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Rigid differentially closed fields

David Marker

Using ideas from geometric stability theory we construct differentially closed
fields of characteristic 0 with no nontrivial automorphisms.

1. Introduction

Our goal is to construct countable differentially closed fields of characteristic 0
(DCF0) with no nontrivial automorphisms. We refer to such fields as rigid. This
answers a question posed by Russell Miller. I will say something about Miller’s
motivation in my closing remarks. This may at first seem surprising. One often,
naively, thinks that differentially closed fields should behave like algebraically
closed fields, where there are always many automorphisms. Also, differential
closures of proper differential subfields always have nontrivial automorphisms. We
sketch the proof of this using ideas from Shelah’s proof [18] of the uniqueness
of prime models for ω-stable theories (see [12, §6.4] or [21, §9.2]). This is a
well-known construction.

Proposition 1.1. Let k be a differential field with differential closure K ⊃ k. Then
there are nontrivial automorphisms of K/k.

Proof. First note that if d ∈ K n and k⟨d⟩ is the differential field generated by d
over k, then K is a differential closure of k⟨d⟩. This follows from the fact that in
an ω-stable theory M is prime over A ⊂ M if and only if M is atomic over A and
there are no uncountable sets of indiscernibles (see [21, Theorem 9.2.1]).

Let a ∈ K \k. Since K is the differential closure of k, tp(a/k) is isolated by some
formula φ(v) with parameters from k. If a is the only element of K satisfying φ,
then a is in dcl(k) = k, a contradiction. Thus there is b ∈ K such that a ̸= b
and φ(b).

Since a and b realize the same type over k, there are L |H DCF0 with k⟨b⟩ ⊆ L
and σ : K → L an isomorphism such that σ | k is the identity and σ(a)= b.
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K is a differential closure of both k⟨a⟩ and k⟨b⟩. Thus L is a differential closure of
k⟨b⟩ and, by uniqueness of differential closures, there is an isomorphism τ : L → K
that is the identity on k⟨b⟩. Then τ ◦σ is an automorphism of K sending a to b. □

Remarks. • This argument really shows that if T is an ω-stable theory, A is a
definably closed substructure of a model of T that is not a model of T and M is a
prime model extension of A, then there is a nontrivial automorphism of M fixing
A pointwise.

• While this argument guarantees the existence of a nontrivial automorphism of K/k,
it is possible that there is only one. If k is a model of Singer’s theory of closed
ordered differential fields [20], then kdiff

= k(i) and complex conjugation is the
only nontrivial automorphism of kdiff/k.

Omar León Sánchez pointed out that the construction of rigid differentially closed
fields gives the first known examples of differentially closed fields K such that
K ̸= k(i) for any closed ordered differential field k ⊂ K .

• Proposition 1.1 tells us that the rigid differentially closed fields we construct are
not the differential closure of any proper differential subfield.

Our construction of rigid differentially closed fields uses ideas from geometric
stability theory and work on strongly minimal sets in differentially closed fields
of Rosenlicht [17] and Hrushovski and Sokolović [9]. We describe the results we
need in Section 2 and construct rigid differentially closed fields in Section 3. We
begin Section 3 with a warm up constructing arbitrarily large rigid models and then
give the more subtle construction of rigid countable models. We refer the reader to
[15] for unexplained model theoretic concepts.

2. Preliminaries

We work in K |H DCF, a monster model of the theory of differentially closed fields
of characteristic zero with a single derivation. The constant field C is {x ∈K : x ′

=0}.
If k is a differential field and X ⊂ Kn is definable over k, we let X (k) denote the
k-points of X , i.e., X (k) = kn

∩ X . Of course, by quantifier elimination, X is
quantifier-free definable over k

Our main tool will be the strongly minimal sets known as Manin kernels of
elliptic curves. Manin kernels arose in Manin’s proof [10] of the Mordell conjecture
for function fields in characteristic zero and were central to both Buium’s [2]
and Hrushovski’s [8] proofs of the Mordell–Lang conjecture for function fields
in characteristic zero. The model theoretic importance of Manin kernels was
developed in the beautiful unpublished preprint of Hrushovski and Sokolović [9].
Proofs of the results from [9] that we will need all appear in Pillay’s survey [16],
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and [11] is another survey on the construction and some of the basic properties of
Manin kernels.

For a ∈ K , let Ea be the elliptic curve Y 2
= X (X − 1)(X − a). Let E♯a be the

minimal definable differential subgroup of E . E♯a is the closure of Tor(Ea) in the
Kolchin topology.

Theorem 2.1 (Hrushovski–Sokolović). (i) If a′
̸= 0, then E♯a is a nontrivial locally

modular strongly minimal set.

(ii) The Manin kernels E♯a and E♯b are nonorthogonal if and only if Ea and Eb are
isogenous. In particular, if a and b are algebraically independent over Q then E♯a
and E♯b are orthogonal.

In particular, Manin kernels are orthogonal to the field of constants C ={x : x ′
=0}.

More generally, if A is a simple abelian variety that is not isomorphic to an
abelian variety defined over the constants we can construct a Manin kernel A♯

which is the Kolchin closure of the torsion of A and a minimal infinite definable
subgroup of A. A♯ is nontrivial locally modular strongly minimal and Hrushovski
and Sokolović also showed that if X is any nontrivial locally modular strongly
minimal subset of a differentially closed field, then X ̸⊥ A♯ for some abelian
variety A.

The other building blocks of our construction are strongly minimal sets introduced
by Rosenlicht [17] in his proof that the differential closure of a differential field k
need not be minimal.

Let f (X)= X/(1 + X). For a ̸= 0, let Xa = {x : x ′
= a f (x), x ̸= 0}.

Theorem 2.2 (Rosenlicht). (i) If a ∈ k and x ∈ Xa \ k, then C(k)= C(k⟨x⟩).

(ii) Suppose k ⊂ K are differential fields, with C(K )⊆ C(k)alg. Suppose a, b ∈ k×,
x ∈ Xa(K ), y ∈ Xb(K ) and x and y are algebraically dependent over k. Then
x, y are algebraic over k or x = y. In particular, if a ̸= b, then Xa and Xb are
orthogonal.

Part (i) follows from Proposition 2 of [17] while (ii) is a slight generalization
of Proposition 1 of [17] and Gramain [5]. These results appear as Theorems 6.12
and 6.2 of [13].

Corollary 2.3. Each Xa is a trivial strongly minimal set.

Proof. By Theorem 2.2(i), Xa is orthogonal to the constants. If Xa were nontrivial,
then Xa ̸⊥ A♯, the Manin kernel of a simple abelian variety. But if x ∈ Xa \

kalg, then k⟨x⟩ = k(x) is a transcendence degree 1 extension. But by results of
Buium [2], Manin kernels, or anything nonorthogonal to one, give rise to extensions
of transcendence degree at least 2. Thus Xa is trivial. □
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3. Constructing rigid differentially closed fields

Warm up.

Proposition 3.1. There are arbitrarily large rigid differentially closed fields.

For this construction we only need Rosenlicht strongly minimal sets. Let κ be a
cardinal with κ = ℵκ . We construct a differentially closed field K of cardinality
κ such that |Xa(K )| ̸= |Xb(K )| for each nonzero a ̸= b, guaranteeing there is no
automorphism sending a 7→ b.

We build a chain of differentially closed fields K0 ⊂ K1 ⊂ · · · ⊂ Kα ⊂ · · · for
α < κ such that |Kα| = ℵα. We simultaneously build an injective enumeration
a0, a1, . . . , aα, . . . of K ×, where K =

⋃
Kα.

We construct K as follows.

(i) K0 = Qdiff.

(ii) Given Kα and aα ∈ Kα , build Kα+1 by adding ℵα+1 new independent elements
of Xaα and taking the differential closure.

(iii) If α is a limit ordinal, let Kα =
⋃
β<α Kβ .1

Since Xaα ⊥ Xaβ for α<β, adding new elements to Xaβ and taking the differential
closure adds no new elements to Xaα . Thus Xaα (K ) = Xaα (Kα+1). In particular,
|Xaα (K )| = ℵα+1. Thus there is no automorphism of K with aα 7→ aβ for α ̸= β.

One might worry that we have contradicted Proposition 1.1. Let Bα be all of the
independent realizations of Xaα that we added at stage α. Then K is the differential
closure of k = Q⟨Bα : α < κ⟩. But, if b ∈ Xaα , then aα = b′(b + 1)/b ∈ Q⟨b⟩.
Thus k = K .

The countable case. To construct a countable differentially closed field with no
automorphisms, we need a more subtle mixture of Rosenlicht extensions with
extensions of Manin kernels.

Suppose b ̸∈ C . Let dim E♯b(k) be the number of independent realizations in k of
the generic type of E♯b over Q⟨b⟩. Manin kernels are useful to us as they can have
any countable dimension. We build a countable K |H DCF0 such that for each a ̸= 0,
there is a natural number

na = max
b∈Xa(K )

dim E♯b(K )

such that na ̸= nb for a ̸= b. This guarantees that there is no automorphism
with a 7→ b.

1To build the desired enumeration, let a0, a1, . . . be an injective enumeration of K0 and, at
stage α+ 1, let (aγ : ωα ≤ γ < ωα+1) be an injective enumeration of Kα+1 \ Kα .
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Freitag and Scanlon [4], and more generally, Casale, Freitag and Nagloo [3],
have given constructions of trivial strongly minimal sets which can take on any
countable dimension. Presumably these could be used in an alternative construction.

We build a chain K0 ⊂ K1 ⊂ · · ·⊂ Kn ⊂ · · · , an injective enumeration a0, a1, . . .

of K ×
=

⋃
K ×

n and a sequence of natural numbers 0 = n0 < n1 < · · · such that

(1) C(Ki )= C(K0);

(2) Xai (K )= Xai (Ki+1);

(3) if b ∈ Xai (K ), then E♯b(K )= E♯b(Ki+1);

(4) ni+1 = maxb∈Xai (K ) dim E♯b.2

If we can do that we will have guaranteed that there are no automorphisms of K .
Let K0 = Qdiff. At stage s we choose a new as ∈ Ks . Let bs be an element of

Xas generic over Ks , let x be ns−1 + 1 independent realizations of the generic of
E♯bs

over Ks⟨bs⟩ = Ks(bs) and let Ks+1 = Ks⟨bs, x⟩
diff.

By orthogonality considerations, it’s clear that conditions (1)–(3) hold, as after
stage i+1 we only add realizations of types orthogonal to Xai and E♯b, for b∈ Xai (K ).
To prove (4) we need to show that there is ns = maxd∈Xas

dim E♯d(Ks+1). We have
arranged things so that if there is a bound ns then ns > ns−1.

We need two preliminary lemmas.

Lemma 3.2. If b′
̸= 0, then dim E♯b(Q⟨b⟩

diff)= 0.

Proof. Suppose x ∈ E♯b(Q⟨b⟩
diff). All torsion points of Eb are in Q(b)alg, so we

can suppose x is a nontorsion point. But x realizes an isolated type over Q⟨b⟩. Let
ψ isolate the type of x over Q⟨b⟩. No torsion point can satisfy ψ . Thus by strong
minimality ψ defines a finite set and x ∈ Q⟨b⟩

alg. □

Although we do not need it, we can say more in the special case that Q⟨b⟩=Q(b),
such as if b ∈ Xa for some a ∈ Q. In this case Manin’s theorem of the kernel [10]
implies that E♯b(Q⟨b⟩

alg)= Tor(Eb); see [1, Corollary K.3].

Lemma 3.3. Suppose K is a differentially closed field, b, d ∈ K and Eb and Ed

are isogenous. Then dim E♯b(K )= dim E♯d(K ).

Proof. If Ed and Eb are isogenous, then d and b are interalgebraic over Q and
the isogeny f is defined over Q(d)alg

= Q(b)alg. Since f : Tor(Ed)→ Tor(Eb) is
finite-to-one and the torsion is Kolchin dense in a Manin kernel, f : E♯d → E♯b is
finite-to-one. It follows that dim E♯d(K )= dim E♯b(K ). □

The next lemma shows that we have the necessary bounds.

2Building the enumeration takes a bit more bookkeeping in this case. Let d0,0, d0,1, . . . be an
injective enumeration of K0 and let di,0, di,1, . . . be an injective enumeration of Ki \ Ki−1. Start
our enumeration of K by letting a0 = d0,0. Suppose we start stage i with the partial enumeration
a0, . . . , aM . Then for j = 0, . . . , i , let aM+ j+1 = d(i, i − j).
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Lemma 3.4. Suppose K is a differentially closed field constructed in a finite itera-
tion Qdiff

= k0 ⊂ k1 ⊂ · · · ⊂ km = K , where either

(1) ki+1 = ki ⟨a⟩
diff, where a realizes a trivial type over ki , or

(2) ki+1 = ki ⟨xi ⟩
diff, where xi consists of ni independent realizations of the generic

type of a Manin kernel E♯bi
, where bi ∈ ki and E♯bi

⊥ E♯b j
for i ̸= j .

If d ∈ K \ C , then dim E♯d(K )= ni for some i .

Proof. We first argue that this is true for each E♯bt
. Define l0 ⊆ l1 ⊆ · · · ⊆ lt such

that li = ki ⟨bt ⟩
diff. Note that lt = kt

By Lemma 3.2, dim E♯bt
(l0)= 0. As we construct l1, . . . , lt we are either doing

nothing (if ai or xi ∈ li−1) or adding realizations of types orthogonal to E♯bt
. Thus

dim E♯bt
(kt)= 0 and dim E♯bt

(kt+1)= nt . Since for i > t all ai and xi realize types
orthogonal to E♯bt

, dim E♯bt
(K )= nt .

Suppose d ∈ K \ C . If Ed is isogenous to some Ebi , then, by Lemma 3.3,
dim E♯d(K )= dim E♯bi

(K )= ni . So we may assume E♯d ⊥ E♯bi
for all i . We claim

that in this case, dim E♯d(K )= 0. For i ≤ m, we let li = ki ⟨d⟩
diff. By Lemma 3.2,

dim E♯d(l0)= 0. As we continue the construction, as above, at each stage we either
do nothing or realize types that are orthogonal to E♯d . Thus we add no new elements
of E♯d and dim E♯d(K )= 0. □

We can interweave a many models construction. In [9] the authors noted that
Manin kernels could be used to show that DCF0 has eni-dop and concluded that
there are 2ℵ0 nonisomorphic countable differentially closed fields. An explicit
version of this construction coding graphs into models is used in [14]. We can fold
that coding into our construction of a rigid model.

Theorem 3.5. There are 2ℵ0 nonisomorphic countable rigid differentially closed
fields. Each of these fields is not the differential closure of a proper differential
subfield.

Consider X = X1(Q
diff). This is an infinite set of algebraically independent

elements. Let G = (X, R) be a graph with vertex set X and edge relation R. Let
({ui , vi } : i = 0, 1, . . . ) be an enumeration of two element subsets of X . We modify
our construction such that at stage s we also add a generic element of E♯ui +vi

if
and only if (ui , vi ) ∈ R. We can still apply Lemma 3.4 and our construction will
produce a rigid differentially closed field K . From K we can recover the graph in
an Lω1,ω-definable way. Thus nonisomorphic graphs give rise to nonisomorphic
rigid differentially closed fields.

Similarly, we could interweave graph coding steps in the proof of Proposition 3.1
and build 2κ nonisomorphic rigid differentially closed fields of cardinality κ

when κ = ℵκ .
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4. Remarks and Questions

In [6; 7] the authors introduce the notion of computable and Borel functors between
classes of countable structures. For example, in Theorem 3.5, recovering the graph
from the differentially closed field is a Borel functor from differentially closed
fields to graphs. Miller wondered if there could be invertible functors between these
classes. If there is an invertible functor F from graphs to differentially closed fields,
then the authors show that the corresponding automorphism groups Aut(G) and
Aut(F(G)) would be isomorphic. Miller’s original idea was that, since there are
rigid graphs, one could show there was no such functor by showing that there are
no rigid differentially closed fields. While our construction shows that this idea
does not work, nevertheless, one can show there is no such functor by looking
at possible automorphism groups. It is easy to construct a countable graph with
an automorphism of order n > 2. But no differentially closed field can have an
automorphism of order n > 2. Suppose K is differentially closed and σ is an
automorphism of order n > 2. Let F be the fixed field of σ . Then K/F is an
algebraic extension of order n>2. By the Artin–Schreier theorem, this is impossible
for K algebraically closed.

Question 1. Is there a differentially closed field K where |Aut(K )| = 2? If so, is
the fixed field a model of CODF? More generally, if K is a real closed differential
field and K (i) is differentially closed, must K be a model of CODF?

Question 2. Are there rigid differentially closed fields of cardinality ℵ1?

The construction of such a model would require a new strategy. Perhaps it would
help to assume the set theoretic principle ♦? Or perhaps one could use the methods
of [19].
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