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t (g)= gg−1 are both defined, and belong to B, being the source and target of g,
respectively. The domain of the composition law is

dom( · )= {(g, h) : s(g)= t (h)} ⊆ G2.

A topological groupoid is a groupoid equipped with a topology in which the
partial composition law and total inversion map are continuous. In a topological
groupoid the source and target maps s, t : G→ B are continuous as well, B is
closed in G, and dom( · ) closed in G2. A topological groupoid G is open if, in
addition, the composition law · : dom( ·)→ G is open, or equivalently, if the source
map s : G→ B (or target map t : G→ B) is open.

A (topological) group is a (topological) groupoid whose basis is a singleton.
Such a topological groupoid is always open.

Definition 3.1. Let T be a theory in a countable language, and D a coding sort.
We let SD×D(T ) denote the space of types of pairs of elements of D. We define
the following two subsets of SD×D(T ):

G0
D(T )= {tp(a, a) : a ∈ D0

},

GD(T )= G0
D(T )∪ {tp(a, b) : a, b ∈ D ∖ D0 and dcl(a)= dcl(b)},

where a and b vary over all members of D (or D0) in models of T . We equip
GD(T ) with the induced topology, as well as with the following inversion law and
partial composition law:

tp(a, b)−1
= tp(b, a), tp(a, b) · tp(b, c)= tp(a, c).

We also write BD(T ) for SD(T ), and identify tp(a)∈ BD(T )with tp(a, a)∈GD(T ).
This identifies B0

D(T )= SD0(T ) with G0
D(T ).

Notice that the density hypothesis in Definition 2.4 implies that GD(T ) is dense
in SD×D(T ).

Convention 3.2. We usually consider the theory T and the coding sort D to be
fixed and drop them from notation, so G = GD(T ), B = BD(T ), and so on.

Lemma 3.3. Let D be a coding sort for T .

(i) As defined above G = GD(T ) is a Polish open topological groupoid with basis
B = BD(T ).

(ii) If g = tp(a, b) ∈ G, then s(g)= tp(b) ∈ B is its source, and t (g)= tp(a) ∈ B
its target.

(iii) If d is a definable distance on D, then the family of sets

Ur = {tp(a, b) ∈ G : d(a, b) < r},

for r > 0, forms a basis of open neighbourhoods for B in G.
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Proof. It is easy to check that G is a topological groupoid with basis B and the
stated source and target. Since the language is countable, the space SD×D(T ) is
compact metrisable, and therefore Polish. As a condition on tp(a, b), the property
dcl(a)= dcl(b) is Gδ by [Ben Yaacov 2022, Lemma 5.1], and a, b /∈ D0 is open.
Therefore G is Polish, as the union of a closed subset and a Gδ subset of a Polish
space.

Each set Ur is open and contains B. On the other hand, if U is any open
neighbourhood of B in G, then it must be of the form W ∩ G, where W is an
open neighbourhood of B in SD×D(T ). Since B is defined there by the condition
d(x, y)= 0, and by compactness, W must contain [d(x, y) < r ] for some r > 0, so
U contains Ur .

It is left to show that the target map t : G → B is open. First, consider
g ∈ G ∖ G0

⊆ SD×D(T ). Let [x ∈ D0
] ⊆ SD×D(T ) be the set of types p(x, y) that

imply x ∈ D0, and similarly for y, observing that g /∈ [x ∈ D0
] ∪ [y ∈ D0

]. Since
this union is a closed set, g admits a basis of neighbourhoods in SD×D(T ) that are
disjoint from [x ∈ D0

] ∪ [y ∈ D0
]. By Urysohn’s lemma and the identification of

formulas with continuous functions on types, g admits a basis of neighbourhoods
of the form [ϕ(x, y) > 0], where ϕ(x, y) vanishes if x ∈ D0 or y ∈ D0. The family
of sets [ϕ(x, y) > 0] ∩G for such ϕ is a basis of neighbourhoods for g in G.

Assume we are given such a neighbourhood g ∈ U = [ϕ(x, y) > 0] ∩ G (so
ϕ(x, y) vanishes if x ∈ D0 or y ∈ D0). Let V = [supy ϕ(x, y) > 0] ⊆ SD(T )= B.
Then V is open, and clearly t (U )⊆ V . Conversely, assume that tp(a) ∈ V , where
a ∈ D(M) for some M ⊨ T . Then there exists b ∈ D(M) such that ϕ(a, b) > 0.
By hypothesis on ϕ, it follows that a, b /∈ D0. In particular, a codes a separable
N ⪯ M , and we may assume that b ∈ D(N ). Now, by the density property and the
uniform continuity of ϕ, we may assume that b also codes N , so tp(a, b) ∈U . This
proves that t (U )= V .

Now let g = tp(a, a) ∈ G0. We have a basis of neighbourhoods of g in G
consisting of sets of the form

U = [ϕ(x) > 0] ∩ [d(x, y) < r ] ∩G,

where ϕ(a) > 0. It is then easily checked that t (U ) = [ϕ(x) > 0], since we may
always take y = x as witness. This completes the proof. □

Definition 3.4. Let G be a topological groupoid. Say that a function ϕ : G→ R
is uniformly continuous and continuous (UCC) if it is continuous on G, and in
addition satisfies the following uniform continuity condition: for every ε > 0 there
exists an open neighbourhood U of the basis B such that for every g ∈ G,

h ∈UgU H⇒ |ϕ(g)−ϕ(h)|< ε.
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Notice that unlike the situation for groups, the uniform continuity condition does
not imply continuity (it is quite possible that gn→ h while h /∈ Ggn G for any n).

Proposition 3.5. Assume that D is a coding sort for T , and let G = GD(T ). Let
ϕ(x, y) be a formula on D × D, and let ϕG : G → R be the naturally induced
function

g = tp(a, b) H⇒ ϕG(g)= ϕ(a, b).

Then the map ϕ 7→ ϕG defines a bijection between formulas on D × D, up to
equivalence, and UCC functions on G.

Proof. Let us first check that if ϕ is a formula, then ϕG is UCC. It is clearly
continuous. The uniform continuity condition follows from the fact that ϕ is
uniformly continuous in each argument, together with the fact that for any δ > 0
we may take choose U = [d(x, y) < δ] ∩G.

Conversely, assume that ψ : G→ R is UCC. By density, the function ψ admits
at most one continuous extension to SD×D(T ), and we need to show that one
such exists. In other words, given p ∈ SD×D(T ) and ε > 0, it suffices to find a
neighbourhood p ∈ V ⊆ SD×D(T ) such that ψ varies by less than ε on V ∩G. This
is easy if p ∈ G, so we may assume that p /∈ G.

Let us fix ε > 0 first. By uniform continuity of ψ and Lemma 3.3(iii), there exists
δ > 0 such that |ψ(g)−ψ(ugv)| < ε whenever g ∈ G, u, v ∈ [d(x, y) < δ] ∩ G,
and ugv is defined.

Given p = tp(a0, b0), we may assume that a0, b0 ∈ D(M) for some separable
model M . Since p /∈ G, we must have a0 ̸= b0, and (possibly decreasing δ) we may
assume that d(a0, b0) > 2δ. By the density property, there exist a1, b1 ∈ D(M) that
code M , with d(a0, a1)+ d(b0, b1) < δ, so d(a1, b1) > δ. Let g1 = tp(a1, b1) ∈ G.
By continuity, there exists an open neighbourhood g1 ∈ V1 ⊆ SD×D(T ) such that
|ψ(g1)−ψ(h)|< ε for every h ∈ V1 ∩G. Possibly decreasing V1, we may further
assume that tp(a, b) ∈ V1 implies d(a, b) > δ. We may even assume that V1 is
of the form [χ < δ], where χ(x, y) ≥ 0 is a formula and χ(a1, b1) = χ(g1) = 0.
Define

χ ′(x, y)= inf
x ′,y′
[d(x, x ′)+ d(y, y′)+ψ(x ′, y′)],

V = [χ ′(x, y) < δ] ⊆ SD×D(T ).

Then V is open, p ∈ V , and tp(a, b)∈ V implies a ̸= b (in other words, V ∩B=∅).
In order to conclude, consider any g2 = tp(a2, b2) ∈ V ∩ G. Since a2 ̸= b2, they

cannot belong to the exceptional set, so both code some separable model N . By
definition of V , there exist a3, b3 ∈ D(N ) such that

χ(a3, b3)+ d(a2, a3)+ d(b2, b3) < δ.
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By the density property, and uniform continuity of χ , we may assume that a3

and b3 code N as well. Let g3 = tp(a3, b3), u = tp(a3, a2), v = tp(b2, b3). Then
g3 = ug2v ∈ V1, so

|ψ(g2)−ψ(g1)| ≤ |ψ(g2)−ψ(g3)| + |ψ(g3)−ψ(g1)| ≤ 2ε.

Therefore, ψ varies by less than 4ε on V ∩ G, which is good enough. □

Corollary 3.6. Every UCC function on GD(T ) is bounded.

Definition 3.7. Let G be a groupoid. A seminorm on G is a function ρ : G→ R+

that satisfies

• ρ↾B = 0,

• ρ(g)= ρ(g−1), and

• ρ(gh)≤ ρ(g)+ ρ(h), when defined.

It is a norm if ρ(g)= 0 implies g ∈ B.
A norm ρ is compatible with a topology on G if it is continuous, and the sets

{ρ < r} = {g ∈ G : ρ(g) < r},

for r > 0, form a basis of neighbourhoods for B.

Corollary 3.8. The correspondence of Proposition 3.5 restricts to a one-to-one
correspondence between definable distances d on D and compatible norms on
G = GD(T ).

Proof. Let d be a definable distance on D × D and ρd the corresponding UCC
function on G. Then ρd is clearly a continuous norm, and it is a compatible norm
by Lemma 3.3(iii).

The converse is more delicate. Let ρ be a compatible norm. Then it is continuous,
and it is easy to see that every continuous seminorm is UCC, so ρ = ϕG (in the
notations of Proposition 3.5) for some formula ϕ(x, y). If a, b, c ∈ D all code the
same separable model, then ϕ(a, a)= 0 and ϕ(a, b)≤ ϕ(a, c)+ ϕ(b, c). The set
of types of such triplets is dense in SD×D×D(T ), by the density property, so the
same holds throughout and ϕ defines a pseudodistance.

It is left to show that ϕ defines a distance (and not merely a pseudodistance). Let
d be any definable distance on D, say the one distinguished in the language. We
already know that ρd is a compatible norm. Therefore, for every ε > 0 there exists
δ > 0 such that {ρ < δ} ⊆ {ρd < ε}. As in the previous paragraph, this means that
the (closed) condition ϕ(a, b) < δ H⇒ d(a, b)≤ ε holds on a dense set of types,
and therefore throughout. In particular, if ϕ(a, b)= 0, then a = b, and the proof is
complete. □
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Let T be a theory, D a coding sort for T , and G = GD(T ). Then from G, given
as a topological groupoid, we can essentially recover the language LD and the
theory T2D follows.

(i) Choose an arbitrary compatible norm ρ on G (which exists, by Corollary 3.8).

(ii) Let LG consists of a single sort, also named D, together with a binary pred-
icate symbol Pψ for each UCC function ψ on G. We know that ψ is bounded
(Corollary 3.6), and we impose the same bound on Pψ . We also know that for
every ε > 0 there exists a neighbourhood U of B such that h ∈ UgU implies
|ψ(g)−ψ(h)|< ε, and since ρ is compatible, there exists δ = δψ(ε) > 0 such that
the same holds when U = {ρ < δ}. We then impose the corresponding modulus of
uniform continuity on Pψ , namely requiring that

d(x, x ′)∨ d(y, y′) < δψ(ε) H⇒ |Pψ(x, y)− Pψ(x ′, y′)| ≤ ε.

We also use the bound on ρ as bound on the distance predicate.

(iii) Let us fix e ∈ B, and consider the set

eG = {g ∈ G : tg = e}.

If g, h ∈ eG, then g−1h is defined, and for any UCC ψ we let

Pψ(g, h)= ψ(g−1h).

In particular, d(g, h)= Pρ(g, h)= ρ(g−1h) is a distance function on eG.
Assume now that g′, h′ ∈ eG as well, and d(g, g′)∨ d(h, h′) < δ = δψ(ε). Let

u = g′−1g and v = h−1h′. Then g′−1h′ = ug−1hv, and u, v ∈ {ρ < δ}, so indeed

|Pψ(g, h)− Pψ(g′, h′)| ≤ ε,

as required. The bounds are also respected, so eG, equipped with the distance
and interpretations of Pψ , is an LG-prestructure, and its completion êG is an
LG-structure.

(iv) We define TG as the theory of the collection of all LG-structures of this form:

TG = ThLG

(
êG : e ∈ B

)
.

By “essentially recover”, we mean the following.

Theorem 3.9. Let T be a theory, D a coding sort for T , and G = GD(T ). Let LG
and TG be constructed as in the preceding discussion. Then TG and T2D are one
and the same, up to renaming the binary predicate symbols, and up to an arbitrary
choice of the distance on the sort D (from among all definable distances).

In particular, this procedure allows us to recover from G a theory TG that is
bi-interpretable with T .
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Proof. By Corollary 3.8, step (i) consists exactly of choosing a definable distance d
on D, and the corresponding norm ρ = dG . This choice is irremediably arbitrary.
By Proposition 3.5, in step (ii) there is a natural bijection between symbols of LD

(corresponding to formulas ϕ(x, y) on D × D, up to equivalence) and symbols
of LG: to ϕ we associate the UCC function ψϕ = ϕG , to which in turn we associate
the symbol Pψϕ .

Finally, let M ⊨ T be separable, a ∈ D(M) a code for M , and e = tp(a) ∈ B.
Let D(M)1 denote the set of b ∈ D(M) that also code M . If b ∈ D(M)1, then
gb = tp(a, b) ∈ eG. Moreover, if b, c ∈ D(M)1 and ϕ is a formula on D× D, then
tp(b, c)= g−1

b gc ∈ G, so

ϕ(b, c)= ψϕ(g−1
b gc)= Pψϕ (gb, gc).

In particular, d(b, c)= d(gb, gc) (where the first is the distance we chose on D, and
the second the distance we defined on eG in step (iii)). Thus, up to representing ϕ
by the symbol Pψϕ , the map b 7→ gb defines an isomorphism of the LD-prestructure
D(M)1 with the LG-prestructure eG. This extends to an isomorphism of the
respective completions: D(M)≃ êG.

It follows that, up to this change of language (and choice of distance), the theory
TG defined in step (iv) is the theory of all separable models of T2D . Since T is in a
countable language, T2D is in a “separable language”, so it is equal to the theory of
all its separable models.

By Proposition 2.6, T is bi-interpretable with T2D , and therefore also with TG . □

Having achieved this, we are ready to start producing reconstruction theorems:
all we need is a coding sort that only depends (up to definable bijection) on the
bi-interpretation class of T .

Example 3.10. Let T be an ℵ0-categorical theory. Let M be its unique separable
model, and let a be any sequence (possibly infinite, but countable), in any sort
or sorts, such that dcl(a) = dcl(M) (for example, any dense sequence will do).
Let DT,0 be the set of realisations of p = tp(a). Since T is ℵ0-categorical, DT,0

is a definable set, i.e., a sort. It is easy to check that it is a coding sort (with no
exceptional set).

If b is another code for M , and D′T,0 is the set of realisations of tp(b), then
dcl(a)= dcl(b) and tp(a, b) defines the graph of a definable bijection DT,0 ≃ D′T,0.
Therefore, DT,0 does not depend on the choice of a. Moreover, assume that T ′ is an
interpretational expansion of T . Then it has a model M ′ that expands M accordingly.
But then dcl(M ′) = dcl(M) = dcl(a) (as calculated when working in T ′), so
DT ′,0 = DT,0. It follows that DT,0 only depend on the bi-interpretation class of T .

Since SDT,0(T )= {p} is a singleton, the groupoid

G(T )= GDT,0(T )
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is in fact a group. It only depends on the bi-interpretation class of T (since DT,0 only
depends on it) and by Theorem 3.9, it is a complete bi-interpretation invariant for T .

We leave it to the reader to check that

G(T )≃ Aut(M),

and that the reconstruction result is just a complicated restatement of those of
[Ahlbrandt and Ziegler 1986; Ben Yaacov and Kaïchouh 2016].

Example 3.11. Let T be a theory in classical logic. In [Ben Yaacov 2022], using
an arbitrary parameter 8, we gave an explicit construction of a set of infinite
sequences D8. We showed that it is a definable set in the sense of continuous logic,
and that its interpretation in models of T only depend on the bi-interpretation class
of T (up to a definable bijection). It also follows from what we showed that it is
a coding sort (without exceptional set). Since it is unique, let us denote it by DT

(in fact, we could also just denote it by D: its construction only depends on the
language, and then we simply restrict our consideration of it to models of T ). We
then proved that the groupoid

G(T )= GDT (T )

is a complete bi-interpretation invariant for T . This is a special case of Theorem 3.9.

Example 3.12. Let T be a (complete) theory in continuous logic. In [Ben Yaacov
2022] we defined when a sort DT is a universal Skolem sort, and proved that if such
a sort exists, then it is unique, and only depends on the bi-interpretation class of T
(in contrast with the previous example, here we do not have a general construction
for such a sort, let alone a uniform one, so it really does depend on T ). We proved
that if T admits a universal Skolem sort DT , then

G(T )= GDT (T )

is a complete bi-interpretation invariant for T .
Again, we also proved that DT is a coding sort, so this is a special case of

Theorem 3.9.

Remark 3.13. Example 3.12 encompasses the two previous examples in the fol-
lowing sense.

• If T is classical, then the sort DT of Example 3.11 is a universal Skolem sort,
so Example 3.11 is a special case of Example 3.12.

• If T is ℵ0-categorical, then DT = DT,0× 2N is a universal Skolem sort, so

G(T )≃ 2N
×G(T )× 2N, with groupoid law (α, g, β) · (β, h, γ )= (α, gh, γ ).
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Consequently, B(T )= 2N, and if e ∈ B(T ), then G(T )≃ eG(T )e. Therefore,
the reconstruction of Example 3.10 can be recovered from a special case of
Example 3.12.

In both Example 3.11 and Example 3.12, the basis SDT (T ) is homeomorphic to the
Cantor space 2N.

However, in [Ben Yaacov 2022] we also gave an example of a continuous theory
which does not admit a universal Skolem sort. In particular, the explicit construction
of DT as D8 in the case of a classical theory simply does not extend, as is, to
continuous logic. The rest of this article is dedicated to presenting a modified version
of this construction, giving rise to a coding sort that does have an exceptional set (a
very simple one, consisting of a single point), allowing us to prove a reconstruction
theorem for every first-order theory in a countable language (in continuous or
classical logic).

4. Star spaces

Before we can construct our coding sort, we require a technical detour, where we
introduce star sets in general, and, in the model-theoretic context, star sorts. For
the time being, we must ask the reader to bear with us — the usefulness of these
notions for our goal is explained in some detail at the beginning of Section 6.

Definition 4.1. (i) A retraction set is a set X equipped with an action of the
multiplicative monoid [0, 1]. In particular, 1·x= x for all x ∈ X , and α(βx)= (αβ)x
(so this is a little stronger than a homotopy).

(ii) It is a star set if 0 · x does not depend on x . We then denote this common value
by 0 ∈ X , and call it the root of X .

(iii) A topological retraction (star) space is one equipped with a topology making
the action [0, 1]× X→ X continuous.

(iv) A metric star space is one equipped with a distance function satisfying
d(αx, αy)≤ αd(x, y) and d(αx, βx)= |α−β|∥x∥, where ∥x∥ = d(x, 0).

Notice that a retraction set X can be fibred over 0 · X , with each fibre a star set.
We could also define a metric retraction space by putting infinite distance between
fibres.

Example 4.2. The real half line R+ is naturally a topological and metric star space.
The interval [0, 1] (or [0, r ] for any r > 0) is a compact topological and bounded
metric star space.

Example 4.3. If X and Y are two star sets, then X×Y , equipped with the diagonal
action α(x, y)= (αx, αy), is again a star set. If both are metric star spaces, then
equipping the product with the maximum distance makes it a metric star space as
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well (here the maximum distance is preferable to the sum distance, since it preserves
bound hypotheses on the diameter).

Example 4.4. Let X be a set, and equip [0, 1]× X with the equivalence relation

(α, x)∼ (β, y) ⇐⇒ (α, x)= (β, y) or α = β = 0.

The cone of X is the quotient space

∗X = ([0, 1]× X)/∼.

A member of ∗X is denoted by [α, x]. We equip it with the action α·[β, x]= [αβ, x].
This makes it a star set, with [0, x] = 0 regardless of x .

We tend to identify x ∈ X with [1, x] ∈ ∗X , so [α, x] may also be denoted by αx .
When X is a compact Hausdorff space, the relation ∼ is closed, ∗X is again

compact and Hausdorff, and the identification X ⊆ ∗X is a topological embedding.
When X is a bounded metric space, say diam(X)≤ 2, we propose to metrise ∗X
by

d(αx, βy)= |α−β| + (α∧β)d(x, y). (2)

In particular, if either α or β vanishes, then the right-hand side does not depend on
either x or y, so d is well defined, and d(0, x)= 1 for all x ∈ X .

The only property that is not entirely obvious is the triangle inequality, namely

|α−γ |+(α∧γ )d(x, z)≤ |α−β|+(α∧β)d(x, y)+|β−γ |+(β∧γ )d(y, z). (3)

We may assume that α ≥ γ , so α∧ γ = γ . If β ≥ γ , then (3) holds trivially since
α∧β ≥ γ = β ∧ γ . If β ≤ γ , then the right-hand side evaluates to

(α− γ )+ 2(γ −β)+βd(x, y)+βd(y, z).

Applying the triangle inequality for X and the hypothesis that 2 ≥ d(x, z), we
obtain (3) in this case as well.

We conclude that (∗X, d) is a metric space. The embedding X ⊆∗X is isometric,
and diam(∗X)= 1∨ diam(X). If X is complete, then so is ∗X .

A special instance of this is the cone of a singleton, which can be identified with
the interval [0, 1] equipped with the natural star, topological or metric structures.

Example 4.5. More generally, let S be a star set, X an arbitrary set, and define

(s, x)∼ (t, y) ⇐⇒ (s, x)= (t, y) or s = t = 0,

S ∗ X = (S× X)/∼.

As in the definition of a cone, a member of S ∗ X is denoted by [s, x] or s ∗ x
(in analogy with the notation αx). We make S ∗ X into a star set by defining
α · (s ∗ x)= (αs) ∗ x .

This indeed generalises the cone construction, with ∗X = [0, 1] ∗ X .
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When S and X are compact Hausdorff spaces, the relation ∼ is closed, and S ∗ X
is again compact and Hausdorff. When S and X are bounded metric spaces, say
diam(X)≤ 2 and ∥s∥ ≤ 1 for all s ∈ S, we equip S ∗ X with the distance function

d(s ∗ x, t ∗ y)= d(s, t)∨ d(∥s∥x, ∥t∥y),

where d(∥s∥x, ∥t∥y) is calculated in ∗X . Notice that ∥s∗x∥=∥s∥, and the distance
functions on [0, 1] ∗ X and ∗X agree.

Remark 4.6. The generalised cone construction of Example 4.5 can be easily
iterated: S ∗ (X × Y ) = (S ∗ X) ∗ Y , identifying s ∗ (x, y) = s ∗ x ∗ y. In the
metric case, assume that X and Y are both of diameter at most two. Equipping
products with the maximum distance, diam(X × Y )≤ 2 as well, and the obvious
map ∗(X × Y )→ ∗X ×∗Y sending α(x, y) 7→ (αx, αy) is isometric. It follows
that the identification S× (X × Y )= (S ∗ X) ∗ Y is isometric:

d(s ∗ x ∗ y, t ∗ u ∗ v)= d(s ∗ x, t ∗ u)∨ d(∥s ∗ x∥y, ∥t ∗ u∥v)

= d(s, t)∨ d(∥s∥x, ∥t∥u)∨ d(∥s∥y, ∥t∥v)

= d(s, t)∨ d
(
∥s∥(x, y), ∥t∥(u, v)

)
= d(s ∗ (x, y), t ∗ (u, v)).

In particular, ∗(X × Y )= (∗X) ∗ Y .

Definition 4.7. Let X and Y be two retraction (star) spaces. A map f : X → Y
is homogeneous if f (αx) = α f (x). It is subhomogeneous if f (αx) = β f (x) for
some β ≤ α. The latter is mostly used when Y = R+, in which subhomogeneity
becomes f (αx)≤ α f (x).

We may also equip a retraction space with a partial order defined by αx ≤ x
whenever α∈[0, 1]. This induces the usual partial order on R+, and subhomogeneity
can be stated as f (αx)≤α f (x) for arbitrary maps between retraction spaces. Notice
also that our definition of a metric retraction space X simply requires the distance
function to be subhomogeneous on X × X .

5. Star sorts

Definition 5.1. A star sort is a sort equipped with a definable structure of a metric
star space. In particular, this means that the map (α, x) 7→ αx is definable (and not
just x 7→ αx for each α). Star sorts are usually denoted by D∗, E∗, and so on.

Definition 5.2. Let D∗ be a star sort and ϕ(u, y) a formula on D∗× E . We say
that ϕ is subhomogeneous if it satisfies αϕ(u, y)≥ ϕ(αu, y)≥ 0.

We may specify that it is subhomogeneous in the variable u, especially if u is not
the first variable. More generally, we may say that ϕ(u, v, . . .) is subhomogeneous
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in (u, v) if αϕ(u, v, . . .)≥ ϕ(αu, αv, . . .)≥ 0, and similarly for any other tuple of
variables. If it is subhomogeneous in the tuple of all its variables, we just say that
ϕ is jointly subhomogeneous.

Example 5.3. (i) If D is any sort (of diameter at most two), then the cone ∗D,
equipped with the distance proposed in Example 4.4, is a star sort. More generally,
if D∗ is a star sort and E an arbitrary sort, then D∗ ∗ E , as per Example 4.5, is a
star sort.

(ii) Any finite product of star sorts, equipped with the diagonal action of [0, 1] and
the maximum or sum distance, is again a star sort. Similarly, any countable product
of star sorts, equipped with

d(u, v)=
∑

n

dn(un, vn)

2n diam(dn)
,

is again a star sort, and the same holds with supremum in place of sum.

(iii) If D∗ is a star sort and d ′(u, v) a jointly subhomogeneous definable pseudo-
distance on D∗, then the quotient (D∗, d ′) can be equipped with an induced star
structure, making it again a star sort.

(iv) Let D∗ be a star sort and E∗ ⊆ D∗ a definable subset. Then the distance
d(u, E∗) is subhomogeneous if and only if E∗ is closed under multiplication by
α ∈ [0, 1], in which case E∗ is again a star sort.

Notice that ϕ(u, y) is subhomogeneous in u if for every fixed parameter b, the
formula ϕ(u, b) (in u alone) is subhomogeneous.

For an alternate point of view, notice that a subhomogeneous formula ϕ(u, y)
does not depend on y when u = 0. It can therefore be viewed as a formula ϕ(u ∗ y)
in the sort D∗ ∗ E (see Example 4.5). Since α(u ∗ y)= (αu)∗ y, a subhomogeneous
(in u) formula ϕ(u, y) is the same thing as a subhomogeneous formula ϕ(u ∗ y) in
a single variable from the sort D∗ ∗ E .

Similarly, a formula ϕ(u, v) on D∗× E∗ is jointly subhomogeneous if and only
if it is subhomogeneous as a formula on the product star sort.

Question 5.4. We ordered the clauses of Example 5.3 in order to reflect the three
operations by which we construct sorts in general. Still, something more probably
needs to be said regarding the construction of subhomogeneous pseudodistance
functions. In the usual context of plain sorts (and plain pseudodistances), to every
formula ϕ(x, t) on D× E we can associate a formula on D× D, defined by

dϕ(x, y)= sup
t
|ϕ(x, t)−ϕ(y, t)|.

This is always a definable pseudodistance on D. Moreover, in the case where E = D
and ϕ already defines a pseudodistance, dϕ agrees with ϕ.

Can something analogous be done in the present context as well?
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The following essentially asserts that we can retract continuously (with Lipschitz
constant one, even) all formulas into subhomogeneous ones. The analogous result
for a formula in several variables, with respect to joint subhomogeneity in some of
them, follows.

Proposition 5.5. Let D∗ be a star sort and ϕ(u, y)≥0 a positive formula on D∗×E.
For k ∈ N, define

(SHk ϕ)(u, y)= inf
u′,α

(αϕ(u′, y)+ kd(αu′, u)), where u′ ∈ D∗, α ∈ [0, 1].

(i) For any ϕ ≥ 0 and k, the formula (SHk ϕ)(u, y) is k-Lipschitz and subhomoge-
neous in u, and SHk ϕ ≤ ϕ.

(ii) For any two formulas ϕ,ψ≥0 and r≥0, if ϕ≤ψ+r , then SHk ϕ≤ (SHk ψ)+r .
Consequently, |(SHk ϕ)− (SHk ψ)| ≤ |ϕ−ψ |.

(iii) If ϕ is subhomogeneous, then (SHk ϕ) → ϕ uniformly, at a rate that only
depends on the bound and uniform continuity modulus of ϕ.

Proof. Clearly, (SHk ϕ)(u, y) is k-Lipschitz in u. If (SHk ϕ)(u, y)<r and β ∈[0, 1],
then there exist u′ and α such that αϕ(u′, y)+ kd(αu′, u) < r . Then

αβϕ(u′, y)+ kd(αβu′, βu) < βr,

showing that (SHk ϕ)(βu) < βr . This proves subhomogeneity. We also always
have (SHk ϕ)(u, y)≤ 1 ·ϕ(u, y)+ d(1 · u, u)= ϕ(u, y).

The second item is immediate.
For the third item, we assume that ϕ is subhomogeneous, in which case

(SHk ϕ)(u, y)= inf
u′
(ϕ(u′, y)+ kd(u′, u))≤ ϕ(u, y).

Say that |ϕ|≤M and d(u, u′)<δ implies |ϕ(u, y)−ϕ(u′, y)|<ε, and let k>2M/δ.
If d(u′, u) ≥ δ, then ϕ(u′, y) + kd(u′, u) ≥ ϕ(u), so such u′ may be ignored.
Restricting to those where d(u′, u) < δ, we see that (SHk ϕ)≥ ϕ− ε. □

Definition 5.6. We say that a formula ϕ(x, y) is witness-normalised (in x , unless
another variable is specified explicitly) if infy ϕ = 0 (equivalently, if ϕ ≥ 0 and
supx infy ϕ = 0).

More generally, for ε > 0, we say that ϕ(x, y) is ε-witness-normalised (in x) if
0≤ infy ϕ ≤ ε.

Witness-normalised formulas are analogous to formulas ϕ(x, y) in classical logic
for which ∃y ϕ is valid: in either case, we require that witnesses exist. If ϕ(x, y) is
any formula, then ϕ(x, y)− infz ϕ(x, z) is witness-normalised (we may say that it
is syntactically witness normalised), where we subtract a “normalising” term.

By definition, a subhomogeneous or a witness-normalised formula is positive. If
ϕ is witness-normalised in any of its arguments and ϕ ≥ ψ ≥ 0, then so is ψ . This
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applies in particular to the formulas SHk ϕ constructed in Proposition 5.5, assuming
ϕ is witness-normalised.

Definition 5.7. Let D∗ and E∗ be two star sorts. A star correspondence between
D∗ and E∗ is a formula ϕ(u, v) on D∗× E∗ that is subhomogeneous in (u, v) and
witness-normalised in each of u and v.

Similarly, an ε-star correspondence is a jointly subhomogeneous formula that is
ε-witness-normalised in each argument.

Remark 5.8. If ϕ is ε-witness-normalised (in one of its variables), then ϕ′ = ϕ−. ε
is witness-normalised (in the same), and |ϕ − ϕ′| ≤ ε. If ϕ is subhomogeneous,
then so is ϕ−. ε,

Therefore, if ϕ is an ε-star correspondence, then ϕ′ = ϕ−. ε is a star correspon-
dence, and |ϕ−ϕ′| ≤ ε.

Say that a definable map σ : D→ E is densely surjective if it is surjective in
every sufficiently saturated model of the ambient theory, or equivalently, if σ has
dense image in every model. Recall that a definable map σ : D∗→ E∗ between
star sorts is homogeneous if σ(αu)= ασ(u).

Notice that a definable map σ : D∗→ E∗ is homogeneous if and only if the
formula d(σu, v) is subhomogeneous in (u, v), and it is always witness-normalised
in u. If σ is densely surjective, then it is homogeneous if and only if d(σu, v) is a
star correspondence. If σ is bijective, then this is further equivalent to d(u, σ−1v)

being a star correspondence.

Definition 5.9. Say that a star sort D∗ is universal (as a star sort) if for every star
sort E∗, every star correspondence ϕ between D∗ and E∗, and every ε > 0, there
exists a 1

2 -star correspondence ψ such that, in addition, if ψ(u, vi ) < 1 for i = 0, 1,
then ϕ(u, vi ) < ε and d(v0, v1) < ε.

This just says that condition (ii) of Proposition 5.10, which may be easier to
parse, holds “approximately”. The choice of 1 and 1

2 is quite arbitrary, and any
two constants 0< r1 < r2 would do just as well (in the proof of Proposition 5.10(i)
below, replace 2ψ −. 1 with (ψ −. r1)/(r2− r1)).

Proposition 5.10. Let D∗ and E∗ be star sorts, ϕ(u, v) a star correspondence on
D∗× E∗, and ε > 0.

(i) If D∗ is a universal star sort, then there exists ψ as in Definition 5.9 that is a
star correspondence (rather than a mere 1

2 -star correspondence).

(ii) If D∗ is a universal star sort, then there exists a densely surjective homogeneous
definable map σ : D∗→ E∗ such that ϕ(u, σu)≤ ε.

(iii) If both D∗ and E∗ are both universal star sorts, then the same can be achieved
with σ bijective.
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Proof. For (i), let ψ be as in the conclusion of Definition 5.9. Then 2ψ −. 1 will do.
For (ii), define a sequence of formulas ϕn(u, v) as follows. We start with ϕ0 = ϕ,

and we may assume that 0<ε< 1. Then, assuming that ϕn is a star correspondence,
we find a star correspondence ϕn+1 such that ϕn+1(u, vi ) < 1 implies ϕn(u, vi )≤ ε

and d(v0, v1) < ε/2n . Let Xn ⊆ D∗ × E∗ be the (type-definable) set defined by
ϕn ≤ ε and X =

⋂
Xn . By hypothesis, for every u ∈ D∗ and n, there exists v ∈ E∗

such that (u, v)∈ Xn . We also have Xn+1⊆ Xn , so in a sufficiently saturated model
there exists v ∈ E∗ such that (u, v) ∈ X . By the second hypothesis on ϕn , such v is
unique, so X is the graph of a definable map σ (and v belongs to any model that
contains u). By the same reasoning as above, for every v ∈ E∗ there exists u ∈ D∗

(not necessarily unique, so potentially only in a sufficiently saturated model) such
that (u, v) ∈ X , so σ is densely surjective.

Assume now that v = σu, i.e., (u, v) ∈ X . Since each ϕn is subhomogeneous,
(αu, αv)∈ X for every α ∈ [0, 1], i.e., αv= σ(αu), and σ is homogeneous. Finally,
since ϕ0 = ϕ, we have (u, σu) ∈ X ⊆ X0, so ϕ(u, σu)≤ ε.

For (iii) we use a back-and-forth version of the previous argument, with the roles
of D∗ and E∗ reversed at odd steps. □

Notice that the zero formula is (trivially) a star correspondence on any two star
sorts. Therefore, if a universal star sort exists, then it is unique, up to a homogeneous
definable bijection.

Lemma 5.11. Let (D∗n) be an inverse system of star sorts, where each πn:D∗n+1→D∗n
is surjective and homogeneous.

(i) The inverse limit D∗ = lim
←−−

D∗n is a star sort, with the natural action α(un)=

(αun) and the distance proposed in Example 5.3.

(ii) A star correspondence between D∗ and E∗ that factors through D∗n× E∗ is the
same thing as a star correspondence between D∗n and E∗.

(iii) In order for D∗ to be a universal star sort, it is enough for it to satisfy the
condition of Definition 5.9 for star-correspondences ϕ that factor through
D∗n × E∗ for some n.

Proof. The first two assertions are fairly evident. In what follows, we are going to
identify a formula ϕ(un, v) on D∗n × E∗ with the formula ϕ(πn(u), v) on D∗× E∗,
which is essentially what the second point says.

For the last one, say that ϕ is a star correspondence between D∗ and E∗, and
let ε > 0. For n large enough we may find a formula ϕ1(un, v) on D∗n×E∗ such that
ϕ ≥ ϕ1 ≥ ϕ−

. ε (with the identification proposed in the previous paragraph). Since
ϕ is jointly subhomogeneous, so is ϕ−. ε. Using the construction of Proposition 5.5,
this implies that for large enough k we have

ϕ ≥ SHk ϕ ≥ SHk ϕ1 ≥ SHk(ϕ−
. ε)≥ ϕ−. 2ε.
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Since ϕ′ = SHk ϕ1 is jointly subhomogeneous, it is a star correspondence, and it
factors through D∗n × E∗. Assume now that ψ(u, v) exists, as per Definition 5.9,
for ϕ′ and ε. In particular, if ψ(u, v) < 1, then ϕ′(u, v) < ε, so ϕ(u, v) < 3ε, which
is good enough. □

6. Sorts with witnesses

In this section, we provide an explicit construction of a universal star sort. We
follow a path similar to the construction of D8 in [Ben Yaacov 2022], seeking a
sort that contains “all witnesses”.

Let us consider first the case of a single formula ϕ(x, y) on D× E , which we
assume to be witness-normalised (namely, such that infy ϕ = 0; see Definition 5.6).
The sort D is viewed as the sort of parameters, and E is the sort of potential
witnesses. One may then wish to consider the set of “parameters with witnesses”,
namely the collection of all pairs (x, y) such that ϕ(x, y) = 0, but this may be
problematic for several reasons.

First of all, in a fixed (nonsaturated) structure, for all a there exist b such that
ϕ(a, b) is arbitrarily small, but not necessarily such that ϕ(a, b)= 0. This can be
overcome by allowing an error, e.g., by considering all the solution set of ϕ(x, y)≤ ε
for some ε > 0. In fact, it is enough to consider the solution set of ϕ(x, y)≤ 1: if
we want a smaller error, we need only replace ϕ with ϕ/ε.

A second, and more serious issue, is that the resulting set(s) need not be definable.
That is to say that it may happen that 1<ϕ(a, b) < 1+ε for arbitrarily small ε > 0
without there existing a pair (a′, b′) close to (a, b) such that ϕ(a′, b′)≤ 1. We can
solve this by allowing a variable error, considering triplets (r, x, y) where r ∈ R
and ϕ(x, y) ≤ r . Now, if ϕ(x, y) < r + ε, then the triplet (r, x, y) is very close
to (r + ε, x, y), which does belong to our set.

This may seem too easy, and raises some new issues. For example, if we allow
errors greater than the bound for ϕ, then the condition ϕ(x, y)≤ r becomes vacuous.
This is not, in fact, a real problem, since soon enough we are going to let ϕ vary
(or more precisely, consider an infinite family of formulas simultaneously), and any
finite bound r will be meaningful for some of the formulas under consideration.
However, in order for the previous argument to work, r cannot be bounded (we
must always be able to replace it with r + ε). By compactness, r =+∞ must be
allowed as well — and now there is no way around the fact that ϕ(x, y) ≤∞ is
vacuous, regardless of ϕ.

We seem to be chasing our own tail, each time shovelling the difficulty underneath
a different rug — indeed, a complete solution is impossible, or else we could
construct a universal Skolem sort, which was shown in [Ben Yaacov 2022] to be
impossible in general. What we propose here is a “second best”: allow infinite
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error, but use the formalism of star sorts to identify all instances with infinite error
as the distinguished root element. Thus, at the root, all information regarding the
(meaningless) witnesses will be lost, while every point outside the root will involve
finite error, and therefore meaningful witnesses. Since we want the root to be at
zero, rather than at infinity, we replace r ∈ [1,∞] with α = 1/r ∈ [0, 1].

Let D∗ be a star sort, E a sort. The set D∗ ∗ E = {u ∗ y : u ∈ D∗, y ∈ E}, as per
Example 4.5, is again a star sort, in which 0 ∗ y = 0 regardless of y.

Lemma 6.1. Let D∗ be a star sort, E a sort, and ϕ(u, y) a formula on D∗ × E ,
witness-normalised and subhomogeneous in u. Then

D∗ϕ = {u ∗ y : u ∈ D∗ and ϕ(u, y)≤ 1} ⊆ D∗ ∗ E

is again a star sort, and the natural projection map D∗ϕ→ D∗, sending u ∗ y 7→ u,
is surjective.

Proof. We may view ϕ as a formula on D∗∗E , since, by subhomogeneity, ϕ(0, y)=0
regardless of y. The set D∗ϕ is the zero-set in D∗ ∗ E of the formula ϕ−. 1. Assume
now that a ∗ b ∈ D∗ ∗ E and ϕ(a, b)−. 1 < δ. Then (1− δ)a ∗ b ∈ D∗ϕ , and it is
as close as desired (given δ small enough) to a ∗ b. Therefore, D∗ϕ is definable.
Since ϕ is subhomogeneous, D∗ϕ is closed under multiplication by α ∈ [0, 1] and is
therefore a star sort. Since ϕ is witness-normalised, the projection is onto. □

Let us iterate this construction. Recall from Remark 4.6 that (∗D)∗E=∗(D×E),
identifying (αx) ∗ y = α(x, y). Therefore, if D∗ ⊆ ∗D (with the induced star
structure), then D∗ ∗ E ⊆ ∗(D× E).

Definition 6.2. Fix a sort D, as well as a sequence of formulas 8= (ϕn), where
each ϕn(x<n, y) is a witness-normalised formula on Dn

× D. Since 8 determines
the sort D, we say that 8 is a sequence on D. We then define

D∗n = {αx<n : αϕk(x<k, xk)≤ 1 for all k < n} ⊆ ∗(Dn),

D∗8 = {αx : αϕn(x<n, xn)≤ 1 for all n} ⊆ ∗(DN).

In other words,

D∗0 = [0, 1] = ∗(singleton), D∗n+1 = (D
∗

n)ϕ′n , D∗8 = lim
←−−

D∗n ,

where ϕ′n(αx<n, y)= αϕ(x<n, y). By Lemma 6.1, each D∗n is a star sort, and the
natural projection D∗n+1→ D∗n is onto. By Lemma 1.5, D∗8 = lim

←−−
D∗n is also a sort,

and therefore a star sort by Lemma 5.11.
Notice that any formula in D∗n can be viewed, implicitly, as a formula in D∗k

for any k ≥ n, or even in D∗8, via the projections D∗k ↠ D∗n or D∗8 ↠ D∗n (this
is, essentially, an addition of dummy variables). In what follows, variables in D∗n
are denoted by un or αx<n (where x<n ∈ Dn), and similarly, variables in D∗8 are
denoted by u or αx .
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Definition 6.3. We say that the sequence 8 on a sort D is rich if D admits a
definable projection onto any countable product of basic sorts, and for every witness-
normalised formula ϕ(x<n, y) in Dn

× D and every ε > 0 there exist arbitrarily big
k ≥ n such that |ϕk(x<k, y)−ϕ(x<n, y)|< ε (so ϕ is viewed as a formula in x<k, y
through the addition of dummy variables).

Lemma 6.4. Under our standing hypothesis that the language is countable, with
countably many basic sorts, there exists a rich sequence 8 (on an appropriate
sort D). Moreover, we may construct 8 (and D) in a manner that only depends on
the language and not on the theory of any specific structure.

Proof. For D we may take the (countable) product of all infinite countable powers
of the basic sorts. For each k we may choose a countable dense family of for-
mulas on Dk

× D, call them ψk,m(x<k, y). Replacing them with χk,m(x<k, y) =
ψk,m(x<k, y)− infz ψk,m(x<k, z), we obtain a countable dense family of witness-
normalised (in x<k) formulas on Dk

×D. We may now construct a rich sequence 8
in which each χk,m occurs infinitely often (with additional dummy x variables). □

Let 8= (ϕn) (and D) be fixed, with 8 rich. We define a formula on Dn by

ρn(x<n)=
1

1∨
∨

k<n ϕk(x<k, xk)
.

In other words, ρn(x<n) is the maximal α ∈ [0, 1] such that αx<n ∈ D∗n , or equiva-
lently, such that x<n can be extended to x with αx ∈ D∗8.

Lemma 6.5. Let 8 = (ϕn) be rich. Let E∗ be another star sort, ψ(un, v) a star
correspondence on D∗8 × E∗ that factors through D∗n × E∗, and ε > 0. Then ψ
factors through D∗k × E∗ for every k ≥ n, and for every large enough k the formula
ψk

1 (x<k, v)= ψ(ρk(x<k)x<n, v) is ε-witness-normalised in either argument.

Proof. If k ≥ n, then ρk(x<k) ≤ ρn(x<n), so ρk(x<k)x<n ∈ D∗n . Since ψ(un, v) is
witness-normalised in un , ψk

1 (x<k, v) is witness-normalised in x<k . It is left to
show that for k large enough, it is also ε-witness-normalised in v.

Our hypothesis regarding D implies, among other things, that there exists a
surjective definable map χ : D→ [0, 1] (namely, a surjective formula). Therefore,
for a constant C that we shall choose later, there exists m ≥ n such that

Cχ(y)≥ ϕm(x<m, y)≥ Cχ(y)− 1/C.

Assume that k > m. For every possible value of v ∈ E∗, which we consider as
fixed, there exists αx<n ∈ D∗n such that ψ(αx<n, v) < ε. We can always extend x<n

to x<m in such a manner that ρm(x<m)= ρn(x<n)≥ α, so αx<m ∈ D∗m . We choose
xm so χ(xm)= (αC ∨ 1)−1, and extend x≤m to x<k so ρk(x<k)= ρm+1(x≤m).
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If αC ≥ 1, then 1/α ≥ ϕm(x<m, xm)≥ 1/α− 1/C , so

α ≤ ρm+1(x≤m)≤ α(1−α/C)−1.

Having chosen C large enough, ρk(x<k)= ρm+1(x≤m) is as close to α as desired. If
αC<1, then 0≤α≤1/C and 0<ρk+1(x≤k)≤1/(C−1/C), so the same conclusion
holds. Either way, having chosen C large enough, ψk

1 (x<k, v) is as close as desired
to ψ(αx<n, v), and in particular ψk

1 (x<k, v) < 2ε, which is good enough. □

Given our hypothesis regarding D, every sort can be expressed as a definable
subset of a quotient of D by a pseudodistance. Such a quotient is denoted by (D, d)
(which includes an implicit step of identifying points at d-distance zero).

Convention 6.6. From this point, and through the proof of Lemma 6.8, we fix a
star sort E∗. By the preceding remark, we may assume that (E∗, dE∗) ⊆ (D, d)
isometrically, where d is a definable pseudodistance on D, which we also fix. In
particular, the distance on E∗ is also denoted by d. If y ∈ D, we denote its image
in the quotient (D, d) by y.

It is worthwhile to point out that if αx ∈ D∗8, then for every k ∈ N and δ > 0,

(αδ/2)(ϕk(x<k, xk)+ 1)= (δ/2)(αϕk(x<k, xk)+α)≤ δ. (4)

Given n ≤ k and δ > 0, let us define, for αx ∈ D∗8, v ∈ E∗ and y ∈ D,

χn(αx, y, v)= inf
w∈E∗

[
d(αρn(x<n)

−1w, v)+αd(y, w)
]
,

χn,k(αx, v)= χn(αx, xk, v)= inf
w∈E∗

[
d(αρn(x<n)

−1w, v)+αd(xk, w)
]
.

Let us explain this. First of all, since αx ∈ D∗8, we must have α ≤ ρn(x<n), so the
expression αρn(x<n)

−1w makes sense. Also, if α = 0, then χn(αx, y, v) = ∥v∥
does not depend on x , so this is well defined.

Now, let y ∈ D (possibly, y = xk for some k ≥ n, but this will happen later). We
want v to be equal to αρn(x<n)

−1 y, and in particular, we want y to belong to E∗.
We may not multiply by αρn(x<n)

−1 outside E∗, but we may quantify over E∗.
Therefore, we ask for y to be very close to some w ∈ E∗, and for αρn(x<n)

−1w,
which always makes sense, to be close to v.

Lemma 6.7. The formula χn,k(u, v) has the following properties:

(i) It is jointly subhomogeneous in its arguments.

(ii) For every n, ε > 0 there exists δ = δ(n, ε) > 0 such that, if χn(u, y, vi ) ≤ δ

for i = 0, 1, then d(v0, v1) < ε. In particular, for any k, if χn,k(u, vi )≤ δ for
i = 0, 1, then d(v0, v1) < ε.

(iii) Assuming that ϕk(x<k, y) ≥ 2d(y, E∗)/δ − 1, the formula χn,k(u, v) is δ-
witness-normalised in u.
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Proof. Item (i) is immediate (among other things, we use the fact that d is subho-
mogeneous on E∗).

For (ii), assume that χn(αx, y, vi )= 0. Then either α = 0, in which case vi = 0,
or α > 0, in which case we have y ∈ E∗ and vi = αρn(x<n)

−1 y. Either way, v0= v1,
and in particular d(v0, v1) < ε. The conclusion follows by compactness.

For (iii), let u = αx ∈ D∗8. By (4) we have αd(xk, E∗)≤ δ. Choose w ∈ E∗ such
that αd(xk, w)≤ δ, and let v = αρn(x<n)

−1w. Then χn,k(u, v)≤ δ. □

Lemma 6.8. Let 8 = (ϕn) be rich. Let E∗ ⊆ (D, d) be a star sort, as per
Convention 6.6, ψ(u, v) a star correspondence on D∗8 × E∗, and ε > 0. Then
there exist n ≤ k and δ > 0 such that χn,k(u, v) is a δ-star correspondence between
D∗8 and E∗, and in addition, if χn,k(u, vi ) ≤ 2δ for i = 0, 1, then ψ(u, vi ) ≤ ε

and d(v0, vi ) < ε.

Proof. By Lemma 5.11 and Lemma 6.5, for some n (in fact, any n large enough),
we may assume that ψ is a star correspondence that factors as ψ(un, v) through
D∗n×E∗, and that ψ1(x<n, v)=ψ(ρn(x<n)x<n, v) is ε-witness-normalised in either
argument. In particular, ψ1−

. ε is witness-normalised.
We may extendψ1−

. ε to Dn
×(D, d), obtaining a formulaψ2(x<n, y) on Dn

×D,
which is uniformly d-continuous in y. Since ψ1 ≥ 0, we may assume that ψ2 ≥ 0,
and even that

ψ2(x<n, y)≥ d(y, E∗).

Let us choose δ>0 small enough, based on choices made so far. Sinceψ2(x<n, y)
is witness-normalised in x<n (choosing witnesses y ∈ E∗), there exists k ≥ n
such that |ϕk − 2ψ2/δ| ≤ 1. By Lemma 6.7, having chosen δ small enough, the
formula χn,k(u, v) is jointly subhomogeneous, δ-witness-normalised in u, and
χn,k(u, vi )≤ 2δ implies d(v0, vi ) < ε. Two more properties remain to be checked.

First, we need to check that χn,k(u, v) is δ-witness-normalised in v. Indeed,
given v = y ∈ E∗, we know that there exists a sequence x<n ∈ Dn such that
ψ1(x<n, v)−

. ε = 0. Let α = ρn(x<n), so αx<n ∈ D∗n , and extend the sequence
x<n to x<k keeping αx<k ∈ D∗k . We now choose xk = y, so ψ2(x<n, xk) = 0 and
ϕk(x<k, xk)≤ 1. Therefore, αx≤k ∈ D∗k+1, and we may complete the sequence to
x ∈ DN such that αx ∈ D∗8. Then χn,k(αx, v)= 0, as witnessed by w= v (recalling
that we chose α = ρn(x<n)).

Second, we need to check that, having chosen δ appropriately, χn,k(αx, v)≤ 2δ
impliesψ(αx, v)≤ε. Indeed, following a path similar to the proof of Lemma 6.7(ii),
assume that

χn(αx, y, v)= αψ2(x<n, y)= 0.

If α = 0, then v = 0 and ψ(αx, v) = ψ(0, 0) = 0. If α > 0, then y ∈ E∗,
v = αρn(x<n)

−1 y, and ψ(ρn(x<n)x, y)−. ε = ψ2(x<n, y) = 0. Since (αx, v) =
αρn(x<n)

−1(ρn(x<n)x, y), it follows that ψ(αx, v) ≤ ε in this case as well. By
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compactness, for δ small enough, if χn(αx, y, v) ≤ 2δ and αψ2(x<n, y) ≤ δ,
then ψ(αx, v) < 2ε. This last argument does not depend on k, so we may
assume that δ was chosen small enough to begin with. By (4), the inequality
αψ2(x<n, xk) ≤ δ is automatic when αx ∈ D∗8. If, in addition, we assume that
χn,k(αx, v)= χn(αx, xk, v)≤ 2δ, then ψ(αx, v) < ε, completing the proof. □

Theorem 6.9. Let 8 be a rich sequence. Then D∗8 is universal.

Proof. Immediate from Lemma 6.8, using the formula 2χn,k/δ. □

Let us sum up everything we know about the existence and uniqueness of
universal star sorts.

Corollary 6.10. Every theory T (not necessarily complete) admits a universal star
sort, which is unique up to a bijective homogeneous map. Moreover, this unique
universal sort only depends on the bi-interpretation class of T .

For a more precise statement of the moreover part, assume that T and T ′ are
bi-interpretable, so by Definition 1.4, they admit a common interpretational expan-
sion T ′′. Then any two universal star sorts D∗T and D∗T ′ of T and T ′, respectively,
are also universal star sorts of T ′′. As such, they admit a definable homogeneous
bijection.

Proof. For any theory T , the existence is by Theorem 6.9, and the uniqueness by
Proposition 5.10(iii).

Let us consider two theories T and T ′, and assume that T ′ is an interpretational
expansion of T . Let D∗ be a star sort of T . Since T ′ is an expansion of T , D∗

is also a star sort of T ′. Conversely, if E∗ is a star sort of T ′, then, since T ′ is an
interpretational expansion of T , E∗ admits a definable bijection (in the sense of T ′)
with a sort of T , call it Ê∗. This definable bijection induces a star sort structure
on Ê∗. Since T ′ is an interpretational expansion of T , it cannot introduce new
structure on sorts already interpretable in T . Therefore, the star sort structure on
Ê∗ is definable in T . In other words, T and T ′ have the same star sorts.

Now let D∗T be a universal star sort of T . Then D∗T is also a star sort of T ′. We have
just seen that every star sort of T ′ is also a star sort of T , so every instance of the
condition of Definition 5.9 for D∗T in T ′ can be translated to such an instance in T .
Therefore, D∗T is also a universal star sort of T ′. The moreover part follows. □

7. Further properties of the universal star sort

In Section 5 we showed that the universal star sort, if it exists, is unique up to a
homogeneous definable bijection, and in Section 6 we showed that one exists as D∗8
for any rich sequence8. Let us prove a few additional properties of this special sort.
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Convention 7.1. From now on, D∗ denotes any universal star sort. Since it is
unique up to a homogeneous definable bijection, multiplication by α ∈ [0, 1] is well
defined regardless of the construction we choose for D∗. In particular, its root is
well defined.

Notice that we can construct it as D∗8 in a manner that only depends on the
language (and not on T ): we obtain a universal star sort for T simply by restricting
our consideration of this sort to models of T .

The uniqueness of D∗ means that we may choose it to be D∗8 for any rich 8,
and in particular, that we are allowed some leverage in choosing a convenient
sequence 8, as in the proof of the following result.

Theorem 7.2. The universal star sort D∗ is a coding sort for any theory T (see
Definition 2.4), with the exceptional set being the root D0

= {0}.

Proof. Being a coding sort (with some exceptional set) is invariant under definable
bijections (that preserve the exceptional set). Therefore, despite the fact that D∗ is
only well defined up to a homogeneous definable bijection, our statement makes
sense. We may choose a rich sequence 8 on a sort D, as per Definition 6.3, and
take D∗ = D∗8.

Let M ⊨ T and αa ∈ D∗8(M)∖ {0}, and let

N = dcl(αa)⊆ M,

necessarily a closed set (if M is multisorted, closed in each sort separately). Then
α ̸= 0, and N = dcl(a). In order to show that N ⪯ M , it suffices to show that it
satisfies the Tarski–Vaught criterion: for every formula ϕ(x, y), where x is in the
sort DN and y is in one of the basic sorts,

inf
y
ϕ(a, y)= inf

b∈N
ϕ(a, b),

where the truth values are calculated in M . Since D projects, by hypothesis, onto
any basic sort, we replace ϕ with its pull-back and assume that it is a formula
on DN

× D. Replacing ϕ with ϕ(x, y)− infz ϕ(x, z), we may assume that ϕ is
witness-normalised and the left-hand side vanishes. Then it is enough to show that
for every ε > 0 there exists b ∈ N such that ϕ(a, b) < ε, and replacing ϕ with an
appropriate multiple, it is enough to require ϕ(a, b)≤ 1+ 1/α. Choosing n such
that ϕn is a good-enough approximation of ϕ, it is enough to find b ∈ D(N ) such
that ϕn(a<n, b) ≤ 1/α. For this, b = an will do. This proves the coding models
property of Definition 2.4.

For the density property, assume that M is separable, and let αa∈D(M). Assume
first that α > 0. We may freely assume that ϕk = 0 infinitely often. Let us fix n0,
and define a sequence b ∈ DN as follows.
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• We start with b<n0 = a<n0 .

• Having chosen b<k (for k ≥ n0) such that αb<k ∈ D∗k , we can always choose
bk ∈ D(M) so that αb≤k ∈ D∗k+1.

• If ϕk = 0, then we may choose any bk ∈ D(M) that we desire. Since this
happens infinitely often, we may ensure that dcl(b)= M .

In the end, αb ∈ D∗8 and dcl(αb)= dcl(b)= M , so αb codes M . Taking n0 large
enough, αb is as close as desired to αa.

This argument shows, in particular, that there exists αa ∈ D(M) that codes M .
Let αn = α/2n . Then αna ∈ D(M) codes M for each n, and αna→ 0, so the root
can also be approximated by codes for M . □

Definition 7.3. Let T be any theory in a countable language, and D∗ its universal
star sort. View it as a coding sort, as per Theorem 7.2, with exceptional set D0

={0},
and define the corresponding groupoid, as per Definition 3.1:

G∗(T )= GD∗(T ).

We already know that this is an open Polish topological groupoid, with basis
B∗(T )≃ SD∗(T ).

Theorem 7.4. The groupoid G∗(T ) is a complete bi-interpretation invariant for
the class of theories in countable languages.

Proof. On the one hand, by Corollary 6.10, D∗ only depends on the bi-interpretation
class of T , and therefore so does G∗(T ). Conversely, by Theorem 3.9, a theory
bi-interpretable with T (namely, the theory T2D∗ , up to some arbitrary choices of
definable distance and symbols for the language) can be recovered from G∗(T ). □

Our last task is to calculate the basis SD∗(T ) explicitly, and show how Theorem 7.4
extends previous results, in a style similar to that of Remark 3.13.

Let us fix a rich sequence 8 on a sort D, so we may take D∗ = D∗8. We
also fix a formula χ(y) on D that is onto [0, 1]. Finally, we may assume that
ϕn(x<n, y)= nχ(y) for infinitely many n.

Let X = SDN(T ) and Y = SD∗8(T ). We may identify S∗DN(T ) with ∗X , identify-
ing tp(αx) with α tp(x) (here we need to assume that T is complete, so there exists
a unique possible complete type for 0 ∈ D∗8). This identifies Y with a subset of ∗X ,
namely that of all αp where p(x) implies that αx ∈ D∗8, or equivalently, such that
αϕn(p)≤ 1 for all n.

For α ∈ [0, 1], let
Xα = {p ∈ X : αp ∈ Y }.

In particular, X0 = X . Define ρ : X→ [0, 1] by

ρ(p)= sup {α : αp ∈ Y } = sup {α : p ∈ Xα}.
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Lemma 7.5. Let α > 0. Then for every p ∈ X we have α ≤ ρ(p) if and only
if p ∈ Xα, and Xα is compact, totally disconnected. In particular, ρ : X→ [0, 1] is
upper semicontinuous.

Proof. For the first assertion, it is enough to notice that by compactness, the
supremum is attained, namely, p ∈ Xρ(p). It follows that the condition ρ(p)≥ α is
equivalent to p ∈ Xα, so it is closed, and ρ is upper semicontinuous.

Assume that αqi ∈ Y and q0 ̸= q1. Then for some finite n, there exists a formula
ψ(x<n) that separates q0 from q1, say ψ(qi )= i . We may also find a [0, 1]-valued
formula χ(y) on D that attains (at least) the values 0 and 1.

By Urysohn’s lemma, there exists a formula ϕ(x<n, y)≥ 0 such that

|ψ(x<n)+χ(y)− 1| ≥ 1
3

H⇒ ϕ(x<n, y)= 0,

|ψ(x<n)+χ(y)− 1| ≤ 1
6

H⇒ ϕ(x<n, y)= 17
α
+ 42.

Since χ attains both 0 and 1, the formula ϕ(x<n, y) is witness-normalised, so there
exists k ≥ n with |ϕ−ϕk | ≤ 1.

Assume now that αp ∈ Y . Then ϕk(x<k, xk)
p
≤ 1/α, so

ϕ(x<n, xk)
p
≤

1
α
+ 1< 17

α
+ 42 and |ψ(x<n)+χ(xk)− 1|> 1

6
.

This splits the set Xα in two (cl)open sets, defined by ψ(x<n)+ χ(xk) >
7
6 and

ψ(x<n)+χ(xk) <
5
6 , respectively. Since χ is [0, 1]-valued, q0 must belong to the

latter and q1 to the former, so they can be separated in Xα by clopen sets, completing
the proof. □

Lemma 7.6. The set X>0 = {p ∈ X : ρ(p) > 0} =
⋃
α>0 Xα is totally disconnected,

admitting a countable family of clopen sets (Un : n ∈ N) that separates points.

Proof. We may write X>0 as
⋃

k X2−k . Each X2−k is compact, totally disconnected,
and it is metrisable by countability of the language. Therefore, it admits a basis of
clopen sets.

The inclusion X2−k ⊆ X2−k−1 is a topological embedding of compact totally
disconnected spaces. Therefore, if U ⊆ X2−k is clopen, then we may find a clopen
U ′ ⊆ X2−k−1 such that U ′ ∩ X2−k =U . Proceeding in this fashion, we may find a
clopen U ⊆ X>0 such that U ∩ X2−k =U .

We can therefore produce a countable family of clopen sets (Un : n ∈ N) in X>0

such that for each k, (Un ∩ X2−k : n ∈ N) is a basis of clopen sets for X2−k , and in
particular separates points. It follows that (Un) separates points in X>0. □

Given this family (Un), we may define a map θ0 : X>0→ 2N, where θ0(p)n = 0
if p ∈ Un and θ0(p)n = 1 otherwise. It is continuous by definition, and injective
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since the sequence (Un) separates points. If αp ∈ Y , then either α = 0 or p ∈ X>0

(or possibly both), and we may define

θ(αp)= αθ0(p) ∈ ∗2N,

where θ(0)= θ(0 · p)= 0 regardless of p. It is clearly continuous at 0, and at every
point of Y (since θ0 is continuous). It is also injective on Y . Since Y is compact,
θ : Y →∗2N is a topological embedding.

Lemma 7.7. The set of ρ(p)p for p ∈ X>0 is dense in Y .

Proof. We already know that ρ(p)p ∈ Y . Assume now that U ⊆ Y is open and
nonempty, so it must contain some point αp with α > 0.

We may assume that

U = {βq ∈ Y : |β −α|< ε, q ∈ V },

where V is an open neighbourhood of p in X . The set V may be taken to be defined
by a condition ψ > 0, where ψ(x<n) only involves finitely many variables. By
hypothesis on 8, possibly increasing n, we may assume that ϕn(x<n, y)= nχ(y),
and we may further assume that α > 1/n.

Choose a realisation a of p. Let b<n = a<n and choose bn so χ(bn) = 1/nα.
Then ϕn(b<n, bn)= 1/α, so ρn+1(b≤n)= α, and we may extend b≤n to a sequence
b such that ρ(x ′)= α. In particular, q = tp(b) ∈ V ∩ X>0 and αq = ρ(q)q ∈U . □

Let us recall from [Charatonik 1989] a few definitions and facts regarding fans.
The Cantor fan is the space ∗2N. It is a connected compact metrisable topological
space. More generally, a fan F is a connected compact space that embeds in the
Cantor fan. An endpoint of F is a point x ∈ F such that F ∖ {x} is connected (or
empty, in the extremely degenerate case where F is reduced to a single point). If
the set of endpoints is dense in F , then F is a Lelek fan. By the main theorem of
[Charatonik 1989], the Lelek fan is unique up to homeomorphism.

Proposition 7.8. Let T be a complete theory. Then SD∗(T ), the type-space of the
universal star sort D∗ in T , is homeomorphic to the Lelek fan.

Proof. By Lemmas 7.5–7.7, the space SD∗(T ) is a Lelek fan. □

This gives us a hint as to how to relate the universal star sort with previously
known coding sorts referred to in the examples of Section 3.

Theorem 7.9. Assume T admits a universal Skolem sort D in the sense of [Ben Yaa-
cov 2022], and let L denote the Lelek fan. Then L ∗ D is a universal star sort.

Proof. We may assume that L ⊆ ∗2N, and moreover, that for every nonempty open
subset U ⊆ 2N there exist α > 0 and t ∈ U such that αt ∈ L (otherwise, we may
replace 2N with the intersection of all clopen subsets for which this is true).
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For each n ∈N there is a natural initial projection 2N
→ 2n . This induces in turn

a projection ∗2N
→ ∗2n . Let Ln ⊆ ∗2n be the image of L under this projection,

so L = lim
←−−

Ln . Consequently, L ∗ D = lim
←−−

(Ln ∗ D).
Our hypotheses regarding L implies that the endpoints of Ln can be enumerated

as {αt t : t ∈ 2n
}, with αt > 0. If m ≥ n, then we have a natural projection Lm→ Ln .

If t ∈ 2n , s ∈ 2m−n , and ts ∈ 2m is the concatenation, then αts ts gets sent to αts t ∈ Ln ,
so αts ≤ αt , and αts = αt for at least one s. For any δ > 0, we may always choose
m large enough such that for every t ∈ 2n , the set {αts : s ∈ 2m−n

} is δ-dense in the
interval [0, αt ].

Let ϕ(u, v) be a star correspondence between Ln ∗D and some other star sort E∗,
and let ε > 0. Choose δ > 0 appropriately, and a corresponding m as in the previous
paragraph. Define a formula on 2n

× 2m−n
× D× E∗ by

ϕ′(ts, x, v)= ϕ(αts t ∗ x, v).

On the one hand, since ϕ is witness-normalised in the first argument, ϕ′ is witness-
normalised in (ts, x). On the other hand, if v ∈ E∗, then there exist αt ∈ Ln

(so α≤αt ) and x ∈D (possibly in an elementary extension) such that ϕ(αt∗x, v)=0.
Having chosen δ small enough to begin with, and m large enough accordingly, we
may now find s ∈ 2m−n such that αts is close to α, sufficiently so that

ϕ′(ts, x, v)= ϕ(αts t ∗ x, v) < ε.

It follows that ϕ′−. ε is witness-normalised in either (ts, x) or v.
Let us now evoke a few black boxes from [Ben Yaacov 2022]. First, 2m

× D
is again a universal Skolem sort (and therefore stands in definable bijection with
D). Second, since ϕ′−. ε is witness-normalised in either group of arguments, there
exists a surjective definable function σ : 2m

× D→ E∗ that satisfies

(ϕ′−. ε)(ts, x, σ (ts, x))≤ ε,

i.e., ϕ′(ts, x, σ (ts, x))≤ 2ε. Define on Lm ∗ D× E∗

ψ(αts ∗ x, v)= d(v, αα−1
ts σ(ts, x))

(keeping in mind that if αts ∈ Lm , then α ≤ αts). This formula is jointly sub-
homogeneous (since d is, on E∗). It is also witness-normalised in αts ∗ x (just
choose v = αα−1

ts σ(ts, x)), and in v (since σ is surjective, and we may always
choose α = αts). By construction, ϕ(αts t ∗ x, σ (ts, x)) ≤ 2ε, so multiplying all
arguments by αα−1

ts ,
ϕ(αt ∗ x, αα−1

ts σ(ts, x))≤ 2ε.

Therefore, if ψ(αts ∗ x, v) is small enough, ϕ(αt ∗ x, v) ≤ 3ε, and by definition,
if ψ(αts ∗ x, vi ) is small for i = 0, 1, then d(v0, v1) is small. Replacing ψ with a
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multiple, we may replace “small enough” with “smaller than one”, and now, by
Lemma 5.11, L ∗ D is a universal star sort. □

Corollary 7.10. Assume that T is ℵ0-categorical and let D0 be as in Example 3.10.
In other words, let M ⊨ T be the separable model, a ∈ MN a dense sequence, and
D0 the collection of realisations of tp(a). Then D0 is a definable set, i.e., a sort,
and L ∗ D0 is a universal star sort.

Proof. In an ℵ0-categorical theory, every type-definable set is definable. By
[Ben Yaacov 2022, Proposition 4.17], 2N

× D0 is a universal Skolem sort. Now,
L ∗ 2N

⊆ (∗2N) ∗ 2N
= ∗(2N

× 2N) is easily checked to be a fan, whose set of
endpoints is dense, so it is homeomorphic to L . Therefore

L ∗ (2N
× D0)= (L ∗ 2N) ∗ D0 ≃ L ∗ D0.

By Theorem 7.9, this is a universal star sort. □

Define L(2)⊆ L2 as the set of pairs (x, y) such that either both x = y= 0, or both
are nonzero. This is a Polish, albeit noncompact, star space, with root (0, 0). When
G is a topological groupoid, we may equip L(2) ∗ G with a groupoid composition
law

[x, y, g] · [y, z, h] = [x, z, gh].

If B is the basis of G, then L ∗ B is the basis of L(2) ∗ G.

Corollary 7.11. Let T be a continuous theory admitting a universal Skolem sort D,
and let G(T ) = GD(T ), as in Example 3.12. Then G∗(T ) ≃ L(2) ∗ G(T ). If T is
ℵ0-categorical, and G(T ) is the automorphism group of its unique separable model,
then G∗(T )≃ L(2) ∗G(T ).

Proof. Just put the identities D∗ = L ∗ D and D∗ = L ∗ D0 through the groupoid
construction. □
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An improved bound for regular decompositions of
3-uniform hypergraphs of bounded VC2-dimension

Caroline Terry

A regular partition P for a 3-uniform hypergraph H D .V;E/ consists of a
partition V D V1 [ � � � [ Vt and for each ij 2

�
Œt�
2

�
, a partition K2ŒVi ; Vj � D

P 1ij [� � �[P
`
ij such that certain quasirandomness properties hold. The complexity

of P is the pair .t; `/. In this paper we show that if a 3-uniform hypergraph H
has VC2-dimension at most k, then there is such a regular partition P for H of
complexity .t; `/, where ` is bounded by a polynomial in the degree of regularity.
This is a vast improvement on the bound arising from the proof of this regularity
lemma in general, in which the bound generated for ` is of Wowzer type. This can
be seen as a higher arity analogue of the efficient regularity lemmas for graphs and
hypergraphs of bounded VC-dimension due to Alon–Fischer–Newman, Lovász–
Szegedy, and Fox–Pach–Suk.

1. Introduction

Szemerédi’s regularity lemma is an important theorem with many applications in
extremal combinatorics. The proof of the regularity lemma, which first appeared in
the 70s [24], was well known to produce tower-type bounds in �. The question of
whether this type of bound is necessary was resolved in the late 90s by Gowers’
lower bound construction [10], which showed tower bounds are indeed required
(see also [7; 17; 6]).

Hypergraph regularity was developed in the 2000s by Frankl, Gowers, Ko-
hayakawa, Nagle, Rödl, Skokan, Schacht [9; 11; 12; 21; 20; 19], in order to prove
a general counting lemma for hypergraphs. These types of regularity lemmas are
substantially more complicated than prior regularity lemmas. In particular, a regular
partition of a k-uniform hypergraph involves a sequence P1; : : : ;Pk�1, where Pi
is a collection of subsets

�
V
i

�
such that certain quasirandomness properties hold

for each Pi relative to P1; : : : ;Pi�1. The proofs of these strong regularity lemmas
produce Ackerman style bounds for the size of each Pi . Given a function f , let
f .i/ denote the i -times iterate of f . We then define Ack1.x/D 2x , and for i > 1,
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Acki .x/D Ack.i/
k�1

.x/. The proofs of the strong regularity lemma for k-uniform
hypergraphs produce bounds for the size of each Pi of the form Ackk . It was shown
by Moshkovitz and Shapira [18] that this type of bound is indeed necessary for the
size of P1, which corresponds to the partition of the vertex set.

In the case of 3-uniform hypergraphs, a decomposition in this sense consists of
a partition P1 D fV1; : : : ; Vtg of V , and a set

P2 D
˚
P ˛ij W ij 2

�
Œt�
2

�
; ˛ 2 Œ`�

	
;

where for each ij 2
�
Œt�
2

�
, P 1ij [� � �[P

`
ij is a partition of K2ŒVi ; Vj �. The complexity

of P is the pair .t; `/. We give a formal statement of the regularity lemma for
3-graphs here for reference, and refer the reader to Section 2B for the precise
definitions involved. The version stated below is a refinement of a regularity lemma
due to Gowers [12] (for more details see Section 2B).

Theorem 1.1 (strong regularity lemma for 3-graphs). For all �1 > 0, and every
function �2 WN! .0; 1�, there exist positive integers T0,L0, and n0 such that for any
3-graph H D .V;E/ on n � n0 vertices, there exists a dev2;3.�1; �2.`//-regular,
.t; `; �1; �2.`//-decomposition P for H with t � T0 and `� L0.

In Theorem 1.1, the parameter T0 is the bound for t , the size of the vertex
partition, and L0 is the bound for `, the size of the partition of K2ŒVi ; Vj �, for
each ij 2

�
Œt�
2

�
. The proof of Theorem 1.1 generates a Wowzer (i.e., Ack3) type

bound for both t and `. Moshkovitz and Shapira showed in [18] that there ex-
ist 3-uniform hypergraphs requiring a Wowzer type bound for the size of t in
Theorem 1.1. Less attention has been paid to the form of the bound L0, and it
remains open whether this is necessarily of Wowzer type. In recent work of the
author and Wolf [26], the partition P2 plays a crucial role in the proof of a strong
version of Theorem 1.1 in a combinatorially tame setting. This work suggests that
understanding the form of the bound for ` is also an interesting problem.

In the case of graphs, it was shown that dramatic improvements on the bounds
in Szemerédi’s regularity lemma can be obtained under the hypothesis of bounded
VC-dimension. In particular, Alon, Fischer, and Newman [1] showed that if a
bipartite graph G has VC-dimension less than k, the it has an �-regular partition
of size at most .k=�/O.k/. Lovász and Szegedy [16] extended this to all graphs
of VC-dimension less than k, with a bound of the form ��O.k

2/. Fox, Pach, and
Suck [8] strengthened the bound to one of the form c.�2k�1/, and extended these
results to hypergraphs of bounded VC-dimension. Related results were obtained
with weaker polynomial bounds by Chernikov and Starchenko [3].

In this paper we prove an analogous theorem in the context of strong regularity
for 3-uniform hypergraphs, where VC-dimension is replaced by a higher arity
analogue called VC2-dimension.
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Definition 1.2. Suppose H D .V;E/ is a 3-graph. The VC2-dimension of H ,
VC2.H/, is the largest integer k so that there exist a1; : : : ; ak; b1; : : : ; bk 2 V and
cS 2 V for each S � Œk�2, such that aibj cS 2E if and only if .i; j / 2 S .

The notion of VC2-dimension was first introduced by Shelah [22], who also
studied it in the context of groups [23]. It was later shown to have nice model-
theoretic characterizations by Chernikov, Palacin, and Takeuchi [5] to have further
natural connections to groups and fields by Hempel and Chernikov [15; 2], and to
have applications in combinatorics by the author [25].

Using infinitary techniques, Chernikov and Towsner [4] proved a strong regularity
lemma for 3-uniform hypergraphs of bounded VC2-dimension without explicit
bounds (in fact they proved results for k-uniform hypergraphs of bounded VCk�1-
dimension). Similar results were proved by the author and Wolf [26] in the 3-uniform
case with Wowzer type bounds. In this paper, we show that 3-uniform hypergraphs
of uniformly bounded VC2-dimension have regular decompositions with vastly
improved bounds on the size of `; in particular, ` can be guaranteed to be polynomial
in size, rather than Wowzer. We include the formal statement of our main theorem
below, and refer the reader to the next section for details on the definitions involved.

Theorem 1.3. For all k � 1, there are ��1 > 0 and ��2 W N! .0; 1� such that the
following holds. Suppose 0<�1<��1 and �2 WN! .0; 1� satisfies 0<�2.x/<��2 .x/
for all x 2 N. There is T D T .�1; �2/ such that every sufficiently large 3-graph
H D .V;E/ has a dev2;3.�1; �2.`//-regular .t; `; �1; �2.`//-decomposition with
`� ��Ok.k/1 and t � T .

The bound T in Theorem 1.3 is generated from an application of Theorem 1.1,
and is also of Wowzer type (see Theorem 3.1 for a more precise statement regarding
this). The regular partition in Theorem 1.3 has the additional property that the
regular triads have edge densities near 0 or 1, which also occurs in the results
from [4; 26]. The ingredients in the proof of Theorem 1.3 include the improved
regularity lemma for 3-graphs of bounded VC2-dimension from [26], a method of
producing quotient graphs from regular partitions of 3-graphs developed in [26],
and ideas from [8] for producing weak regular partitions of hypergraphs of bounded
VC-dimension.

The fact that the bound for ` can be brought all the way down to polynomial in
Theorem 1.3 is somewhat surprising, given that the proof for arbitrary hypergraphs
yields a Wowzer bound. This raises the question of what the correct form of the
bound is, in general, for `. The author conjectures it is at least a tower function
(i.e., Ack2).

It was conjectured in [4] that the bound for t can also be made sub-Wowzer
under the assumption of bounded VC2-dimension, however, the author has been
unable to prove this is the case. This leaves the following open problem.
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Problem 1.4. Given a fixed integer k � 1, are there arbitrarily large 3-uniform
hypergraphs of VC2-dimension at most k which require Wowzer type bounds for
T0 in Theorem 1.1?

2. Preliminaries

In this section we cover the requisite preliminaries, including graph and hypergraph
regularity (Section 2B), VC and VC2-dimension (Sections 2C, 2E, and 2F), auxiliary
graphs defined from regular decompositions of 3-graphs (Section 2D), and basic
lemmas around regularity and counting (Section 2G).

2A. Notation. We include here some basic notation needed for the other prelimi-
nary sections. Given a set V and k � 1, let�V

k

�
D fX � V W jX j D kg:

A k-uniform hypergraph is a pair .V;E/ where E �
�
V
k

�
. For a k-uniform hyper-

graph G, V.G/ denotes the vertex set of V and E.G/ denotes the edge set of G.
Throughout the paper, all vertex sets are assumed to be finite.

When k D 2, we refer to a k-uniform hypergraph as simply a graph. When
k D 3, we refer to a k-uniform hypergraph as a 3-graph.

Given distinct elements x; y, we write xy for the set fx; yg. Similarly, for distinct
x; y; z, we write xyz for the set fx; y; zg. Given sets X; Y;Z, we set

K2ŒX; Y �D fxy W x 2X; y 2 Y; x ¤ yg and

K3ŒX; Y;Z�D fxyz W x 2X; y 2 Y; z 2Z; x ¤ y; y ¤ z; x ¤ zg:

If G D .V;E/ is a graph and X; Y � V are disjoint, we let GŒX; Y � be the bipartite
graph .X [Y;E \K2ŒX; Y �/.

Given a k-uniform hypergraph G D .V;E/, 1� i < k, and e 2
�
V
i

�
, set

NE .e/D
n
e0 2

� V

k�i

�
W e[ e0 2E

o
:

A bipartite edge-colored graph is a tuple G D .A[B;E0; E1; : : : ; Ei /, where
i > 1 and K2ŒA; B� D E0 tE1 t � � � tEi . In this case, given u 2 f0; 1; : : : ; ig
and x 2 A[B , we let NEu.x/ D fy 2 A[B W ab 2 Eug. Similarly, a tripartite
edge-colored 3-graph is a tuple G D .A[B [C;E0; E1; : : : ; Ei /, where i > 1
and K3ŒA; B; C � D E0 t E1 t � � � t Ei . In this case, given u 2 f0; 1; : : : ; ig
and x; y 2 V WD A [ B [ C , we let NEu.x/ D fuv 2

�
V
2

�
W xuv 2 Eug and

NEu.xy/D fv 2 V W xuv 2Eug.
For two functions f1;f2 WN!.0;1�, we write f1<f2 to denote that f1.x/<f2.x/

for all x 2 N. For real numbers r1; r2 and � > 0, we write r1 D r2˙ � to denote
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that r1 2 .r2 � �; r2 C �/. Given a natural number n � 1, Œn� D f1; : : : ; ng. An
equipartition of a set V is a partition V DV1[� � �[Vt such that for each 1� i; j � t ,
we have

ˇ̌
jVi j � jVj j

ˇ̌
� 1.

2B. Regularity. In this section we define graph regularity, as well as a strong notion
of regularity for 3-graphs. We state our definitions in terms of the quasirandomness
notion known as “dev”, which is one of three notions of quasirandomness which
are now known to be equivalent, the other two being “oct” and “disc”. For more
details on these and the equivalences, we refer the reader to [19].

We begin a notion of quasirandomness for graphs.

Definition 2.1. Suppose BD .U [W;E/ is a bipartite graph, and jEjDdB jU jjW j.
We say B has dev2.�; d/ if dB D d ˙ � andX

u0;u12U

X
w0;w12W

Y
i2f0;1g

Y
j2f0;1g

g.ui ; vj /� �jU j
2
jV j2;

where g.u; v/D 1� dB if uv 2E and g.u; v/D�dB if uv …E.

We now define a generalization of Definition 2.1 to 3-graphs due to Gowers [11].
If G D .V;E/ is a graph, let K.2/3 .G/ denote the set of triples from V forming a
triangle in G, i.e.,

K
.2/
3 .G/ WD

n
xyz 2

�V
3

�
W xy; yz; xz 2E

o
:

Now given a 3-graph H D .V;R/ on the same vertex set, we say that G underlies
H if R �K.2/3 .G/.

Definition 2.2. Assume �1; �2 >0, H D .V;E/ is a 3-graph, GD .U [W [Z;E/
is a 3-partite graph underlying H , and jEj D d3jK.2/3 .G/j. We say that .H;G/
has dev2;3.�1; �2/ if there is d2 2 .0; 1/ such that GŒU;W �, GŒU;Z�, and GŒW;Z�
each have dev2.�2; d2/, andX
u0;u12U

X
w0;w12W

X
z0;z12Z

Y
.i;j;k/2f0;1g3

hH;G.ui ; wj ; zk/� �1d
12
2 jU j

2
jW j2jZj2;

where

hH;G.x; y; z/D

8̂<̂
:
1� d3 if xyz 2E \K.2/3 .G/,
�d3 if xyz 2K.2/3 .G/ nE,
0 if xyz …K.2/3 .G/.

For the reader unfamiliar with hypergraph regularity, we note that in the no-
tation of Definition 2.2, d122 jU j

2jW j2jZj2 is approximately the number of tu-
ples .u0; u1; w0; w1; z0; z1/ 2 U 2 �W 2 �Z2 with uiwj zk 2 K

.2/
3 .G/ for each

.i; j; k/ 2 f0; 1g3 (this is a consequence of the graph counting lemma and the
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assumption that GŒU;W �, GŒU;Z�, and GŒW;Z� have dev2.�2; d2/). Therefore,
the first displayed equation in Definition 2.2 is bounding the quantityX

u0;u12U

X
w0;w12W

X
z0;z12Z

Y
.i;j;k/2f0;1g3

hH;G.ui ; wj ; zk/

in terms of total number of tuples .u0; u1; w0; w1; z0; z1/ 2U 2�W 2�Z2, whereQ
.i;j;k/2f0;1g3 hH;G.ui ; wj ; zk/ is nonzero.
We now define a .t; `/-decomposition for a vertex set V , which partitions V , as

well as pairs from V .

Definition 2.3. Let V be a vertex set and t; ` 2 N>0. A .t; `/-decomposition P for
V consists of a partition P1 D fV1[ � � � [Vtg of V , and for each 1� i ¤ j � t , a
partition K2ŒVi ; Vj �D P 1ij [ � � � [P

`
ij . We let P2 D

˚
P ˛ij W ij 2

�
Œt�
2

�
; ˛ � `

	
.

A triad of P is a 3-partite graph of the form

G
ijk

˛;ˇ;
WD .Vi [Vj [Vk; P

˛
ij [P

ˇ

ik
[P



jk
/;

for some ijk 2
�
Œt�
3

�
and ˛; ˇ;  � `. Let Triads.P/ denote the set of all triads of P ,

and observe that fK.2/3 .G/ WG 2 Triads.P/g partitions the set of triples xyz 2
�
V
3

�
which are in distinct elements of P1.

For a 3-graph H D .V;R/, a decomposition P of V , and G 2 Triads.P/, define
H jG WD .V .G/;R\K

.2/
3 .G//. Note that G always underlies H jG.

Definition 2.4. Given a 3-graph H D .V;R/, a decomposition P of V , and
G 2 Triads.P/, we say G has dev2;3.�1; �2/ with respect to H if .H jG;G/
has dev2;3.�1; �2/.

To define a regular decomposition for a 3-graph, we need one more notion,
namely that of an “equitable” decomposition.

Definition 2.5. We say that P is a .t; `; �1; �2/-decomposition if P1DfV1; : : : ; Vtg
is an equipartition and for at least .1 � �1/

�
jV j
2

�
many xy 2

�
V
2

�
, there is some

P ˛ij 2 P2 containing xy such that .Vi [Vj ; P ˛ij / has dev2.�2; 1=`/.

Definition 2.6. Suppose that H D .V;E/ is a 3-graph and P is a .t; `; �1; �2/-
decomposition of V . We say that P is dev2;3.�1; �2/-regular for H if for all but at
most �1n3 many triples xyz 2

�
V
3

�
, the unique G 2 Triads.P/ with xyz 2K.2/3 .G/

satisfies dev2;3.�1; �2/ with respect to H .

We can now restate the regularity lemma for dev2;3-quasirandomness.

Theorem 2.7. For all �1 > 0, every function �2 WN! .0; 1�, and every `0; t0 � 1,
there exist positive integers T0DT0.�1; �2; t0; `0/ andL0DL0.�1; �2; t0; `0/, such
that for every sufficiently large 3-graphH D .V;E/, there exists a dev2;3.�1; �2.`//-
regular, .t; `; �1; �2.`//-decomposition P for H with t0 � t � T0 and `0 � `� L0.
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This theorem was first proved in a slightly different form by Gowers in [11]. In
particular, in [11], the partition of the pairs P2 is not required to be equitable as it is
in Theorem 2.7. Theorem 2.7 as stated appears in [19], where it is pointed out that
the additional equitability requirement can be obtained using techniques from [9].

2C. VC-dimension. In this subsection we give some preliminaries around VC and
VC2-dimension. We begin by defining VC-dimension.

Given a set V , F � P.V /, and X � V , let jF \X j WD fF \X W F 2Fg. We say
that X is shattered by F if jF \X j D 2jX j. The VC-dimension of F is then defined
to be the size of the largest subset of V which is shattered by F .

For a graph G D .V;E/, the VC-dimension of G is the VC-dimension of the set
system fNE .x/ W x 2 V g � P.V /. We now give a simple recharacterization of this.
Given k � 1, let Ak D fai W i 2 Œk�g, and CP.Œk�/ D fcS W S � Œk�g.

Definition 2.8. For k � 1, define U.k/ to be the bipartite graph .Ak [CP.Œk�/; E/,
where E D faicS W i 2 Sg.

Then it is well known that a graph G has VC-dimension at least k if and only
if there is a map f W V.U.k//! V.G/ so that for all a 2 Ak and c 2 CP.Œk�/,
ab 2E.U.k// if and only if f .a/f .b/ 2E.G/.

2D. Encodings. In this subsection, we define an auxiliary edge-colored graph
associated to a regular decomposition of a 3-graph. We then state a result from [26]
which shows that encodings of U.k/ cannot occur when the auxiliary edge-colored
graph arises from a regular decomposition of a 3-graph with VC2-dimension less
than k.

Definition 2.9. Suppose �1; �2 > 0, `; t � 1, V is a set, and P is a .t; `; �1; �2/-
decomposition for V consisting of P1DfVi W i 2 Œt �g and P2DfP ˛ij W ij 2

�
Œt�
2

�
; ˛�`g.

Define

Pcnr D

n
P ˛ijP

ˇ

ik
W ijk 2

� Œt �
3

�
; ˛; ˇ � `; and P ˛ij ; P

ˇ
ij satisfy dev2.�2; 1=`/

o
;

Pedge D fP
˛
ij 2 P2 W P

˛
ij satisfies dev2.�2; 1=`/g:

In the above, cnr stands for “corner”. Observe that for each P ˛ij 2 Pedge and
P
ˇ
uvP


uw 2 Pcnr, if fv;wg D fi; j g, then the pair .P ˛ij ; P

ˇ
uvP


uw/ corresponds to a

triad from P , namely Guvwijs .

Definition 2.10. Suppose �1; �2 > 0, `; t � 1, H D .V;E/ is a 3-graph, and P is a
.t; `; �1; �2/-decomposition for V . Define

E0D
˚
P ˛ij .P

ˇ

jk
P


ik
/2K2ŒPedge;Pcnr� W jE\K

.2/
3 .G

˛ˇ

ijk
/j< 1

2
jK
.2/
3 .G

˛ˇ

ijk
/j
	
;

E1D
˚
P ˛ij .P

ˇ

jk
P


ik
/2K2ŒPedge;Pcnr� W jE\K

.2/
3 .G

˛ˇ

ijk
/j � 1

2
jK
.2/
3 .G

˛ˇ

ijk
/j
	
; and

E2DK2ŒPedge;Pcnr� n .E1[E0/:
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Note that Definition 2.10 gives us a natural bipartite edge-colored graph with
vertex set Pedge [ Pcnr and edge sets given by E0;E1;E2. The author and Wolf
showed in [26] that these auxiliary edge-colored graphs are useful for understanding
3-graphs of bounded VC2-dimension. To explain why, we require the following
notion of an “encoding”.

Definition 2.11. Let �1; �2 > 0 and t; ` � 1. Suppose R D .A [ B;ER/ is a
bipartite graph, H D .V;E/ is a 3-graph, and P is a .t; `; �1; �2/-decomposition
of V . An .A;B/-encoding of R in .H;P/ consists of a pair of functions .g; f /,
where g W A! Pcnr and f W B! Pedge are such that the following hold for some
j0k0 2

�
Œt�
2

�
:

(1) Im.f /� fP ˛
j0k0
W ˛ � `g, and Im.g/� fP ˇij0P



ik0
W i 2 Œt �; ˇ;  � `g.

(2) For all a 2 A and b 2 B , if ab 2 ER, then g.a/f .b/ 2 E1, and if ab … ER,
then g.a/f .b/ 2 E0.

An encoding of U.k/ will always mean an .Ak; CP.Œk�//-encoding of U.k/.
In [26], we proved the following proposition connecting encodings of U.k/ and
VC2-dimension (see Theorem 6.5(2) in [26]).

Proposition 2.12. For all k�1, there are �1>0 and �2 WN! .0; 1� such that for all
t; `� 1, there is N such that the following hold. Suppose H D .V;E/ is a 3-graph
with jV j �N , and P is a dev2;3.�2.`/; �1/-regular .t; `; �1; �2.`//-decomposition
of V . If there exists an encoding of U.k/ in .H;P/, then H has k-IP2.

Moreover, there is a constant C D C.k/ so that �1 D .1=2/C .

We remark here that Proposition 2.12 is actually proved in [26] for an equiv-
alent notion of quasirandomness called disc2;3, and without the final “Moreover”
statement regarding the quantitative form for �1 (see Proposition 5.6 in [26]).
Tracing the bounds in the proof of Proposition 5.6 in [26], one finds that �1 has
the form �D �.�1; k/, where � comes from a version of the counting lemma (see
Theorem 3.1 in [26]). An explicit value for this � is unclear, as the proof of the
counting lemma for disc2;3 passes through its equivalence with oct2;3, and then
the counting lemma for oct2;3. The author has not found proofs of these results in
the literature which are explicit in the parameters (see Corollary 2.3 in [19]). It
seems that one could produce such an explicit result from [19] and [14] with some
effort, however, we have instead chosen to side-step the issue by working with the
quasirandomness notion dev, rather than disc.

In particular, all the ingredients used to prove Proposition 5.6 of [26] have well
known analogues for dev. By running the same arguments as in [26] using dev
rather than disc, one obtains Proposition 2.12 as stated. The additional “Moreover”
statement about the explicit form for �1 then arises from the fact that there is a
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proof of the counting lemma for dev2;3 which is explicit in the parameters (see [11,
Theorem 6.8]).

2E. Haussler’s packing lemma. We will be applying techniques for proving im-
proved regularity lemmas for graphs and hypergraphs of bounded VC-dimension to
the edge-colored auxiliary graphs defined in the previous subsection. In particular,
we will use ideas from the proof of Theorem 1.3 in [8]. We begin by describing the
relevant result from VC-theory, namely Haussler’s packing lemma.

Suppose V is a set and F � V . We say that a subset X � F is ı-separated
if for all distinct X;X 0 2 X , jX�X j > ı. The following packing lemma, due to
Haussler, shows that if F has bounded VC-dimension, the size a of a ı-separated
family cannot be too large [13].

Theorem 2.13 (Haussler’s packing lemma). Suppose F � P.V /, where jV j D n
and F has VC-dimension at most k. Then the maximal size of a ı-separated
subcollection of F is at most c1.n=ı/k , for some constant c1 D c1.k/.

We will apply Theorem 2.13 in the setting of edge-colored graphs. This technique
is inspired by the proof of Theorem 1.3 in [8].

Suppose G D .A[B;E0; E1; E2/ is a bipartite edge-colored graph. We say
that G has an E0=E1-copy of U.k/ if there are v1; : : : ; vk 2 A and for each
S � Œk� a vertex wS 2 B such that i 2 S implies viwS 2 E1 and i … S implies
viwS 2 E0. Given a; a0 2 A and ı > 0, write a �ı a0 if for each u 2 f0; 1; 2g,
jNEu.a/�NEu.a

0/j � ıjBj. Our main application of Theorem 2.13 is the following
lemma.

Lemma 2.14. Suppose k � 1 and c1D c1.k/ is as in Theorem 2.13. Suppose d � 1
and ı; � > 0 satisfy � � c�21 .ı=8/2kC2. Assume G D .A [ B;E0; E1; E2/ is a
bipartite edge-colored graph, and assume there is no E0=E1-copy of U.k/ in G,
and that jE2j � �jAjjBj.

Then there is an integer m � 2c1.ı=8/�k , vertices x1; : : : ; xm 2 A, and a set
U � A with jU j �

p
� jAj, so that for all a 2 A nU , jNE2.a/j �

p
� jBj and there

is some 1� i �m so that a �ı xi .

Proof. Let U D fv 2 A W jNE2.v/j �
p
� jBjg. Since jE2j � �jAjjBj, we know

that jU j �
p
� jAj. Let A0 D A n U . Let m be maximal such that there exist

x1; : : : ; xm 2A
0, so that fNE1.xi / W i 2 Œm�g is a ı=2-separated family of sets on B .

We show m� 2c1.ı=8/
�k .

Suppose towards a contradiction that m� d2c1.ı=8/�ke. Let

B 0 D B n

� m[
iD1

E2.xi /

�
;
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and let F WD fNE1.xi /\B 0 W i 2 Œm�g. Notice jB nB 0j �m
p
� jBj. We claim that

F is ı=4-separated. Consider 1� i ¤ j �m. Then we know that

jNE1.xi /�NE1.xj /\B
0
j � jNE1.xi /�NE1.xj /j �m

p
� jBj

� jBj.ı=2�m
p
�/

� jBjı=4;

where the last inequality is by our assumptions on ı; �. By Theorem 2.13, F shatters
a set of size k. By construction, for each 1 � i � m, B 0 nNE1.xi / � NE0.xi /.
Consequently, we must have that there exists an E0=E1-copy of U.k/ in G, a
contradiction.

Thus, m � 2c1.ı=8/�k . For all a 2 A nU , we know that jNE2.a/j �
p
� jBj,

and there is some 1� i �m so that jNE1.a/�NE1.xi /j � ıjBj=2. We claim that
a �ı xi . We already know that jNE1.a/\NE1.xi /j � ıjBj. Since a; xi are both
in A0, we have

jNE2.a/�NE2.xi /j � jNE2.a/jC jNE2.a/j � 2
p
� jBj< ıjBj=2:

Combining these facts, we have that

jNE0.a/�NE0.xi /j � jNE2.a/jC jNE2.a/jC jNE1.a/�NE1.xi /j � ıjBj:

Thus a �ı xi , as desired. �

2F. Tame regularity for 3-graphs of bounded VC2-dimension. In this subsec-
tion we state the tame regularity lemma for 3-graphs of bounded VC2-dimension
from [26].

Definition 2.15. SupposeH D .V;E/ is a 3-graph with jV jDn and�>0. Suppose
t; ` � 1 and P is a .t; `/-decomposition of V . We say that P is �-homogeneous
with respect toH if at least .1��/

�
n
3

�
triples xyz 2

�
V
3

�
satisfy the following: there

is some G 2 Triads.P/ such that xyz 2K.2/3 .G/ and either

jE \K
.2/
3 .G/j � �jK

.2/
3 .G/j or jE \K.2/3 .G/j � .1��/jK

.2/
3 .G/j:

Given a 3-graph H D .V;E/ and a .t; `; �1; �2/-decomposition P of V , we say
that P is �-homogeneous with respect toH if at least .1��/

�
jV j
3

�
triples xyz 2

�
V
3

�
are in a �-homogeneous triad of P . We have the following theorem from [26].

Theorem 2.16. For all k � 1, there are ��1 > 0, ��2 W N! .0; 1�, and a function
f W .0; 1�! .0; 1� with limx!0 f .x/D 0 such that the following hold.

Suppose t0; `0 � 1, 0 < �1 < ��1 , and �2 W N ! .0; 1� satisfies �2 < ��2 . Let
N , T , and L be as in Theorem 2.7 for �1; �2; t0; `0. Suppose H D .V;E/ is a
3-graph with jV j �N and VC2.H/ < k. Then there exist t0 � t � T , `0 � `� L,
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and a .t; `; �1; �2.`//-decomposition of V which is dev2;3.�1; �2.`//-regular and
f .�1/-homogeneous with respect to H .

Moreover, f may be taken to have the form x1=D , where D � 1 depends only
on k.

Since the bounds in Theorem 2.16 come from Theorem 2.7, they are of Wowzer
type. We also note that the proof of Theorem 2.16 in fact guarantees something
slightly stronger, namely that every dev2;3.�1; �2.`//-regular triad of P is f .�1/-
homogeneous.

We remark here that Theorem 2.16 was proved in [26] for the notion of disc2;3
rather than dev2;3, and without the “moreover” statement regarding the form of the
function f (see Proposition 3.2 in [26]). Examination of the proof of Proposition 3.2
in [26] shows that the function f depends on k and a version of the counting
lemma for 3-graphs (namely Theorem 3.1 in [26]). An explicit expression for f .x/
in Proposition 3.2 of [26] would thus require a version of the counting lemma
for disc2;3 which is explicit in the parameters. However, one can rerun all the
arguments in [26] using the quasirandomness notion dev2;3 in place of disc2;3 to
obtain Theorem 2.16 as stated. In this case, an explicit expression for f can be
obtained using the counting lemma for dev2;3 (see also the discussion following
Proposition 2.12).

2G. Other preliminaries. In this subsection we give several lemmas, most of
which are basic facts about regularity and counting. First, we will use the following
version of the triangle counting lemma.

Proposition 2.17 (counting lemma). Suppose �; d > 0. Let G D .A[B[C;E/ be
a 3-partite graph such that each of GŒA;B�, GŒB;C �, and GŒA;C � has dev2.�; d/.
Then ˇ̌

jK
.2/
3 .G/j � d3jAjjBjjC j

ˇ̌
� 4�1=4jAjjBjjC j:

For a proof, see [11, Lemma 3.4]. The following symmetry lemma was proved
in [26] (see Lemma 4.9 there).

Lemma 2.18 (symmetry lemma). For all 0<�< 1
4

there is n such that the following
holds. Suppose G D .U [W;E/ is a bipartite graph, jU j; jW j � n, and U 0 � U ,
W 0 � W satisfy jU 0j � .1� �/jU j and jW 0j � .1� �/jW j. Suppose that for all
u 2 U 0,

maxfjN.u/\W j; j:N.u/\W jg � .1� �/jW j;

and for all w 2W 0,

maxfjN.w/\U j; j:N.w/\U jg � .1� �/jU j:

Then jEj=jU jjW j 2 Œ0; 2�1=2/[ .1� 2�1=2; 1�.
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We will use the following immediate corollary of this.

Corollary 2.19. For all 0 < � < 1
4

there is n such that the following holds. Suppose
G D .U [ W;E/ is a bipartite graph with jU j; jW j � n, and jEj=jU jjW j 2
.2�1=2; 1� 2�1=2/. Then one of the following hold.

(1) There is U 0 � U with jU 0j � �jU j, so that for all u 2 U ,

jNE .u/\W j

jW j
2 .�; 1� �/:

(2) There is W 0 �W with jW 0j � �jW j, so that for all w 2W ,

jNE .w/\U j

jU j
2 .�; 1� �/:

We will use a lemma which was originally proved by Frankl and Rödl (see [9,
Lemma 3.8]) for another notion of quasirandomness for graphs, called disc2.

Definition 2.20. SupposeBD .U[W;E/ is a bipartite graph, and jEjDdB jU jjW j.
We say B has disc2.�; d/ if dB D d ˙ � and for all U 0 � U and W 0 �W ,ˇ̌

jE \K2ŒU
0; W 0�j � d jU 0jjW 0j

ˇ̌
� �jU jjW j:

Gowers proved the following quantitative equivalence between disc2 and dev2
(see Theorem 3.1 in [11]).

Theorem 2.21. Suppose B D .U [W;E/ is a bipartite graph. If B has disc2.�; d/
then it has dev2.�; d/. If B has dev2.�; d/, then it has disc2.�1=4; d /.

Combining Theorem 2.21 with Lemma 3.8 in [9], we obtain the following.

Lemma 2.22. For all � > 0, � � 2�, 0 < p < �=2, and ı > 0, there is m0 D
m0.�; �; ı/ such that the following holds. Suppose jU j D jV j D m � m0, and
G D .U [ V;E/ is a bipartite graph satisfying dev2.�/ with density �. Then if
`D Œ1=p� and � � 10.1=`m/1=5, there is a partition E DE0[E1[ � � � [E` such
that

(1) For each 1� i � `, .U [V;Ei / has dev2.�1=4/ with density �p.1˙ ı/, and

(2) jE0j � �p.1C ı/m2.

Further, if 1=p 2 Z, then E0 D∅.

We will also use the following fact, which can be obtained from Fact 2.3 in [26]
along with Theorem 2.21.

Fact 2.23. Suppose E1 and E2 are disjoint subsets of K2ŒU; V �. If .U [ V;E1/
has dev2.�1; d1/, and .U [ V;E2/ has dev2.�2; d2/, then .U [ V;E1 [E2/ has
dev2.�1=41 C �1=42 ; d2C d1/.
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Finally, we will use the fact that triads with density near 0 or 1 are quasirandom.
For completeness, we include a proof of this in the Appendix.

Proposition 2.24. For all 0 < � < 1
2

, d2 > 0, and 0 < ı � .d2=2/
48, there is

N such that the following holds. Suppose H D .V1 [ V2 [ V3; R/ is a 3-partite
3-graph on n�N vertices, and for each i; j 2 Œ3�,

ˇ̌
jVi j � jVj j

ˇ̌
� ıjVi j. Suppose

GD .V1[V2[V3; E/ is a 3-partite graph, where for each 1� i < j � 3,GŒVi ; Vj �
has dev2.ı; d2/, and assume

jR\K
.2/
3 .G/j � �jK

.2/
3 .G/j:

Then .H jG;G/ has dev2;3.ı; 6�/.

3. Proof of main theorem

We first give a more precise statement of our main theorem.

Theorem 3.1. For all k � 1, there are polynomials p1.x/; p2.x; y/; p3.x/, a
constant ��1 > 0, and a function ��2 WN! .0; 1� such that the following holds, where
T0.x; y; z; w/ is as in Theorem 2.7.

For all 0 < �1 < ��1 and �2 W N! .0; 1� satisfying �2 < ��2 , there is L� ��Ok.k/1

such that the following holds for T D T0.p1.�1/; �2 ı q2; p3.�
�1
1 /; 1/, where

q2.y/D p2.�1; y/.
Every sufficiently large 3-graph H D .V;E/ such that VC2.H/ < k has a

dev2;3.�1; �2.`//-regular .t; `; �1; �2.`//-decomposition with `� L and t � T .

We now give a few remarks regarding the bounds. As can be seen above, the
bound T in Theorem 3.1 is obtained by composing the bound T0 from Theorem 2.7
with several polynomial functions. This does not change the fundamental shape
of the bound in terms of the Ackerman hierarchy, and thus the bound for t in
Theorem 3.1 remains a Wowzer type function. On the other hand, we see that the
bound for ` becomes polynomial in ��11 .

The polynomial p3 in Theorem 3.1 depends on the f in Theorem 2.16, which
in turn depends on the hypergraph counting lemma for dev2;3. One could therefore
obtain a quantitative version of Theorem 3.1 for the equivalent quasirandomness
notions of disc2;3 and oct2;3 using the same arguments, given a quantitative version
of their respective counting lemmas.

The general strategy for the proof of Theorem 3.1 is as follows. Given a large
3-graph H of VC2-dimension less than k, we first apply Theorem 2.16 to obtain
a homogeneous, regular partition P for H . We then consider the auxiliary edge-
colored graphs associated to P , as described in Section 2D. These contain no
copies of U.k/ by Proposition 2.12, allowing us to apply Lemma 2.14. This yields
decompositions for the auxiliary edge-colored graphs, which we eventually use to
define a new decomposition Q for H which is still regular and homogeneous, but
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which has a polynomial bound for the parameter `. This last part requires the most
work, as well as most of the lemmas from Section 2G.

We have not sought to optimize constants which do not effect the overall form
of the bounds involved.

Proof of Theorem 1.3. Fix k � 1 and let c1 D c1.k/ be as in Theorem 2.13. Let
�1 > 0, �2 W N! .0; 1�, and f be as in Theorem 2.16 for k, and let D DD.k/ be
so that f .x/ D x1=D (see Theorem 2.16). Let �1 > 0, �2 W N! .0; 1� be as in
Proposition 2.12 for k. Set ��1 Dminf�1; �1; .1=4/Dg and define ��2 W N! .0; 1�

by setting ��2 .x/Dminf�2.x/; �2.x/; .1=2x/48g, for each x 2 N.
Suppose 0 < �1 < ��1 and �2 W N! .0; 1� satisfies �2 < ��2 . We now choose a

series of new constants. Set �1 D �4D1 and note �1 < f .�1/. Set ı D �4001 =1000,
�01 D .ı=8c1/

2kC1000, mD d2c1.ı=8/�2k�2e, and �001 D .�
0
1/
2=1000. Next, define

�02; �
00
2 W N ! .0; 1� by setting, for each x 2 N, �02.x/ D �001�2.x/�2.2

4ı�8k�10/

and �002.x/ D �2.ı
�4m4/�02.x/

5=4. Note there are polynomials p1.x/, p2.x; y/
depending only on k such that �001 D p1.�1/ and �002.x/ D p2.�1; x/. To aid the
reader in keeping track of the constants, we point out that the following inequalities
hold:

�001 < �
0
1 < ı < �1 < �1 < �

�
1 and �002 < �

0
2 < �2 < �

�
2 :

Choose t0 sufficiently large so that
t3

6
� .1� �001/

� t
3

�
;

.1� 3�001/t
3

12
� .1� �01/

� t
3

�
; and� t

3

�
.1� 6.�01/

1=4
� .�01/

3=8/� .1� �01/
1=8
� t
3

�
:

Note there is some polynomial p.x/ depending only on k so that we can take
t0 D p.��11 /. Finally, choose T1, L1, and N1 as in Theorem 2.7 for �001 , �002 , t0
and `0 D 1.

Set LD dı�4m4e, T D T1, and choose N sufficiently large compared to all the
previously chosen constants. Notice that LDOk.��Ok.1/1 / and

T D T0.p1.�1/; �2 ı q2; p.�
�1
1 /; 1/;

where T0.x; y; z; w/ is as in Theorem 2.7 and q2.y/D p2.�1; y/.
Suppose H D .V;E/ is a 3-graph with jV j � N satisfying VC2.H/ < k.

Theorem 2.16 implies there exist 1� `�L1, t0 � t � T1, and P1 a .t; `; �001 ; �
00
2.`//-

decomposition of V which is dev2;3.�001 ; �
00
2.`1//-regular and f .�001/-homogeneous

with respect to H . Say

P1 D fV1; : : : ; Vtg and P2 D
n
P ˛ij W ij 2

� Œt �
2

�
; ˛ 2 Œ`�

o
:



REGULAR DECOMPOSITIONS OF HYPERGRAPHS OF BOUNDED VC2-DIMENSION 339

Note that f .�001/D .�
00
1/
1=D < 1

4
. Recall that as mentioned after Theorem 2.16, we

may assume that all dev2;3.�001 ; �
00
2.`//-regular triads of P are f .�001/-homogeneous

with respect to H .
Given ij 2

�
Œt�
2

�
and ˛ 2 Œ`�, let G˛ij D .Vi [ Vj ; P

˛
ij /. Given ijs 2

�
Œt�
3

�
and

1� ˛; ˇ;  � `, set

G
˛;ˇ;
ijs D .Vi [Vj [Vs; P

˛
ij [P

ˇ
js [P


is/ and

H
˛;ˇ;
ijs D .Vi [Vj [Vs; E \K

.2/
3 .G

˛;ˇ;
ijs //:

We will use throughout that since �002.x/� �
0
2.x/

5=4, Proposition 2.17 implies
that for all ijs 2

�
Œt�
3

�
and ˛; ˇ;  2 Œ`�,

jK
.2/
3 .G

˛;ˇ;
ijs /j D .1˙ �02.`//

�
n

`t

�3
: (1)

We use P to construct a different decomposition of V , which we call Q, so that
Q1 D P1 but Q2 ¤ P2. Set

Ferr D
˚
G
˛;ˇ;
ijs 2 Triads.P/ W .H˛;ˇ;

ijs ; G
˛;ˇ;
ijs / fails disc3.�001 ; �

00
2.`//

	
;

F1 D
˚
G
˛;ˇ;
ijs 2 Triads.P/ nFerr W d

˛;ˇ;
ijs � 1�f .�001/

	
; and

F0 D
˚
G
˛;ˇ;
ijs 2 Triads.P/ nFerr W d

˛;ˇ;
ijs � f .�001/

	
:

By assumption, Triads.P/ D Ferr tF1 tF0, and at most �001n
3 triples xyz 2

�
V
3

�
are in K.2/3 .G/ for some G 2 Ferr. By (1), this implies

jTriads.P/ nFerrj �

��n
3

�
� �001n

3
�
=
�
n3

t3`3
.1� �02.`//

�
�

� t
3

�
`3.1� �01/;

where the last inequality uses that t � t0 and n is large. Thus, jFerrj � �
0
1t
3`3. Let

‰ D
˚
ViVj W

ˇ̌
fG

˛ˇ
ijs 2 Ferr some s 2 Œt � and ˛; ˇ;  2 Œ`�g

ˇ̌
� .�01/

3=4`3t
	
:

Since jFerrj � �
0
1t
3`3, we have that j‰j � .�01/

1=4t2. Given ij 2
�
Œt�
2

�
, let `ij be the

number of ˛ 2 Œ`� such that G˛ij has dev2.�002.`/; 1=`/. After relabeling, we may
assume G1ij ; : : : ; G

`ij
ij each have dev2.�002.`/; 1=`/. We claim that for ViVj …‰,

`ij � .1� 2.�
0
1/
3=4/`:

Indeed, given ViVj … ‰, if it were the case that `ij < .1� 2.�01/
3=4/`, then we

would have thatˇ̌˚
G
˛ˇ
ijs 2 Ferr some s 2 Œt � and ˛; ˇ;  2 Œ`�

	ˇ̌
� .t � 2/`2.`� `ij /

> 2.�01/
3=4.t � 2/`3 � .�01/

3=4`3t;

contradicting ViVj …‰. Thus we have that for all ViVj …‰, `ij � .1�2.�01/
3=4/`.
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For each ViVj …‰, let Hij be the edge-colored graph .Uij [Wij ; E0ij ; E
1
ij ; E

2
ij /,

where

Wij D
˚
P ˛ij W ˛ � `ij

	
;

Uij D
˚
P
ˇ
isP


js W s 2 Œt � n fi; j g; ˇ � `is;  � j̀s

	
;

E1ij D
˚
P ˛ij .P

ˇ
isP


js/ 2K2ŒWij ; Uij � WG

˛;ˇ;

ijk
2 F1

	
;

E0ij D
˚
P ˛ij .P

ˇ
isP


js/ 2K2ŒWij ; Uij � WG

˛;ˇ;

ijk
2 F0

	
;

E2ij D
˚
P ˛ij .P

ˇ
isP


js/ 2K2ŒWij ; Uij � WG

˛;ˇ;

ijk
2 Ferr

	
:

By Proposition 2.12, and since f .�001/ <
1
2

, Hij contains no E1ij =E
0
ij copy of U.k/,

and since ViVj … ‰, jE2ij j � .�
0
1/
3=4`3t . We will later need the following size

estimates for Wij and Uij . By the above, jWij j D `ij � .1� 2.�01/
3=4/`. We claim

that jUij j � .1�2.�01/
3=4/`2t . Indeed, observe that jUij j D

P
s2Œt�nfi;j g `is j̀s andˇ̌˚

G
˛ˇ
ijs 2 Ferr some s 2 Œt � and ˛; ˇ;  2 Œ`�

	ˇ̌
�

X
s2Œt�nfi;j g

`2.`� `is/C `is`.`� j̀s/

D

X
s2Œt�nfi;j g

`3� ``is j̀s D .t � 2/`
3
� `jUij j:

Since ViVj …‰, this shows that

.�01/
3=4`3t � .t � 2/`3� `jUij j:

Rearranging, this yields that

jUij j � .t � 2/`
2
� .�01/

3=4`2t � t`2.1� 2.�01/
3=4/;

where the last inequality is because t � t0.
Given v; v0 2Wij , write v � v0 2Wij if for each w 2 f0; 1; 2g,

jEwij .v/�E
w
ij .v

0/j � ıjUij j:

By Lemma 2.14, there are W 0
ij � Wij of size at most .�01/

3=8jWij j, an integer
mij �m, and x1ij ; : : : ; x

mij
ij 2Wij so that for all v 2Wij nW 0

ij , there is 1� ˛�mij
so that v � x˛ij , and further, jNE2

ij
.v/j � .�01/

3=8jUij j. For each 1� u�mij , let

W u
ij D fv 2Wij nW

0
ij W v � x

u
ij and for all 1� u0 < u, v œ xu

0

ij g:

Note W 1
ij [ � � � [W

mij
ij is a partition of Wij nW 0

ij .
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We now define a series of sets to help us zero in on certain well behaved sets of
triples. First, define

�0 D
n
ijs 2

� Œt �
3

�
W ViVj ; VjVs; ViVs …‰

o
and

�D fW u
ijW

v
isW

w
js W ijs 2�0; 1� u�mij ; 1� v �mis; 1� w �mjsg:

Since j‰j � .�01/
1=4t2, j�0j �

�
t
3

�
� j‰jt � .1� 6.�01/

1=4/
�
t
3

�
. Let

Y0 D
[

W u
ij
W v
is
W w
js
2�

K3ŒW
u
ij ; W

v
is; W

w
js �:

We have that for all ijs 2�0, jW 0
ij j; jW

0
isj; jW

0
jsj � .�

0
1/
3=8`, and therefore jY0j is

at least the following:

jY0j �
� t
3

�
`3� `3

ˇ̌̌� Œt �
3

�
n�0

ˇ̌̌
� j�0j.�

0
1/
3=8`3

�

� t
3

�
`3� 6.�01/

1=4
� t
3

�
`3�

� t
3

�
.�01/

3=8`3

�

� t
3

�
`3.1� .�01/

1=8/;

where the last inequality is since t � t0.
Given ij …‰, let us call W u

ij nontrivial if it has size at least ı1=2`=mij . Define

�1 D
˚
W u
ijW

v
jsW

w
is 2� W each of W u

ij ; W
v
js; W

w
is are nontrivial

	
;

and set Y1 D
S
W u
ij
W v
js
W w
is
2�1

K3ŒW
u
ijW

v
jsW

w
is �. Then we have that

jY1j � jY0j � t`
2
X

ij2.Œt�2 /

X
fu2Œmij �WW

u
ij

trivialg

ı1=2.`=mij /

� jY0j � t`
2.t2ı1=2`/D jY0j � ı

1=2t3`3:

Define
R1 D

˚
P ˛ijP

ˇ
isP


js WG

˛;ˇ;

ijk
2 F1

	
;

R0 D
˚
P ˛ijP

ˇ
isP


js WG

˛;ˇ;

ijk
2 F0

	
;

R2 D
˚
P ˛ijP

ˇ
isP


js WG

˛;ˇ;

ijk
2 Ferr

	
:

Note that .P2 [ P2 [ P2; R0; R1; R2/ is a 3-partite edge-colored 3-graph, and
jR2j � �

0
1t
3`3. Now set

�2 D
˚
W u
ijW

v
jsW

w
is 2�1 W jR2\K3ŒW

u
ij ; W

v
is; W

w
js �j �

p
�01 jW

u
ij jjW

v
isjjW

w
js j
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and Y2 D
S
W u
ij
W v
js
W w
is
2�2

K3ŒW
u
ijW

v
jsW

w
is �. Note that

jR2j �
X

W u
ij
W v
js
W w
is
2�1n�2

p
�01 jW

u
ij jjW

v
isjjW

w
js j

�
p
�01

X
W u
ij
W v
js
W w
is
2�1n�2

jW u
ij jjW

v
isjjW

w
js j:

Therefore,X
W u
ij
W v
js
W w
is
2�1n�2

jW u
ij jjW

v
isjjW

w
js j �

p
�01
�1
jR2j<

p
�01
�1
�01t

3`3 �
p
�01 t

3`3:

This implies that jY2j � jY1j �
p
�01t

3`3.
Given ijs 2�0, let us call a triple P ˛ijP

ˇ
isP


js troublesome if one of the following

hold:

� For some u 2 Œmij �, P ˛ij 2W
u
ij , and there are �1 ¤ �2 2 f0; 1; 2g such that

P
ˇ
isP


jsP

˛
ij 2R

�1 and P ˇisP

jsx

u
ij 2R

�2 .

� For some w 2 Œmjs�, P

js 2W

w
js , and there are �1 ¤ �2 2 f0; 1; 2g such

that P ˇisP
˛
ijP


js 2R

�1 and P ˇisP
˛
ijx

w
js 2R

�2 .

� For some v 2 Œmis�, P
ˇ
is 2W

v
is , and there are �1 ¤ �2 2 f0; 1; 2g such that

P ˛ijP

jsP

ˇ
is 2R

�1 and P ˛ijP

jsx

v
is 2R

�2 .

Let Tr be the set of troublesome triples. Define

�3 D
˚
W u
ijW

v
jsW

w
is 2�2 W jK3ŒW

u
ijW

v
jsW

w
is �\Trj � ı1=4jW u

ij jjW
v
jsjjW

w
is j
	
;

and set Y3D
S
W u
ij
W v
js
W w
is
2�3

K3ŒW
u
ijW

v
jsW

w
is �. We claim jY3j �

�
t
3

�
`3.1�2ı1=2/.

Given ViVj … ‰, 1 � u � mij , and P ˛ij 2 W
u
ij , we know that P ˛ij � x

˛
ij , and

thereforeˇ̌˚
P
ˇ
isP


js W s 2 Œt � n fi; j g; ˇ;  � `; P

ˇ
isP


jsP

˛
ij 2 Tr

	ˇ̌
� .`2.t � 2/� jUij j/C

2X
xD0

jNEx
ij
.P ˛ij /�NExij

.xuij /j

� 2.�01/
3=4`2t C 3ıt`2

� 4ıt`2:
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Thus, jTrj � 4ıt`2
�P

ViVj…‰;u2Œmij �
jW u
ij j
�
� 4ıt`2.t2`/D 4ıt3`3. Therefore

4ıt3`3 � jTrj �
X

W u
ij
W v
js
W w
is
2�2n�3

ı1=4jW u
ij jjW

v
jsjjW

w
is j

D ı1=4
ˇ̌̌̌ [
W u
ij
W v
js
W w
is
2�2n�3

K3ŒW
u
ijW

v
jsW

w
is �

ˇ̌̌̌
:

Rearranging, this yields thatˇ̌̌̌ [
W u
ij
W v
js
W w
is
2�2n�3

K3ŒW
u
ijW

v
jsW

w
is �

ˇ̌̌̌
� ı�1=44ıt3`3 D 4ı3=4t3`3:

Thus

jY3j � jY2j � ı
3=4t3`3

� jY1j �
p
�01t

3`3� 4ı3=4t3`3

� jY0j � ı
1=2t3`3�

p
�01t

3`3� 4ı3=4t3`3

�

� t
3

�
`3.1� 7.�01/

1=8/� ı1=2t3`3�
p
�01t

3`3� 4ı3=4t3`3

�

� t
3

�
`3.1� 2ı1=2/:

Therefore, using (1), we haveˇ̌̌̌ [
P˛
ij
P
ˇ

is
P


js
2Y3

K
.2/
3 .G

˛;ˇ;
ijs /

ˇ̌̌̌
�

� t
3

�
`3.1� 2ı1=2/

�
n3

t3`3
.1� �02.`//

�
�

�n
3

�
.1� 3ı1=2/;

where the last inequality is because n is large.
Our next goal is to prove Claim 3.2, which says that for each W u

ijW
v
isW

w
js 2�3,

K3ŒW
u
ij ; W

v
is; W

w
js � is either mostly contained in R1 or mostly contained in R0. For

the proof of this claim, we will require the following notation. Given ijs 2
�
Œt�
3

�
,

˛; ˛0� `, 1�v�mis , and 1�w�mjs , we write P ˛ij �js;vw P
˛0

ij if P ˛ij ; P
˛0

ij 2W
u
ij

for some 1� u�mij , andˇ̌˚
.P

ˇ
is ; P


js/ 2W

v
is �W

w
js W for some �1 ¤ �2 2 f0; 1; 2g; P

ˇ
isP


jsP

˛
ij 2R

�1

and P ˇisP

jsP

˛0

ij 2R
�2
	ˇ̌
� ı1=8jW v

isjjW
w
js j:

Claim 3.2. For any W u
ijW

v
isW

w
js 2�3, there is � 2 f0; 1g such that

jR� \K3ŒW
u
ij ; W

v
is; W

w
js �j

jK3ŒW
u
ij ; W

v
is; W

w
js �j

� 1� ı1=100:
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Proof. Suppose towards a contradiction there is W u
ijW

v
isW

w
js 2�3 such that for

each � 2 f0; 1g,

jR� \K3ŒW
u
ij ; W

v
is; W

w
js �j

jK3ŒW
u
ij ; W

v
is; W

w
js �j

< 1� ı1=100:

To ease notation, let ADW u
ij , B DW v

is , and C DW w
js .

We now define a series of subsets ofAwhich will contain “well behaved” vertices.
First, we set A1 D fa 2 A W a �js;vw xuij g. Since W u

ijW
v
isW

w
js 2�3,

ı1=4jW u
ij jjW

v
isjjW

w
js j � jTr\K3ŒW u

ijW
v
isW

w
js �j � jA nA1jı

1=8
jW v
isjjW

w
js j:

Thus jA nA1j � ı�1=8ı1=4jW u
ij j D ı

1=8jW u
ij j. Now set

A2 D fa 2 A W jNR2.a/j � .�
0
1/
1=4
jBjjC jg:

Because W u
ijW

v
isW

w
js 2�2, we have that

.�01/
1=2
jAjjBjjC j � jR2\K3ŒA; B; C �j � jA nA2j.�

0
1/
1=4
jBjjC j:

Therefore, jA nA2j � .�01/
1=4jAj. Now set

A3 D fa 2 A W jNR1.a/j=jBjjC j 2 .ı
1=64; 1� ı1=64/g and

A03 D fa 2 A W jNR1.a/j=jBjjC j 2 .ı
1=128; 1� ı1=128/g:

We claim xuij 2 A
0
3. Suppose towards a contradiction that xuij … A

0
3. Suppose first

that jNR1.xuij /j � .1� ı
1=128/jBjjC j. Then for all a 2A1, since a�js;vw xuij , we

have jNR1.a/j � .1� ı
1=128� ı1=8/jBjjC j, and thus,

jR1\K3ŒW
u
ijW

v
isW

w
js �j � .1� ı

1=128
� ı1=8/jA1jjBjjC j

� .1� ı1=128� ı1=8/.1� ı1=8/jAjjBjjC j

� .1� ı1=100/jAjjBjjC j;

a contradiction. So we must have jNR1.x
u
ij /j�ı

1=128jBjjC j. Then for all a2A1\A2,
a �js;vw x

u
ij and jNR2.a/j � .�

0
1/
1=4jBjjC j implies

jNR0.a/j � .1� ı
1=128

� ı1=8� .�01/
1=4/jBjjC j:

Therefore

jR0\K3ŒW
u
ijW

v
isW

w
js �j � .1�ı

1=128
�ı1=8�.�01/

1=4/jA1\A2jjBjjC j

� .1�ı1=128�ı1=8�.�01/
1=4/.1�ı1=8�.�01/

1=4/jAjjBjjC j

� .1�ı1=100/jAjjBjjC j;
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again a contradiction. Thus, we must have that xuij 2 A
0
3. This implies that for all

a 2 A1\A2,

jNR1.a/j � jNR1.x
u
ij /j � jNR1.x

u
ij /�NR1.a/j

� ı1=128jBjjC j.1� ı1=8/� ı1=64jBjjC j

and
jNR0.a/j � jNR0.x

u
ij /j � jNR0.a/j � jNR0.x

u
ij /�NR0.a/j

� ı1=128jBjjC j.1� ı1=8� .�01/
1=4/

� ı1=64jBjjC j:

Thus a 2 A3. This shows that A1\A2 � A3, and therefore

jA3j � jAj.1� ı
1=8
� .�01/

1=4/:

Now define

AB D
˚
a 2 A W jfb 2 B W jNR1.ab/�NR1.ax

v
is/j � ı

1=16
jC jgj � .1� ı1=16/jBj

	
;

AC D
˚
a 2 A W jfc 2 C W jNR1.ac/�NR1.ax

w
js/j � ı

1=16
jBjgj � .1� ı1=16/jC j

	
:

Observe that 4ı1=4jAjjBjjC j � jTr\K3ŒA; B; C �j � ı1=16jA nAB jjBjjC j, and
therefore jA nAB j � ı�1=164ı1=4jAj D 4ı3=16jAj. A similar computation shows
jA nAC j � 4ı

3=16jAj. Consequently, setting A4 WD A3\AB \AC , we have that

jA4j � jA3j � jA nAC j � jA nAB j � jAj.1� 8ı
3=16
� .�01/

1=4
� ı1=8/ > 0:

Fix some a� 2 A4. We will use a� to control the other edges in the triple. Let

S1 DNR1.a
�/; S0 DNR0.a

�/; and S2 DNR2.a
�/:

Note .B [C; S0 [ S1 [ S2/ is a 3-partite edge-colored 3-graph. Since a� 2 A3,
jS1j=jBjjC j 2 .ı

1=64; 1� ı1=64/. Therefore, Corollary 2.19 implies that one of the
following hold:

(a) There is B1 � B such that jB1j � ı1=32jBj=2 and for all b 2 B1,

jNS1.b/j

jC j
2

�
ı1=32

2
; 1�

ı1=32

2

�
:

(b) There is C1 � C such that jC1j � ı1=32jC j=2 and for all c 2 C1,

jNS1.c/j

jBj
2

�
ı1=32

2
; 1�

ı1=32

2

�
:

Without loss of generality, let us assume (a) holds (other case is symmetric). Define
B2D fb 2B1 W jNS2.b/j � .�

0
1/
1=16jC jg. We claim jB2j � ı1=32jBj=4. Indeed, we

know that since a� 2 A2,

.�01/
1=4
jBjjC j � jS2j � .�

0
1/
1=16
jB1 nB2jjC j:
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Thus, jB1 nB2j � .�01/
�1=16.�01/

1=4jBj D .�01/
1=12jBj, so

jB2j � jB1j � .�
0
1/
1=12
jBj �

�
ı1=32

2
� .�01/

1=12

�
jBj �

ı1=32jBj

4
:

Note that for all b 2 B2, we have that jNS1.b/j � ı
1=32jC j=2� ı1=32jC j=4 and

jNS0.b/j � jC nNS1.b/j � jNS2.b/j �

�
ı1=32

2
� .�01/

1=16

�
jC j �

ı1=32jC j

4
:

Now, let
B3 D fb 2 B2 W jNS1.b/�NS1.x

v
is/j � ı

1=16
jC jg:

Since a� 2 AB ,

jB3j � jB2j � ı
1=16
jBj �

�
ı1=32

4
� ı1=16

�
jBj �

ı1=32jBj

8
> 0:

Fix some b� 2 B3 and set Q0 D NS0.b�/ and Q1 D NS1.b�/. By above, since
b� 2 B2, minfjQ1j; jQ0jg � ı1=32jC j=4.

We claim jS1\K2ŒB3;Q1�j � .1�10ı1=32/jQ1jjB3j. Indeed, fix b 2B3. Then
we know jNS1.b/�NS1.x

v
is/j � ı

1=16jC j and jNS1.b�/�NS1.x
v
is/j � ı

1=16jC j,
and therefore jNS1.b/�NS1.b�/j � 2ı

1=16jC j. Consequently,

jNS1.b/\Q1j � jQ1j � 2ı
1=16
jC j � jQ1j

�
1� 2ı1=16

jC j

jQ1j

�
� jQ1j.1� 2ı

1=16.4ı�1=32//� jQ1j.1� 10ı
1=32/:

This shows that jS1\K2ŒB3;Q1�j � .1� 10ı1=32/jQ1jjB3j.
Similarly, we claim jS0\K2ŒB3;Q0�j � .1�10ı1=32/jB3jjQ0j. Indeed, for all

b 2 B3, jNS2.b/j � .�
0
1/
1=16jC j and, as above, jNS1.b/�NS1.b�/j � 2ı

1=16jC j.
Thus jNS0.b/�NS0.b�/j � ..�

0
1/
1=16C 2ı1=16/jC j. Therefore,

jNS0.b/\Q0j � jQ0j � ..�
0
1/
1=4
C 2ı1=16/jC j

� jQ0j

�
1� ..�01/

1=4
C 2ı1=16/

jC j

jQ0j

�
� jQ0j.1� ..�

0
1/
1=4
C 2ı1=16/4ı�1=32/

� jQ1j.1� 10ı
1=32/;

where the last inequality uses the definition of �01. This shows

jS0\K2ŒB3;Q0�j � .1� 10ı
1=32/jB3jjQ0j:

Now let

Q01 D
˚
c 2Q1 W jNS1.c/\B3j � .1�

p
10 ı1=64/jB3j

	
and

Q00 D
˚
c 2Q0 W jNS0.c/\B3j � .1�

p
10 ı1=64/jB3j

	
:
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Since both
jS1\K2ŒB3;Q1�j � .1� 10ı

1=32/jQ1jjB3j and

jS0\K2ŒB3;Q0�j � .1� 10ı
1=32/jB3jjQ0j;

we have that jQ01j � .1�
p
10 ı1=64/jQ1j and jQ00j � .1�

p
10 ı1=64/jQ0j. Finally,

let
C � D fc 2 C W jNS1.c/�NS1.x

w
js/j � ı

1=16
jBjg:

Since a� 2 AC , jC �j � .1� ı1=16/jC j. Thus,

jQ01\C
�
j � .1�

p
10 ı1=64/jQ1j � ı

1=16
jC j

� .1�
p
10ı1=64/

ı1=32

4
� ı1=16jC j �

ı1=32jC j

10
:

Similarly,

jQ00\C
�
j � .1�

p
10ı1=64/jQ0j � ı

1=16
jC j

� .1�
p
10ı1=64/

ı1=32

4
� ı1=16jC j �

ı1=32jC j

10
:

Consequently, there are c1 2Q01\C
� and c0 2Q00\C

�. Since c0; c1 2 C �, we
can see that jNS1.c1/�NS1.c0/j � 2ı

1=16jBj. However, we also have that

jNS1.c1/\NS0.c0/\B3j � .1� 2
p
10 ı1=64/jB3j

� .1� 2
p
10 ı1=64/ı1=32

jBj

8
> 2ı1=16jBj:

But this is a contradiction, since NS1.c/\NS0.c0/\B3 �NS1.c1/�NS1.c0/. �

Let `1 D dı�4m4e. Suppose ViVj … ‰ and 1 � u � `ij is such that W u
ij is

nontrivial. Define Wu
ij D

S
P˛
ij
2W u

ij
P uij , let Guij be the bipartite graph .Vi[Vj ;Wu

ij /,
and define

�ij .u/D
jWu

ij j

jVi jjVj j
:

By Fact 2.23, Guij has dev2.`.�002.`//
1=4/ and

jWu
ij j D .1˙ `.�

00
2.`//

1=4/
jW u
ij jjVi jjVj j

`
:

Using the size estimate above and the fact that W u
ij is nontrivial, we have

�ij .u/D .1˙ `.�
00
2.`//

1=4/
jW u
ij j

`
� .1˙ `.�002.`//

1=4/
ı1=2

`
� 2`.�002.`//

1=4;

where the last inequality is by choice of �002.`/. Set pij .u/D �ij .u/�1=`1, and let
sij .u/D Œ1=pij .u/�. Observe that �ijpij D1=`1. Note .�002.`//

1=4�10.1=sjVi j/
1=5
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(since n is very large), and since W u
ij is nontrivial and `.�002.`//

1=4 < 1
4

,

�ij .u/� .1˙ `.�
00
2.`//

1=4/jW u
ij j=`� ı

1=2 .`=mij /

`
D ı1=2=mij �

ı1=2

m
:

Further, 0 < pij .u/ < �ij .u/=2 since

pij .u/� .1˙ `.�
00
2.`//

1=4/�1mı�1=2`�11 �mı
�1=2 ı

4

m4
�
ı3=2

m3
<
�ij .u/

2
;

where the last inequality uses that �ij .u/� ı1=2=m. Thus by Lemma 2.22, there is
a partition

Wu
ij DWu

ij .0/[ � � � [Wu
ij .sij .u//;

so that jWu
ij .0/j � �ijpij .1 C �

0
1/jVi jjVj j and for each 1 � x � sij .u/, the

bipartite graph Guij .x/ WD .Vi [Vj ;W
u
ij .x// has dev2.`.�002.`//

1=4; �ijpij /, i.e.,
dev2.`.�002.`//

1=4; 1=`1/. Since .�002.`//
1=4m < �2.`1/, and by definition of �002 ,

we have that for each 1� x � sij .u/, Guij .x/ has dev2.�2.`1/; 1=`/. Let

sij D
X

1�u�mij

sij .u/:

Give a reenumeration

fX1ij ; : : : ; X
sij
ij g D fW

u
ij .v/ W 1� v � sij .u/; 1� u�mij g:

Then let XsijC1ij ; : : : ; X
`1
ij be any partition of K2ŒVi ; Vj � n

Ssij
xD1X

x
ij .

For ViVj 2‰ choose a partition K2ŒVi ; Vj �DX1ij [ � � � [X
`1
ij such that for each

1� x � `1, X`1ij has dev2.�2.`1/; 1=`1/ (such a partition exists by Lemma 2.22).
Now define Q to be the decomposition of V with

Q1 D fVi W i 2 Œt �g and Q2 D
n
Xvij W v � `1; ij 2

� Œt �
2

�o
:

We claim this is a .t; `1; �1; �2.`1//-decomposition of V . Indeed, by construction,
any xy 2

�
V
2

�
which is not in an element of Q2 satisfying disc2.�2.`1/; 1=`1/ is in

the set
� WD

[
ViVj…‰

X
sijC1

ij [ � � � [X
`1
ij :

Observe that

j�j �
X

ViVj…‰

mijX
uD1

jWu
ij .0/jC

ˇ̌̌̌
K2ŒVi ; Vj � n

� [
P˛
ij
2Wij

P ˛ij

�ˇ̌̌̌
: (2)
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We have thatX
ViVj…‰

mijX
uD1

jWu
ij .0/j �

X
ViVj…‰

mij .1C �
0
1/�ijpij jVi jjVj j

�

� t
2

�
m.1C 2�01/

.n=t/2

`1

D ı4
� t
2

�
.1C 2�01/

.n=t/2

m3
� 2ı2

�
n
2

�
m3
;

where the last inequality is because n is large. Then, by definition of ı and m, this
shows that

P
ViVj…‰

Pmij
uD1 jW

u
ij .0/j � �1

�
n
2

�
=2. We also have thatX

ViVj…‰

ˇ̌̌̌
K2ŒVi ; Vj � n

� [
P˛
ij
2Wij

P ˛ij

�ˇ̌̌̌
�

X
ViVj…‰

�
jVi jjVj j � jWij j.1C �

0
2.`//

jVi jjVj j

`

�
D

X
ViVj…‰

jVi jjVj j

�
1� `ij .1C �

0
2.`//

1

`

�
�

X
ViVj…‰

jVi jjVj j
�
1� .1� 2.�01/

3=4/.1C �02.`//
�

�

X
ViVj…‰

jVi jjVj j.�
0
1/
1=8
� .�01/

1=8
�n
2

�
:

Combining these with (2) yields that j�j � �1
�
n
2

�
=2C .�01/

1=8
�
n
2

�
� �1

�
n
2

�
, and

therefore, Q is a .t; `; �1; �2.`//-decomposition of V .
We now show that Q is �1=6-homogeneous with respect toH . We show first that

for any W u
ijW

v
isW

w
js 2�3, Guvwijs WD .Vi [Vj [Vs;W

u
ij [Wv

is [Ww
js/ is 2ı1=100-

homogeneous with respect to H , and second that almost all xyz 2 K.2/3 .Guvw
ijs /

are in an �1=6-homogenous triad of Q.
Fix W u

ijW
v
isW

w
js 2�3. We know by Claim 3.2, that there is � 2 f0; 1g such that

jR� \K3ŒW
u
ij ; W

v
is; W

w
js �j � .1� ı

1=100/jK3ŒW
u
ij ; W

v
is; W

w
js �j:

This implies, by (1) and definition of R� , that the following holds, where E1 DE
and E0 D

�
V
3

�
nE1 (recall E DE.H/):

jE� \K
.2/
3 .Guvwijs /j

� .1� ı1=100/.1� �001/jK3ŒW
u
ij ; W

v
is; W

w
js �j.1� `

3�02.`//jVi jjVj jjVsj
1

`3

D .1� ı1=100/.1� �001/.1� `
3�02.`//

jW u
ij jjW

v
isjjW

w
js j

`3
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On the other hand, note that by (1),

jK
.2/
3 .Guvwijs /j D jW

u
ij jjW

v
isjjW

w
js j.1˙ `

3�02.`//
jVi jjVj jjVsj

`3
:

Combining this with the above, we see that

jE� \K
.2/
3 .Guvwijs /j

� .1� ı1=100/.1� �001/.1� `
3�02.`//.1C `

3�02.`//
�1
jK
.2/
3 .Guvwijs /j

� .1� 2ı1=100/jK
.2/
3 .Guvwijs /j;

where the last inequality is by definition of �02 and �001 . This shows Guvwijs is 2ı1=100-
homogeneous. We now show that almost all xyz 2 K.2/3 .Guvwijs / are in an �1=6-
homogeneous triad of Q. Set

†0.ijs; uvw/D f0; : : : ; sij .u/g � f0; : : : ; sis.v/g � f0; : : : ; sjs.w/g:

Given .x; y; z/ 2†0, set

Guvwijs .x; y; z/D .Vi [Vj [VsIW
u
ij .x/[Wv

is.y/[Ww
js.z//:

Note that K.2/3 .Guvwijs /D
S
.x;y;z/2†0.ijs;uvw/

K
.2/
3 .Guvwijs .x; y; z//. Define

†1.ijs; uvw/

D f.x;y;z/2f0; : : : ; sij.u/g�f0; : : : ; sis.v/g�f0; : : : ; sjs.w/g W x;y or z is 0g;

and set †2.ijs; uvw/D†0.ijs; uvw/ n†1.ijs; uvw/. Note that by construction,
for all .x; y; z/ 2†2.ijs; uvw/, Guvwijs .x; y; z/ 2 Triads.Q/. Observe thatX
.x;y;z/2†1.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

� jWu
ij .0/jjVsjC jW

v
is.0/jjVj jC jW

w
js.0/jjVi j

� .1C �01/jVi jjVj jjVsj.�ijpij C �ispisC �jspjs/

D 3.1C �01/jVi jjVj jjVsj
1

`1

� 3.1C �01/ı
4
jVi jjVj jjVsjm

�4

� 3.1C �01/ı
4
�
jW u
ij jjW

v
isjjW

w
js j

1

`3

��1
m�4jK

.2/
3 .Guvwijs /j

� 3.1C �01/ı
4
�
ı1=2

m

��3
m�4jK

.2/
3 .Guvwijs /j

D 3.1C �01/ı
1=2m�1jK

.2/
3 .Guvwijs /j

< ıjK
.2/
3 .Guvwijs /j;
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where the last inequality uses the definition of m. Let †3.ijs; uvw/ be the set of
.x; y; z/ 2†2.ijs; uvw/ such that

jE� \K
.2/
3 .Guvwijs .x; y; z//j< .1� ı

1=200/jK
.2/
3 .Guvwijs .x; y; z//j;

and set

†4.ijs; uvw/D†2.ijs; uvw/ n†3.ijs; uvw/:

By definition, and since ı1=200<�1=6, every triad of the formK
.2/
3 .Guvwijs .x; y; z//

for .x; y; z/ 2†4.ijs; uvw/ is in an �1=6-homogeneous triad of Q. We now show
that

S
.x;y;z/2†4.ijs;uvw/

K
.2/
3 .Guvwijs / is most of K.2/3 .Guvwijs /. Observe

jE� \K
.2/
3 .Guvwijs /j �

X
.x;y;z/2†1.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

C .1� ı1=200/
X

.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

C

X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

� ıjK
.2/
3 .Guvwijs /j

C .1� ı1=200/
X

.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

C

X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j:

Thus, since jE� \K.2/3 .Guvwijs /j � .1� 2ı
1=100/jK

.2/
3 .Guvwijs /j,

.1� 2ı1=100� ı/jK
.2/
3 .Guvwijs /j

� .1� ı1=200/
X

.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

C

X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

D

X
.x;y;z/2†2.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

� ı1=200
X

.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j:

Rearranging this inequality, we have the following upper bound for the sumP
.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j:
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ı�1=200
� X
.x;y;z/2†2.ijs;uvw/

jK
.2/
3 .Guvwijs .x;y;z//j�.1�2ı

1=100
�ı/jK

.2/
3 .Guvwijs /j

�
� ı�1=200jK

.2/
3 .Guvwijs /j3ı

1=100

� 3ı1=200jK
.2/
3 .Guvwijs /j:

Consequently,X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j � jK

.2/
3 .Guvwijs /j.1� 3ı

1=200/:

We have now established that
S
.x;y;z/2†4.ijs;uvw/

K
.2/
3 .Guvw

ijs / covers most
of K.2/3 .Guvwijs /, and for all .x; y; z/ 2 †4.ijs; uvw/, Guvw

ijs .x; y; z/ is an �1=6-
homogeneous triad of Q. For all .x; y; z/2†4.ijs; uvw/,W u

ij .x/;W
v
is.y/;W

w
js .z/

all have dev2.�2.`1/; 1=`1/, and thus, by Proposition 2.24, Guvw
ijs .x; y; z/ has

dev2;3.�1; �2.`1// with respect to H .
Using this and our lower bound on the size of Y3, we can now give the following

lower bound on the number of triples xyz 2
�
V
3

�
in a dev2;3.�2.`1/; �1/-regular

triad of P:X
W u
ij
W v
is
W w
js
2�3

X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

�

X
W u
ij
W v
is
W w
js
2�3

.1� 3ı1=200/jK
.2/
3 .Guvwijs /j

D .1� 3ı1=200/
X

W u
ij
W v
is
W w
js
2�3

jK
.2/
3 .Guvwijs /j

� .1� 3ı1=200/.1� 3ı1=2/
�n
3

�
� .1� �1/

�n
3

�
;

where the last inequality is by definition of ı. This finishes the proof. �

Appendix: Proof of Proposition 2.24

We will use the following fact:

Lemma A.1. For all ı; r; � 2 .0; 1� satisfying 212ı < �2r12, the following holds.
Suppose G D .V1[V2[V3; E/ is a 3-partite graph such that for each ij 2

�
Œ3�
2

�
,

jjVi j�jVj jj � ıjVi j andGŒVi ; Vj � has dev2.ı; r/. Given u0v0w0 2K
.2/
3 .G/, define

K2;2;2Œu0; v0; w0�

D
˚
u1v1w12K3ŒV1;V2;V3� W for each �2f0;1g3; .u�1 ;v�2 ;w�3/2K

.2/
3 .G/

	
:
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Then if J WD fuvw 2K.2/3 .G/ W jK2;2;2Œu0; v0; w0�j � .1C�/r
9jV1jjV2jjV3jg, we

have that jJ j � .1��/r3jV1jjV2jjV3j.

Proof. Let KG2;2;2ŒV1; V2; V3� be the set

f.u0; u1; w0; w1; z0; z1/ 2 V
2
1 �V

2
2 �V

3
3

W for each � 2 f0; 1g3; u�1w�2z�3 2R\K
.2/
3 .G/g:

By Theorem 3.5 in [11],

jK2;2;2ŒV1; V2; V3�j � r
12
jV1j

2
jV2j

2
jV3j

2
C 212ı1=4jV1j

2
jV2j

2
jV3j

2:

Suppose towards a contradiction that jJ j> .1��/r3jV1jjV2jjV3j. Then

jK2;2;2ŒV1; V2; V3�j � jJ j.1C�/r
9
jV1jjV2jjV3j> .1��

2/r12jV1j
2
jV2j

2
jV3j

2:

Combining with the above, this implies r12C212ı1=4>.1��2/r12, which implies
�2r12 < 212ı1=4, a contradiction. �

Proof of Proposition 2.24. Fix 0 < � < 1
2

, 0 < d2 < 1
2

, and 0 < ı � .d2=2/48, and
choose N sufficiently large.

Suppose H D .V1 [ V2 [ V3; R/ is a 3-partite 3-graph on n � N vertices and
for each i; j 2 Œ3�, jjVi j � jVj jj � ıjVi j. Suppose G D .V1 [ V2 [ V3; E/ is a 3-
partite graph, where for each 1� i < j � 3, GŒVi ; Vj � has dev2.ı; d2/, and assume
jR\K

.2/
3 .G/j � �jK

.2/
3 .G/j. Let d be such that jR\K.2/3 .G/j D d jK

.2/
3 .G/j.

By assumption d � �. Define g.x; y; z/ W
�
V
3

�
! Œ0; 1� by

g.x; y; z/D

8̂<̂
:
1� d if xyz 2R\K.2/3 .G/,
�d if xyz 2K.2/3 .G/ nR,
0 otherwise.

Given u0v0w0 2K
.2/
3 .G/, define

K2;2;2Œu0; v0; w0�D fu1v1w1 2K3ŒV1; V2; V3�

W for each .i; j; k/ 2 f0; 1g3; .ui ; vj ; wk/ 2K
.2/
3 .G/g:

Let �D d122 . Note that 212ı < .d2=2/36 < d362 D �
2d122 . Set

J WD
˚
uvw 2K

.2/
3 .G/ W jK2;2;2Œu0; v0; w0�j � .1C�/d

9
2 jV1jjV2jjV3j

	
:

By Lemma A.1, we have that jJ j � .1��/d32 jV1jjV2jjV3j. Now set

I1 D
˚
.u0; u1; w0; w1; z0; z1/ 2 V

2
1 �V

2
2 �V

3
3

W for each .i; j; k/ 2 f0; 1g3; uiwj zk 2R\K
.2/
3 .G/
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and let

I2 D f.u0; u1; w0; w1; z0; z1/ 2 .V
2
1 �V

2
2 �V

3
3 / n I1

W for each .i; j; k/ 2 f0; 1g3; uiwj zk 2K
.2/
3 .G/g:

ThenX
u0;u12V1

X
w0;w12V2

X
z0;z12V3

Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

�

ˇ̌̌̌ X
u0;u12V1

X
w0;w12V2

X
z0;z12V3

Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

ˇ̌̌̌

�

X
u0;u12V1

X
w0;w12V2

X
z0;z12V3

ˇ̌̌̌ Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

ˇ̌̌̌
D

X
.u0;u1;w0;w1;z0;z1/2I1

.1� d/9

C

X
.u0;u1;w0;w1;z0;z1/2I2

ˇ̌̌̌ Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

ˇ̌̌̌
:

For each .u0; u1; w0; w1; z0; z1/ 2 I2,ˇ̌̌̌ Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

ˇ̌̌̌
� d.1� d/8;

since at least one of the g.ui ; wj ; zk/ is equal to �d , and j � d j < j1� d j (since
d � � < 1

2
). Thus we have, by above, thatX

u0;u12V1

X
w0;w12V2

X
z0;z12V3

Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/� .1�d/
9
jI1jCd.1�d/

8
jI2j:

Note

jI1j �
X

u0w0z02J

jK2;2;2.u0; w0; z0/jC
X

u0w0z02RnJ

jK2;2;2.u0; w0; z0/j

� jJ j.1C�/d92 jV1jjV2jjV3jC jR nJ jjRj

� jRj.1C�/d92 jV1jjV2jjV3jC�d
3
2 jV1jjV2jjV3jd jK

.2/
3 .G/j

� d jK
.2/
3 .G/j.1C�/d92 jV1jjV2jjV3jC�d

3
2 jV1jjV2jjV3jd jK

.2/
3 .G/j

� jV1jjV2jjV3jjK
.2/
3 .G/j.d.1C�/d122 C dd

12
2 /;
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where the last inequality is by definition of �. By the counting lemma [11, Theo-
rem 3.5], jK.2/3 .G/j � .1C 23ı1=4/jV1jjV2jjV3j. Therefore, we have that

jI1j� jV1j
2
jV2j

2
jV3j

2.1C23ı1=4/.d.1C�/d122 Cdd
12
2 /�3dd

12
2 jV1j

2
jV2j

2
jV3j

2:

On the other hand, jI2j � jK2;2;2ŒV2; V2; V3�j, which, by [11, Theorem 3.5], has
size at most .d122 C 2

12ı1=4/jV1j
2jV2j

2jV3j
2. Combining the bounds above with

the fact that d � �, we have thatX
u0;u12V1

X
w0;w12V2

X
z0;z12V3

Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

� .1� d/9jI1jC d.1� d/
8
jI2j

� jV1j
2
jV2j

2
jV3j

2.3�d122 C �.d
12
2 C 2

12ı1=4//

� 6�d122 jV1j
2
jV2j

2
jV3j

2;

where the last inequality is due to ı < .d2=2/
48. This shows that .H;G/ has

dev2;3.ı; 6�/, as required. �
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Suppose that K is an infinite field which is large (in the sense of Pop) and whose
first-order theory is simple. We show that K is bounded, namely has only finitely
many separable extensions of any given finite degree. We also show that any
genus 0 curve over K has a K-point and if K is additionally perfect then K has
trivial Brauer group. These results give evidence towards the conjecture that
large simple fields are bounded PAC. Combining our results with a theorem of
Lubotzky and van den Dries we show that there is a bounded PAC field L with the
same absolute Galois group as K . In the appendix we show that if K is large and
NSOP∞ and v is a nontrivial valuation on K then (K , v) has separably closed
Henselization, so in particular the residue field of (K , v) is algebraically closed
and the value group is divisible. The appendix also shows that formally real and
formally p-adic fields are SOP∞ (without assuming largeness).

1. Introduction

Throughout K is a field. Large fields were introduced by Pop [1996], one defi-
nition being that K is large if any algebraic curve defined over K with a smooth
(nonsingular) K-point has infinitely many K-points. Finite fields, number fields,
and function fields are not large. Local fields, Henselian fields, quotient fields of
Henselian domains, real closed fields, separably closed fields, pseudofinite fields,
infinite algebraic extensions of finite fields, and fields which satisfy a local-global
principle (in particular pseudo-real closed and pseudo-p-adically closed fields)
are all large. All infinite fields whose first-order theory is known to be “tame” or
well-behaved in various senses are large. Let K sep be a separable closure of K . We
say that K is bounded if for any n there are only finitely many degree n extensions
of K in K sep, or equivalently if the absolute Galois group Aut(K sep/K ) of K has
only finitely many open subgroups of any given finite index. When K is also perfect,
this is also called Serre’s property (F). (Other authors use “bounded” to mean that
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K has only finitely many extensions of each degree.) Koenigsmann has conjectured
that bounded fields are large [Junker and Koenigsmann 2010, p. 496].

Recall that K is pseudoalgebraically closed (PAC) if any geometrically integral
K-variety V has a K-point (and hence the set V (K ) of K-points is Zariski dense
in V ). We mention in passing that a PAC field need not be perfect; if p = Char(K ),
and a ∈ K is not a p-th power, then Spec K [x]/(x p

−a) is not geometrically integral
[Poonen 2017, Example 2.2.9]. PAC fields are large, by definition. PAC fields were
introduced by Ax [1968], who showed that pseudofinite fields are bounded PAC.
Infinite algebraic extensions of finite fields are also bounded PAC [Fried and Jarden
2005, Corollary 11.2.4]. In either case PAC follows from the Hasse–Weil estimates.

On the model-theoretic side, we have various “tame” classes of first-order
theories T , the most “perfect” being stable theories, and some others being simple
theories and NIP theories. It is a well-known theorem of Shelah that a theory is
stable if and only if it is both simple and NIP. Good examples come from theories
of fields. We say that a first-order structure, in particular a field, is stable (simple,
NIP) if its theory is stable (simple, NIP). In general we consider fields as structures
in a language expanding the language of rings, although in the following sentence
they are considered in precisely the language of rings. Separably closed fields
are stable and bounded PAC fields are simple. There is a considerable amount of
work on NIP fields, which include real closed and p-adically closed fields, but this
does not concern us in the present paper. We now recall two longstanding open
conjectures.

Conjecture 1.1. (1) Infinite stable fields are separably closed.

(2) Infinite simple fields are bounded PAC.

Our general idea is that Conjecture 1.1 is both true and tractable after making
the additional assumption of largeness. It is shown in [Johnson et al. 2020] that a
large stable field is separably closed. We describe another proof of this result in
Section 4A. Here we consider (2), and prove:

Theorem 1.2. Suppose that K is large and simple. Then there is a bounded PAC
field L of the same characteristic as K such that the absolute Galois group of L is
isomorphic (as a topological group) to the absolute Galois group of K .

Note that Theorem 1.2 implies that K is bounded. We prove this separately.

Theorem 1.3. If K is large and simple then K is bounded.

The assumption that K is simple can be replaced by the more general assumption
that the field K is definable in some model M of a simple theory. If we also require
M to be highly saturated we can take K to be type-definable (over a small set of
parameters) in M . The latter will follow from our proofs and references and we
will not talk about it again. Theorem 1.3 generalizes the theorem of Chatzidakis
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that a simple PAC field is bounded, which is proven via quite different methods in
[Chatzidakis 1999]. Poizat [1983] proved that an infinite stable bounded field is
separably closed. Combining Poizat’s result with Theorem 1.3 we get the above
mentioned result of [Johnson et al. 2020] that large stable fields are separably
closed.

Theorem 1.3 is reasonably sharp. The restriction to separable extensions is neces-
sary. If K is separably closed of infinite imperfection degree and Char(K )= p > 0
then K is large, stable, and has infinitely many extensions of degree p. There is
an emerging body of work on a generalization of simplicity known as NSOP1. All
known NSOP1 fields are PAC. Theorem 1.3 fails over NSOP1 fields as there are
unbounded PAC NSOP1 fields (equivalently, there are PAC fields that are NSOP1

but not simple). For example if K is characteristic zero, PAC, and the absolute
Galois group of K is a free profinite group on ℵ0 generators then K is unbounded
and NSOP1 [Chernikov and Ramsey 2016, Corollary 6.2].

A profinite group G is projective if any continuous surjective homomorphism
H → G with H profinite has a section. Ax [1968] showed that the absolute Galois
group of a perfect PAC field is projective, and Jarden [1972, Lemma 2.1] proved
this for nonperfect PAC fields.

Theorem 1.4. If K is large and simple then the absolute Galois group of K is
projective.

Theorem 1.2 follows from Theorem 1.3, Theorem 1.4, and the theorem of
Lubotzky and van den Dries that for any field K and projective profinite group G
there is a PAC field extension L of K such that the absolute Galois group of L is
isomorphic to G (see [Fried and Jarden 2005, Corollary 23.1.2]). An earlier version
of this paper proved Theorem 1.4 under the additional assumption that K is perfect.
Philip Dittmann showed us how to remove this assumption.

Theorem 1.5. Suppose that K is perfect, large, and simple. Then the Brauer group
of K is trivial. It follows that

(1) any finite-dimensional division algebra over K is a field, and

(2) any Severi–Brauer K-variety V has a K-point.

We recall the definition of Severi–Brauer variety. Let K alg be an algebraic closure
of K . Given a K-variety V we let VK alg be the base change V ×K Spec K alg of
V to a K alg-variety. A Severi–Brauer variety is a K-variety V such that VK alg is
isomorphic (over K alg) to dim V -dimensional projective space. A Severi–Brauer
variety is geometrically integral, so (2) is a modest step towards the conjecture
that large simple fields are PAC. Theorem 1.5 was proven for supersimple fields
in [Pillay et al. 1998]; our proof closely follows that in [Pillay et al. 1998], so we
do not recall the definition of the Brauer group. (Supersimple fields are perfect,
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but large simple fields need not be perfect.) Items (1) and (2) of Theorem 1.5 are
well-known consequences of triviality of the Brauer group. We refer to [Poonen
2017, Sections 1.5 and 4.5.1] for the definition of the Brauer group and these facts.

Suppose Char(K ) ̸= 2, then we say that a conic over K is a smooth irreducible
projective K-curve of genus 0. One-dimensional Severi–Brauer varieties are exactly
conics [Poonen 2017, Example 4.5.8]. Thus Theorem 1.6 generalizes the one-
dimensional case of Theorem 1.5.2 to imperfect fields.

Theorem 1.6. Suppose that K is large and simple, Char(K ) ̸= 2, and C is a conic
over K . Then C has a K-point, hence (by largeness) C(K ) is infinite.

Let us mention some other earlier work around the conjectures on stable and
simple fields described above. One of the first results on deducing algebraic results
from model-theoretic hypotheses was Macintyre’s theorem [1971] that infinite fields
with ω-stable theory are algebraically closed (generalized to superstable fields in
[Cherlin and Shelah 1980]). Macintyre’s Galois-theoretic method has been used in
many later works including the result on large stable fields [Johnson et al. 2020]
mentioned above. Supersimple theories are simple theories in which there are
not infinite forking chains of types, whereby any complete type has an ordinal
valued dimension called the SU-rank. This gives a so-called “surgical dimension”
as in [Pillay and Poizat 1995] from which one deduces that an infinite field with
supersimple theory is perfect and bounded. So insofar as Conjecture 1.1(2) is
restricted to supersimple theories, it remained to prove that supersimple theories are
PAC, and some partial results were obtained in [Pillay et al. 1998; Martin-Pizarro
and Pillay 2004] for example. A theme of the current paper is that, other than
perfection of K , any results on supersimple fields also hold over large simple fields.

The conclusions of Theorems 1.4, 1.5, and 1.6 are properties of PAC fields.
Another well-known consequence of a field K being PAC is that the Henselization
of any nontrivial valuation on K is separably closed; see [Fried and Jarden 2005,
Corollary 11.5.9]. In an earlier draft of this paper we showed that any nontrivial
valuation on a large simple field has separably closed Henselization. Dittmann
generalized this to Theorem 1.7, which is proven in the Appendix.

Theorem 1.7. Suppose that K is large and NSOP∞. Then any nontrivial valuation
on K has separably closed Henselization. In particular, any nontrivial valuation
on K has algebraically closed residue field and divisible value group.

NSOP∞ is a weakening of simplicity; see the Appendix for a definition and
some discussion. NSOP1 implies NSOP∞ and essentially every known theory
without the strict order property is NSOP∞. It is natural to ask if Theorem 1.7
holds without the assumption of largeness. In the Appendix we give the following
partial generalization.
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Theorem 1.8. If K admits a p-valuation then K is SOP∞. In particular if K is a
subfield of a finite extension of Qp then K is SOP∞.

See Section A2 for the definition of a p-valuation. The proof of Theorem 1.8
uses diophantine work of Anscombe, Dittmann, and Fehm [Anscombe et al. 2020]
in place of largeness. The results of [Anscombe et al. 2020] are p-adic analogues
of classical results on sums of squares. In Section A2 we give a similar argument
using Lagrange’s four-square theorem to show that a formally real field is SOP∞.
If K admits a valuation with formally real residue field then K is formally real
[Bochnak et al. 1998, Corollary 10.1.9]. Thus if K admits a valuation with formally
real residue field then K is SOP∞.

2. Large fields and definability

2A. Algebraic conventions. We let K ∗ be the set of nonzero elements of K and
Char(K ) be the characteristic of K . A K-variety is a separated, reduced K-scheme
of finite type. We let dim V be the usual algebraic dimension and V (K ) be the set of
K-points of a K-variety V . We let An be n-dimensional affine space over K (recall
that An(K )= K n). We often assume irreducibility of the relevant K-varieties. A
K-curve is a one-dimensional K-variety. A morphism is a morphism of K-varieties.

2B. Largeness. Large fields were introduced by Florian Pop. A survey appears
in [Pop 2014], which starts by saying that large fields are fields over which (or in
which) one can do a lot of “interesting mathematics”. So largeness looks like a
field-arithmetic tameness notion. The field K is large if every irreducible K-curve
with a smooth (also called nonsingular) K-point has infinitely many K-points.

Fact 2.1 [Pop 1996]. The following are equivalent:

(1) K is large.

(2) K is existentially closed in K ((t)).

(3) If an irreducible K-variety V has a smooth K-point then V (K ) is Zariski dense
in V .

Fact 2.2 [Pop 2014, Proposition 2.7]. An algebraic extension of a large field is
large.

Fact 2.3 allows us to pass to elementary extensions.

Fact 2.3 [Pop 2014, Proposition 2.1]. Large fields form an elementary class.

2C. Existentially étale sets. Let W be a K-variety. The authors of [Johnson et al.
2020] introduced the étale open topology on W (K ). If K is not large then the étale
open topology is always discrete and if K is large then the étale open topology on
W (K ) is nondiscrete whenever W (K ) is infinite. Our original proofs were given
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in terms of this topology, but at present we mostly avoid the topology and give
proofs from scratch. We use properties of certain special existentially definable
subsets of W (K ). A subset X of W (K ) is an EE set if there is a K-variety V and
an étale morphism f : V → W such that X = f (V (K )). It is shown in [Johnson
et al. 2020] that the EE subsets of W (K ) form a basis for the étale open topology.
(In [Johnson et al. 2020] EE sets are referred to as “étale images”.)

If W is smooth and V → W is an étale morphism then V is also smooth. At
present we are mainly concerned with subsets of K n

= An(K ), so we may restrict
attention to smooth K-varieties. We quickly recall what we need from this setting.
Let V,W be smooth irreducible K-varieties. An étale morphism f : V → W is
a morphism such that the differential d fa is an isomorphism T Va → T W f (a) for
all a ∈ V . In particular if f : An

→ An is a morphism then f is étale at a ∈ K n if and
only if the Jacobian of f at a is invertible. The general notion of an étale morphism
between not necessarily smooth varieties is more complicated but is not needed here.

Fact 2.4 [EGA IV4 1967, Proposition 17.1.3]. Suppose W1,W2, V are smooth K-
varieties and fi : Wi → V is an étale morphism for i ∈ {1, 2}. Let W be the fiber
product W1 ×V W2 and f : W → V be the canonical map. Then W is a smooth
K-variety and f is étale.

We have (W1 ×V W2)(K ) = {(a1, a2) ∈ W1(K )× W2(K ) : f1(a1) = f2(a2)},
from which it easily follows that the image of (W1 ×V W2)(K ) under f agrees with
f1(W1(K ))∩ f2(W2(K )). Corollary 2.5 follows.

Corollary 2.5. Suppose that W is a smooth K-variety. Then the collection of EE
subsets of W (K ) is closed under finite intersections.

Corollary 2.5 holds for an arbitrary K-variety, but we do not need this.

Lemma 2.6. Suppose that K is large, W is a smooth irreducible K-variety, and X
is a nonempty EE subset of W (K ). Then X is Zariski-dense in W . In particular any
nonempty EE subset of K n is Zariski dense in K n .

The identity morphism W → W is étale, so Lemma 2.6 generalizes the fact that
if K is large and W is a smooth irreducible K-variety with W (K ) ̸= ∅ then W (K )
is Zariski dense in W .

Proof. Let V be a K-variety and f : V → W be an étale morphism such that
X = f (V (K )). Suppose that X is not Zariski dense in V . Then X is contained in
a proper closed subvariety Y of W . As W is irreducible we have dim Y < dim W .
Note that f −1(Y ) is a closed subvariety of V containing V (K ). As f is étale it
is finite-to-one, hence dim V = dim W and dim f −1(Y ) = dim Y < dim W . So
f −1(Y ) is a proper closed subvariety of V containing V (K ). This contradicts
Fact 2.1. □

Corollary 2.7 follows from Corollary 2.5 and Lemma 2.6.
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Corollary 2.7. Suppose that K is large. Let W be a smooth irreducible K-variety
and X1, . . . , Xn be EE subsets of W (K )with

⋂k
i=1 X i ̸=∅. Then

⋂k
i=1 X i is Zariski

dense in W . In particular, if X1, . . . , Xk are EE subsets of K n with
⋂k

i=1 X i ̸= ∅
then

⋂k
i=1 X i is Zariski dense in K n .

Fact 2.8 is proven in [Johnson et al. 2020] for arbitrary K-varieties.

Fact 2.8. Let W be a smooth K-variety, g : W → W be a K-variety isomorphism,
and X be an EE subset of W (K ). Then g(X) is also an EE subset of W (K ).

Proof. Let V be a smooth K-variety and f : V → W be an étale morphism such
that X = f (V (K )). Note that g is étale as any K-variety isomorphism is étale. So
g ◦ f : V → W is étale as a composition of étale morphisms is étale. □

We will apply Corollary 2.9 below.

Corollary 2.9. Suppose that X is an EE subset of K n , a = (a1, . . . , an) ∈ K n , and
b = (b1, . . . , bn) ∈ (K ∗)n . Then

X + a = {(c1 + a1, . . . , cn + an) : (c1, . . . , cn) ∈ X},

bX = {(b1c1, . . . , bncn) : (c1, . . . , cn) ∈ X}

are EE subsets of K n .

Proof. The morphisms An
→ An given by (x1, . . . , xn) 7→ (x1 + a1, . . . , xn + an)

and also by (x1, . . . , xn) 7→ (b1x1, . . . , bnxn) are K-variety isomorphisms. Apply
Fact 2.8. □

3. Fields with simple theory

We recall some basic results about fields K whose first-order theory is simple, and
then make an additional observation under the assumption of largeness. For simple
theories see [Kim and Pillay 1997; Casanovas 2011], and for groups definable in
(models of) simple theories, see in addition [Pillay 1998; Pillay et al. 1998]. We
recall the relevant portions of this theory.

3A. Conventions and basic definitions. Our model-theoretic notation is standard.
We let L be a first-order language, T be a complete consistent L-theory, and M
be a highly saturated model of T . For now, x, y, z, . . . range over finite tuples of
variables, a, b, c, . . . range over finite tuples of parameters from M , and A, B,C, . . .
range over small subsets of M . “Definable” means “definable in M , possibly with
parameters”. We sometimes identify definable sets with the formulas defining them.

Given an L-formula ϕ(x, y) and a suitable tuple b we say that ϕ(x, b) divides
over a set A of parameters if {ϕ(x, bi ) : i < ω} is inconsistent for some infinite
A-indiscernible sequence (bi : i <ω) with b0 = b. A partial type 6(x) divides over
A if some formula in 6 divides over A. The theory T is simple if for any small
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set A of parameters and complete type 6(x) there is A0 ⊆ A such that |A0| ≤ |T |

and 6(x) does not divide over A0. Simplicity may also be defined in terms of the
combinatorial tree property, but we do not need this. It is worth mentioning that
simplicity is incompatible with the existence of a definable partial ordering which
contains an infinite chain. It follows that real closed fields and nonseparably closed
Henselian fields are not simple. Nondividing yields a good notion of independence
in simple theories: a is independent from B over A if tp(a/B, A) does not divide
over A.

3B. Generics in definable groups. In this section we summarize [Pillay 1998,
Section 3], although we introduce things in a different order and use somewhat
different terminology. Suppose that T is simple and G is an infinite group definable
over ∅ in M . A definable subset X of G is (left) f -generic if every left translate
gX of X does not divide over ∅ and a complete type 6(x) concentrated on G is
(left) f -generic if every formula in 6(x) is left f -generic. Note that if a definable
X ⊆ G is f -generic then aX is f -generic for any a ∈ G. Note that in [Pillay 1998]
“generic” is used for “ f -generic”. (The language was changed after some more
recent work on groups definable in NIP theories.)

Fact 3.1. Suppose that T is simple, G is an ∅-definable group in M , A, B are small
sets of parameters, and a ∈ G.

(1) Left f -genericity is equivalent to right f -genericity (so we just say f -generic).

(2) If X ⊆ G is f -generic then X is f -generic in any expansion of M by constants.

(3) tp(a/A) is f -generic if whenever b ∈ G is independent from a over A then the
product ba is independent of A ∪ {b} over ∅.

(4) If A ⊆ B and a is independent from B over A, then tp(a/B) is f -generic if
and only if tp(a/A) is f -generic.

(5) If b ∈ B then tp(a/A, b) is f -generic if and only if tp(ba/A, b) is f -generic.

(6) An A-definable subset X of G is f -generic if and only if it is contained in an
f -generic complete type over A.

Fact 3.2 is immediate from the definitions and Fact 3.1.

Fact 3.2. If X is a definable subset of G which is not f -generic then we have⋂k
i=1 gi X = ∅ for some g1, . . . , gk ∈ G.

Lemma 3.3. Suppose that T is simple, M is a model of T , G is an ∅-definable
group in M , H is a subgroup of G with |G/H | ≥ ℵ0, and X is a definable subset of
G such that X ⊆ aH for some a ∈ G. Then X is not f -generic. In particular, an
infinite index definable subgroup of G is not f -generic.
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Proof. Let (gi : i < ω) be a sequence of elements of G which lie in distinct cosets
of H . So gi X ∩g j X =∅ when i ̸= j . After passing to a highly saturated elementary
extension and applying Ramsey and saturation we obtain a sequence (hi : i <ω) of
elements of G which is indiscernible over the defining parameters of X and satisfies
hi X ∩ h j X = ∅ when i ̸= j . So X is not f -generic. □

Lemma 3.4. Suppose that T is simple, X is a definable subset of G, ≈ is a definable
equivalence relation on X , and each ≈-class is f -generic. Then there are only
finitely many ≈-classes.

Proof. Suppose towards a contradiction that there are infinitely many ≈-classes.
Let c be a finite tuple of parameters over which X and ≈ are definable. Then there
is an ≈-class D with canonical parameter d such that d /∈ acl(c). Let ϕ(x, d, c)
be a formula defining D and (di : i < ω) be an infinite sequence of realizations of
tp(d/c) which is indiscernible over c and satisfies d0 = d . Then ((c, di ) : i < ω) is
indiscernible, and the formulas ϕ(x, di , c) are pairwise inconsistent, so ϕ(x, d, c)
divides over ∅. This contradicts that ϕ(x, d, c) defines the set D which is an
f -generic subset of K n . □

We now prove Lemma 3.5, which we could not find in the literature.

Lemma 3.5. Suppose T is simple and G, H are ∅-definable groups in M. Fix a
small set A of parameters and (a, b) ∈ G × H. Then tp((a, b)/A) is f -generic in
G × H if and only if the following conditions hold:

(1) tp(a/A) is an f -generic type of G,

(2) tp(b/A) is an f -generic type of H ,

(3) and a is independent from b over A.

Proof. The definitions and “forking calculus” easily show that (1), (2), and (3)
together imply that tp((a, b)/A) is f -generic in G × H . The difficulty lies in
showing that all f -generic types of G × H are of this form. We suppose that
tp((a, b)/A) is f -generic in G×H . It follows directly that tp(a/A) and tp(b/A) are
f -generic types of G and H , respectively. It remains to prove that a is independent
from b over A. Suppose that (c, d) ∈ G × H , tp(c/A), tp(d/A) are f -generic in
G, H , respectively, and (c, d) is independent from (a, b) over A. By Fact 3.1 ca is
independent from db over ∅. As tp((a, b)/A) is f -generic in G × H , and (a, b) is
independent from (c, d) over A, we see that (ca, db) is independent from A, c, d
over ∅. It follows that a is independent from b over A, c, d, and then that a is
independent from b over A. □

3C. Generics in definable fields. Now suppose K is an infinite field definable
(say over ∅) in M |H T . Everything we say remains true for K a type-definable
field in M . We have two attached groups, the additive group (K ,+) and the
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multiplicative group (K ∗,×) (recall that K ∗
= K \ {0}). A definable X ⊆ K is

additively f -generic if it is f -generic in (K ,+) and is multiplicatively f -generic
if X ∩ K ∗ is an f -generic in (K ∗,×), and we make the analogous definitions for
a type concentrated on K . The first two claims of Fact 3.6 are from [Pillay et al.
1998, Proposition 3.1]. Uniqueness of f -generic types in stable fields is [Poizat
2001, Theorem 5.10].

Fact 3.6. Suppose that T is simple. Let X be a definable subset of K , A be a
small set of parameters, and p = tp(a/A) for some a ∈ K . Then the following are
equivalent:

(1) X is an additive f -generic.

(2) X is a multiplicative f -generic.

Furthermore the following are equivalent:

(1) p is an additive f -generic

(2) p is a multiplicative f -generic.

If T is stable then there is a unique additive f -generic type over K .

We let Dn be the group ((K ∗)n,×). Corollary 3.7 is a higher-dimensional version
of Fact 3.6. The first claim of Corollary 3.7 follows from Fact 3.6, Lemma 3.5, and
induction on n. The second claim follows from the first claim and Fact 3.1.5.

Corollary 3.7. Suppose that T is simple, A is a small set of parameters, a =

(a1, . . . , an) ∈ K n , and p(x)= tp(a/A). Then p is an f -generic type of (K n,+)

if and only if p is an f -generic type of Dn . So if X ⊆ K n is definable, then X is
f -generic in (K n,+) if and only if X ∩ Dn is f -generic in Dn .

Proposition 3.8 is our main tool when dealing with large simple fields.

Proposition 3.8. Suppose that T is simple and K is large. Let X be a definable
subset of K n which contains a nonempty EE subset. Then X is f -generic for
(K n,+), and is hence f -generic for Dn .

Thus if T is simple and large then any definable subset of K n with nonempty
interior in the étale open topology is f -generic. If K is perfect, bounded PAC then
a definable subset of K n is f -generic if and only if it has nonempty interior in the
étale open topology [Walsberg and Ye 2023].

Proof. Suppose towards a contradiction that X is not f -generic for (K n,+). By
Corollary 3.7, X ∩ Dn is not f -generic for Dn . We may suppose that X contains
0 = (0, . . . , 0) as both EE subsets and f -generic subsets of K n are closed under
additive translation (by Corollary 2.9 and definitions). Let X ′

= X ∩ Dn . By
Corollary 3.7, X ′ is not f -generic in Dn . By Fact 3.2 there are g1, . . . , gk ∈ Dn such
that

⋂k
i=1 gi X ′

=∅. Then
⋂k

i=1 gi X is nonempty, as it contains 0, but is contained
in K n

\ Dn and is hence not Zariski dense in K n . This contradicts Corollary 2.7. □
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Fact 3.9 will be crucial for Theorem 1.5. It is proven in [Pillay et al. 1998].

Fact 3.9. Suppose that T is simple. Let H be a finite index definable subgroup
of (K ∗,×) and H1, H2 be cosets of H. Then H1 + H2 contains K ∗, namely every
nonzero element of K is of the form a + b, where a ∈ H1 and b ∈ H2.

4. Proof of Theorem 1.3

This section is the proof of Theorem 1.3. Our proof follows the strategy of the
“Remarque” at the end of [Pillay and Poizat 1995] which outlines another proof,
suggested by Chatzidakis, of the main result of that paper (that fields equipped with
a certain “surgical dimension” are bounded). Remember that when we say that K
is bounded we mean that for every n, K has only finitely many extensions of any
given degree inside K sep. We first make a few reductions. Fact 4.1 is well-known,
but we include a proof for the sake of completeness.

Fact 4.1. The following are equivalent:

(1) K is bounded.

(2) For any n there are only finitely many degree n separable extensions of K up
to K-algebra isomorphism.

Proof. By the primitive element theorem a degree n separable extension L of K is
of the form L = K (α), where α is a root of a separable irreducible monic degree n
polynomial p(x) ∈ K [x]. So L has at most n distinct conjugates over K in K sep;
the fact easily follows. □

We set some notation. Given a = (a0, . . . , an−1) ∈ K n we let pa(x) denote the
polynomial xn

+an−1xn−1
+· · ·+a1x +a0. We let U be the set of a ∈ K n such that

pa is separable and irreducible in K [x]. Note that U is definable. Given p ∈ K [x]

we let (p) be the ideal in K [x] generated by p. For each a ∈ U the field extension
K (α) generated over K by a root α of pa is isomorphic to K [x]/(pa). For a, b ∈ U ,
we write a ≈ b if K [x]/(pa) is isomorphic over K to K [x]/(pb). So K has finitely
many separable extensions of degree n if and only if there are only finitely many
≈-classes.

Remark 4.2. The equivalence relation ≈ on U is definable in K .

Proof. The field K [x]/(pa) is uniformly interpretable in K (as a varies), as an
n-dimensional vector space over K (with basis 1, α, . . . , αn−1 for α a root of pa(x)
and the appropriate multiplication). Now note that if a, b ∈ U then a ≈ b if and
only if pb has a root in K [x]/(pa). □

Next we have the main result needed to obtain Theorem 1.3:

Theorem 4.3. Suppose that a ∈ U and let D be the ≈-class of a. Then there is an
EE subset X of K n such that a ∈ X ⊆ D.



368 ANAND PILLAY AND ERIK WALSBERG

Equivalently: every ≈-class is étale open.

Proof of Theorem 4.3. Fix a ∈ U , and let α ∈ K sep be a root of pa(x). Let
x = (x0, . . . , xn−1) and β(x)= x0 +αx1 +· · ·+ xn−1α

n−1. Let α = α1, . . . , αn be
the K-conjugates of α, namely the roots of pa(x) (which are distinct). We write
βi (x) for x0 + x1αi + · · · + xn−1α

n−1
i . So, for b ∈ K n , β1(b), . . . , βn(b) are the

K-conjugates of β(b).
Let V be the set of b = (b0, b1, . . . , bn−1) ∈ K n such that K (β(b)) = K (α).

Note that b ∈ V if and only if β(b) is a root of pc(x) for some (in fact unique)
c ∈ U such that c ≈ a. Note further that b ∈ V if and only if 1, β(b), . . . , β(b)n−1

are linearly independent over K , hence V is a Zariski open subset of K n .
Let e1, . . . , en ∈ Z[x] be the elementary symmetric polynomials in n variables,

i.e.,
ek(x)=

∑
1≤i1<i2<···<ik≤n

xi1 · · · xik .

Given b = (b0, . . . , bn−1) ∈ K n we let

G(b)=
(
−e1(β1(b), . . . , βn(b)), e2(β1(b), . . . , βn(b)),

. . . , (−1)nen(β1(b), . . . , βn(b))
)
.

Claim 4.4. There are G1, . . . ,Gn ∈ K [x] such that G(b) = (G1(b), . . . ,Gn(b))
for all b ∈ K n , and if b ∈ V then G(b)≈ a.

The first claim of Claim 4.4 follows as G is symmetric in α1, . . . , αn . The
second claim follows as pG(b) is the monic polynomial with roots β1(b), . . . , βn(b).
Claim 4.5 below is crucial.

Claim 4.5. G(0, 1, 0, . . . , 0) = a and the Jacobian of G at (0, 1, 0, . . . , 0) is
invertible.

Given a polynomial function f : K n
→ K n we let Jac f (a) be the Jacobian of f

and |Jac f (a)| be the Jacobian determinant of f at a ∈ K n .

Proof. It is clear that G(0, 1, 0, . . . , 0)= a and (0, 1, 0, . . . , 0) ∈ V . Let L = K (α).
To show that the Jacobian of G at (0, 1, 0, . . . , 0) is invertible we first produce
maps D, E, F : Ln

→ Ln such that G agrees with the restriction of D ◦ E ◦ F to V .
We define F : Ln

→ Ln by

F(b0, . . . , bn−1)= (b0 +b1α1 +· · ·+bn−1α
n−1
1 , . . . , b0 +b1αn +· · ·+bn−1α

n−1
n ).

E : Ln
→ Ln is given by

E(b)= (e1(b), . . . , en(b)),

and D : Ln
→ Ln is given by

D(b0, . . . , bn−1)= (−b0, b1,−b2, . . . , (−1)nbn−1).
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So if b ∈ V then G(b)= (D ◦ E ◦ F)(b). Note that F and D are linear, so JacF and
JacD are constant. Applying the chain rule we have

JacG(0, 1, 0, . . . , 0)= JacD JacE(F(0, 1, 0, . . . , 0)) JacF

= JacD JacE(α1, . . . , αn) JacF .

It is clear that |JacD| ∈ {−1, 1}. Furthermore, JacF is a Vandermonde matrix
1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2

1 α3 α2
3 · · · αn−1

3
...
...

... · · ·
...

1 αn α2
n · · · αn−1

n

 .

So JacF is invertible as α1, . . . , αn are distinct. Finally, by [Lascoux and Pragacz
2002],

|JacE(α1, . . . , αn)| =

∏
1≤i< j≤n

(αi −α j ).

This is nonzero as the αi are distinct, so JacE(α1, . . . , αn) is invertible. □

We now deduce Theorem 4.3. Let O be the open subvariety of An given by
|JacG(x)| ̸= 0. So G gives an étale morphism O → An . Then O(K )∩V is a Zariski
open subset of K n , which is nonempty by Claim 4.4. Let W be an open subvariety
of An such that W (K )= O(K )∩V . The restriction of G to W is an étale morphism
W → An . Let X = G(W (K )). So X is a nonempty EE subset of K n contained in
the ≈-class of a. As a was an arbitrary member of U , this concludes the proof of
Theorem 4.3. □

Finally we can complete the proof of Theorem 1.3.

Proof. Let T be a simple theory, M be a model of T , and K be an infinite field
definable in M . As remarked at the beginning of this section, it suffices to fix n and
show that K has only finitely many separable extensions of degree n, and thus that
the definable equivalence relation ≈ on the definable set U ⊂ K n has only finitely
many classes. After possibly passing to an elementary extension we may suppose
that M is highly saturated. By Theorem 4.3 and Proposition 3.8, every ≈-class is
f -generic for (K n,+). By Lemma 3.4 there are only finitely many ≈-classes. □

4A. Another proof that large stable fields are separably closed. We give a proof
that large stable fields are separably closed that avoids Macintyre’s Galois-theoretic
argument. We first prove Lemma 4.6. We continue to use the notation of the
previous section.
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Lemma 4.6. Let Y be the set of a ∈ K n such that pa has n distinct roots in K . Then
Y is an EE subset of K n .

Proof. Let V be the open subvariety of An given by xi ̸= x j for all 1 ≤ i < j ≤ n.
Let H : K n

→ K n be given by H(b) = (−e1(b), e2(b), . . . , (−1)nen(b)). So
pH(a) is the polynomial with roots a1, . . . , an for any a = (a1, . . . , an) ∈ V (K ). It
follows from [Lascoux and Pragacz 2002] that |JacH (a)| agrees up to sign with∏

1≤i< j≤n(ai − a j ) for any a = (a1, . . . , an) ∈ K n . So JacH (a) is invertible for
all a ∈ V (K ). Thus H(V (K )) is an EE subset of K n . □

We now show that a large stable field is separably closed.

Proof. Suppose that K is large and not separably closed. Fact 3.6 and Lemma 3.5
together show that if K is stable then for each n ≥ 1 there is a unique n-ary type
over K which is generic for (K n,+). It follows by Proposition 3.8 that if K is
stable then any two nonempty EE subsets of K n have nonempty intersection. As K
is not separably closed there is a separable, irreducible, and nonconstant p ∈ K [x].
Suppose that p is monic and fix a ∈ K n such that p = pa . By Theorem 4.3 there
is an EE subset X of K n such that a ∈ X and pb is separable and irreducible for
any b ∈ X . Let Y be the set of b ∈ K n such that pb has n distinct roots in K ; by
Lemma 4.6, Y is an EE subset of K n . So X, Y are disjoint nonempty EE subsets
of K n , hence K is unstable. □

The proof above easily adapts to show that an infinite superstable field is
algebraically closed. We describe this proof, assuming some familiarity with
superstability. We let dimU Z be the U -rank of a definable set Z . Suppose that K
is infinite and superstable. A superstable field is perfect, so it suffices to show that
K is separably closed. Suppose otherwise and fix n such that there is a nonconstant
separable irreducible p ∈ K [x]. Let X, Y be as in the proof above. Note that both
X and Y contain a set of the form f (W (K )), where W is a dense open subvariety
of An and f : W → An is étale. So dimU W (K )= dimU K n and the induced map
W (K )→ K n has finite fibers as f is étale. Hence dimU X =dimU K n

=dimU Y . So
X, Y are both f -generic in (K n,+), which contradicts uniqueness of generic types.

4B. Topological corollaries. Suppose that v is a nontrivial Henselian valuation
on K . It follows from the classical Krasner’s lemma that each ≈-class is open in the
v-adic topology on K n . See for example [Poonen 2017, 3.5.13.2] for a treatment
of the case when K is a local field, which easily generalizes to the Henselian case.
It is shown in [Johnson et al. 2020] that if K is not separably closed then the
v-adic topology on each K n agrees with the étale open topology. So Corollary 4.7
generalizes this consequence of Krasner’s lemma.

Corollary 4.7. Fix a ∈ K n such that pa is separable and irreducible. Then the
set of b ∈ K n such that K [x]/(pb) is K-algebra isomorphic to K [x]/(pa) is an
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étale open neighborhood of a. So the set of a ∈ K n such that pa is separable and
irreducible is étale open.

Fact 4.8 is proven in [Johnson et al. 2020] by an application of Macintyre’s
Galois-theoretical argument.

Fact 4.8. If K is not separably closed then the étale open topology on K is Haus-
dorff.

If K is separably closed then the étale open topology agrees with the Zariski
topology on V (K ) for any K-variety V ; equivalently, every EE subset of V (K ) is
Zariski open. We give a proof of Fact 4.8 which avoids Galois theory. We apply
the fact that if V → W is a morphism between K-varieties then the induced map
V (K )→ W (K ) is étale open continuous.

Proof. Equip K with the étale open topology. Any affine transformation x 7→ ax +b,
a ∈ K ∗, b ∈ K gives a homeomorphism K → K . Thus it is enough to produce two
disjoint nonempty étale open subsets of K . The argument of Section 4A yields two
disjoint nonempty étale open subsets X, Y of K n . Fix p ∈ X and q ∈ Y and let
f : K → K n be given by f (t)= (1−t)p+tq . Then f is a continuous map between
étale open topologies so f −1(X), f −1(Y ) are disjoint nonempty étale open subsets
of K . □

Finally, we characterize bounded PAC fields amongst PAC fields.

Corollary 4.9. Suppose that K is PAC and equip each K n with the étale open
topology. Then K is bounded if and only if any definable equivalence relation on
K n has only finitely many classes with interior.

Note that Corollary 4.9 fails when “PAC” is replaced by “large”. For example
Qp is bounded, the étale open topology on Qp agrees with the p-adic topology, and
the equivalence relation E where E(a, b) if and only if a, b ∈ Qp have the same
p-adic valuation is definable and has infinitely many open classes.

Proof. Suppose that K is not bounded. Fix n such that K has infinitely many
separable extensions of degree n. Let U and ≈ be as in the proof of Theorem 1.3.
Then each ≈-class is open and there are infinitely many ≈-classes. Now suppose
that K is bounded and E is a definable equivalence relation on K n . Note that K is
simple. By Proposition 3.8 any E-class with interior is f -generic. The proof of
Lemma 3.4 shows that there are only finitely many f -generic E-classes. □

5. Additional remarks and results

We discuss a few related topics and results, and prove Theorem 1.4. If Char(K )=

p> 0 then we let ℘ : K → K be the Artin–Schreier map ℘(x)= x p
− x . This map

is an additive homomorphism, so ℘(K ) is a subgroup of (K ,+). In this section we
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let Pn = {an
: a ∈ K ∗

} for each n. Some of our proofs below could be simplified
by applying Scanlon’s theorem [Kaplan et al. 2011] that an infinite stable field is
Artin–Schreier closed, but we avoid this.

5A. Boundedness and large stable fields. It is a theorem of Poizat that an infinite
bounded stable field is separably closed. Poizat’s result and Theorem 1.3 together
show that large stable fields are separably closed. Poizat’s result is mentioned
somewhat informally at the bottom of p. 347 in [Poizat 1983] and does not appear to
be well-known, so we take the opportunity to clarify the matter. Fact 5.1 is [Poizat
1983, Lemma 4].

Fact 5.1. Suppose that L is a finite Galois extension of K . Then the following hold.

(1) If q ̸= Char(K ) is a prime then there are only finitely many cosets H of Pq in
(K ∗,×) such that some (equivalently, any) a ∈ H has a q-th root in L.

(2) Suppose Char(K ) = p > 0. Then there are only finitely many cosets H of
℘(K ) in (K ,+) such that some (equivalently, any) a ∈ H is of the form bp

−b
for some b ∈ L.

Fact 5.2 follows from Fact 5.1.

Fact 5.2. Suppose that K is bounded. Then

(1) if q ̸= Char(K ) is prime then Pq has finite index in (K ∗,×), and

(2) if Char(K ) > 0 then ℘(K ) has finite index in (K ,+).

We sketch a proof. See [Fehm and Jahnke 2016, Lemma 2.2] for a proof of the
characteristic zero case of Fact 5.2(1) via Galois cohomology.

Proof. We only prove (1) as the proof of (2) is similar. Suppose a ∈ K ∗ and
α ∈ K sep satisfies αq

= a. Then α and its conjugates generate a degree ≤ q Galois
extension of K . As K is bounded there are only finitely many such extensions. So
by Fact 5.1 Pq has finite index in (K ∗,×). □

Finally, Fact 5.3 is essentially proven in [Macintyre 1971] via a Galois-theoretic
argument.

Fact 5.3. Suppose that the following hold for any finite Galois extension L of K :

(1) the q-th power map L∗
→ L∗ is surjective for any prime q ̸= Char(K ), and

(2) if Char(K ) ̸= 0 then the Artin–Schreier map L → L is surjective.

Then K is separably closed.

We now sketch a proof of Poizat’s theorem.

Corollary 5.4. Suppose that K is infinite, bounded, and stable. Then K is separably
closed.
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Proof. We verify the conditions of Fact 5.3. Suppose that L is a finite Galois
extension of K . Then L is bounded and stable (the latter holds as L is interpretable
in K ). As L is stable there is a unique additive (multiplicative) generic type over K
(see Fact 3.6). It follows that there are no proper finite index definable subgroups
of (L∗,×) or (L ,+). So by Fact 5.2 the q-th power map L∗

→ L∗ is surjective for
any prime q ̸= Char(K ) and if Char(K ) > 0 then the Artin–Schreier map L → L
is surjective. □

We repeat that the below corollary follows from Fact 5.1 and Theorem 1.3.

Corollary 5.5. Suppose that K is large and simple. Then

(1) if q ̸= Char(K ) is prime then Pq has finite index in (K ∗,×), and

(2) if Char(K ) > 0 then ℘(K ) has finite index in (K ,+).

Corollary 5.5(2) is proven more generally for infinite simple fields in [Kaplan
et al. 2011]. We take the opportunity to sketch a direct proof of Corollary 5.5. We let
Gm be the scheme-theoretic multiplicative group Spec K [x, x−1

], so Gm(K )= K ∗.

Proof. We first fix a prime q ̸= Char(K ). The morphism Gm → A1 given by
x 7→ axq is étale for any a ∈ K ∗. So any coset of Pq is an EE subset of K . By the
special (and easier) case of Proposition 3.8 when n = 1, any coset of Pq is f -generic
in (K ∗,×). By Lemma 3.3, Pq has finite index in (K ∗,×). Item (2) follows by
a similar argument and the fact that the Artin–Schreier morphism A1

→ A1 is
étale. □

Fehm and Jahnke construct an unbounded PAC field K such that the group of
n-th powers has finite index in each finite extension of K [Fehm and Jahnke 2016,
Proposition 4.4], so Theorem 1.3 does not follow from Corollary 5.5.

5B. Conics, Brauer group, and projectivity. Corollary 5.6 follows from Fact 3.9
and Corollary 5.5.

Corollary 5.6. Suppose that K is large and simple, a, b ∈ K ∗, and p ̸= Char(K )
is a prime. Then there are c, d ∈ K such that cp

+ ad p
= b.

The proof in [Pillay et al. 1998] that conics over (infinite) supersimple fields
have points now extends to proving Theorem 1.6.

Proof of Theorem 1.6. Let C be a conic, i.e., a smooth projective irreducible K-
curve of genus 0. As Char(K ) ̸= 2 we may assume that C is a closed subvariety
of P2 given by the homogenous equation ax2

+ by2
= z for some a, b ∈ K ∗. By

Corollary 5.6 there are c, d ∈ K such that ac2
+bd2

= 1. So C(K ) is nonempty. □

We let Br K be the Brauer group of K . Recall that the Brauer group of an
arbitrary field is an abelian torsion group. Given a prime p we let Brp K be the
p-part of the Brauer group of K . Facts 5.7 and 5.8 both follow by the proof of
[Pillay et al. 1998, Theorem 4.6].
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Fact 5.7. Let p ̸= Char(K ) be a prime. Suppose that whenever L is a finite
separable extension of K and a ∈ L∗, then {bp

+acp
: b, c ∈ L∗

} contains L∗. Then
Brp K is trivial.

Fact 5.8. Suppose that

(1) K is perfect, and

(2) if L is a finite extension of K, p is a prime, and a∈L∗, then {bp
+acp

:b,c∈L∗
}

contains L∗.

Then the Brauer group of K is trivial.

We now prove Theorem 1.5.

Proof. It suffices to show that the second condition of Fact 5.8 is satisfied. Let L be
a finite extension of K and p be a prime. Note that L is perfect as a finite extension
of a perfect field is perfect; the case when p = Char(K ) follows. Suppose that
p ̸= Char(K ). Note that L is simple as L is interpretable in K and L is large by
Fact 2.2. Apply Corollary 5.6. □

Theorem 1.4 follows from Proposition 5.9 as a field of cohomological dimension
≤ 1 has projective absolute Galois group [Gruenberg 1967].

Proposition 5.9. If K is simple and large then K has cohomological dimension ≤ 1.

See [Serre 1997, Chapter I, §3] for an overview of cohomological dimension.
The proof of Proposition 5.9 is due to Philip Dittmann. The simpler case where
K is assumed to be perfect was proved earlier by the authors. We do not know if
every large simple field has trivial Brauer group.

Proof. Suppose K is simple and large. The same argument as in the proof of
Theorem 1.5 shows that if p ̸= Char(K ) is a prime, L is a finite separable extension
of K , and a ∈ L∗, then {bp

+ acp
: b, c ∈ L∗

} contains L∗. So by Fact 5.7, Brp L
is trivial for every finite extension L of K and prime p ̸= Char(K ). By [Serre
1997, II.2.3 Proposition 4], K has p-cohomological dimension ≤ 1 for every prime
p ̸= Char(K ). By [Serre 1997, II.2.2 Proposition 3], any field L has Char(L)-
cohomological dimension ≤ 1. So K has cohomological dimension ≤ 1. □

Appendix: NSOP∞ fields
by Philip Dittmann

A theory T has the fully finite strong order property if there is a formula ψ(x, y),
with the two tuples of variables x and y having equal length, a model M |H T , and
a sequence (ai )i∈ω of tuples in M satisfying M |H ψ(ai , a j ) for all i < j , and for
any n ≥ 3 the formula ψ(x1, x2)∧ · · · ∧ψ(xn−1, xn)∧ψ(xn, x1) is inconsistent
with T . In short, the binary relation described by ψ admits infinite chains and does
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not admit cycles. In this situation we also say that T has or is SOP∞. A structure
M is SOP∞ if its theory is. A theory or structure is NSOP∞ if it is not SOP∞.

In Shelah’s terminology, T having the fully finite strong order property witnessed
by ψ is equivalent to ψ having the n-strong order property SOPn for T , for all
n ≥ 3 [Shelah 1996, Definition 2.5]. In particular, if T is complete and simple
then T is NSOP∞ [Shelah 1996, Claim 2.7]. The notion “fully finite strong order
property” seems to have first appeared in an unpublished manuscript by Adler
[2008], although it has by now also been used elsewhere [Conant and Terry 2016,
Definition 2.1].

A1. Valuations. The Henselization of a PAC field with respect to any nontrivial
valuation is separably closed [Fried and Jarden 2005, Corollary 11.5.9]. Thus the
following can be seen as supporting evidence for the conjecture that large simple
fields are PAC.

Theorem A.1. Suppose that K is large and v is a nontrivial valuation on K . If
(K , v) has nonseparably closed Henselization then K is SOP∞. In particular, if
either the residue field of v is not algebraically closed or the value group of v is not
divisible then K is SOP∞.

The second claim of Theorem A.1 follows from the first as the Henselization
of (K , v) has the same residue field and value group as (K , v) [Engler and Prestel
2005, Theorem 5.2.5], and a nontrivially valued separably closed field has alge-
braically closed residue field and divisible value group [Engler and Prestel 2005,
Theorem 3.2.11]. We will make use of Fact A.2, proven in [Johnson et al. 2020,
Theorem 6.15].

Fact A.2. Let v be a nontrivial valuation on K . If the Henselization of (K , v) is
not separably closed then the étale open topology refines the v-adic topology on K .

The following argument using generics was used in a preliminary version of the
main article to get the simple case of Theorem A.1. Suppose that K is simple and
the Henselization of (K , v) is not separably closed. By Fact A.2, mv is an étale
open neighborhood of 0, so there is an EE subset U of K satisfying 0 ∈ U ⊂ mv.
By Proposition 3.8 the set U is f -generic for (K ,+). This contradicts Lemma 3.3
as mv is an infinite index subgroup of (K ,+). This argument does not generalize
to large NSOP1 fields as at present there is no theory of generics in NSOP1 groups.
(This is not straightforward: [Dobrowolski 2020] gives an example of a definable
group in an NSOP1 structure in which generics with respect to Kim forking do not
exist.)

Lemma A.3. Suppose that K is large and U ⊆ K is an étale open neighborhood of
zero. Then for any n ≥ 2 there is a ∈ K ∗ such that a, a2, . . . , an

∈ U.
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Proof. For each i ∈ {2, . . . , n} let Vi = {b ∈ K : bi
∈ U }. Each map K → K , b 7→ bi

is continuous with respect to the étale open topology, so each Vi is an étale open
neighborhood of zero. Then V = V1 ∩ · · · ∩ Vn is an étale open neighborhood of
zero. As K is large V contains a nonzero element of K . □

Proof of Theorem A.1. By Fact A.2 there is a nonempty EE subset U of K with
0 ∈ U ⊆ mv. Let ψ(x, y) be the formula (x ̸= 0)∧ (y ̸= 0)∧ (x−1 y ∈ U ). Note
that if K |H ψ(a, b) then b/a ∈ mv, hence v(a) < v(b). We show that ψ(x, y)
witnesses SOP∞. First suppose that a1, . . . , an ∈ K satisfy

ψ(a1, a2)∧ · · · ∧ψ(an−1, an)∧ψ(an, a1).

Then we have v(a1) < v(a2) < · · ·< v(an−1) < v(an) < v(a1), a contradiction. We
now show that for each n ≥ 1 there are a1, . . . , an ∈ K such that K |H ψ(ai , a j )

if and only if i < j . By Lemma A.3 there is a ∈ K ∗ such that a, a2, . . . , an
∈ U .

Then K |H ψ(ai , a j ) for i < j . Thus the binary relation on K defined by ψ admits
chains of arbitrary finite length, and in a saturated elementary extension of K we
obtain an infinite chain. Thus K is SOP∞. □

Recall that EE sets are existentially definable. Note that the formula ψ in the
proof of Theorem A.1 is existential. This is optimal as a quantifier-free formula
in an arbitrary field is stable. This is similar to the result, proven in [Johnson
et al. 2020, Theorem 3.1], that an unstable large field admits an unstable existential
formula. The witnesses for SOP∞ produced in the next section are also existential.

If v is actually Henselian, the same technique as in the proof of Theorem A.1
gives a slightly stronger statement. This is presumably well-known to the experts,
but appears not to be available in the literature.

Theorem A.4. Suppose that v is a nontrivial Henselian valuation on K and K is not
separably closed. Then K has the strict order property [Shelah 1996, Definition 2.1].

Proof. Fact A.2 provides an EE subset U of K with 0 ∈ U ⊆mv . By [Johnson et al.
2020, Theorem B] the v-topology on K agrees with the étale open topology, hence
U is v-open, and in particular contains a ball around 0.1 Therefore, for any element
c ∈ K × with v(c) sufficiently large we have cU ⊊ U . Thus the definable family
{xU : x ∈ K } contains the infinite chain U ⊋ cU ⊋ c2U ⊋ · · · under inclusion.
Hence K has the strict order property. □

A2. Formally real and formally p-adic fields. Corollary 5.6 implies that if K is
large, simple, and of characteristic zero then there are a, b∈ K such that a2

+b2
=−1.

1This argument does not seriously use the étale open topology — we only need that the topology
given by v is definable in the field language. This latter fact is already implicit in [Prestel and Ziegler
1978, Remark 7.11].
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So a large simple field cannot be formally real. Duret [1977] showed that formally
real fields are unstable. Theorem A.5 generalizes these.

Theorem A.5. Suppose that K is formally real. Then K is SOP∞.

Proof. Let ϕ(x, y) be the formula

∃z1, z2, z3, z4 [x − y − 1 = z2
1 + z2

2 + z2
3 + z2

4].

We show that ϕ witnesses SOP∞. An application of Lagrange’s four-square theorem
shows that K |Hϕ(m,m′) for all integers m>m′. Now suppose that a1, . . . , an ∈ K
and we have K |H {ϕ(a1, a2), . . . , ϕ(an−1, an), ϕ(an, a1)}. Then

−n = (a1 − a2 − 1)+ (a2 − a3 − 1)+ · · · + (an−1 − an − 1)+ (an − a1 − 1)

is a sum of squares, a contradiction. □

Fix a prime p. A field K is p-adically closed if K is elementarily equivalent to
a finite extension of Qp and K is formally p-adic if K embeds into a p-adically
closed field. An equivalent definition (which we shall not need) is that there
exists a p-valuation v on K , i.e., v is of mixed characteristic, the residue field
is a finite extension of Fp, and the interval [0, v(p)] in the value group is finite.
Indeed, if v is a p-valuation on K then the so-called p-adic closure of (K , v) is an
elementary extension of a finite extension of Qp. See [Prestel and Roquette 1984]
for a comprehensive treatment of formally p-adic fields.

Theorem A.6. Suppose that K is formally p-adic. Then K is SOP∞.

Proof. Let F be a finite extension of Qp such that K embeds into an elementary
extension of F . Let v be the unique extension of the p-adic valuation on Qp to F
and OF be the valuation ring of v.

By [Anscombe et al. 2020, Propositions 4.7 and 4.8] (applied to the base field
K = Q, the prime p = p of Q, and the relative type τ of F/Qp in the terminology
there), there exists a parameter-free existential formula ψ(x) such that ψ(F)⊆ OF ,
and ψ(Q) = Z(p). (Note that the paper cited phrases the result in terms of a
concrete “diophantine family” Dτ

p,tp,A,B , but this is effectively the same as an
existential formula with parameters from the base field Q [Anscombe et al. 2020,
Remark 3.2], and parameters from Q can be eliminated.)

Let ϕ(x, y) be the formula

(y ̸= 0)∧ ∃z (ψ(z)∧ y = p · x · z).

We show that ϕ(x, y) witnesses SOP∞ for K . Suppose m < m′ are integers. Then
we have Q |H ϕ(pm, pm′

), since pm′

/(p · pm) ∈ Z ⊆ ψ(Q). Since ϕ is existential,
we have K |H ϕ(pm, pm′

). Thus the binary relation on K defined by ϕ admits an
infinite chain.
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Now suppose that K satisfies

2= ∃x1, . . . , xn [ϕ(x1, x2)∧ · · · ∧ϕ(xn−1, xn)∧ϕ(xn, x1)].

As 2 is existential and K embeds into an elementary extension of F , we have
F |H2. Hence there are b1, . . . , bn ∈ F such that

F |H {ϕ(b1, b2), . . . , ϕ(bn−1, bn), ϕ(bn, b1)}.

As ψ(F) ⊆ OF , we see that F |H ϕ(a, a′) implies that v(a) < v(a′) for any
a, a′

∈ F . Thus we have v(b1) < v(b2) < · · · < v(bn−1) < v(bn) < v(b1), a
contradiction. □
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Additive reducts of real closed fields
and strongly bounded structures

Hind Abu Saleh and Ya’acov Peterzil

Given a real closed field R, we identify exactly four proper reducts of R which
expand the underlying (unordered) R-vector space structure. Towards this theo-
rem we introduce the new notion of strongly bounded reducts of linearly ordered
structures: a reduct M of a linearly ordered structure ⟨R;<, . . . ⟩ is called strongly
bounded if every M-definable subset of R is either bounded or cobounded in R.
We investigate strongly bounded additive reducts of o-minimal structures and
prove the above theorem on additive reducts of real closed fields.

1. Introduction

The study of ordered additive reducts of real closed fields starts with the work of
Pillay, Scowcroft and Steinhorn [Pillay et al. 1989], followed by Marker, Peterzil
and Pillay [Marker et al. 1992]. The motivation behind the work here is a conjecture
about unordered such reducts from [Peterzil 1993]. Before stating the conjecture,
let us clarify our usage of the notion of “reduct” here.

Definition 1.1. Given two structures M and N , we say that M is a reduct of N (or,
N is an expansion of M), denoted by M ⊆̇N , if M and N have the same universe
and every set that is definable in M is also definable in N (where definability allows
parameters). We say that M and N are interdefinable, denoted by M =̇ N , if M
is a reduct of N and N is reduct of M.

We say M is a proper reduct of N (or N a proper expansion of M) if M ⊆̇ N
and not M =̇ N .

Below, we let 3R be the family of all R-linear maps λa(x)= αx for all α ∈ R.
Our ultimate goal here is to prove the following:
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Theorem 1.2. Let R be a real closed field. Then the only reducts between the vector
space ⟨R; +,3R⟩ and the field ⟨R;<,+, ·⟩ are as follows:

Ralg = ⟨R; +, ·, <⟩,

Rsb = ⟨R; +, <,3R,B⟩,

Rsemi = ⟨R; +, <,3R⟩, Rbd = ⟨R; +, <∗,3R,B⟩,

R∗

lin = ⟨R; +, <∗,3R⟩,

Rlin = ⟨R; +,3R⟩,

where <∗ is the linear order on the interval (0, 1) and Bsa the collection of all
bounded semialgebraic sets over R.

Remark 1.3. (1) The definable sets in Ralg are called semialgebraic, while those
definable in Rsemi are semilinear. The structure Rsb above is called semibounded, as
it expands the ordered vector space by a collection of bounded sets. Semibounded
structures were studied in several articles, for example, [Edmundo 2000; Belegradek
2004; Peterzil 2009].

(2) Notice that because all the above structures expand the full underlying R-vector
space, then once <∗ is definable then the restriction of < to every bounded interval
is definable.

(3) A similar project, in the setting of Presburger arithmetic, was carried out in
[Conant 2018], where it was proven that there are no proper reducts between ⟨Z; +⟩

and ⟨Z;<,+⟩. We expect that in arbitrary models of Presburger arithmetic, an
analogous result to Theorem 1.2 holds, with the intermediate reducts corresponding
to possible restrictions of < to infinite subintervals.

Some of the work towards the proof of Theorem 1.2 can be read off earlier results.
In particular, the fact that the semibounded reduct Rsb is the only proper reduct
between Rsemi and Ralg was proven over R in [Peterzil 1993] and can be deduced
for arbitrary real closed fields from [Edmundo 2000] (see Fact 5.1 below). However,
the bulk of the work here is to show that if a reduct M of Ralg does not define the
full order then it is necessarily a reduct of Rbd. Towards that, we introduce a new
notion of “a strongly bounded structure” in a more general setting, and most of our
results here are about such structures.

Definition 1.4. Let R = ⟨R;<, . . . ⟩ be a linearly ordered structure. A reduct
M= ⟨R; . . . ⟩ of R is called strongly bounded if every M-definable X ⊆ R is either
bounded or cobounded (namely, R \ X is bounded).

Remark 1.5. (1) The term “strongly bounded” was chosen to reflect a combination
of a semibounded structure with a strongly minimal one. Almost all of our work
here concerns strongly bounded additive reducts of o-minimal structures, where



REDUCTS OF REAL CLOSED FIELDS AND STRONGLY BOUNDED STRUCTURES 383

the underlying linear order is dense. Analogous definitions could be given for, say,
models of Presburger arithmetic if one wishes to study all reducts which expand
the underlying ordered group.

(2) The definition of a strongly bounded structure requires an ambient linear order.
Thus it might not seem amenable to working in elementarily equivalent structures.
However, in practice we only work in sufficiently saturated elementary extensions
of a strongly bounded M as above, and thus we may assume that this elementary
extension is also a reduct of a linearly ordered elementary extension of R.

By definition, if M is a strongly bounded reduct of a linearly ordered structure
then the ordering < is not definable in M. We prove several results about strongly
bounded reducts of o-minimal structures (see, for example, Theorems 4.5 and 4.27):

Theorem. Let ⟨R;<,+, . . . ⟩ be an o-minimal expansion of an ordered group and
let M = ⟨R,+, . . . ⟩ be a strongly bounded reduct.

(1) Every M-definable subset of Rn is already definable in ⟨R; +,3M,B
∗
⟩,

where 3M is the collection of M-definable endomorphisms of ⟨R,+⟩ and B∗

is the collection of all M-definable bounded sets.

(2) For every N ≡ M, the model theoretic algebraic closure equals the definable
closure.

2. Proper expansions of Rlin

In this section we assume that Romin is an o-minimal expansion of a real closed
field R and M = ⟨R; +, . . . ⟩ is an additive reduct of Romin.

Theorem 2.1. If M is not a reduct of Rlin = ⟨R; +,3R⟩, then <∗ is definable
in M.

Proof. It is sufficient to prove that some interval [0, b] is M-definable, for b > 0.

Claim 2.2. Th(M) is unstable.

Proof. This is based on work of Hasson, Onshuus and Peterzil [Hasson et al. 2010].
Assume towards contradiction that Th(M) is stable. By [Hasson et al. 2010,

Theorem 1], every 1-dimensional stable structure interpretable in an o-minimal
structure is necessarily 1-based. So M is 1-based. By [Hrushovski and Pillay 1987,
Theorem 4.1], it follows that every M-definable set is a boolean combination of
cosets of definable subgroups of Rn . Every definable subgroup of ⟨Rn

; +⟩ in an
o-minimal structure is an R-vector subspace of Rn and therefore every M-definable
set is definable in Rlin, a contradiction. Hence M is unstable. □

Because M is unstable, it is in particular not strongly minimal. This generally
implies that in some elementary extension of M, we have an M-definable subset
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in one variable which is infinite and coinfinite. However, o-minimal structures
eliminate ∃

∞, and therefore so does M. It follows that there is some M-definable
subset of R itself which is infinite and coinfinite. Call this set Y .

In the special case where both Y and R \ Y are unbounded in R we can prove a
stronger result which will be used several times here, and thus we state it separately.

Lemma 2.3. Assume that Y ⊆ R is definable in an o-minimal expansion of an
ordered group. If both Y and R \ Y are unbounded then the full linear order is
definable in ⟨R; +, Y ⟩.

Proof. By o-minimality, Y has the form

Y := I1 ∪ I2 ∪ · · · ∪ In ∪ L , (1)

such that for every i ∈ {1, . . . , n}, Ii := (ai , bi ), L is a finite set and in addition
−∞ ≤ a1 < b1 < a2 < · · ·< an < bn ≤ +∞. Without loss of generality L = ∅.

Since both Y and R\Y are unbounded, Y has the form (1) above and without loss
of generality, we may assume that I1 = (−∞, b1), and Ii = (ai , bi ) for i ∈{2, . . . , n}.

By replacing Y by Y − b1 we may assume that b1 = 0, and then

−Y ∩ Y = (−bn,−an)∪ · · · ∪ (−b2,−a2)∪ (a2, b2)∪ · · · ∪ (an, bn).

So (−Y ∩Y )∩[(−Y ∩Y )+(an +bn)] equals the interval In = (an, bn) in Y . Replace
Y by Y1 := Y \ In; now Y1 contains an unbounded ray together with n − 2 bounded
intervals. Continuing in this way we obtain a ray (−∞, 0) that is definable, so we
can define <. □

In the remaining case, either Y or R \ Y are bounded, so we assume that Y is
bounded, and as above

Y := (a1, b1)∪ · · · ∪ (a,bn),

with ai , bi ∈ M .
Let α := bn − b1. The set (Y + α) ∩ Y defines a single interval whose right

endpoint is bn . So, we are done. If Y is unbounded then replace Y by R \ Y and
finish as before. Hence, we have showed that <∗ is definable in M. □

3. Reducts of Ralg which are not semilinear

Here R is a real closed field and Ralg = ⟨R;<,+, · ⟩. Before the next theorem we
recall previous work from [Loveys and Peterzil 1993] (see a corrected and more
general proof in [Belegradek 2004]), which will be used in its proof.

Given a > 0 in R, let I = (−a, a). Denote by +
∗ the partial function obtained

by intersecting the graph of + with I 3, and for each α ∈ R, let λ∗
α be the partial

function obtained by intersecting the graph of λα with I 2. Finally, let <∗ be the
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restriction of < to I 2. Notice that for each X ⊆ Rn such that ⟨R;<,+, ·, X⟩ is
o-minimal, the structure

I = ⟨I;<∗,+∗, {λ∗

α}α∈R, X ∩ I n
⟩

is o-minimal as well.
In [Loveys and Peterzil 1993] the structure ⟨I ;<∗,+∗

⟩ was called a group-
interval and its o-minimal expansions were studied there.

A partial endomorphism (p.e. for short) of this group-interval was a function
f : I → I which respects addition when defined: namely, if x, y, x +

∗ y ∈ I then
f (x +

∗ y)= f (x)+∗ f (y).
Notice that in our setting every I-definable p.e. is necessarily the restriction of

λα for some α ∈ R. Indeed, if f : I → I is an I-definable p.e. then it is not hard to
verify that

H = {r ∈ R : ∃ε > 0 ∀x ∈ (−ε, ε) f (r x)= r f (x)}

is a semialgebraic subgroup of ⟨R,+⟩ which contains all integers.
O-minimality of the real field implies that H = R and therefore f is the restriction

of an R-linear map, namely the restriction of λα for some R.
Now, without going through their precise definition of “a linear theory”, it

was shown in [Loveys and Peterzil 1993, Proposition 4.2] that if Th(I) is linear
then every I-definable set is already defined in the structure ⟨I ; +

∗, <∗, {λ∗
α}α∈R⟩

(possibly together with additional parameters). Thus if Th(I) is linear then X ∩ I n

is a semilinear set.
The following proposition seems to be obvious but for the sake of completion

we include a proof in the Appendix.

Fact 3.1. Let R be a real closed field and X ⊆ Rn a definable set in an o-minimal
expansion of ⟨R;<,+, · ⟩. If X is not semilinear then, in M = ⟨R;<∗,+,3R, X⟩,
there exists a definable bounded set which is not semilinear.

Theorem 3.2. If X ⊆ Rn is semialgebraic and not definable in Rsemi, then every
bounded R-semialgebraic set is definable in ⟨R; +,3R, X⟩.

Proof. Let M := ⟨R; +,3R, X⟩. By Theorem 2.1, the relation <∗ is definable
in M. Let us first see that M defines a real closed field on some interval.

By Fact 3.1, we may assume that X ∩ I n is not semilinear, for some bounded
interval I = (−a, a). Consider the o-minimal structure

I := ⟨I ;<∗,+∗, {λ∗

α}α∈R, X ∩ I n
⟩,

as we described before stating the theorem. We noted that if Th(I) is linear then
the set X ∩ I n must be semilinear. Because X ∩ I n is not semilinear then Th(I) is
not linear in the sense of [Loveys and Peterzil 1993]. Therefore, by [Peterzil and
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Starchenko 1998, Theorem 1.2], a real closed field is I-definable, and hence also
M-definable, on some interval J ⊆ I .

Without loss of generality, assume that J = (−a0, a0), a0> 0. Denote the field by

J = ⟨J,⊕,⊙⟩.

The structure J is M-definable. By [Peterzil 1993, Corollary 2.4], every R-
semialgebraic subset of J k , k ∈ N, is definable in J , and therefore in M.

Let B ⊆ (−b, b)n for some b > 0 in R. Using scalar multiplication from 3R ,
we can contract (−b, b) into (−a0, a0), so it is definable in J . It follows that B is
definable in M. □

4. Strongly bounded structures

The ultimate goal of this section is to prove:

Theorem 4.1. Let R be a real closed field. If X ⊆ Rn is semialgebraic and not
definable in Rbd = ⟨R;<∗,+,3R,Bsa⟩, then < is definable in ⟨R; +,3R, X⟩.

We are going to work in a more general setting than that of a real closed field.
Recall that a strongly bounded reduct of a linearly ordered ⟨R;<, . . . ⟩ is one in
which every definable subset of R is bounded or cobounded. Below, we will mostly
be interested in strongly bounded reducts of o-minimal structures. By Lemma 2.3
and the definition of a strongly bounded structure, we have:

Lemma 4.2. Let Romin = ⟨R;<,+, . . . ⟩ be an o-minimal expansion of an ordered
group. If M = ⟨R; +, . . . ⟩ is a reduct of Romin then M is strongly bounded if and
only if < is not definable in M.

So in order to prove Theorem 4.1 it is sufficient to prove that if X ⊆ Rn is definable
in a strongly bounded M = ⟨R; +, . . . ⟩ then X is definable in ⟨R; +,3M,BM⟩,
where BM is the collection of all M-definable bounded sets. A more precise and
slightly stronger theorem — Theorem 4.5 — will be proved soon. We first make a
general observation which we shall exploit repeatedly.

Definability of “boundedness”. For X ⊆ T × Rn , T ⊆ Rm and t ∈ T , we let

X t = {a ∈ Rn
: ⟨t, a⟩ ∈ X}.

The following general result will be very useful here.

Proposition 4.3. Let M = ⟨R; +, . . . ⟩ be any reduct of an o-minimal expansion of
an ordered group. If {X t : t ∈ T } is an M-definable family of subsets of Rn , then
the set

{t ∈ T : X t is bounded in Rn
}

is definable in M.



REDUCTS OF REAL CLOSED FIELDS AND STRONGLY BOUNDED STRUCTURES 387

Proof. Note that a set Y ⊆ Rn is bounded if and only if for each i , the image of
Y under the projection map πi : ⟨y1, . . . , yn⟩ 7→ yi is bounded in R. Thus, it is
sufficient to prove the result under the assumption that all X t are subsets of R.

By o-minimality, each X t ⊆ R is unbounded if and only if it contains an un-
bounded ray. Thus, it is easy to see that

{t ∈ T : X t is bounded} = {t ∈ T : ∃a (a + X t ∩ X t = ∅)},

and hence the set is definable in M. □

The strongly bounded setting. We first clarify and somewhat generalize our setting.

Let Romin = ⟨R, <,+, . . . ⟩ denote an o-minimal expansion of an ordered group
in the language Lomin, and let M = ⟨R; +, . . . ⟩ denote a strongly bounded reduct
of Romin, in the language L, such that aclM(∅) contains at least one nonzero
element (it follows that aclM(∅) is infinite).

Definition 4.4. An interval (a, b)⊆ R is called a ∅-interval in M if a, b ∈ aclM(∅).
A subset X ⊆ Rn is called ∅-bounded in M if X is contained in some I n , for I a
∅-interval in M.

Our standing assumption is that for every ∅-interval I ⊆ R, the restricted
order <↾I is ∅-definable in M. Notice that, using Theorem 2.1, this is true when
M is elementarily equivalent to a reduct of a real closed field which properly
expands Rlin.

We let 3M be the collection of all M-definable endomorphisms of ⟨R,+⟩,
defined over ∅. We let Lbd(M) be the language consisting of {+, {λ}λ∈3M},
augmented by a predicate for every ∅-definable, ∅-bounded set in M.

By expanding L and Lomin by function symbols and predicates for ∅-definable
sets, we may assume that

Lbd ⊆ L ⊆ Lomin.

We let Mbd be the reduct of M to Lbd.
Our ultimate goal in this section is to prove:

Theorem 4.5. For M strongly bounded as above, every definable subset of Rn is
definable in Mbd.

One of our main difficulties in working with strongly bounded structures is
the failure of global cell decomposition. For instance, the set R \ {0} cannot be
decomposed definably into definable cells in a strongly bounded structure, because
no ray is definable there.

Another difficulty is the fact that a priori we do not know whether the model the-
oretic algebraic closure equals the definable closure in strongly bounded structures.
However, we shall eventually show in Theorem 4.27 that acl = dcl in this setting.
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We assume for the rest of this section that M is strongly bounded as above.

Definable subsets of R in strongly bounded structures. Notice that although the
full order is not definable in M, a basis for the <-topology on R and the product
topology on Rn is definable in M, using the restricted order. Thus we have:

Lemma 4.6. If {X t : t ∈ T } is an M-definable family of subsets of Rn , then the
families

{Cl(X t) : t ∈ T }, {Int(X t) : t ∈ T }, {Fr(X t) : t ∈ T }

are definable in M.

Every M-definable X ⊆ R is a union of finitely many pairwise disjoint maximal
open subintervals of X (which are possibly not M-definable) and a finite set.
Below, when we say that I is an interval in X we mean that I is one of these open
components of X .

Definition 4.7. Let Y ⊆ R be an M-definable set. We define

∂−(Y ) := {y ∈ R : y is a left endpoint of an interval in Y },

∂+(Y ) := {y ∈ R : y is a right endpoint of an interval in Y }.

Lemma 4.8. If {Yt : t ∈ T } is an M-definable family of bounded subsets of R,
then the families {∂−(Yt) : t ∈ T }, {∂+(Yt) : t ∈ T } are M-definable over the same
parameter set.

Proof. We fix an M-definable <↾(0, a0) for some a0 > 0. We define ∂−(Yt) by the
formula

(x /∈ Yt ∧ ∃ε<a0 (x, x + ε)⊆ Yt)

∨
(
x ∈ Yt ∧ ∃ε≤a0 (x − ε, x)∩ Yt = ∅∧ (x, x + ε)⊆ Yt

)
.

Because of the definability of <∗ in M, {∂−(Yt) : t ∈ T } is M-definable. We
similarly handle ∂+(Yt). □

The next theorem is an important component of our analysis of strongly bounded
structures.

Theorem 4.9. If {X t : t ∈ T } is an M-definable family of bounded subsets of R,
then there is a uniform bound on the length of each interval in X t . Moreover, there
exists such a bound in dclM(∅).
Proof. By Proposition 4.3, every M-definable family {X t : t ∈ T } of bounded subsets
of R is a subfamily of a ∅-definable family of such sets. Namely, if ϕ(x, t, a) is
the formula defining the X t ’s over a, as t varies, then we can consider the formula

ψ(x, t, y) : ϕ(x, t, y)∧ ψ(R, t, y) is a bounded set.

Thus, it is sufficient to prove the result for ∅-definable families.
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By Lemma 4.6, we may assume that each X t is an open set. We use induction
on the maximum number n of intervals in X t , for t ∈ T .

For n = 1, write X t = (at , bt). Consider the family {X t − at : t ∈ T }. By
Lemma 4.8, the family is ∅-definable. Thus, the set Y =

⋃
t∈T X t − at is an

M-definable interval, over ∅, whose left endpoint is 0. Because M is strongly
bounded, this interval must be bounded, and hence its right endpoint is some K ∈ M .
By Lemma 4.8, the point K is definable over ∅.

Consider now the case n = k + 1, i.e., each X t consists of at most k + 1 pairwise
disjoint open intervals. For each t ∈ T , let Dt = {c1 − c2 : c1, c2 ∈ ∂−(X t)}, an
M-definable set by Lemma 4.8.

Claim 4.10. For each t ∈ T , there exists d ∈ Dt such that (X t + d)∩ X t is one of
the intervals in X t .

Proof. Let X t = I1,t ∪ I2,t ∪ · · · ∪ Ik+1,t , where each Im,t := (am,t , bm,t), such that

a1,t < b1,t < a2,t < b2,t < · · ·< ak+1,t < bk+1,t .

For an interval I = (a, b), let |I | = b − a.
Let d = ak+1,t − a1,t . In the set X t + d, for each m, the interval Im,t is shifted

to Im,t + d. So (X t + d)∩ X t consists of either Ik+1,t (when |Ik+1,t | < |I1,t |) or
I1,t + d (when |Ik+1,t |> |I1,t |).

If it consists of Ik+1 we are done. Otherwise we take

d ′
= a1,t − ak+1,t ∈ Dt

and then (X t + d ′)∩ X t = I1,t .
So in both cases there exists d ∈ Dt such that X t + d ∩ X t is one of the intervals

in X t . □

We define the set

D′

t := {d ∈ Dt : (X t + d)∩ X t is one of the intervals in X t }.

Claim 4.11. The family {D′
t : t ∈ T } is an M-definable family of nonempty sets.

Proof. For t ∈ T , d ∈ D′
t if and only if the following two statements hold:

(1) ∂−((X t + d)∩ X t)⊆ ∂−(X t) and |∂−((X t + d)∩ X t)| = 1, and

(2) ∂+((X t + d)∩ X t)⊆ ∂+(X t) and |∂+((X t + d)∩ X t)| = 1.

By Lemma 4.8, (1) and (2) are definable properties in M. By Claim 4.10, each
D′

t is nonempty. □

We proceed with the proof of Theorem 4.9. Consider the M-definable family

{Yt,d := X t + d ∩ X t : d ∈ D′

t , t ∈ T },
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still defined in M over ∅. For every t and d ∈ D′
t , the set Yt,d consists of a single

interval which is one of the intervals in X t . By case n = 1 we know that there is
a uniform bound w1 on the length of each Yt,d , which can be chosen in dclM(∅).
We now define, still over ∅, the family

{Z t,d := X t \ Yt,d : d ∈ D′

t , t ∈ T }.

Each subset Z t,d consists of at most k intervals among the k +1 intervals of X t . By
the induction hypothesis, we know that there is a uniform bound w2 on the length
of each interval, which we may choose in dclM(∅).

Thus the maximum of w1, w2, which is in dclM(∅), is the bound on the length
of each interval of X t , as t varies. This ends the proof of Theorem 4.9. □

As a corollary we can now match, definably in M, each left endpoint of an
interval in X t with the corresponding right endpoint:

Proposition 4.12. Let {X t : t ∈ T } be an M-definable family of bounded subsets
of R, and let

L t = {⟨a, b⟩ ∈ ∂−(X t)× ∂
+(X t) : the interval (a, b) is one the intervals of X t }.

Then the family {L t : t ∈ T } is M-definable.

Proof. By Theorem 4.9, there is a bound K ∈ dclM(∅) for the length of each
interval in X t , for all t ∈ T . For each t ∈ T , we have

⟨a, b⟩ ∈ L t ⇐⇒ a ∈ ∂−(X t) and b = min(∂+(X t)∩ [a, a + K ]). (∗)

By Lemma 4.8, ∂−(X t) and ∂+(X t) are definable families and since in (∗) we only
use the order on [0, K ], the family {L t : t ∈ T } is definable in M. □

Remark 4.13. (1) Notice that Theorem 4.9 fails without the assumption that the
X t ’s are bounded sets. Namely, it is not true in general that the lengths of the
bounded components of X t are bounded in t . For example, the set X t = R \ {−t, t}
has (−t, t) as an open component, with unbounded length as t → ∞.

Also, even if each X t is bounded it is not true that the diameter of the X t ’s is
uniformly bounded. For example, take the family {(−t, t − 1)∪ (t, t + 1) : t ∈ R}

that is definable using <↾ (0, 1).

(2) We do not know whether Proposition 4.12 holds if we drop the assumption that
the X t ’s are bounded. Can we still match definably the left and right endpoints of
the bounded components of X t , when the X t ’s are unbounded?

Affine sets and functions. Recall that Romin is an o-minimal expansion of an
ordered divisible abelian group R, and we assume that M = ⟨R; +, . . . ⟩ is a
strongly bounded reduct of Romin in which < is ∅-definable on every ∅-interval.
We let <∗ denote the ordering on some fixed interval we call (0, 1).
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Definition 4.14. Let ⟨R;<,+⟩ be an abelian ordered divisible group.

(1) A map f : Rn
→ Rk is affine if it is of the form ℓ(x)+ d for ℓ : Rn

→ Rk a
homomorphism between ⟨Rn,+⟩ and ⟨Rk,+⟩, and d ∈ Rk .

(2) A (partial) function f : R → R is eventually affine if there exists a > 0 such
that (a,∞)⊆ dom( f ) and the restriction of f to (a,+∞) is affine.

(3) X ⊆ Rn is locally affine at a ∈ X if there is an open neighborhood U ∋ a such
that for all x, y, z ∈ U ∩ X , x − y + z ∈ X . The affine part of X is the set

A (X)= {x ∈ X : X is locally affine at x}.

Notice that if X is the graph of an affine map then A (X) = X . Conversely,
if X is the graph of a definable function from an open subset of Rk into Rℓ and
a = (a′, f (a′)) ∈ A(X) then f is an affine map in a neighborhood of a1.

Because a basis for the Rn-topology is definable in M, we immediately have:

Lemma 4.15. Let {X t : t ∈ T } be an M-definable family of subsets of Rn , defined
over ∅. Then the family {A (X t) : t ∈ T } is M-definable over ∅.

Proposition 4.16. Every M-definable endomorphism f : R → R is ∅-definable.

Proof. Assume that f is defined by an M-formula ϕ(x, y, a) over the parameter a.
We show that f can be defined without parameters.

Since being an R-endomorphism is M-definable, we may assume that there is
some M-definable T ⊆ Rk such that for all t ∈ T , if ϕ(R2, t) is nonempty then it
defines a nonzero endomorphism ft of ⟨R; +⟩.

Assume first that the set of endomorphisms ft defined by ϕ is finite. Define t1 Et2
if ft1 = ft2 , an M-definable equivalence relation. Consider the functions near 0,
and define [t1]E < [t2]E if for all x > 0 sufficiently small, we have ft1(x) < ft2(x).
By o-minimality, we obtain a linear ordering of the finitely many E-classes, and
since < is M-definable in a neighborhood of 0, this ordering is M-definable. Thus,
each ft in this finite family of endomorphisms is ∅-definable.

Assume now that the family { ft : t ∈ T } is infinite, and we shall reach a
contradiction. Consider the set { ft(1) : t ∈ T }. By o-minimality it contains an
open interval (a, b), and by replacing each ft with ft − ft0 , for some t0 ∈ T for
which ft0 ∈ (a, b), we may assume that the interval (a, b) contains 0 and the
ordering on (a, b) is M-definable (we think of ft(a) as “the slope” of ft ). Let
T0 = {t ∈ T : ft(1) ∈ (0, b)}.

We write t1 ∼ t2 if ft1 = ft2 , and let [t] be the equivalence class of t . In abuse of
notation we let f[t] denote the corresponding endomorphism of R.

By o-minimality, if ft1(1)= ft1(1) then ft1 = ft2 . Thus we obtain an M-definable
function t : (0, b) → T0/ ∼, defined by f[t (x)](1) = x . Namely, f[t (x)] is the
endomorphism whose “slope” is x . Fix an element d > 0, and define σ : (0, b)→ R
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by σ(x)= f −1
[t (x)](d). Namely, σ(x)= y if there exists t ∈ T0 such that ft(1)= x and

ft(y)= d (we may think of σ(x) as “d/x”). The function σ is also M-definable.
For every t ∈ T0, we have ft(1) > 0, and hence ft(x) > 0 if and only if x > 0.
Therefore, σ is positive on (0, b).

Claim. Im(σ ) is unbounded in R.

Indeed, assume towards contradiction that K = sup(Im(σ )) < ∞. By our
observation, K > 0. Choose y0 ∈ Im(σ ), y0 < K and sufficiently close to K such
that K < 2y0. By assumption, there exists t0 ∈ T0 and x0 > 0 such that ft0(1)= x0

and ft0(y0)= d.
Let t1 ∈ T0 be such that [t1] = t (x0/2). Then ft1(1)= x0/2 = ft0(1)/2. It follows

that ft1 = ft0/2 and hence

ft1(2y0)= ft0(2y0)/2 = ft0(y0)= d.

But then ft1(1) = x0/2 and ft1(2y0) = d, so by definition, σ(x0/2) = 2y0 > K ,
contradicting the assumption that K bounds Im(σ ).

Thus, Im(σ ) is an M-definable set which is unbounded and positive, contradict-
ing the assumption that M is strongly bounded. □

Definition 4.17. We denote by 3omin the set of all Romin-definable endomorphisms
f : ⟨R,+⟩ → ⟨R,+⟩, and we still let 3M denote the set of all M-definable
endomorphisms of R, which by Proposition 4.16, is necessarily ∅-definable. Let
3∗

omin and 3∗
M denote those nonzero endomorphisms.

Definable functions of one variable. Our goal is to describe definable functions in
one variable, and prove that M has no definable “poles”.

Proposition 4.18. If g : R → R is an M-definable partial function whose domain
is cobounded and Im(g) is bounded, then g is constant on a cobounded set.

Proof. By o-minimality, there exists L ∈ R such that limx→+∞ g(x)= L . We shall
see that g ≡ L on a cobounded set.

The function g is definable in an o-minimal structure, so there exists a1 ∈ R such
that g ↾ (a1,+∞) is either constant or strictly monotone, and there exists a2 such
that g is constant or strictly monotone on (−∞, a2).

If g is constant L on (a1,+∞) then {x ∈ R : g(x)= L} is unbounded and since
M is strongly bounded the set must be cobounded and we are done. Assume
towards contradiction that g ↾ (a1,∞) is strictly monotone.

Assume first that g is strictly increasing on (a1,∞). Notice that the property of be-
ing locally increasing in a neighborhood of x ∈ R is definable using<∗. Thus the set

{x ∈ R : g is locally increasing at x}

is M-definable, contains (a1,∞) and hence must be cobounded. It follows that g
is strictly increasing on (−∞, a2).
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Because limx→∞ g(x)= L and g is increasing, there exists b ∈ R such that for
all x > b, L − 1< g(x) < L . Because <∗ is M-definable the set of all x ∈ R such
that L − 1 < g(x) < L is M-definable, so must be cobounded. In particular, we
may assume that L − 1< g(x) < L for all x < a2 and thus g(x) has a limit L1 ∈ R
as x → −∞.

But since g is increasing on x < a2, it follows that L1 < L and in addition there
exists a′

2 ≤ a2 and ε > 0, such that for all x < a′

2,

L1 < g(x) < L1 + ε < L .

Using <∗ again, this is an M-definable property of x so must hold also for
all x > a′

1, contradicting the fact that limx→+∞ g(x)= L .
A similar argument works when g is eventually decreasing. □

Remark 4.19. By [Edmundo 2000], if N = ⟨R;<,+, . . . ⟩ is an o-minimal expan-
sion of an ordered group in which every definable bounded function is eventually
constant then N is semibounded, namely every definable set is definable using the
underlying ordered vector space, together with all the definable bounded sets. This
might suggest a fast deduction of Theorem 4.5 from Proposition 4.18. The problem
of this approach is that we do not know that the definable functions in the strongly
bounded M= ⟨R; +, <∗, . . . ⟩ are the same as in its expansion by the full <. Thus,
we do not see how to apply Edmundo’s theorem here.

Next, using almost identical arguments to [Edmundo 2000] we show that every
M-definable function f : R → R is affine on a cobounded set. For that, we recall
some notation and facts, based on [Miller and Starchenko 1998].

Notation. For Romin-definable positive (partial) functions f, g : R → R such
that (a,∞) ⊆ dom( f ), dom(g), we write f ≤ g (or f < g) if f (x) ≤ g(x)
(or f (x) < g(x)) for all large enough x .

We write v( f ) < v(g) if | f |> |λ ◦ g| for all λ ∈3∗

omin such that λ > 0. We also
write v( f )= v(g) if there are λ1, λ2 ∈3∗

omin, both positive, such that

|λ1 ◦ g| ≤ | f | ≤ |λ2 ◦ g|.

This is easily seen to be an equivalence relation, which roughly says that the rate of
growth of f and g at +∞ is of the same scale. In the case where R expands a real
closed field then v( f )=v(g) if and only if f and g belong to the same Archimedean
class with respect to R, namely there exists r ∈ R such that (1/r)|g| ≤ f ≤ r |g|.

Finally, we write 1( f )= f (x + 1)− f (x).

Fact 4.20 [Edmundo 2000]. For every Romin-definable function on an unbounded
ray,

(1) if v( f ) > v(x) then limx→∞1( f )= 0;
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(2) if v( f ) < v(x) then v( f −1) > v(x);

(3) if v( f )= v(x) then 1( f )(x) has a limit in R as x → ∞.

The following is just a warm-up towards Theorem 4.25. The proof follows
closely the proof of [Edmundo 2000, Proposition 2.8], which uses results of [Miller
and Starchenko 1998].

Lemma 4.21. If f : R → R is M-definable on a cobounded set, then f is eventually
affine. Moreover, there exists a ∅-definable endomorphism λ ∈ 3M and A > 0
such that for all x with |x |> A, we have f (x)= λ(x)+ d for some d ∈ R.

Proof. Assume towards contradiction that f : R → R is not eventually affine.
Without loss of generality, f is eventually increasing, and by Proposition 4.18, it
must approach +∞. If v( f ) > v(x) then by Fact 4.20, limx→∞1( f )= 0. Since
1( f ) := f (x + 1)− f (x) is definable in M, it follows from Proposition 4.18 that
it must be eventually 0 and therefore f is eventually affine.

If v( f ) < v(x) then by Fact 4.20, v( f −1) > v(x), where f −1 is taken to be the
eventual compositional inverse of f , which is also definable in M. Thus, as above,
f −1 is eventually affine so also f is.

We are left with the case v( f )= v(x). By Fact 4.20(3), the M-definable function
1( f ) approaches a limit c in R. By Proposition 4.18, we have 1( f ) eventually
constant, and thus, by o-minimality, f is eventually affine.

Thus, we showed so far that there exists a definable endomorphism λ ∈ 3M
such that f (x) = λ(x)+ d for all x > 0 large enough. By Proposition 4.16, λ is
∅-definable. The set

{x ∈ R : f (x)= λ(x)+ d}

is M-definable and contains an unbounded ray so must be cobounded. □

Before the next proposition, we introduce a new notion.

Definition 4.22. Given X ⊆ Rn , let

Stabbd(X) := {a ∈ Rn
: (a + X)△X is bounded},

where A△B = A ∪ B \ A ∩ B.

For a function f , we let 0( f ) denote its graph.
By Proposition 4.3, if X is definable in M over A then so is Stabbd(X). The

following facts are easy to verify:

Fact 4.23. (1) For every X ⊆ Rn , Stabbd(X) is a subgroup of ⟨Rn,+⟩.

(2) If X ⊆ R2 is the graph of an affine function f (x)= λ(x)+ b, on a cobounded
subset of R, then

Stabbd(X)= 0(λ).
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(3) If a definable set X ⊆ R2 is a finite union of graphs of affine functions, all of
the form λ+ d for a fixed λ, and at least one of the functions is defined on an
unbounded set, then Stabbd(X)= 0(λ).

The following statement would have been immediately true if definable sets in
M admitted definable cell decomposition (with respect to the ambient ordering).

Proposition 4.24. Assume that X ⊆ R2 is M-definable over A, and dim(X) ≤ 1.
Assume that there exists an Romin-definable endomorphism λ : R → R, and some
a, d ∈ R such that graph of λ(x) + d ↾ (a,∞) is contained in X. Then λ is
M-definable (necessarily over ∅).

Proof. Recall that A (X), the affine part of X is M-definable over A. For large
enough a, it contains 0(λ+d ↾ (a,∞)). So, without loss of generality, X = A (X).

We define for each x, y ∈ X , the relation x ∼ y if there exist open sets U, V ∋ 0
in R2 such that

(y − x)+ (x + U ∩ X)= y + V ∩ X.

Said differently, up to translation, X has the same germ at x and at y. Because a
basis for the R2 topology is definable in M, the relation ∼ is definable in M.

Notice that for x large enough, all elements on 0(λ+ d)∩ X are in the same
∼-class, so we may replace X by this ∼-class, which is M-definable.

Thus, we may assume that all elements of X are ∼-equivalent, and X contains
0(λ+ d ↾ (a,∞)). It follows that X is contained in finitely many translates of
the graph of λ. Applying Fact 4.23(3), we conclude that Stabbd(X) is exactly the
graph of λ, and thus the function λ(x) is M-definable. By Proposition 4.16, λ is
∅-definable. □

Definable subsets of R2. The next result is the main structure theorem of the paper.

Theorem 4.25. Under our standing assumptions on M, assume that X ⊆ R2 is
definable in M over a parameter set A ⊆ R, with dim(X) ≤ 1. Then there are
λ1, . . . , λr ∈3M and M-definable finite sets Di ⊆ R, i = 1, . . . , r , and D ⊆ R all
defined over A, such that

(i) For every i = 1, . . . , r , and d ∈ Di , 0(λi + d) \ X is bounded (i.e., X contains
the restriction of λi + d to a cobounded set).

(ii) For every d ∈ D, ({d} × R) \ X is bounded.

(iii) The set

X \

( r⋃
i=1

⋃
d∈Di

0(λi + d) ∪

⋃
d∈D

{d} × R
)

is bounded in R2.
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Proof. If X is bounded then there is nothing to prove, so we assume dim(X)= 1
and X is unbounded. By the cell decomposition theorem in o-minimal structures,
X can be decomposed into a finite union of cells of dimension 0 and 1. However,
these cells are not in general definable in M.

Assume first that X contains the graph of a function f : (a,+∞)→ R, and let
9(x, y) be the M-formula that defines X .

Case (i): f is bounded at ∞.
In this case we prove a general statement:

Claim 4.26. If dim X ≤ 1 and X contains the graph of a bounded function
f : (a,∞)→ R then f is eventually constant.

Proof. By o-minimality, limx→+∞ f (x)= L for some L ∈ R.
By our standing assumption,<↾ (0, a0) is M-definable, for some a0> 0, and thus

< is definable on every interval of length ≤ a0. Let X L := R×[L −a0, L +a0])∩ X .
By o-minimality, there exists m ∈ N such that for all large enough a ∈ R, we
have |Xa| ≤ m. The set Z = {a ∈ R : |Xa| ≤ m} is definable in M and unbounded,
so we may replace X L by X L ∩ Z × R, containing the graph of f . We call it X L

again.
Using the restricted order, we can partition X L , definably in M, into finitely

many graphs of functions g1, g2, . . . , gk , k ≤ m. For instance, we let

g1(x)= min{y ∈ [L − a0, L + a0] : ⟨x, y⟩ ∈ X L}

and continue similarly to obtain the other gi ’s. For x large enough, the function f
is one of those gi ’s, and therefore it is M-definable. Using Proposition 4.18 we get
that f is eventually constant. □

Case (ii): limx→+∞ f (x)= +∞.
We recall the proof of Lemma 4.21, and consider three cases: v( f ) > v(x),

v( f ) < v(x) and v( f )= v(x) (remembering though that we do not know yet that
f is an M-definable function).

Assume first that v( f ) > v(x). By Fact 4.20, f (x + 1)− f (x)→ 0, as x → ∞.
We want to capture 1( f )= f (x + 1)− f (x) within an M-definable set.

The formula

ϕ(x, y) := ∃z1∃z2 (9(x + 1, z1)∧9(x, z2)∧ (y = z1 − z2))

defines in M a new subset of R2 — call it 1(X)— which contains the graph of
1( f ) (but possibly more functions).

We first note that dim(1(X))= 1. Indeed, for a ∈ R, 1(X)a is infinite if either
Xa or Xa+1 is infinite. Since only finitely many Xa’s are infinite the same is
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true for 1(X). Thus, the graph of 1( f ) is contained in the one-dimensional M-
definable set 1(X), so by Claim 4.26, 1( f ) must be eventually constant, implying
that f is eventually affine.

Assume now that v( f ) < v(x). The formula ϒ(x, y) :=9(y, x) defines in M
a new set X−1 containing the graph of f −1 (a partial function). The graph of f −1

is still contained in X−1 and we have v( f −1) > v(x). Thus, applying the case we
already handled, we see that f −1, and hence also f is eventually affine.

We are left with the case v( f )= v(x). Using Fact 4.20(3), the function 1( f )
tends to a constant. Thus, as above, we may use the M-definable set 1(X) to
deduce that 1( f ) is eventually constant and thus f is eventually affine.

So far we handled all cases where the unbounded cell in X is the graph of some
function on a ray (a,∞). The same reasoning applies to rays (−∞, a). Applying
this reasoning to X−1, we obtain in addition those functions which are eventually
constant in X−1, namely sets of the form {d} × R whose intersection with X is
co-unbounded in {d} × R. The set of all such d is clearly definable over A.

To summarize, we showed that every unbounded cell in X is either contained
in the graph of an eventually affine function f definable in M, or in {d} × R for
some d. By Proposition 4.24, the function f has the form λ(x)+ d for λ ∈3M.
Thus, we have λ1, . . . , λk ∈ 3M, and for each such i = 1, . . . , k, the set Di of
d ∈ R such that 0(λi + d)∩ X is unbounded, is M-definable over A, and must be
finite. For every such d, 0(λi + d) \ X is bounded.

The above proof handles all unbounded cells, so the set

X \

( r⋃
i=1

⋃
d∈Di

0(λi + d)∪
⋃
d∈D

{d} × R
)

is bounded. □

The algebraic closure and definable closure in strongly bounded structures. Even
though the full ordering on R is not definable, we can still prove:

Theorem 4.27. The algebraic closure in M equals the definable closure. Moreover,
if a ∈ aclM(b̄) then a is in the Lbd-definable closure of b̄.

Proof. We use acl, dcl and aclbd, dclbd to denote the corresponding operations in
M and Mbd, respectively. We prove by induction on n that if a ∈ acl(b1, . . . , bn),
for some a, bi ∈ R, then a ∈ dclbd(b1, . . . bn).

We first handle the case n = 0, namely a ∈ acl(∅). In this case, there is a finite
∅-definable set A ⊆ M such that a ∈ A. Viewing the set A in Romin, we can order
the elements a1 < · · ·< an . The interval (a1, an) is a ∅-interval, and <↾ (a1, an) is
Mbd-definable over ∅, so each ai is in dclbd(∅).

We proceed by induction, and assume that we proved the result for n−1. Assume
now that a ∈ acl(b1, . . . , bn−1, bn). Let X ⊆ Rn+1 be a ∅-definable set such that
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⟨b1, . . . , bn, a⟩ and Xb1,...,bn has size m. Without loss of generality, for every b′
n ,

the set Xb1,...,bn−1,b′
n

has size m.
Let b′

= (b1, . . . , bn−1) and consider the set Xb′ = {⟨x, y⟩ ∈ R2
: ⟨b′, x, y⟩ ∈ X}.

By our assumption, dim(Xb′)≤ 1 and ⟨bn, a⟩ ∈ Xb′ .
We now apply Theorem 4.25. We obtain finitely many ∅-definable endomor-

phisms λ1, . . . , λk ∈3M and for each i = 1, . . . , k, we have a b′-definable finite
set Ai such that

Xbd
b′ = Xb′ \

( k⋃
i=1

⋃
d∈Ai

0(λi + d)
)

is bounded in R2.
Since |b′

|=n−1, it follows by induction that every d ∈ Ai is in dclbd(b′). Assume
first that ⟨bn, a⟩ is in the graph of one of the λi +d , d ∈ Ai , namely a = λi (bn)+d .
Because λi is ∅-definable and d ∈ dclbd(b′) it follows that a ∈ dclbd(b1, . . . , bn).

We are left with the case ⟨bn, a⟩ ∈ Xbd
b′ . The set Xbd

b′ is b′-definable so we may
assume that Xb′ = Xbd

b′ is bounded (but possibly not ∅-bounded). Let π1, π2 be the
projection of Xb′ onto the first and second coordinates. Each of these is a finite
union of points and pairwise disjoint bounded open intervals. Let

π1(Xb′)= F1 ∪

k⋃
i=1

(ai , bi ) for F1 finite and a1 < b1 < · · ·< ak < bk ,

and

π2(Xb′)= F2 ∪

r⋃
j=1

(c j , d j ) for F2 finite and c1 < d1 < · · ·< cr < dr .

By Theorem 4.9, there is a fixed K ∈ dcl(∅) such that for all i,= 1, . . . , k and
j = 1, . . . , r , we have bi − ai , d j − c j ≤ K .

By Lemma 4.8, the sets {ai }, {bi }, {c j }, {d j } are all finite and M-definable
over b′, and thus, by induction each of these endpoints is in dclbd(b′). Assume that
⟨bn, a⟩ ∈ X ∩(ai , bi )×(c j , d j ) for some i = 1, . . . , k and j = 1, . . . , r . We replace
X by the b′-definable set X1 = X −⟨ai , c j ⟩ ∩ (0, bi − ai )× (0, d j − c j )⊆ (0, K )2.
Notice that ⟨bn −ai , a −c j ⟩ ∈ X ′, and the fiber in X ′ over bn −ai is finite. Because
the ordering on (0, K ) is Mbd-definable over ∅, we have a−c j ∈ dclbd(b′, bn −ai ),
but since ai , c j ∈ dclbd(b′) we have a ∈ dclbd(b′, bn). This ends the proof that
acl = dclbd in M. □

Definable subsets of Rn. We are now ready to prove the main theorem, under the
assumptions outlined on p. 387.

Theorem 4.28. If X ⊆ Rn is M-definable over A ⊆ R then X is definable in Mbd

over A.
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Proof. It is sufficient to prove the result in N ≻ M, so by replacing Romin (thus
also its reducts) by a sufficiently saturated extension, we may assume that M is
ω-saturated.

We prove the result by induction on n. For X ⊆ R, the set X is either bounded
or cobounded, so we may assume that it is bounded. Thus, it can be written as a
disjoint union

(a1, b1)∪ · · · ∪ (an, bn)∪ F,

with a1 < b1 < · · · < an < bn and F finite. By Lemma 4.8, each ai and bi is in
aclM(A), so by Theorem 4.27, it belong to dclbd(A). Similarly, F ⊆ dclbd(A). By
Theorem 4.9, there is K ∈ dclbd(∅) such that all intervals (ai , bi ) are of length
at most K . But then each interval (0, bi − ai ) is contained in a ∅-interval, hence
definable in Mbd over A, so also (ai , bi ) is Mbd-definable over A. It follows that
X is definable in Mbd.

We now use induction on n. Given X ⊆ Rn+1 that is M-definable over A, we
consider, for each t ∈ Rn , the set

X t = {b ∈ R : ⟨t, b⟩ ∈ X} ⊆ R.

By the case n = 1, each X t is Mbd-definable over At . Thus, by compactness and
saturation, we can find Lbd-formulas over A, ϕ1(t, x), . . . , ϕk(t, x) such that for
every t ∈ Rn , one of the ϕi (t, x) defines X t . Let

Ti =
{
t ∈ Rn

: ∃x
(
⟨t, x⟩ ∈ X ∧ ∀x (x ∈ X t ↔ ϕi (t, x))

)}
.

The set Ti is M-definable, over A, and thus, by induction, it is Mbd-definable
over A by some ψi (t). The formula ϕi (t, x)∧ψi (t) defines X ∩ Ti × R, so X is
definable in Mbd over A. □

A comment on failure of definable choice in strongly bounded M. Recall that
a structure M has definable choice if for every definable family {X t : t ∈ T }

of sets, there is a definable function f : T →
⋃

X t such that f (t) ∈ X t and if
t1 = t2 then f (t1)= f (t2). Equivalently, every definable equivalence relation has
a definable set of representatives. This fails in strongly bounded M, because the
relation x Ey ⇔ y = −x on R cannot have a definable set of representatives. If it
did then it would contain either a positive or a negative ray (without its inverse).

We believe that elimination of imaginaries similarly fails.

5. Conclusion: The proof of Theorem 1.2

We are now ready to collect the results proved thus far in order to prove Theorem 1.2.
Recall that we want to prove that the only reducts between Rlin and Ralg are as

follows:
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Ralg = ⟨R; +, ·, <⟩,

Rsb = ⟨R; +, <,3R,B⟩,

Rsemi = ⟨R; +, <,3R⟩, Rbd = ⟨R; +, <∗,3R,B⟩,

R∗

lin = ⟨R; +, <∗,3R⟩,

Rlin = ⟨R; +,3R⟩.

First, we note that using [Edmundo 2000] we can generalize [Peterzil 1993,
Theorem 1.1] from R to arbitrary real closed fields, and show:

Fact 5.1. Let R be a real closed field. The only reduct between Rsemi and Ralg

is Rsb.

Proof. Assume that M is a reduct of Ralg which properly expands Rsemi. By
[Edmundo 2000, Fact 1.6], either M is a reduct of Rsb or a real closed field
F = ⟨R; ⊕,⊙⟩ whose universe R is definable in M. Assume the latter, and then
since the field is semialgebraic then, again by [Peterzil 1993, Corollary 2.4], every
semialgebraic subset of R is definable in F and hence in M. Thus, M =̇ Ralg.

If M is a reduct of Rsb which is not semilinear then by Theorem 3.2, every
bounded R-semialgebraic set is definable in M, and thus M =̇ Rsb. □

We now consider an arbitrary reduct M of Ralg. Our goal is to show that M is
one of the reducts in the above list.

First, if M is stable then by Claim 2.2, Rlin =̇ M. If M is unstable then by
Theorem 2.1, <∗ is definable in M. So R∗

lin ⊆̇ M. So, we may assume that <∗ is
definable in M, i.e., R∗

lin ⊆̇ M.

Case 1: M is strongly bounded and M ⊆̇ Rsemi.
We claim that M =̇ R∗

lin. Indeed, because M is strongly bounded then, by
Theorem 4.5, M =̇Mbd. Because M ⊆̇Rsemi, every M-definable set is semilinear,
and in particular this is true for each of the ∅-bounded sets in Mbd. However, it is
easy to verify that every bounded semilinear set is definable in R∗

lin, so the whole
structure Mbd is a reduct of R∗

lin, and thus so is M as well. The converse R∗

lin ⊆̇M
is already assumed.

Case 2: M is strongly bounded and M ⊈̇Rsemi.
We claim that M =̇Rbd. As in Case 1, every M-definable set is definable in Mbd.

Because M is a reduct of Ralg then Mbd is a reduct of Rbd and so M ⊆̇Rbd. By the
assumption that M ⊈̇Rsemi, we know that there is an M-definable semialgebraic set
which is not semilinear, so by Theorem 3.2, we get that every bounded semialgebraic
set is definable in M, hence Rbd ⊆̇ M.

Next we assume that M is not strongly bounded.
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Case 3: M is not strongly bounded and M ⊆̇ Rsemi.
By Lemma 2.3, the linear order < is definable in M, so, since R∗

semi ⊆̇ M, we
have Rsemi =̇ M.

Case 4: M is not strongly bounded and M ⊈̇Rsemi.
As in Case 3, the linear order < is definable in M, so Rsemi ⊆̇ M. So we

know that M is a reduct of Ralg which properly expands Rsemi. By Fact 5.1, either
M =̇ Ralg or M =̇ Rbd.

This completes the proof that if M is a reduct of Ralg expanding Rlin, then it is
one of the reducts in the above diagram.

It is left to see that all reducts in the above diagram are distinct. Because Rlin is
stable and R∗

lin is unstable, these two are distinct. Also, the fact that R∗

lin and Rbd

are distinct is easy to verify (e.g., the unit circle is definable in Rbd but not in R∗

lin).
The fact that Rbd is different than Rsb and Rsemi follows from the next lemma.

Lemma 5.2. Let R be a real closed field. If B∗ is any collection of bounded subsets
of Rn , n ∈ N, then < is not definable in M = ⟨R; +,3R,B∗

⟩.

Proof. We use a similar idea to [Peterzil 1992] Assume towards a contradiction that
< is definable in M, and let N = ⟨R : +, <,3R,B

∗
⟩.

Let ψ(x, y, ā), ā ∈ R be the M-formula that defines <. Namely,

N |H ∀x∀y (ψ(x, y, ā)↔ x < y).

Let Ñ = ⟨R̃; +, <,3R,B
∗
⟩ ≻ N be an |N |

+-saturated elementary extension
whose reduct to the M-language is M̃. It follows that ψ(x, y, ā) defines < in Ñ
as well.

We show that there is an automorphism of M̃ which fixes ā, thus leaving
ψ(R̃ × R̃, ā) invariant, and yet not respecting <, leading to a contradiction.

The group ⟨R̃,+⟩ is a vector space over R. We define an R-vector subspace of
R̃ by

A = {x ∈ R̃ : ∃α∈R (|x |< λα(1))}.

So, by Zorn’s lemma, there exists an R-vector space V ⊆ R̃ such that R̃ =A⊕V ,
and by the saturation assumption, V is nontrivial. Now we define the following
automorphism of the R-vector space R̃: on A we define τ1(v)= v, on ⟨V,+⟩ we
define τ2(v)= −v, and we let τ : R̃ → R̃ be

τ(v1 + v2)= τ1(v1)+ τ2(v2)= v1 − v2.

This automorphism fixes all elements in A and in particular fixes all sets in B∗

pointwise, but does not respect < (as positive elements in V are sent to negative
ones). In model theoretic language τ is an automorphism of the structure M̃ which
fixes ā (since ā ∈ A). However, τ does not preserve <, contradiction. □

This completes the proof of Theorem 1.2. □
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Appendix: The proof of Fact 3.1

Fact 3.1. Let R be a real closed field and X ⊆ Rn a definable set in an o-minimal
expansion of ⟨R;<,+, · ⟩. If X is not definable in Rsemi then, in the structure
M = ⟨R;<∗,+,3R, X⟩ there exists a definable bounded set which is not definable
in Rsemi.

Proof. We believe that this is known so we shall be brief. We prove the result by
induction on dim(X), where the case dim X = 0 is trivially true. Consider the affine
part of X , A (X), which is definable in M.

Assume first A (X) is not dense in X . Then there is an open box U ⊆ Rn such
that U ∩ X ̸=∅ and U ∩A (X)=∅. We claim that U ∩ X is not semilinear. Indeed,
if it were then A (U ∩ X) must be nonempty, but because U ∩ X is relatively open
in X then

A (U ∩ X)= U ∩ A (X)= ∅,
a contradiction.

Thus, U ∩ X above is not semilinear. and this gives the desired box when A (X)
is not dense in X .

We assume then that A (X) is dense in X , and consider two cases: A (X) is
either semilinear or not. If it were semilinear then necessarily X \ A (X) is not
semilinear, and because of the density assumption, dim(X \ A (X)) < dim(X) and
we can finish by induction.

Thus, we are left with the case that A (X) is not semilinear. For simplicity, we
may assume now that X = A (X). We recall the M-definable relation a ∼ b from
the proof of Proposition 4.24, defined by letting a ∼ b if X has the same germ at a
and b, up to translation.

Because X = A (X), each ∼-class is open in X , and thus there are finitely
many classes, at least one of which is not semilinear. Thus, we may assume that
X = A (X) consists of a single ∼-class. It follows that there is some R-subspace
L ⊆ Rn , dim L = dim X , such that X is contained in a finite union of cosets of L .
Thus each definably connected component of X is contained in a single such coset
of L .

Each L is definable in M using 3R , so the intersection of X with each of these
cosets is definable in M. One of these intersections is not semilinear, so we may
assume that X ⊆ c + L for some c. Because dim X = dim L , and A (X) = X ,
then X is open in c + L . We claim that Fr(X)⊆ c + L is not semilinear: Indeed,
Fr(X) is a closed subset of c + L , and X consists of finitely many components
of c + L \ Fr(X). If Fr(X) were semilinear then each of its components would also
be, so X would be semilinear.

Thus, Fr(X) is not semilinear, and definable in M. By o-minimality,

dim(Fr(X)) < dim(X).
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Therefore, by induction we may find an M-definable bounded set which is not
semilinear. □

In fact, a stronger result is true: If X ⊆ Rn is definable in an o-minimal expansion
of the field R and not semilinear, then there is some bounded open box U ⊆ Rn such
that U ∩ X is not semilinear (we omit the proof here as we do not need it). Notice
that this last statement fails if we replace “not semilinear” by “not semialgebraic”,
as Rolin’s example from [Le Gal and Rolin 2009] shows: There exists a definable
function f : R → R in an o-minimal expansion of the real field such that the
restriction of f to every bounded interval is semialgebraic but f itself is not
semialgebraic.
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Remarks around the nonexistence of difference closure

Zoé Chatzidakis

This paper shows that in general, difference fields do not have a difference closure.
However, we introduce a stronger notion of closure (κ-closure), and show that
every algebraically closed difference field K of characteristic 0, with fixed field
satisfying a certain natural condition, has a κ-closure, and this closure is unique
up to isomorphism over K .

Introduction

In this paper, a difference field is a field K with a distinguished automorphism σ . A
difference field L is difference closed if every finite system of difference equations
with coefficients in L which has a solution in a difference field extending L , already
has a solution in L .

If K is a difference field, then a difference closure of K is a difference closed field
containing K , and which K-embeds into every difference closed field containing K .

The algebra of difference fields was developed by Ritt, in analogy with the algebra
of differential fields. It is well-known that any differential field of characteristic 0 has
a differential closure, and that this differential closure is unique up to isomorphism
over the field. In 2016, Michael Singer asked whether this result generalises to the
context of difference fields. One of the main results of this paper is that it does
not, even after imposing some natural conditions on the difference field K . We
will show by two examples (Examples 1.3 and 1.4) that even the existence of a
difference closure can fail.

There are several natural strengthenings of the notions of difference closed and
difference closure (originating from model theory but having a natural algebraic
translation), and we will show that these notions do satisfy existence and uniqueness
of closure, provided we work over an algebraically closed difference field of
characteristic 0 whose fixed subfield is large enough.

The theory of difference closed difference fields has been extensively studied,
and is commonly denoted by ACFA. The proof of our result uses in an essential
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way the characteristic 0 hypothesis, as it allows us to use techniques of stability
theory. They provide examples of structures which are stable over a predicate; see
[13; 14] for definitions. The main result of the paper is as follows:

Theorem 3.14. Let κ be an uncountable cardinal or ℵε, and let K be an alge-
braically closed difference field of characteristic 0 such that F := Fix(σ )(K ) is
pseudofinite and is κ-saturated. Then there is a κ-prime model of ACFA over K .
Furthermore, it is unique up to isomorphism over K .

Here is an algebraic translation of this result for κ ≥ ℵ1: Call a difference field
U κ-closed if every system of < κ difference equations over U which has a solution
in some difference field extending U has a solution in U . The field U is a κ-closure
of the difference field K if it is κ-closed, contains K , and K-embeds into every
κ-closed difference field containing K . Then Theorem 3.14 states, for κ ≥ ℵ1:

Let K be an algebraically closed difference field of characteristic 0, whose
fixed field F is pseudofinite and such that every system of < κ polynomial
equations over F which has a solution in a regular extension of F already
has a solution in F. Then K has a κ-closure, and it is unique up to
K-isomorphism.

It is unlikely that this result can be generalised to the characteristic p context,
and in fact, I conjecture that unless the difference field K of characteristic p > 0 is
of cardinality < κ or is already κ-closed, then it does not have a κ-closure.

The paper is organised as follows. In Section 1 we discuss the problem and
reformulate it in model-theoretic terms, and describe the two examples. In Section 2,
we state the preliminary results we will need from difference algebra and model
theory. Section 3 contains the proof of Theorem 3.14.

1. Discussion of the problems and the examples

1.1. Notation and conventions. All difference fields will be inversive, i.e., the
endomorphism σ will be onto. Let K be a difference field, contained in some
large difference field U . If a is a tuple in U , we denote by K (a)σ the difference
field generated by a over K , i.e., the subfield K (σ i (a))i∈Z of U . The algebraic
and separable closure of a field L are denoted by Lalg and Ls , respectively, and
G(K ) denotes the absolute Galois group of K , i.e., Gal(K s/K ). If A ⊂ U , then
acl(A) denotes the smallest algebraically closed difference field containing A; it
coincides with the model-theoretic algebraic closure of A for the theory ACFA [5,
Proposition 1.7]. We denote by L the language {+,−, ·, 0, 1, σ }.

1.2. Translation into model-theoretic terms. Let K be a difference field. Recall
that any complete theory extending the theory ACFA of difference closed difference
fields is supersimple, unstable, of SU-rank ω, and does not eliminate quantifiers, but
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it eliminates imaginaries. It is extensively studied in [5]. The reason ACFA does
not eliminate quantifiers is that given an automorphism σ of a field K , there may be
several nonisomorphic ways of extending σ to K alg. So, the first obvious obstacle
to the existence of a difference closure is that, and a natural condition to impose is
to assume that K is algebraically closed. There is another natural condition one
needs to impose: if L is difference closed, then its fixed field

Fix(σ )(L)= {a ∈ L | σ(a)= a}

is pseudofinite. Moreover, every pseudofinite field can occur as the fixed field of
some difference closed field [1]. Thus if L is the difference closure of a difference
field K , then Fix(σ )(L)must be prime over Fix(σ )(K ) (for its theory in the language
of rings). Duret showed in [8] that any completion of the theory of pseudofinite
fields has the independence property. From his proof one extracts easily the fact
that nonalgebraic types are nonisolated, and this forces us to require in case K
is countable that Fix(σ )(K ) be pseudofinite in order to hope to have a difference
closure. The case when K is uncountable is a little more complicated, the question
is addressed and solved in [3].

It is therefore reasonable to make the following two assumptions:

K is algebraically closed, and Fix(σ )(K ) is pseudofinite.

But even this is not enough. To show this does not suffice, what we need to do
is the following:

Exhibit a difference field K satisfying the above two conditions, and
a finite system of difference equations which does not have a solution
in K , and such that any finite strengthening of this system has several
completions.

This looks easy, since even our stable types are only superstable, not ω-stable.
However, the first obvious examples do not satisfy the first condition. Here is a
more involved example, taken from [5, Example 6.7]:

Example 1.3 (an example in characteristic 0). Let k be a countable pseudofinite
field of characteristic 0 containing Qalg, and consider K = (kalg, σ ), where σ is
a (topological) generator of Gal(K/k). We consider the elliptic curve Ja , with
j-invariant a /∈ K , and which is defined by

y2
+ xy = x3

−
36

a−1728
x −

1
a−1728

.

We let A′ be a cyclic subgroup of Ja of order p2, A = [p]A′ and a1 the j -invariant
of the elliptic curve Ja/A, a2 the j-invariant of the elliptic curve Ja/A′. Then the
map Qalg(a, a1)→ Qalg(a1, a2) which is the identity on Qalg and sends (a, a1) to
(a1, a2) extends to a field automorphism of Q(a)alg, which in turns extends to an
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automorphism of K (a)alg which agrees with σ on K . Let 8(x, x1, x2) be the finite
system of polynomial equations which describe the algebraic locus of (a, a1, a2)

over K ; in the notation of [11, Chapter 5, §3] (see in particular Theorem 5),
8(x, x1, x2) can be written as

8p2(x2, x)=8p(x1, x)=8p(x2, x1)= 0.

(The equation 8n(y, x) = 0 says that y is the j-invariant of the quotient of the
elliptic curve Jx with j-invariant x by a cyclic subgroup of order n.) We now
consider the formula ψ(x) given by 8(x, σ (x), σ 2(x))∧ σ(x) ̸= x . Let b be any
solution of ψ(x). Note that necessarily, the kernel of the map Jb → Jσ n(b) for
n > 0 is cyclic of order pn . Indeed, note that σ n(b) satisfies ψ for every n; hence,
the kernel of the map Jσ n(b) → Jσ n+2(b) is cyclic of order p2, and this map is the
composite of the two maps Jσ n(b) → Jσ n+1(b) and Jσ n+1(b) → Jσ n+2(b), which both
have kernel of order p. An easy induction then gives the result.

As σ(b) ̸= b, we know that b is transcendental. Hence the curve Jb is not of CM-
type, its endomorphism group is isomorphic to Z, and therefore Jb is not isomorphic
to any of its quotients by finite cyclic subgroups; see, e.g., [15, Section C.11].
Therefore, the elements b, σ (b), σ 2(b), . . . are all distinct, and b /∈ K . Furthermore,
the isomorphism type of K (b)σ over K is determined by8(b, σ (b), σ 2(b)), because
as we saw above, the kernel of the map Jb → Jσ n(b) is cyclic of order pn for n > 0
(see also the discussion at the bottom of page 3058 in [5]).

So any difference closed field containing K must contain a solution of ψ(x).
However, Example 6.7 of [5] shows that if b is as above, and L is any finite extension
of K (b)σ , then there are 2ℵ0 nonisomorphic ways of extending σ to Lalg. Thus K
does not have a difference closure.

One can build other examples along the same lines, using moduli spaces of
abelian varieties.

Example 1.4 (an example in characteristic p > 0). Let K = k(A)alg
σ , where k is a

countable pseudofinite field fixed by σ , σ restricts to a generator of Gal(kalg/k), and
A is the set of solutions of the equation σ(x)p

−σ(x)+ x p
= 0 (in some countable

difference closed overfield). Then in any difference closed field containing K , the
set B of solutions of the equation σ(x)− x p

+ x = 0 is an infinite-dimensional
Fp-vector space. However, as was shown in Example 6.5 of [5], there are 2|A|

ways of extending σ from K k(B)alg
σ to K (B)alg

σ : there is a definable nondegenerate
bilinear map q : A × B → Fp, which can be chosen totally arbitrarily.

In fact this example is part of a large family of examples: let f and g be additive
polynomials with coefficients in a difference field K , and assume that the subgroup
A of Ga defined by f (x)= g(σ (x)) is locally modular. Then there is a definable
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subgroup B of Ga , and a definable nondegenerate bilinear map A × B → Fp. As
above, there is no prime model over K (A)σ .

While we provided examples of difference fields not having a difference closure,
we did not provide a procedure which, given a difference field which is not difference
closed, exhibits a nonisolated type which needs to be realised. So, the following
remains open:

Question 1.5. Are there any difference fields which are not difference closed but
admit a difference closure?

Omar León Sánchez and Marcus Tressl introduced in [12] the notion of large
differential fields of characteristic 0, and they showed that their (field-theoretic)
algebraic closure are differentially closed, thus showing that the theory DCF0 can
have minimal prime models. One may try introducing the notion of large difference
field, and hope for a similar result.

2. Preliminaries

Basic difference algebra.

2.1. Let K ⊂ U be difference fields. If X = (X1, . . . , Xn), the ring

K [X ]σ = K [σ i (X j )]1≤ j≤n,i∈N

is called the n-fold difference polynomial ring. A difference equation is an equation
of the form f (X)= 0 for some f (X) ∈ K [X ]σ .

If a is a finite tuple in U , and L is a difference subfield of K (a)σ containing K ,
then L = K (b)σ for some finite tuple b [7, 5.23.18].

An element a ∈ U is transformally algebraic over K if it satisfies some nontrivial
difference equation with parameters in K . Otherwise, it is transformally transcen-
dental over K . A tuple a is transformally algebraic over K if all its elements
are. A (maybe infinite) tuple of elements of U is transformally independent over
K if it does not satisfy any nontrivial difference equation with coefficients in K .
A transformal transcendence basis of U over K is a subset B of U which is
transformally independent over K and maximal such; every element of K will
then be transformally algebraic over K (B)σ . We denote by 1(K ) the transformal
transcendence degree of K , i.e., the cardinality of a transformal transcendence basis
of K , and if L is a difference field containing K , by 1(L/K ) the cardinality of a
transformal transcendence basis of L over K .

2.2. The fixed field. The fixed field of U is the field Fix(σ )(U) :={a ∈U |σ(a)=a}.
Then Fix(σ )(U) and K are linearly disjoint over their intersection. (Choose n
minimal such that there are c1, c2, . . . , cn ∈ Fix(σ ) and d1 = 1, d2, . . . , dn ∈ K
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such that
∑

i ci di = 0; applying σ we get that
∑

ciσ(di )= 0, and by minimality
of n, that σ(di )= di for all i .) This implies in particular that if E is a difference
subfield of K , then E Fix(σ )(U) and K are linearly disjoint over their intersec-
tion E(Fix(σ )(U)∩ K ). In positive characteristic, similar results hold for the other
fixed fields Fix(σ n Frobm).

Basic model-theoretic facts.

2.3. For references see [5]. The theory ACFA is supersimple, of SU-rank ω. It
eliminates imaginaries, but does not eliminate quantifiers. The completions of
ACFA are given by describing the isomorphism type of the automorphism σ of the
algebraic closure of the prime field [5, Corollary 1.4].

We let U be a sufficiently saturated model of ACFA, and K a difference subfield
of U .

2.4. Types, algebraic closure, independence. If a is a tuple of elements of U , then
tp(a/K ) is determined by the isomorphism type of the difference field acl(K a)=

K (a)alg
σ over K : a and b have the same type over K if and only if there is a K-

isomorphism of difference fields K (a)σ → K (b)σ which sends a to b and extends
to the algebraic closure of K (a)σ [5, Corollary 1.5]. The SU-rank of a over K ,
denoted by SU(a/K ), is bounded by tr.deg(K (a)σ/K ), and is finite if and only if
tr.deg(K (a)σ/K ) is finite (if and only if a is transformally algebraic over K ).

Let A, B,C be subsets of U . Then A is independent from B over C , denoted
A |⌣C B, if and only if the fields acl(AC) and acl(BC) are free over acl(C).
Equivalently, if whenever a is a tuple of elements in A, then the prime σ -ideal
Iσ (a/ acl(BC)) := { f (X) ∈ acl(BC)[X ]σ | f (a) = 0} is generated (as a σ -ideal)
by its intersection with acl(C)[X ]σ . Then independence coincides with nonforking,
and we also say, in that case, that tp(A/BC) does not fork over C .

2.5. Reducts. For an integer n>0, denote by L[n] the language {+,−, ·, 0, 1, σ n
},

and by U[n] the reduct (U, σ n) to the language L[n]. By [5, Corollaries to (1.12)],
U[n] ⊨ ACFA. If a is a tuple in U , then tp(a/K )[n] denotes the type of a in the
reduct U[n], and qftp(a/K )[n] the quantifier-free type of a in the reduct U[n].

2.6. Notions of canonical bases. If a is a tuple in U , then Cb(a/K ) denotes the
smallest difference field over which Iσ (a/K ) is defined. Then tp(a/K ) does not
fork over Cb(a/K ). Also, Cb(a/K ) is contained in the algebraic closure over K of
finitely many independent realisations of tp(a/K ); if K (a)σ is a regular extension
of K , then Cb(a/K ) is contained in the difference field generated over K by finitely
many independent realisations of tp(a/K ) (see the proof of Lemma 2.13(4) in [5]).
Cb(a/K ) denotes Cb(a/K )alg. Note that a (finitary) type does not fork over some
finite set.
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2.7. The generic type. The generic 1-type is the type of a transformally transcenden-
tal element. It is axiomatised by its quantifier-free part, is definable and stationary.1

Similarly, if V is a variety defined over the algebraically closed difference field K ,
then the generic type of V (which is characterised by having a realisation a with
1(K (a)σ/K )= dim(V )) is axiomatised by its quantifier-free part, is definable and
stationary [5, Corollaries 2.11].

2.8. Orthogonality of types. Let p and q be (partial) types over A and B, respec-
tively. If A = B, we say that p and q are almost orthogonal (or weakly orthogonal),
denoted by p ⊥

a q , if whenever a realises p and b realises q , then a |⌣A b. We say
that p and q are orthogonal, denoted by p ⊥ q , if whenever C contains A ∪ B, and
a realises p, b realises q , and a |⌣A C , b |⌣B C , then a |⌣C b.

2.9. The dichotomy in characteristic 0. Recall that a partial type π over a set A is
called one-based 2 if whenever a1, . . . ,an realise π and B⊃A, then (a1 . . . an) |⌣C B,
where C = acl(Aa1, . . . , an)∩ acl(B).3

Types of finite SU-rank are analysable in terms of types of SU-rank 1. The main
result of [5] says that in characteristic 0, a type q of SU-rank 1 is either one-based,
or nonorthogonal to the fixed field. Moreover, if q is one-based, then it is stable
stably embedded and definable. See Theorem 4.10 in [5].

2.10. Stable embeddability of the fixed field. Recall that a subset S of Un , which
is definable or ∞-definable, is stably embedded if whenever D ⊂ Unm is definable
with parameters from U , then D ∩ Sm is definable with parameters from S. An
important result of [5] (Proposition 1.11) says that the fixed field F := Fix(σ )
of U is stably embedded: if D ⊂ Fn is definable in the difference field U (with
parameters from U), then it is definable in the pure field language in F (with
parameters from F). In fact, one has more: let C = acl(C)⊂ U , and b a tuple in F .
Then tpF (b/C ∩ F) ⊢ tpU (b/C); indeed, all finite σ -stable extensions of CF are
contained in CFalg (see Lemma 4.2 in [4]), and therefore any (C ∩F)-automorphism
of the field F extends to a C-automorphism of the difference field acl(CF), since it
obviously extends to a C-automorphism of CF, and the automorphism σ of CFalg

extends uniquely to acl(CF) up to isomorphism over CFalg by Babbitt’s theorem
(see, e.g., Lemma 2.8 in [5]).

For more properties of stably embedded sets or types, see the appendix of [5].

2.11. More on stable stably embedded types. For a definition of a (partial) type
being stable stably embedded, see Lemma 2 of the appendix of [5]. Here we use

1A type p over a set A is stationary if whenever B ⊃ A, then p has a unique nonforking extension
to B.

2In [5], they are called modular.
3Here we are using the fact that any completion of ACFA eliminates imaginaries.
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the following consequence: let A = acl(A) be algebraically closed, and suppose
that tp(a/A) is stable stably embedded. Then tp(a/A) is definable (over A; see
Lemma 1 in the Appendix of [5]). Also, if B = Cb(a/A) and tp(a/B)⊥a tp(A/B),
then tp(a/B)⊢ tp(a/A); this is because tp(a/B) has a unique nonforking extension
to any superset of the algebraically closed set B.

Definition 2.12 (internality to the fixed field). Let π be a partial type over A ⊂ U ,
and F = Fix(σ )(U).

(1) π is qf-internal to Fix(σ ) if there is some finitely generated over A difference
field C such that whenever a realises π , there is a tuple b in F such that
a ∈ C(b). I.e., a ∈ CF.

(2) π is almost internal to Fix(σ ) if there is some finitely generated over A
difference field C such that whenever a realises π , there is a tuple b in F such
that a ∈ acl(Cb).

Remarks 2.13. Clearly qf-internality implies almost internality. Moreover, to show
qf-internality or almost internality of a (complete) type p, it is enough to do it for
a particular realisation a of the type p, i.e., to find C independent from a over A
such that a ∈ CF or a ∈ acl(CF). See Lemma 5.2 in [5].

Internality or almost internality (to Fix(σ )) of a type is in fact a property of its
quantifier-free part.

Recall that a difference field E is linearly disjoint from F over F ∩ E . It follows
that in (1) above, the tuple b can be taken so that C(b)= C(a)σ : take a generating
tuple d of the (pure) field extension F ∩ C(a)σ of F ∩ C ; as F is linearly disjoint
from C(a)σ over F ∩ C(a)σ , we get that CF is linearly disjoint from C(a)σ over
C(d), i.e., that C(a)σ = C(d) since a ∈ CF.

Lemma 2.14. Let A = acl(A), and assume that tp(a/A) is almost internal to Fix(σ ).
Then there is a′

∈ A(a)σ such that tp(a′/A) is qf-internal to Fix(σ ), σ(a′) ∈ A(a′),
and a ∈ acl(Aa′).

Proof. By assumption there is some tuple c independent from a over A and such
that a ∈ acl(AFc). Taking b in F such that A(c, a)σ ∩ F = (F ∩ A)(b), we
obtain that F is linearly disjoint from A(c, a)σ over (F ∩ A)(b), and therefore that
AF(c, b)σ and A(c, a)σ are linearly disjoint over A(c, b)σ , so that a ∈ acl(Acb)
(since a ∈ acl(AFcb)). As c is independent from a over A = acl(A), it follows
that A(c, a)σ = A(c, a, b)σ is a regular extension of A(a)σ , and therefore that
Cb(b, c/A(a)σ ) is contained in the difference field generated by finitely many inde-
pendent realisations of tp(b, c/A(a)σ ) (see 2.6). Again, as c is independent from
a over A and b is in F , it follows that if a′ is such that Cb(c, b/A(a)σ )= A(a′)σ ,
then tp(a′/A) is qf-internal to Fix(σ ). As b ∈ A(a′, c)σ and c is independent
from a over A, it follows that a ∈ acl(Aa′) as desired. As A(c, a′)σ = A(c, b)σ
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and b ∈ F , it follows that A(c, a′)σ is finitely generated as a field extension of A(c)σ .
But as a′ and c are independent over A, the same holds of the field extension
A(a′)σ/A, i.e., for some n, σ n(a′) ∈ A(a′, σ (a′), . . . , σ n−1(a′)). We then replace
a′ by (a′, σ (a′), . . . , σ n−1(a′)). □

2.15. The semiminimal analysis. Let a be a tuple which is transformally algebraic
over K . Thus SU(a/K ) < ω. As Th(U) is supersimple, there is a sequence
a1, . . . , an ∈ acl(K a) such that a ∈ acl(K a1, . . . , an), and for every 0 < i ≤ n,
tp(ai/ acl(K a1, . . . , ai−1)) is either one-based of rank 1, or almost internal to a
non-one-based type of rank 1. This is a classical result in supersimple theories;
for a proof in our case in characteristic 0, see Theorem 5.5 in [5]. Note that in
characteristic 0, by the dichotomy of 2.9, all non-one-based types of rank 1 are
nonorthogonal to σ(x)= x , and by Lemma 2.14, almost internality to Fix(σ ) may
be replaced by qf-internality to Fix(σ ).

Definition 2.16. Let T be a completion of ACFA, M a model of T .

(1) We say that M is ℵε-saturated if whenever A ⊆ M is finite, then every strong
1-type over A is realised in M . Equivalently, as our theory eliminates imaginaries,
if every 1-type over acl(A) is realised in M .

(2) Let κ be an infinite cardinal or ℵε, and A ⊆ M . We say that M is κ-prime
over A if M is κ-saturated, and A-embeds elementarily into every κ-saturated model
of Th(M, a)a∈A. When κ = ℵε, one also says that M is a-prime over A.

(3) Let κ be an infinite cardinal or ℵε. We say that A ⊆ M is small if A = acl(A0),
where A0 is finite if we are dealing with ℵε-saturation, and has cardinality<κ if we
are dealing with κ-saturation. We also say that A ⊆ M is very small if A = acl(A0),
where A0 is finite. Note that a (very) small set is in particular algebraically closed.

(4) Let κ be an infinite cardinal or ℵε, and A ⊆ M . A type p over A is κ-isolated
if it is implied by its restriction to some small subset of acl(A).

(5) We say that M is κ-atomic over A ⊆ M if whenever a is a (finite) tuple in M ,
then tp(a/A) is κ-isolated. Recall also that M is atomic over A if every finite tuple
realises an isolated type over A.

(6) We say that B = acl(B)⊆ M is κ-constructed over A ⊆ M if there is a sequence
(dα)α<µ in B \ A such that for every α < µ, tp(dα/ acl(Adβ | β < α)) is κ-isolated
and B = acl(Adα | α < µ).

Remarks 2.17. (1) If κ is a regular cardinal, then κ-atomicity is transitive: if
A ⊆ B ⊆ C ⊆ M , with B κ-atomic over A and C κ-atomic over B, then C is
κ-atomic over A. This is however not necessarily true when κ is singular. However,
this holds if B = acl(Ab) for some finite tuple b (since every finite tuple in B
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realises an isolated type over Ab), or if C is atomic over B. (There are stronger
statements involving cardinals λ < cf(κ).)

(2) If M is a κ-saturated model of T containing A and M is κ-constructed over A,
then M is κ-prime over A.

(3) The property of being κ-constructed is preserved under towers and unions of
chains indexed by ordinals.

2.18. Algebraic translation of the model-theoretic notions. Let us translate what
the notions of saturation mean in our case. We will be dealing with either un-
countable cardinals or ℵε. Recall from 2.4 that tp(a/A) is entirely determined by
the isomorphism type over the difference field generated by A of the difference
field acl(Aa). So, for κ an uncountable cardinal, the κ-saturation of a model M of
ACFA simply means that every system of <κ difference equations with coefficients
in M which has a solution in a difference field extending M already has a solution
in M . This is what was called κ-closed in the introduction.

The notion of κ-prime over a difference subfield corresponds to being a κ-closure
of that difference field.

In the case of ℵε-saturation, the algebraic description is a little more complicated,
and is better expressed in terms of embedding problems: Work inside a large
model U , and consider a submodel M of U . Then M is ℵε-saturated if whenever a
is a finite tuple of elements of M and b an element of U , there is an acl(a)-embedding
of acl(a, b) inside M .

A similar description holds for κ-saturated, with the base set a of cardinality <κ:
a model M of ACFA is κ saturated if whenever A ⊂ M is small and b is a finite
tuple in some difference field U containing M , then there is an A-embedding of
acl(Ab) into M . Note that |A|-many difference equations are necessary to describe
the isomorphism type of acl(Ab) over A.

3. The results

Results of Hrushovski [10] show that if F is a pseudofinite field and C ⊂ F , then
Th(F, c)c∈C eliminates imaginaries if and only if the absolute Galois group of the
relative algebraic closure inside F of the field generated by C is isomorphic to Ẑ. It
may therefore happen that Th(F) eliminates imaginaries in the ring language, but
it may also happen that extra elements are needed, for instance if F contains Qalg.
The following lemma will therefore be useful when dealing with ℵε-saturation.

Lemma 3.1. Let F be an ℵε-saturated pseudofinite field and a a finite tuple in F.
Then there is a finitely generated subfield A of F containing a and such that

G(Aalg
∩ F)≃ Ẑ.
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Proof. Let k be the relative algebraic closure inside F of the subfield generated by a,
and consider k(t), where t is transcendental over k. Let Q0 be the set consisting
of all integers n which are either prime numbers or 4 and such that G(k) does not
have a quotient isomorphic to Z/nZ. If char(k) ̸= 0, we let Q = Q0 \ {4}, and if
char(k)= 0, we let Q = Q0 \ {2}. If Q is empty, then G(k)≃ Ẑ, and we are done.
So, we assume that Q is nonempty.

By Proposition 16.3.5 of [9], for each n, k(t) has a Galois extension Ln which
is regular over k and with Gal(Ln/k(t)) = Z/nZ. Let L be the field composite
of all Ln , n ∈ Q. Then Gal(L/k(t)) ≃

∏
n∈Q Z/nZ. Observe that L ∩ kalg

= k,
because all the Ln are regular extensions of k and Galois over k(t) of relatively
prime order.

Take a topological generator σ0 of Gal(L/k(t)), and a topological generator σ1

of G(k). Let σ ∈ G(k(t)) extend (σ0, σ1)∈Gal(Lkalg/k(t))≃Gal(L/k(t))×G(k);
then the subfield A of k(t)alg fixed by σ is a regular extension of k, with Galois
group isomorphic to Ẑ, since its Galois group is procyclic, projects onto G(k), onto
all Z/pZ with p a prime, and onto Z/4Z if char(k)= 0.

By general properties of pseudofinite fields and by ℵε-saturation of F , there is
a k-embedding ϕ of A inside F , in such a way that ϕ(A)alg

∩ F = ϕ(A). This is
classical, and follows for instance from Lemma 20.2.2 in [9]. □

Lemma 3.2. Let κ be an uncountable cardinal or ℵε, and let K be a difference field
with Fix(σ )(K ) pseudofinite and κ-saturated. Then there is a model U of ACFA
containing K which is κ-saturated and with Fix(σ )(U)= Fix(σ )(K ).

Proof. (Compare with Afshordel’s result [1].) Let U1 be a κ-saturated model of
ACFA containing K , and let U ⊆ U1 be maximal such that

F := Fix(σ )(U)= Fix(σ )(K ).

We show that U satisfies our conclusion. First observe that U is algebraically closed.
Let A = acl(A)⊂ U be small and let p ∈ S1(A). Then p is realised in U1, and we
take some a ∈ U1 realising p, with SU(a/U) minimal. Let B ⊃ A be small such
that a |⌣B U , and replace p by tp(a/B).

If tp(a/U)⊥a Fix(σ ), then U(a)alg
σ has the same fixed field as U : indeed, U(a)alg

σ

and Fix(σ )(U1) are linearly disjoint over their intersection, which is contained in U
and therefore in K . So by maximality of U , a ∈ U .

Assume now that tp(a/U) ̸⊥
a Fix(σ ). Then there is some small C ⊂ U contain-

ing B, and a realisation a′ of tp(a/B) such that C(a′)σ ∩Fix(σ )(U1) contains some
element b not in U . We may and do assume that Fix(σ )(C) has absolute Galois group
isomorphic to Ẑ (by Lemma 3.1). But as F is κ-saturated, tpF (b/C ∩ F) is realised
in F , by some b1. Then b1 realises tp(b/C) (see the first paragraph of 2.10). Thus,
by κ-saturation of U1, there is some a1 ∈ U1 such that tp(a1, b1/C)= tp(a′, b/C).
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But then a1 realises p, and SU(a1/U)≤ SU(a′/B)−SU(b/C) < SU(a/B), which
gives us the desired contradiction.

So in both cases, p is realised in U . □

Corollary 3.3. Let κ be as above, and K an algebraically closed difference field
with Fix(σ )(K ) κ-saturated. If U is a κ-prime model of ACFA over K then
Fix(σ )(U)= Fix(σ )(K ).

Lemma 3.4. Let U be an ℵε-saturated model of ACFA of characteristic 0, and let K
be an algebraically closed difference subfield of U which contains F := Fix(σ )(U).
Let a ∈ U be such that p = tp(a/K ) is qf-internal to Fix(σ ), p ⊥

a Fix(σ ), and
assume that σ(a) ∈ K (a). Then there are a (very) small A ⊆ K and a tuple b ∈ U
of realisations of p such that

(1) F A(b) contains all realisations (in U) of qftp(a/A)[ℓ], for any ℓ≥ 1;

(2) if b′
∈ U realises qftp(b/A)[m] for some m ≥ 1, then F A(b′) contains all

realisations (in U) of qftp(a/A)[ℓ] for ℓ≥ 1;

(3) tp(a/A) ⊢ tp(a/K ), and tp(b/A) ⊢ tp(b/K ).

Proof. Let k ⊂ K be small such that a |⌣k K and Gal(Fix(σ )(k)alg/Fix(σ )(k)) is
isomorphic to Ẑ. Then σ(a) ∈ k(a) and k F contains Fix(σ ℓ)(U) for all ℓ≥ 1. By
assumption, there is some small B (in U , by ℵε-saturation of U) independent from
a over k such that a ∈ B F . Hence, there is a tuple c in B(a)σ ∩ F = B(a)∩ F such
that B(a)= B(c) (by Remarks 2.13). Let D = Cb(a, c/B). Then D(c)= D(a), and
D ⊂ k(c1, a1, . . . , cn, an) for some independent realisations (ci , ai ) of qftp(c, a/B)
(in some elementary extension of U). By ℵε-saturation of U , we may assume
that (c1, a1, . . . , cn, an) is in U , and is independent from (c, a) over D. We let
b = (a1, . . . , an), A = Cb(k, c1, a1, . . . , cn, an/K ); then D ⊂ k F(b), and A is
small. As A contains c1, . . . , cn (∈ F ⊂ K ) and k, we also have D ⊂ A(b), whence
a ∈ F A(b). Note that a |⌣k A since A ⊂ K .

If a′
∈ U realises qftp(a/A(b)), then the difference fields D(a) and D(a′) are

isomorphic. Hence there is some c′
∈ D(a′) ∩ F such that D(c′) = D(a′), i.e.,

a′
∈ F A(b).
Let a′ be an arbitrary realisation of qftp(a/A), and let b′ be a realisation

of qftp(b/A), which is independent from (b, a′) over A. By the previous paragraph
(as b′ consists of n realisations of qftp(a/A(b))) we know that b′

∈ F A(b). The dif-
ference fields A(b) and A(b′) are A-isomorphic, and this isomorphism extends to an
isomorphism of difference fields A(b, a)→ A(b′, a′). Hence, a′

∈ F A(b′)⊆ F A(b),
as desired. If a′ realises qftp(a/A)[ℓ] and is independent from D over k, then the
σ ℓ-difference fields D(a′) and D(a) are isomorphic over D. Let f (x) be the tuple
of rational functions over D such that f (a) = c; then σ ℓ( f (a′)) = f (a′) and
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D(a′) = D( f (a′)). Hence a′ belongs to F A(b). An argument similar to the one
given in the first case shows it for arbitrary realisation of qftp(a/A)[ℓ] and shows (1).

Note that we have in fact shown that F A(b′) = F A(b), and so the conclusion
of (1) also holds for b′. An easy argument allows to remove the assumption that
b′ is independent from b over A: let b′′ realise qftp(b/A), independent from (b, b′)

over A; then by the proof of the first part: F A(b′′)= F A(b) and F A(b′)= F A(b′′).
Working in U[ℓ], and noting that if m | ℓ then the realisations of qftp(a/A)[m]

also realise qftp(a/A)[ℓ], part (1) gives (2).
For the proof of (3), we first show that every realisation b′ of qftp(b/A)[ℓ] (in U)

is independent from K over A. Indeed, by (2), we know that F A(b) = F A(b′),
and therefore FK (b)= FK (b′)= K (b)= K (b′) (as A, F ⊆ K ). This implies that
tr.deg(b/K )= tr.deg(b′/K ), and therefore that b′ |⌣A K . As U is ℵε-saturated and
A is small, this shows that if d ∈ K , then

qftp(b/A)[ℓ] ⊥
a qftp(d/A)[ℓ].

By Proposition 4.9 of [5], if tp(b/A) ̸⊢ tp(b/K ), then there would be some tuple
d ∈ K and integer ℓ ≥ 1 such that qftp(d/A)[ℓ] ̸⊥

a tp(b/A)[ℓ]. But as we just
saw, this is impossible, and this gives us (3). (This is where the characteristic 0
assumption is crucial.) □

Remark 3.5. In the above notation, note that if U ≺ U ′ and F ′
= Fix(σ )(U ′), then

F ′ A(b) contains all realisations of qftp(a/A)[ℓ] in U ′, for any ℓ≥ 1.

Lemma 3.6. Let K , A, b,U be as in Lemma 3.4, and let L be a difference subfield of
U containing K . Then there is a small A′ containing A such that tp(b/A′)⊢ tp(b/L).
In particular, tp(a/A′) ⊢ tp(a/L).

Proof. Let A′
⊂ L be small, containing A and such that b |⌣A′ L . Then the proof

of (3) works. □

Corollary 3.7. Let K and U be as in Lemma 3.4, and p be a type which is almost
internal to Fix(σ ). Then any K-indiscernible sequence (ai ) of realisations of p in
U is finite.

Proof. Let (ai )i<ω be a sequence of realisations of p in U which is K-indiscernible.
Then either a0 ∈ K , or tp(a0/K ) is almost orthogonal to Fix(σ ) (since K contains
F := Fix(σ )(U)). By Lemma 2.14 there is a′

0 ∈ K (a0)σ such that σ(a′

0) ∈ K (a′

0),
a0 ∈ K (a′

0)
alg and tp(a′

0/K ) is qf-internal to Fix(σ ). It suffices to show the result
for p = tp(a′

0/K ). Let b be the finite tuple of realisations of tp(a′

0/K ) given by
Lemma 3.4. If n > d = tr.deg(K (b)/K ) and tp(a′

i , ai/K ) = tp(a′

0, a0/K ), then
we know that a′

n ∈ K (a′

0, . . . , a′

d−1)
alg (because K ⊃ F). Hence the sequence is

finite. □
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Definition 3.8. We call a type p over a set A acceptable (in K ⊃ A) if A is
the algebraic closure of a finite tuple, and either SU(p) = 1 and p is one-based,
or p is qf-internal to Fix(σ ), almost orthogonal to Fix(σ ), and if b realises p
then σ(b) ∈ A(b), tp(b/A) ⊢ tp(b/K ), and the set of realisations of qftp(b/A)[ℓ]
for ℓ≥ 1, in some model U of ACFA containing K , is contained in A(b)Fix(σ )(U).
Notation 3.9. Let p be a one-based type of SU-rank 1 over the very small set A. If
A ⊂ B ⊂ C , we denote by p|B the unique nonforking extension of p to B, and by
dimB p(C) the cardinality of a maximal B-independent subset of realisations of
p|B in C .

Lemma 3.10. Let p be an acceptable one-based type over the very small A, and let
K be an algebraically closed difference field containing A. We work in a sufficiently
saturated model U of ACFA. Let κ be an uncountable cardinal or ℵε.

(1) If K contains κ many A-independent realisations of p, then the nonforking
extension of p to K is not κ-isolated, and conversely.

(2) Assume that dimA p(K ) < κ . One of the following holds:
(a) There is some n < ω and realisations a0, . . . , an−1 of p|K such that

dimA p(acl(K a0, . . . , an−1)) ≥ κ > dimA p(K ). Furthermore, if n is
minimal with this property, then tp(a0, . . . , an−1/K ) is κ-isolated (but
p| acl(K a0, . . . , an−1) is not).

(b) If B is a set of K-independent realisations of p|K of size λ < κ , then
dimA p(acl(KB)) < κ .

Proof. (1) If C = acl(C) ⊂ K is small, then C contains < κ A-independent
realisations of p, so that the nonforking extension of p to C is realised in K , and
p|K is not κ-isolated. The converse is clear: the nonforking extension of p to K is
implied by its restriction to acl(A, p(K )).

(2) Case (a) is clear by (1) and because dim is additive. So, assume that there is no
such n, and let B be as in (b), and (ai )i<λ ⊂ B a maximal sequence of independent
over K realisations of p, and assume that λ < dimA p(acl(KB)) = µ ≥ κ . So
acl(K ai | i < λ) contains a set C consisting of µ many A-independent realisations
of p. Then for each c ∈ C , there is some finite Ic ⊂ λ such that c ∈ acl(K ai | i ∈ Ic).
As λ < µ, some set Ic appears µ times. Thus dimA p(acl(K ai | i ∈ Ic))= µ ≥ κ ,
which contradicts our assumption. □

Remark 3.11. Let p be the generic 1-type over K , and κ an infinite cardinal. Then
p is κ-isolated if and only if 1(K ) < κ . This follows easily from the description
and properties of the generic types (see 2.7).

Definition 3.12. Let K = acl(K )⊂ L = acl(L)⊂ U . We say that L is normal over
K (in U) if whenever a is a tuple in L , then L contains all realisations of tp(a/K )
in U .
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Lemma 3.13. Let κ be an uncountable cardinal or ℵε, let K ⊆ L be algebraically
closed difference subfields of U , where U is κ-saturated, and suppose Fix(σ )(U)⊂ K .
Assume that U is κ-atomic over K .

(1) Let a be a finite tuple in U . Then U is κ-atomic over acl(K a).

(2) Let B ⊂ U be transformally independent over K , and assume that either
|B|< κ , or that B is a transformal transcendence basis of U over K . Then U
is κ-atomic over acl(KB).

(3) If L is normal over K then U is κ-atomic over L.

Proof. (1) Clearly U is κ-atomic over K a, but we want something stronger. Let b∈U
be a finite tuple, and let C be a small subset of K such that tp(a, b/C)⊢ tp(a, b/K ).
Note that if b′ realises tp(b/Ca) then b′ |⌣Ca K , since (a, b′) |⌣C K by κ-isolation
of tp(a, b/K ). Let us first show the result when SU(b/Ca) < ω. If SU(b/Ca)= 0,
then b ∈ acl(Ca) and the result is obvious. The proof is by induction on SU(b/Ca);
using the semiminimal analysis of tp(b/ acl(Ca)) and induction, we may assume
that tp(b/ acl(Ca)) is either 1-based of SU-rank 1, or almost internal to Fix(σ ). If
tp(b/ acl(Ca)) is one-based, then it is also stable, hence has a unique nonforking
extension to any superset of acl(Ca), in particular to acl(K a), and by the remark
in the previous paragraph, we get the result: tp(b/ acl(Ca)) ⊢ tp(b/ acl(K a)).

Assume now that tp(b/acl(Ca)) is almost internal to Fix(σ), and let b′
∈acl(Cab)

be such that b ∈ acl(Cab′), σ(b′) ∈ acl(Ca)(b′), and tp(b′/ acl(Ca)) is qf-internal
to Fix(σ ) (see Lemma 2.14). By Lemma 3.4, there is a finite tuple e ∈ acl(K a) such
that tp(b′/ acl(e))⊢ tp(b′/ acl(K a)). Then tp(b′/ acl(Cae))⊢ tp(b′/ acl(K a)), and
because b ∈ acl(Cab′), we get the desired conclusion.

For the general case, because b is a finite tuple, there is a finite tuple d ∈

acl(Cab) such that SU(d/Ca) < ω, and tp(b/ acl(Cad)) is orthogonal to all types
of finite SU-rank. (Indeed, this follows from supersimplicity: if tp(b/ acl(Ca)) is
nonorthogonal to some type q of finite SU-rank, then there is b1 ∈ acl(Cab) with
0<SU(b1/ acl(Ca))<ω; repeat the procedure with tp(b/ acl(Cab1)) until it stops.)
By the first case, we know that there is a small C ′

⊂ acl(K a) containing C such
that tp(d/ acl(C ′a))⊢ tp(d/ acl(K a)), and that acl(K ad) is κ-atomic over acl(K a).
By Remarks 2.17(1), it suffices to show that tp(b/ acl(K ad)) is κ-isolated. By [6,
Theorem 5.3] (see also [6, Appendix B]), tp(b/ acl(Cad)) is stationary. But by the
first paragraph of the proof, we know that every realisation of tp(b/ acl(Cad)) is
independent from K over acl(Cad), and this gives the result.

(2) If B = ∅ there is nothing to prove, so suppose it is not. Then 1(K ) < κ

by Remark 3.11. Let a be a finite tuple in U , and let b ⊂ B be a finite tu-
ple such that a |⌣K b B. Let c ⊂ a be a transformal transcendence basis of
K (a, b)σ over K (b)σ (and therefore also over K (B)σ ). If c ̸= ∅, then |B| < κ ,
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1(K (B)) < κ , and therefore tp(c/ acl(KB)) is κ-isolated. Moreover, as a is trans-
formally algebraic over K (b, c)σ , and B \{b} is purely transformally transcendental
over K (b, c)σ , tp(a/ acl(K bc)) and tp(B/ acl(K bc)) are orthogonal, and by sta-
tionarity of tp(B/ acl(K bc)), we get that tp(B/ acl(K bc)) ⊢ tp(B/ acl(K ba)). By
symmetry,

tp(a/ acl(K bc)) ⊢ tp(a/ acl(KBc)).

But tp(a, b, c/K ) is κ-isolated, hence so is tp(a/ acl(K bc)) by (1), and this gives
the result.

(3) Let a be a finite tuple in U , and consider tp(a/L). Let d ⊂ a be maximal trans-
formally independent over L . If d ̸=∅, then d is transformally independent over K ,
which implies that1(L/K )= 0 (by normality of L/K ), and that1(K )=1(L)<κ
(by κ-isolation of tp(d/K )). Therefore tp(d/L) is κ-isolated.

If 1(L/K ) ̸= 0, note that by normality of L over K in U , every element of the
tuple a which is not in L is transformally algebraic over K . So, replacing a by a\L ,
we may assume they are all transformally algebraic over K , i.e., that SU(a/K ) < ω.
We then let d = ∅.

In both cases, by (2), U is κ-atomic over acl(K d), and the normality of L over
K implies the normality of acl(Ld) over acl(K d). Working over acl(K d), we may
therefore assume that a and D := Cb(a/L) are transformally algebraic over K .

We use induction on SU(a/L), and using the semiminimal analysis, we find
b ∈ acl(Da) such that tp(a/ acl(Db)) is either one-based of SU-rank 1, or almost
internal to Fix(σ ).

If tp(a/ acl(Db)) is almost internal to Fix(σ ), then so is tp(a/ acl(Lb)). By
Lemma 2.14, there is a′

∈ acl(Lba) such that a ∈ acl(Lba′) and tp(a′/ acl(Lb))
is qf-internal to Fix(σ ). By Lemma 3.4, there is a very small D′

⊇ D such that
tp(a′/ acl(D′b)) ⊢ tp(a′/ acl(Lb)), and we may choose it so that a ∈ acl(D′ba′).
This shows that tp(a/ acl(Lb)) is κ-isolated, and therefore so is tp(a/L).

So assume that p := tp(a/ acl(Db)) is one-based of SU-rank 1, and let c be
a tuple containing b such that acl(Db) = acl(c) =: C . We need to show that
dimC p(acl(Lc)) < κ . As U is κ-atomic over K , we know that tp(a, c/K ) is κ-
isolated, and therefore dimC p(acl(K c)) < κ . So, if dimC p(acl(Lc)) ≥ κ , then
there is some a′

∈ acl(Lc)\acl(K c) realising p. Recall that by our earlier step, c, a′

are transformally algebraic over K , and therefore so is e = Cb(K ca′/L). Consider
now acl(K ca′)∩ acl(K e)=: E ⊂ L; by Proposition 3.1 of [2], tp(e/E) is almost
internal to Fix(σ ), and therefore orthogonal to all one-based types. As tp(a′/K c)
is one-based, and a′

∈ acl(K ce) \ acl(K c), it follows that e ∈ E , since almost
internality to Fix(σ ) and nonorthogonality to a one-based type imply algebraicity.
That is, e ∈ acl(K ca′)∩ L , and as a′ /∈ acl(K c), the tuples a′ and e are equialgebraic
over acl(K c). Hence acl(K ca) contains a realisation of tp(e/ acl(K c)), because
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tp(a/ acl(K c)) = tp(a′/ acl(K c)). But this contradicts the normality of acl(Lc)
over acl(K c). So, dimC(p(acl(Lc)) < κ , and tp(a/Lb) is κ-isolated. □

Theorem 3.14. Let κ be an uncountable cardinal or ℵε, and let K be an alge-
braically closed difference field of characteristic 0 such that F := Fix(σ )(K ) is
pseudofinite and κ-saturated.

(1) Then there is a κ-prime model U over K .

(2) Furthermore, U is κ-atomic over K , and every sequence of K-indiscernibles
has length ≤ κ (i.e., if κ = ℵε, ≤ ℵ0; by convention, if κ is meant as a cardinal,
then ℵε will mean ℵ0).

Proof. By Lemma 3.2, there is a κ-saturated model U1 of ACFA containing K and
with fixed field F = Fix(σ )(K ). We will construct a submodel U of U1 which is
κ-prime over K and satisfies (2). This U will be κ-constructed.

Step 0. Taking care of the transformal transcendence degree.

If the transformal transcendence degree of K is < κ , then as any κ-saturated
model of ACFA has transformal transcendence degree at least κ , we enlarge K
as follows: let B ⊂ U1 be a set which is transformally independent over K and
of cardinality κ; by [5, Corollaries 2.11], this condition completely determines
the K-isomorphism type of K (B)alg

σ , and therefore any κ-prime model contains
a K-isomorphic copy of K (B)alg

σ . We let K0 = K (B)alg
σ . We need to show (2).

Each finite subset of B realises a κ-isolated type over K , since the transformal
transcendence degree of K is < κ . Moreover, every tuple in K0 realises an isolated
type over K (B)σ ; hence K0 is κ-atomic over K . It is also κ-constructed over K .

Let (ai )i<λ ⊂ K0 be a K-indiscernible sequence and λ a cardinal. If the ai are
transformally independent over K , then we know that |λ| ≤ κ . If not, then by
indiscernibility, the transformal transcendence degree of K (ai | i < λ)σ over K is
finite, and we choose a finite subset c of B such that K (ai | i < λ)σ is transfor-
mally algebraic over K (c)σ . As the elements of B are transformally independent
over K , this implies that all the ai are in fact algebraic over K (c)σ . Consider now
D := Cb(c/K ai | i < λ). For every i , we know that ai ∈ K (c)alg

σ , and therefore
by definition of D, ai ∈ D(c)alg

σ . But c is finite, D is contained in the algebraic
closure of a finite set (by 2.6), and therefore D(c)alg

σ is countable. Hence so is λ.
This shows condition (2) for the extension K0/K .

We build a sequence Kn , n<ω, of algebraically closed difference subfields of U1

such that

(i) if p is an acceptable type over a very small A ⊂ Kn , then Kn+1 contains
κ-many A-independent realisations of p;

(ii) Kn+1 is κ-constructed over Kn .
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We let K0 = K if the transformal transcendence degree of K is ≥ κ , and K (B)alg
σ

as in step 0 otherwise. We assume Kn constructed and wish to build Kn+1. Let pβ ,
β < λ, be an enumeration of the acceptable types in Kn , with corresponding very
small bases Aβ .

Step 1. Defining Kn+1 =
⋃
β<λ K ′

β .

We build the sequence K ′

β by induction on β, and let K ′

0 = Kn . If β is a limit
ordinal, then we let K ′

β =
⋃
γ<β K ′

γ , and Kn+1 = K ′

λ. We build them so that K ′

β+1
satisfies the following:

(i′) K ′

β+1 contains κ-many Aβ-independent realisations of pβ ;

(ii′) K ′

β+1 is κ-constructed over K ′

β .

Assume K ′

β constructed. If pβ has κ-many Aβ-independent realisations in K ′

β ,
then we let K ′

β+1 = K ′

β . Otherwise, we need to distinguish two cases:

Case 1: pβ is one-based.
Let ai , i < κ , be a sequence of K ′

β-independent realisations of pβ (a priori, in
some elementary extension of U1). By Lemma 3.10, either there is n < ω such that
acl(K ′

β, ai | i < n) contains κ-many Aβ-independent realisations of pβ ; in that case,
taking a minimal such n, tp(a0, . . . , an−1/K ′

β) is κ-isolated and therefore realised
in U1, so that we may assume a0, . . . , an−1∈U1 and we set K ′

β+1=acl(K ′

β, ai | i<n).
Then (i′) and (ii′) follow.

If there is no such n, then for every λ < κ , acl(K ′

βai | i < λ) does not contain
κ-many Aβ-independent realisations of p; by the same reasoning we may assume
the ai are in U1 and we define K ′

β+1 = acl(K ai | i < κ). Then (i′) and (ii′) again
are satisfied.

Case 2: Not case 1.
Let aβ ∈ U1 realise pβ , K ′

β+1 = K ′

β(aβ)
alg. By assumption on pβ , we have

tp(aβ/Aβ)⊢ tp(aβ/Kn). By Lemma 3.6, there is a very small subset B of K ′

β which
contains Aβ and is such that tp(aβ/B) ⊢ tp(a/K ′

β). So, tp(aβ/K ′

β) is κ-isolated.
We let K ′

β+1 = K ′

β(aβ)
alg
σ . We know that FK ′

β(aβ)σ contains all realisations of
tp(aβ/B) in U1. But since U1 is κ-saturated, it therefore contains κ independent
realisations of tp(aβ/Aβ), which shows (i′).

We now define U =
⋃

n∈ω Kn .

Step 2. Show that U is κ-saturated.

Let C ⊂U be small, and p a 1-type over C , realised by a in U1. If SU(p)=ω, then
a is transformally transcendental over C ; as C is small, K0 contains a realisation
of p. So we may assume that SU(p) < ω, and the proof is by induction on SU(p):
we assume that for any small D, any 1-type q over D of smaller SU-rank than p is
realised in U .
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If SU(p) = 0 there is nothing to prove, as p is realised in C . If there is
some b ∈ C(a)alg

σ such that 0 < SU(b/C) < SU(a/C), then we get the result
by induction: tp(b/C) is realised by some b′

∈ U , and there is a′
∈ U such that

tp(a′, b′/C)= tp(a, b/C) since acl(Cb′) is small and SU(a/Cb) < SU(p).
Hence we may assume that there is no such b, whence p is either one-based of

SU-rank 1 or almost internal to Fix(σ ) (by the semiminimal analysis of 2.15). We
need to distinguish three cases.

Case 1: p is one-based of SU-rank 1.
Let A ⊂ C be very small such that p does not fork over A. Let n < ω be such

that A ⊂ Kn; then p, being acceptable, occurs as a pβ , and is therefore realised
in Kn+1.

Case 2: p is realised in Fix(σ ).
If a ∈ Fix(σ ), we saw in 2.10 that tpF (a/C ∩ F) ⊢ tp(a/C). The saturation

hypothesis on F then gives the result: p is realised in F .

Case 3: Assume now that p ⊥
a Fix(σ ), p almost internal to Fix(σ ).

By Lemma 2.14, there is a1 ∈ C(a)σ such that tp(a1/C) is qf-internal to Fix(σ ),
σ(a1) ∈ C(a1), and a ∈ C(a1)

alg. We may replace p by tp(a1/C), i.e., assume that
p is qf-internal to Fix(σ ). Let C0 ⊂ C be very small such that p does not fork
over C0. By Lemma 3.4 there is a tuple b of realisations of p and a very small D
containing C0, contained in acl(CF), such that FD(b) contains all realisations of
qftp(a/D), and tp(b/D) ⊢ tp(b/ acl(CF)). Thus, tp(b/D) is acceptable, and if n
is such that D ⊂ Kn , then p in realised in Kn+1.

Step 3. U is κ-prime over K .

This is clear, by Remarks 2.17(2)–(3).

Step 4. U is κ-atomic over K .

When κ is regular or ℵε, then this follows from U being κ-constructed over K .
The proof in the singular case is a little more delicate, and is done by induction.
We already saw that K0 is κ-atomic over K . Let a be a finite tuple in U , and (in
the notation of Step 1) choose n minimal such that a ∈ Kn+1, and β minimal such
that a ∈ K ′

β+1. If n = −1, there is nothing to prove (by Step 0), so assume n ≥ 0.
By definition of K ′

β+1, there are a tuple b in K ′

β and a tuple c of realisations of
pβ such that a ∈ acl(K bc). We may assume that acl(K b) contains Aβ , and that
c |⌣K b K ′

β . By the induction hypothesis, tp(b/K ) is κ-isolated, and it therefore
suffices to show that tp(c/ acl(K b)) is κ-isolated (by Remarks 2.17(1)). If pβ is
qf-internal to Fix(σ ) then we know by Lemma 3.4 that there is some very small
D ⊂ acl(K b) such that tp(c/D) ⊢ tp(c/ acl(K b)), and we are done.

If pβ is one-based, then we may assume that the elements of the tuple c are inde-
pendent over K ′

β , maybe at the cost of increasing b ∈ K ′

β . Then, by the construction
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of K ′

β+1 in Step 1, we know that tp(c/K ′

β) is κ-isolated, so that if c′ is a proper sub-
tuple of c (consisting of realisations of pβ), then dimAβ pβ(acl(K ′

βc′)) < κ . In par-
ticular, dimAβ p(acl(K bc′))< κ , and tp(c/ acl(K b)) is κ-isolated (by Lemma 3.10).

Remark (notation as in Step 1 and above). The same proof shows that U is κ-atomic
over each Kn , and over each K ′

β . Moreover, the fact that U is κ-atomic over K ′

β

implies that pβ(U)⊂ K ′

β+1.

Step 5. If (bi )i<λ ⊂ U is K-indiscernible, with λ a cardinal, then λ≤ κ .

By supersimplicity, for some n < ω the elements bi , n < i < λ, are independent
over K (b0, . . . , bn)σ . If SU(bn+1/K b0, . . . , bn)≥ ω, then the tuple bn+1 contains
an element which is transformally transcendental over K , and as the transformal
transcendence degree of U over K is ≤ κ , we get λ ≤ κ . So we may assume
SU(bn+1/ acl(K b0, . . . , bn)) < ω.

Let L = acl(K b0, . . . , bn). Then the sequence (bi )n<i<λ is indiscernible over L .
Note that the sequence acl(Lbi ), n < i < λ, is also indiscernible over L under
a suitable enumeration of each acl(Lbi ). Hence, if cn+1 ∈ acl(Lbn+1), there are
ci ∈ acl(Lbi ), n + 1< i < λ, such that the sequence (ci )n<i<λ is indiscernible over
L . Using the semiminimal analysis (2.15) we may therefore assume that either
tp(ci/L) is one-based of SU-rank 1, or that tp(ci/L) is almost internal to Fix(σ ).
If tp(ci/L) is almost internal to Fix(σ ), then the result follows by Corollary 3.7.
The one-based case is a little more complicated.

Towards a contradiction, assume that λ > κ and tp(cn+1/L) is one-based of
SU-rank 1, let C ⊂ L be a very small set such that tp(cn+1/L) does not fork over C ,
and set p = tp(cn+1/C). Then the tuples ci , n < i < λ, form a Morley sequence
over C and over L . Let N be κ-prime over M := acl(L , ci | n < i < κ). We may
assume that N ≺ U .

Claim. U is κ-prime over L .

It suffices to show that U is κ-constructed over L . To do that it is enough to show
that each L Km is κ-constructed over L Km−1.

If m = 0 and K0 ̸= K , let B0 be a finite subset of B (the transformal tran-
scendence basis of U over K ) such that b := (b0, . . . , bn) is independent from K0

over acl(KB0). In particular, b is transformally algebraic over acl(KB0), and there-
fore tp(B/ acl(KB0))⊢ tp(B/ acl(LB0)) (reason as in the proof of Lemma 3.13(1)),
and as tp(B0/L) is κ-isolated, it follows that K0 is κ-constructed over L .

Assume now m > 0, and that we have shown that L K ′

β is κ-constructed over L .
If pβ is not one-based, then by Lemma 3.6, tp(aβ/ acl(L K ′

β)) is κ-isolated, and we
are done. Assume now that pβ is one-based; by construction there is a set (aα)α<µ
of K ′

β-independent realisations of pβ |K ′

β such that K ′

β+1 = acl(K ′

β, aα | α < µ),
and either µ ∈ ω or µ= κ .
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If µ ∈ ω, as U is κ-atomic over K ′

β , we get that tp(a0, . . . , aµ−1, b/K ′

β) is
κ-isolated and therefore L K ′

β+1 is κ-constructed over L K ′

β . If µ = κ , then
dimK ′

β
pβ(acl(K ′

β, b, aγ | γ < α)) < κ for each α < κ , so that L K ′

β+1 is κ-
constructed over L K ′

β (here we use that pβ(U)⊂ K ′

β+1 and that b is finite).
Hence, U being κ-prime over L , there is an L-embedding f of U into N . So

we have L ⊂ f (U) ≺ N ≺ U . As λ > κ and the ci are independent over L , there
is some n < j < λ such that f (c j ) /∈ M . But dimM(p) ≥ κ , and by Lemma 3.10,
p|M is not isolated. But N is κ-atomic over M , and f (c j ) realises p and is not
in M , which gives us the desired contradiction. This finishes the proof of (2) and
of the theorem. □

Proposition 3.15. Let κ be an uncountable cardinal or ℵε, and let U and U ′ be
κ-saturated models of ACFA of characteristic 0. Assume that U (resp., U ′) contains
an algebraically closed difference field K (resp., K ′), over which it is κ-atomic
and over which every sequence of indiscernibles has length ≤ κ . Assume moreover
that F := Fix(σ )(K )= Fix(σ )(U), Fix(σ )(K ′)= Fix(σ )(U ′), and that we have an
isomorphism f : K → K ′. Let p be an acceptable type over some very small A ⊂ K ,
and p′

= f (p). If L = acl(K p(U)) and L ′
= acl(K p′(U ′)), then f extends to an

isomorphism between L and L ′.

Proof. Note that p′ is also acceptable, with very small basis A′
= f (A). If p

is not one-based, then this is clear by Lemma 3.4: L = acl(K b), L ′
= acl(K ′b′)

for some tuples b realising p and b′ realising p′. We extend f |A to an isomor-
phism g0 : acl(Ab) → acl(A′b′) which sends b to b′; as tp(b/A) ⊢ tp(b/K ) and
tp(b′/A′) ⊢ tp(b′/K ′), g0 ∪ f extends to an isomorphism acl(K b)→ acl(K ′b′).

Assume now that p is one-based. Any κ-saturated model of ACFA containing
A contains (at least) κ realisations of p which are independent over A; hence
so do U and U ′. Let (ai )i<λ ⊂ U be a set of realisations of p which is max-
imal independent over K , with λ a cardinal, and let (a′

i )i<µ ⊂ U ′ be defined
analogously over K ′. By Lemma 3.10 and our hypothesis on the length of K-
indiscernible sequences, either λ is finite or λ = κ . If λ = n < ω, then as
tp(a′

0, . . . , a′

n−1/K ′)= f (tp(a0, . . . , an−1/K )), it follows that acl(K ′a′

0, . . . , a′

n−1)

contains κ-many independent realisations of f (p), so that µ≤ n. The symmetric
argument gives µ = λ. Define g on K (ai | i < λ)σ by g(ai ) = a′

i , and extend
to L = acl(K ai | i < λ). □

Theorem 3.16. Let κ be an uncountable cardinal or ℵε, and let U and U ′ be κ-
saturated models of ACFA of characteristic 0 containing an algebraically closed
difference field K , with F := Fix(σ )(K )= Fix(σ )(U)= Fix(σ )(U ′). Assume that
U and U ′ are κ-atomic over K , and that any sequence of K-indiscernibles in U or
in U ′ has length ≤ κ . Then U ≃K U ′.
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Proof. We start with the generic type: if the transformal transcendence degree of K
is ≥ κ , then U and U ′ are transformally algebraic over K . If not, then let D be a
transformal transcendence basis of U over K and D′ a transformal transcendence
basis of U ′ over K . They have the same cardinality κ , and there is a K-isomorphism
K (D)alg

σ → K (D′)
alg
σ . By Lemma 3.13, U and U ′ still satisfy the hypotheses over

K (D)alg
σ and K (D′)

alg
σ . Hence we may assume that both U and U ′ are transformally

algebraic over K . We define by induction on n an increasing sequence Kn of
algebraically closed subfields of U such that for each n, if p is an acceptable type
over some (very small) A ⊂ Kn−1, then Kn contains all realisations of p in U , and
furthermore, Kn = acl(Kn−1 P) for the set P of all realisations (in U) of acceptable
types over some subset of Kn−1. Then each Kn is normal over Kn−1 (and in fact
over K ), and so by Lemma 3.13, U satisfies the hypotheses over Kn . Note also that
U =

⋃
n<ω Kn . We let Ln ⊂ U ′ be defined analogously. It then suffices to build a

sequence gn of K-isomorphisms Kn → Ln .
Assume gn−1 already built. Let pβ , β < λ, be an enumeration of all acceptable

types over a subset of Kn−1, with associated small basis Aβ . Note that f (pβ), β <λ,
enumerates all acceptable types over subsets of Ln−1, since if q is an acceptable
type over the very small C ⊂ Ln−1, so is g−1

n−1(q) (over g−1
n−1(C) ⊂ Kn−1). We

build by induction on β < λ an increasing sequence K ′

β of algebraically closed
difference subfields of U such that K ′

β contains all realisations in U of pγ for
all γ <β. Assume we have extended gn−1 to an isomorphism fβ : K ′

β → L ′

β , where
L ′

β contains all realisations in U ′ of gn−1(pγ ) for all γ < β. As U is κ-atomic
over Kn−1, it is also κ-atomic over K ′

β (by Lemma 3.13), and similarly, U ′ is κ-
atomic over L ′

β = fβ(K ′

β). Extending fβ to an isomorphism fβ+1 : K ′

β+1 → L ′

β+1
is given by Proposition 3.15.

As remarked before, if q is an acceptable type over some A′
⊂ L ′

n−1, then
g−1

n−1(q)= pβ for some β<λ, and so L ′
n contains q(U ′), and K ′

n contains g−1
n−1(q)(U).

This finishes the induction step. Then g =
⋃

n<ω gn is a K-isomorphism between
U and U ′. □

Theorem 3.17. Let κ be an uncountable cardinal or ℵε and let K be an alge-
braically closed difference field of characteristic 0, with Fix(σ )(K ) pseudofinite
and κ-saturated. Then ACFA has a κ-prime model over K , and it is unique up to
K-isomorphism.

Proof. This follows immediately from Theorem 3.16 together with Theorem 3.14,
as the properties are preserved by elementary substructures. □

Remark 3.18. Note that the result also holds under the weaker hypothesis that K is
algebraically closed, |Fix(σ)(K )|<κ , and κ<κ=κ≥ℵ1, so that the theory of pseudo-
finite fields has a unique (up to K-isomorphism) saturated model of cardinality κ
containing Fix(σ )(K ). (This uses the stable embeddability of Fix(σ ); see 2.10.)
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An exposition of Jordan’s original proof
of his theorem on finite subgroups of GLn.C/

Emmanuel Breuillard

Dedicated to Udi Hrushovski on the occasion of his 60th birthday.

We discuss Jordan’s theorem on finite subgroups of invertible matrices and give
an account of his original proof.

1. Introduction

In 1878 Camille Jordan [29] proved the following theorem:

Theorem 1.1 (Jordan’s theorem). Let G be a finite subgroup of GLn.C/. Then
there is a normal abelian subgroup A in G of index bounded by a constant J.n/
depending on n only.

It is the purpose of this note to provide an account of Jordan’s original proof of his
result. Jordan’s proof is purely algebraic, and quite different from the proofs found
in most textbooks (such as [19] or [21]) that are based on a geometric argument
due to Bieberbach [3]. Jordan’s proof does not appear to have been discussed
much elsewhere (with the exception of Dieudonné’s notes in Jordan’s collected
works [20]) even as this year marks the hundredth anniversary of Jordan’s death.

Jordan’s motivation for proving this result came from the study of linear differ-
ential equations of order n with rational functions as coefficients and with algebraic
solutions; in this context finite subgroups of GLn arise naturally as monodromy
groups and information such as Theorem 1.1 on the monodromy group translates
immediately into structural properties for the solutions of the equation.1 Prior to
Jordan, Fuchs and Klein had studied the two dimensional case and Klein had given
a complete list of finite subgroups of GL2.C/. Jordan announced his result in [28],
published it in [29] and later wrote a second article [30] to clarify his proof.

Jordan argued by induction on the dimension, but he gave no explicit bound
on J.n/ in his article, not even an inductive one. It is therefore understandable

MSC2020: 20C10, 20E34.
Keywords: Jordan’s theorem, finite subgroups of matrices, nonstandard analysis.

1For the full story of the motivations and context in which Jordan’s theorem was proven, we refer
the reader to the wonderful book by Jeremy Gray [24].
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that mathematicians sought to find explicit bounds closer to the truth and this
topic has been quite active in the last 146 years. Indeed, after Jordan’s memoir,
several authors gave new proofs of his theorem. The first of these appears to be
Blichfeldt, who gave an entirely different proof of Jordan’s result via the study of
the p-Sylow subgroups, for which he established explicit bounds on their size in
terms of p and n (see [4; 5; 6; 7; 35]). Subsequently Bieberbach [3] came up with
yet another very different and purely geometric argument, which was later refined
by Frobenius [23]. This third proof is much slicker and it is the one that can be
found, with some variants, in most textbooks that treat the question, such as [19,
Chapter V; 41, Chapter 8]. Blichfeldt himself later combined it with his previous
approach to improve his bounds on J.n/; see [35] and [46; 26; 22].

Bieberbach’s argument starts with what people refer to nowadays as Weyl’s
unitary trick (i.e., the observation that a finite, or compact, subgroup G of GLn.C/
can be conjugated inside the compact unitary group Un.C/ by averaging a hermitian
product overG). Then one makes use of a volume packing argument in combination
with the commutator shrinking property of Lie groups, i.e., the fact that commutators
of elements close to the identity in Un.C/ are themselves close, and in fact much
closer, to the identity. This commutator shrinking property has inspired several
other authors [50; 10; 31; 1] and is nowadays a crucial tool in the study of discrete
subgroups of Lie groups and in Riemannian geometry. We refer the reader to [42,
Theorem A] or [14, §2] for a proof of Jordan’s theorem via this argument.

Jordan’s original proof, on the other hand, was based on a purely algebraic idea,
which should be traced back to Klein’s method for the classification of the finite
subgroups of rotations of the 2-sphere (and isometries of Plato’s solids), as described
in Klein’s famous book on the icosahedron [32]. Basically, one enumerates the
elements of G according to the shape and size of their centralizers and one can
thus write a class equation involving the order of G and of the centralizers of its
elements. Inducting on dimension, this yields a diophantine equation of the form

1

g
D
1

q1
C � � �C

1

qk
�
b

a
; (1-1)

where g D ŒG Wˆ� is the index of the center ˆ of G in G, a; b and k are integers
that are bounded in terms of n only and each qi is the cardinality of a certain
subgroup of G=ˆ. It is easy to check that any equation of this form forces g to be
bounded (in terms of n) and Jordan then discusses the boundedly many cases that
may arise. Although more cumbersome, this method gives potentially much more
information on the finite subgroup G. For example, Jordan used it to list all finite
subgroups of GL3.C/, giving an explicit set of generators for each class of groups,
after examining some 47 different cases.2

2In fact Jordan missed some groups; see [4; 5; 6; 7; 20].
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With the advent of the classification of finite simple groups, B. Weisfeiler [49]
and more recently M. Collins [16] have found tight bounds for J.n/. For example,
Collins proved that if n> 71, then J.n/ can be taken to be .nC 1/Š . This is tight,
i.e., .nC 1/Š is always a lower bound for J.n/, because the symmetric group on
nC 1 letters acts irreducibly on the hyperplane

PnC1
iD1 xi D 0 by permuting the

nC 1 coordinates.
Schur [44] extended Jordan’s theorem, proving that it holds assuming only that

the group G is torsion (i.e., every element has finite order). In particular, every
finitely generated torsion subgroup of GLn.C/ is finite. This is sometimes called
the Jordan–Schur theorem; see [47; 19].

In another direction initiated by Brauer and Feit [13], Larsen and Pink [34] gave
a vast generalization of Jordan’s theorem to finite linear groups in characteristic p,
which avoids the classification of finite simple groups. Interestingly enough, part
of their proof is very much akin to Jordan’s original argument. See also [11] for a
recent use of theorems of Jordan and Larsen–Pink type in the study of finite group
actions on elementary abelian p-groups with finite Morley rank.

Finally, we mention that there are nonlinear analogues of Jordan’s theorem for
finite subgroups of homeomorphisms of manifolds (conjectured by E. Ghys) and for
finite subgroups of birational automorphisms of algebraic varieties. In these cases,
it has recently been shown that there is a nilpotent subgroup of index bounded only
in terms of the dimension of the manifold or variety. But “nilpotent” cannot be
replaced by “abelian”. We refer the reader to the preprints [18; 25] and references
therein for these exciting recent developments.

This paper is organized as follows: in Section 2 we define the notion of M -fan
and state the version of Theorem 1.1 that will be used as induction hypothesis. In
Sections 3 and 4 we write the corresponding class equation and complete Jordan’s
proof of Theorem 1.1. In Section 5 we give an illustration of the method by
specializing to the case of nD 2 and we derive the classical results of Klein for
finite subgroups of SO3.R/. In Section 6 we discuss a nonstandard treatment of
Jordan’s proof, which is very close to Jordan’s original formulation of his proof, and
in the last section we briefly survey bounds for J.n/ from a historical perspective.

2. A reformulation of Theorem 1.1

As we will see below, Jordan’s argument uses nothing about the field C and in fact
his proof carries over to an arbitrary field provided we assume that every element
of G is semisimple, i.e., diagonalizable in some field extension. So we let K be an
arbitrary field, which we assume algebraically closed without loss of generality.

Let us first reformulate Theorem 1.1 in the form originally proved by Jordan.
For this we need to introduce a couple of definitions.
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Definition 2.1. By a root torus, we mean a subgroup of GLn.K/ which is conjugate
to a subgroup of the diagonal matrices defined by a set of equalities between the
diagonal entries.

For example, the subgroup of diagonal matrices

fg D diag.a1; : : : ; a6/ j ai 2K�; a1 D a2; a5 D a6g

is a root torus of GL6.K/.

Definition 2.2. Let G be a finite subgroup of GLn.K/. Given M > 2, we say that
a subgroup F of G is an M -fan if it is conjugate to a subgroup of the diagonal
matrices fg D diag.a1; : : : ; an/ j ai 2K�g such that for every pair of indices i; j
the set of ratios ai .g/=aj .g/ is either reduced to f1g or achieves at least M distinct
values as g varies in F .

The terminology fan is a liberal translation of Jordan’s faisceau.3 Note that the
subgroup ˆ of all scalar matrices in G is clearly an M -fan, for any M > 2.

Note that every M -fan F is contained in a unique minimal root torus SF defined
by the same equalities between diagonal elements, such as ai D aj , as those that
hold in F . In particular G \SF is itself an M -fan and every maximal M -fan in G
has this form.

We can now state an alternative, slightly more precise, version of Theorem 1.1:

Theorem 2.3 (Jordan’s theorem, second form). Given n 2 N, there are constants
M DM.n/;N DN.n/> 1 such that the following holds. LetK be an algebraically
closed field, and let G be a finite subgroup of GLn.K/ such that every element of
G is diagonalizable. Then G contains a unique maximal M -fan. Call it F . We
have ŒG W F �6N .

The proof of Theorem 2.3 spans the next two sections. Before we start, a number
of simple remarks are in order:

(1) Since F is unique, it must be normal in G.

(2) To see that Theorem 2.3 implies Theorem 1.1, it only remains to check that
if K D C, then every element of G is diagonalizable. This is indeed the case,
because every element of G has finite order and is thus diagonalizable over C.

(3) Although we prove the result in any characteristic, it is worth mentioning that
the case of positive characteristic follows from the case when K D C, because if G
is as in Theorem 2.3, then jGj is prime to char.K/ and thus G admits an embedding
in GLd .C/. See for instance [39, Proof of Theorem C] or [21, Theorem 3.8].

3We are grateful to the referee for suggesting this translation. In fact the word faisceau is used
throughout Jordan’s other works to mean sometimes “subgroup”, sometimes “abelian subgroup”.
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(4) The proof of Theorem 2.3 proceeds by induction on the dimension. The letter
F denotes a fan and we reserve the letter F for maximal fans.

(5) Since SF is normalized by G, G must permute the eigenspaces of SF . So if
G acts primitively on Kn (i.e., does not permute the components of any nontrivial
direct sum decomposition of Kn), then SF must be reduced to scalar matrices and
those have bounded index in G.

(6) If g 2 GLn.K/ normalizes F , then it must normalize the root torus SF too. In
particular G lies in the normalizer of a root torus SF and ŒG WG \SF �6N .

(7) The abelian normal subgroupA in Theorem 1.1 can be taken to be characteristic
in G. A theorem of Chermak–Delgado [27, Theorem 1.41] asserts that in any finite
group G with an abelian subgroup of index i , there is an abelian characteristic
subgroup of index at most i2. So we could make A characteristic at the expense of
changing J.n/ into J.n/2. Another route is to observe that, if M >nŠ, the maximal
M -fan F in Theorem 2.3 commutes with every normal abelian subgroup of G.
Hence the subgroup generated by all ˛.F/, ˛ 2 Aut.G/, is abelian, characteristic,
and of smaller index.

As seen from items (1) and (2) above, Theorem 2.3 implies Theorem 1.1. It
turns out that one can also derive Theorem 2.3 from Theorem 1.1 directly and we
explain this in the paragraph below. To be more precise, since we have only stated
Theorem 1.1 over C while Theorem 2.3 is also valid in positive characteristic, we are
going to prove that Theorem 2.3 follows from the assertion that any finite subgroup
of GLn.K/ made of diagonalizable elements admits a normal abelian subgroup
of index at most J.n/. Jordan’s original proof goes by proving Theorem 2.3 first,
because its formulation is more adequate for the induction scheme.

Proof of the equivalence of Theorems 1.1 and 2.3. Assume the conclusion of
Theorem 1.1. Since every element of G is diagonalizable and A is abelian, A
is simultaneously diagonalizable and Kn decomposes as a direct sum of weight
spaces (i.e., joint eigenspaces) for A. Since A is normal in G, these eigenspaces are
permuted by G and thus G lies in the normalizer N.S/ of the root torus S that acts
on Kn by a scalar multiple on each one of the weight spaces of A. Note that A6 S .
Moreover, if F is anM-fan withM>J.n/ andm WD ŒF WF \S�6 ŒG WG\S�6J.n/,
we have f m 2 S for all f 2 F . Thus F \ S is an M=m-fan lying in S . Since
M=m > 1, this implies that F itself lies in S . Hence every M -fan is contained
in S . Finally, viewing S as a diagonal subgroup it is straightforward to check
that the subgroup generated by all M -fans in S is itself an M -fan. Hence it is
the unique maximal M -fan in G. But G \S contains some M -fan with index at
most .M � 1/n�1 as follows by intersecting the kernels of the homomorphisms
g 7! ai .g/=aj .g/ at most n� 1 times. Hence ŒG W F � 6 J.n/.M � 1/n�1. This
completes the claims of Theorem 2.3 with N D J.n/n, M D J.n/C 1. �
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3. Jordan’s fundamental equation

In this section we begin the proof of Theorem 2.3 and obtain Jordan’s fundamental
equation (3-3) below, which expresses an enumeration of the elements of G into
various classes, which we are about to describe. The proof of Theorem 2.3 will be
completed in the next section after a discussion of the fundamental equation.

We proceed by induction on the dimension n.
If nD 1, then GL1.K/DK� is abelian and there is nothing to prove. We now

assume the theorem proven for all dimensions < n.
Observe that, by the argument at the end of the last section, it is enough to

establish the conclusion of Theorem 1.1, namely the existence of an abelian normal
subgroup of index bounded by some function J.n/, as this automatically implies
the conclusion of Theorem 2.3 with N.n/D J.n/n and M.n/D J.n/C 1.

IfG preserves a direct sum decompositionKnDKr˚Kn�r , with 1<r <n, then
we may use the induction hypothesis in the obvious way applying it to the projections
�r.G/ and �n�r.G/ to GLr.K/ and GLn�r.K/, respectively. The conclusion of
Theorem 1.1 then easily follows as soon as J.n/>max0<r<nN.r/N.n� r/ and
that of Theorem 2.3 too as we have just said.

We repeatedly use the last observation for subgroups of G that preserve such a
decomposition. If g 2G is not a scalar matrix, then the centralizer CG.g/ preserves
the eigenspace decomposition of g on Kn. We can therefore apply this observation
to CG.g/ and conclude from the induction hypothesis that CG.g/ contains a unique
maximal M -fan (for all M larger than a number depending on n only). That is:

Lemma 3.1. If g 2G is not a scalar matrix, then the centralizer CG.g/ contains a
unique maximal M -fan.

We can thus set the following definition:

Definition 3.2. An element g is said to be associated with an M -fan F if F lies in
the centralizer CG.g/ and is the unique maximal M -fan of CG.g/.

We denote by Fg the M -fan associated with g. This definition makes sense
(so far, thanks to the induction hypothesis) as soon as g is not a scalar matrix
in GLn.K/ by the remarks above the definition. Note that, by maximality, Fg
must contain the subgroup ˆ of G of all scalar matrices in G. Moreover, setting
N WDN.n� 1/2, it follows from the induction hypothesis that

ŒCG.g/ W Fg �6N: (3-1)

These remarks also have the following three consequences:

Lemma 3.3. If F is an M -fan of G not entirely made of scalar matrices, then F is
contained in a unique maximal M -fan F of G.
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Proof. Let f 2 F be a nonscalar element. If F1 is an M -fan containing F , then F1
must commute with all elements of F and thus lie in CG.f /, the centralizer of f .
Therefore F1 must lie in the unique maximal M -fan of CG.f /. �

Let F be an M -fan of G not contained in the scalar matrices ˆ and let F be the
maximal M -fan of G containing F . Since F is contained in the centralizer CG.F /,
it must be the maximal M -fan there too and, by the induction hypothesis, we must
have ŒCG.F / W F �6N .

Lemma 3.4. SupposeˆˆF ˆF . Then the number nF of elements ofG associated
with F is divisible by jF j and nF =jF j6N .

Proof. If nF D 0 there is nothing to prove, so we assume nF > 1. Every element
associated with F lies in the centralizer CG.F /. Moreover, if g 2 CG.F / is
associated with F and f 2F , then gf is also associated withF , i.e., Fgf DFgDF .
Indeed, since F ˆ F we must have gf … ˆ (as otherwise CG.g/ D CG.f /

contains F) and by Lemma 3.1 there is a unique maximal M -fan Fgf in CG.gf /.
Since F � CG.gf / we have F � Fgf � CG.gf /. Moreover, Fgf is contained
in F and must therefore commute with f , and hence also with g. It follows that
F � Fgf � CG.g/ and F D Fgf by maximality of F .

Consequently, the set of elements of G associated with F is a union of cosets of
F all lying in CG.F /. Since CG.F / contains F as a subgroup of index at most N
the result follows. �

And for maximal fans we have:

Lemma 3.5. Let F ¤ ˆ be a maximal M -fan in G. Then the number nF of
nonscalar elements g in G which are associated with F is nF D jCG.F/j � jˆj,
and ŒCG.F/ W F �6N .

Proof. A nonscalar element g is associated with F if and only if F 6 CG.g/, i.e.,
g 2 CG.F/. The bound follows from (3-1). �

The strategy of Jordan’s proof consists in enumerating the elements of G ac-
cording to their associated M -fan. Let ˆ be the scalar matrices in G. We may
decompose G as the disjoint union

G Dˆ[F fg j g associated with F g;

where the union is taken over fans arising as maximal M -fans of centralizers of
nonscalar elements of G. We split this union into four disjoint parts,

G Dˆ[G1[G2[G3;

where G1 is the subset of those g’s not in ˆ such that Fg Dˆ, and G2 is the subset
of those g’s not in ˆ such that Fg contains ˆ strictly but is not the maximal M -fan
Fg which contains it by Lemma 3.3, and finally G3 is the remaining subset of those
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g’s not in ˆ for which Fg is not ˆ and is maximal in G. We now consider each
subset Gi one after the other.

(1) We first enumerate the elements of G1, that is, the g’s outside ˆ which are
associated with ˆ. This subset is invariant under conjugation by G. Also it is
clearly a union of cosets of ˆ, for if � 2ˆ, then CG.g�/D CG.g/ and thus g� is
also associated with ˆ. It follows that conjugation by G permutes those ˆ-cosets.

The stabilizer NG.gˆ/ of a ˆ-coset gˆ under the G-action by conjugation must
containCG.g/ as a subgroup of index at most n. Indeed, if h2G has hgˆh�1Dgˆ,
then hgh�1 D g� for some � 2ˆ. It follows that det.�/D 1 and thus � is an n-th
root of unity. We conclude that ŒNG.gˆ/ W CG.g/�6 n.

Thus the number of elements in the G-conjugacy class of the coset gˆ equals

jGj

jNG.gˆ/j
jˆj D jGj

1

ŒNG.gˆ/ W CG.g/�

1

ŒCG.g/ Wˆ�
D jGj

1

�
:

Enumerating all such conjugacy classes, we find

jG1j D jGj
�
1

�1
C � � �C

1

�k1

�
;

where each �i is a positive integer of size at most nN by (3-1) and the remark
above.

(2) We now pass to the subset G2. Clearly G2 is stable under conjugation by G.
Let F be an M -fan of G with maximal M -fan F such that ˆ ˆ F ˆ F . Let nF
be the number of g’s which are associated with F . By Lemma 3.4, nF =jF j is an
integer of size at most N .

Grouping together the fans that are conjugate to F , we obtain jGj=jNG.F /j
different fans, where NG.F / is the normalizer of F in G. Note that

ŒNG.F / W CG.F /�6 nŠ (3-2)

since NG.F / permutes the weight spaces of F and hence a subgroup of index at
most nŠ will preserve them and thus commute with F .

It follows that the number of elements that are associated with a fan lying in the
G-conjugacy class of F equals

nF
jGj

jNG.F /j
D jGj

1

ŒNG.F / W CG.F /�

nF =jF j
ŒCG.F / W F �

D jGj
�

�
;

and thus enumerating the different conjugacy classes

jG2j D jGj
� �1
�1
C � � �C

�k2

�k2

�
;

where the �i 6N and �i 6 nŠN are positive integers.
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(3) Finally we consider the subsetG3 of those nonscalar g’s such thatFg is maximal
in G and different from ˆ. Clearly this set is invariant under conjugation by G.
Given a maximal M -fan F , the number nF of elements of G which are associated
with F equals jCG.F/j � jˆj according to Lemma 3.5.

Setting ! D ŒNG.F/ W CG.F/� and q D ŒNG.F/ W ˆ�, the number of elements
that are associated with a maximal fan conjugate to F is

nF
jGj

jNG.F/j
D jGj

�
1

!
�
1

q

�
;

where ! and q are positive integers with ! 6 nŠ and q D ŒCG.F/ Wˆ�! > 2!.
Summing over the conjugacy classes, we get

jG3j D jGj
��

1

!1
�
1

q1

�
C � � �C

�
1

!k3

�
1

qk3

��
:

Combining all three cases, we have thus completed our enumeration of G and
we obtain:

Proposition 3.6 (Jordan’s fundamental equation). Let G be a finite subgroup of
GLn.K/ all of whose elements are diagonalizable, and ˆ the subgroup of scalar
matrices in G. Then there are positive integers qi dividing g WD jGj=jˆj such that

jGj D jˆjC jGj

k1X
iD1

1

�i
CjGj

k2X
iD1

�i
�i
CjGj

k3X
iD1

�
1

!i
�
1

qi

�
; (3-3)

where ki , �i , �i , �i and !i are nonnegative integers of size at most 2nŠN (recall
that N DN.n�1/2 is the bound from Theorem 2.3 under the induction hypothesis).
In particular,

1

g
D
1

q1
C � � �C

1

qk3

�
b

a
; (3-4)

where b
a

is an irreducible fraction whose numerator and denominator are bounded
in terms of n only.

To prove Proposition 3.6 it remains only to show the bound on the number ki
of elements in each sum and then derive (3-4). But this follows from the equation
(3-3) and from the bounds previously obtained, because

1

!i
�
1

qi
> 1

2!i

for each i D 1; : : : ; k3 and thus each term in the above sums contributes at least
jGj=2nŠN , forcing k1C k2C k3 6 2nŠN .
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Showing (3-4) is a simple matter of rearranging (3-3):

jGj

jˆj

� k1X
iD1

1

�i
C

k2X
iD1

�i

�i
C

k3X
iD1

1

!i
� 1

�
D

k3X
iD1

jGj

jˆj

1

qi
� 1: (3-5)

Then we let

g WD
jGj

jˆj
and

b

a
WD

k1X
iD1

1

�i
C

k2X
iD1

�i

�i
C

k3X
iD1

1

!i
� 1;

where b
a

is an irreducible fraction. We thus get (3-4).
Note further that a is bounded in terms of n only: indeed it cannot exceed the

least common multiple of at most 2nŠN integers of size at most nŠN . A similar
bound holds for b. This completes the proof of Proposition 3.6.

4. Proof of Theorem 2.3

It remains to discuss the fundamental equation (3-3) according to the possible values
of the integers �i , �i , �i , !i and qi .

The proof rests on the following elementary lemma about fractions:

Lemma 4.1. Consider the following equation, where all variables are positive
integers:

1

g
D
1

q1
C � � �C

1

qk
�
b

a
:

Suppose that qi < g for all i . Then g 6 f .k; a/, where f .k; a/ is a function of k
and a only. One may take f .k; a/D .kŠa/2

k

.

Proof. The proof proceeds by induction on k. If k D 1, then 1
q1
> b
a

implies q1 6 a
and 1

g
> 1
q1a
> 1
a2 , so g 6 a2 DW f .1; a/.

Suppose the lemma proven for all indices 6 k � 1. Without loss of generality,
we may assume that 1

q1
6 : : :6 1

qk
. Then 1

q2
C � � �C

1
qk
< b
a

, for q1 < g.
It follows that

b

a
>
1

q2
C � � �C

1

qk
> 1

qk
:

We may thus write c
d
D

b
a
�

1
qk

, where c; d are positive integers and c
d

is an
irreducible fraction.

Since 1
g
6 k
qk
�
b
a

, we get qk 6 ka and thus d D lcm.a; qk/6 ka2. We obtain

1

g
D
1

q1
C � � �C

1

qk�1
�
c

d
:

Applying the induction hypothesis we conclude g 6 f .k� 1; ka2/DW f .k; a/. �
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We now complete the proof of Theorem 2.3. If k3 D 0, then we see from (3-4)
that �b

a
D

1
g

so bD�1 and gD a is bounded in terms of n only by Proposition 3.6.
Hence ˆ has bounded index in G and we are done.

Assume k3 > 1. If qi D g for some i , then

G DNG.Fi / and ŒG W Fi �D !i ŒCG.Fi /;Fi �6 nŠN

by (3-1). So Fi is the desired abelian normal subgroup of bounded index and we
are done.

The right-hand side of (3-5) is a nonnegative positive integer. If it is zero, then
k3 D 1, q1 D g and we fall back to the previous case. Otherwise it is positive and
thus b > 0, so that we are in the situation of Lemma 4.1. We conclude that g is
bounded in terms of n only and again we are done.

Theorem 2.3 is now proven in full.

Remark. We mention in passing that the proof of Landau’s theorem [33] that there
are only finitely many finite groups G with exactly k conjugacy classes cl1; : : : ; clk
is based on a similar, and easier, diophantine equation, namely

1D
1

q1
C � � �C

1

qk
;

where qi D jGj=jcli j. This is an instance of an Egyptian fraction [9], and a simple
argument [36] implies that

k > 1

log 4
log log jGj:

5. Platonic solids and the finite subgroups of SO3.R/

As an illustration and for the sake of comparison, we recall in this section a proof
of the classification of finite subgroups of SO3.R/ following Klein’s method, as
given in many textbooks, e.g., [45; 51].

LetG be a finite subgroup of SO3.R/. Every nontrivial element ofG is a rotation
around some axis. Let X be the set of all axes that arise as axes of rotations in G.
Clearly G permutes X because if xh is the axis of h 2G, then gxh D xghg�1 . The
determination of all possible groups G proceeds via a double counting argument,
or class equation, which enumerates the elements of G according to their fixed axis.
Given an axis x 2 X , let Gx be the subset of elements of G whose axis is x, to
which we adjoin the identity. Then Gx is a subgroup. It usually coincides with
the centralizer of x, except when x is a flip (i.e., has angle �). Enumerating the
elements of G starting with the identity element, we can write

jGj D 1C
X
x2X

.jGxj � 1/:
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To go further, we group together the terms corresponding to two axes that are
G-congruent (i.e., x � y if there is g 2G with y D gx). We obtain

jGj D 1C
X

classes of x2X

jGj

jStabxj
.jGxj � 1/; (5-1)

where Stabx is the stabilizer of x in G. It is a subgroup of G. Now observe that
an element g of G which preserves x may be only of two possible forms: either
it fixes both poles of x, in which case g belongs to Gx , or it permutes the two
poles of x. It follows that Gx is a subgroup of Stabx of index either 1 or 2. Let
x1; : : : ; xr ; xrC1; : : : ; xrCs be a set of representatives of the G-orbits in X such
that ŒStabxi

W Gxi
� D 1 if 1 6 i 6 r and ŒStabxi

W Gxi
� D 2 if r C 1 6 i 6 r C s.

Setting gi D jGxi
j, dividing by jGj in (5-1) we obtain

1D
1

jGj
C

rX
iD1

�
1�

1

gi

�
C
1

2

rCsX
iDrC1

�
1�

1

gi

�
; (5-2)

or equivalently, in the form of Jordan’s fundamental equation (3-4),

1

jGj
D

1

n1
C � � �C

1

nrCs
�
b

a
; (5-3)

where b
a
D r C s

2
� 1, and ni D gi for i 6 r , ni D 2gi for i > r .

It remains to discuss equation (5-3) according to the possible values of the gi ’s.
Since gi > 2, we get from (5-2) that 1 > r

2
C
s
4

, from which it follows immediately
that r 6 1 and 2r C s 6 3, so b

a
2
˚
�
1
2
; 0; 1

2

	
. Since ni divides jGj, (5-3) forces

b
a
> 0 (hence b

a
D
1
2

), unless b
a
D 0 and r C s D 1. This last case can only occur if

r C s
2
D 1, forcing r D 1; s D 0. We now examine the various possibilities.

�
b
a
D 0 and r D 1, s D 0. Then g1 D jGj and G is a cyclic group of rotations

around a single axis.

�
b
a
D

1
2

, and r D 1, s D 1,

1

2
C

1

jGj
D

1

n1
C
1

n2
:

Since g2 > 2, we have n2 > 4. This forces n1 < 4 and hence n1 D 2; 3. There
are thus two cases:

(1) If n1 D 2, then n2 D 2g2 D jGj and G is a dihedral group of order 2n, with
nD g2 an odd integer. G is the group of orientation preserving isometries of
a regular n-gon. Moreover in our case n is odd because there are only two
G-orbits of axes.

(2) If n1 D 3, then one checks that n2 D 4 and jGj D 12. Here G is the group of
orientation preserving isometries of a regular tetrahedron.
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�
b
a
D

1
2

, r D 0, s D 3,

1

2
C

1

jGj
D

1

n1
C
1

n2
C
1

n3
:

We may assume n16 n26 n3. This forces n1<6. But n1D 2g1> 4. So n1D 4
and thus

1

4
C

1

jGj
D

1

2g2
C

1

2g3
:

We have the following cases:

(1) g2 D 2, then jGj D n3 D 2g3 and G is a dihedral group of order 2n, with
nD g3 an even integer. G is the group of orientation preserving isometries of
a regular n-gon. Moreover in our case n is even because there are exactly three
G-orbits of axes. For example if n D 2, G ' .Z=2Z/2 and every nontrivial
element is a flip around one of three mutually orthogonal axes.

(2) g2 D 3, then
1

6
C

2

jGj
D

1

g3
:

This forces g3 < 6, and hence three cases:

(a) g3D 3, then jGjD 12 andG preserves a regular tetrahedron. This however
is in contradiction with the assumption s D 3, since there are only two
G-orbits of axes in this case. So this case cannot occur.

(b) g3 D 4, then jGj D 24 and G ' S4 is the group of orientation preserving
isometries of a cube or regular octahedron.

(c) g3 D 5, G ' A5 is the group of orientation preserving isometries of a
regular icosahedron or dodecahedron.

6. Nonstandard analysis and Jordan’s unlimited numbers

As we have seen, Jordan gave no explicit bound on J.n/ in his article. Of course,
this is not due to any fundamental ineffectiveness in the proof. Indeed, if one very
carefully follows Jordan’s argument, then it is possible to obtain in this way a bound
in the form of a tower of exponentials, i.e., a tower

1010
::: 10

of length n; see [2]. In fact Jordan himself seems to have been dissatisfied with his
original exposition and devoted a second article [30], where he rewrote his proof
and explained why it is effective (even though he still did not supply a concrete
bound). From a purely epistemological viewpoint, it is however interesting to
consider how Jordan gets away with not writing down any bound whatsoever in
his original memoir. In fact, in order to convince the reader of the soundness of
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his argument, he introduces a distinction between two kinds of numbers, which he
calls limited and unlimited. Let us quote him [29, p. 114]:

It is important for the study thereafter to make precise the meaning we
attach to the words limited and unlimited. They are not synonymous to
finite and infinite. We will say that a number is limited if it is smaller than
a certain bound that has been determined. It follows from this definition
that a finite number, about which we have no data, is unlimited; but it
becomes limited as soon as we manage to assign a bound to it.

This way, instead of saying that a certain quantity is bounded in terms of n only,
he says that the quantity is limited, while if it is not, it is unlimited and this is
somehow leading to a contradiction when considering the class equation (3-4). A
century and a half after Jordan, it is hard not to see there the premise of a way of
thinking that prefigures nonstandard analysis, where a new kind of number, the
unlimited ones, is given an existence of its own.

In fact, it is possible to give a nonstandard treatment of Jordan’s proof, which we
now sketch. Starting with a sequence of possible counterexamples to the theorem,
one may take their ultraproduct, which becomes a certain infinite, pseudofinite
subgroup bG of GLn.bK/. Here bK is the ultraproduct of algebraically closed fieldsKi .
A fan in bG is defined to be an internal diagonalizable subgroup F such that each
root ˛ij W F ! bK, f 7! �i .f /=�j .f /, is either infinite or trivial. The induction
hypothesis on the dimension allows one to assume that the centralizer C.g/ of
every nonscalar element g 2 bG admits a unique normal maximal fan Fg whose
index is finite. Arguing as in Jordan’s proof, we can partition the elements of bG
into four parts: scalars ˆ, elements g … ˆ with Fg D ˆ, elements g … ˆ with
ˆŒ Fg and Fg not maximal in bG, elements g …ˆ with Fg maximal. Exploiting
the fact that bG is pseudofinite, the second and third parts form a proportion of r jbGj
of bG, while the last part forms a proportion

�
r 0�

P
q�1i

�
jbGj, where r; r 0 are finite

(standard) rationals and qi D jNbG.Fgi
/=ˆj are a finite number of (nonstandard)

divisors of jbG=ˆj. Denoting by g the nonstandard integer jbG=ˆj, we thus have
the equation

1

g
D r 00C

X
i

1

qi
;

where r 00 D 1� .r C r 0/. Taking the difference with standard parts we see that this
implies

1

g
D

X
i

0 1

qi

for a subsum of the original sum. However, the qi ’s are divisors of g and the only
way this can happen is if qi D g for some i . By (3-1) and (3-2), this means that
Fgi

is normal in bG and of finite index. This contradiction ends the proof.
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The reader curious to take a look at Jordan’s original article will see that the
above nonstandard treatment is in fact much closer to Jordan’s own formulation
of his proof than the exposition we have given of it in Section 3. Indeed Jordan
does not talk about M -fans, but only defines fans. And he does so exactly as we
did in the nonstandard treatment above only using the word “illimited” in place of
the word “infinite”. Of course this definition can only make sense rigorously if we
place ourselves in a nonstandard universe to begin with. So his proof is resolutely
nonstandard since its very inception. His original formulation [29, §40 p. 114] then
reads as follows:

Theorem 6.1 (Jordan’s theorem, original formulation). A finite subgroup G of
linear substitutions admits a unique maximal fan. It is normal and its index is a
limited number.

To finish, we stress the key role of the finiteness of G in Jordan’s theorem. In
Jordan’s proof it is exploited arithmetically via the class equation. This is to be
contrasted with Bieberbach’s geometric argument via the commutator shrinking
property, where finiteness is exploited via the element closest to the identity.

We end this section by mentioning in passing some related recent developments
around a question of Zilber [52, Problem 6.3] regarding pseudofinite groups. Re-
cently, Nikolov, Schneider and Thom [38] proved that every homomorphism from
a pseudofinite group to a compact Lie group has abelian-by-finite image, thus
answering a conjecture of Pillay [40, Conjecture 1.7] and Zilber’s question by the
same token.

Of course such a strong statement is more than enough to establish Jordan’s
theorem itself following the nonstandard approach sketched above, at least when the
characteristic of K is zero. Indeed, in this case bK can be taken to be isomorphic to
C as any ultraproduct of countable algebraically closed fields of characteristic
zero. Furthermore, we may assume that bG lies in the internal set of unitary
matrices Un.bK/, in other words that bG is a subgroup of a compact Lie group.
By Nikolov–Schneider–Thom, this implies that bG is abelian-by-finite, which is the
desired contradiction.

Of course the theorem of Nikolov, Schneider and Thom lies much deeper than
Jordan’s theorem, because it applies to any pseudofinite group and not only those
lying in some GLn for some fixed n. Their proof relies on the deep results of
Nikolov and Segal [37] about commutator width in finite groups.

7. Bounds on J.n/

To conclude, we briefly survey the history around Jordan’s theorem and how bounds
on J.n/ have sharpened over time:
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� Jordan (1878): no bound (in fact: tower of exponentials [2]).

� Blichfeldt (1905): exp.O.n3//.

� Bieberbach (1911): .1C 324n10/2n
2

.

� Frobenius (1911): .
p
8nC 1/2n

2

.

� Blichfeldt (1917): nŠ6.n�1/.�.nC1/C1/ (�.x/ denoting the number of prime
numbers 6 x).

� Weisfeiler (1984): .nC 1/ŠeO.logn/2 (using CFSG).

� Collins (2007): .nC 1/Š for n> 71 (using CFSG).

In [4, p. 396] Blichfeldt, who had just completed his dissertation under Sophus
Lie, shows that no prime p > n.2n� 1/ divides the order g (modulo the center)
of a finite primitive subgroup of GLn.C/ (see also [8, §64]). In [5, p. 321] he
obtains bounds for the p-exponent of g. He shows [7, Theorem 16, p. 42] that g
is a divisor of nŠ.2 � 3 � � � �p � � � � /n�1, where the product extends over all primes
p <n.2n�1/. This is of order at most exp.O.n3//, and this implies a bound of the
same magnitude for J.n/ for arbitrary finite subgroups (implicit in [5, §12, p. 320]
and [6, p. 232]).

In his 1917 monograph [8], Blichfeldt furthers his earlier results, incorporating
a geometric argument inspired by Bieberbach’s argument [3] and Frobenius’ im-
provement [23]. He shows in [8, §73] that an abelian subgroup of a primitive group
must have order at most 6n�1 times the size of the group of scalar matrices. This is
based on a lemma [8, §70] according to which in a finite primitive subgroup, any
transformation whose eigenvalues are concentrated in an arc of length at most 2�

3

centered at one of them on the unit circle, must be scalar. This lemma is closely
related to the Bieberbach–Frobenius proofs. And finally he derives the bound
nŠ6.n�1/.�.nC1/C1/ on J.n/, where �.n/ is the number of primes 6 n. See [22,
Chapter 30] for a thorough treatment of Blichfeldt’s bound and [42; 43] for recent
improvements on Blichfeldt’s lemma. In fact Blichfeldt claimed that 6 could be
replaced by 5, but no proof of this has appeared. The three-author book [35], which
is dedicated to Camille Jordan, also contains a summary of these results.

Other excellent expositions of Blichfeldt’s bound are contained in [46] and [26].
See also [21, Chapter 5] for a treatment of Blichfeldt’s earlier results and a proof of
Jordan’s theorem using the Bieberbach–Frobenius argument.

Brauer [12] conjectured that Blichfeldt’s bound could be improved to one of
the form eO.n logn/, and indeed he was able to achieve it under certain hypo-
theses. In fact, for finite solvable subgroups Dornhoff proved an exponential bound
24n=3310n=9�1=3 that is even sharp for infinitely many n’s [22, Theorem 36.4].

Nevertheless, Blichfeldt’s second bound of the form eO.n
2= logn/ seems to be the

best one available without the classification of finite simple groups (CFSG). This
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small looking gain of a factor .logn/2 in the exponent compared to the Bieberbach–
Frobenius bound can sometimes prove important, as we have found out in [15].

Shortly before disappearing while hiking in Chile,4 B. Weisfeiler announced
a bound on J.n/ of eO.n logn/ quality [49]. His unpublished manuscript has now
been typed up and is available online [48]. Finally, more recently, M. Collins [16;
17] has improved the bound for n large to one that is sharp, namely .nC 1/Š, thus
closing a long chapter in the history of finite linear groups.
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Higher internal covers

Moshe Kamensky

We define and study a higher-dimensional version of model-theoretic internality,
and relate it to higher-dimensional definable groupoids in the base theory.

1. Introduction

The model-theoretic notions of internality and the binding group came up originally
in work of Zil’ber on categorical theories [13], and shortly after of Poizat [11] in the
ω-stable context, where it was also noticed that differential Galois theory occurs as
a special case. The stability hypothesis was completely removed in [3, Appendix B],
where it was shown that the crucial hypothesis is stable embeddedness of the base
theory.

Internality is a condition on a definable set Q in an expansion T ∗ of a theory T
to “almost” be interpretable in T : it is interpretable after adding a set of parameters
to T ∗. In this situation, the theory provides a definable group G in T ∗, acting
definably on Q as its group of automorphisms fixing all elements in the reduct T .
It is important here that the binding group G is defined in T ∗ rather than in T : in
applications, one often understands groups in T better than in T ∗. The group G
itself is also internal to T , and as a result can be identified with a definable group
H in T , but only noncanonically (and in general, only after adding parameters).
In the context of differential Galois theory, this is related to the fact that the group
of points of the (algebraic) Galois group of a differential equation does not act on
the set of solutions, and its identification with the group of automorphisms is not
canonical.

The noncanonicity was explained by Hrushovski in [4], where it is shown that
the natural object that appears in this context is a definable groupoid in T , with the
different groups H occurring as the groups of automorphisms of each object. In
fact, it is shown there that there is a correspondence between groupoids definable
in the base theory T and internal sorts in expansions of T . This correspondence
is reviewed in Section 2. It is also suggested in [4] that sorts of T ∗ internal
to T should be viewed as generalised sorts of T , obtained as a quotient by the
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corresponding definable groupoid, just like an imaginary sort is obtained from a
definable equivalence relation (which is a special case). In the current paper we
try to follow this suggestion, by considering what should be the correct notion of
internality, after viewing these new sorts as “legitimate” definable sorts.

Our approach is motivated by topology. There, a typical example of a groupoid
arises as the fundamental groupoid π1(X) of a space X , i.e., the groupoid whose
objects are the points of X , and whose morphisms are homotopy classes of paths.
For sufficiently nice X , this groupoid can be described in terms of the category of
local systems (locally constant sheaves) on X : each point of X determines a functor
to the category of sets, satisfying suitable properties (for example, it commutes with
products), and each path determines a map between such functors (which depends
only on the homotopy class since the system is locally constant). We propose to view
internality as analogous to this picture: definable sets in the theory corresponding
to a definable groupoid G in T can be viewed as local systems (of definable sets)
on G, and conversely. This point of view is explained in Section 2.2.5 (the base
theory T corresponds to a contractible space in this approach, so definable sets in it
correspond to constant systems).

By definition, the local systems on X do not tell us anything about the homo-
topy type of X above homotopical dimension 1. To encode higher homotopical
information, we may try looking at families of spaces rather than of sets. A space
X is called n-truncated if πk(X, x) is trivial for all k > n and base points x ∈ X .
Such spaces are represented in homotopy theory by what we call in this paper
n-groupoids (Definition 3.2.3 in the definable setting; these are equivalent to n-
categories in the sense of [8, §2.3.4] which are groupoids). In the case n = 1,
these are usual groupoids, and the previous paragraph suggests studying them by
systems of 0-truncated spaces, i.e., sets. Going one dimension higher, one expects
to recover 2-groupoids from systems of 1-truncated spaces. In the definable context,
we decided to identify such spaces with internal sorts, we consider “local systems”
of internal sorts, i.e., internal sorts of an expanded theory.

Our main result, Theorem 3.3.9, shows one direction of this expected correspon-
dence: we associate to a 2-groupoid G in the theory T a theory TG expanding it,
and a collection of internal sorts of TG , which we view as “higher local systems”.
The statement is that the canonical 2-groupoid associated to this datum recovers
(up to weak equivalence) the original one (part of the other direction is indicated
briefly, but is mostly left for future work).

We mention that this result is one possible generalisation of the results of [4] to
higher dimensions. Other such generalisations include the papers [1; 2; 12], but
they all appear to go in different directions. We also mention that in the context of
usual (rather than definable) homotopy theory, analogous results are well known
(for example, the main part of Theorem 3.3.9 is really a version of the higher-
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dimensional Yoneda lemma), but the methods in the proof of these results do not
translate easily to the definable setting. In fact, the situation here is more similar
to the one described in [8, §6.5], though made simpler by the existence of models
(i.e., we have “enough points”).

1.1. Structure of the paper. It is very simple: in Section 2, we review the situation
in the one-dimensional case. This serves both as a motivating analogy and to
complete some background used later. Most of the material there appears in some
form in [4] (sometimes implicitly), but we include a few easy remarks regarding
morphisms and equivalence, interpretation in terms of “local systems”, and a
different description of the groupoid associated to an internal cover (which already
appeared slightly differently in [7]).

In Section 3, we expose the higher-dimensional picture, concentrating on di-
mension 2. We first define our higher internal covers, then review the theory of
(truncated) Kan complexes and n-categories, with a few remarks special to the
definable setting, and then prove the main result mentioned above (Theorem 3.3.9).

1.2. Conventions and terminology. For simplicity, we assume our theories T to
admit elimination of quantifiers. By a T -structure we mean a substructure of some
model of T . If A is such a T -structure, by TA we mean the expansion of T by
constants for the elements of A, along with the usual axioms describing A. If A
was not mentioned, we mean “for some A”.

We also assume T eliminates imaginaries (this could be included in the general
treatment, but would complicate the exposition). Our usage of elimination of
imaginaries is often in the (equivalent) form of the existence of internal Homs: for
every two definable sets X and Y , there are an ind-definable set Hom(X, Y) and
map ev : X × Hom(X, Y) −→ Y , identifying the A-points of Hom(X, Y), for each
T -structure A, with the set of A-definable maps from X to Y . It follows that the
subset Iso(X, Y) of definable isomorphisms is also ind-definable.

Finally, we assume that each theory is generated by one sort, and finitely many
relations. Similar to the case in [4], it can be seen that this assumption is not
restrictive, since all our constructions commute with adding structure.

We recall that an interpretation of a theory T1 in another theory T2 is a model of
T1 in the definable sets of T2: it assigns definable sets to the elements of the signature
of T1, so that the axioms in T1 hold (this is often called a definition in the literature,
which is equivalent to an interpretation under our assumption of elimination of
imaginaries in T2). If i : T1 −→ T2 is such an interpretation, it thus assigns to
each definable set X of T1 a definable set i(X) of T2. Since i is a model of T1, it
assigns definable functions of T2 to definable functions of T1, and composition to
composition, and thus determines a functor from the category De f (T1) of definable
sets of T1 to De f (T2). We normally identify i with this functor, writing for example
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i(X) for the interpretation of a definable set X of T1. We note that an expansion
is a particular case of an interpretation. We remark that not every functor from
De f (T1) to De f (T2) arises from an interpretation: For example, an interpretation
preserves all finite (inverse) limits (which always exist in De f (T1)). This is the
main property of such functors that we use in this paper. A detailed description of
categories of the form De f (T ) and functors that arise from interpretation occurs
in [10], but we do not require it.

Similarly, if i, j : T1 −→ T2 are interpretations, a map from i to j is an elementary
map of models (equivalently a homomorphism, by our assumption of quantifier
elimination), given by definable maps in T2. Equivalently, this is a natural trans-
formation of functors, when i and j are viewed in this way. Such a map is an
isomorphism if it has an inverse. An interpretation is called a bi-interpretation
if there is an interpretation in the other direction such that both compositions are
isomorphic to the identity.

When T1 and T2 are given with fixed interpretations ik : T −→ Tk of a theory T ,
we have versions of these notions over T : an interpretation j : T1 −→ T2 is over T
if j ◦ i1 = i2, and given two such interpretations j1, j2 : T1 −→ T2, a map α : j1 −→ j2
is over T if αi1(X) : j1(i1(X)) −→ j2(i1(X)) is the identity for all definable sets X
of T (more naturally, we could require a given isomorphism from j ◦ i1 to i2, but in
practice we can always assume it to be the identity, and do that to simplify notation).

2. A review of the classical theory

2.1. Stable embeddings and internal covers. We recall the following classical
definition of internal covers:

Definition 2.1.1. An expansion T ∗ of a theory T is an internal cover if T is stably
embedded in T ∗, and for some expansion T ∗

A of T ∗ by a set of constants A, each
definable set in T ∗

A is definably isomorphic to a definable set in TA0 , for some set
of parameters A0.

We recall that stably embedded here means that for every definable set X in T ,
every subset of X definable in T ∗ with parameters from T ∗ is definable in T , with
parameters from T .

It was noted in [6] that this condition can be reformulated as follows: if i :T −→T ∗

is an expansion and X, Y are definable in T , there is a natural (T ∗-definable) map
i(HomT (X, Y)) −→ HomT ∗(i(X), i(Y)), and i is stably embedded precisely if this
map is a bijection (for all X, Y definable in T ). We note that in this case, the
restriction of this map to the subset Iso(X, Y) of isomorphisms is also a bijection,
and that taking into account parameters, no new structure is induced on T ∗. In
particular, for any T -structure A, the expansion T ∗

A is well defined.
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The same definition can be applied to a more general interpretation, so we say
that an interpretation i : T1 −→ T2 is stable if for all definable sets X and Y of T1,
the natural T2-definable map

i(HomT1
(X, Y)) −→ HomT2

(i(X), i(Y))

is a bijection. Explicitly, this means that each map definable with parameters from
i(X) to i(Y) (in T2) “comes from” a unique map definable with parameters from X
to Y (in T1). If i is viewed as a (left-exact) functor, as in Section 1.2, this is often
stated as saying that i is Cartesian closed. In these terms, the definition of internal
covers can be reformulated as follows:

Proposition 2.1.2. An expansion T ∗ of a theory T is an internal cover if it is stable,
and T ∗ admits a stable interpretation p in TA over T .

As mentioned in Section 1.2, by “over T ” we mean that the restriction of p to T
coincides with the expansion by constants.

Proof. Let Q be a definable set in T ∗, generating it over T . Assume first that T ∗

is an internal cover of T , so there is a sort X of T ∗, an expansion by a constant
symbol a ∈ X , and a definable bijection ga : Q −→ Qa , with Qa definable in T .
By stable-embeddedness, Qa is definable by a parameter a0 in T . The assignment
Q 7→ Qa extends uniquely to an interpretation xa0 of T ∗ in Ta0 , over T . Since
ga determines a definable isomorphism between Q and Qa (and similarly for any
definable set it generates), this interpretation is stable.

Conversely, assume we have a stable interpretation p : T ∗
−→ TA0 over i . We still

denote by i the extension of i to the expansion TA0 −→ T ∗

A0
which is the identity on

A0 (it is still stable). Setting C = p( Q), the set Iso(p( Q), p(i(C))) = Iso(C, C)

is nonempty, since it contains the identity on C. Since p is stable, the left-hand
side admits a definable bijection with Iso( Q, i(C)), so is nonempty as well. Any
point a of this set shows that T ∗ is an internal cover. □

2.2. Definable groupoids. A definable groupoid is denoted as G = ⟨G0, G1⟩, with
a definable set G0 of objects and a definable set G1 of isomorphisms, where
the domain and codomain maps are denoted d, c : G1 −→ G0, respectively, and
composition denoted by ◦. For objects a, b ∈ G0, we write G(a, b) for the a, b-
definable set ⟨d, c⟩−1(⟨a, b⟩) of morphisms from a to b. A map f : G −→ H of
definable groupoids is a definable functor: a pair of maps f0 : G0 −→ H0 and
f1 : G1 −→ H1 commuting with the domain, codomain and composition maps. We
say that f is a weak equivalence, denoted f : G ∼99K H , if it induces an equivalence
of categories on all models (this terminology is generalised in Definition 3.2.7).
Our groupoids are generally not assumed to be connected.

In [4, §2], a definable groupoid is attached to each internal cover. This groupoid
also admits two descriptions. The first is as a definable groupoid G∗ in T ∗; this
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construction depends on the choice of a definable set X in T ∗, as in the proof of
Proposition 2.1.2. Given this choice, the groupoid can be described as follows:

Construction 2.2.1. The groupoid associated to the data above is described as
follows:

Objects (G0): Complete types of elements a ∈ X over T , along with an additional
object ∗. Since T is stably embedded, this set of types is definable in T (it
is definable, rather than pro-definable, by our finiteness assumption on the
language in Section 1.2).

Morphisms (G1): The set of isomorphisms from ∗ to a type p ∈ G0 is given
by the realisations of p. Given another type q ∈ G0, a morphism from p to q
is given by a 2-type s extending p and q (over T ). Distinct realisations of s
correspond to distinct ways of writing the morphism s as a composition of a
morphism from p to ∗ and a morphism from ∗ to q .

Composition: Given a type s(x, y) ∈ G1 extending p(x), q(y) ∈ G0, and a type
t (y, z) ∈ G1 extending q(y) and r(z) ∈ G0, the internality assumption implies
that there is a unique 3-type u(x, y, z) extending all of them. The restriction u
to x, z is the composition of s, t .

The composition of an isomorphism a from ∗ to p ∈ G0 with (the inverse
of) another such isomorphism b to q ∈ G0 is the type of ⟨a, b⟩. The other
compositions are determined by these conditions. □

We denote by G the full subgroupoid of G∗ on the same objects excluding ∗.
Then G is defined entirely in T .

2.2.2. To give a second description, consider, for each T -structure A, the groupoid
I (A) = IT ∗/T (A) whose objects are stable interpretations of T ∗ in TA, that are the
identity on TA, and whose morphisms are isomorphisms of such interpretations,
which are the identity when restricted to T . Here again we may enlarge I to
obtain I ∗, by adding an additional object ∗, which is described explicitly as the
identity interpretation of T ∗, and again morphisms are given by A∗-definable
isomorphisms of interpretations over T (where A∗ is now a T ∗-structure). The
following statement appeared in a slightly different form in [7]:

Proposition 2.2.3. With notation as in 2.2, for each T ∗-structure A, there is a fully
faithful embedding i A : G∗(A) −→ I ∗(A), preserving the vertex, and commuting with
action by automorphisms on A. If A is a model, i A is an equivalence of categories.

Proof. This is essentially [4, Theorem 3.2]. The functor i A was described in the
proof of Proposition 2.1.2: to an object p of G(A), viewed as a type over T
(definable over A0), we attach the interpretation xb = x p described there, with b
any realisation of p (as explained there, xb depends only on p ∈ A0 and not on b).
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Each such realisation determines an isomorphism gb from xb to ∗, again as above,
which describes the functor on morphisms from p to ∗. If q is another object,
with realisation c, i A assigns gc

−1
◦ gb : x p −→ xq to the type r of the pair (b, c).

This depends only on r , since the code for this composition lies in T , by stable
embeddedness. This code also determines r completely, so the functor is fully
faithful.

To prove the final statement, let i :T ∗
−→T be any interpretation over a model M0.

The internality assumption implies that for some p ∈ G(M0), the set Y of isomor-
phisms between ∗ and p is nonempty. Since M0 is a model, there is a point b
in i(Y )(M0). Then gb is an isomorphism from xb to i . □

To summarise, to each stable embedding of T in T ∗, we had attached a groupoid
IT ∗/T classifying stable interpretations of T ∗ back in T . The embedding is an
internal cover precisely if the groupoid is nonempty, and in this case, the groupoid I
is equivalent to a definable one (and to the classical binding groupoid). Conversely,
starting with a definable groupoid G in T , there is an internal cover T ∗

= TG and
an equivalence G −→ IT ∗/T :

Construction 2.2.4. The theory TG expands T by an additional sort X , a function
symbol c : X −→ G0, and a function symbol a : X ×G0 G1 −→ X , where X ×G0 G1 =

{⟨x, g⟩ | c(x) = d(g)}, and TG states that X is nonempty, and that the resulting
structure is a groupoid G∗ extending G by an additional object ∗, with elements
x ∈ X viewed as morphisms from ∗ to c(x), and a provides the composition of
such elements with morphisms of G.

Starting from this TG , each element of X exhibits TG as an internal cover of T .
The type of such an element x ∈ X over T is given by c(x), and the realisations of
this type are indeed the morphisms from ∗ to c(x), so Construction 2.2.1 indeed
recovers G. □

For example, when G is a definable group (groupoid with one object), the
resulting TG is the theory of G-torsors. We refer to [4, §3] for more details, but
note again that our construction is slightly different when G is not connected: we
always expand just by one additional object ∗, thus obtaining an internal cover
(possibly incomplete), even in the nonconnected case.

Alternatively, Definition 3.3.1 is a generalisation that also applies to this case.

2.2.5. Definable G-sets. If G = ⟨G0, G1⟩ is a definable groupoid in T , by a (left)
G-set we mean a definable set X , a definable map π : X −→ G0 to the set of objects
G0 of G, and an “action” map a : G1×G0 X −→ X , over G0, satisfying the usual action
axioms (here, G1 × G0 X is the definable subset of G1 × X given by d(g) = π(x),
and “over G0” means that c(g) = π(a(g, x)) for all such pairs). Thus, a morphism
g : a −→ b in G determines a bijection ag : Xa −→ Xb, where Xt = π−1(t), and we
sometimes write gx in places of ag(x) (a pair ⟨G, X⟩ as above is called a concrete
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groupoid in [4, §3]). We think of G-sets as analogues of local systems over G. A
morphism from a G-set X to another G-set Y is a definable map from X to Y that
commutes with π and a.

Let X be a G-set. If H = ⟨H0, H1⟩ is another groupoid, and i : G −→ H is a
definable map of groupoids, we set

i!(X) = {⟨h, x⟩ ∈ H1 × X | i(π(x)) = d(h)}/∼,

where ⟨h, gx⟩ ∼ ⟨h◦ i(g), x⟩ for g ∈ G1 satisfying d(g) = π(x) and i(c(g)) = d(h).
This is an H-set, with structure map induced by ⟨h, x⟩ 7→ c(h) and action in-
duced by ⟨h′, ⟨h, x⟩⟩ 7→ ⟨h′h, x⟩. On the other hand, if Y is an H-set, we set
i∗(Y) = G0 ×H0 Y , with the projection to G0 as the structure map, and action given
by ⟨g, y⟩ 7→ i(g)y for y ∈ Y with π(y) = i(d(g)). It is clear that both constructions
are functorial, and as the notation suggests, i! is left adjoint to i∗.

With these notions, we have the following description of definable sets in T ∗ as
local systems over G:

Proposition 2.2.6. If T ∗ is an internal cover of T , corresponding to the definable
groupoid G in T , then the category of definable sets in T ∗ is equivalent to the
category of G-sets in T . Definable sets from T correspond to themselves, with
trivial action.

Proof. To each definable set X∗ in T ∗ we assign the definable set X =
∐

p∈G0
p(X∗).

It follows from the uniformity of p that X is definable in T . By definition, X admits
a definable map to G0. The action is given tautologically by the identification of the
morphisms in G0 with maps of interpretations. Since each p is an interpretation,
this is functorial in X∗.

In the other direction, let G∗ be the canonical extension of G in T ∗ (we identify
G with its image in T ∗), let i : G −→ G∗ be the inclusion, and let j be the inclusion
of the canonical object ∗ of G∗, along with its automorphism group H , into G∗.
A definable G-set X in T , viewed again as embedded in T ∗, corresponds then to
X∗

= j∗(i!(X)) (and the resulting action by H is the natural action by automor-
phisms). □

We note that each definable set in T ∗ comes equipped with an action of the
binding group Aut(∗), and with it, the first direction could likewise be described
as X = i∗( j!(X∗)).

Corollary 2.2.7. If G is a groupoid associated to an internal cover T ∗ of T , then
T ∗ is bi-interpretable with TG over T .

Proof. The definable groupoid G∗ in T ∗ forms an interpretation of TG over T . It
is a bi-interpretation since both categories of definable sets are equivalent to the
category of G-sets in T (commuting with the above interpretation). □
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2.2.8. Pushouts. Let g : K −→ G and h : K −→ H be maps of definable groupoids,
and assume that g is fully faithful. We construct another definable groupoid G⊗K H
that can be viewed as the pushout of G and H over K as follows: For objects, we
let (G ⊗K H)0 = G0 ⨿ H0. If a, b are two such objects, we define the morphisms
as follows:

(1) If a, b ∈ H0, then (G ⊗K H)(a, b) = H(a, b).

(2) If a ∈ G0 and b ∈ H0, morphisms from a to b are equivalence classes v ⊗ u
of pairs ⟨v, u⟩, where u ∈ G(a, g(c)), v ∈ H(h(c), b) for some c ∈ K0, and
⟨v, g(w) ◦ u⟩ is equivalent to ⟨v ◦ h(w), u⟩ for all w ∈ K1 for which the
composition is defined. Morphisms from b to a are defined analogously.

(3) If a, b ∈ G0 are both in the essential image of g, a morphism from a to b is
similarly defined as an equivalence class u′

⊗v⊗u, with u, u′
∈ G1 and v ∈ H1.

(4) If either of a, b ∈ G0 is not in the essential image of g, then morphisms are
the same as in G.

The composition (u′
⊗ v ⊗ u) ◦ (u′

1 ⊗ v1 ⊗ u1) is defined as follows: There are
a, b ∈ K0 such that u ◦u′

1 is a morphism from g(a) to g(b). Since g is fully faithful,
it has the form g(w) for a unique morphism w from a to b in K . We define the
composition to be u′

⊗ (v ◦h(w)◦v1)⊗u1. It is clear that this is independent of the
choices of representatives. The composition in the other cases is defined similarly.

There is an obvious map h′
: H −→ G ⊗K H , and we define g′

: G −→ G ⊗K H
by sending each object to itself, each morphism between objects not in the essential
image of g to itself as well, and for a, b ∈ G0 in the essential image of g, and u a
morphism from a to b, we set g′(u) = (u ◦u′−1)⊗1h(c) ⊗u′, where u′

: a −→ g(c) is
any morphism and c ∈ K0. We have an isomorphism α from h′

◦ h to g′
◦ g, given

on an object c ∈ K0 by 1g(c) ⊗ 1h(c). It is routine to check that everything is well
defined, and also that the following statement holds.

Proposition 2.2.9. Let g : K −→ G, h : K −→ H and the rest of the notation be as
above.

(1) Given definable maps of groupoids g1 : G −→ F and h1 : H −→ F, and an isomor-
phism β : h1 ◦h −→ g1 ◦g, there is a unique map of groupoids f : G⊗K H −→ F
that coincides with g1 and h1 on the objects, f ◦ g′

= g1, f ◦ h′
= h1 and such

that f · α = β.

(2) h′
: H −→ G ⊗K H is fully faithful. If g is a weak equivalence, then so is h′.

Remark 2.2.10. We could make a similar construction where the set of objects
is G0 ⨿K0 H0 in place of the disjoint union, and with α the identity. The last
proposition provides a map from G ⊗K H to this variant, which is easily seen to
be a weak equivalence. We use the two constructions interchangeably. □
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Remark 2.2.11. Without the assumption that one of the maps is fully faithful, the
pushout need not be definable. For example, when all groupoids are groups, this is
the usual free product with amalgamation. □

2.3. Maps of groupoids and of interpretations. With stable interpretations over T ,
the assignment T ∗

7→ IT ∗/T is contravariantly functorial in T ∗, and fully faithful:
a stable interpretation i : T1 −→ T2 over T induces a functor i∗

: IT2/T −→ IT1/T by
composition.

In the other direction, if f : G −→ H is a map of definable groupoids, correspond-
ing to internal covers TG and TH , f determines a stable interpretation i f

: TH −→ TG
over T that can be described in at least two ways:

(1) An interpretation of TH over T is determined by its value on the extended
groupoid H∗ defined in TH . We set i f (H∗) = G∗

⊗G H (with respect to the
given map f ). This makes sense since the inclusion of G in G∗ is a weak
equivalence, and is an interpretation since the embedding of H in G∗

⊗G H
is a weak equivalence that misses precisely one object ∗, and this completely
determines its theory. To see that it is stable, we may first choose a parameter
in G∗. But then i f is identified with one of the standard interpretations into T .

(2) Alternatively, we may use Proposition 2.2.6 to identify definable sets in TG
and in TH with G- and H-sets in T . Then i f is identified with f ∗ (in this
approach, it is less direct to see that one gets a stable interpretation).

It is easy to verify that (i f )
∗
= f (after identifying G with its image in ITG/T

via Proposition 2.2.3, and similarly for H). However, not every stable interpretation
i : TH −→ TG (over T ) is of the form i f for some f : G −→ H . The other source
of interpretations comes from the other operation described in 2.2.5: when f is
a weak equivalence, the composition of f with the inclusion of H in H∗ is a
weak equivalence, so restricting to the image of f (on the objects), we obtain an
interpretation i f of G∗ (hence of TG).

Proposition 2.3.1. Let G and H be two definable groupoids, with associated covers
TG and TH . Then every stable interpretation i : TG −→ TH over T is obtained as a
composition i = i f

◦ ig, for some definable groupoid K , definable map f : H −→ K
and weak equivalence g : G ∼99K K .

In particular, if i : T1 −→ T2 is a stable interpretation of internal covers over T ,
we may choose definable groupoids G1 and G2 corresponding to the Ti , so that i is
induced by a map f : G2 −→ G1 of groupoids (up to bi-interpretation).

A configuration of the form ⟨K , f, g⟩ as above is called a cospan from H to G.

Proof. H embeds in ITH/T via Proposition 2.2.3, which maps via i∗ to ITG/T . We
set f : H −→ K to be the restriction of i∗ to H , where K denotes any definable
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weakly equivalent subgroupoid of ITG/T , which also contains G. Then g is the
inclusion of G in K .

The last part follows (using Corollary 2.2.7) by choosing G1 and G2 arbitrarily,
and then replacing G1 by K as above. □

As in the construction of the pushout, we may choose K so that its objects are
the disjoint union of the objects of G and H , and we always assume that this is the
case. In the case when i is a bi-interpretation, we recover the notion of equivalence
from [4, §3].

2.3.2. Composition and isomorphisms. Assume that for groupoids F, G and H
in T , we are given interpretations i : TF −→ TG and j : TG −→ TH , represented
by cospans g1 : F ∼99K K1, f1 : G −→ K1, g2 : G ∼99K K2 and f2 : H −→ K2 as
in Proposition 2.3.1. Since g2 is a weak equivalence, we may form the pushout
K = K1 ⊗G K2. By Proposition 2.2.9, the map from K1 to K is a weak equivalence,
and therefore so is the composed map g. Hence, g along with the composed map
f : H −→ K form a cospan that represents a stable interpretation of TF in TH . To
conform with the decision about the objects of the representing groupoid K , we
remove the intermediate two copies of G0, and denote the resulting groupoid by
K2 ◦ K1 = K2 ◦G K1 (though it does depend on the additional data). The following
is a direct calculation.

Proposition 2.3.3. In the above situation, the maps g : F ∼99K K2 ◦ K1 and
f : H −→ K2 ◦ K1 represent the composed interpretation j ◦ i .

Finally, we consider isomorphisms of interpretations between (stable) interpreta-
tions of internal covers over T .

Proposition 2.3.4. Let i, j : TG1 −→ TG2 be two stable interpretations of internal
covers over T . Assume i is represented by a cospan i1 : G1

∼99K H1 and i2 : G2 −→ H1,
and j by j1 : G1

∼99K H2, j2 : G2 −→ H2, with each set of objects of Hn the disjoint
union of the objects of G1 and G2 (realised by the object parts of ik and jk).

Then there is a natural bijection between isomorphisms α : i −→ j (over T ) and
isomorphisms α̃ : H1 −→ H2 which are the identity on the images of G1, G2.

As an example, if G1 and G2 are groups, then each Hi corresponds to a G1 − G2

bitorsor, and an isomorphism of the corresponding interpretations corresponds to
an isomorphism of such bitorsors.

Proof. Let Pl be the set of arrows in Hl with domain in G1 and codomain in G2.
This is a G1-set, with structure given by the domain map and composition. The
interpretation i takes P1 to the G2-set given by viewing the arrows in P1 in the other
direction, and likewise with j and P2. So the map α maps P1 to P2, compatibly with
the composition. This is the same as giving an isomorphism α̃ as in the statement.
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The rest of the structure is induced by the Pi , so α is determined by α̃. Conversely,
each α̃ as in the statement extends to an interpretation. □

We summarise most of the content of this section in the following theorem
(mostly contained in [4, §3]):

Theorem 2.3.5. Let T be a theory. Each internal cover T ∗ of T is bi-interpretable
over T with an internal cover of the form TG . An interpretation of TH in TG corre-
sponds to a cospan from G to H , and each such cospan determines an interpretation.
Maps between interpretations correspond to maps between cospans.

In particular, covers T1 and T2 are bi-interpretable over T if and only if the
corresponding groupoids are equivalent.

More succinctly (and slightly more precisely), the bicategory of internal covers
over T is equivalent to the bicategory of definable groupoids in T (with morphisms
given by cospans and morphisms between them given by bitorsors). See also
Remark 3.3.4.

Proof. This is a combination of Corollary 2.2.7 with Propositions 2.3.1 and 2.3.4. □

The description above exhibits the groupoid associated to an expansion as in-
terpretations of T ∗ in T . In [4], it was suggested that definable sets of an internal
cover of T can be viewed as generalised imaginary sorts of T . With this point
of view, it is natural to ask for the structure classifying interpretations of such
sorts as well. However, such generalised sorts have more structure: in addition to
the sorts themselves and maps between them (interpretations), we also have maps
between maps. The notion of equivalence should be modified as well: it is no
longer reasonable to expect a bijection on the level of morphisms. In fact, as the
1-dimensional case already shows, it is not reasonable to expect even a map.

3. Generalised imaginaries

We now suggest how internal covers can play the role of definable sets in the above
description, by going one dimension higher.

3.1. Higher internal covers.

Definition 3.1.1. Let T be a theory, T1 and T2 internal covers of T . For every
set of parameters A for T , we denote by HomT (T1, T2)(A) the groupoid whose
objects are stable interpretations of T1 in T2 A, over TA, and whose morphisms are
isomorphisms of interpretations over T .

Thus, what we denoted by I above is HomT (T ∗, T ). Similar to that case,
HomT (T1, T2) is ind-definable in T : if Ti = TGi for T -definable groupoids G1, G2,
each interpretation above can be described like in Section 2.3 as given by certain
definable maps Gi −→ H , a definable condition. Similarly, isomorphisms between
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interpretations are given by the T -definable families of maps as in Proposition 2.3.4,
uniform in the Hi (see Section 3.3.6 for a more detailed description).

An interpretation between theories extends to internal sorts: if i : T −→ S is an
interpretation, and T̃ is an internal cover of T associated to the groupoid G in T ,
we denote by i(T̃ ) the internal cover of S associated to i(G).

We now wish to define (slightly) higher analogues of stable embeddings and
internal covers. One discrepancy with the 1-dimensional case occurs as follows: If
T is an internal cover of T0, we might be interested in only part of the structure on
T when considering, for example, the Galois group. As long as this partial structure
includes the definable sets witnessing the internality, this can be done be replacing
T with a reduct including only those definable sets. In the higher version, definable
sets are replaced by definable groupoids in T (equivalently, internal covers), and
again we may wish to restrict to a partial collection. However, there is no reason
to expect that this partial collection is the full collection of definable groupoids
in some reduct of T . Furthermore, the internality condition for 0-definable sets
automatically implies it for definable sets over parameters. Again, there is no reason
to expect a similar statement for groupoids. For this reason, our definition depends
on the auxiliary data 0 consisting of families of definable groupoids, which are the
groupoids we wish to preserve. More precisely, we have the following.

Definition 3.1.2. Let T be a theory. The data of distinguished covers for T consists
of the following:

(1) An ind-definable family 00 of internal covers of T (equivalently, of definable
groupoids in T ).

(2) An ind-definable family of interpretations over T between any two covers
T1, T2 ∈ 00, depending definably on T1, T2 and closed under composition (the
full definable family is denoted by 01).

(3) For every two interpretations f, g : T1 −→ T2 in 01, an ind-definable family of
isomorphisms from f to g, closed under composition and restricting to the
identity on T . Again we assume that the family of all such isomorphisms is
uniformly (ind-)definable in f, g, and denote it by 02.

If T0 is a reduct of T , we say that 0 = ⟨00, 01, 02⟩ is over T0 if the parameters for
the ind-definable families above range over definable sets in T0.

We note that in terms of definable groupoids, the closure under composition
translates to closure under the composition operation from Section 2.3.2.

If a theory T is given with a collection 0 of distinguished covers, we often omit
further explicit reference to 0, and call them admissible covers. We modify notions
like bi-interpretation etc., to be with respect to 0. In particular, the notation HomT
refers to admissible covers and admissible maps.
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Definition 3.1.3. Let i : T −→ S be an interpretation, and let 0 be a collection of
distinguished covers of T . We say that the interpretation i is 2-stable (with respect
to 0) if for every two internal covers T1, T2 in 0 over each T -structure A, the natural
map i(HomTA(T1, T2)) −→ HomSA(i(T1), i(T2)) is an equivalence.

If 0 is omitted, we take it to be all definable groupoids in T , and all definable
morphisms among them.

The expression i(HomT (T1, T2)) makes sense, since, as we had noted above,
HomT (T1, T2) is definable in T .

Proposition 3.1.4. A stable interpretation i : T1 −→ T2 is 2-stable.

Proof. We may replace T by TA, and thus assume that A = ∅. Let T1, T2 be
internal covers of T . The statement is invariant when replacing each cover with a
bi-interpretable one (over T ). Hence, we may assume that T1 = TG1 and T2 = TG2 ,
the covers associated to definable connected groupoids G1, G2 in T .

According to Proposition 2.3.1, we may choose G1 and G2 so that a stable
interpretation of i(T1) in i(T2) corresponds to a definable map of groupoids from
i(G2) to i(G1). Since i is stable, this map comes from a map in T (and similarly
for morphisms). □

The definition of a 2-cover is analogous to that of an internal cover, as formulated
in Proposition 2.1.2:

Definition 3.1.5. A 2-internal cover of a theory T consists of a theory T ∗, a
collection 0 of families of internal covers of T ∗ over T , and a stable embedding
T −→ T ∗ such that ⟨T ∗, 0⟩ admits a 2-stable interpretation p in TA, over T (for
some set of parameters A).

More explicitly, we require that each internal cover in 0 is bi-interpretable, over
parameters in T ∗, with one coming from T , in a manner coherent with interpretations
over T ∗. Or, via the equivalence with groupoids, that for each family of definable
groupoids in 0 there is a set of parameters B in T ∗ such that each groupoid in the
family is equivalent, over B, to one coming from T (again, in a coherent manner).

As in the 1-dimensional case, the typical examples come from higher-dimensional
groupoids, which we review next.

3.2. Higher categories and higher groupoids. We recall a few definitions from
homotopy theory and higher category theory, adapted to our language and setup.
Though our main references are [8; 9], the ideas seem to originate in [5] (and in the
main case of groupoids, much more classically). We are interested in the notions of
n-category and n-groupoid discussed in [8, §2.3.4] (through most other parts of the
paper we are interested in the case n = 2, but here it is convenient and harmless to
work in general). There, they are defined as special cases of quasicategories and
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Kan simplicial sets, respectively, but for us it is more convenient to use terminology
that makes explicit the finite nature of these structures. The following definitions
are a variant of the description in [8, §2.3.4.9], which gives an equivalent condition
(in the case of simplicial sets).

For each i ∈ N, we denote by [i] the ordered set {0, . . . , i}. For k ∈ [i], we
identify k with the map [0] −→ [i] taking 0 to k (writing ki if needed), and we let
k̂ = k̂i : [i − 1] −→ [i] be the unique increasing map with k not in the image. We fix
a natural number n (one could also allow n = ∞ to obtain the usual definitions of
quasicategories and spaces, but we do not use them).

Definition 3.2.1. The signature 6n of n-simplicial sets consists of

(1) a sort Gi , for 0 ≤ i ≤ n + 1,

(2) for each weakly increasing map t : [i] −→ [ j], where i, j ≤ n + 1, a function
symbol dt : G j −→ Gi .

3.2.2. Notation. We define the following auxiliary notation. We let G−1 be the
one element set. For each 0 ≤ m ≤ n + 1, and i ≤ m, the map dî : Gm −→ Gm−1 is
called the i -th face map. We denote by ∂ = ∂m : Gm −→ Gm+1

m−1 the Cartesian product
of these maps, and by ∂ î

: Gm −→ Gm
m−1 the Cartesian product with i omitted. If

g ∈ Gm and t : [k] −→ [m], we sometimes write gt in place of dt(g) (in particular,
for t = î or t = i).

For m ≥ − 1, the set G◦

m+1 of (m+1)-cycles is the definable subset of Gm
m+2

given by the conjunction of the equations dî (x j ) = dk̂(xl) for all 0 ≤ j, l ≤ m + 1,
0 ≤ i, k ≤ m satisfying ĵ ◦ î = l̂ ◦ k̂ : [m − 1] −→ [m + 1]. (So no conditions when
m = 0. Note that (m+1)-cycles are potential boundaries of (m+1)-dimensional
elements, but are themselves m-dimensional. This is compatible with the notation
in [8].)

For each 0 ≤ i ≤ m + 1, the set 3m+1
i (G) of i -th (m+1)-horns is the subset of

Gm
m+1 defined by the same conditions, with xi omitted. Hence, the projection

π î : G◦
m −→ Gm

m−1 omitting the i-th coordinate takes values in 3m
i (G).

We extend the notation by inductively setting Gm = G◦
m for m > n + 1, and

d î : Gm −→ Gm−1 the i-th projection (0 ≤ i ≤ m). Consequently, all the above
notation makes sense for arbitrary natural number m.

Definition 3.2.3. Let n ≥ 1. The theory Cn of n-categories in this signature says:

(1) dt◦s = ds ◦ dt for s, t composable, dt is the identity whenever t is. It follows
that ∂m takes values in G◦

m and ∂ î
m in 3m

i (G).

(2) For each 0 < m ≤ n + 1 and each 0 < i < m, the map ∂ î
m : Gm −→ 3m

i (G) is
surjective.

(3) For m = n + 1, n + 2, ∂ î
m is bijective for each 0 < i < m.
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The theory Gn of n-groupoids is the extension of Cn where the conditions above are
required to also hold for i = 0, m.

Note that by the third condition, the set Gn+1 is completely determined by the
rest of the data. However, it is still convenient to have it for the statement of the
axiom. It follows from the axioms that the unique map d f : G0 −→ Gm is injective,
and we use it to identify G0 with its image in each Gm , writing a or am for d f (a)

(this map assigns to each object a the m-dimensional identity morphisms at a).
The first condition (when n = ∞) is the usual definition of a simplicial set, the

second is the definition of quasicategory (or space, in the case of a groupoid, where
it is called the Kan condition), and the third specifies that the object is an n-category,
rather than a quasicategory. By a definable n-category or a definable n-groupoid in
T we mean an interpretation in T of the respective theory.

The intuition is, roughly speaking, that the horns represent configurations of
(higher) composable arrows, but the composition (represented by the element g)
need not be uniquely determined, except on the highest dimension. We refer to the
first chapters of [8] for further explanations, but explain how the case n = 1 of the
formalism recovers usual categories and groupoids:

Example 3.2.4. A category can be viewed as a 1-category in the above sense
by taking G0 the set of objects, G1 the set of morphisms, and G2 the set of
pairs of composable morphisms (as we are forced by the axioms). The maps
d0̂, d1̂ : G1 −→ G0 are the codomain and domain maps, the unique map G0 −→ G1

assigns to each object its identity, and the maps d0̂, d2̂, d1̂ : G2 −→ G1 are the
two projections and the composition. The only nontrivial instances of the third
conditions are when m = 2 and i = 1, which asserts that any two composable arrows
have a unique composition, and when m = 3, which corresponds to associativity of
the composition.

Conversely, each 1-category determines a category by reversing this process (and
likewise for groupoids). □

As in the 1-dimensional case, the axioms imply that for 0 < i < n+1, the relation
G◦

n+1 is the graph of a “composition” function ci : 3n
i (G) −→ Gn , by projecting to

the i-coordinate. For n-groupoids, we also have such maps for i = 0, n + 1.

Remark 3.2.5. If G is an n-category, and m > n, our extension of the notation
determines a canonical way of viewing G as a 6m structure, and as such it is an
m-category. Consequently, we view G as an m-category for each m > n. If G were
an n-groupoid, it would similarly be an m-groupoid for m > n. □

3.2.6. Homotopy sets. The definition of homotopy sets admits a definable version.
Let G be an n-groupoid, and let b ∈ G◦

m (m ≥ 0). We let S(G, b) = ∂−1
m (b) be

the set of elements of Gm with boundary b. For α, β ∈ S(G, b), we write α ∼ β
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(or α ∼b β) if some h ∈ Gm+1 satisfies h0̂ = α, h1̂ = β and h î = dt(α)î , where
t : [m + 1] −→ [m] is the surjective map with t (1) = 0 (so h is a homotopy from
α to β, relative to the boundary b). This is an equivalence relation by the Kan
condition. Note that when m ≥ n, this relation coincides with equality.

For a ∈ G0 and k ≥ 0, we write Sk(G, a) for S(G, b), where b is the constant
boundary with value a in G◦

k . These are a-definable sets, whose elements correspond
to the set of pointed maps from the k-sphere to G with base point a (note that
K0(G, a) = G0 does not actually depend on a). The k-th homotopy set of G at a is
the quotient πk(G, a) = Sk(G, a)/∼ (in the case of usual simplicial sets, this is
one of the equivalent definitions by [9, 00W1]).

If f : G −→ H is a groupoid map (between definable n-groupoids in the theory T ),
it commutes with all the structure above, and therefore induces definable maps of
sets πk( f, a) : πk(G, a) −→ πk(H, f (a)).

Definition 3.2.7. A definable map f : G −→ H of n-groupoids is a weak equivalence
if πk( f, a) : πk(G, a) −→ πk(H, f (a)) is a bijection for all 0 ≤ k ≤ n and a ∈ G0.

Remark 3.2.8. More explicitly, for nonempty G, the map f : G −→ H is a weak
equivalence if and only if the following conditions are satisfied for each n ≥ k ≥ 0
and each a ∈ G0:

(1) For every g0, g1 ∈ Sk(G, a), if f (g1) ∼ f (g2) then g1 ∼ g2.

(2) For every h ∈ Sk(H, f (a)), there is g ∈ Sk(G, a) with f (g) ∼ h.

Alternatively, f is a weak equivalence if and only if it induces a surjective map on
S-classes, i.e., for each G-cycle b, and each v ∈ S(H, f (b)), there is u ∈ S(G, b)

with f (u) ∼ v. (To prove these equivalences, it suffices to show that they hold in
each model, where each of these conditions is equivalent to homotopy equivalence
[9, 00WV].) □

Definition 3.2.9. The n-groupoids G1 and G2 are equivalent if there are weak
equivalences f1 : G1 −→ H and f2 : G2 −→ H for some H .

Example 3.2.10. Let G, H be definable groupoids, viewed as definable 1-groupoids
as in Example 3.2.4. A map f : G −→ H is a functor. For k = 0, the first condition
in Remark 3.2.8 says that if a, b are objects of G, and there is a morphism between
f (a) and f (b) in H , then there is a morphism from a to b in G. The second
condition says that every object h of H has a morphism to an object in the image
of f . Together, this part implies that f induces a bijection on isomorphism classes.

For k = 1, the first condition says that if g1, g2 are automorphisms of a such that
f (g1) = f (g2), then g1 = g2, i.e., that f is faithful. The second condition says that
f is full. Hence, f is a weak equivalence if and only if it is a weak equivalence
in the sense of Section 2.2. In particular, our notion of equivalence coincides with
that in [4, §3]. □

https://kerodon.net/tag/00W1
https://kerodon.net/tag/00WV
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As in 2.3.2, equivalence of n-groupoids is an equivalence relation: if H and H ′

witness that G2 is equivalent to G1 and G3, respectively, the pushout H ⊗G2 H ′

witnesses the equivalence of G1, G3.

Remark 3.2.11. The group operation on πk(G, a) (for k > 0) is also definable, but
we will not use this. □

Remark 3.2.12. The equivalence of our definitions of homotopy groups and
weak equivalence with other formulations that appear, for example, in [9, 00V2]
does not hold in the definable setting, in general. For example, the analogue
of Whitehead’s theorem [9, 00WV] is usually false (as seen already in the one-
dimensional setting). □

3.2.13. Morphism groupoids. Our next goal is to define the space of morphisms
between two objects a, b of an n-category G, and obtain a (weak) version of the
Yoneda embedding that makes sense in the definable setting.

Let G be an n-category, and let a, b ∈ G0 be two objects. As in [8, §1.2.2], we
define the 6n−1-structure HomL

G(a, b) by

HomL
G(a, b)k = {g ∈ Gk+1 | g0 = a, g0̂ = bk

} for k ≤ n. (1)

The structure maps are given by t 7→ d G
t+ , where t+

: [u +1] −→ [k +1] is given by
t+(i+1)= t (i)+1 for i ∈[u] and t+(0)=0. It is clear that HomL

G(a, b) is uniformly
definable over a, b when G is definable. It follows from [8, §§4.2.1.8, 2.3.4.18,
2.3.4.19] that this structure is equivalent to an (n−1)-groupoid, but since we are not
working up to equivalence, we need to prove that it is already an (n−1)-groupoid
by itself (which we do in Proposition 3.2.15 below).

If we fix a “generic” object v ∈ G0, the assignment b 7→ HomL(v, b) looks like
the object part of the Yoneda embedding for usual categories. One could hope that
this is part of a higher Yoneda embedding in our situation as well. However, since
there is no composition function for morphisms in G, such an embedding does not
exist as a functor (it exists noncanonically for set-theoretic quasicategories, but
not definably). Instead, we have the following situation (explained in [8, §2.1]):
There is an n-category Gv/ [8, §2.3.4.10], defined by (Gv/)k = {g ∈ Gk+1 | g0 = v},
and a map of n-categories π : Gv/ −→ G, given by π(g) = g0̂. By definition, the
fibre of this map over b ∈ G0 is HomL

G(v, b). Moreover, this map is a left fibration
[8, §2.1.22]: given g ∈ 3k

i (Gv/), for i < k, any “filling” h ∈ Gk of π(g) (so that
∂ î (h) = π(g)) can be lifted to a filling h̃ ∈ Gv/ with ∂ î (h̃) = g and π(h̃) = h. It
follows from this that the association b 7→ π−1(b) behaves like a functor of b, but
this is only precisely true in the homotopy category.

We show that in the case that h above is invertible, the lifting property above
holds for our definable version of equivalence. To do this, we show that the map π

https://kerodon.net/tag/00V2
https://kerodon.net/tag/00WV
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behaves like a local system: the fibres can be continued along (suitable) contractible
pieces. The pieces we have in mind are defined as follows:

Definition 3.2.14. The simplicial set Dl, for l≥0, is defined by Dl
k ={0, . . . , l}{0,...,k}

(all maps, not necessarily increasing, from [k] to [l]), with structure maps given by
composition.

We often write elements of Dl
k as words of length k + 1 in the “digits” 0, . . . , l.

By the usual Yoneda lemma, maps Dl
−→ Dm correspond (via composition) to

functions {0, . . . , l} −→ {0, . . . , m}. Note that homotopically, all these maps are
weak equivalences, and in particular the map to the point D0, so that all Dl are
contractible.

We now extend the definition of morphisms. For G a definable n-category, let
a ∈ G0 be an object, and let f : Dl

−→ G be a map of simplicial sets (perhaps over
parameters). We define a 6n−1-structure HomL

G(a, f ) as follows: for each k ≤ n,

HomL
G(a, f )k = {⟨g, e⟩ ∈ Gk+1 × Dl

k | g0 = a, g0̂ = f (e)} (2)

with structure maps given as before by ⟨g, e⟩ 7→ ⟨dt+(g), e ◦ t⟩ for each weakly
increasing function t : [u] −→ [k]. In other words, HomL

G(a, f ) is the pullback under
f of the map π : Gv/ −→ G described above. For l = 0 and f mapping the point
D0 to b, we recover the previous definition. In general, the projection determines a
map HomL

G(a, f ) −→ Dl of simplicial sets, which can be viewed as the “restriction”
of π to Dl . If h : Dr

−→ Dl is a map of simplicial sets, there is an induced map
ĥ : HomL

G(a, f ◦ h) −→ HomL
G(a, f ), given by ĥ(⟨g, e⟩) = ⟨g, h(e)⟩.

Proposition 3.2.15. Let G, a ∈ G0 and f : Dl
−→ G be as above.

(1) The structure HomL
G(a, f ) is an (n−1)-groupoid.

(2) For each map h : {0, . . . , r} −→ {0, . . . , l} (identified with the corresponding
map Dr

−→ Dl), the induced map ĥ : HomL
G(a, f ◦ h) −→ HomL

G(a, f ) is a
weak equivalence.

Proof. (1) Let H = HomL
G(a, f ). It is clear that H is a simplicial definable set.

To check the Kan condition, we prove a stronger claim, namely, that the projection
π : H −→ Dl is a Kan fibration: given a horn element h ∈ 3m

i (H) and an element
d ∈ Dl

m with ∂ î
m(d) = π(h), there is d̃ ∈ Hm with π(d̃) = d and ∂ î

m(d̃) = h.
Let h ∈ 3m

i (H) be a horn element as above, with 0 ≤ i ≤ m ≤ n + 2. Such an
element is given by a matching sequence of elements h j

= ⟨g j , e j
⟩, for j ∈ [m],

j ̸= i , with g j
∈ Gm and with π(h) = ⟨e0, . . . , em

⟩ an element of 3m
i (Dl). In Dl ,

each such horn element comes from a unique element of Dl
m . Let e ∈ Dl

m be this
element, and let g−1

= f (e) ∈ Gm .
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We claim that g̃ = ⟨g−1, g0, . . . , gm
⟩ ∈ Gm+1

m is in 3m+1
i+1 (G). To show that, we

need to show that if b̂ ◦ â = d̂ ◦ ĉ : [m − 1] −→ [m + 1] for some b, d ∈ [m + 1],
b, d ̸= i + 1 and a, c ∈ [m], then gb−1

â = gd−1
ĉ.

Assume first that a, b, c, d ≥ 1. The assumption on h implies that

hb−1
â−1m−1

= hd−1
ĉ−1m−1

(3)

whenever a, b, c, d satisfy

b̂ − 1m ◦ â − 1m−1 = d̂ − 1m ◦ ĉ − 1m−1. (4)

Equation (3) implies that

gb−1
â−1

+

m−1
= gd−1

ĉ−1
+

m−1

under this condition. But ĵ+

m−1 = ĵ + 1m for all j ∈ [m − 1], so we find that
gb−1

âm
= gd−1

ĉm
whenever equation (4) holds. But equation (4) is equivalent to

b̂m+1 ◦ âm = d̂m+1 ◦ ĉm (5)

so we obtain the required condition when a, b, c, d ≥ 1.
If b = 0 or d = 0, the corresponding element of Gm is g−1. In this case, the

condition follows from the definition of HomL
G(a, f ). For example, if b =0 we must

have c = 0 and d = a + 1, so we need to show that ga
0̂ = f (e)â = f (eâ) = f (ea),

and we are done. If a = 0 or c = 0, the condition forces b = 0 or d = 0, so we are
back to the same case.

This concludes the proof that g̃ ∈ 3m+1
i+1 (G). If i < m, the Kan condition on

G implies that we may find g ∈ Gm+1 restricting to g̃. It follows that g0 = a and
g0̂ = f (e), so that ⟨g, e⟩ solves the lifting problem. It follows from [8, §1.2.5.1]
that the case i < m is sufficient.

When m = n or m = n + 1, the injectivity follows similarly from injectivity for
G (and for Dl).

(2) We use Remark 3.2.8. An element in HomL
G(a, f ◦ h)0 is given by g ∈ G1 with

g0 =a and g1= f (h(e)), where e∈[u]. Assume that ⟨s, c⟩, ⟨t, d⟩∈HomL
G(a, f ◦h)k

satisfy s0̂ = t0̂ = f (h(c)) = f (h(d)) = h(e) and sî = tî = g for k ≥ i > 0, so that
they are elements of Sk(HomL

G(a, f ◦ h)). Assume also that we are given some
w ∈ Gk+2 satisfying w1̂ = s, w2̂ = t and wî = g for i > 2, and some v ∈ Du

k+1

with v0̂ = c, v1̂ = d and vî = e for i > 1, and with f (h(v)) = w0̂ (this is a homotopy
from ⟨s, c⟩ to ⟨t, d⟩). Then ⟨w, h(v)⟩ is a homotopy from ⟨s, h(c)⟩ to ⟨t, h(d)⟩.
The argument for k = 0 is similar (using that Du is connected).

For the second condition of Remark 3.2.8, let g ∈ G1 be such that g0 = a,
g1 = f (e) for some e ∈ [l], so that b =⟨g, e⟩ represents a basepoint of HomL

G(a, f ),
and let ⟨s, c⟩ ∈ Sk(HomL

G(a, f ), b). Then c ∈ Sk(Dl, e) is the constant function e.
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Let e′
∈ [u], and let γ ∈ Dl be some path from h(e′) to e. By the Kan condition

above, there is an element s ′ of HomL
G(a, f ) above γ , restricting to s. This s ′

serves as a homotopy from s to an element over h(e′), which is thus in the image
of ĥ. □

Corollary 3.2.16. Let G be an n-category, v, a, b ∈ G0 objects. Each isomorphism
t ∈ G1 from a to b determines an equivalence et : HomL

G(v, a) −→ HomL
G(v, b). If

s ∈ G1 is another isomorphism from a to b, each isomorphism m : t −→ s determines
an isomorphism em : et −→ es .

Proof. Apply Proposition 3.2.15 to maps from D1 and from D2 determined by t , s
and e. □

We describe the equivalence explicitly in the 2-dimensional case, which is most
relevant for us:

Example 3.2.17. Let G be a 2-groupoid, v, a, b ∈ G0 and f ∈ G1 with f0 = a
and f1 = b. Since G is a groupoid, there is h ∈ G2 (not necessarily unique) with
h0̂ = f and h1̂ = b. We denote f −1

= h2̂. By the 2-groupoid axioms, h has
a uniquely determined inverse h−1. Let γ : D1

−→ G be the unique map with
γ (101) = h, so that γ (01) = g and γ (10) = g−1. Then H = HomL

G(v, γ ) can be
described as follows:

(1) H0 = HomL
G(v, a)0 ⨿HomL

G(v, b)0 (this is just the union if a ̸= b, but if a = b
we take disjoint copies).

(2) Let X = {g ∈ G2 | g0 = v, g0̂ = f }, and let X−1
= {g ∈ G2 | g0 = v, g0̂ = f −1

}

(again taking disjoint copies if f = f −1). Then

H1 = HomL
G(v, a)1 ⨿ HomL

G(v, b)1 ∪ X ∪ X−1

with d X
0̂

= d G
1̂

, d X
1̂

= d G
2̂

and vice versa for X−1 (and the structure coming
from HomL on the other parts).

(3) Composition is defined again as in HomL on the corresponding parts. The
composition of h ◦g for g ∈ HomL

G(v, a) and h ∈ X is the composition in G of
the three elements g, h, i ∈ G2, where i is the identity morphism of the object
f of HomR

G(a, b). Similarly for the compositions g′
◦ h, h′

◦ g′, g ◦ h′, h ◦ h′

and h′
◦ h, for g′

∈ HomL
G(v, b) and h′

∈ X−1 (in each case, the two elements
of G2 along with i form three faces of a 2-horn, with vertices a, a, b, v or
a, b, b, v, and the result is the uniquely determined fourth face).

It is clear, by construction, that each of the inclusions of HomL(v, a) and of
HomL(v, b) into H determine fully faithful functors. As in the general proof, they
are also essentially surjective by the Kan property. □
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Corollary 3.2.18. Let G be a 2-groupoid, γ : D2
−→ G a fixed map, and a ∈ G0 a

fixed vertex. Then

HomL(a, γ ) = HomL(a, γ ◦ 2̂) ⊗HomL (a,γ ◦1) HomL(a, γ ◦ 0̂)

(canonical isomorphism), and

HomL(a, γ ◦ 1̂) = HomL(a, γ ◦ 0̂) ◦HomL (a,γ ◦1) HomL(a, γ ◦ 2̂).

In other words, the composition of two morphism groupoids (in the sense of 2.3.2)
is given by composition in the homotopy category.

Proof. By definition, both sides have the same sets of objects. Proposition 2.2.9
provides the required map, and since on both sides we also have a weak equivalence
(by the second part of Proposition 2.2.9 and by Proposition 3.2.15), this map is an
isomorphism. The second part again follows directly from the definition, as both
sides are the restriction to the same set of objects. □

3.3. The theory associated with a groupoid. We continue to fix n ∈ N. To each
definable n-groupoid in the theory T we define an associated expansion TG of T ,
directly generalising (a variant of) the one-dimensional case (Construction 2.2.4).

Definition 3.3.1. Let G be a definable n-groupoid in a theory T . The expansion TG
of T is obtained by adding additional sorts G∗

i for 0 ≤ i ≤ n + 1, function symbols
ei : Gi −→ G∗

i , a constant symbol ∗ ∈ G∗

0, and the axioms expressing:

(1) G∗ is an n-groupoid, and e∗ is a map of simplicial sets (i.e., commutes with
the structure maps). We identify G with its image.

(2) G∗

0 = G0 ∪ {∗}.

(3) The inclusion of G in G∗ is a weak homotopy equivalence (Remark 3.2.8),
and an isomorphism onto the full subgroupoid of G∗ spanned by G0.

For each natural number r , there is a definable family 0r = HomL(∗, f ) of
groupoids, parametrised by the definable set of maps f : Dr

−→ G∗. This is
our collection 0 of admissible groupoids, in the sense of Definition 3.1.3.

We note that our choice of 0 does satisfy the assumption on composition, by
Corollary 3.2.18.

As in the one-dimensional case, each object a ∈ G0 determines an interpretation
ωa over Ta determined by the requirement that ωa(∗)= a, ωa(G∗

i )= Gi for i = 1, 2
and similarly for the face maps. We would like to show that the ωa are objects in
the 2-groupoid associated with TG over T , namely:

Proposition 3.3.2. For every object a ∈ G0, the interpretation ωa : TG −→ Ta is
2-stable. In particular, ⟨TG, 0⟩ is a 2-internal cover of T .
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Proof. We need to show that over some parameter u, each 0-admissible groupoid
H is equivalent to ωa(H), over some parameters from T . Let u be any element
of HomL

G∗(∗, a)0 (it is consistent that such a u exists: for any model M of T such
that a ∈ G0(M), M ◦ ωa is a model of TG for which this set is nonempty).

Let f : Dr
−→ G∗ be a map, and assume first that for some i ∈ [r ], b = f (i) ∈ G0.

By the second item of Proposition 3.2.15, H = HomL
G∗(∗, f ) is equivalent (over

no additional parameters) to HomL
G∗(∗, b), so we may assume that f = b. We

may also assume that b is in the same connected component as a, because other-
wise H is empty. According to Corollary 3.2.16, it follows that H is equivalent
to HomL

G∗(∗, a). Again according to (a dual version of) Corollary 3.2.16, the fixed
element u determines an equivalence from H to ωa(H) = HomL

G(a, a).
The remaining case is when f is the constant map ∗, so that H = HomL

G∗(∗, ∗),
and ωa(H) = HomL

G(a, a). The same argument as above shows that both are
equivalent to HomL

G∗(∗, a) over u. □

We would like to prove that the association a 7→ ωa is the object part of an
assignment that recovers (up to equivalence) G. To do that, we need to define the
2-groupoid which is the target of this assignment. This will be the analogue of
IT ∗/T from the one-dimensional case (2.2.2).

Definition 3.3.3. Let T ∗ be a stable expansion of a theory T , with admissible
family of distinguished internal covers 0. The 2-groupoid associated to this datum
is defined as follows:

(1) Objects are 2-stable interpretations of ⟨T ∗, 0⟩ in T , over T .

(2) If x, y are two objects as above, a morphism u : x −→ y is given by a
bi-interpretation uT ′ : x(T ′) −→ y(T ′) over T , for each admissible inter-
nal cover T ′

∈ 0. These bi-interpretations are given with isomorphisms
ci : uT2 ◦ x(i) −→ y(i) ◦ uT1 for every admissible interpretation i : T1 −→ T2

between admissible covers T1, T2 in 0 (uniformly in families).
The isomorphisms are required to satisfy c j◦i = y( j)(ci ) ◦ c j (x(i)) for

admissible interpretations i : T1 −→ T2, j : T2 −→ T3 as above (these make sense
since, by definition, the ci are definable maps in y(T2), y( j) is an interpretation
of y(T2) in y(T3) and c j is a map between interpretations of x(T2), so can be
applied to definable sets of the form x(i)).

(3) The 2-morphisms with edges u : x −→ y, v : y −→ z and w : x −→ z are given by
isomorphisms v ◦ u −→ w, all over T .

(4) The “2-composition” of the 2-morphisms α : v ◦ u −→ w, β : s ◦ v −→ r and
γ : r ◦ u −→ t is given by

s ◦ w
s·α−1
−−−→ s ◦ (v ◦ u) = (s ◦ v) ◦ u β·u

−−→ r ◦ u γ
−→ t,

where · stands for pointwise application (or horizontal composition) as above.
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Applying the definition with T replaced by TA, for a T -structure A, we obtain a
2-groupoid for each such structure A, which we denote I 2(A) = I 2

T ∗/T (A).

Using the equivalence between internal covers and definable groupoids, this
can be described in terms of definable groupoids. We give an explicit description
in 3.3.6 below.

Remark 3.3.4. Let C be the category of definable groupoids in T , with weak
equivalences as morphisms. We may form its bicategory of cospans for this category,
as in [9, 0084]. By Proposition 2.3.4, it is equivalent (as a bicategory) to the category
of internal covers and bi-interpretations. The 2-category in Definition 3.3.3 can be
viewed as the Duskin nerve [9, 009T] of this bicategory (clear from the description
in [9, 00A1]). In particular, it follows that this is indeed a 2-category. □

Proposition 3.3.5. Let G be a definable 2-groupoid in a theory T , and TG =⟨TG, 0⟩

the corresponding 2-internal cover. The association a 7→ ωa extends to a map
ω : G(A) −→ I 2

TG/T (A) of 2-groupoids, compatible with extensions of the struc-
ture A.

Proof. Proposition 3.3.2 shows that for all a ∈ G0(A), ωa is indeed an object
of I 2(A). Given t : a −→ b in G1(A), we define ωt : ωa −→ ωb as follows.

Let H be an admissible groupoid. As in the proof of Proposition 3.3.2, we assume
that H = Hc = HomL

G∗(∗, c) for some c ∈ G0(A), so that ωa(H) = HomL
G(a, c)

and ωb(H) = HomL
G(b, c). By Corollary 3.2.16, t induces an (admissible) equiv-

alence from ωa(H) to ωb(H), which we take to be ωt(H). Our definition (and
construction) ensures the compatibility under admissible maps H −→ H ′.

Similarly, let α ∈ G2(A), with edges r : a −→ b, s : b −→ c and t : a −→ c. We
need to construct an isomorphism (over T ) from ωs ◦ ωr to ωt . Consider the map
f : D2

−→ G determined by α. We have f (01) = r , f (12) = s and f (02) = t , so
that for each object d ∈ G0(A), the equivalence ωr (Hd) : ωa(Hd) −→ ωb(Hd) is
given by HomL( f ◦ h01, d), where h01 : [1] −→ [2] is the inclusion (and similarly
for s, t). Hence, HomL( f, d) represents the composition ωs ◦ωr , and restriction to
ωt provides the required map.

This completes the construction of ω. The proof that this is a map of 2-groupoids
(i.e., that it commutes with composition) is similar to the above, using D4 in place
of D3, and the fact that it commutes with extension of scalars is obvious. □

3.3.6. Our main goal is to prove that the map ω constructed in Proposition 3.3.5 is
a weak equivalence. Similarly to the 1-dimensional case, it is generally only true in
a model. As a preparation, we consider more explicitly the structure of I 2 from
Definition 3.3.3, from a definable groupoid point of view.

Let ω1 and ω2 be two objects of I 2
T ∗/T , i.e., 2-stable interpretations of T ∗ in T .

An isomorphism from ω1 to ω2 over T is given, according to Proposition 2.3.1, by a

https://kerodon.net/tag/0084
https://kerodon.net/tag/009T
https://kerodon.net/tag/00A1
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family K (H) of groupoids in T , for each admissible groupoid H in T ∗, along with
weak equivalences ui (H) : ωi (H) ∼99K K (H), all definable uniformly in H . Given
another admissible groupoid H ′, an admissible interpretation from T ∗

H ′ to T ∗
H

is given, again by Proposition 2.3.1, by an admissible groupoid X and admissible
maps f : H −→ X and g : H ′ ∼99K X .

According to Definition 3.3.3, we are provided with definable isomorphisms
(realising the isomorphisms ci there, via Proposition 2.3.4)

tX,K : K (H) ◦ω1(H) ω1(X) ∼
−→ ω2(X) ◦ω2(H ′) K (H ′) (6)

uniformly definable in X, K (and the associated embeddings), and restricting to
the identity on ω1(H ′) and on ω2(H). The situation is depicted in the top part of
the following diagram:

ω1(H) K (H) ω2(H)

K (H) ◦ω1(H) ω1(X)

ω1(X) ω2(X)

ω2(X) ◦ω2(H ′) K (H ′)

ω1(H ′) K (H ′) ω2(H ′)

K (H ′) ◦ω1(H ′) ω1(Y)

ω1(Y) ω2(Y)

ω2(Y) ◦ω2(H ′′) K (H ′′)

ω1(H ′′) K (H ′′) ω2(H ′′)

u1(H)

∼

ω1( f )

u2(H)

ω2( f )

tX,K

∼

u1(H ′)

∼

ω1(g)

∼

∼

∼

u2(H ′)

ω2(g)

∼

tY ,K

∼

u1(H ′′)

∼

∼

∼

∼

u2(H ′′)

∼

If Y determines a map to T ∗
H ′ from T ∗

H ′′ for a further groupoid H ′′, we have
the maps

tX,K ⊗ω1(H ′) 1ω1(Y) : K (H) ◦ω1(H) ω1(X) ◦ω1(H ′) ω1(Y)

∼
−→ ω2(X) ◦ω2(H ′) K (H ′) ◦ω1(H ′) ω1(Y) (7)
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and

1ω2(X) ⊗ω2(H ′) tY ,K : ω2(X) ◦ω2(H ′) K (H ′) ◦ω1(H ′) ω1(Y)

∼
−→ ω2(X) ◦ω2(H ′) ω2(Y) ◦ω2(H ′′) K (H ′′). (8)

The groupoid X ◦H ′ Y represents the composition of interpretations, and

ωi (X ◦H ′ Y) = ωi (X) ◦ωi (H ′) ωi (Y)

(canonical identification), since ωi is an interpretation. Under this identification,
we require that

(1ω2(X) ⊗ω2(H ′) tY ,K ) ◦ (tX,K ⊗ω1(H ′) 1ω1(Y)) = t(X◦H ′ Y),K . (9)

Finally, a 2-morphism is determined by a natural isomorphism between two
maps as above (one a composition, which we already understand), so it is enough
to describe those. Let ω1, ω2 and K be as above, and let L represent another
morphism. A natural isomorphism is then given by a uniform family of isomor-
phisms αH : K (H) −→ L(H) over ωi (H), which intertwine the maps tX,K and tX,L
whenever X represents an interpretation. The 2-composition of three such suitable
maps is described as in Definition 3.3.3, with composition replaced by pushouts as
appropriate.

Remark 3.3.7. By definition, internality means that there is a nonempty definable
set (i.e., a 0-groupoid) of isomorphisms between the internal sorts and sorts of the
base theory. Similarly, the structure described above includes the description of a
T ∗-definable 1-groupoid IsoT (T̃ ∗, T̃ ) of weak equivalences between admissible
covers T̃ ∗ of T ∗ and covers T̃ of T (nonempty for some T̃ if T ∗ is 2-internal). In
terms of groupoids, the families K as in 3.3.6 are the objects, and the morphisms are
the natural isomorphisms α. Furthermore, this groupoid itself is admissible. □

Example 3.3.8. Let T ∗
= TG as in Proposition 3.3.5, and let ω1 = ωa and

ω2 = ωb for some a, b ∈ G0(A). Let f : a −→ b be a morphism in G(A)

(identified with the corresponding map from D1). Given an admissible groupoid
H = Hd = HomL(d, ∗), we let K f (d) = K f (Hd) = HomL

G(d, f ), with the canon-
ical maps from ωa(Hd) = HomL(d, a) and ωb(Hd) = HomL(d, b) (these are weak
equivalences by Proposition 3.2.15).

To give K the structure of an isomorphism from ωa to ωb, we need to supply the
isomorphisms (6). If H ′

= Hc = HomL(c, ∗) is another admissible groupoid in TG ,
an admissible isomorphism from Hc to Hd is given by a groupoid Xg =HomL(g, ∗),
with g : c −→ d in G. Seeing as ωx(Xg) = HomL(g, x) for all x , such a structure
consists of a definable family of maps

tg, f : HomL(d, f )◦HomL (d,a)HomL(g, a) ∼
−→ HomL(g, b)◦HomL (c,b)HomL(c, f ).
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Recall that t is the identity on objects, so we only need to define it on morphisms. Let
⟨u, v⟩ represent a morphism of HomL(d, f )◦HomL (d,a) HomL(g, a). Let h : c −→ a
be the domain of v. By the Kan property, there is a morphism w ∈ HomL(c, f )

whose domain is h. Then u, v, w form an element of 33
3(G), so composition

provides a fourth face y ∈ HomL(g, b)1. We let tg, f (u ⊗ v) = y ⊗ w. If w′ is
a different choice in place of w, then w′

◦ w−1 is in HomL(c, b), so the result
represents the same morphism of HomL(g, b) ◦HomL (c,b) HomL(c, f ). It is clear
that t is well defined on the class u ⊗ v, and uniformly definable in g, f .

To prove the identity (9), assume we are given another morphism g′
: c′

−→ c,
corresponding to an admissible interpretation represented by Y = HomL(g′, ∗).
Let v′

∈ HomL(g′, a) = ω1(Y). Proceeding with the notation above, we need to
determine the image of y ⊗ w ⊗ v′ in

HomL(g, b) ◦HomL (c,b) HomL(g′, b) ◦HomL (c′,b) HomL(c′, f ).

As above, it is given by y ⊗ y′
⊗ w′, where y′

∈ HomL(g′, b) = ω2(Y) and
w′

∈ HomL(c′, f )= K f (Hc′) represent the other two faces of a partial simplex with
faces w and v′ (this other simplex can be visualised as attached to the previous one at
the face w). On the other hand, X ◦Hc Y was identified (as in Corollary 3.2.18) with
HomL(g ◦ g′, ∗), for any composition g ◦ g′. After choosing such a composition h,
v ⊗ v′ is identified with an element of HomL(h, a) and y ⊗ y′ with an element of
HomL(h, b), so that they become two faces of the simplex with vertices a, b, c, d ,
the other two being u and w′, so that u ⊗ w′

= th, f (v ⊗ v′, y ⊗ y′), as required.
Assume now that we are given a map γ : D2

−→ G corresponding to an element
w ∈ G2, with edges f = γ (01), g = γ (12) and h = γ (02). Given an element
u ∈ K f (Hc) = HomL(c, f ) and v ∈ Kg(Hc) = HomL(c, g) (for an arbitrary
c ∈ G0), the 2-composition applied to u, v and w provides an element of Kh(Hc) =

HomL(c, h). This process assembles into a family of isomorphisms

αγ : Kg(Hc) ◦ K f (Hc) −→ Kh(Hc),

definable uniformly in γ and c. This completes the description (and a reformulation
of the proof) of the map in Proposition 3.3.5 in terms of definable groupoids. □

We are now ready to prove our main result.

Theorem 3.3.9. Let G be a 2-groupoid defined in a theory T , and let TG be the
associated theory (and admissible covers), as in Definition 3.3.1. Then TG is a
2-internal cover of T , and for every model M of T , the 2-groupoid of M-points
I 2
TG/T (M) is weakly equivalent to G(M).

Proof. The fact that TG is a 2-internal cover is Proposition 3.3.2. The map from G to
I 2
TG/T was constructed in Proposition 3.3.5, and described in terms of groupoids in

Example 3.3.8. We use this description to show that the map is a weak equivalence,
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using Remark 3.2.8. We assume that we are working over M, and proceed by
considering the possible dimensions 0 ≤ k ≤ 2.

k = 0: We need to show that any 2-stable interpretation ω of TG in T admits a
coherent collection of bi-interpretations as in Definition 3.3.3(2) to some ωa .

Since ω is an interpretation over T , ω(G∗) is a definable 2-groupoid in T ,
containing G, with the inclusion a weak equivalence. The proof now proceeds
exactly as the proof of Proposition 3.3.2, with ω(G∗) in place of G∗.

k = 1: This is the main case, which can be viewed as a definable version of
the Yoneda lemma. Let a, b ∈ G0, and assume we are given an equivalence
from ωa to ωb. Hence, for every c ∈ G0 (some parameters), we are given a
groupoid K (c) in T and weak equivalences HomL(c, a) = ωa(Hc) −→ K (c) and
HomL(c, b) = ωb(Hc) −→ Kc, uniformly in c, along with structure maps (6)

tg,K : K (d) ◦HomL (d,a) HomL(g, a) −→ HomL(g, b) ◦HomL (c,b) K (c)

(all notation as in Example 3.3.8, except K is no longer known to be of the given
form). We identify ωa(Hc), ωb(Hc) with their images in K (c).

In particular, we have the identity morphism 1a of a as an object 1a ∈ ωa(Ha),
and by weak equivalence, an object f : a −→ b in ωb(Ha) ⊆ K (a), along with a
morphism u : 1a −→ f in K (a). We show that K is isomorphic to K f , by a unique
isomorphism.

To do that, let c ∈ G0 be an arbitrary object, and let v be a morphism of
K f (c) = HomL(c, f ) (so a 2-morphism of G). Denote by g ∈ HomL(c, a)0 the
domain of v. Then v can also be viewed as a morphism in HomL(g, b), and on
the other hand, we have the canonical morphism w from g to 1a in HomL(g, a).
Applying tg,K to the morphism u⊗w ∈ K (a)◦HomL (a,a) HomL(g, a), we may write
tg,K (u ⊗ w) as v ⊗ x for a unique x ∈ K (c), which we take to be the image of v.
By construction this map commutes with the structure maps t , and is unique with
this property.

k = 2: We need to show that each isomorphism α : Kg ◦ K f −→ Kh with f : a −→ b,
g : b −→ c and h : a −→ c arises from a unique γ : D2

−→ G, with boundary f, g, h (as
in the end of Example 3.3.8). Uniqueness was already shown in the part k = 1. For
existence, we apply αb : Kg(b) ◦ K f (b) −→ Kh(b) to the element 1g ⊗ 1 f (where
1g is the identity morphism of the object g of HomL(b, c), viewed as an element
of G2, and similarly for f ), to obtain an element γb ∈ Kh(b)1, again viewed as a
2-morphism of G. It is clear that the map α coincides with αγ on the given maps,
and then, again by the uniqueness statement, that α = αγ globally. □

3.3.10. Recovering a definable 2-groupoid. The main statement of classical inter-
nality starts with the assumption of internality, and produces a definable (nonempty)
groupoid from it. The general outline of this construction was recalled in Section 2.2,
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and in Proposition 2.2.6 we indicated how this construction is useful in the descrip-
tion of definable sets in the cover.

In our approach, the construction of the (2-)groupoid is almost tautological: we
defined a groupoid (or a 2-groupoid) associated to every stable expansion, and by
definition, the expansion is an internal cover if the groupoid is nonempty. However,
we still need to show that the groupoid is equivalent to a definable one, which
we sketch below. The other part, describing the (admissible) 1-groupoids in the
cover in terms of suitable definable fibrations in the base, is more involved, and we
postpone most of the work here to future work.

Proposition 3.3.11. Let T ∗ be a 2-internal cover of T . Then the 2-groupoid I 2
T ∗/T

associated to it is equivalent to a T -definable one.

Proof sketch. Assume T ∗ is a 2-internal cover of T , and let ω : T ∗
−→ TA be a

2-stable interpretation. For simplicity we assume that 0, the collection of admissible
covers, consists of one definable family. As in 3.3.6, we have a fixed parameter
u0 and a uniform family K = Kc of groupoids in T ∗ defined over u0, along with
(uniformly definable) weak equivalences fc : Xc

∼99K Kc and gc : ω(Xc) −→ Kc for
Xc members of 0 (note that c ranges over a definable set in T by assumption). Like
in Remark 3.3.7, as u0 varies, we obtain a family Ku,c of objects of a definable
1-groupoid Pc, along with a map Pc −→ Iso(X, ω(X)) for each member X of 0.
Furthermore, Pc itself is also in 0. Applying the above map to X = Pc′ , we obtain
a family of definable maps of 1-groupoids a : Pc −→ Iso(Pc′, ωc(Pc′)).

The 2-groupoid G is constructed as follows: G0 is the definable set of parameters
c as above. Each groupoid Pc will be isomorphic to HomL(∗, c) in the correspond-
ing G∗. Let c, d be two elements of G0. Given an object u of Pc, the map a
above produces a groupoid Ku as an object of Iso(Pd , ωc(Pd)), along with weak
equivalences f : Pd

∼99K Ku and g :ωc(Pd)−→ Ku . Let Qu,v be the set of morphisms
in Ku with domain f (v). We set the morphisms from c to d to be the definable
types space of Qu,v over T (this is definable in T by stability of the embedding).
Note that each such type includes, in particular, the information of the object of
ωc(Pd) which is the codomain of any realisation (as an element of Qu,v).

Similarly, assume e is another element of G0, and w an object of Pe. The
elements of G2 with vertices c, d, e are defined as the types over T of triples
Qu,v × Qv,w × Qu,w (over all such u, v, w). The 2-composition is defined similarly,
by considering 4-tuples. We skip the details of the construction, as well as the proof
that the map determined by a is a weak equivalence. □

We mention also that this description can, in principle, be used to give an
equivalent combinatorial definition of 2-internality (similar to the original definition
of internality), but I could not find one sufficiently pleasant to write.
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3.4. Questions. I mention a few natural questions that I hope to address in the
future.

3.4.1. Structure of admissible internal covers. The definable version of the 2-
groupoid G associated to a 2-internal cover T ∗ of T was only sketched above.
Assuming it is properly described, it still needs to be seen that TG and T ∗ are, in
some sense, equivalent. It would also be useful to describe the admissible covers
(in either) as suitably defined “higher local systems” on G. Both questions require
that we name the precise closure properties on the collection of admissible covers:
we already assumed that they are closed under finite inverse limit and definable
mapping spaces, but it is not clear, for example, if some closure under quantifiers is
required.

3.4.2. Lax interpretations. We had not run into the questions above because we
required objects of the 2-groupoid I 2 to be actual interpretations. This works well
in the example of TG , but for general expansions it might make more sense to
consider a larger class of “lax interpretations” that preserve only the admissible
covers (possibly up to weak equivalence).

3.4.3. Internal covers of TG . The requirement for introducing admissible covers
was motivated above. However, in the case of TG it might still be true that essentially
all internal covers are the ones described (up to covers that come from the base T ).
Again, stating this precisely requires clarifying the structure of the collection of
admissible covers.

3.4.4. Relation to analysability. The 2-groupoid G∗ in the theory T provides an
example of a 2-analysable set over T . Can we describe (combinatorially) which
2-analysable covers occur in this way?

3.4.5. Generalisation to higher dimensions. This is rather clear: one continues by
induction, defining an (i+1)-groupoid associated to a stable expansion by taking
into account i-internal covers, and then defining the expansion to be an (i+1)-cover
if this groupoid is nonempty. However, some of the proofs given above would be
difficult to generalise, and it would be interesting to look for a smoother way. In
any case, this only applies to each finite level, and it does not seem reasonable to
expect a generalisation to arbitrary ∞-groupoids.

3.4.6. Structure at ∗. We did not consider the structure of the groupoid HomL
G∗(∗,∗)

definable in TG . On top of the groupoid structure, composition gives it a structure
of a monoidal category up to homotopy (i.e., the homotopy category is monoidal).
It also acts on all the admissible covers, so it is really a higher analogue of the
binding group. However, we did not consider what could be a version of the Galois
correspondence or of descent, as in the 1-dimensional case.
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