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Mock hyperbolic reflection spaces
and Frobenius groups of finite Morley rank

Tim Clausen and Katrin Tent

We define the notion of mock hyperbolic reflection spaces and use it to study
Frobenius groups. These turn out to be particularly useful in the context of
Frobenius groups of finite Morley rank including the so-called bad groups. We
show that connected Frobenius groups of finite Morley rank and odd type with
nilpotent complement split or interpret a bad field of characteristic zero. Further-
more, we show that mock hyperbolic reflection spaces of finite Morley rank satisfy
certain rank inequalities, implying, in particular, that any connected Frobenius
group of odd type and Morley rank at most ten either splits or is a simple nonsplit
sharply 2-transitive group of characteristic ̸= 2 of Morley rank 8 or 10.
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1. Introduction

This paper contributes to the study of groups acting on geometries arising naturally
from conjugacy classes of involutions. We define the notion of a mock hyperbolic
reflection space and use it to study certain Frobenius groups. Such an approach to
the classification of groups and their underlying geometries based on involutions
was developed by Bachmann [1959]. Mock hyperbolic reflection spaces generalize
real hyperbolic spaces and their definition is motivated by the geometry arising
from the involutions in certain nonsplit sharply 2-transitive groups.
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The points of such a mock hyperbolic space are given by a conjugacy class of
involutions, and we view the conjugation action by an involution in the space as a
point-reflection. More precisely, a conjugacy class of involutions in a group forms
a mock hyperbolic reflection space if it admits the structure of a linear space such
that three axioms are satisfied: three points are collinear if and only if the product
of their point-reflections is a point-reflection, for any two points there is a unique
midpoint, i.e., a unique point reflecting one point to the other, and given two distinct
lines there is at most one point reflecting one line to the other.

We will consider in particular mock hyperbolic reflection spaces arising from
Frobenius groups of finite Morley rank. One of the main open problems about
groups of finite Morley rank is the algebraicity conjecture, which states that any
infinite simple group of finite Morley rank should be an algebraic group over an
algebraically closed field. While the conjecture was proved by Altınel, Borovik,
and Cherlin [Altınel et al. 2008] in the characteristic 2 setting, it is still wide open
in general and in particular in the situation of small (Tits) rank. The conjecture
would in fact imply that any sharply 2-transitive group of finite Morley rank and,
more generally, any Frobenius group of finite Morley rank splits.

A Frobenius group is a group G together with a proper nontrivial malnormal sub-
group H , i.e., a subgroup H such that H ∩ H g

={1} for all g ∈ G\ H . (If G is a bad
group of finite Morley rank with Borel subgroup B then B < G is a Frobenius group.)
A classical result due to Frobenius states that finite Frobenius groups split, i.e., they
can be written as a semidirect product of a normal subgroup and the subgroup H . In
the setting of finite groups the methods used by Frobenius play an important role in
the classification of CA-groups, CN-groups, and groups of odd order. For groups of
finite Morley rank, all the corresponding classification problems are still wide open.

Sharply 2-transitive groups of finite Morley rank came to renewed attention
when recently the first sharply 2-transitive groups without nontrivial abelian normal
subgroup were constructed in characteristic 2 in [Rips et al. 2017] (see also [Tent
and Ziegler 2016]) and in characteristic 0 in [Rips and Tent 2019]. However, as
we show below, these groups do not have finite Morley rank. We also show that
specific nonsplit sharply 2-transitive groups of finite Morley rank would indeed be
direct counterexamples to the algebraicity conjecture.

We prove the following splitting criteria for groups with an associated mock
hyperbolic reflection space:

Theorem 1.1. If G is a group with an associated mock hyperbolic reflection
space J , then the following are equivalent:

(a) G ∼= A⋊Cen(q) for some abelian normal subgroup A and any q ∈ J .

(b) J is a (possibly degenerate) projective plane.

(c) J consists of a single line.
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We show a rank inequality for mock hyperbolic reflection spaces in groups of
finite Morley rank: if J is a mock hyperbolic reflection space of Morley rank n such
that lines are infinite and of Morley rank k, then n ≤ 2k implies that J consists of a
single line (and hence n = k). If n = 2k + 1, then there exists a normal subgroup
similar to the one in the above theorem (see Theorem 6.11).

We then consider mock hyperbolic reflection spaces arising from Frobenius
groups. A connected Frobenius group G of finite Morley rank with Frobenius
complement H falls into one of three classes: it is either degenerate or of odd
or of even type depending on whether or not G and H contain involutions (see
Section 4). A connected Frobenius group is of odd type if and only if the Frobenius
complement contains an involution. In particular, every sharply 2-transitive group
of finite Morley rank and characteristic different from 2 is a Frobenius group of
odd type. We show:

Theorem 1.2. Let H < G be a connected Frobenius group of finite Morley rank
and odd type.

(a) The involutions J in G form a mock hyperbolic reflection space and all lines
are infinite.

(b) If a generic pair of involutions is contained in a line of Morley rank k and
MR(J ) ≤ 2k + 1, then H < G splits.

(c) If G does not split and a generic pair of involutions is contained in a line of
Morley rank 1, then G is a simple sharply 2-transitive group of characteris-
tic ̸= 2 and hence a direct counterexample to the algebraicity conjecture.

(d) If MR(G) ≤ 10, then either G splits or G is a simple nonsplit sharply 2
transitive group of characteristic ̸= 2 and MR(G) is either 8 or 10.

For nilpotent Frobenius complements we show the following splitting criteria:

Theorem 1.3. If H < G is a connected Frobenius group of finite Morley rank and
odd type with nilpotent complement H , then any of the following conditions implies
that H < G splits:

• H is a minimal group.

• The lines in the associated mock hyperbolic reflection space have Morley
rank 1.

• G does not interpret a bad field of characteristic 0.

If G is a uniquely 2-divisible Frobenius group, then G does not contain involu-
tions. However if the complement H is abelian, then we can use a construction from
the theory of K-loops to extend G to a group containing involutions and if H < G
is full, i.e., if G =

⋃
g∈G H g, then the involutions in this extended group will again

form a mock hyperbolic reflection space (see Section 4).
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This construction allows us to use mock hyperbolic reflection spaces to study
Frobenius groups of finite Morley rank and degenerate type. This class contains
potential bad groups. Frécon [2018] showed that bad groups of Morley rank 3
do not exist. Subsequently, Wagner [2017] used Frécon’s methods to show more
generally that if H < G is a simple full Frobenius group of Morley rank n with
abelian Frobenius complement H of Morley rank k, then n > 2k + 1. Note that
the existence of full Frobenius groups was claimed by Ivanov and Olshanski, but
to the authors’ best knowledge no published proof exists (see also [Jaligot 2001,
Fact 3.1]).

If H < G is a not necessarily full or simple Frobenius group of finite Morley
rank and degenerate type, we obtain a weaker version of mock hyperbolic reflection
spaces which still allows us to extend Frécon’s and Wagner’s results:

Theorem 1.4. If H < G is a connected Frobenius group of Morley rank n and
degenerate type with abelian Frobenius complement H of Morley rank k, then
n ≥ 2k + 1.

If n = 2k + 1, then G splits as G = N ⋊ H for some definable connected normal
subgroup N. Moreover, if N is solvable, then there is an interpretable field K
of characteristic ̸= 2 such that G = K+ ⋊ H , H ≤ K ∗, and H acts on K+ by
multiplication.

2. Mock hyperbolic reflection spaces

We now introduce the notion of mock hyperbolic reflection spaces, which will
be central to our work. The motivating example for our construction comes from
sharply 2-transitive groups in characteristic different from 2 (see Section 3) in which
the involutions have a rich geometric structure, which is reflected in the following
definition.

Let G be a group and J ⊂ G a conjugacy class of involutions in G, and let
3 ⊂ P(J ) be a G-invariant family of subsets of J such that each λ ∈ 3 contains at
least two elements. We view involutions in J as points and elements of 3 as lines,
so that the conjugation action of J on itself corresponds to point reflections.

For involutions i ̸= j ∈ J , we write

ℓi j = {k ∈ J : i j ∈ k J },

and we say that the line ℓi j exists in 3 if ℓi j ∈ 3.

Definition 2.1. Let G be a group, let J ⊂ G be a conjugacy class of involutions
in G, and let 3 ⊂ P(J ) be G-invariant and such that each λ ∈ 3 contains at least
two elements. The pair (J, 3) is a partial mock hyperbolic reflection space if the
following conditions are satisfied:



MOCK HYPERBOLIC REFLECTION SPACES AND FROBENIUS GROUPS 141

(a) For all λ ∈ 3 and i ̸= j ∈ λ, we have

λ = ℓi j = {k ∈ J : i j ∈ k J }.

In particular, if i ̸= j are contained in lines λ, δ ∈3, then λ=ℓi j = δ. Therefore
any two points are contained in at most one line.

(b) Midpoints exist and are unique; i.e., given i, j in J there is a unique k ∈ J
such that ik

= j .

(c) Given two distinct lines there is at most one point reflecting one line to the
other. In other words, if λi

= λ j for i ̸= j in J , then λi
= λ = λ j .

We say that (J, 3) is a mock hyperbolic reflection space if it satisfies (a)–(c) and
furthermore ℓi j ∈ 3 for all i ̸= j ∈ J .

Given a group G and a conjugacy class J of involutions in G, in light of
Definition 2.1 and in a slight abuse of notation, we say that J forms a mock
hyperbolic reflection space if (J, {ℓi j : i ̸= j ∈ J }) is a mock hyperbolic reflection
space.

For a group G and subset A ⊂ G, we write

A·n
= {a1 · · · an | a1, . . . , an ∈ A} ⊆ G.

Remark 2.2. Let (J, 3) be a partial mock hyperbolic reflection space. We say that
involutions i, j, k ∈ J are collinear if there is some λ ∈ 3 with i, j, k ∈ λ.

Furthermore, if J is a conjugacy class of involutions in G and 3 ⊂ P is such
that every λ ∈ 3 contains at least two elements, we will see below that if (a) and (b)
hold, then (c) is equivalent to either of the following conditions:

(c′) If λi
= λ j for i ̸= j in J and λ ∈ 3, then i, j ∈ λ.

(c′′) For every line λ ∈ 3, we have NG(λ) ∩ J ·2
= λ·2.

If 3 = {ℓi j : i ̸= j ∈ J }, then (a) is equivalent to

i, j, k ∈ J are collinear if and only if i jk ∈ J.

Example 2.3. Let Hn be the n-dimensional real hyperbolic space. Then Isom(Hn),
the group of all isometries of Hn , contains the point-reflections as a conjugacy
class J of involutions. J can be identified with Hn , and hence J forms a mock
hyperbolic reflection space. In case n = 2 the simple group PSL2(R) consists of
all orientation-preserving isometries of H2. PSL2(R) is generated by the point-
reflections and the point-reflections are the only involutions.

Example 2.4. Let A be a uniquely 2-divisible abelian group, and let ϵ ∈ Aut(A)

be given by ϵ(x) = x−1. Put G = A⋊ ⟨ϵ⟩. Then the set of involutions in G is given
by J = A × {ϵ} and J forms a mock hyperbolic reflection space consisting of a
single line.
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Other examples arise from sharply 2-transitive groups (Section 3) or can be
constructed from a class of uniquely 2-divisible Frobenius groups (Section 4).

Lemma 2.5. Let G be a group and J a conjugacy class of involutions in G such
that J acts regularly on itself by conjugation, i.e., J satisfies condition (b) in
Definition 2.1. Then the following holds for any i ∈ J :

(a) i J is uniquely 2-divisible.

(b) J ·2
∩ Cen(i) = {1}.

(c) G = (i J ) Cen(i) and every g ∈ G can be written uniquely as g = i jh with j ∈ J
and h ∈ Cen(i).

Proof. (a) Fix ia ∈ i J . We have to show that there is a unique b ∈ J such that

ia = (ib)2
= ibib = i ib.

This is exactly condition (b) in Definition 2.1.

(b) Suppose a and b are involutions in J such that iab
= i . Then ia

= ib, and
hence a = b by the uniqueness in condition (b). Hence ab = 1.

(c) Let g ∈ G, and set k = i g−1
. Then there is a unique j ∈ J such that ki j

= i .
Now put h = j ig. Then g = i jh and, we have

ki j
= i = kg

= ki jh
= ih,

and therefore h ∈ Cen(i). This shows existence of such a decomposition, and
uniqueness follows from part (b). □

In accordance with the terminology from real hyperbolic spaces or from sharply
2-transitive groups, we call elements of the set

S = {σ ∈ J ·2
\ {1} : ℓσ exists in 3} ∪ {1}

translations. Then (b) of Lemma 2.5 implies that nontrivial translations have no
fixed points (in their action on J ).

B. H. Neumann [1940] showed that a uniquely 2-divisible group admitting a
fixed-point-free involutionary automorphism must be abelian. More generally,
uniquely 2-divisible groups with involutionary automorphisms can be decomposed
as follows:

Proposition 2.6 [Borovik and Nesin 1994, Exercise 14 on p. 73]. Let G be a
uniquely 2-divisible group, and let α ∈ Aut(G) be an involutionary automorphism.
Define the sets Inv(α) = {g ∈ G : gα

= g−1
} and Cen(α) = {g ∈ G : gα

= g}.
Then G = Inv(α) Cen(α), and for every g ∈ G there are unique a ∈ Inv(α) and

b ∈ Cen(α) such that g = ab. In particular, if α has no fixed points, then G is
abelian and α acts by inversion.
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Lemma 2.7. Suppose (J, 3) satisfies conditions (a) and (b) in Definition 2.1. Let λ

be a line in 3.

(a) NG(λ) ∩ J = λ.

(b) If i ∈ λ, then λ·2
= iλ.

(c) If a and b are distinct involutions in J such that ab ∈ λ·2, then a, b ∈ λ.

(d) λ·2 is a uniquely 2-divisible abelian group.

(e) If i, j, k ∈ J are such that ℓi j and ℓ jk exist in 3, then ℓ·2i j ·ℓ·2jk = ℓi j ·ℓ jk ⊆ J ·2.

(f) NG(λ) = NG(λ·2).

Proof. (a) We first show λ ⊆ NG(λ): If λ = ℓi j , then j i
= i j i , and hence i j ∈ j i J .

Therefore j i
∈ λ.

Now assume k ∈ NG(λ)∩ J and λ = ℓi j . We may assume k ̸= i . Then i ̸= ik
∈ λ,

and hence λ = ℓik i . Now iki = kki , so iki ∈ k J , and therefore k ∈ λ.

(b) Fix a ̸= b in λ. Then ab ∈ i J , and hence ab = i j for some j ∈ J . It remains
to show j ∈ λ: we have ab = i j ∈ J j = j J , and hence j ∈ λ.

(c) Suppose ab = i j and λ = ℓi j . Then (i j)a
= (i j)−1

= j i , and therefore λa
= λ,

so a ∈ NG(λ) ∩ J = λ. Now aλ = λ·2, and hence b ∈ λ.

(d) We first show that λ·2
= iλ is uniquely 2-divisible. Since we know that i J

is uniquely 2-divisible, it remains to show that iλ is 2-divisible. Fix ia ∈ iλ, say
ia = (ib)2 for some b ∈ J . Then ia = i ib, so a = ib, and thus b ∈ NG(λ) ∩ J = λ.

It remains to show that λ·2
= iλ is an abelian group. Note that iλ = λi , and hence

λ·2 is closed under multiplication and taking inverses. Therefore λ·2 is a uniquely
2-divisible group. Moreover, i acts on λ·2 as an involutionary automorphism without
fixed points. Now Proposition 2.6 implies that λ·2 is abelian.

(e) Since j normalizes ℓi j , we have ℓ·2i j = ℓi j j by (b), and hence the claim follows.

(f) We only need to show that NG(λ·2) ⊆ NG(λ). Take g ∈ NG(λ·2) \ {1} and
fix i ̸= j ∈ λ. Then i j ∈ λ·2, and hence i g j g

∈ λ·2. Therefore i g, j g
∈ λ by (c), and

thus λg
= λ. □

Lemma 2.8. Suppose (J, 3) satisfies (a) and (b) in Definition 2.1. Then the
following are equivalent:

(a) (J, 3) is a partial mock hyperbolic reflection space.

(b) Every line λ ∈ 3 satisfies NG(λ) ∩ J ·2
= λ·2.

Proof. Suppose that (J, 3) forms a partial mock hyperbolic reflection space and
fix i j ∈ NG(λ) ∩ J ·2 and assume i ̸= j ∈ J . Then λi

= λ = λ j , and therefore
i, j ∈ NG(λ) ∩ J = λ. Thus NG(λ) ∩ J ·2

= λ·2.
Conversely, assume NG(λ)∩ J ·2

= λ·2 and λi
= λ j for i ̸= j ∈ J . Then i j ∈ λ·2,

and hence i, j ∈ λ by Lemma 2.7(c). This shows λi
= λ = λ j . □
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Proposition 2.9. Let G be a group and J a conjugacy class of involutions in G, and
suppose (J, 3) is a partial mock hyperbolic reflection space. Then the following
holds:

(a) If λ = ℓi j ∈ 3, then λ·2
= i J ∩ j J = Cen(i j) ∩ J ·2.

(b) The set S \ {1} = {i j ∈ J ·2
\ {1} : ℓi j exists in 3} is partitioned by the family

{λ·2
\ {1} : λ ∈ 3}.

Proof. By Lemma 2.7, (b) follows from (a). In order to prove (a), we first show
λ·2

= i J ∩ j J . Fix ia = jb ∈ i J ∩ j J . Then ab = i j ∈ λ·2, and hence a, b ∈ λ by
Lemma 2.7(c). This shows i J ∩ j J ⊆ λ·2. Moreover, we have λ·2

= iλ = jλ, and
hence λ·2

⊆ i J ∩ j J . Thus λ·2
= i J ∩ j J .

The group λ·2 is abelian and contains i j . Hence λ·2
⊆Cen(i j)∩ J ·2. Any element

g ∈ Cen(i j) normalizes λ = ℓi j = ℓ j i . Thus Cen(i j) ∩ J ·2
⊆ NG(λ) ∩ J ·2

= λ·2

(Lemma 2.8), and hence Cen(i j) ∩ J ·2
= λ·2. □

If i is an involution in J , then we define 3i = {λ ∈ 3 : i ∈ λ} to be the set of all
lines that contain i .

Proposition 2.10. Suppose (J, 3) forms a partial mock hyperbolic reflection space.

(a) Suppose λ ∩ λ j
̸= ∅ for a line λ and an involution j in J . Then j ∈ λ, and

therefore λ = λ j .

(b) G acts transitively on 3 if and only if Cen(i) acts transitively on 3i for
each i ∈ J .

Proof. (a) Suppose {i} = λ ∩ λ j . Then i = i j and therefore j = i ∈ λ.

(b) If Cen(i) acts transitively on 3i , then G is transitive on 3, because all involu-
tions in J are conjugate.

Now assume G acts transitively on 3 and suppose i ∈ λ ∩ λg for some g ∈ G.
By Lemma 2.5, g can be written as g = i jh for some j ∈ J and h ∈ Cen(i). Note
that λg

= λi jh
= λ jh , because i is contained in λ.

Since h ∈ Cen(i), this implies that i must be contained in λ j , and hence

i ∈ λ ∩ λ j .

Therefore (a) implies that j must be contained in λ, and hence λ = λ j . Hence
λg

= λh . Since g was arbitrary, this shows that Cen(i) acts transitively on 3i . □

The geometry of a mock hyperbolic reflection space. Recall that a mock hyperbolic
reflection space is a partial hyperbolic space such that any two points are contained
in a line. As a first step, we show that the geometry of a mock hyperbolic reflection
space cannot contain a proper projective plane:

Lemma 2.11. Suppose that (J, 3) is a mock hyperbolic reflection space in a
group G and that X ⊆ J is a projective plane. That is, suppose
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(a) for all i ̸= j ∈ X the line ℓi j is contained in X , and

(b) if λ and δ are lines contained in X then λ ∩ δ ̸= ∅.

Then X ·2 is a uniquely 2-divisible subgroup of G.

Proof. The set X ·2 is a group by Lemma 2.7(e). This group is uniquely 2-divisible
by Lemma 2.7(d) and Proposition 2.9(b). □

Lemma 2.12. Suppose J forms a mock hyperbolic reflection space in a group G,
and let H ⊆ J ·2 be a subgroup of G which is uniquely 2-divisible and normalized
by an involution i ∈ J . Then H ⊆ Cen(σ ) for some σ ∈ J ·2

\ {1}.

Proof. Since H is uniquely 2-divisible and i acts as an involutionary automorphism
without fixed points, Proposition 2.6 implies that H is abelian and hence must be
contained in the centralizer of some translation. □

Proposition 2.13. If J is a mock hyperbolic reflection space in a group G, then it
does not contain a proper projective plane. That is, if X ⊆ J is a projective plane,
then X contains at most one line.

Proof. By Lemma 2.11, the set X ·2 is a uniquely 2-divisible subgroup of G. By
Lemma 2.5(b), each j ∈ X acts on X ·2 as an involutionary automorphism without
fixed points. By the previous lemma, X ·2

≤ Cen(σ ) for some σ ∈ J ·2
\ {1}, and

hence X ⊆ ℓσ by Lemma 2.7(c). □

Theorem 2.14. Suppose J forms a mock hyperbolic reflection space in a group G.
Then the following are equivalent:

(a) 3 consists of a single line.

(b) J is a projective plane.

(c) G has an abelian normal subgroup A ̸⊆
⋂

i∈J Cen(i).

(d) J ·2
= i J for any involution i ∈ J .

(e) i J is commutative for any involution i ∈ J .

(f) i J is a subgroup of G for any involution i ∈ J .

(g) J ·2 is a subgroup of G.

(h) i J is an abelian normal subgroup of G, and G splits as G = i J ⋊Cen(i) for
any involution i ∈ J .

Proof. We show the following implications:

(d) ⇐⇒ (a) =⇒ (b) =⇒ (g) =⇒ (e) =⇒ (f) =⇒ (h) =⇒ (c) =⇒ (a).

To show (a) ⇐⇒ (d), assume (d) and fix a line λ = ℓi j . Then

iλ = λ·2
= i J ∩ j J = J ·2

= i J,
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and hence λ = J is the only line. Conversely, assume (a) holds and λ = J is the
unique line. Then J ·2

= λ·2
= iλ = i J by Lemma 2.7.

(a) =⇒ (b) is trivial.
(b) =⇒ (g) holds by Lemma 2.11.
Now assume (g) holds. By Proposition 2.9, J ·2

\ {1} is partitioned by the family
{λ·2

\ {1} : λ ∈ 3}. Each λ·2 is a uniquely 2-divisible abelian group by Lemma 2.7.
Therefore J ·2 is uniquely 2-divisible. If i is any involution, then i normalizes J ·2

and acts by conjugation as an involutionary automorphism without fixed points.
Therefore J ·2 is an abelian group by Proposition 2.6. In particular, i J ⊆ J ·2 is
commutative. This shows (e).

Now assume (e). i J is partitioned by {λ·2
: λ ∈ 3, i ∈ λ} and if λ = ℓi j , then

λ·2
= i J ∩ j J = Cen(i j)∩ J ·2 by Proposition 2.9(a). Since i J is commutative, this

implies i J = λ·2, and hence i J is a subgroup of G by Lemma 2.7. This shows (f).
We next show (f) =⇒ (h): i J is a uniquely 2-divisible group and i acts as an

involutionary automorphism without fixed points. Therefore i J is an abelian
subgroup of G by Proposition 2.6. Note that NG(i J ) contains Cen(i) and i J .
Therefore G = i J Cen(i) = NG(i J ) by Lemma 2.5. Hence i J is an abelian normal
subgroup of G, and therefore G = i J ⋊Cen(i) by Lemma 2.5.

(h) =⇒ (c) is obvious.
To see that (c) implies (a), let i ∈ J and a ∈ A \ Cen(i). Then

1 ̸= a−1ai
= iai ∈ A ∩ i J.

In particular, A ∩ i J is nontrivial. Now fix σ ∈ (A ∩ i J )\ {1}, and set λ = ℓσ . Then

Cen(σ ) ∩ J ·2
= λ·2,

so A ∩ J ·2
⊆ λ·2. This implies that λ·2 is a normal subset of G, and hence λ is a

normal subset of G by Lemma 2.7. Therefore λ = J by Lemma 2.7. □

3. Sharply 2-transitive groups

In this section we consider a particular class of Frobenius groups: a permutation
group G acting on a set X , where |X | ≥ 2, is called sharply 2-transitive if it acts
regularly on pairs of distinct points, or equivalently, if G acts transitively on X
and for each x ∈ X the point stabilizer Gx acts regularly on X \ {x}. Thus, a
sharply 2-transitive group splits if it can be written as a semidirect product of a
regular normal subgroup with a point-stabilizer. For two distinct elements x, y ∈ X
the unique g ∈ G such that (x, y)g

= (y, x) is an involution. Hence the set J of
involutions in G is nonempty and forms a conjugacy class.

The (permutation) characteristic of a group G acting sharply 2-transitively on a
set X is defined as follows: put char(G) = 2 if and only if involutions have no fixed
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points. If involutions have a (necessarily unique) fixed point, the G-equivariant
bijection i 7→ fix(i) allows us to identify the given action of G on X with the
conjugation action of G on J . Thus, in this case, the set S \ {1} of nontrivial
translations also forms a single conjugacy class. We put char(G) = p (or 0) if
translations have order p (or infinite order, respectively). For the standard examples
of sharply 2-transitive groups, namely K ⋊ K ∗ for some field K , this definition of
characteristic agrees with the characteristic of the field K .

Remark 3.1. Let G be a sharply 2-transitive group of characteristic char(G) ̸= 2.
Since G acts sharply 2-transitively by conjugation on the set J of involutions in G,
the following properties are easy to see:

(a) Cen(i) acts regularly on J \ {i}.

(b) The set J acts regularly on itself by conjugation, that is, condition (b) of
Definition 2.1 holds.

(c) J ·2
∩ Cen(i) = {1} for all i ∈ J .

In particular, a nontrivial translation does not have a fixed point.

In order to define the lines for a mock hyperbolic reflection space on J , we need
the following equivalent conditions to be satisfied:

Proposition 3.2. If G is a sharply 2-transitive group of characteristic different
from 2, the following conditions are equivalent:

(a) Commuting is transitive on J ·2
\ {1}.

(b) i J ∩ k J is uniquely 2-divisible for all involutions i ̸= k ∈ J .

(c) Cen(ik) = i J ∩ k J is abelian and is inverted by k for all i ̸= k ∈ J .

(d) The set {Cen(σ ) \ {1} : σ ∈ J ·2
\ {1}} forms a partition of J ·2

\ {1}.

Note that these conditions are satisfied in split sharply 2-transitive groups by
Theorem 3.5 whenever char(G) = p ̸= 0, 2 or if G satisfies the descending chain
condition for centralizers, so in particular if G has finite Morley rank by [Borovik
and Nesin 1994, Lemma 11.50].

Proof. For (a) =⇒ (b), note that since (i j)2
= i i j

∈ i J every element of i J has a
unique square root in i J . Let τ ∈ i J ∩k J . Since commuting is transitive, the group
A = ⟨Cen(τ ) ∩ J ·2

⟩ ≤ Cen(τ ) is abelian. Moreover, A ∩ J = ∅ by Remark 3.1.
Hence the square map is an injective group homomorphism from A to A.

There is σi ∈ i J such that σ 2
i = τ and so σi ∈ Cen(τ ) ∩ i J . Similarly we find

σk ∈ Cen(τ ) ∩ k J such that σ 2
k = τ . Since the square map is injective, it follows

that σi = σk ∈ i J ∩ k J . Therefore i J ∩ k J is uniquely 2-divisible.
(b) =⇒ (c) is contained in [Borovik and Nesin 1994, Lemma 11.50(iv)].
(c) =⇒ (d) and (d) =⇒ (a) are obvious. □
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The examples constructed in [Rips et al. 2017] (see also [Tent and Ziegler 2016])
show that in characteristic 2 these conditions need not be satisfied. The nonsplit
examples in characteristic 0 constructed in [Rips and Tent 2019] satisfy the assump-
tions and it is an open question whether nonsplit sharply 2-transitive groups exist in
characteristic 0 which fail to satisfy these conditions. Note that [Rips and Tent 2019,
Lemmas 2.3 and 5.3] imply that the maximal near-field in these examples is planar.

Assume now that the conditions of Proposition 3.2 are satisfied. Then for i ̸= j ∈ J
we put

ℓi j = {k ∈ J : i j ∈ k J } and 3 = {ℓi j : i ̸= j ∈ J }.

By Remark 3.1(b), (J, 3) satisfies conditions (a) and (b) of Definition 2.1 and by
Proposition 3.2, we have

ℓi j = {k ∈ J : i j ∈ k J } = i Cen(i j) = {k ∈ J : (i j)k
= j i}.

The point-line geometry (J, 3) is equivalent to the incidence geometry consid-
ered by Borovik and Nesin [1994, Section 11.4].

If λ = ℓi j is a line, then NG(λ) = NG(Cen(i j)) is a split sharply 2-transitive
group,

NG(λ) = Cen(i j)⋊ NCen(i)(λ),

and corresponds to the maximal near-field (see, e.g., [Kerby 1974] or [Borovik and
Nesin 1994, Chapter 11]). The maximal near-field is called planar if

NG(λ) = Cen(i j) ∪

⋃
k∈λ

NCen(k)(λ),

i.e., if Cen(i j) coincides with the set of fixed-point-free elements of NG(λ).

Lemma 3.3. Assume that G is sharply 2-transitive and char(G) ̸= 2, and if
char(G) = 0, assume furthermore that G satisfies the descending chain condition on
centralizers. Assume moreover that the maximal near-field is planar. If λ ∈ 3 and
i ̸= j ∈ J such that λi

= λ j , then i, j ∈ λ and so λi
= λ = λ j , and thus condition (c)

of Definition 2.1 holds.

Proof. This is contained in the proof of [Borovik and Nesin 1994, Theorem 11.51].
Since our definition of lines is slightly different from the one given in that work,
we include a proof. If λi

= λ j then i j ∈ NG(λ), and hence i j ∈ NG(λ·2). By
Propositions 2.9(a) and 3.2(c), we have λ·2

= Cen(σ ) for some σ ∈ J ·2
\ {1} such

that λ = ℓσ . Fix s ∈ λ. The group NG(Cen(σ )) = Cen(σ )⋊ NCen(s)(Cen(σ )) is
split sharply 2-transitive by [Borovik and Nesin 1994, Proposition 11.51]. Since
the maximal near-field is planar, we have

i j ∈ NG(Cen(σ )) ∩ J ·2
= Cen(σ ),

and therefore i, j ∈ ℓσ = λ. □



MOCK HYPERBOLIC REFLECTION SPACES AND FROBENIUS GROUPS 149

Corollary 3.4. Let G be a sharply 2-transitive group. Then the set of involutions
J ⊂ G forms a mock hyperbolic reflection space in any of the following cases:

(a) G is a split sharply 2-transitive group corresponding to a planar near-field of
characteristic ̸= 2;

(b) char(G) = p ̸= 0, 2 and the maximal near-field is planar; or

(c) char(G) = 0, G satisfies the descending chain condition for centralizers, and
the maximal near-field is planar.

In particular, if char(G) ̸= 2 and G is of finite Morley rank, then the involutions
in G form a mock hyperbolic reflection space.

In the case of sharply 2-transitive groups, Theorem 2.14 reduces to the following
well-known result of Neumann [1940]:

Theorem 3.5. A sharply 2-transitive group G splits if and only if the set of transla-
tions J ·2 is a subgroup of G (and in that case, J ·2 must in fact be abelian).

4. Uniquely 2-divisible Frobenius groups

In this section we will construct (partial) mock hyperbolic reflection spaces from
uniquely 2-divisible Frobenius groups with abelian Frobenius complement. This
construction makes use of K-loops and quasidirect products.

K-loops and quasidirect products. K-loops are nonassociative generalizations of
abelian groups. They are also known as Bruck loops and gyrocommutative gy-
rogroups. We mostly follow Kiechle’s book [2002].

Definition 4.1. A groupoid (L , · , 1) is a K-loop if

(a) it is a loop, i.e., the equations

ax = b and xa = b

have unique solutions for all a, b ∈ L ,

(b) it satisfies the Bol condition, i.e.,

a(b · ac) = (a · ba)c

for all a, b, c ∈ L , and

(c) it satisfies the automorphic inverse property, i.e., all elements of L have inverses,
and we have

(ab)−1
= a−1b−1

for all a, b ∈ L .

Given a ∈ L , let λa : L → L be defined by λa(x) = ax . Given a, b ∈ L , we
define the precession map

δa,b = λ−1
ab λaλb.
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These maps are characterized by

a · bx = ab · δa,b(x) for all x ∈ L .

If L is a K-loop, then the precession maps are automorphisms, and we set

D = D(L) = ⟨δa,b : a, b ∈ L⟩ ≤ Aut(L).

The following identities will be used in this section:

Proposition 4.2. Let L be a K-loop, a, b ∈ L , and α ∈ Aut(L). Then the following
identities hold:

(a) [Kiechle 2002, 2.4(2)] α−1δa,bα = δα−1(a),α−1(b).

(b) [Kiechle 2002, 6.1(1)] δa,a−1 = id.

(c) [Kiechle 2002, Theorem 6.4(1)(VI)] δa,ba = δa,b.

(d) [Kiechle 2002, part of Theorem 3.7] δa,b = δ−1
b,a = δa−1,b−1 .

Definition 4.3. Let G be a group. A subset L ⊆ G is a twisted subgroup of G if
and only if 1 ∈ L , L−1

⊆ L , and aLa ⊆ L for all a ∈ L .

Note that twisted subgroups are closed under the square map. A twisted subgroup
is uniquely 2-divisible if the square map is bijective.

Proposition 4.4 [Kiechle 2002, Theorem 6.14]. Let G be a group with a uniquely
2-divisible twisted subgroup L ⊆ G. Then

a ⊗ b = a1/2ba1/2

makes L into a K-loop (L , ⊗ , 1) and integer powers of elements in L agree in G
and (L , ⊗). Given a, b ∈ L , the precession map δa,b is given by conjugation with

da,b = b1/2a1/2(a1/2ba1/2)−1/2.

Proof. The formula for the precession maps follows from simple calculation.
Everything else is contained in [Kiechle 2002, Theorem 6.14]. □

Proposition 4.5 [Kiechle 2002, Theorem 2.13]. Let L be a K-loop, and let A ≤

Aut(L) be a group of automorphisms such that D(L) ⊆ A. Then:

(a) The quasidirect product L ⋊Q A given by the set L × A together with the
multiplication

(a, α)(b, β) = (a · α(b), δa,α(b)αβ)

forms a group with neutral element (1, id). Inverses are given by

(a, α)−1
= (α−1(a−1), α−1).

(b) L ⋊Q A acts faithfully and transitively on L by

(a, α)(x) = aα(x) for all (a, α) ∈ L ⋊Q A and x ∈ L .
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Mock hyperbolic reflection spaces from uniquely 2-divisible Frobenius groups.
Let H < G be a uniquely 2-divisible Frobenius group with abelian complement H .

We set L to be the K-loop L = (G, ⊗), where ⊗ is defined by

a ⊗ b = a1/2ba1/2.

Set A = G × ⟨ϵ⟩ < Aut(L), where ϵ inverts all elements of L . Put G = L ⋊Q A.
Let J be the set of all involutions in G, and put ι = (1, ϵ) ∈ J .

Lemma 4.6. (a) J = L × {ϵ}.

(b) Cen(ι) = 1 ×A.

(c) For all i, j ∈ J , there is a unique k ∈ J such that j = ik .

Proof. L is a K-loop by Proposition 4.4.

(a) Fix (a, α) ∈ G such that (a, α)2
= (1, id). Note that

(a, α)(a, α) = (a ⊗ α(a), δa,α(a)α
2).

Now a ⊗ α(a) = 1 implies α(a) = a−1, and therefore δa,α(a) = id. Hence we must
have α2

= id.
If α = id, then a ⊗ α(a) = a2, so a2

= 1, and thus a = 1. In that case, (a, α) =

(1, id) is the neutral element in G.
This shows J = L × {ϵ}, because ϵ is the only involution in A.

(b) Fix (a, α) ∈ Cen(ι). We have

(a, α)(1, ϵ) = (a, αϵ) and (1, ϵ)(a, α) = (a−1, ϵα).

Hence (a, α) ∈ Cen(ι) if and only if a = a−1 if and only if a = 1.

(c) Take involutions (a, ϵ), (b, ϵ), (c, ϵ) ∈ J = L × {ϵ}. Then

(b, ϵ)(a, ϵ)(b, ϵ) = (b, ϵ)(a ⊗ b−1, δa,b−1)

= (b ⊗ (a−1
⊗ b), δb,a−1⊗bδa,b−1ϵ)

= ((b ⊗ a−1/2)2, ϵ).

Hence we have (a, ϵ)(b,ϵ)
= (c, ϵ) if and only if b ⊗ a−1/2

= c1/2. The loop
conditions ensure that for all a, c ∈ L there is a unique b satisfying this equation. □

Now set λ0 = H ×{ϵ} ⊆ J , and put 3 = {λ
g
0 : g ∈ G}. We view elements of 3

as lines, and we view involutions as points. Note that 3 is G-invariant and all lines
are conjugate.

The following will be shown in this section:
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Theorem 4.7. (a) (J, 3) is a partial mock hyperbolic reflection space in G.

(b) If G is full, i.e., if G =
⋃

g∈G H g, then (J, 3) is a mock hyperbolic reflection
space.

(c) Suppose i, j, k ∈ J are pairwise distinct such that the lines ℓi j and ℓik exist,
and assume that i, j, k are not collinear. Then CenG(i, j, k) = 1. In particular,
G acts faithfully on J .

Lemma 4.8. Let λ be a line containing ι. Then λ is of the form

λ = H g
× {ϵ}

for some g ∈ G.

Proof. We have λ = λ
g
0 for some g = (a, α) ∈ G. So elements of λ are of the form

(α−1(a−1), α−1)(c, ϵ)(a, α)

= (α−1(a−1), α−1)(c ⊗ a−1, δc,a−1ϵα)

=
(
α−1(a−1) ⊗ α−1(c ⊗ a−1), δα−1(a−1),α−1(c⊗a−1)α

−1δc,a−1αϵ
)

=
(
α−1(a−1

⊗ (c ⊗ a−1)), α−1δa−1,c⊗a−1δc,a−1αϵ
)

for some c ∈ H , where the last equality holds by Proposition 4.2(a).
Note that a−1

⊗ (c ⊗ a−1) = (a−1
⊗ c1/2)2. We assume ι ∈ λ. Hence

1 = a−1
⊗ c1/2

for some c ∈ H , and thus a = c1/2
∈ H . This implies λ = (α−1(H), ϵ) ⊆ J . □

Corollary 4.9. Any two distinct points are contained in at most one line.

Lemma 4.10. Fix distinct involutions i, j ∈ J and suppose ℓi j exists in 3. Then

ℓi j = {k ∈ J : i j ∈ k J }

= {k ∈ J : (i j)k
= (i j)−1

}.

Proof. We may assume that ℓi j = H × {ϵ} and i j = (c, 1) for some c ∈ H \ {1}.
The second equality is easy, and therefore we only show the first equality.

We first show ℓi j ⊆ {k ∈ J : i j ∈ k J }: Take d ∈ H \ {1}. Then

(d, ϵ)(c, 1)(d, ϵ) = (d, ϵ)(c ⊗ d, δc,dϵ) = (d ⊗ (c ⊗ d)−1, δd,(c⊗d)−1δc,d).

The Frobenius complement H is abelian, and therefore

(d ⊗ (c ⊗ d)−1, δd,(c⊗d)−1δc,d) = (c−1, 1).

This shows (c, 1)(d,ϵ)
= (c, 1)−1, and hence ℓi j ⊆ {k ∈ J : i j ∈ k J }.
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We now show ⊇ for the first equality: Suppose (c, 1) = (a, ϵ)(b, ϵ). We have to
show that a is an element of H . We have

(c, 1) = (a, ϵ)(b, ϵ) = (a ⊗ b−1, δa,b−1),

and hence a1/2b−1a1/2
= a ⊗b−1

= c ∈ H and δa,b−1 = id. By Proposition 4.4, this
implies

b−1/2a1/2(a ⊗ b−1)−1/2
= 1.

So b−1/2a1/2
=c1/2, and since c=a1/2b−1a1/2, this implies a1/2b−1/2

=c1/2. Hence

c1/2
= b−1/2a1/2

= (a1/2b−1/2)a1/2
= (c1/2)a1/2

,

and therefore a1/2
∈ Cen(c) = H . □

Lemma 4.11. Suppose (a, α) ∈ NG(λ0). Then a ∈ H and α normalizes H.

Proof. Given c ∈ H , we have

(a, α)−1(c, ϵ)(a, α)=(α−1(a−1), α−1)(c⊗a−1, δc,a−1ϵα)

=
(
α−1(a−1)⊗α−1(c⊗a−1), δα−1(a−1),α−1(c⊗a−1)α

−1δc,a−1αϵ
)

=
(
α−1(a−1

⊗(c⊗a−1)), α−1δa−1,c⊗a−1δc,a−1αϵ
)

=
(
α−1(a−1

⊗(c⊗a−1)), ϵ
)
.

We have (1, ϵ) ∈ λ0, and therefore

1 = a−1
⊗ (c0 ⊗ a−1)

for some c0 ∈ H . Note that

a−1
⊗ (c0 ⊗ a−1) = (a−1/2c1/2

0 a−1/2)2
= (a−1

⊗ c1/2
0 )2,

and therefore 1 = a−1
⊗ c1/2

0 . This shows a = c1/2
0 ∈ H .

Moreover, α−1(a−1
⊗(c⊗a−1))∈ H for all c ∈ H , and hence α normalizes H . □

Proposition 4.12. NG(λ0) ∩ J ·2
= λ·2

0 .

Proof. Fix a ̸= b in L such that (a, ϵ)(b, ϵ) = (a ⊗ b−1, δa,b−1) ∈ NG(λ0). By
Lemma 4.11, we have a ⊗ b−1

∈ H and δa,b−1 normalizes H .
By Proposition 4.4, the latter is equivalent to

b−1/2a1/2(a1/2b−1a1/2)−1/2
∈ H.

Since a1/2b−1a1/2
= a ⊗ b−1

∈ H , this implies b−1/2a1/2
∈ H , and therefore

a1/2b−1/2
= a1/2b−1a1/2(b−1/2a1/2)−1

∈ H .
This shows

b−1/2a1/2
= (a1/2b−1/2)b1/2

∈ H ∩ H b1/2
.

Thus b1/2
∈ h and a1/2

= (a1/2b−1/2)b1/2
∈ H , because H is malnormal in G. □
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Proposition 4.13. Suppose i, j, k ∈ J are pairwise distinct such that the lines
ℓi j and ℓik exist in 3, and assume that i, j, k are not collinear. Then Cen(i, j, k)=1.

Proof. Let i = (1, ϵ) and fix j = (a, ϵ) ∈ J \ {i}. We already know Cen(i) = 1×A.
Now fix (1, β) ∈ Cen(i) ∩ Cen( j). Then

(β(a), ϵβ) = (1, β)(a, ϵ) = (a, ϵ)(1, β) = (a, ϵβ).

Therefore β ∈ CenA(a) = 1 × CenG(a), and hence Cen(i, j) = 1 × CenG(a). This
shows the claim, because G is a Frobenius group. □

Proof of Theorem 4.7. We start by checking conditions (a) and (b) of Definition 2.1.
Condition (a) follows from Corollary 4.9 and Lemma 4.10. Condition (b) is part (c)
of Lemma 4.6.

Now Proposition 4.12 and Lemma 2.8 imply that (J, 3) is a partial mock hyper-
bolic reflection space.

If the Frobenius group is full, then it follows from Lemma 4.8 and from the
definition of λ0 that all lines exist and hence that J forms a mock hyperbolic
reflection space.

The final statement is Proposition 4.13. □

5. Mock hyperbolic reflection spaces in groups of finite Morley rank

We now turn to the finite Morley rank setting. We refer the reader to [Borovik
and Nesin 1994; Poizat 1987] for a general introduction to groups of finite Morley
rank. If X is a definable set of finite Morley rank, then we denote its Morley rank
by MR(X) and its Morley degree by MD(X).

Convention. In the context of finite Morley rank, we say that a definable property P
holds for Morley rank k many elements if the set defined by P has Morley rank k.
In a slight abuse, we may also say that P holds for generically many elements of a
definable set X if the set of elements in S not satisfying P has smaller Morley rank
than X .

We will repeatedly make use of the following:

Proposition 5.1 [Borovik and Nesin 1994, Exercises 11 and 12 on p. 72]. If G
is a group of finite Morley rank and G does not contain an involution, then G is
uniquely 2-divisible.

Now let G be a group of finite Morley rank, and let J be a conjugacy class
of involutions such that MD(J ) = 1. Moreover, we assume that 3 ⊆ P(J ) is a
G-invariant definable family of subsets of J such that each λ ∈ 3 is of the form

λ = {k ∈ J : i j ∈ k J }

for any i ̸= j ∈ λ.
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Definition 5.2. We call (J, 3) a generic mock hyperbolic reflection space if (J, 3)

is a partial mock hyperbolic reflection space and for each i ∈ J the set

{ j ∈ J : ℓi j ∈ 3}

is generic in J .

Remark 5.3. Let (J, 3) be a generic mock hyperbolic reflection space.

(a) The condition in the above definition is equivalent to the statement that

{(i, j) ∈ J 2
: i ̸= j and ℓi j exists in 3} ⊆ J × J

is a generic subset of J 2.

(b) Write
3(k) = {λ ∈ 3 : MR(λ) = k}.

Fix i ∈ J , and set B(k)(i) = { j ∈ J \ {i} : ℓi j ∈ 3(k)}. Since MD(J ) = 1,
there is exactly one k ≤ n such that B(k)(i) is a generic subset of J . In that
case (J, 3(k)) is a generic mock hyperbolic reflection space. Hence we may
assume from now on that all lines in 3 have the same Morley rank.

(c) If (J, 3) is a generic mock hyperbolic reflection space of finite Morley rank
in which all lines have Morley rank k, then we have MR(3) = 2n − 2k and
MD(3) = 1 for n = MR(J ). The set of translations

S = {σ ∈ J ·2
\ {1} : ℓσ exists in 3} ∪ {1}

has Morley rank 2n − k and Morley degree 1.

If X and Y are definable sets, then we write X ≈ Y if X and Y coincide up to a
set of smaller rank, i.e., if the sets X , Y , and X ∩ Y all have the same Morley rank
and Morley degree. This defines an equivalence relation on the family of definable
sets. One important property of this equivalence relation is the following:

Proposition 5.4 [Wagner 2017, Lemma 4.3]. Let G be a group acting definably on
a set X in an ω-stable structure. Let Y be a definable subset of X such that gY ≈ Y
for all g ∈ G. Then there is a G-invariant set Z ⊆ X such that Z ≈ Y .

By Theorem 2.14, a mock hyperbolic reflection space consists of one line if
and only if the set of translations forms a normal subgroup. For generic mock
hyperbolic reflection spaces the following will be shown in this section:

Theorem 5.5. Suppose (J, 3) is a generic mock hyperbolic reflection space such
that J has Morley rank MR(J ) = n. Assume that 3 consists of more than one line
and that all lines λ ∈ 3 are infinite and of Morley rank MR(λ) = k. Then n ≥ 2k +1.

If n = 2k + 1, then the translations almost form a normal subgroup: G has a
definable connected normal subgroup N of Morley rank MR(N ) = 2n − k such
that N ≈ S. Moreover, MR(N ∩ Cen(i)) = n − k for any involution i ∈ J .
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For the remainder of this section we assume that (J, 3) is a generic mock
hyperbolic reflection space in a group of finite Morley rank G such that (J, 3)

satisfies the assumptions in Theorem 5.5. In particular, n > k ≥ 1.
Note that we do not state any assumption about the Morley degree of lines.

Generic projective planes.

Definition 5.6. A definable subset X ⊆ J is a generic projective plane if

(a) MR(X) = 2k and MD(X) = 1, and

(b) MR(3X ) = 2k and MD(3X ) = 1,

where 3X is the set of all lines λ ⊆ J such that MR(λ ∩ X) = k.

The next lemma follows from easy counting arguments.

Lemma 5.7. Let X ⊆ J be a definable set of Morley rank 2k and Morley degree 1.
The following are equivalent:

(a) X is a generic projective plane.

(b) MR(3X ) ≥ 2k.

(c) The set of x ∈ X such that MR({λ ∈ 3X : x ∈ λ}) = k is generic in X.

Proof. (a) =⇒ (b) This holds by definition.

(b) =⇒ (c) Given x ∈ X consider L x = {λ ∈ 3X : x ∈ λ} and note that

MR
(⋃

L x

)
= MR(L x) + k

holds for each x ∈ X . In particular, MR(L x) ≤ k, since MR(X) = 2k. Moreover,
MR(3X ) ≥ 2k and each λ ∈ 3X is contained in rank k many sets of the form L x .
Hence we must have MR(L x) = k for generically many x ∈ X .

(c) =⇒ (b) We have MR(X) = 2k and MR(L x) = k for generically many x ∈ X .
Moreover, each λ ∈ 3X contains rank k many points from X . Thus MR(3X ) ≥ 2k.

(b) =⇒ (a) Consider the set

P = {(x, y) ∈ X × X : x ̸= y and ℓxy ∈ 3X }.

Note that each λ ∈ 3X has rank 2k many preimages in P . Since X has rank 2k and
degree 1, this implies MR(3X ) = 2k and MD(3X ) = 1. □

Lemma 5.8. Suppose X ⊆ J is a generic projective plane. Then set of x ∈ X such
that X x

≈ X is generic in X.

Proof. Let λ ∈ 3X be a line. Recall that λ·2 is a group by Lemma 2.7(d). For i ∈ λ,
set

λi = { j ∈ λ : i j ∈ (λ·2)0
} = i(λ·2)0.
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Then {λi : i ∈ λ} is a partition of λ into sets of rank k and degree 1. Moreover, we
have (λi )

i
= λi for all i ∈ λ. In particular, if λi ∩ X ≈ λi , then (λi ∩ X)i

∩ X ≈ λi .
Hence for all λ ∈ 3X the set

Xλ = {x ∈ λ ∩ X : MR((λ ∩ X)x
∩ X) = k}

has Morley rank k. Moreover, each x ∈ X is contained in at most rank k many lines
in 3X and hence is contained in at most rank k many sets Xλ.

We have MR(3X ) = 2k, and hence the set

{(x, λ) ∈ X × 3X : x ∈ Xλ}

has Morley rank 3k. Since MR(X) = 2k, this implies that the set of x ∈ X contained
in rank k many sets Xλ is generic in X .

Now if x ∈ Xλ for rank k many λ, then

X x
∩ X ⊇

( ⋃
λ:x∈Xλ

λ ∩ X
)x

∩ X =

⋃
λ:x∈Xλ

(λ ∩ X)x
∩ X

must have Morley rank 2k, and hence X x
≈ X . □

Lemma 5.9. If X ⊆ J is a generic projective plane and Z ⊆ J is a definable subset
with X ≈ Z , then Z is a generic projective plane.

Proof. For x ∈ X put 3x ={λ∈3X : x ∈λ}. If MR(3x)= k, then B(x)=
⋃

3x ≈ X .
In particular, B(x) ≈ Z for a generic set of x ∈ X ∩ Z . If B(x) ≈ Z , then 3x ∩3Z

must have Morley rank k. Hence it follows from Lemma 5.7 that Z must be a
generic projective plane. □

Lemma 5.10. Let H ≤ G be a definable subgroup such that MR(H ∩ J ) = 2k
and MD(H ∩ J ) = 1. Then MR(3H∩J ) < 2k, i.e., H ∩ J does not form a generic
projective plane.

Proof. This is proved in the same way as [Borovik and Nesin 1994, Proposition
11.71]. Put Z = H ∩ J .

Assume towards contradiction that MR(3Z )≥ 2k. Then Z is a generic projective
plane, and hence MR(3Z ) = 2k and MD(3Z ) = 1 (Lemma 5.7).

Let λ ∈ 3Z be a line. By Proposition 2.10, the family {λi
: i ∈ Z \ λ} con-

sists of Morley rank 2k many lines which do not intersect λ. Therefore the set
{δ ∈ 3Z : λ ∩ δ = ∅} ⊆ 3Z is a generic subset of 3Z .

We aim to find a line which intersects Morley rank 2k many lines contradicting
MD(3) = 1. For x ∈ Z , set 3x = {λ ∈ 3Z : x ∈ λ}, and set B(x) =

⋃
3x ∩ Z ⊆ Z .

Note that MR(B(x)) = MR(3x) + k, and hence MR(3x) ≤ k for all x ∈ Z . Since
each λ ∈ 3 contains Morley rank k many points, we must have MR(3x) = k for a
generic set of x ∈ Z .
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Fix x0 ∈ Z such that 3x0 has Morley rank 2k. Then B(x0) ⊆ Z is generic, and
hence MR(3x) = k for a generic set of x ∈ B(x0). Since B(x0) =

⋃
3x0 , we can

find a line λ ∈ 3x0 such that MR(3x) = k for a generic set of x ∈ λ. But then λ

intersects Morley rank 2k many lines in 3Z . □

Proposition 5.11. J does not contain a generic projective plane X.

Proof. Assume X ⊆ J is a generic projective plane, and put

H = N≈

G (X) = {g ∈ G : X g
≈ X}.

By Lemma 5.8, the set X ∩ H is generic in X . Hence MR(H ∩ J ) ≥ 2k.
Now consider the action of G on J by conjugation. Note that, by Proposition 5.4,

there is a definable subset Z ⊆ J , X ≈ Z , such that H normalizes Z . Since J
forms a generic mock hyperbolic space, J acts regularly on itself, and hence
MR(H ∩ J ) ≤ MR(Z) = 2k. Therefore MR(H ∩ J ) = 2k and MD(H ∩ J ) = 1
(since MD(Z) = 1). This contradicts Lemma 5.10. □

A rank inequality and a normal subgroup. A line λ ∈ 3 is called complete for
some i ∈ J \ λ if the set { j ∈ λ : ℓi j ∈ 3} is a generic subset of λ.

Definition 5.12. Let (i, j, p) be a triple of noncollinear involutions in J .

• (i, j, p) is good if ℓi j , ℓ j p exist and ℓi j is complete for p.

• (i, j, p) is perfect if ℓi j , ℓ j p exist and

{ j ′
∈ ℓ j p : ℓi j ′ ∈ 3 is complete for p′

= j ′ j p}

is generic in ℓ j p.

Lemma 5.13. A generic triple (i, j, p) ∈ J 3 is good. In particular, for any i ∈ J a
generic element of {i} × J 2 is good.

Proof. Fix i ∈ J , and put B(i) = { j ∈ J : ℓi j ∈ 3}. Then B(i) is a generic subset J .
Now fix p ∈ J \ {i}. We aim to show that (i, j, p) must be good for generically
many j ∈ J \ {i, p}.

Note that B(i) and B(p) are generic subsets of J . Therefore B(i) ∩ B(p) must
be generic in B(i) and B(i) \ B(p) is not generic in B(i). Note that

B(i) ∩ B(p) =

⋃
λ∈3i

(λ ∩ B(p)) and B(i) \ B(p) =

⋃
λ∈3i

(λ \ B(p)).

Since MR(J ) = MR(3i ) + p, the set

{λ ∈ 3i : MR(λ \ B(p)) < p}

must be generic in 3i .
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Hence λ ∩ B(p) ≈ λ for generically many λ ∈ 3i . Moreover, if λ ∩ B(p) ≈ λ

for some λ ∈ 3i and j is contained in λ \ {i, p}, then (i, j, p) is good. The last
sentence follows since all elements in J are conjugate. □

Proposition 5.14. A generic triple (i, j, p) ∈ J 3 is perfect, and for any i ∈ J a
generic element of {i} × J 2 is perfect.

Proof. Since J is a generic mock hyperbolic reflection space, the set U = {( j, p) :

j p ∈ S \ {1}} ⊆ J 2 is generic in J 2. For σ ∈ S put Uσ = {( j, p) : j p = σ }. Then
each Uσ has Morley rank p and U is the disjoint union

U =

⋃
σ∈S

Uσ ⊆ J × J.

Now fix i ∈ J . A generic triple in {i} × U is good, and we have MD({i} × U ) = 1.
Since MD(S) = 1, this implies that for generically many σ ∈ S the set

{(i, r, s) ∈ {i} × Uσ : (i, r, s) is good}

is a generic subset of {i} × Uσ .
Moreover, if a generic triple in {i}×Uσ is good, then a generic triple in {i}×Uσ

must be perfect. This proves the lemma. □

Now let µ : J 3
→ G be the multiplication map, and put

T = {(i, j, p) ∈ J 3
: ℓ j p exists} and Tperf = {(i, j, p) ∈ J 3

: (i, j, p) is perfect}.

Note that Tperf ⊆ T . If (J, 3) is a mock hyperbolic reflection space, i.e., if all lines
exist, then Tperf consists of all triples of noncollinear involutions in J .

Lemma 5.15. MR(µ(Tperf)) ≥ 2n − k.

Proof. For any i ∈ J the set {( j, p) ∈ J 2
: (i, j, p) is perfect} has Morley rank 2n

by Proposition 5.14. Clearly i j p = i j ′ p′ if and only if j p = j ′ p′. If ℓ j p exists, the
set {( j ′, p′) ∈ J 2

: j p = j ′ p′
} has Morley rank k. Hence µ(Tperf) has Morley rank

at least 2n − k. □

Proposition 5.16. Suppose MR(µ(Tperf)) = 2n − k. Then G has a definable con-
nected normal subgroup N of Morley rank MR(N ) = 2n − k such that N ≈ S.
Moreover, MR(N ∩ Cen(i)) = n − k for any involution i ∈ J .

Proof. Set d = MD(µ(Tperf)) and write µ(Tperf) as a disjoint union

µ(Tperf) = Y1 ∪ · · · ∪ Yd ,

where each Yr has rank 2n − k and degree 1. Put Ti = Tperf ∩ ({i} × J × J ).
Then each Ti has rank 2n and degree 1 by Proposition 5.14. Moreover, µ(Ti ) has
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rank 2n − k and degree 1. We can find 1 ≤ f ≤ d such that

µ(Ti ) ≈ Y f

for generically many i ∈ J . Put Y = Y f , set N = Stab≈(Y ) = {g ∈ G : gY ≈ Y },
and note that N must be a normal subgroup of G, because Y is G-normal up
to ≈-equivalence.

Now, by Proposition 5.4, there is some Z ≈Y such that N ⊆Stab(Z). In particular,
N has rank ≤ 2n − k, since MR(Z) = 2n − k. Moreover, if MR(N ) = 2n − k, then
we must have N = Stab(Z), since MD(Z) = 1.

Let JY = {i ∈ J : µ(Ti ) ≈ Y }. Given i ̸= j ∈ JY , we have

i jµ(T j ) ≈ µ(Ti ),

and hence i j ∈ N . Therefore J ·2
Y ⊆ N . Since JY is a generic subset of J , we

have 3JY ≈ 3, and therefore J ·2
Y ∩ S ≈ S. Thus MR(N ) = 2n − k, and hence

N = Stab(Z) is connected. In particular, J ·2
Y ∩ S is generic in both N and S, and

hence N ≈ S.
We now show MR(N ∩Cen(i))= n−k for any involution i ∈ J : Fix an involution

i ∈ J . If i ∈ N , then i J ⊆ N , and hence N = i J (N ∩ Cen(i)) by Lemma 2.5, and
therefore MR(N ∩ Cen(i)) = n − k.

If i ̸∈ N , then note that i J ∩ N must be a generic subset of i J , and therefore the
conjugacy class i N is generic in J . This implies that N ⋊ ⟨i⟩ must contain J , and
hence is a normal subgroup of G. Now argue as in the first case. □

For α ∈ µ(T ), we set

Xα = {i ∈ J : ∃( j, p) ∈ J × J such that (i, j, p) ∈ T and i j p = α}.

Note that MR(µ−1(α) ∩ T ) = MR(Xα) + k.
If A and B are definable sets, then we write A ⊂

∼
B if A is almost contained in B,

i.e., if A ∩ B ≈ A.

Lemma 5.17. Fix a triple (i, j, p) ∈ T .

(a) If (i, j, p) is good, then ℓi j ⊂
∼

X i j p.

(b) If (i, j, p) is perfect, then ℓi t ⊂∼ X i j p for generically many t ∈ℓ j p. In particular,
MR(X i j p) ≥ 2k.

Proof. (a) Since (i, j, p) is good, the line ℓi j is p-complete. Hence ℓ j ′ p exists for
generically many j ′

∈ ℓi j . Fix such an j ′ and write i j = i ′ j ′. Then (i ′, j ′, p) is
good, and hence i ′

∈ X i j p.

(b) This follows immediately from (a). □

Lemma 5.18. Set l = MR(µ(Tperf)) − (2n − k). Then 2k ≤ MR(Xα) ≤ n − l for
generically many α ∈ µ(Tperf). In particular, n ≥ 2k + l.
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Proof. We have that MR(µ−1(α)∩T ) = MR(Xα)+k for each α ∈ µ(T ) and that T
has rank 3n, and we trivially have⋃

α∈µ(Tperf)

µ−1(α) ∩ T ⊆ T .

Therefore a generic α ∈ µ(Tperf) must satisfy the inequality

MR(µ(Tperf)) + MR(Xα) + k ≤ MR(T ) = 3n.

Moreover, we have MR(Xα) ≥ 2k by Lemma 5.17. Hence

2k ≤ MR(Xα) ≤ MR(T ) − k − MR(µ(Tperf)) = n − l

for generically many α ∈ µ(Tperf). □

Proposition 5.19. Set l = MR(µ(Tperf))− (2n −k). Then n > 2k + l. In particular,
n > 2k.

Proof. Assume not. Then n = 2k + l and MR(Xα) = 2k for generically many
α ∈ µ(Tperf). Set M = {α ∈ µ(Tperf) : MR(Xα) = 2k}. This is a generic subset
of µ(Tperf). We have

MR
( ⋃

α∈M

µ−1(α) ∩ T
)

= (2n − k + l) + 3k = 6k + 3l = 3n.

So
⋃

α∈M µ−1(α) ∩ T is a generic subset of J × J × J . Note MR(M) = 3k + 3l.
Therefore we can find α ∈ M such that µ−1(α) ∩ T has rank 3k and contains
rank 3k many perfect triples. Set X = Xα and 3X = {λ ∈ 3 : λ ⊂

∼
X}. Now

Lemma 5.17 implies that for a generic i ∈ X the set

{λ ∈ 3X : i ∈ λ}

has Morley rank k. Hence MR(3X ) = 2k, and therefore a degree 1 component
of X must be a generic projective plane. This contradicts Proposition 5.11. □

Proof of Theorem 5.5. Set l = MR(µ(Tperf)) − (2n − k). By Proposition 5.19, we
have 2k + 1 = n > 2k + l, and hence l = 0. Now Proposition 5.16 implies the
theorem. □

6. Frobenius groups of finite Morley rank

We now consider Frobenius groups of finite Morley rank. If G is a group of
finite Morley rank and H is a Frobenius complement in G, then H is definable by
[Borovik and Nesin 1994, Proposition 11.19]. If G splits as G = N ⋊ H , then N is
also definable by [Borovik and Nesin 1994, Proposition 11.23].
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Epstein and Nesin showed that if H < G is a Frobenius group of finite Morley
rank and H is finite, then H < G splits [Borovik and Nesin 1994, Theorem 11.25].
As a consequence it suffices to consider connected Frobenius groups of finite Morley
rank [Borovik and Nesin 1994, Corollary 11.27].

Solvable Frobenius groups of finite Morley rank split and their structure is well
understood [Borovik and Nesin 1994, Theorem 11.32].

Lemma 6.1. Let H < G be a connected Frobenius group of finite Morley rank with
Frobenius complement H , and let X ⊆ H \{1} be a definable H-normal subset such
that MR(X) = MR(H). Then

⋃
b∈G Xb

⊆ G is a generic subset of G.

Proof. Set n = MR(G) and k = MR(H). Consider the map α : G × X → G,
(b, x) 7→ xb. If xb

= yc for x, y ∈ X and b, c ∈ G, then bc−1 must be contained
in NG(H) = H . Therefore we have

α−1(xb) = {(c, xbc−1
) ∈ G × X : bc−1

∈ H}.

Hence all fibers of α have Morley rank k. This shows that α(G × X) =
⋃

b∈G Xb

must have Morley rank n, and hence is a generic subset of G. □

Groups of finite Morley rank can be classified by the structure of their 2-Sylow
subgroups. In case of Frobenius groups this classification is simpler:

Proposition 6.2. Let G be a connected Frobenius group of finite Morley rank with
Frobenius complement H. Then H is connected and G lies in one of the following
mutually exclusive cases:

(a) H contains a unique involution, and G is of odd type;

(b) G does not contain any involutions, and in particular, G is of degenerate type;

(c) G \
(⋃

g∈G H g
)

contains involutions, and G is of even type.

Proof. We first show that H must be connected: if H is not connected, then⋃
g∈G(H 0

\ {1})g and
⋃

g∈G(H \ H 0)g would be two disjoint generic subsets of G.
This is impossible, because G is connected.

If H contains an involution, then Delahan and Nesin showed this involution must
be unique and moreover all involutions in G are conjugate, so G\

(⋃
g∈G H g

)
cannot

contain any involution [Borovik and Nesin 1994, Lemma 11.20]. In particular, G
is of odd type, because the connected subgroup H contains a unique involution.

If G \
(⋃

g∈G Cg
)

contains an involution, then the proof of [Altınel et al. 2019,
Theorem 2] shows that G is of even type. □

Remark 6.3. If H < G is of even type, then Altınel, Berkman, and Wagner showed
in [Altınel et al. 2019] that there is a definable normal subgroup N such that
N ∩ H = 1 and N contains all involutions of G. By [Borovik and Nesin 1994,
Lemma 11.38], either G = N ⋊ H splits or H N/N < G/N is a Frobenius group of
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finite Morley rank. Now if H N/N < G/N splits, then it is easy to see that H < G
must split. Hence a nonsplit Frobenius group of minimal Morley rank cannot be of
even type. Therefore to show that all Frobenius groups of finite Morley rank split,
it suffices to consider Frobenius groups of odd and degenerate type.

Frobenius groups of odd type. Let H < G be a connected Frobenius group of
finite Morley rank and odd type. Note that G contains a single conjugacy class of
involutions, which we denote by J . Moreover, J has Morley degree 1.

Proposition 6.4 [Borovik and Nesin 1994, Proposition 11.18]. Let H < G be a
connected Frobenius group of finite Morley rank and odd type and J its set of
involutions. If a ∈ J ·2

\ {1} and i ∈ J , then Cen(a) ∩ Cen(i) = {1}.

Lemma 6.5. Let H < G be a connected Frobenius group of finite Morley rank and
odd type and J its set of involutions. Fix distinct involutions i, j ∈ J .

(a) If a ∈ i J \ {1}, then Cen(a) ⊆ i J is a uniquely 2-divisible abelian group.

(b) i J is uniquely 2-divisible.

(c) J acts regularly on itself ; i.e., given i, j ∈ J there is a unique p ∈ J such
that j = i p.

(d) i J ∩ j J is uniquely 2-divisible.

(e) Cen(i j) = i J ∩ j J .

(f) The family {Cen(a) \ {1} : a ∈ J ·2
\ {1}} forms a partition of J ·2

\ {1}.

Proof. (a) By the previous proposition, we have Cen(a)∩Cen(k) = {1} for all invo-
lutions k. In particular, Cen(a) does not contain an involution and hence is uniquely
2-divisible by Proposition 5.1. Note that i acts on Cen(a) as a fixed-point-free
involutionary automorphism. Hence, by Proposition 2.6, Cen(a) is abelian and
inverted by i , therefore i Cen(a) ⊆ J , and we have Cen(a) ⊆ i J .

(b) Fix a = i p ∈ i J \ {1}. Since Cen(a) ⊆ i J is uniquely 2-divisible, we have
a = b2 for some b = iq ∈ i J . If a = c2 for another element c = ir ∈ i J , then
i iq

= i ir , and hence qr ∈ Cen(i) ∩ J ·2
= {1}. Thus b = c.

(c) Note that j = i p if and only if i j = i i p
= (i p)2. Since i J is uniquely 2-divisible,

p exists and is unique.

(d) It suffices to show that i J ∩ j J is 2-divisible. Given a ∈ i J ∩ j J , we have
Cen(a) ⊆ i J ∩ j J , and hence a = b2 for some b ∈ Cen(a) ⊆ i J ∩ j J .

(e) By (a), we have Cen(i j) ⊆ i J ∩ j J . Hence it remains to show that i J ∩ j J ⊆

Cen(i j). Given a ∈ i J ∩ j J , a is inverted by i and j , and hence a ∈ Cen(i j).

(f) Suppose c ∈ Cen(a)∩ Cen(b) for some c ̸= 1. Then a, b ∈ Cen(c), and hence
a ∈ Cen(b), because Cen(c) is abelian. This implies Cen(b) ⊆ Cen(a), because
Cen(b) is abelian. Hence Cen(a) = Cen(b) by symmetry. This implies (f). □
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Given two distinct involutions i ̸= j in J , we define the line

ℓi j = {p ∈ J : (i j)p
= (i j)−1

}.

Lemma 6.6. Let H < G be a connected Frobenius group of finite Morley rank and
odd type and J its set of involutions. Let i ̸= j ∈ J . Then iℓi j = Cen(i j).

Proof. Clearly iℓi j ⊆ Cen(i j). On the other hand, we have Cen(i j) ⊆ i J by
Lemma 6.5(e). Given σ = i p ∈ Cen(i j), we have

( j i)p
= (i j)i p

= (i j)σ = i j.

Therefore (i j)p
= (i j)−1, and thus p ∈ ℓi j . □

Lemma 6.7. Let H < G be a connected Frobenius group of finite Morley rank and
odd type and J its set of involutions. Fix i ̸= j ∈ J , and let p, q ∈ ℓi j be distinct
involutions. Then ℓpq = ℓi j .

Proof. We have pq ∈ Cen(i j), and hence Cen(pq) = Cen(i j). Moreover, i p ∈

Cen(i j) = Cen(pq), and hence

ℓpq = p Cen(pq) = i Cen(i j) = ℓi j . □

Hence the set J together with the above notion of lines satisfies conditions
(a) and (b) of Definition 2.1.

Lemma 6.8. Let H < G be a connected Frobenius group of finite Morley rank and
odd type and J its set of involutions. Let i, j ∈ J be distinct involutions, and let T
be a subgroup of G such that Cen(i j) ≤ T ≤ NG(Cen(i j)). Then T can be written
as a semidirect product T = Cen(i j)(T ∩ Cen(i)).

Proof. Note G can be decomposed as G = i J Cen(i), and put λ = ℓi j . Given t ∈ T ,
we can write t = i pg for (unique) elements k ∈ J and g ∈ Cen(i). Then

λ = λt
= λpg.

In particular, i ∈ λp
∩ λ. If λp

∩ λ = {i}, then p = i ∈ λ. If λp
= λ, then p ∈ λ by

part (a) of Lemma 2.7. Therefore t = i pg ∈ Cen(i j)(T ∩ Cen(i)). □

We will make use of the following result about conjugacy of complements:

Proposition 6.9 [Borovik and Nesin 1994, Theorem 9.11]. Let G be a group of
finite Morley rank and H ◁ G be a definable normal nilpotent subgroup. Assume
that G/H is abelian and Cen(g) = 1 for some g ∈ G. Then G = H ⋊Cen(g) and
any two complements of H in G are H-conjugate. Furthermore, [H, g] = H.

Proposition 6.10. Let H < G be a connected Frobenius group of finite Morley rank
and odd type and J its set of involutions. If i ̸= j are two distinct involutions in J ,
then

NG(Cen(i j)) ∩ J ·2
= Cen(i j).
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Proof. Assume there is a ∈
(
NG(Cen(i j)) ∩ J ·2

)
\ Cen(i j) and consider the group

A = Cen(a) ∩ NG(Cen(i j)). Note that A and Cen(i j) are abelian by Lemma 6.5,
and by Lemma 6.5(f), we obtain a semidirect product K = Cen(i j)⋊ A. Moreover,
K is a solvable subgroup of NG(Cen(i j)). By Lemma 6.8, we have K = Cen(i j)⋊
(K ∩ Cen(i)). Now Proposition 6.9 implies that A and K ∩ Cen(i) are conjugate.
This is impossible by Proposition 6.4. □

Theorem 6.11. Let H < G be a connected Frobenius group of Morley rank n and
odd type, and let J be the set of all involutions in G.

(a) J forms a mock hyperbolic reflection space, and all lines in J are infinite.

(b) Choose 3 such that (J, 3) is a generic mock hyperbolic reflection space such
that all lines are of Morley rank k, and set n = MR(J ). If n ≤ 2k + 1, then G
splits.

Proof. (a) We first show that J forms a mock hyperbolic reflection space. We
already know that conditions (a) and (b) of Definition 2.1 are satisfied. Fix a
line λ = ℓi j . Then λ·2

= iλ by Lemma 2.7, and hence λ·2
= Cen(i j) by Lemma 6.6.

Therefore J forms a mock hyperbolic reflection space by Lemma 2.8.
Moreover, by [Borovik et al. 2007, Proposition 1.1], the centralizer of any element

in a connected nontrivial group of finite Morley rank is infinite. In particular, Cen(i j)
is infinite, and therefore all lines in J must be infinite.

(b) Note that if the mock hyperbolic reflection space J consists of a single line,
then H < G splits by Theorem 2.14. Hence, by Theorem 5.5, we may assume
n = 2k + 1. Then again by Theorem 5.5, B has a connected normal subgroup N of
rank 2n − k such that N ≈ S, where

S = {σ ∈ J ·2
\ {1} : ℓσ exists} ∪ {1}

is the set of translations. Recall that MR(S) = 2n − k and MD(S) = 1.
On the other hand N ∩ Cen(i) < N is a connected Frobenius group of finite

Morley rank, and hence
⋃

i∈J N ∩ Cen(i) ⊆ N is a generic subset of N . This
contradicts N ≈ S. □

As a direct consequence, we get the following known corollary (which also
follows from [Borovik and Nesin 1994, Lemma 11.21 and Theorem 11.32]).

Corollary 6.12. Let H < G be a connected Frobenius group of finite Morley rank
of odd type. If G has a nontrivial abelian normal subgroup, then G splits.

Proof. This follows directly from Theorem 2.14. □

Proposition 6.13. Let H < G be a connected nonsplit Frobenius group of finite
Morley rank and odd type, and let (J, 3) be the associated mock hyperbolic re-
flection space. If generic lines have Morley rank 1, then G is a nonsplit sharply
2-transitive group of characteristic ̸= 2.
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Proof. Set n = MR(J ). The set of translations has Morley rank 2n − 1 and is
not generic in G. On the other hand, Cen(i) acts on J \ {i} without fixed points.
Therefore MR(Cen(i)) ≤ 2n. Hence G = i J Cen(i) must have Morley rank 2n and
Cen(i) has Morley rank n. This implies that Cen(i) acts regularly on J \ {1}, and
hence G is a sharply 2-transitive group. □

Remark 6.14. We will see in Corollary 7.5 that the group in the above proposition
must in fact be simple.

Proposition 6.15. Let H < G be a connected Frobenius group of Morley rank at
most 10 and odd type. Then either H < G splits or G is a simple nonsplit sharply
2-transitive group of Morley rank 8 or 10.

Proof. Assume G does not split. Suppose the set of involutions has Morley rank n
and the lines in the associated generic mock hyperbolic reflection space have rank k.
Since the set of translations is not generic in G, we have MR(G)>2n−k. Moreover,
we know n > 2k +1 and k ≥ 1. This shows MR(G) > 2(2k +2)−k = 3k +4. Since
MR(G) ≤ 10, we obtain k = 1 and MR(G) > 7. The previous proposition and the
remark show that G is a simple sharply 2-transitive group, and hence MR(G) must
be an even number, so MR(G) is either 8 or 10. □

Frobenius groups of odd type with nilpotent complement. Delahan and Nesin
showed that a sharply 2-transitive group of finite Morley rank of characteristic ̸= 2
with nilpotent point stabilizer must split [Borovik and Nesin 1994, Theorem 11.73].
We will show that the same is true for a Frobenius group of odd type if the lines
in the associated mock hyperbolic reflection geometry are strongly minimal or if
there is no interpretable bad field of characteristic 0.

We fix a connected Frobenius group H < G of finite Morley rank of odd type,
and we denote the set of involutions by J . By Theorem 6.11, J forms a mock
hyperbolic reflection space with infinite lines. Note that H = Cen(i) if i is the
unique involution in H . If λ is a line containing i , then NG(λ) = λ·2 ⋊ NH (λ) is a
split Frobenius group by Theorem 2.14.

Lemma 6.16. If i and j are involutions with i ̸= j , then Cen(i j) has infinite index
in NG(Cen(i j)). In particular, NCen(i)(ℓi j ) is infinite.

Proof. Otherwise
⋃

g∈G Cen(i j)g
⊆ J ·2 by Lemma 6.5, and hence J ·2 would be

generic in G. This is impossible, since
⋃

i∈J Cen(i) =
⋃

g∈G H g is generic in G
and the elements of J ·2 do not have fixed points by Lemma 2.5. Therefore Cen(i j)
has infinite index in NG(Cen(i j)).

Now NG(Cen(i j)) = NG(ℓi j ), and NG(ℓi j ) ∩ J = ℓi j forms a mock hyperbolic
reflection space (consisting of one line). Therefore NG(Cen(i j)) = iℓi j NCen(i)(ℓi j ),
and thus NCen(i)(ℓi j ) is infinite. □
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If the point stabilizer in a sharply 2-transitive group of characteristic ̸= 2 with
planar maximal near-field contains an element g ̸∈ {1, i} such that g normalizes
all lines containing i , then by [Sozutov et al. 2014] the sharply 2-transitive group
splits. We are going to prove a similar result for Frobenius groups of finite Morley
rank of odd type.

If A is a group, then we write A∗
= A \ {1}.

Lemma 6.17. Let λ be a line containing i ∈ J and fix a definable solvable subgroup
A ≤ NCen(i)(λ). Then A∗iλ ∪ {1} = Aλ.

Proof. Note that H = λ·2 ⋊ A is a solvable Frobenius group of finite Morley rank.
By [Borovik and Nesin 1994, Theorem 11.32], we have H = λ·2

∪
⋃

j∈λ A j . This
proves the lemma. □

Proposition 6.18. Let 3 be a set of lines on J such that (J, 3) forms a generic
mock hyperbolic reflection space. Suppose there exists a definable infinite solvable
normal subgroup A ⊴ Cen(i) such that A ≤

⋂
λ∈3i

NCen(i)(λ). Then H < G splits.

Proof. We may assume that all lines in 3 have Morley rank k. Since i is central
in Cen(i), we may also assume that i ∈ A.

Now set Ji =
⋃

λ∈3i
λ = { j ∈ J \ {i} : ℓi j exists} ∪ {i}. By the previous lemma,

we have A∗iλ ∪ {1} = Aλ for all λ ∈ 3i . Hence we have

A∗i Ji ∪ {1} =

⋃
λ∈3i

A∗iλ ∪ {1} =

⋃
λ∈3i

Aλ
= AJi .

We have A∗i Ji ≈ A∗i J as a consequence of Lemma 2.5 and AJi ≈ AJ , since J acts
regularly on the set of conjugates of H and hence also on the set of conjugates of A.

Therefore

A∗i J ∪ {1} ≈ A∗i Ji ∪ {1} = AJi ≈ AJ
= ACen(i)J

= AG .

Put N = Stab≈(AG). Then A ≤ N and N ⊴ G is a normal subgroup. Hence
AG

≤ N . Now Proposition 5.4 implies that AG
≈ N . Note that

MR(N ) = MR(J ) + MR(A).

Moreover, J ⊆ N , therefore J ·2
⊆ N and thus MR(N ) ≥ 2n − k. Note that A acts

without fixed points on any line λ ∈ 3i , and therefore MR(A) ≤ k. In conclusion

n − k ≤ MR(N ) − MR(J ) = MR(A) ≤ k,

and therefore n ≤ 2k. Now Proposition 5.19 implies that H < G splits. □

Corollary 6.19. Let H < G be a connected Frobenius group of finite Morley rank
and odd type. If H is a minimal group, i.e., if H does not contain an infinite proper
definable subgroup, then H < G splits.
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Proof. The assumptions and Lemma 6.16 imply that NCen(i)(λ) = Cen(i) holds for
all i in J and λ ∈ 3i . If H = Cen(i), then H =

⋂
λ∈3i

NH (λ) and H is abelian.
Therefore Proposition 6.18 implies that H < G splits. □

We can use Zilber’s field theorem to find interpretable fields in Frobenius groups
of odd type.

Proposition 6.20 [Borovik and Nesin 1994, Theorem 9.1]. Let G = A ⋊ H be a
group of finite Morley rank, where A and H are infinite definable abelian subgroups
and A is H-minimal, i.e., there are no definable infinite H-invariant subgroups.
Assume that H acts faithfully on A. Then there is an interpretable field K such that
A ∼= K+, H ≤ K ∗, and H acts by multiplication.

Let λ = ℓi j be a line. Then NCen(i)(λ) is infinite and acts on λ·2
= Cen(i j) by

conjugation. Take a minimal subgroup A ≤ NCen(i)(λ). Since the action of A on
Cen(i j) has no fixed points, we can find an infinite A-minimal subgroup B ≤Cen(i j)
on which A acts faithfully. Moreover, B must be abelian, because Cen(i j) is an
abelian group. Hence, by Proposition 6.20, there is an interpretable field K such
that B ∼= K+, A ≤ K ∗, and A acts by multiplication.

In particular, if the line λ is strongly minimal, then K is strongly minimal and
A ∼= K ∗.

If A is a proper subgroup of K ∗, then K is a bad field, i.e., an infinite field
of finite Morley rank such that K ∗ has a proper infinite definable subgroup. By
[Baudisch et al. 2009], bad fields of characteristic 0 exist. However, it follows from
work of Wagner [2001] that if char(K ) ̸= 0, then K ∗ is a good torus, i.e., every
definable subgroup of K ∗ is the definable hull of its torsion subgroup. We refer to
[Cherlin 2005] for properties of these good tori.

Theorem 6.21. Let H < G be a connected Frobenius group of finite Morley rank
and odd type. Fix 3 such that (J, 3) is a generic mock hyperbolic reflection space.
Moreover, assume that H has a definable nilpotent normal subgroup N such that
N ∩ NH (λ) is infinite for all λ ∈ 3i .

If all lines in 3 are strongly minimal or if G does not interpret a bad field of
characteristic 0, then H < G splits.

Proof. We may assume that N is connected. Let T be a maximal good torus in N .
As a consequence of the structure of nilpotent groups of finite Morley rank [Borovik
and Nesin 1994, Theorems 6.8 and 6.9], T must be central in N . By [Cherlin 2005,
Theorem 1], any two maximal good tori are conjugate. Therefore T is the unique
maximal good torus in N . Since a connected subgroup of a good torus is a good
torus, the assumptions (and the previous discussion) imply that NH (λ)∩T is infinite
for all lines λ ∈ 3i . By [Cherlin 2005, Lemma 2], the family {NH (λ)∩ T : λ ∈ 3i }

is finite. Hence, after replacing 3 by a generic subset 3′
⊆ 3, we may assume



MOCK HYPERBOLIC REFLECTION SPACES AND FROBENIUS GROUPS 169

that {NH (λ) ∩ T : λ ∈ 3i } consists of a unique infinite abelian normal subgroup
of H . Now Proposition 6.18 implies that H < G splits. □

Frobenius groups of degenerate type. We now use mock hyperbolic spaces to
study Frobenius groups of finite Morley rank and degenerate type. A geometry
with similar properties, but defined on the whole group, was used by Frécon in his
result on the nonexistence of bad groups of Morley rank 3.

Lemma 6.22. Let H < G be a connected Frobenius group of Morley rank n and of
degenerate type. Suppose the Frobenius complement H is abelian and of Morley
rank k. Then n ≥ 2k + 1, and if n = 2k + 1, then G contains a definable normal
subgroup N of Morley rank k + 1.

Proof. Note that G is uniquely 2-divisible, and hence a ⊗ b = a1/2ba1/2 defines a
K-loop structure on G. Let L = (G, ⊗) denote the corresponding K-loop, and set
A= G ×⟨ϵ⟩ < Aut(L), where ϵ is given by inversion. Now let G be the quasidirect
product G = L ⋊Q A.

By Theorem 4.7, the involutions J in G form a partial mock hyperbolic reflection
space, and since

⋃
g∈G H g

⊆ G is a generic subset of G, the involutions must form
a generic mock hyperbolic reflection space. Moreover, MR(J ) = n and each line
has Morley rank k. Now the lemma follows from Theorem 5.5. □

Theorem 6.23. Let H < G be a connected Frobenius group of Morley rank n and
of degenerate type. Suppose the Frobenius complement H is abelian and of Morley
rank k. Then n ≥ 2k + 1.

If n = 2k + 1, then G splits as G = N ⋊ H for some definable connected normal
subgroup N of Morley rank k + 1. Moreover, if N is solvable, then there is an
interpretable field K of characteristic ̸= 2 such that G = K+ ⋊ H , H ≤ K ∗, and H
acts on K+ by multiplication.

Proof. By the previous lemma, we may assume n = 2k + 1. Then G contains a
definable normal subgroup N of rank k+1, and we may assume that N is connected.

Note that MR
(⋃

g∈G(N ∩ H)g
)

= k + 1 + MR(N ∩ H) and MR(N ) = k + 1.
Therefore N ∩ H must be finite. If N ∩ H is nontrivial, then (N ∩ H) < N is
a connected Frobenius group, and hence N ∩ H must be connected. Therefore
N ∩ H = {1}.

The semidirect product N ⋊ H has rank 2k + 1, and hence is generic in G.
Therefore G = N ⋊ H splits.

Now assume that N is solvable. Then N is nilpotent since, by [Borovik and Nesin
1994, Theorem 11.29], a solvable complement of a split Frobenius group of finite
Morley rank is nilpotent. Moreover, Cen(u) ≤ N for all u ∈ N \ {1} by [Borovik
and Nesin 1994, Theorem 11.32] (since G is solvable). Note that uG cannot be
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generic in N , because G does not contain involutions. Therefore MR(uG) ≤ k, and
hence MR(Cen(u)) ≥ k + 1. Thus Cen(u) = N , so N is abelian.

We now show that N is H -minimal: Let A ≤ N be a H -invariant subgroup. We
may assume that A is connected. Given a ∈ A \ {1}, we have Cen(a) ∩ H = {1},
and therefore aH

⊆ A has rank k. If A has rank k, then aH is generic in A, and
therefore A must contain an involution. This is a contradiction. Therefore A = {1}

or A = N , and hence N is H -minimal.
By Proposition 6.20, there must be an interpretable field K such that N = K+,

H ≤ K ∗, and H acts on N by multiplication. □

7. Sharply 2-transitive groups of finite Morley rank

Let G be a sharply 2-transitive group of finite Morley rank with char(G) ̸= 2, and
let J denote the set of involutions in G. By Corollary 3.4 (or by Theorem 6.11),
the set J forms a mock hyperbolic reflection space.

We set n = MR(J ) and k = MR(Cen(i j)) for involutions i ̸= j ∈ J . Note that k
does not depend on the choice of i , and j and k = n if and only if G is split.

Now we assume that G is not split. By [Borovik and Nesin 1994, Proposition
11.71], we have 0 < 2k < n, and we will improve this inequality below.

Since G acts sharply 2-transitively on J , it is easy to see that MR(G) = 2n and
MR(J ·2) = 2n − k. Moreover, G and Cen(i j) have Morley degree 1 by [Borovik
and Nesin 1994, Lemma 11.60].

Proposition 7.1. (a) The set i J is indecomposable for all i ∈ J .

(b) ⟨J ·2
⟩ is a definable connected subgroup. In particular, there is a bound m

such that any g ∈ ⟨J ·2
⟩ is a product of at most m translations.

Proof. (a) Since MD(G) = 1, the set J is indecomposable by [Borovik and Nesin
1994, Corollary 5.25], and hence i J is indecomposable too.

(b) Since ⟨J ·2
⟩ = ⟨i J ⟩, (b) follows from Zilber’s indecomposability theorem

using (a). □

Remark 7.2. By Proposition 7.1(b), it is easy to see that the nonsplit examples of
sharply 2-transitive groups of characteristic 0 constructed in [Rips and Tent 2019]
do not have finite Morley rank.

Lemma 7.3. For any g ∈ G \ J , the set {i ∈ J : gi has a fixed point} is generic in J .

Proof. Let g ∈ G. For any j ∈ J there is a unique i j ∈ J swapping j and j g.
Then gi j centralizes j , so has a fixed point. If i j = i p for some j ̸= p ∈ J , then by
sharp 2-transitivity it follows that g = i j = i p ∈ J . Hence for g ̸∈ J , the i j for j ∈ J
are pairwise distinct, and hence {i j : j ∈ J } has Morley rank n. □

Let µ : G3
→ G be the multiplication map, i.e., µ(g1, g2, g3) = g1g2g3.



MOCK HYPERBOLIC REFLECTION SPACES AND FROBENIUS GROUPS 171

Lemma 7.4. MR(J ·3) > MR(J ·2).

Proof. Note that MR(J ·3) = MR(i J ·3) ≥ MR(J ·2) > MR(J ) = n, and hence J is
not a generic subset of J ·3.

For α ∈ J ·3, we let Xα = {i ∈ J : iα ∈ J ·2
} be the set of all involutions i such

that iα is a translation. By Lemma 7.3 and Remark 3.1, MR(Xα) < n for all
α ∈ J ·3

\ J .
Let MR(J ·3) = 2n − k + l for some l ≥ 0. There is a generic set of α ∈ J ·3

\ J
such that MR(µ−1(α)∩(J × J × J ))= n+k−l. Set X = Xα for such an α ∈ J ·3

\ J .
If irs = α, then MR({ j ∈ J : rs ∈ j J }) = k, and hence MR(µ−1(α)) = MR(X)+k.
Therefore we have MR(X) = n − l, and hence l ≥ 1 by Lemma 7.3. □

Corollary 7.5. Let G be a nonsplit sharply 2-transitive group of finite Morley rank.
If the lines are strongly minimal, then G is simple and a counterexample to the
Cherlin–Zilber conjecture.

Proof. Let N ⊴ G be a normal subgroup. If N contains an involution, then J ⊆ N ,
and hence J ·2

⊆ N . Now assume N does not contain an involution. Fix u ∈ N
and i ∈ J . Then 1 ̸= u−1iui ∈ N ∩ J ·2, and hence J ·2

⊆ N , since all translations
are conjugate. Therefore J ·2

⊆ N holds true in both cases. Since i J ·3
⊆ ⟨i J ⟩ ⊆ N

and MR(J ·2) = 2n −1 < MR(J ·3) = MR(i J ·3) ≤ MR(G) = 2n (Lemma 7.4), this
implies N = G. This shows that G must be simple.

Assume towards a contradiction that G is an algebraic group over an algebraically
closed field K . If the K -rank of G is at least 2, then the torus contains commuting
involutions, contradicting Remark 3.1(c). If the K -rank of G is 1, then G is
isomorphic to PSL2(K ) and also contains commuting involutions, e.g., x 7→ −1/x
and x 7→ −x are commuting involutions in PSL2(K ). □

Note that a sharply 2-transitive group of finite Morley rank in characteristic differ-
ent from 2 is not a bad group in the sense of Cherlin, since for any translation σ ∈ J ·2

the group NG(Cen(σ )) = Cen(σ )⋊ NCen(σ )(Cen(σ )) is solvable, but not nilpotent.
If G is a sharply 2-transitive group of finite Morley rank and char(G) ̸= 2

with n, k and J be as before, then by Theorem 6.11, G splits if n ≤ 2k + 1. Thus,
we obtain:

Corollary 7.6. If G is a sharply 2-transitive group and MR(G) = 6, then G is of
the form AGL1(K ) for some algebraically closed field K of Morley rank 3.

Proof. If char(G) ̸= 2, then, by Theorem 6.11, G splits and the result follows from
[Altınel et al. 2019]. If char(G) = 2, then G is split by [Altınel et al. 2019] and any
point stabilizer has Morley rank 3. Since the point stabilizers do not contain involu-
tions, they are solvable by [Frécon 2018]. By [Borovik and Nesin 1994, Corollary
11.66], an infinite split sharply 2-transitive group of finite Morley rank whose point
stabilizer contains an infinite normal solvable subgroup must be standard. □
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8. Further remarks

A finite uniquely 2-divisible K-loop is the same as a finite B-loop in the sense
of Glauberman [1964]. As a consequence of Glauberman’s Z∗-theorem [1966]
finite B-loops are solvable. Following Glauberman, we say that a K-loop L is half-
embedded in some group G if it is isomorphic to a K-loop arising from a uniquely
2-divisible twisted subgroup of G as in Proposition 4.4. B-loops and uniquely
2-divisible K-loops can always be half-embedded in some group and that group
can be chosen to be finite if the loop is finite [Glauberman 1964, Theorem 1 and
Corollary 1]. This allows us to restate Glauberman’s result for twisted subgroups:

Proposition 8.1 [Glauberman 1966]. Let G be a group, and let L ⊆ G be a finite
uniquely 2-divisible twisted subgroup. Then ⟨L⟩ is solvable.

As a consequence finite mock hyperbolic spaces must consist of a single line:

Proposition 8.2. Suppose J forms a finite mock hyperbolic reflection space in a
group G. Then J consists of a single line.

Proof. We may assume that G acts faithfully on J . Let i ∈ J be an involution.
Since J acts regularly on itself, the square map on i J must be injective and hence
bijective as a consequence of finiteness. Now it is easy to check that i J is a
finite uniquely 2-divisible twisted subgroup in G. Therefore ⟨i J ⟩ is solvable by
Proposition 8.1. Moreover, Cen(i) ≤ NG(⟨i J ⟩) and G can be decomposed as
G = i J Cen(i). Therefore ⟨i J ⟩ is a solvable normal subgroup of G. It follows
that G contains a nontrivial abelian normal subgroup. Now Theorem 2.14 implies
that J consists of a single line. □

In the context of groups of finite Morley rank, we do not know if every uniquely
2-divisible K-loop of finite Morley rank can be definably half-embedded into a
group of finite Morley rank. The following would be a finite Morley rank version
of Glauberman’s theorem:

Conjecture 8.3. Let G be a connected group of finite Morley rank with a definable
uniquely 2-divisible twisted subgroup L of Morley degree 1 such that G = ⟨L⟩.
Then G is solvable.

Note that this conjecture would imply the Feit–Thompson theorem for connected
groups of finite Morley rank: if G is a connected group of finite Morley rank of
degenerate type, then G is uniquely 2-divisible, and hence Conjecture 8.3 (applied
to L = G) would imply that G is solvable.

Moreover, it would imply that Frobenius groups of finite Morley rank split: for
Frobenius groups of degenerate type this would follow from solvability. If G is a
connected Frobenius group of finite Morley rank and odd type with involutions J
and lines 3, then it suffices to show that G has a nontrivial definable solvable normal
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subgroup (in that case G has a nontrivial abelian normal subgroup and hence splits
by Theorem 2.14). Note that i J is a uniquely 2-divisible twisted subgroup. If G is
sharply 2-transitive, then Proposition 7.1 shows that ⟨i J ⟩ is definable and connected
and hence should be solvable by Conjecture 8.3.

For the general case consider the family Fi = {Cen(i j)0
: j ∈ J \ {i}}. By

Zilber’s indecomposability theorem the subgroup N = ⟨H : H ∈ Fi ⟩ is definable
and connected. Moreover, it is easy to see that N ∩ i J must be generic in i J
and N must be normalized by Cen(i). Therefore N must be a normal subgroup of
G = i J Cen(i), and clearly N = ⟨N ∩ i J ⟩. Therefore Conjecture 8.3 would imply
that N is solvable.

If Frobenius groups of odd and degenerate type split, then Remark 6.3 shows
that Frobenius groups of even type also split.

If the twisted subgroup in the statement of Conjecture 8.3 is strongly minimal,
then we show that G must be 2-nilpotent:

Proposition 8.4. Let G be a connected group of finite Morley rank with a definable
strongly minimal uniquely 2-divisible twisted subgroup L such that G = ⟨L⟩. Then
G is 2-nilpotent.

Proof. Let x ⊗ y = x1/2 yx1/2 be the corresponding K-loop structure on L . If
(L , ⊗) is an abelian group, then [Kiechle 2002, Theorem 6.14, part (3)] implies
[[a, b], c] = 1 for all a, b, c ∈ L , and therefore G = ⟨L⟩ must be 2-nilpotent.
Therefore it suffices to show that (L , ⊗) is an abelian group.

Put T = NG(L)/ Cen(L). Then T ≤ Aut((L , ⊗)), and we may consider the
quasidirect product G = L⋊Q T . As stated in Proposition 4.5, the group G = L⋊Q T
acts transitively and faithfully on L by

(a, α)(x) = a ⊗ α(x),

and T is the stabilizer of 1 ∈ L . Note that L ′
= L × {1} is a uniquely 2-divisible

twisted subgroup of G. Hence a ⊗
′ b = a1/2ba1/2 defines a K-loop structure on L ′.

By [Kiechle 2002, Theorem 6.15], the K-loops (L , ⊗) and (L ′, ⊗′) are isomorphic.
Therefore it suffices to show that (L ′, ⊗′) is an abelian group.

Hrushovski’s analysis of groups acting on strongly minimal sets [Borovik and
Nesin 1994, Theorem 11.98] shows that MR(G) ≤ 3. Moreover, if MR(G) = 3,
then T acts sharply 2-transitively on L \{1}, which is impossible, since T is a group
of automorphisms of (L , ⊗).

If MR(G)= 2, then L⋊Q T is a standard sharply 2-transitive group K+⋊K ∗ (and
the corresponding permutation groups coincide). Since L ′ acts without fixed points
and the fixed-point-free elements of K+ ⋊ K ∗ are precisely the elements of K+,
L ′ is contained in K+. Therefore ⊗

′ agrees with the group structure on K+, and
hence (L ′, ⊗′) is an abelian group.



174 TIM CLAUSEN AND KATRIN TENT

Now assume MR(G) = 1. We argue similarly to the proof of [Glauberman 1964,
Lemma 5, part (v)].

Consider the finite twisted subgroup L ′′
= {aG0

: a ∈ L ′
} of G/G0. Since L ′

is uniquely 2-divisible, the map L ′′
→ L ′′, a 7→ a2 is surjective and hence a

bijection, since L ′′ is finite. Hence we may define a K-loop structure xG0
⊗

′′ yG0
=

x1/2 yx1/2G0 on L ′′. The natural map L ′
→ L ′′ is a surjective homomorphism

from (L ′, ⊗′) to (L ′′, ⊗′′) with kernel L ′
∩G0.

In particular, L ′
∩ G0 is a normal subloop of L ′. Since L ′/(L ′

∩ G0) is finite
and MD(L ′) = 1, this implies L ′

= L ′
∩ G0, and hence L ′

⊆ G0. The group G0 is
strongly minimal and thus abelian. Therefore ⊗

′ agrees with the group structure
on G0, and therefore (L ′, ⊗′) is an abelian group. □

The proof of Proposition 8.4 in fact shows the following:

Corollary 8.5. Let G be a group of finite Morley rank, and let L ⊆ G be a definable
uniquely 2-divisible twisted subgroup of G.

(a) If MD(L) = 1, then L ⊆ G0.

(b) If L is strongly minimal, then the associated K-loop (L , ⊗) is an abelian group,
and hence ⟨L⟩ is 2-nilpotent (without assuming that ⟨L⟩ is definable).

In particular, if (L , ⊗) is a strongly minimal uniquely 2-divisible K-loop such
that L can be definably half-embedded into a group of finite Morley rank, then
(L , ⊗) is an abelian group.

Question 8.6. This suggests the following two questions:

(a) Suppose G and L satisfy the assumptions of Proposition 8.4. Must G be
abelian?

(b) Is every strongly minimal (uniquely 2-divisible) K-loop an abelian group?
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