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We study convolution semigroups of invariant/finitely satisfiable Keisler measures
in NIP groups. We show that the ideal (Ellis) subgroups are always trivial
and describe minimal left ideals in the definably amenable case, demonstrating
that they always form a Bauer simplex. Under some assumptions, we give an
explicit construction of a minimal left ideal in the semigroup of measures from a
minimal left ideal in the corresponding semigroup of types (this includes the case
of SL2(R), which is not definably amenable). We also show that the canonical
pushforward map is a homomorphism from definable convolution on G to classical
convolution on the compact group G/G00, and use it to classify G00-invariant
idempotent measures.

1. Introduction

This paper is a continuation of [Chernikov and Gannon 2022], but with a focus
on NIP groups and the dynamical systems associated to the definable convolution
operation. It was demonstrated in [Chernikov and Gannon 2022] that when T is
an NIP theory expanding a group, G is a monster model of T , and G ≺ G, the
spaces of global Aut(G/G)-invariant Keisler measures and Keisler measures which
are finitely satisfiable in G (denoted by Minv

x (G,G) and Mfs
x (G,G), respectively)

form left-continuous compact Hausdorff semigroups under definable convolution ∗

(see Fact 2.29). Equivalently, the semigroup (Mfs
x (G,G), ∗) can be described as

the Ellis semigroup of the dynamical system given by the action of conv(G), the
convex hull of G in the space of global measures finitely satisfiable in G, on the
space of measures Mfs

x (G,G) (see [Chernikov and Gannon 2022, Theorem 6.10
and Remark 6.11]). The main purpose of this paper is to study the structure of
these semigroups, as well as to provide a description of idempotent measures via
type-definable subgroups in some cases.

In Section 2 we review some preliminaries and basic facts on convolution in
compact topological groups (Section 2A), model theory (Section 2B), Keisler
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measures (Section 2C), definable convolution in NIP groups (Section 2D), Ellis
semigroups (Section 2E) and Choquet theory (Section 2F).

In Section 3 we study the relationship between the semigroups Minv
x (G,G) and

Mfs
x (G,G) (under definable convolution) and the classical convolution semigroup

of regular Borel probability measures on the compact topological group G/G00. We
demonstrate that the pushforward along the quotient map is a surjective, continuous,
semigroup homomorphisms from definable convolution to classical convolution
on G/G00 (Theorem 3.10), mapping idempotent Keisler measures onto idempotent
Borel measures on G/G00 (Corollaries 3.11 and 3.12).

We have shown in [Chernikov and Gannon 2022, Theorem 5.8] that, by analogy
to the classical theorem of Kawada and Itô for compact groups (Fact 2.8), which
was later rediscovered by Wendel, there is a one-to-one correspondence between
idempotent measures on a stable group and its type-definable subgroups (namely,
every idempotent measure is the unique translation-invariant measure on its type-
definable stabilizer group). In NIP groups, this correspondence fails (Example 4.5),
but revised versions of this statement can be recovered in some cases. In particular,
using the results of Section 3, we demonstrate in Section 4 that a G00-invariant
idempotent measure in an NIP group G is a (not necessarily unique) invariant
measure on its type-definable stabilizer group. In future work, we examine further
cases of the classification of idempotent measures in NIP groups, including the
generically stable case.

In Section 5 we study the semigroups (Minv
x (G,G), ∗) and (Mfs

x (G,G), ∗) for
an NIP group G through the lens of Ellis theory. We demonstrate that the ideal
subgroups of any minimal left ideal (in either Mfs

x (G,G) or Minv
x (G,G)) are always

trivial (Proposition 5.10). This is due to the presence of the convex structure, in
contrast to the case of types in definably amenable NIP groups (where, due to
the proof of the Ellis group conjecture in [Chernikov and Simon 2018], the ideal
subgroups are isomorphic to G/G00). We also classify minimal left ideals in both
Mfs

x (G,G) and Minv
x (G,G)when G is definably amenable. In this case, any minimal

left ideal in Mfs
x (G,G) is also trivial (Proposition 5.16), while Minv

x (G,G) contains a
unique minimal left ideal (which is also two-sided). This unique ideal is precisely the
collection of measures in Minv

x (G,G) which are G-right-invariant (Proposition 5.18;
this is in contrast to minimal left ideals in Mfs

x (G,G) corresponding to G-left-
invariant measures). It is also a compact convex set, and moreover a Bauer simplex
(see Definition 2.38). In particular, the set of its extreme points is closed, and
consists precisely of the lifts µp of the Haar measure on G/G00 for p ∈ Sinv

x (G,G) an
f -generic type of G (Corollary 5.21). If the group G is fsg, this minimal ideal is also
trivial (Corollary 5.24). We also observe that if G is not definably amenable, then the
minimal left ideal of Mx(G,G) has infinitely many extreme points (Remark 5.26).
See Theorem 5.1 for a more precise summary of the results of the section.
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In Section 6 we isolate certain conditions on G, applicable in particular to some
nondefinably amenable groups, which allows us to describe a minimal left ideal
of M†

x(G,G) for † ∈ {fs, inv} in terms of a minimal ideal in the corresponding
semigroup of types. We prove the following two results. Suppose that I is a minimal
left ideal of S†

x (G,G) and u is an idempotent in I such that u ∗ I is a compact group
under the induced topology (we refer to this condition as CIG1; see Definition 6.5).
Then M(I ) ∗µu∗I is a minimal left ideal of M†

x(G,G), where µu∗I is the Keisler
measure corresponding to the normalized Haar measure on u∗ I and M(I ) is the set
of Keisler measures supported on I (Theorem 6.11). Under a stronger assumption,
CIG2, on G (see Definition 6.14), we show that a minimal left ideal of M†

x(G,G)
is affinely homeomorphic to a collection of regular Borel probability measures
over a natural quotient of I ; specifically, it is a Bauer simplex (Theorem 6.20). In
particular, SL2(R) falls into both of these categories (Example 6.23).

2. Preliminaries

Given r1, r2 ∈ R and ε ∈ R>0, we write r1 ≈ε r2 if |r1 − r2| < ε. For n ∈ N≥1,
[n] = {1, 2, . . . , n}.

2A. The classical setting. Before discussing the model-theoretic setting, we recall
some classical facts concerning compact Hausdorff spaces, measures, and compact
topological groups.

Fact 2.1. Let X, Y be compact Hausdorff spaces and f : X → Y .

(i) Let M(X) be the set of all regular Borel probability measures on X. Then
M(X) is a compact Hausdorff space under the weak-∗ topology, with the basic
open sets of the form

n⋂
i=1

{
µ ∈ M(X) : ri <

∫
X

fi dµ < si

}
for n ∈ N, ri < si ∈ R and fi : X → R continuous for i ∈ [n].

(ii) A net of measures (µi )i∈I in M(X) converges to a measure µ if and only if for
any continuous f : X → R,

lim
i∈I

∫
X

f dµi =

∫
X

f dµ.

(iii) A (Borel) measurable map f : X → Y induces the pushforward map

f∗ : M(X)→ M(Y )

given by f∗(µ)(A) = µ( f −1(A)) for any Borel subset A ⊆ Y . Then for any
Borel function h : Y → R such that h ∈ L1( f∗(µ)),∫

Y
h d f∗(µ)=

∫
X
(h ◦ f ) dµ.
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Moreover, the map f∗ is affine: for any r1, . . . , rn ∈ [0, 1] with
∑n

i=1 ri = 1
and µ1, . . . , µn ∈ M(X),

f∗

( n∑
i=1

riµi

)
=

n∑
i=1

ri f∗(µi ).

(iv) If f : X → Y is continuous, then f∗ : M(X) → M(Y ) is continuous. If
f : X → Y is also surjective, then f∗ is also surjective.

Remark 2.2. Let X be any compact Hausdorff space and let C(X) be the collection
of continuous functions from X to R. We consider C(X) as a normed vector space
with the ∥ · ∥∞ norm, i.e., ∥ f ∥∞ = supx∈X | f (x)|. The dual of C(X), denoted
by C(X)∗, is the space of all continuous linear functionals, i.e., maps from C(X)
to R which are continuous with respect to the norm topology on C(X). The
weak-∗ topology on C(X)∗ is the coarsest topology such that for any a ∈ X , the
map Ea : C(X)→ R given by Ea( f )= f (a) is continuous. We remark that M(X)
can be naturally viewed as a subset of C(X)∗ via µ 7→

∫
−dµ. The topology

induced from C(X)∗ on M(X) is both compact and Hausdorff. Moreover, M(X)
forms a convex subset of C(X)∗.

Convention 2.3. If f : X → R is a measurable function, we sometimes write∫
X f dµ simply as µ( f ).

Definition 2.4. Let X be a compact Hausdorff space and µ ∈ M(X). The support
of µ is supp(µ) := {a ∈ X : µ(U ) > 0 for any open neighborhood U of a}. Then
supp(µ) is a nonempty closed subset of X . We remark that µ(supp(µ))= 1.

By a compact group we mean a compact Hausdorff topological group where both
the multiplication −·− : G ×G → G and inverse −1

: G → G maps are continuous.

Definition 2.5. Let G be a compact group andµ, ν ∈M(G). Then their convolution
product1 µ⋆ν is the unique regular Borel measure on G such that for any continuous
function f : G → R,∫

G
f (z) d(µ ⋆ ν)(z)=

∫
G

∫
G

f (x · y) dµ(x) dν(y).

Equivalently, µ⋆ν is the unique regular Borel measure on G such that for any Borel
subset E of G,

µ⋆ ν(E)=

∫
G
µ(Ex−1) dν(x).

See, e.g., [Stromberg 1959] for a proof the this equivalence.

Remark 2.6. Let G be a compact group.

(1) If a, b ∈ G, then δa·b = δa ⋆ δb (where δa denotes the Dirac measure on a).

1To stay consistent with the notation in [Chernikov and Gannon 2022], we will use “∗” to denote
definable convolution (defined later in this section) and “⋆” to denote classical convolution.
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(2) The space M(G) is a compact topological semigroup under convolution. In
particular, the map ⋆ :M(G)×M(G)→M(G) is associative and continuous.

(3) The map δ : G → M(G), a 7→ δa is an embedding of topological semigroups.

Definition 2.7. Suppose that G is a compact group and λ ∈ M(G). We say that λ
is idempotent if λ ⋆ λ= λ.

The following theorem classifies idempotent measures on compact groups. The
first proof of this theorem is due to Kawada and Itô [1940, Theorem 3] and uses
representation theory of compact groups. This result was rediscovered a decade-
and-a-half later by Wendel [1954, Theorem 1] using semigroup theory.

Fact 2.8. Suppose G is a compact group and λ ∈ M(G). Then the following are
equivalent:

(1) λ is idempotent.

(2) supp(λ) is a closed subgroup of G and λ|supp(λ) is the normalized Haar measure
on supp(λ).

We are interested in which ways this theorem can be recovered for Keisler
measures on definable groups. However, finding subgroups of a monster model is
more difficult than directly applying this classification theorem since the support of
an idempotent Keisler measure is a collection of types and not a subgroup of the
model. Instead, we will also need to take into account a measure’s stabilizer. This
distinction does not arise in the compact group setting since the stabilizer of an
idempotent probability measure is the same as its support. We take a moment to be
precise about this statement.

Definition 2.9. Suppose G is a compact group and λ ∈ M(G). Its right stabilizer
is Stab(λ) := {a ∈ G : λ(B · a)= λ(B) for any Borel set B ⊆ G}.

Lemma 2.10. Let G be a compact group and λ ∈ M(G). If λ is idempotent, then
supp(λ)= Stab(λ).

Proof. Suppose a ∈ supp(λ). By Fact 2.8, supp(λ) is a closed subgroup of G and
λ|supp(λ) is the normalized Haar measure on supp(λ). Hence λ(C · a) = λ(C) for
any Borel subset C of supp(λ). Let X be a Borel subset of G. Then

λ(X ·a)= λ
(
(X ·a)∩ supp(λ)

)
= λ

(
(X ∩ supp(λ)) ·a

)
= λ(X ∩ supp(λ))= λ(X),

and hence a ∈ Stab(λ).
Conversely, suppose a ∈ Stab(λ), but a ̸∈ supp(λ). By Fact 2.8, this implies that

(supp(λ) · a)∩ supp(λ)= ∅. However λ(supp(λ))= 1 and also

λ(supp(λ) · a)= λ
(
supp(λ) · a ∩ supp(λ)

)
= λ(∅)= 0,

a contradiction. □
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Finally, we recall a couple of facts on integrating functions over compact groups.

Fact 2.11. Suppose that G is a compact group and H is a closed subgroup of G
with normalized Haar measure λH . Let h ∈ H , and let f : G → R be a Borel
function such that f |H ∈ L1(λH ), i.e., the restriction of f to H is integrable. Then∫

G
f (x) dλ(x)=

∫
G

f (x · h) dλ(x),

where λ is the measure on G defined by λ(X)= λH (X ∩ H).

The next fact appears hard to find explicitly stated in the literature, so we provide
a proof for completeness.

Lemma 2.12. Let G be a compact group and assume that f : G → R is continuous.
Let µ ∈ M(G). Then the map b 7→

∫
G f (x · b) dµ from G to R is continuous.

Proof. Define h : G →R via h(b)=
∫

G f (x ·b) dµ. We first show that for every ε>0
there exists an open neighborhood U of the identity e ∈ G such that for any b ∈ U ,
supx∈G | f (x)− f (x · b)|< ε. Fix ε > 0, and suppose the statement does not hold.
Then for every neighborhood U of e there exist some bU ∈ U and cU ∈ G such that
| f (cU )− f (cU ·bU )|≥ ε. Let N be the set of all open neighborhoods of e. Then N is
a directed set under reverse inclusion and (cU ·bU )U∈N is a net. Since G is compact,
we may pass to a convergent subnet N ′ of N so that (cU · bU )U∈N ′ converges.
Note also that still limU∈N ′ bU = e. Since the nets (cU · bU )U∈N ′ and (bU )U∈N ′

both converge and G is a topological group, the net (cU )U∈N ′ also converges. Let
c := limU∈N ′ cU . By continuity of f ,

lim
U∈N ′

f (cU )= f (c)= lim
U∈N ′

f (cU · bU ).

Then limU∈N ′ | f (cU )− f (cU · bU )| = 0, but | f (cU )− f (cU · bU )| ≥ ε for each
U ∈ N ′ by assumption, a contradiction.

We now show that h is continuous. Let (r, s) ⊆ R, g0 ∈ h−1((r, s)), and
ε := min{|h(g0)− r |, |h(g0)− s|}. By the paragraph above, there exists an open
neighborhood of the identity U such that supx∈G | f (x)− f (x · b)| < ε/2 for any
b ∈ U . We will show that the open set g0 ·U is a subset of h−1((r, s)) containing g0.
Note that g0 ∈ g0 ·U since e ∈ U . Now suppose that g1 ∈ g0 ·U , so that g1 = g0 ·b1

for some b1 ∈ U . Since, for any g ∈ G, the action k(x) 7→ k(x · g) of G on the
space C(G) of continuous functions from G to R preserves the uniform norm,
acting on the right by g0 derives supx∈G | f (x · g0)− f (x · g0 ·b1)|< ε/2. Therefore

h(g1)=

∫
G

f (x · g1) dµ=

∫
G

f (x · g0 · b1) dµ≈ε/2

∫
G

f (x · g0) dµ= h(g0).

Hence h(g1) ∈ (r, s) and thus g0 · U is an open subset of h−1((r, s)). Therefore
h−1((r, s)) is also open, and the map h is continuous. □
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2B. Model-theoretic setting. For the most part, our notation is standard. Let T be
a complete first-order theory in a language L and assume that U is a sufficiently
saturated and homogeneous model of T . While the rest of the paper is focused on
the setting where T expands the theory of a group, this section contains results about
arbitrary theories. We write x, y, z, . . . to denote arbitrary finite tuples of variables.
If x is a tuple of variables and A ⊆ U , then Lx(A) is the collection of formulas
with free variables in x and parameters from A, modulo logical equivalence. We
write Lx for Lx(∅). Given a partitioned formula ϕ(x; y) with object variables x
and parameter variables y, we let ϕ∗(y; x) := ϕ(x; y) be the partitioned formula
with the roles of x and y reversed.

As usual, Sx(A) denotes the space of types over A, and if A ⊆ B ⊆ U then
Sfs

x (B, A) (respectively, Sinv
x (B, A)) denotes the closed set of types in Sx(B) that

are finitely satisfiable in A (respectively, invariant over A). Throughout this paper,
we will want to discuss the spaces Sinv

x (B, A) and Sfs
x (B, A) simultaneously, so

we let S†
x (B, A) denote “either Sfs

x (B, A) or Sinv
x (B, A)”. If ϕ(x) ∈ Lx(U), then

[ϕ(x)] = {p ∈ Sx(U) : ϕ(x) ∈ p}. Given a set X ⊂ U x and A ⊆ U a small set of
parameters, we say that X is

∨
-definable over A (respectively,

∧
- or type-definable

over A) if for some {ψi (x)}i∈I with ψi (x) ∈ Lx(A) we have X =
⋃

i∈I ψi (U)
(respectively, X =

⋂
i∈I ψi (U)). And X is

∨
-definable (respectively, type-definable)

if it is
∨

-definable (respectively, type-definable) over A for some small A ⊆ U .

Definition 2.13. If X is a
∨

-definable subset of U x , we let [X ] :=
⋃

i∈I [ψi (x)]
where

∨
i∈I ψi (x) is any

∨
-definition of X . Likewise, if X is a type-definable

subset of U x , we let [X ] :=
⋂

i∈I [φ j (x)], where
∧

i∈I φ j (x) is any
∧

-definition
of X . Note that [X ] does not depend on the choice of the small set of formulas
defining X .

In the next fact, (1) follows by considering the preimages of half-open intervals,
and for a proof of (2) see, e.g., [Gannon 2019, Fact 2.10].

Fact 2.14. Let S be a topological space and f : S → R a function.

(1) Assume f is bounded and Borel. Then for every ε > 0 there exist r1, . . . , rn ∈ R

and Borel sets B1, . . . , Bn such that {Bi }
n
i=1 partition S and

sup
a∈S

∣∣∣∣ f (a)−
n∑

i=1

ri 1Bi (a)
∣∣∣∣< ε.

(2) Assume S is a Stone space and f is continuous. Then for every ε > 0 there
exists clopen sets C1, . . . ,Cn ⊆ S and r1, . . . , rn ∈ R such that

sup
a∈S

∣∣∣∣ f (a)−
n∑

i=1

ri 1Ci (a)
∣∣∣∣< ε.
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2C. Keisler measures. For any A ⊆ U , a Keisler measure over A in variables x
is a finitely additive probability measure on Lx(A). We denote the space of Keisler
measures over A (in variables x) as Mx(A). Every µ ∈ Mx(A) extends uniquely
to a regular Borel probability measure µ̃ on the space Sx(A), and we will routinely
use this correspondence. If A ⊆ B ⊆ U , then there is an obvious restriction
map r0 : Mx(B)→ Mx(A) and we denote r0(µ) simply as µ|A. Conversely, every
µ∈Mx(A) admits an extension to some µ′

∈Mx(B) (not necessarily a unique one).

Definition 2.15. Let B ⊆ U and µ ∈ Mx(U). We say that µ is

(1) invariant over B if for any formula ϕ(x, y) ∈ Lx,y(B) and elements a, b ∈ U y

such that a ≡B b we have µ(ϕ(x, b))= µ(ϕ(x, a));

(2) finitely satisfiable in B if for any formula ϕ(x)∈Lx(U) such that µ(ϕ(x)) > 0,
there exists some b ∈ B such that |H ϕ(b).

We let Mfs
x (U, B) (respectively, Minv

x (U, B)) denote the closed set of Keisler
measures in Mx(U) that are finitely satisfiable in B (respectively, invariant over B).

Just as with types, we let M†
x(U, B) mean “Mfs

x (U, B) or Minv
x (U, B)”. The

support of µ ∈ Mx(B) is the nonempty closed set of types

sup(µ)= {p ∈ Sx(B) : µ(ϕ(x)) > 0 for any ϕ(x) ∈ p}.

Given p̄ = (p1, . . . , pn) with pi ∈ Sx(A), we let Av( p̄) ∈ Mx(A) be defined by
Av( p̄)(ϕ(x)) := |{i ∈ [n] : ϕ(x) ∈ pi }|/n, and given ā = (a1, . . . , an) ∈ U x , we let
Av(ā) := Av

(
tp(a1/U), . . . , tp(an/U)

)
. We refer to, e.g., [Chernikov and Gannon

2022, Section 2] for a more detailed discussion of the aforementioned notions.

Definition 2.16. Let X ⊆ Sx(U). We let M(X) := {µ ∈ Mx(U) : sup(µ)⊆ X} be
the set of Keisler measures supported on X. If X is a closed subset of Sx(U), we let
M(X) denote the set of regular Borel probability measures on X, with the topology
on X induced from Sx(U). When we consider M(X) as a topological space, we
will always consider it with the weak-∗ topology.

The space of Keisler measures Mx(A) is a (closed convex) subset of a real
locally convex topological vector space of bounded charges on Lx(A) (see, e.g.,
[Bhaskara Rao and Bhaskara Rao 1983] for the details).

Lemma 2.17. Assume that X is a closed subset of Sx(U). Then M(X) is a closed
convex subset of Mx(U).
Proof. Suppose M(X) is not closed. Then limi∈I µi = µ for some µ ̸∈ M(X)

and some net (µi )i∈I with µi ∈ M(X). Then there exists a type p ∈ sup(µ) \ X.
Since X is closed, the set U := Sx(U)\X is open. Hence U =

⋃
j∈J [ϕ j (x)] for

some set of formulas {ϕ j } j∈J and there is some j ∈ J such that ϕ j (x) ∈ p. Then
[ϕ j (x)] ∩ X = ∅ and µ(ϕ j (x)) > 0 (since p ∈ sup(µ)). Thus limi∈I µi (ϕ j (x)) =

limi∈I 0 = 0< µ(ϕ j (x)), a contradiction.
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The space M(X) is convex since if r, s ∈ R>0 with r + s = 1, and µ, ν ∈ M(X),
then sup(rµ+ sν)= sup(µ)∪ sup(ν)⊆ X. □

In the later sections, we will need to discuss maps from the space of Keisler
measures to other spaces of measures. The following definition is an appropriate
notion of an isomorphism in this context (and will be denoted by ∼=).

Definition 2.18. Let V1, V2 be two locally convex topological vector spaces. Sup-
pose that C1 and C2 are closed convex subsets of V1 and V2, respectively. A map
f : C1 → C2 is an affine homeomorphism if f is a homeomorphism from C1 to C2

(with the induced topologies) and for any a1, . . . , an ∈ C1 and r1, . . . , rn ∈ R≥0

with
∑n

i=1 ri = 1 we have

f
( n∑

i=1

ri ai

)
=

n∑
i=1

ri f (ai ).

Definition 2.19. Let A be a subset of a locally convex topological vector space, V ,
and let b ∈ V . We say that b is extreme in A (or an extreme point of A) if b ∈ A
and b cannot be written as rc1+(1−r)c2 for c1, c2 ∈ A where c1 ̸= c2 and r ∈ (0, 1).
We let ex(A) := {c ∈ A : c is extreme in A}.

Fact 2.20 (Krein–Milman theorem). Let A be a convex compact subset of a locally
convex topological vector space V . Then the convex hull of ex(A) is a dense subset
of A.

Proposition 2.21. Let X ⊆ Sx(U) be a closed set. Then there exists an affine
homeomorphism γ :M(X)→M(X) such that for any ϕ(x)∈Lx(U) and µ∈M(X),

µ(ϕ(x))= γ (µ)([ϕ(x)] ∩ X).

Moreover, sup(µ)= supp(γ (µ)).

Proof. This follows directly from the fact that every Keisler measure µ in Mx(U)
extends uniquely to a regular Borel probability measure µ̃ on Sx(U). We let
γ (µ) := µ̃ ↾X, i.e., the restriction of the measure µ̃ to the collection of Borel subsets
of X. See, e.g., [Simon 2015, page 99] for the details. □

For a proof of the following fact, see [Chernikov and Gannon 2022, Lemma
2.10].

Fact 2.22. (1) µ ∈ Mfs
x (U,M) if and only if p ∈ Sfs

x (U,M) for all p ∈ sup(µ).

(2) (T is NIP) µ∈Minv
x (U,M) if and only if p ∈ Sinv

x (U,M) for every p ∈ sup(µ).

Combining Proposition 2.21 and Fact 2.22 we have the following.

Corollary 2.23. (1) If T is any theory, then Mfs
x (U,M) = M(Sfs

x (U,M)) ∼=

M(Sfs
x (U,M)).

(2) If T is NIP, then Minv
x (U,M)= M(Sinv

x (U,M))∼= M(Sinv
x (U,M)).
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Remark 2.24. It is not true that M(Sinv
x (U,M)) = Minv

x (U,M) in an arbitrary
theory; see [Chernikov and Gannon 2022, Lemma 2.10(4)].

Lemma 2.25. For any µ∈Mx(U), there exists a net of measures (ν j ) j∈J in Mx(U)
such that

(1) for each j ∈ J , ν j = Av( p̄ j ) for some p̄ j = (p j1, . . . , p jm ) with p ji ∈ sup(µ);

(2) lim j∈J ν j = µ.

Moreover, if µ is finitely satisfiable in M ⪯ U , then we can take ν j of the form
Av(ā j ) for some ā j ∈ (M x)<ω.

Proof. Consider a basic open subset O of Mx(U), of the form

O =

n⋂
i=1

{ν ∈ Mx(U) : ri < ν(θi (x)) < si }.

Suppose that µ ∈ O . Let B be the (finite) Boolean algebra generated by the
sets {θ1(x), . . . , θn(x)}, and let {σ1(x), . . . , σm(x)} be the set of its atoms. For
each atom σi (x) such that µ(σi (x)) > 0, there exists some pi ∈ sup(µ) such that
σi (x) ∈ pi . Consider the measure

λ :=

∑
{i∈[n]:µ(σi (x))>0}

µ(σi (x))δpi .

Then λ(θi (x)) = µ(θi (x)) for every i ∈ [n], and hence λ ∈ O . We can choose a
sufficiently large t ∈ N and si ∈ N so that si/t is sufficiently close to µ(σi (x)), so
that νO :=

∑
{i∈[n]:µ(σi (x))>0}

(si/t)δpi ∈ O (taking p̄O to be the tuple of types of
length t with pi repeated si times, we see that νO = Av( p̄O)). Then we can take
the net (νO)µ∈O .

And if µ is finitely satisfiable in M and µ(σi (x)) > 0, then |H σi (ai ) for some
ai ∈ M x , and we can take pi := tp(ai/U) (see [Chernikov and Gannon 2022,
Proposition 2.11]). □

2D. Definable convolution in NIP groups. In this section, we assume that T is an
L-theory expanding a group, we denote by G a sufficiently saturated model of T
and by G a small elementary submodel; x, y, . . . denote singleton variables; and
for any ϕ(x) ∈ Lx(G), we let ϕ′(x, y) := ϕ(x · y).

Definition 2.26 (T is NIP). Suppose that µ, ν ∈ Minv
x (G,G). Then we define

µ ∗ ν to be the unique Keisler measure in Minv
x (G,G) such that for any formula

ϕ(x) ∈ Lx(G),

µ ∗ ν(ϕ(x))= µx ⊗ νy(ϕ(x · y))=

∫
Sy(G ′)

Fϕ
′

µ,G ′ d(νG ′),

where G ′ is a small model containing G and all parameters from ϕ, the map Fϕ
′

µ,G ′ :

Sy(G ′)→ [0, 1] is given by Fϕ
′

µ,G ′(q) = µ(ϕ(x · b)) for some (equivalently, any)
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b ∈ G with b |H q, and νG ′ is the regular Borel probability measure on Sy(G ′)

corresponding to the Keisler measure ν|G ′ . We will routinely suppress notation and
write this integral as

∫
Sy(G ′)

Fϕ
′

µ dν.

Remark 2.27. This integral is well defined since invariant measures in NIP are
Borel-definable, so the maps which are being integrated are measurable, and does
not depend on the choice of G ′. For more details about definable convolution and its
basic properties we refer the reader to [Chernikov and Gannon 2022, Section 3.2].
In particular, we will freely use [Chernikov and Gannon 2022, Proposition 3.14].

The following is well known; see, e.g., [Chernikov and Gannon 2022, Fact 3.11].

Fact 2.28. Both (Sinv
x (G,G), ∗) and (Sfs

x (G,G), ∗) are left continuous (i.e., p 7→

p ∗ q is a continuous map for every q) compact Hausdorff semigroups.

The next fact is from [Chernikov and Gannon 2022, Propositions 6.2(3) and 6.4].

Fact 2.29 (T is NIP). Both (Minv
x (G,G), ∗) and (Mfs

x (G,G), ∗) are left continuous
(i.e., µ 7→ µ ∗ ν is a continuous map for every ν) compact Hausdorff semigroups.

Moreover, for any fixed ν and ϕ(x)∈Lx(G), the map µ 7→ (µ∗ν)(ϕ(x))∈ [0, 1]

is continuous.

We also have right continuity when multiplying by a definable measure (but not
in general).

Lemma 2.30. If ν ∈ Minv
x (G,G) is a definable measure, then the map µ 7→ ν ∗µ

from Minv
x (G,G) to Minv

x (G,G) is continuous.

Proof. Let O be a basic open subset of Minv
x (G,G), that is,

O =

n⋂
i=1

{µ ∈ Minv
x (G,G) : ri < µ(ϕi (x)) < si }

for some ri , si ∈ R and ϕi (x) ∈ Lx(G). We have

(ν ∗ −)−1(O)=

n⋂
i=1

{µ ∈ Minv
x (G,G) : ri < (ν ∗µ)(ϕi (x)) < si }

=

n⋂
i=1

{µ ∈ Minv
x (G,G) : ri < (νz ⊗µx)(ϕi (z · x)) < si }

=

n⋂
i=1

((
(νz ⊗ −)(ϕi (z · x))

)−1
(ri , si )

)
,

where νz is simply νx with change of variables to z and (ri , si ) is an open subinterval
of [0, 1]. By, e.g., [Conant et al. 2021, Lemma 5.4], the map µx ∈ Mx(G) 7→

(νz ⊗µx)(ϕi (z · x)) ∈ [0, 1] is continuous, so its restriction to Minv
x (G,G) remains

continuous. Thus O is open, as the intersection of finitely many open sets. □
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Definition 2.31. A measure µ ∈ Minv
x (G,G) is idempotent if µ ∗µ= µ.

The following simple observation will be frequently used in computations.

Fact 2.32. Let µ ∈ Minv
x (G,G) and f : Sx(G)→ R be a bounded Borel function.

Let r : Sx(G)→ Sx(G), p 7→ p|G be the restriction map. Then∫
Sx (G)

f dµG =

∫
Sx (G)

( f ◦ r) dµ.

2E. Some facts from Ellis semigroup theory.

Definition 2.33. Suppose that (X, ∗) is a semigroup. A nonempty subset I of X is
a left ideal if X I = {x ∗ i : x ∈ X, i ∈ I } ⊆ I . We say that I is a minimal left ideal
if I does not properly contain any other left ideal.

The next fact summarizes the results that we will need from the theory of Ellis
semigroups. See [Ellis et al. 2001, Proposition 4.2; Glasner 2007, Proposition 2.4].

Fact 2.34. Suppose that X is a compact Hausdorff space and (X, ∗) is a left
continuous semigroup, i.e., for each q ∈ X , the map − ∗ q : X → X is continuous.
Then there exists a minimal left ideal I , and any minimal left ideal is closed. We let
id(I )= {u ∈ I : u2

= u} be the set of idempotents in I .

(1) id(I ) is nonempty.

(2) For every p ∈ I and u ∈ id(I ), p ∗ u = p.

(3) For every u ∈ id(I ), u ∗ I = {u ∗ p : p ∈ I } = {p ∈ I : u ∗ p = p} is a subgroup
of I with identity element u. For every u′

∈ id(I ), the map ρu,u′ := (u′
∗−)|u∗I

is a group isomorphism from u ∗ I to u′
∗ I . In view of this, we refer to u ∗ I as

the ideal group.

(4) I =
⋃

{u ∗ I : u ∈ id(I )}, where the sets in the union are pairwise disjoint, and
each set u · I is a subgroup of I with identity u.

(5) For any q ∈ X , I ∗ q is a minimal left ideal; and if p ∈ I , then X ∗ p = I .

(6) Let J be another minimal left ideal of X and u ∈ id(I ). Then there exists
a unique idempotent u′

∈ id(J ) such that u ∗ u′
= u′ and u′

∗ u = u. The
map ρI,J := (− ∗ u′)|I is a homeomorphism from I to J (with the induced
topologies) mapping u ∗ I to u′

∗ J .

The following is a celebrated theorem of Ellis [1957, Theorems 1 and 2] (see
also [Lawson 1974, Corollary 5.2]).

Fact 2.35 (Ellis joint continuity theorem). (1) Let G be a locally compact Haus-
dorff semitopological group (i.e., G is equipped with a group structure such
that the maps x 7→ y · x and x 7→ x · y from G into G are continuous for any
fixed y ∈ G), and let X be a locally compact Hausdorff topological space.
Then every separately continuous action of G on X is (jointly) continuous.



DEFINABLE CONVOLUTION AND IDEMPOTENT KEISLER MEASURES, II 197

(2) If G is a locally compact Hausdorff semitopological group, then G is a topo-
logical group.

2F. Some facts from Choquet theory. We recall some notions and facts from
Choquet theory for not necessarily metrizable compact Hausdorff spaces (we use
[Phelps 2001] as a general reference). Let E be a locally convex real topological
vector space. The following generalizes the usual notion of a simplex in Rn to the
infinite-dimensional context.

Definition 2.36 [Phelps 2001, Section 10]. (1) A set P ⊆ E is a convex cone if
P + P ⊆ P and λP ⊆ P for every scalar λ > 0 in R.

(2) A set X ⊆ P is the base of a convex cone P if for every y ∈ P there exists a
unique scalar λ ≥ 0 in R and x ∈ X such that y = λx (not all convex cones
have a base).

(3) A convex cone P in E induces a translation-invariant partial ordering on E :
x ≥ y if and only if x − y ∈ P . When P admits a base, P ∩ (−P)= {0}, and
hence x ≥ y ∧ y ≥ x =⇒ x = y.

(4) A nonempty compact convex set X ⊆ E is a Choquet simplex, or just simplex,
if X is the base of a convex cone P ⊆ E such that P is a lattice with respect to
the ordering induced by P . That is, for every x, y ∈ P there exists a greatest
lower bound z ∈ P (i.e., z ≤ x and z ≤ y, and for every z′

∈ P with z′
≤ x

and z′
≤ y, z′

≤ z). The greatest lower bound z of x and y is unique and
denoted by x ∧ y.

We could not find a direct quote for the following fact, so we provide a short
argument combining several standard results in the literature.

Fact 2.37. Let S be a compact Hausdorff space and T a family of continuous func-
tions from S into S. Then the set of all regular T -invariant (that is, µ(T −1(A))=

µ(A) for every Borel A ⊆ S and T ∈ T ) Borel probability measures on S, denoted
by MT (S), is a Choquet simplex (assuming it is nonempty).

Proof. By the Riesz representation theorem, we can view the set M+(S) of all
regular Borel nonnegative finite measures on S as a subset of C(S)∗, the dual (real
topological vector) space of the topological vector space of continuous functions
on S, with the weak-∗ topology. Let MT (S) (respectively, M+

T (S)) be the set of
regular Borel T -invariant probability (respectively, finite nonnegative) measures
on S. Then MT (S) ⊆ M+

T (S) ⊆ M+(S) are compact convex subsets (by Borel
measurability of the maps in T ; see [Phelps 2001, page 76]). Moreover, M+

T (S) is
a convex cone with the base MT (S). It is well known that M+(S) forms a lattice:
for µ, ν ∈ M+(S), their greatest lower bound µ∧ ν ∈ M+(S) can be defined via
(µ∧ν)(A)= infB∈S,B⊆A{µ(B)+ν(A\ B)} (see, e.g., [Dales et al. 2016, page 111];
it is easy to verify from this definition that if µ, ν are regular, then µ∧ ν is also
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regular). Finally, [Phelps 2001, Proposition 12.3] shows that if µ, ν ∈ M+(S) are
T -invariant, then µ∧ ν is also T -invariant (using an equivalent definition of the
lower bound in terms of the Radon–Nikodym derivative). Hence M+

T (S) is a lattice,
and so MT (S) is a Choquet simplex. □

Definition 2.38 (see [Phelps 2001, Section 11] or [Alfsen 1971, Chapter 2, §4]). A
compact convex set X ⊆ E is a Bauer simplex if X is a Choquet simplex and ex(X)
is closed.

Definition 2.39. A point x ∈ E is the barycenter of a regular Borel probability
measure µ on X if f (x) = µ( f ) :=

∫
X f dµ for any continuous linear function

f : E → R.

Remark 2.40. Both the property of being a Choquet simplex and the property
of being a Bauer simplex are preserved under affine homeomorphisms (see, e.g.,
[Phelps 2001, pages 52–53]).

Fact 2.41. (1) [Phelps 2001, Proposition 11.1] X is a Bauer simplex if and only
if the map sending a regular Borel probability measure µ on ex(X) (the
closure of the extreme points) to its barycenter is an affine homeomorphism of
M(ex(X)) and X (and thus a posteriori of M(ex(X)) and X ).

(2) [Alfsen 1971, Corollary II.4.4] Up to affine homeomorphisms, Bauer simplices
are exactly the sets of the form M(X) for X a compact Hausdorff space (where
ex(M(X))= {δx : x ∈ X}).

3. Definable convolution on G and convolution on G/G00

Throughout the rest of the paper, T is a complete NIP theory expanding a group, G
is a monster model of T , G is a small elementary submodel of G, x, y, . . . denote
singleton variables, and for any ϕ(x) ∈ Lx(G), ϕ′(x, y) = ϕ(x · y). We define
and study a natural pushforward map from Mx(G) to M(G/G00). We demonstrate
that this map is a homomorphism from the semigroup (Minv

x (G,G), ∗) of invariant
Keisler measures with definable convolution onto the semigroup (M(G/G00), ⋆)

of regular Borel probability measures on the compact group G/G00 with classical
convolution. In particular, the image of an idempotent, invariant Keisler measure
on G is an idempotent measure on the compact group G/G00. The proofs of these
theorems are primarily analytic, and the NIP assumption is used to ensure that G00

exists and definable convolution is well defined. We begin by recalling some
properties of G/G00 and define the corresponding pushforward map.

Fact 3.1. Suppose that T is NIP.

(i) There exists a smallest type-definable subgroup of G of bounded index, denoted
by G00. Moreover, G00 is a normal subgroup of G type-definable over ∅. Let
π : G → G/G00 be the quotient map, i.e., π(a)= aG00.
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(ii) G/G00 is a compact group with the logic topology: a subset B of G/G00 is
closed if and only if π−1(B) is type-definable over some/any small submodel
of G.

(iii) The map π : G → G/G00 induces a continuous map π̂ : Sx(G) → G/G00 via
π̂(q) := π(a), where a |H q|G and G is some/any elementary submodel of G.
Therefore, we can consider the pushforward π̂∗ : M(Sx(G)) → M(G/G00).
By Proposition 2.21, Mx(G) is affinely homeomorphic to M(Sx(G)) and so
(formally) we let π∗ : Mx(G) → M(G/G00) be the composition of π̂∗ and
this homeomorphism. We will primarily work with π∗, and usually identify
π̂∗ and π∗ without comment.

(iv) The map π∗ : Mx(G)→ M(G/G00) is continuous, affine, and surjective.

Proof. (i) This is a theorem of Shelah [2008].

(ii) This is from [Pillay 2004] (see also [Simon 2015, Section 8]).

(iii) First, π̂ is well defined. Indeed, let G1,G2 ≺G be small elementary submodels
and q ∈ Sx(G) be such that ai |Hq|Gi for i ∈{1, 2}. It suffices to show π(a1)=π(a2).
Let U be an open subset of G/G00 such that π(a1) ∈ U , and we show that then
also π(a2) ∈ U . Since U is open, π−1(U ) is

∨
-definable over both G1 and G2.

Let
∨

j∈Ii
ψ i

j (x) be a definition of π−1(U ) over Gi . Hence there is some j1 ∈ I1

such that U |H ψ j1(a1), so ψ j1(x) ∈ q. As
⋃

j∈I1
[ψ1

j (x)] =
⋃

j∈I2
[ψ2

j (x)] (see
Definition 2.13), there exists some j2 ∈ I2 so that ψ j2(x) ∈ q . Now

a2 ∈ ψ2
j2(U)⊆

⋃
j∈I2

ψ2
j (U)= π−1(U )=⇒ π(a2) ∈ U.

Since G/G00 is Hausdorff and π(a1) and π(a2) are in the same open sets, we
conclude that π(a1)= π(a2).

By the previous paragraph, π̂ = f ◦ rG , where G is any small submodel, the
map rG : Sx(G)→ Sx(G) is the restriction map, and f : Sx(G)→ G/G00 is defined
via f (q)= π(a), where a |H q . Both f and rG are continuous maps and so π̂ is a
continuous map (the map f is continuous by (ii)).

(iv) This is by Fact 2.1(iii),(iv) and Proposition 2.21. □

Definition 3.2. We let π fs
G,∗ := π∗ ↾Mfs

x (G,G) and π inv
G,∗ := π∗ ↾Minv

x (G,G). We will
typically write π inv

G,∗ simply as π inv
∗

when G is clear from the context, and π†
∗

to
mean “either π inv

∗
or π fs

∗
”.

Remark 3.3. Both π inv
∗

and π fs
∗

are continuous and affine since these maps are
restrictions of π∗ to a closed convex subspace.

Proposition 3.4. The map π†
∗

: M†
x(G,G)→ M(G/G00) is surjective.

Proof. Since Mfs
x (G,G)⊆Minv

x (G,G), it suffices to show that π fs
∗

is surjective. Fix
ν ∈ M(G/G00). By the Krein–Milman theorem, the convex hull of the extreme
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points of M(G/G00) is dense inside M(G/G00). The extreme points of M(G/G00)

are the Dirac measures concentrating on the elements of G/G00 (see, e.g., [Simon
2011, Example 8.16]). Thus there exists a net (νi )i∈I of measures in M(G/G00)

such that limi∈I νi = ν and for each i ∈ I , νi =
∑ni

j=1 r i
jδbi

j
for some ni ∈ N,

bi
j ∈ G/G00 and r i

j ∈ R>0 with
∑ni

j=1 r i
j = 1. Since the map π is surjective, for

each bi
j there exists some ai

j ∈ G such that π(ai
j ) = bi

j . Let pi
j ∈ Sfs

x (G,G) be
a global coheir of tp(ai

j/G), and let µi :=
∑ni

j=1 r i
jδpi

j
. Then π∗(µi ) = νi . Now

(µi )i∈I is a net in the compact space Mfs
x (G,G), so, passing to a subnet, we may

assume that it converges and let µ := limi∈I µi . Then

π∗(µ)= π∗(lim
i∈I
µi )= lim

i∈I
π∗(µi )= lim

i∈I
νi = ν,

where the second equality follows from continuity of π∗. Hence π fs
∗

is surjective. □

Lemma 3.5. Let p, q ∈ Sinv
x (G,G). Then

(i) π̂(p) · π̂(q)= π̂(p ∗ q),

(ii) π∗(δp)= δπ̂(p),

(iii) π∗(δp ∗ δq)= π∗(δp) ⋆ π∗(δq).

Proof. (i) Let b |H q|G and a |H p|Gb. By definition (a · b) |H p ∗ q|G , and hence

π̂(p ∗ q)= π(a · b)= π(a) ·π(b)= π̂(p) · π̂(q).

(ii) Let f : G/G00
→ R be a continuous function. Then

π∗(δp)( f )=

∫
( f ◦ π̂) dδp = f (π̂(p))=

∫
f dδπ̂(p) = δπ̂(p)( f ).

Since π∗(δp) and δπ̂(p) agree on all continuous functions, by Fact 2.1(i) they belong
to the same open sets in a Hausdorff space, so π∗(δp)= δπ̂(p).

(iii) We have

π∗(δp ∗ δq)= π∗(δp∗q)= δπ̂(p∗q) = δπ̂(p)·π̂(q) = δπ̂(p) ⋆ δπ̂(q).

Here the first equality follows from [Chernikov and Gannon 2022, Proposition
3.12], the second and third equalities follow from (ii) and (i) respectively, and the
last equality is by Remark 2.6. □

To show that π inv
∗

is a homomorphism, we first observe some basic properties
of the action of G on its space of types and, in turn, on the space of continuous
functions from Sx(G) to R.

Definition 3.6. Let G be a model of T . For a ∈ G and p ∈ Sx(G), let p · a :=

{ϕ(x · a−1) : ϕ(x) ∈ p} ∈ Sx(G) and a · p = {ϕ(a−1
· x) : ϕ(x) ∈ p} ∈ Sx(G). This

defines a right (respectively, left) action of G on Sx(G) by homeomorphisms.
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Lemma 3.7. For any a ∈ G and q ∈ Sx(G) we have π(a) · π̂(p) = π̂(a · p) and
π̂(p) ·π(a)= π̂(p · a).

Proof. We notice that

π̂(p) ·π(a)= π̂(p) · π̂(tp(a/G))= π̂(p ∗ tp(a/G))= π̂(p · a),

where the second equality is by Lemma 3.5(i). The other computation is similar. □

Lemma 3.8. Let G be any model of T . Let h : Sx(G)→ R be a function, {[ψi ]}i∈[n]

a partition of Sx(G) with ψi ∈ Lx(G), ε ∈ R>0 and r1, . . . , rn ∈ R such that
supq∈Sx (G)

∣∣h(q)−∑n
i=1 ri 1[ψi ](q)

∣∣<ε. For a ∈ G, we define the functions h·a, a·h :

Sx(G)→ R via (h · a)(p)= h(p · a) and (a · h)(p)= h(a · p). Then

sup
q∈Sx (G)

∣∣∣∣(h · a)(q)−
n∑

i=1

ri 1[ψi (x ·a)](q)
∣∣∣∣< ε,

sup
q∈Sx (G)

∣∣∣∣(a · h)(q)−
n∑

i=1

ri 1[ψi (a·x)](q)
∣∣∣∣< ε.

In particular, if h is continuous, then h · a and a · h are both continuous maps from
Sx(G) to R (as uniform limits of continuous functions, using in item (2) of Fact 2.14).

Proof. We only prove the lemma for h · a (the case of a · h is similar). Assume the
conclusion fails. Then there exists some q ∈ Sx(G) such that∣∣∣∣(h · a)(q)−

n∑
i=1

ri 1[ψi (x ·a)](q)
∣∣∣∣> ε.

Since {[ψi (x)]}i∈[n] is a partition, so is {[ψi (x · a)]}i∈[n]. For precisely one k ∈ [n],
we have that ψk(x ·a)∈q and

∑n
i=1 ri 1[ψi (x ·a)](q)= rk . So ψk(x ·a−1

·a)∈q ·a, and
thus ψk(x)∈ q ·a. Since {[ψi (x)]}i∈[n] forms a partition,

∑n
i=1 ri 1[ψi (x)](q ·a)= rk .

Then ε >
∣∣h(q ·a)−

∑n
i=1 ri 1[ψi (x)](q ·a)

∣∣ = |(h ·a)(q)− rk |> ε by assumption, a
contradiction. □

Remark 3.9. The previous lemma follows also from the more general observation
that both the left and right action of G on (RSx (G), ∥ · ∥∞) are by isometries, where
RSx (G) is the space of all functions from Sx(G) to R with the uniform norm.

Theorem 3.10. Suppose µ, ν ∈ Minv
x (G,G). Then π∗(µ ∗ ν)= π∗(µ) ⋆ π∗(ν).

Proof. It suffices to show that for any continuous function f : G/G00
→ R we

have π∗(µ ∗ ν)( f ) = π∗(µ) ⋆ π∗(ν)( f ). Fix a continuous f : G/G00
→ R. Let

r : Sx(G) → Sx(G), p 7→ p|G be the restriction map. Fix ε > 0. Then f ◦ π̂

is a continuous function from Sx(G) to R (which factors through Sx(G)), so by
Fact 2.14(2) there exists a partition {[ψi (x)]}i∈[n] of Sx(G) with ψi (x) ∈ Lx(G)
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and r1, . . . , rn ∈ R such that

sup
p∈Sx (G)

∣∣∣∣( f ◦ π̂)(p)−
n∑

i=1

ri 1[ψi (x)](p)
∣∣∣∣< ε.

We now have the following computation for π∗(µ ∗ ν)( f ):

π∗(µ ∗ ν)( f )=

∫
G/G00

f dπ∗(µ ∗ ν)=

∫
Sx (G)

( f ◦ π̂) d(µ ∗ ν)

≈ε

∫
Sx (G)

( n∑
i=1

ri 1[ψi (x)]

)
d(µ ∗ ν)=

n∑
i=1

ri
(
(µ ∗ ν)(ψi (x))

)
=

n∑
i=1

ri
(
(µx ⊗ νy)(ψi (x · y)

)
=

n∑
i=1

ri

∫
Sy(G)

F
ψ ′

i
µ,G d(νG)

(∗)
=

n∑
i=1

ri

∫
Sy(G)

(F
ψ ′

i
µ,G ◦ r) dν =

∫
Sy(G)

(( n∑
i=1

ri F
ψ ′

i
µ,G

)
◦ r

)
dν.

The equality (∗) is justified by Fact 2.32.
Next we will show that the convolution product (π∗(µ)⋆π∗(ν))( f ) in M(G/G00)

is close to the final term in the above computation. Define h : G/G00
→ R via

h(a) =
∫
G/G00 f (x · a) dπ∗(µ). By Lemma 2.12, h is continuous. Fix p ∈ Sy(G)

and let b := π̂(p) ∈ G/G00 and b |H r(p) ∈ G. By definition, π̂(p)= π(b)= b. By
Lemmas 3.5 and 3.8, we have the following computation:

(h ◦ π̂)(p)= h(b)

=

∫
G/G00

f (x · b) dπ∗(µ)=

∫
q∈Sx (G)

f (π̂(q) · b) dµ

=

∫
q∈Sx (G)

f (π̂(q) ·π(b)) dµ=

∫
q∈Sx (G)

f (π̂(q · b)) dµ=

∫
Sx (G)

(( f ◦ π̂) · b) dµ

≈ε

∫
Sx (G)

n∑
i=1

ri 1[ψi (x ·b)] dµ=

n∑
i=1

riµ(ψi (x · b))=

(( n∑
i=1

ri F
ψ ′

i
µ,G

)
◦ r

)
(p).

Since p was arbitrary in Sy(G), we conclude that

sup
p∈Sy(G)

∣∣∣∣(h ◦ π̂)(p)−
(( n∑

i=1

ri Fψ
′

µ,G

)
◦ r

)
(p)

∣∣∣∣< ε.
Therefore,

(π∗(µ) ⋆ π∗(ν))( f )=

∫
G/G00

h dπ∗(ν)=

∫
Sy(G)

(h ◦ π̂) dν

≈ε

∫
Sy(G)

(( n∑
i=1

ri Fψ
′

µ,G

)
◦ r

)
dν ≈ε π∗(µ ∗ ν)( f ).

Since ε was arbitrary, we conclude that π∗(µ ∗ ν)( f )= (π∗(µ) ⋆ π∗(ν))( f ). □
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Corollary 3.11. If µ ∈ Minv
x (G,G) and µ is idempotent, then π∗(µ) is an idempo-

tent measure on G/G00.

Proof. By Theorem 3.10 we have π∗(µ) ⋆ π∗(µ)= π∗(µ ∗µ)= π∗(µ). □

Corollary 3.12. Let λ ∈ M(G/G00) and assume that λ is idempotent. Then there
exists a measure ν ∈ Mfs

x (G,G) such that π∗(ν)= λ and ν is idempotent.

Proof. By Proposition 3.4, the set A := {η ∈ Mfs
x (G,G) : π∗(η)= λ} is nonempty.

Since π∗ is continuous by Fact 3.1(iv), A is a closed subset of Mfs
x (G,G). And for

any η1, η2 ∈ A we have η1 ∗ η2 ∈ A, as π∗(η1 ∗ η2)= π∗(η1) ⋆ π∗(η2)= λ ⋆ λ= λ

by Theorem 3.10. Hence (A, ∗) is a compact left-continuous semigroup (using
Fact 2.29). By Fact 2.34, (A, ∗) contains an idempotent. □

4. G00-invariant idempotent measures and type-definable subgroups

In this section we use the properties of the pushforward map established in Section 3
to prove that if µ is idempotent, G00-right-invariant, and automorphism-invariant
over a small model, then µ is a translation-invariant measure on its type-definable
stabilizer subgroup of G.

Definition 4.1. (1) Let µ ∈ Mx(G). The right stabilizer of µ, denoted as Stab(µ),
is the subgroup of G defined by

Stab(µ) :=

⋂
ϕ∈Lx (G)

{g ∈ G : µ(ϕ(x))= µ(ϕ(x · g))}.

(2) Let H be a subgroup of G (not necessarily definable). We say that µ ∈ Mx(G)
is H-right-invariant (respectively, H-left-invariant) if for every formula ϕ(x)∈
Lx(G) and h ∈ H we have µ(ϕ(x · h))= µ(ϕ(x))

(
respectively, µ(ϕ(h · x))=

µ(ϕ(x))
)
. We say that µ is H-invariant if µ is both H-left-invariant and

H-right-invariant.

(3) Let H be a type-definable subgroup of G. We say that H is definably amenable
if there exists some µ ∈ Mx(G) such that µ̃([H])= 1 (where µ̃ is the unique
regular Borel probability measure extending µ) and µ is H-right-invariant.
Moreover, in this case we say that (H, µ) is an amenable pair.

The next proposition shows that if a Keisler measure witnesses the definable
amenability of some type-definable subgroup of G, then this subgroup must be its
stabilizer:

Proposition 4.2. Suppose that µ ∈Mx(G) and H is a type-definable subgroup of G.
Suppose that µ̃([H])= 1 and H ⊆ Stab(µ). Then H = Stab(µ).

Proof. Suppose H ̸= Stab(µ), and let g ∈ Stab(µ)\H. The subsets [H] and [H] · g
of Sx(G) are disjoint and µ̃([H] ∪ ([H] · g)) = 2, where µ̃ is the unique regular
Borel probability measure extending µ to Sx(G). This is a contradiction. □
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Definition 4.3. An idempotent measure µ ∈ Minv
x (G,G) is said to be pairless

if there does not exist a type-definable subgroup H of G such that (H, µ) is an
amenable pair.

Remark 4.4. By Proposition 4.2, if Stab(µ) is type-definable, then µ is pairless if
and only if µ([Stab(µ)]) ̸= 1.

We now give two examples of pairless idempotent measures (in fact, types) in
NIP groups (one definable, the other finitely satisfiable). Our third example shows
that there can be many measures forming an amenable pair with a given group.

Example 4.5. Let T be the (complete) theory of divisible ordered abelian groups,
let G := (R,+, <) |H T , and let G ≻ G be a monster model of T .

(1) Let p0+ be the unique global definable (over R) type extending

{x < a : a > 0, a ∈ G} ∪ {x > a : a ≤ 0, a ∈ R}.

Then δp0+
∈ Minv

x (G,G) is idempotent and pairless.

(2) Let pR+ be the unique global type finitely satisfiable in R and extending

{x > a : a ∈ R}.

Then δpR+
∈ Mfs

x (G,G) is idempotent and pairless.

(3) Let p+∞ and p−∞ be the unique global heirs (over R) extending the types

2+(x) := {x > a : a ∈ R} and 2−(x) := {x < a : a ∈ R},

respectively. Then (G, µr ) is an amenable pair for any r ∈ [0, 1], where

µr = rδp−∞
+ (1 − r)δp+∞

.

Proof. (1) Note that Stab(δp0+
) = {0} and δp0+

({0}) = 0, so δp+

0
is pairless by

Proposition 4.2. We now check that δp0+
is idempotent. Fix some a ∈ G, some

small G ′
≺ G containing a and R, and a realization c |H p0+ |G ′ in G. Note that

(p0+ ∗ p0+)(x < a)= (p0+ ⊗ p0+)(x + y < a)= p0+(x < a − c).

We now have two cases:

(a) If a > 0, then a − c > 0 and so (p0+ ∗ p0+)(x < a)= 1.

(b) If a ≤ 0, then a − c < 0 and so (p0+ ∗ p0+)(x < a)= 0.

Hence, using quantifier-elimination, p0+ ∗ p0+ = p0+ , and so δp0+
∗ δp0+

= δp0+
.

(2) The measure δpR+
is idempotent by a computation analogous to the one in (1).

We have
Stab(δpR+

)= {a ∈ G : −n < a < n for some n ∈ N}.

We note that Stab(δpR+
) is a

∨
-definable subset of G, but is not definable, so it

is not type-definable. Now suppose that there exists a type-definable subgroup H
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of G such that (H, δpR+
) is an amenable pair. Then, by definition, H ⊆ Stab(δpR+

)

and δpR+
([H])= 1. By Proposition 4.2, we conclude that H = Stab(δpR+

). Hence
Stab(δpR+

) is type-definable, a contradiction. Alternatively, we get a contradiction
by regularity of the measure:

δpR+
([Stab(δpR+

)])= sup{δpR+
([−n < x < n]) : n ∈ N} = 0.

(3) Note that p+∞ and p−∞ are (left- and right-) G-invariant. Hence

µr := rδp−∞
+ (1 − r)δp+∞

∈ Mx(G)

is G-invariant for any r ∈ [0, 1]. Since µr is G-invariant, (G, µr ) is an amenable
pairing for every r ∈ [0, 1]. □

In the rest of this section we show that in an NIP group G, for any G00-invariant
idempotent µ ∈ Minv

x (G,G), Stab(µ) is type-definable and (Stab(µ), µ) is an
amenable pair.

Definition 4.6. Assume that µ ∈ Minv
x (G,G) is idempotent. By Corollary 3.11,

the measure π∗(µ) ∈ M(G/G00) is idempotent, and by Fact 2.8, supp(π∗(µ)) is a
closed subgroup of G/G00 and π∗(µ) ↾supp(π∗(µ)) is the normalized Haar measure on
this closed subgroup. Then π−1

(
supp(π∗(µ))

)
is a type-definable subgroup of G.

We let HL(µ) := π−1
(
supp(π∗(µ))

)
.

Proposition 4.7. Suppose µ ∈ Minv
x (G,G) is idempotent and G00-right-invariant.

(i) If p ∈ sup(µ), then π̂(p) ∈ supp(π∗(µ)) (see Fact 3.1 for the definition of π̂ ).

(ii) If p ∈ sup(µ), then p ∈ [HL(µ)].

(iii) µ([HL(µ)])= 1.

(iv) If b ∈ Stab(µ), then π(b) ∈ Stab(π∗(µ)).

Proof. (i) Let U be an open subset of G/G00 containing π̂(p). Then π−1(U ) is∨
-definable, so π−1(U ) =

∨
i∈I ψi (x) for some ψi ∈ Lx(G). Hence there exists

some i ∈ I so that ψi (x) ∈ p. Since p ∈ sup(µ), we have that µ(ψi (x)) > 0. Then

π∗(µ)(U )= µ̃([π̂−1(U )])≥ µ(ψi (x)) > 0,

where µ̃ is the unique regular Borel probability measures extending µ. Therefore
π̂(p) ∈ supp(π∗(µ)).

(ii) This is obvious by (i).

(iii) Assume not. Thenµ(Sx(G)\[HL(µ)])>0. This set is open and so by regularity
there exists some [ψ(x)] ⊂ Sx(G) \ [HL(µ)] such that µ(ψ(x)) > 0. Then there
exists some p ∈ sup(µ) so that ψ(x) ∈ p. This contradicts (ii).

(iv) By Theorem 3.10,

π∗(µ) ·π(b)= π∗(µ) ⋆ δπ(b) = π∗(µ ∗ δb)= π∗(µ). □
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Lemma 4.8. Assume that f : Sx(G)→ R is Borel and factors through π̂ : Sx(G)→
G/G00, and let f⋆ : G/G00

→ R be the factor map. Then f⋆ is Borel.

Proof. The map π̂ : Sx(G)→G/G00 is a continuous surjective map between compact
Hausdorff spaces. If the map f = f⋆ ◦ π̂ is Borel, then f⋆ is Borel by [Holický
and Spurný 2003, Theorem 10] (see [Conant et al. 2021, Theorem 2.1] for an
explanation). □

Lemma 4.9. Assume that µ ∈ Minv
x (G,G) is idempotent and G00-right-invariant.

Suppose that p ∈ sup(µ|G) and a |H p in G. Then µ(ϕ(x)) = µ(ϕ(x · a)) for any
ϕ(x) ∈ Lx(G).

Proof. Fix p ∈ sup(µ|G), ϕ(x) ∈ Lx(G) and a ∈ G such that a |H p. Fix a small
model G ′

≺ G such that G ′ contains G, a, and all of the parameters of ϕ. Let
r : Sy(G)→ Sy(G ′), q 7→ q|G ′ be the restriction map. Since µ is idempotent,

µ(ϕ(x · a))= µ ∗µ(ϕ(x · a))=

∫
Sy(G ′)

Fϕ
′
a

µ,G ′ dµG ′ =

∫
Sy(G)

(Fϕ
′
a

µ,G ′ ◦ r) dµ,

where ϕa(x) := ϕ(x · a), so ϕ′
a(x, y) = ϕ(x · y · a) and Fϕ

′
a

µ,G ′(q) = µ(ϕ(x · c · a))
for some/any c |H q (see Definition 2.26). Let f := Fϕ

′
a

µ,G ′ ◦ r and h := Fϕ
′

µ,G ′ ◦ r .

Claim 1: Both f and h factor through π̂ : Sy(G)→ G/G00.

Proof. The proofs are essentially the same, so we only show that f factors through π̂ .
Fixing q1, q2 ∈ Sy(G)with π̂(q1)= π̂(q2), we want to show that then f (q1)= f (q2).
Let b1, b2 ∈ G be such that b1 |H r(q1) and b2 |H r(q2). Then π(b1)= π(b2). Since
G00 is a normal subgroup of G, we then have b1 = d · b2 for some d ∈ G00. Hence

f (q1)= (Fϕ
′
a

µ,G ′ ◦ r)(q1)= µ(ϕ(x · b1 · a))= µ(ϕ(x · d · b2 · a)).

And since µ is G00-right-invariant, we have µ(ψ(x · d)) = µ(ψ(x)) for ψ(x) :=

ϕ(x · b2 · a), that is,

µ(ϕ(x · d · b2 · a))= µ(ϕ(x · b2 · a))= (Fϕ
′
a

µ,G ′ ◦ r)(q2)= f (q2). □

We let f⋆ and h⋆ be the associated factor maps from G/G00 to R.

Claim 2: We have h⋆ · π(a) = f⋆, where h⋆ · π(a) : G/G00
→ R is the function

defined by (h⋆ ·π(a))(b) := h⋆(b ·π(a)) for any b ∈ G/G00.

Proof. Fix b ∈ G/G00 and b ∈ G such that π(b)= b. Then

(h⋆ ·π(a))(b)

= (h⋆)(b ·π(a))= (h⋆)(π(b · a))= (Fϕ
′

µ,G ′ ◦ r)(tp(b · a/G))

= Fϕ
′

µ,G ′(tp(b · a/G ′))= µ(ϕ(x · b · a))= Fϕ
′
a

µ,G ′(tp(b/G ′))= f⋆(b). □

Claim 3: µ(ϕ(x · a))= µ(ϕ(x)).
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Proof. The maps f⋆, h⋆ : G/G00
→ R are Borel by Lemma 4.8. By assumption

a |H p with p ∈ sup(µ|G). Then there exists p̂ ∈ sup(µ) such that p̂|G = p (see,
e.g., [Chernikov and Gannon 2022, Proposition 2.8]). By Proposition 4.7(i) we
then have π(a) = π̂( p̂) ∈ supp(π∗(µ)). The measure π∗(µ) is idempotent by
Corollary 3.11. Applying Fact 2.11 (to the compact group G/G00 and its closed
subgroup supp(π∗(µ)) ∋ π(a)) we get∫

G/G00
(h⋆ ·π(a)) dπ∗(µ)=

∫
G/G00

h⋆ dπ∗(µ).

Using this and Claim 2 we have the following computation:

µ(ϕ(x · a))= (µ ∗µ)(ϕ(x · a))

=

∫
Sy(G)

f dµ=

∫
G/G00

f⋆ dπ∗(µ)

=

∫
G/G00

(h⋆ ·π(a)) dπ∗(µ)=

∫
G/G00

h⋆ dπ∗(µ)

=

∫
Sy(G)

h dµ=

∫
Sy(G ′)

Fϕ
′

µ,G ′ dµG ′ = (µ ∗µ)(ϕ(x))= µ(ϕ(x)). □

This concludes the proof of Lemma 4.9. □

Lemma 4.10. Suppose that g ∈ supp(π∗(µ)). Then there exists some p ∈ sup(µ|G)

such that for any b |H p we have π(b)= g.

Proof. We use the fact that π∗ : M(Sx(G)) → M(G/G00) is a pushforward map.
Let µ̃ be the unique extension of µ to a regular Borel probability measure on Sx(G).
Let g ∈ supp(π∗(µ)) and let U ⊆ G/G00 be an open set containing g. Because
g ∈ supp(π∗(µ)), we have that 0< π∗(µ)(U )= µ̃([π−1(U )]). Then there exists
some pU ∈ supp(µ̃) such that pU ∈ [π−1(U )]. The collection of open sets in G/G00

containing g forms a directed family under reverse inclusion, and we can consider
the net (pU )g∈U . Since supp(µ̃) is closed and hence compact, there exists a con-
vergent subnet (qi )i∈I with a limit in supp(µ̃). Let q := limi∈I qi . By continuity of
π̂ : Sx(G)→ G/G00, we have that π̂(q)= g. Since sup(µ)= supp(µ̃) we conclude
that q ∈ sup(µ). By definition of π̂ we have π̂(q)= π(b) for any b |H q|G , so the
lemma holds with p := q|G . □

Theorem 4.11. Suppose that µ∈Minv
x (G,G) is idempotent and G00-right-invariant.

Then

(1) Stab(µ)= HL(µ) (see Definition 4.6);

(2) Stab(µ) is a type-definable subgroup of G;

(3) (Stab(µ), µ) is an amenable pair.
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Proof. (1) As HL(µ) is a type-definable subgroup of G, by Proposition 4.2 it suffices
to show thatµ is HL(µ)-right-invariant andµ([HL(µ)])=1. By Proposition 4.7(iii),
we have µ([HL(µ)]) = 1, so it remains to show that HL(µ) ⊆ Stab(µ). Fix
a ∈ HL(µ). Then g := π(a) ∈ supp(π∗(µ)) by Proposition 4.7(i). By Lemma 4.10,
there exists some p ∈ sup(µ|G) and b |H p such that π(b) = g. In particular,
a ·G00

= b ·G00, so a = c · b for some c ∈ G00. Now we have

µ(ϕ(x · a))= µ(ϕ(x · c · b))= µ(ϕ(x · b))= µ(ϕ(x)).

The second equality follows from the fact that µ is G00-right-invariant and the fourth
equality follows from Lemma 4.9.

(2) This follows from the fact that Stab(µ)= HL(µ) and HL(µ) is type-definable.

(3) This follows since µ([Stab(µ)])= µ([HL(µ)])= 1. □

5. The structure of convolution semigroups

By Fact 2.29, if T is an NIP theory expanding a group, then both (Minv
x (G,G), ∗)

and (Mfs
x (G,G), ∗) are left-continuous compact Hausdorff semigroups (and hence

satisfy the assumption of Fact 2.34). In this section we describe some properties
of the minimal left ideals and ideal groups which arise in this setting. Unlike the
better studied case of the semigroup (Sfs

x (G,G), ∗), we demonstrate that the ideal
subgroups of any minimal left ideal (in either Mfs

x (G,G) or Minv(G,G)) are always
trivial, i.e., isomorphic to the group with a single element. The following theorem
summarizes the properties that we will prove in this section.

Theorem 5.1. Assume that G is NIP, and let I be a minimal left ideal of M†
x(G,G)

(which exists by Fact 2.34). Then we have the following:

(1) I is a closed convex subset of M†
x(G,G) (Proposition 5.3).

(2) For any µ ∈ I , π∗(µ)= h, where h is the normalized Haar measure on G/G00

(Proposition 5.5).

(3) If G/G00 is nontrivial, then I does not contain any types (Proposition 5.7).

(4) For any idempotent u ∈ I , we have u ∗ I ∼= (e, · ). In other words, the ideal
group is always trivial (Proposition 5.10).

(5) Every element of I is an idempotent (Proposition 5.11).

(6) If µ, ν ∈ I then µ ∗ ν = µ (Proposition 5.11).

(7) For any µ ∈ I , I = {ν ∈ M†
x(G,G) : ν ∗µ= ν} (Corollary 5.12).

(8) For any definable measure ν ∈ M†
x(G,G) there exists a measure µ ∈ I such

that ν ∗µ= µ. In particular, for any g ∈ G there exists a measure µ ∈ I such
that δg ∗µ= g ·µ= µ (Proposition 5.13).
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(9) Assume that G is definably amenable.

(a) If † = fs, then I = {ν}, where ν ∈Mfs
x (G,G) is a G-left-invariant measure

(Proposition 5.16).
(b) If † = inv, then

I = {µ ∈ Minv
x (G,G) : µ is G-right-invariant}.

Moreover, I is a two-sided ideal, and is the unique minimal left ideal
(Proposition 5.18). The set ex(I ) of extreme points of I is closed and
equal to {µp : p ∈ Sinv

x (G,G) is right f -generic}, and I is a Bauer simplex
(Corollary 5.21).

(10) If G is fsg and µ ∈Mx(G) is the unique G-left-invariant measure, then I = {µ}

is the unique minimal left (in fact, two-sided) ideal in both Minv
x (G,G) and

Mfs
x (G,G) (Corollary 5.24).

(11) If G is not definably amenable, then the closed convex set I has infinitely many
extreme points (Remark 5.26).

We remark that (5) and (11) of Theorem 5.1 guarantee the existence of many
idempotent measures in nondefinably amenable NIP groups. All previous “con-
structions” of idempotent measures either explicitly or implicitly use definable
amenability or amenability of closed subgroups of G/G00. A priori, the idempotent
measures we find here have no connection to type-definable subgroups.

5A. General structure. Our first goal is to show that any minimal left ideal
of M†

x(G,G) is convex. We begin by showing that convolution is affine in both
arguments and therefore preserves convexity on both sides.

Lemma 5.2. Assume µ, λ1, λ2 ∈M†
x(G,G) and r, s ∈ R>0 with r +s = 1. We have:

(1) (rλ1 + sλ2) ∗µ= r(λ1 ∗µ)+ s(λ2 ∗µ).

(2) µ ∗ (rλ1 + sλ2)= r(µ ∗ λ1)+ s(µ ∗ λ2).

(3) If A ⊆ M†
x(G,G) is convex, then both µ ∗ A and A ∗µ are convex.

Proof. Parts (1) and (2) were stated in [Chernikov and Gannon 2022, Proposition
3.14(4)], but no proof was provided there, so we take the opportunity to provide it
here.

(1) Fix a formula ϕ(x) ∈ Lx(G) and let G ′ be a small model containing G and the
parameters of ϕ. Then

((rλ1 + sλ2) ∗µ)(ϕ(x))

=

∫
Sy(G ′)

Fϕ
′

rλ1+sλ2
dµG ′ =

∫
Sy(G ′)

(r Fϕ
′

λ1
+ s Fϕ

′

λ2
) dµG ′
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= r
∫

Sy(G ′)

Fϕ
′

λ1
dµG ′ + s

∫
Sy(G ′)

Fϕ
′

λ2
dµG ′

= r(λ1 ∗µ)(ϕ(x))+ s(λ2 ∗µ)(ϕ(x))

= (r(λ1 ∗µ)+ s(λ2 ∗µ))(ϕ(x)).

(2) Fix a formula ϕ(x) ∈ Lx(G) and a small model G ′ containing G and the
parameters of ϕ. Then the map Fϕ

′

µ : Sy(G ′)→ [0, 1] is a bounded Borel function,
so for any ε > 0 there exist Borel subsets B1, . . . , Bn of Sy(G ′) and real numbers
k1, . . . , kn such that

sup
q∈Sy(G)

∣∣∣∣Fϕ′

µ (q)−
n∑

i=1

ki 1Bi (q)
∣∣∣∣< ε.

Now we compute the product:

(µ ∗ (rλ1 + sλ2))(ϕ(x))

=

∫
Sy(G ′)

Fϕ
′

µ d(rλ1 + sλ2)

≈ε

∫
Sy(G ′)

( n∑
i=1

ki 1Bi

)
d(rλ1 + sλ2)= r

n∑
i=1

kiλ1(Bi )+ s
n∑

i=1

kiλ2(Bi )

= r
∫

Sy(G ′)

( n∑
i=1

ki 1Bi

)
dλ1 + s

∫
Sy(G ′)

( n∑
i=1

ki 1Bi

)
dλ2

≈ε r
∫

Sy(G ′)

Fϕ
′

µ dλ1 + s
∫

Sy(G ′)

Fϕ
′

µ dλ2 = (r(µ ∗ λ1)+ s(µ ∗ λ2))(ϕ(x)).

(3) We first prove that A ∗µ is convex. Letting ν1, ν2 ∈ A ∗µ and r, s ∈ R>0 with
r + s = 1 be given, we need to show that rν1 + sν2 ∈ A ∗µ. By assumption there
exist some λ1, λ2 ∈ A such that λi ∗µ = νi for i ∈ {1, 2}. Since A is convex, we
have that rλ1 + sλ2 ∈ A. It follows by (1) that rν1 + sν2 = (rλ1 + sλ2)∗µ ∈ A ∗µ.

Now we prove that µ ∗ A is convex. Similarly, let ν1, ν2 ∈ µ ∗ A and r, s ∈ R>0

with r + s = 1 be given, and let λ1, λ2 ∈ A be such that µ ∗ λi = νi . Consider the
measure rλ1+sλ2 ∈ A. It follows by (2) that rν1+sν2 =µ∗(rλ1+sλ2)∈µ∗ A. □

Proposition 5.3. If I is a minimal left ideal in M†
x(G,G), then I is closed and

convex.

Proof. Any minimal left ideal is closed by Fact 2.34. Choose µ∈ I . By Fact 2.34(5),
we have M†

x(G,G) ∗µ= I . By Lemma 5.2 and the convexity of M†
x(G,G), I is

convex. □

We now consider the interaction between the pushforward map to G/G00 and the
minimal left ideal. The following lemma is standard.
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Lemma 5.4. Let S be a semigroup, L a minimal left ideal of S, and H a two-sided
ideal in S. Then L ⊆ H.

Proof. Note that L ′
:= L ∩ H is nonempty (for l ∈ L and h ∈ H , h · l ∈ L ∩ H )

and is a left ideal (as an intersection of two left ideals). As L ′
⊆ L , by minimality

L = L ′
⊆ H . □

Proposition 5.5. Let I be a minimal left ideal in M†
x(G,G). Then for every ν ∈ I

we have π†
∗
(ν)= h, where h is the normalized Haar measure on G/G00.

Proof. Since π†
∗

is surjective (Proposition 3.4) and continuous (Remark 3.3), the
set A := (π†

∗
)−1({h}) is a nonempty closed subset of M†

x(G,G). Moreover, A is a
two-sided ideal: since π†

∗
is a homomorphism (Theorem 3.10) and h is both left-

and right-invariant, for any µ ∈ A and ν ∈ M†
x(G,G), we have

π†
∗
(ν ∗µ)= π†

∗
(ν) ⋆ π†

∗
(µ)= π†

∗
(ν) ⋆ h = h,

and a similar computation also shows that A is a right ideal. By Lemma 5.4 we
have I ⊆ A, which completes the proof. □

Definition 5.6. Let µ ∈Mx(G). We say µ is strongly continuous if for every ε > 0,
there exists a finite partition {[ψ(x)]}i<n of Sx(G) with ψi ∈ Lx(G) such that
µ(ψ(x)) < ε for all i < n.

Proposition 5.7. Let I be a minimal left ideal in M†
x(G,G).

(1) If G/G00 is nontrivial, then I does not contain any types.

(2) If G/G00 is infinite, then every measure in I is strongly continuous.

Proof. (1) By Lemma 3.5(2) we have π†
∗
(δp) = δπ̂(p), which does not equal

the normalized Haar measure on G/G00 when it is nontrivial. This contradicts
Proposition 5.5.

(2) If G/G00 is infinite then the normalized Haar measure h on G/G00 is zero on
every point. Suppose that ν ∈M†

x(G,G) is not strongly continuous. By compactness
and [Bhaskara Rao and Bhaskara Rao 1983, Theorem 5.2.7], ν can be written as

ν = r0µ0 +

∑
i∈ω

riδpi ,

where µ0 ∈ M†
x(G,G) is strongly continuous, ri ∈ [0, 1] and pi ∈ S†

x (G,G) for
each i ∈ω, and

∑
i∈ω ri = 1. We then must have ri∗ > 0 for some i∗

∈ω\{0}. Since
the pushforward map is affine (Remark 3.3), we have

π∗(ν)= r0π∗(µ0)+
∑
i∈ω

riδπ̂(pi ).

Hence π∗(ν)({π̂(pi∗)})= ri∗ > 0, so π∗(ν) ̸= h, contradicting Proposition 5.5. □
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We now show that the ideal subgroup of any minimal left ideal is trivial. A
related result appears in [Cohen and Collins 1959, Theorem 3], but we are working
in a semigroup which is only left-continuous. Our proof is a generalization of the
proof that there do not exist any nontrivial convex compact groups and follows
[Abodayeh and Murphy 1997, Lemmas 3.1 and 3.2]. In particular, compactness
is used only to get an extreme point in some ideal subgroup. Some elementary
algebra is then used to show that the only possible ideal subgroups are isomorphic
to a single point.

Lemma 5.8. If I is a minimal left ideal in M†
x(G,G), then ex(I ) ̸= ∅.

Proof. By Proposition 5.3, I is a compact convex set. By the Krein–Milman
theorem, I contains an extreme point. □

Lemma 5.9. If I is a minimal left ideal in M†
x(G,G), then there exists an idempo-

tent µ in I such that µ ∈ ex(µ ∗ I ).

Proof. By Lemma 5.8, there exists a measure ν ∈ I which is extreme in I . By
Fact 2.34(4), there exists an idempotent µ in I such that ν ∈ µ ∗ I . Towards a
contradiction, suppose that µ ̸∈ ex(µ ∗ I ). Then there exist distinct η1, η2 ∈ µ ∗ I
and r ∈ (0, 1) such that rη1 + (1−r)η2 =µ. As µ is the identity of the group µ∗ I
by Fact 2.34(3), we get

ν = ν ∗µ= r(ν ∗ η1)+ (1 − r)(ν ∗ η2).

Since ν ∈ ex(I ) and ν ∗ηi ∈ I as I is a left ideal, it follows that ν = ν ∗η1 = ν ∗η2.
Since ν, η1, η2 ∈ µ ∗ I and µ ∗ I is a group, this implies η1 = η2, contradicting the
assumption. Hence µ ∈ ex(µ ∗ I ). □

Proposition 5.10. The ideal subgroup of M†
x(G,G) is trivial.

Proof. Let I be a minimal left ideal of M†
x(G,G). By Lemma 5.9, there exists

an idempotent µ ∈ I such that µ is extreme in µ ∗ I . Let η1, η2 ∈ µ ∗ I . We will
show that η1 = η2. By Lemma 5.2 and Proposition 5.3, µ ∗ I is convex. Hence
α :=

1
2(η1 +η2) ∈ µ∗ I . Since µ∗ I is a group with identity µ, µ∗ I contains α−1

(i.e., α−1
∗α = α ∗α−1

= µ). Then

µ= α−1
∗α = α−1

∗
( 1

2η1 +
1
2η2

)
=

1
2(α

−1
∗ η1)+

1
2(α

−1
∗ η2).

Since µ is extreme in µ ∗ I and α−1
∗ ηi ∈ µ ∗ I , we get µ= α−1

∗ η1 = α−1
∗ η2

and hence η1 = η2. □

We have shown that any ideal subgroup of M†
x(G,G) is trivial. Since the minimal

left ideals can be partitioned into their ideal subgroups, it follows that the convolution
operation is trivial when restricted to a minimal left ideal.

Proposition 5.11. Let I be a minimal left ideal in M†
x(G,G). Then every element

of I is an idempotent. Moreover, for any elements µ, ν ∈ I , we have that µ∗ ν = µ.
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Proof. By Fact 2.34(4) and Proposition 5.10,

I =

⊔
µ∈id(I )

µ ∗ I =

⊔
µ∈id(I )

{µ} = id(I ).

The “moreover” part also follows from the observation that µ ∗ I = {µ}. □

Corollary 5.12. Let I be a minimal left ideal of M†
x(G,G) and assume that µ ∈ I .

Then I = {ν ∈ M†
x(G,G) : ν ∗µ= ν}.

Proof. By Proposition 5.11 we have I ⊆ {ν ∈ M†
x(G,G) : ν ∗µ= ν}. And since I

is a left ideal and µ ∈ I , we have {ν ∈ M†
x(G,G) : ν ∗µ= ν} ⊆ I . □

We also observe that the action of the underlying group G on the minimal left
ideal is far from being a free action (this is of course trivial in the definably amenable
case, but is meaningful when G is not definably amenable).

Proposition 5.13. Let I be a minimal left ideal of M†
x(G,G). For any definable

measure ν ∈ M†(G,G) there exists a measure µ ∈ I such that ν ∗ µ = µ. In
particular, for every element g ∈ G, there exists a measureµ∈ I such that δg∗µ=µ.

Proof. Consider the map ν∗− :M†
x(G,G)→M†

x(G,G) sending λ to ν∗λ. Since I
is a minimal left ideal, the image of (ν ∗−)|I is contained in I . Since ν is definable,
the map (ν∗−)|I : I → I is continuous by Lemma 2.30. By Lemma 5.2, this map is
also affine. By the Markov–Kakutani fixed-point theorem, there exists some µ ∈ I
such that ν∗µ=µ. The “in particular” part of the statement follows since δg, g ∈ G
is a definable measure. □

5B. Definably amenable groups. We now shift our focus to the dividing line of de-
finable amenability. We first describe all minimal left ideals in both (Mfs

x (G,G), ∗)
and (Minv

x (G,G), ∗) when G is definably amenable. We then make an observation
about what happens outside of the definably amenable case. Recall that T is a
complete NIP theory expanding a group, G is a monster model of T , G is a small
elementary submodel of G. The group G is definably amenable if there exists
µ ∈ Mx(G) such that µ is G-left-invariant.

Remark 5.14. (1) The group G is definably amenable if and only if for some
G ′

|H T there exists a G ′-left-invariant µ ∈ Mx(G ′), if and only if for every
G ′

|H T there exists a G ′-left-invariant µ ∈ Mx(G ′) (see [Hrushovski et al.
2008, Section 5]).

(2) If G ′
⪯G and µ∈Mx(G ′) is G ′-left-invariant, then the measure µ−1

∈Mx(G ′)

defined byµ−1(ϕ(x))=µ(ϕ(x−1)) for any ϕ(x)∈Lx(G ′) is G ′-right-invariant,
and vice versa. If µ ∈ M†

x(G,G), then also µ−1
∈ M†

x(G,G) (see [Chernikov
and Simon 2018, Lemma 6.2]).

We will need the following fact.
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Fact 5.15. Assume that G is definably amenable and NIP.

(i) [Chernikov et al. 2014, Proposition 3.5] For any G-left-invariant measure
µ0 ∈ Mx(G) (which exists by Remark 5.14(1)) there exists µ ∈ Minv

x (G,G)
such that µ is G-left-invariant and extends µ0. The same holds for right-
invariant measures by item (2) of Remark 5.14.

(ii) [Chernikov et al. 2014, Theorem 3.17] There exists ν ∈ Mfs
x (G,G) such that ν

is G-left-invariant (but not necessarily G-left-invariant).

We remark that Fact 5.15(ii) follows from [Chernikov et al. 2014, Theorem 3.17]
as Sfs

x (G,G)= Sx(Gext) (where Gext is the Shelah’s expansion of G by all externally
definable subsets) and M(Sfs

x (G,G))= Mfs
x (G,G) (see Corollary 2.23). We now

compute the minimal left ideals in definably amenable NIP groups, first in the
finitely satisfiable case and then in the invariant case.

Proposition 5.16. The group G is definably amenable if and only if |I | = 1 for
some (equivalently, every) minimal left ideal I in Mfs

x (G,G). And if G is definably
amenable, then the minimal left ideals of Mfs

x (G,G) are precisely of the form {ν}

for ν a G-left-invariant measure in Mfs
x (G,G).

Proof. Let I be a minimal left ideal, and assume that I = {µ}. Then for any
g ∈ G we have g ·µ= δg ∗µ= µ, so µ is G-left-invariant. In particular, µ|G is a
G-left-invariant measure on Mx(G), so G is definably amenable by Remark 5.14(1).
And all minimal left ideals have the same cardinality by Fact 2.34(6).

Conversely, assume that G is definably amenable. By Fact 5.15(2) there exists
some µ ∈ Mfs

x (G,G) such that µ is G-left-invariant. We claim that for any such µ,
{µ} is a minimal left ideal of Mfs

x (G,G). Let ν be any measure in Mfs
x (G,G).

Since ν is finitely satisfiable in G, by Lemma 2.25 there exists a net of measures
in Mfs

x (G,G) of the form (Av(āi ))i∈I such that each āi = (ai,1, . . . , ai,ni ) ∈ (G
x)ni

for some ni ∈ N and limi∈I (Av(āi ))= ν. Fix any ϕ(x) ∈Lx(G). By the “moreover”
part of Fact 2.29, the map λ ∈ Mfs

x (G,G) 7→ (λ ∗µ)(ϕ(x)) ∈ [0, 1] is continuous.
Therefore,

(ν ∗µ)(ϕ(x))= lim
i∈I

(
(Av(āi ) ∗µ)(ϕ(x))

)
= lim

i∈I

(
1
ni

ni∑
j=1

µ(ϕ(ai, j · x))
)

(a)
= lim

i∈I
µ(ϕ(x))= µ(ϕ(x)).

Equality (a) follows as µ is G-left-invariant and each ai, j is in G. It follows that
ν ∗µ= µ, and hence {µ} is a left ideal. □

We now compute the minimal left ideals in the invariant case, but first we record
an auxiliary lemma.
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Lemma 5.17. Assume that f : Sx(G)→ [0, 1] is a Borel function. For any b ∈ G,
we define the function f · b : Sx(G) → [0, 1] via ( f · b)(p) := f (p · b) (recall
Lemma 3.8). If µ ∈ Mx(G) is G-right-invariant then∫

Sx (G)
f dµ=

∫
Sx (G)

( f · b) dµ.

Proof. For b ∈ G, consider the map γb : Sx(G)→ Sx(G) defined by γb(p) := p · b.
The map γb is a continuous bijection. Hence we can consider the pushforward map
(γb)∗ : Mx(G)→ Mx(G). Denote (γb)∗(µ) as µb. Fix a formula ϕ(x) ∈ Lx(G).
We claim that γ−1

b ([ϕ(x)])= [ϕ(x · b)].
We first show that (γb)

−1([ϕ(x)])= [ϕ(x ·b)]. Assume that p ∈ [ϕ(x ·b)]. Then
ϕ(x) ∈ p ·b and so p ·b ∈ [ϕ(x)]. Hence (γb)

−1(p ·b) ∈ (γ−1
b )([ϕ(x)]). Since γb is

a bijection, we have that p = γ−1
b (p ·b), which implies that p ∈ (γ−1

b )([ϕ(x)]). So
[ϕ(x · b)] ⊆ (γb)

−1([ϕ(x)]). Now assume that p ∈ (γb)
−1([ϕ(x)]). Then γb(p) ∈

[ϕ(x)], and hence p ·b ∈ [ϕ(x)], so ϕ(x)∈ p ·b. By definition, ϕ(x ·b)∈ (p ·b)·b−1,
and since (p ·b) ·b−1

= p, we conclude that ϕ(x ·b) ∈ p. Hence p ∈ [ϕ(x ·b)] and
(γb)

−1([ϕ(x)])= [ϕ(x · b)].
Now we show that µb = µ. Indeed, by G-right-invariance of µ and the previous

paragraph we have

µb(ϕ(x))= µ(γ−1
b [ϕ(x)])= µ(ϕ(x · b))= µ(ϕ(x)).

And so by Fact 2.1(iii) we have∫
Sx (G)

f dµ=

∫
Sx (G)

f dµb =

∫
Sx (G)

( f ◦ γb) dµ=

∫
Sx (G)

( f · b) dµ. □

Proposition 5.18. Assume that G is definably amenable. Let

I inv
G := {µ ∈ Minv

x (G,G) : µ is G-right-invariant}.

Then I inv
G is a closed, nonempty, two-sided ideal. Moreover, I inv

G is the unique
minimal left ideal in Mx(G,G).

Proof. The set I inv
G is closed since it is the complement of the union of basic open

sets in Minv
x (G,G):

Minv
x (G,G)\ I inv

G =

⋃
ϕ(x)∈Lx (G)

⋃
s<t∈[0,1]

⋃
g∈G

(
{µ :µ(ϕ(x))< s}∩{µ :µ(ϕ(x ·g))> t}

)
.

By Fact 5.15(1), we know that the set I inv
G is nonempty. We first show that I inv

G is a
left ideal. Let µ ∈ I inv

G and ν ∈ Minv
x (G,G). It suffices to show that the measure

ν ∗ µ is G-right-invariant. That is, we need to show that for any ϕ(x) ∈ Lx(G)
and b ∈ G we have (ν ∗µ)(ϕ(x · b))= (ν ∗µ)(ϕ(x)). Let G ′

≺ G be a small model



216 ARTEM CHERNIKOV AND KYLE GANNON

containing G, b and the parameters of ϕ. For any q ∈ Sy(G ′) and a |H q in G,
letting ϕb(x) := ϕ(x · b) and noting that a · b |H q · b, we have

F
ϕ′

b
ν,G ′(q)= ν(ϕ(x · a · b))= Fϕ

′

ν,G ′(q · b)= (Fϕ
′

ν,G ′(q)) · b.

Hence, by Lemma 5.17,

(ν ∗µ)(ϕ(x · b))=

∫
Sy(G ′)

F
ϕ′

b
ν dµG ′

=

∫
Sy(G ′)

((Fϕ
′

ν ) · b) dµG ′ =

∫
Sy(G ′)

Fϕ
′

ν dµG ′ = (ν ∗µ)(ϕ(x)).

We now argue that I inv
G is a right ideal. Again let µ ∈ I inv

G and ν ∈ Minv
x (G,G),

and fix ϕ(x) ∈ Lx(G) and G ′
≺ G containing G and the parameters of ϕ. Using

G-right-invariance of µ, we have

(µ ∗ ν)(ϕ(x))=

∫
Sy(G ′)

Fϕ
′

µ dνG ′ =

∫
Sy(G ′)

µ(ϕ(x)) dνG ′ = µ(ϕ(x)).

Hence I inv
G is a two-sided ideal.

Note that the previous computation shows that µ ∗ ν = µ for any µ ∈ I inv
G and

ν ∈ Minv
x (G,G). So if J is any minimal left ideal of Minv

x (G,G), then I inv
G ⊆ J .

Since I inv
G is two-sided, we have that J ⊆ I inv

G (by Lemma 5.4). Hence J = I inv
G ,

and I inv
G is the unique minimal left ideal. □

We recall some terminology and results from [Chernikov and Simon 2018]
(switching from the action on the left to the action on the right everywhere).

Definition 5.19. (1) A type p ∈ Sx(G) is right f -generic if for every ϕ(x) ∈ p
there is some small model G ≺ G such that for any g ∈ G, ϕ(x · g) does not
fork over G.

(2) A type p ∈ Sx(G) is strongly right f -generic if there exists some small G ≺ G
such that p · g ∈ Sinv

x (G,G) for all g ∈ G. This is equivalent to the definition in
[Chernikov and Simon 2018] since in NIP theories, a global type p does not
fork over a model M if and only if p is M-invariant (see, e.g., [Hrushovski
and Pillay 2011, Proposition 2.1]).

(3) Given a right f -generic p, let µp be defined via

µp(ϕ(x)) := h
(
{π(g) ∈ G/G00

: g ∈ G, ϕ(x) ∈ p · g}
)
,

where π :G →G/G00 is the quotient map and ϕ(x)∈Lx(G). Then µp ∈Mx(G)
and, assuming additionally that G is definably amenable, µp is G00-right-
invariant (see [Chernikov and Simon 2018, Definition 3.16] for the details).

Fact 5.20. Assume that G is definably amenable NIP.
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(1) If p ∈ Sinv
x (G,G) is right f -generic then p is strongly right f -generic over G

and µp ∈Minv
x (G,G). The set of all right f -generic types in Sx(G) (and hence

in Sinv
x (G,G)) is closed.

(2) Let I(G) be the (closed convex) set of all G-right-invariant measures in Mx(G).
Then the set ex(I(G)) of the extreme points of I(G) is the set of all measures
of the form µp for some right f -generic p ∈ Sx(G).

(3) The map p 7→ µp from the (closed) set of global right f -generic types to the
(closed) set of global G-right-invariant measures is continuous.

Proof. (1) Any f -generic p∈ Sinv
x (G,G) is strongly f -generic over G by [Chernikov

and Simon 2018, Proposition 3.9]. For any f -generic p, sup(µp)⊆ p ·G, where X
is the topological closure of X in Sx(G) and p · G = {p · g ∈ Sx(G) : g ∈ G} is the
orbit of p under the right action of G (by [Chernikov and Simon 2018, Remark
3.17(2)]). As p is strongly f -generic over G, we have p ·G ⊆ Sinv

x (G,G), and thus
sup(µp)⊆ Sinv

x (G,G)= Sinv
x (G,G). Hence µp ∈ Minv

x (G,G) by Fact 2.22(2).

(2) This is [Chernikov and Simon 2018, Theorem 4.5].

(3) This is [Chernikov and Simon 2018, Proposition 4.3]. □

Adapting the proof of [Chernikov and Simon 2018, Theorem 4.5], we can
describe the extreme points of the minimal ideal I inv

G .

Corollary 5.21. Assume that G is definably amenable NIP. Then

(1) ex(I inv
G )= {µp : p ∈ Sinv

x (G,G) is right f -generic};

(2) ex(I inv
G ) is a closed subset of I inv

G , and I inv
G is a Bauer simplex.

Proof. If p ∈ Sinv
x (G,G) is right f -generic, then µp is G-right-invariant and

µp ∈ Minv
x (G,G) by Fact 5.20(1), so µp ∈ I inv

G . By Fact 5.20(2), µp is extreme
in I(G), and thus, in particular, it is extreme in I inv

G ⊆ I(G).
Conversely, assume that µ ∈ ex(I inv

G ), and let

S := {µp : p ∈ Sinv
x (G,G) is right f -generic}.

Let conv(S) be the closed convex hull of S. Then conv(S)⊆ I inv
G by Propositions

5.3 and 5.18. As µ is G-right-invariant, by [Chernikov and Simon 2018, Lemma
3.26], for any ε > 0 and ϕ1(x), . . . , ϕk(x)∈Lx(G), there exist some right f -generic
p1, . . . , pn ∈ sup(µ) such that µ(ϕ j (x))≈ε (1/n)

∑n
i=1 µpi (ϕ j (x)) for all j ∈ [k].

While [Chernikov and Simon 2018, Lemma 3.26] is stated for a single formula, it
also applies to finitely many formulas by encoding them as appropriate instances of
a single formula — formally, we apply [Chernikov and Simon 2018, Lemma 3.26]
to the formula

θ(x; y0, . . . , yk) :=
∨k

i=1(y0 = yi ∧ϕk(x)).
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As we have pi ∈ Sinv
x (G,G) for all i ∈[n], by Fact 2.22(2), it follows thatµ∈conv(S),

and it is still an extreme point of conv(S) ⊆ I inv
G . It follows that µ ∈ S, by the

(partial) converse to the Krein–Milman theorem (see, e.g., [Chernikov and Simon
2018, Fact 4.1] applied to C := conv(S)). By Fact 5.20(3), the map p 7→ µp from
Sinv

x (G,G) to Minv
x (G,G) is a continuous map from a compact to a Hausdorff space

and thus also a closed map. It follows that S = S, so µ ∈ S.
By Corollary 2.23(2), we have an affine homeomorphism between Minv

x (G,G)
and M(Sinv

x (G,G)), which restricts to an affine homeomorphism between I inv
G and

the set MG(Sinv
x (G,G)) of all right-G-invariant regular Borel probability measures

on Sinv
x (G,G). By Fact 2.37, MG(Sinv

x (G,G)) is a Choquet simplex, so I inv
G is a

Bauer simplex (using Remark 2.40). □

Question 5.22. Can every Bauer simplex of the form M(X) with X a com-
pact Hausdorff totally disconnected space be realized as a minimal left ideal
of (Minv

x (G,G), ∗) for some definably amenable NIP group G?

Example 5.23. Let G := (R;<,+), and let G ≻ G be a monster model. As G
is abelian, it is amenable as a discrete group and hence definably amenable. By
Proposition 5.18, Minv

x (G,R) has a unique minimal left ideal I inv
G . One checks

directly that p−∞ (the unique type extending {x < a : a ∈ G}) and p+∞ (the
unique type extending {x > a : a ∈ G}) are the right f -generics in Sinv

x (G,G), and
µp+∞

= δp+∞
, µp−∞

= δp−∞
. Hence, by Corollary 5.21, |ex(I inv

G )| = 2 and

I inv
G = {rδp+∞

+ (1 − r)δp−∞
: r ∈ [0, 1]}.

(See also Example 6.21(1).)

Recall that G is uniquely ergodic if it admits a unique G-left-invariant measure
µ ∈ Mx(G) (see [Chernikov and Simon 2018, Section 3.4]). Recall that G is fsg
if there exists a small G ≺ G and p ∈ Sx(G) such that g · p is finitely satisfiable
in G for all g ∈ G. All fsg groups are uniquely ergodic (see, e.g., [Simon 2015,
Proposition 8.32]), but there exist uniquely ergodic NIP groups which are not fsg
(see [Chernikov and Simon 2018, Remark 3.38]).

Corollary 5.24. (1) If G is uniquely ergodic, then I inv
G = {µ}, where µ is the

unique G-left-invariant measure.

(2) If G is, moreover, fsg, letting µ ∈ Mx(G) be the unique G-left-invariant
measure, {µ} is the unique minimal left ideal of Mfs

x (G,G) (which is also
two-sided).

Proof. (1) For any G-left-invariant measure µ, the measure µ−1 is G-right-invariant
(see Remark 5.14(2)), and vice versa. Moreover, from the definition, µ1 =µ2 if and
only if µ−1

1 =µ−1
2 . It follows that if there exists a unique G-left-invariant measure µ,

then there exists a unique G-right-invariant measure µ−1. By [Chernikov and Simon
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2018, Lemma 6.2] there also exists a measure ν which is simultaneously G-left-
invariant and G-right-invariant. But then µ= ν=µ−1, so µ is also G-right-invariant.
And µ ∈ Minv

x (G,G) by Fact 5.15 and uniqueness, so I inv
G = {µ}.

(2) By, e.g., [Simon 2015, Propositions 8.32, 8.33], G is fsg if and only if there exists
a G-left-invariant generically stable measure µ ∈ Mx(G), and then G is uniquely
ergodic, so µ is also the unique G-right-invariant measure. By Fact 5.15(i) and
uniqueness of µ it follows that µ is invariant over G and hence generically stable
over G (in fact, over an arbitrary small model). In particular, µ ∈ Mfs

x (G,G), and
it is the unique measure in Minv

x (G,G) extending µ|G (by [Hrushovski et al. 2013,
Proposition 3.3]). Now assume that ν ∈ Mfs

x (G,G) is an arbitrary G-left-invariant
measure. We have ν|G =µ|G , as by Fact 5.15(i) there exists some G-left-invariant ν ′

extending ν|G , and thus ν ′
=µ, so ν|G =ν ′

|G =µ|G . But as µ is the unique measure
in Minv

x (G,G) extending µ|G , it follows that ν = µ. If follows by Proposition 5.16
that {µ} is the unique minimal left ideal of Mfs

x (G,G). Finally, in any semigroup, if
the union of its minimal left ideals is nonempty, then it is a two-sided ideal [Clifford
1948]. Hence in our case {µ} is a two-sided ideal. □

Question 5.25. Can the fsg assumption be relaxed to unique ergodicity in Corollary
5.24(2)?

Our final observation in this section deals with nondefinably amenable groups.

Remark 5.26. Assume that G is not definably amenable. Let I be a minimal left
ideal in M†(G,G). Then ex(I ) is infinite.

Proof. For any g ∈ G, the map δg∗−: ex(I )→ex(I ) is a bijection. Towards a contra-
diction, assume that ex(I ) is finite, say ex(I )={µ1, . . . , µn}. Consider the measure
λ∈M†

x(G,G) defined by λ=
∑n

i=1(1/n)µi . Then for any g ∈ G we have δg ∗λ=λ.
Hence the measure λ|G is in Mx(G) and is G-left-invariant. This contradicts the
assumption that G is not definably amenable, by (1) and (2) of Remark 5.14. □

6. Constructing minimal left ideals

In this section, under some assumptions on the semigroup (S†
x (G,G), ∗) (applicable

to some nondefinably amenable groups, e.g., SL2(R)), we construct a minimal
left ideal of (M†

x(G,G), ∗) using a minimal left ideal and an ideal subgroup
of (S†

x (G,G), ∗), and demonstrate that this minimal left ideal is parametrized by a
space of regular Borel probability measures over a compact Hausdorff space.

6A. Basic lemmas. We will need some auxiliary lemmas connecting convolution
and left ideals. We assume that T = Th(G) is NIP throughout.

Lemma 6.1. Let µ, ν ∈ M†
x(G,G). If µ ∗ δp = µ for every p ∈ sup(ν), then

µ ∗ ν = µ.
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Proof. Fix a formula ϕ(x) ∈ Lx(G). Let G ′
≺ G be a small model containing G and

the parameters of ϕ. We have

(µ ∗ ν)(ϕ(x))=

∫
sup(ν|G′ )

Fϕ
′

µ,G ′ d(νG ′).

By Fact 2.22, sup(ν) is a subset of S†
x (G,G). For any q ∈ sup(ν)we have Fϕ

′

µ,G ′(q)=
µ(ϕ(x · b))= (µ ∗ δp)(ϕ(x))= µ(ϕ(x)), where b |H q. Hence∫

sup(ν|G′ )

Fϕ
′

µ,G ′ d(νG ′)=

∫
Sy(G ′)

µ(ϕ(x)) d(νG ′)= µ(ϕ(x)),

so µ ∗ ν = µ. □

Lemma 6.2 (T is NIP). Assume that I is a left ideal of (S†
x (G,G), ∗). Then M(I )

(see Definition 2.16) is a left ideal of (M†
x(G,G), ∗).

Proof. Let p ∈ S†
x (G,G) and µ ∈ M(I ). We first argue that δp ∗ µ ∈ M(I ).

Assume towards a contradiction that δp ∗ µ ̸∈ M(I ). Then there exists some
q ∈ sup(δp ∗µ) such that q ̸∈ I . Then there exists ψ(x)∈Lx(G) such that ψ(x)∈ q
and [ψ(x)]∩ I =∅. Sinceψ(x)∈q and q ∈ sup(δp∗µ), we have (δp∗µ)(ψ(x))>0.
Let now G ′

≺ G be a small model containing G and the parameters of ψ . Then

(δp ∗µ)(ψ(x))=

∫
Fψ

′

δp,G ′ d(µG ′) > 0,

so there exists some t ∈ sup(µ|G ′) such that Fψ
′

δp,G ′(t) = 1. Fix t̂ ∈ sup(µ) such
that t̂ |G ′ = t (which exists by, e.g., [Chernikov and Gannon 2022, Proposition 2.8]),
and since µ ∈M(I ) we have t̂ ∈ supp(µ)⊆ I ⊆ S†

x (G,G). Unpacking the notation,
we conclude that ψ(x) ∈ p ∗ t̂ . Since t̂ ∈ I , it also follows that p ∗ t̂ ∈ I . Hence
[ψ(x)] ∩ I ̸= ∅, a contradiction.

Now letting ν ∈M†
x(G,G), we want to show that ν ∗µ∈M(I ). By Lemma 2.25,

we have that ν = limi∈I Av( p̄i ) for some net I , with p̄i = (pi,1, . . . , pi,ni ) ∈ I ni ,
ni ∈ N for each i ∈ I . By left continuity of convolution (Fact 2.29) we have

ν ∗µ= lim
i∈I
(Av( p̄i ) ∗µ)= lim

i∈I

(
1
ni

ni∑
j=1

(δp j ∗µ)

)
.

By the previous paragraph δp ji
∗ µ ∈ M(I ) for each i ∈ I . Then by convexity

of M(I ) (Lemma 2.17), also Av( p̄i ) ∗µ ∈ M(I ) for each i ∈ I . Since M(I ) is
closed (again, Lemma 2.17), ν ∗µ= limi∈I (Av( p̄i ) ∗µ) ∈ M(I ). Therefore M(I )
is a left ideal. □

Remark 6.3. We remark that minimality of the left ideal need not be preserved
in Lemma 6.2. Indeed, let G := (S1, · ,−1 ,C(x, y, z)) be the standard unit circle
group over R, with C the cyclic clockwise ordering, and let TO be the corresponding
theory. If G is a monster model of TO , then the semigroup (Sfs

x (G, S1), ∗) has a
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unique proper (and hence minimal) left ideal I := Sfs
x (G, S1) \ {tp(a/G) : a ∈ S1

}.
Let λ be the Keisler measure corresponding to the normalized Haar measure
on S1. The measure λ is smooth and right-invariant; in particular, G is fsg (see
[Chernikov and Gannon 2022, Example 4.2] and [Simon 2015, Proposition 8.33]).
By Lemma 6.2, M(I ) is a left ideal of (Mfs

x (G,G), ∗). Note that Mfs
x (G, S1) con-

tains a unique minimal left ideal {λ} by Corollary 5.24(2), and {λ}⊊M(I ) since the
latter contains δp for every global type p finitely satisfiable in S1 but not realized in it.

We now recall how the ideal subgroups act on a minimal left ideal. The fol-
lowing is true in any compact left topological semigroup; we include a proof for
completeness in our setting.

Corollary 6.4. Let I be a minimal left ideal in S†
x (G,G) and u an idempotent in I .

Let p be any element in I . Then the map (−∗ p)|u∗I : u ∗ I → u ∗ I is a continuous
bijection. Moreover, (− ∗ p)|u∗I = (− ∗ (u ∗ p))|u∗I .

Proof. We have (u ∗ I )∗ p = u ∗ (I ∗ p)= u ∗ I as I ∗ p = I by Fact 2.34(5) (using
Fact 2.28).

To show surjectivity, fix r ∈ u ∗ I ; as u ∗ p ∈ u ∗ I and u ∗ I is a group with
identity u, there exists some s ∈ u ∗ I such that s ∗ (u ∗ p)= u; then r ∗ s ∈ u ∗ I ,
and (r ∗ s) ∗ p = (r ∗ s ∗ u) ∗ p = r ∗ (s ∗ (u ∗ p))= r ∗ u = r . To show injectivity,
assume r ∗ p = t ∗ p for some r, t ∈ u ∗ I ; as also r ∗ u = r and t ∗ u = t , we have
r ∗ (u ∗ p)= t ∗ (u ∗ p), and therefore, taking inverses in the group u ∗ I , we have
r ∗ (u ∗ p)∗ (u ∗ p)−1

= t ∗ (u ∗ p)∗ (u ∗ p)−1, so r ∗u = t ∗u, so r = t . Finally, the
map is continuous as a restriction of a continuous map −∗ p : S†

x (G,G)→ S†
x (G,G).

The “moreover” part follows directly from associativity. □

6B. Compact ideal subgroups (CIG1). We define CIG1 semigroups and show that
under this assumption, we can describe a minimal left ideal of the semigroup of
measures.

Definition 6.5. We say that the semigroup (S†
x (G,G), ∗) is CIG1 (or “admits com-

pact ideal subgroups”) if there exists some minimal left ideal I and idempotent u ∈ I
such that u ∗ I is a compact group with the induced topology from I . We let hu∗I

denote the normalized Haar measure on u ∗ I , and define the Keisler measure
µu∗I ∈ Mx(G) as follows:

µu∗I (ϕ(x)) := hu∗I ([ϕ(x)] ∩ u ∗ I ).

Remark 6.6. Suppose that (S†
x (G,G), ∗) is CIG1. Then any minimal left ideal

witnesses this property, i.e., for any minimal left ideal J of S†
x (G,G) there exists

an idempotent v ∈ J such that v ∗ J is a compact group with the induced topology.

Proof. Suppose (S†
x (G,G), ∗) is CIG1. Fix a minimal left ideal I and an idempo-

tent u in I such that u ∗ I is a compact group. Let J be any other minimal left ideal.
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By Fact 2.34(6) there exists an idempotent v ∈ J such that u ∗ v = v, v ∗ u = u,
and the map (− ∗ v)|I : I → J is a homeomorphism mapping u ∗ I to v ∗ J . Note
that the restriction to u ∗ I is a group homomorphism (indeed, for p1, p2 ∈ u ∗ I ,
(p1∗v)∗(p2∗v)= p1∗v∗u∗ p2∗v= p1∗u∗ p2∗v= (p1∗ p2)∗v) and hence a con-
tinuous group isomorphism. Since it is also a homeomorphism onto its range v ∗ J ,
as the restriction of a homeomorphism, it follows that v ∗ J is a compact group. □

Lemma 6.7. The semigroup (S†
x (G,G), ∗) is CIG1 if either of the following holds:

(1) For some minimal left ideal I , every p ∈ I is definable.

(2) The ideal group of S†
x (G,G) is finite.

Proof. (1) Fix p ∈ I and let u ∈ I be the unique idempotent such that p ∈ u ∗ I (by
Fact 2.34(4)). Since p is definable, the map (p ∗ −)|I : I → I is continuous (by
Lemma 2.30) and hence also closed. Since I is compact, the image of (p ∗ −)|I is
compact and is equal to u ∗ I . Hence (u ∗ I, ∗) is a compact Hausdorff space, an
abstract group, and both left multiplication and right multiplication are continuous.
By Fact 2.35, (u ∗ I, ∗) is a compact group.

(2) This is obvious. □

Example 6.8. (1) Let G := (Z,+, <), and consider the sets

I +
:= {q ∈ Sinv

x (G,Z) : (a < x) ∈ q for all a ∈ G},

I −
:= {q ∈ Sinv

x (G,Z) : (x < a) ∈ q for all a ∈ G}.

Then I := I +
∪ I − is the unique minimal left ideal of (Sinv

x (G,Z), ∗). Note that
every type in I is definable (over Z). By Lemma 6.7, the semigroup (Sinv

x (G,Z), ∗)

is CIG1. The ideal subgroups are (I −, ∗) and (I +, ∗), both isomorphic to Ẑ as
topological groups.

(2) Consider G := SL2(R) as a definable subgroup in (R, ·,+). If I is a minimal
left ideal of

(
Sfs

x (G,SL2(R)), ∗
)

and u is an idempotent in I , then u ∗ I ∼= Z/2Z by
[Gismatullin et al. 2015, Theorem 3.17], so the semigroup is CIG1. Note that SL2(R)

is not definably amenable [Hrushovski et al. 2008, Remark 5.2; Conversano and
Pillay 2012, Lemma 4.4(1)].

(3) There exist fsg groups that are not CIG1. Consider the circle group from
Remark 6.3. The minimal left ideal of (Sfs(G, S1), ∗) is precisely Sfs(G, S1). As
in (1), this left ideal can be decomposed into two ideal subgroups as follows. Let
st : G → S1 be the standard part map. Consider the sets

I R
:= {q ∈ Sfs

x (G,G) : if b |H q , then C(st(b), b, a) for any a ∈ S1
},

I L
:= {q ∈ Sfs

x (G,G) : if b |H q , then C(a, b, st(b)) for any a ∈ S1
}.

Then both I R and I L are ideal subgroups which are isomorphic (as abstract
groups) to S1, and Sfs

x (G, S1)= I R
⊔ I L . Moreover, I R and I L are dense subsets
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of Sfs
x (G, S1). Note that if I R were compact (with the induced topology), we would

have I R
= Sfs

x (G, S1), a contradiction. The same argument applies to I L . Therefore,(
Sfs

x (G,SL2(R)), ∗
)

is not CIG1.

Lemma 6.9. Assume that (S†
x (G,G), ∗) is CIG1. Let I ⊆ S†

x (G,G) be a minimal
left ideal and u an idempotent in I such that u ∗ I is a compact group. Then for any
p ∈ u ∗ I we have µu∗I ∗ δp = µu∗I and δp ∗µu∗I = µu∗I .

Proof. Fix p ∈ u ∗ I and ϕ(x) ∈ Lx(G). Let G ′
≺ G be a small model containing G

and the parameters of ϕ. Let a |H p|G ′ , and let p−1 be the unique element of the
group u ∗ I such that p ∗ p−1

= u.

Claim 1: (µu∗I ∗ δp)(ϕ(x))= µu∗I (ϕ(x)).

Proof. We have the following computation, using right-invariance of the Haar
measure hu∗I on u ∗ I :

(µu∗I ∗ δp)(ϕ(x))

=

∫
Sy(G ′)

Fϕ
′

µu∗I
d(δp|G ′)= Fϕ

′

µu∗I
(p|G ′)= µu∗I (ϕ(x · a))

= hu∗I
(
[ϕ(x · a)] ∩ u ∗ I

)
= hu∗I

(
{q ∈ u ∗ I : ϕ(x · a) ∈ q}

)
= hu∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ q ∗ p}

)
= hu∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ q} ∗ p−1)

= hu∗I
(
{q ∈ u ∗ I : ϕ(x) ∈ q}

)
= µu∗I (ϕ(x)). □

Claim 2: (δp ∗µu∗I )(ϕ(x))= µu∗I (ϕ(x)).

Proof. Let r : Sy(G) → Sy(G ′) be the restriction map. Let µ̃u∗I be the exten-
sion of µu∗I to a regular Borel probability measure on Sx(G). By construction,
supp(µ̃u∗I )= sup(µu∗I )= u ∗ I and µ̃u∗I |u∗I = hu∗I . Using left-invariance of hu∗I

we have

(δp ∗µu∗I )(ϕ(x))

=

∫
Sy(G ′)

Fϕ
′

δp
d(µu∗I |G ′)=

∫
Sy(G)

(Fϕ
′

δp
◦ r) dµu∗I

= µ̃u∗I
(
{q ∈ Sx(G) : (Fϕ

′

δp
◦ r)(q)= 1}

)
= µ̃u∗I

(
{q ∈ Sx(G) : ϕ(x) ∈ p ∗ q}

)
= µ̃u∗I

(
{q ∈ u ∗ I : ϕ(x) ∈ p ∗ q}

)
= hu∗I

(
p−1

∗ {q ∈ u ∗ I : ϕ(x) ∈ q}
)

= hu∗I
(
{q ∈ u ∗ I : ϕ(x) ∈ q}

)
= µu∗I (ϕ(x)). □

Hence the statement holds. □

Lemma 6.10. Assume that (S†
x (G,G), ∗) is CIG1. Let I ⊆ S†

x (G,G) be a minimal
left ideal and u an idempotent in I such that u ∗ I is a compact group. Then for
any p ∈ I we have µu∗I ∗ δp = µu∗I .
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Proof. For any p ∈ I we have

µu∗I ∗ δp = (µu∗I ∗ δu) ∗ δp = µu∗I ∗ (δu ∗ δp)= µu∗I ∗ δu∗p = µu∗I ,

where the first and the last equalities are by Lemma 6.9, as u, u ∗ p ∈ u ∗ I . □

Theorem 6.11. Assume (S†
x (G,G), ∗) is CIG1. Let I ⊆ S†

x (G,G) be a minimal left
ideal and u an idempotent in I such that u∗ I is a compact group. Then M(I )∗µu∗I

is a minimal left ideal of (M†
x(G,G), ∗), containing an idempotent µu∗I .

Proof. We first argue thatµu∗I is an element of some minimal left ideal of M†
x(G,G).

We know that M(I ) is a closed (by Fact 2.34 and Lemma 2.17) left ideal of
(M†

x(G,G), ∗) (by Lemma 6.2). Hence there exists some L ⊆ M(I ) such that L is
a minimal left ideal of (M†

x(G,G), ∗), and we show that µu∗I ∈ L . Let ν ∈M(I ) be
arbitrary. If p ∈ sup(ν), then p ∈ I . By Lemma 6.10, we then have µu∗I ∗δp =µu∗I

for every p ∈ sup(ν). By Lemma 6.1 this implies µu∗I ∗ ν = µu∗I , and therefore
µu∗I ∗M(I )= {µu∗I }. In particular, µu∗I ∗ L = {µu∗I }, and since L is a left ideal
this implies µu∗I ∈ L (and also that µu∗I is an idempotent).

Then M†
x(G,G) ∗µu∗I = L by Fact 2.34(5). We also have that L ∗µu∗I = L

since µu∗I ∈ L and L is a minimal left-ideal. Thus

L = L ∗µu∗I ⊆ M(I ) ∗µu∗I ⊆ M†
x(G,G) ∗µu∗I = L .

Hence M(I )∗µu∗I = L , so M(I )∗µu∗I is a minimal left ideal of (M†
x(G,G), ∗). □

Corollary 6.12. Suppose that (S†
x (G,G), ∗) is CIG1. Let I be a minimal left ideal

and u an idempotent in I such that u ∗ I is a compact group. Let J be any minimal
left ideal of (M†

x(G,G), ∗). Then J and M(I ) ∗µu∗I are affinely homeomorphic.

Proof. By Fact 2.34(6), Lemma 5.2, and Theorem 6.11. □

6C. Compact ideal subgroups in minimal ideals with Hausdorff quotients (CIG2).
In this section we define CIG2 semigroups and show that under this stronger
assumption, any minimal left ideal of (M†

x(G,G), ∗) is affinely homeomorphic to
the space of regular Borel probability measures over a certain compact Hausdorff
space given by a quotient of a minimal left ideal in (S†

x (G,G), ∗).

Definition 6.13. Let I be a minimal left ideal in (S†
x (G,G), ∗). We define the

quotient space K I := I/ ∼, where p ∼ q if and only if p and q are elements
of the same ideal subgroup of I , i.e., there exists some idempotent u ∈ I such
that p, q ∈ u ∗ I . We endow K I with the induced quotient topology and write
elements of K as [u ∗ I ], where u is an idempotent in I .

The quotient topology on K I is automatically compact, but may not be Hausdorff.
CIG2 stipulates that this quotient is Hausdorff.
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Definition 6.14. We say that the semigroup (S†
x (G,G), ∗) is CIG2 if there exists a

minimal left ideal I such that

(i) for any idempotent u ∈ I , u ∗ I is compact;

(ii) for any p ∈ I and u′
∈ id(I ), the map (p ∗ −)|u′∗I is continuous (note that the

range of this map is u ∗ I , where u ∈ id(I ) is such that p ∈ u ∗ I );

(iii) K I is Hausdorff.

We remark that in the above definition, (i) follows from (iii) since each u ∗ I is a
preimage of a point (and hence a closed set) in K I under the quotient map.

Lemma 6.15.2 The semigroup (S†
x (G,G), ∗) is CIG2 if either of the following holds:

(1) The ideal group of (S†
x (G,G), ∗) is finite.

(2) For some minimal ideal I ⊆ S†
x (G,G), every p ∈ I is definable.

Proof. (1) Assume that the ideal group of (S†
x (G,G), ∗) is finite. Then the first two

conditions of CIG2 are clearly satisfied, and we show (iii) from Definition 6.14.
Suppose that I is a minimal left ideal in (S†

x (G,G), ∗), and let u be an idempotent
in I . Let us denote elements of u ∗ I as g. Then u ∗ I acts on I on the right via
p · g := p ∗ g, and the orbit equivalence relation under this group action is the
same as the equivalence relation ∼ in the definition of K I . Indeed, u is the identity
of u ∗ I and p ∗ u = p for all p ∈ I by Fact 2.34(2); if p · g = q and p ∈ u′

∗ I
for some u′

∈ id(I ), then q = p ∗ g ∈ (u′
∗ I ) ∗ g = u′

∗ (I ∗ g) ⊆ u′
∗ I ; and

conversely, if p, q ∈ u′
∗ I , using that u′

∗ I is a group and Fact 2.34(2), we have
p = (q ∗q−1)∗ p = q ∗(q−1

∗ p)= q ∗(u′
∗r)= q ∗(u′

∗u)∗r = (q ∗u′)∗(u ∗r)=
q ∗ (u ∗ r)= q · g for some r ∈ I and g := u ∗ r . This action is continuous by left
continuity of convolution.

So K I = I/(u ∗ I ), and the quotient of any Hausdorff space by a continuous
finite group action remains Hausdorff. Hence K I is Hausdorff.

(2) The conditions (i) and (ii) of CIG2 hold since every type in the minimal left
ideal I is definable, as in the proof of Lemma 6.7(1). Let u ∈ I be an idempotent.
Arguing as in (1) we get K I = I/(u ∗ I ). The right action of the group u ∗ I on I is
continuous on the right, and by the assumption and Lemma 2.30 it is also continuous
on the left and therefore continuous by the Ellis joint continuity theorem (Fact 2.35).
Thus I/(u ∗ I ) is Hausdorff, as the quotient of a Hausdorff space by the continuous
action of a compact group. □

The next fact follows directly from the definitions and Fact 2.35.

Remark 6.16. If (S†
x (G,G), ∗) is CIG2, then it is CIG1. Moreover, if I is a minimal

left ideal of (S†
x (G,G), ∗) witnessing CIG2, then for any idempotent u ∈ I , u ∗ I is

2We thank the referee for pointing out a more general version of Lemma 6.15, as well as
Remark 6.17.
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a compact group with the induced topology. Thus for every idempotent u in I , the
measure µu∗I is well defined.

Remark 6.17. (1) In the proof of Lemma 6.15(2), it suffices to assume that for
some idempotent u ∈ I , u ∗ I is closed and that for all p ∈ I , the map p∗−|u∗I

is continuous.

(2) We also have the following equivalence: CIG2 holds if and only if CIG1 holds,
and the map u′

∗−|u∗I is continuous for some u witnessing CIG1 and every
idempotent u′

∈ I .
Indeed, since u ∗ I is compact, it follows that each u′

∗ I is compact, and
thus closed and u′

∗ −|u∗I is a homeomorphism. Since it is also a group
isomorphism, each u′

∗ I is a compact group. Now, given any p ∈ u′
∗ I , we

have p = u′
∗ p = u′

∗ u ∗ p, so left multiplication by p of elements of u ∗ I is
the composition of left multiplication by u ∗ p ∈ u ∗ I (continuous since u ∗ I is
a topological group) and left multiplication by u′ (continuous by assumption),
and therefore it is continuous and we conclude by (1).

Example 6.18. Both examples (1) and (2) from Example 6.8 are CIG2.

(1) The semigroup (Sinv
x (G,Z), ∗) is CIG2 by Lemma 6.15(2) as all types in I are

definable (note that we have |K I | = 2).

(2) The ideal group of
(
Sfs

x (G,SL2(R)), ∗
)

is finite (∼= Z/2Z), so it is CIG2 by
Lemma 6.15(1).

Lemma 6.19. Assume that (S†
x (G,G), ∗) is CIG2, and let I be a minimal left ideal

witnessing it. Then for any p ∈ I and u ∈ id(I ) we have δp ∗µu∗I =µu′∗I , where u′

is the unique idempotent in I such that p ∈ u′
∗ I .

Proof. Fix u, u′
∈ id(I ). Then the transition map ρu,u′ := (u′

∗−)|u∗I : u∗ I → u′
∗ I

is an isomorphism of topological groups (it is a group isomorphism by Fact 2.34(3)
and continuous by (ii) in CIG2, and ρu′,u ◦ ρu,u′ = idu∗I ). Let 8u,u′ : M(u ∗ I )→

M(u′
∗ I ) be the corresponding pushforward map. Note that8u′,u◦8u,u′ = idM(u∗I ).

Moreover, 8u,u′(hu∗I ) = hu′∗I because 8u,u′(hu∗I ) is a regular Borel probability
measure on u′

∗ I which is right-invariant, and this property characterizes the
normalized Haar measure. By a computation similar to the proof of Claim 2 in
Lemma 6.9, for any ϕ(x) ∈ Lx(G) we have

(δu ∗µu′∗I )(ϕ(x))= hu′∗I
(
{q ∈ u′

∗ I : ϕ(x) ∈ u ∗ q}
)

= (8u,u′(hu∗I ))
(
{q ∈ u′

∗ I : ϕ(x) ∈ u ∗ q}
)

= hu∗I
(
ρ−1

u,u′

(
{q ∈ u′

∗ I : ϕ(x) ∈ u ∗ q}
))

= hu∗I
(
u ∗ {q ∈ u′

∗ I : ϕ(x) ∈ u ∗ q}
)

= hu∗I
(
{q ∈ u ∗ I : ϕ(x) ∈ q}

)
= µu∗I (ϕ(x)),



DEFINABLE CONVOLUTION AND IDEMPOTENT KEISLER MEASURES, II 227

and hence δu ∗µu′∗I = µu∗I . Now let p ∈ u′
∗ I . By Lemma 6.9 and the above

computation, using that p = p ∗ u′ by Fact 2.34(2), we have

δp∗µu∗I = δp∗u′ ∗µu∗I = (δp∗δu′)∗µu∗I = δp∗(δu′ ∗µu∗I )= δp∗µu′∗I =µu′∗I . □

Theorem 6.20. Suppose that (S†
x (G,G), ∗) is CIG2. Let I ⊆ S†

x (G,G) be a min-
imal left ideal witnessing CIG2. Then all minimal left ideals of (M†

x(G,G), ∗)
are affinely homeomorphic to M(K I ) (in particular, they are Bauer simplices by
item (2) of Fact 2.41).

Proof. Let u ∈ id(I ). By Remark 6.16 and Corollary 6.12, it suffices to show
that M(I ) ∗µu∗I ∼= M(K I ). For ease of notation, denote the minimal left ideal
M(I ) ∗ µu∗I as L . Let q : I → K I denote the (continuous) quotient map, and
q∗ :M(I )→M(K I ) the corresponding pushforward map. Note that q∗ is affine by
Fact 2.1(iii). By Proposition 2.21, we have an affine homeomorphism γ : M(I )→

M(I ). Let 8 := (q∗ ◦ γ )|L . We claim that 8 is an affine homeomorphism. Note
that 8 is the restriction of the composition of two continuous affine maps, so 8
itself is a continuous affine map. It suffices to show that 8 is a bijection (since it is
automatically a closed map as L is compact and M(K I ) is Hausdorff by Fact 2.1(i)
as K I is compact Hausdorff by CIG2).

Claim 1: 8 is surjective.

Proof. The extreme points of M(K I ) are the Dirac measures concentrating on the
elements of K I (see, e.g., [Simon 2011, Example 8.16]). By the Krein–Milman
theorem, the set{ n∑

i=1

riδ[ui ∗I ] : [ui ∗ I ] ∈ K I , ri ∈ R>0,

n∑
i=1

ri = 1, n ∈ N

}
is dense in M(K I ). Fix some u1, . . . , un ∈ id(I ) and r1, . . . , rn ∈ R>0 such that∑n

i=1 ri = 1. It suffices to find some µ ∈ L such that 8(µ)=
∑n

i=1 riδ[ui ∗I ] (as 8
is a closed map, it will follow that 8(L)= M(K I )).

Let λ :=
∑n

i=1 riδui ∈ M†
x(G,G). Since µu∗I ∈ L (by Theorem 6.11) and L is a

left ideal, also λ ∗µu∗I ∈ L . By Lemmas 5.2 and 6.19, we have

λ ∗µu∗I =

( n∑
i=1

riδui

)
∗µu∗I =

n∑
i=1

ri (δui ∗µu∗I )=

n∑
i=1

riµui ∗I ,

and as γ and q∗ are affine this implies

8(λ ∗µu∗I )=8

( n∑
i=1

riµui ∗I

)
=

n∑
i=1

ri q∗(µ̃ui ∗I )=

n∑
i=1

riδ[ui ∗I ],

where µ̃ui ∗I ∈ M(I ) is the unique regular Borel probability measure extending
µui ∗I , i.e., µ̃ui ∗I (X) = hui ∗I (X ∩ ui ∗ I ) for any Borel X ⊆ I , where hui ∗I is the
Haar measure on ui ∗ I . Hence 8 is surjective. □
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Claim 2: 8 is injective.

Proof. Suppose that λ and ν are in L and λ ̸= ν. It suffices to find a continuous
function f : K I → R such that∫

K I

f d(8(λ)) ̸=

∫
K I

f d(8(ν)).

Since λ ̸=ν, there exists someψ(x)∈Lx(G) such that λ(ψ(x)) ̸=ν(ψ(x)). Consider
the function fψ : I → R defined via fψ(p) := (δp ∗ µu∗I )(ψ(x)). This map is
continuous since the map (− ∗ µu∗I )(ψ(x)) : M†

x(G,G) → R is continuous by
the “moreover” part of Fact 2.29 (and the map p ∈ S†

x (G,G) 7→ δp ∈ M†
x(G,G) is

continuous). Moreover, fψ factors through q. Indeed, assume that q(p1)= q(p2)

for some p1, p2 ∈ I . Then there exists some w ∈ id(I ) such that p1, p2 ∈ w ∗ I .
Then by Lemma 6.19 we have

fψ(p1)= (δp1 ∗µu∗I )(ψ(x))= µw∗I (ψ(x))= (δp2 ∗µu∗I )(ψ(x))= fψ(p2).

By the universal property of quotient maps, there exists a unique continuous func-
tion f : K I → R such that fψ = f ◦ q. Since λ ∈ L ⊆ M(I ) (by the proof of
Theorem 6.11), by Lemma 2.25 there exists a net of measures (Av( p̄ j )) j∈J such that
p̄ j = (p j,1, . . . , p j,n j ) ∈ I n j and lim j∈J Av( p̄ j )= λ for each j ∈ J . Because γ is
an affine homeomorphism, we then have γ (λ)= lim j∈J

(
(1/n j )

∑n j
k=1 δp j,k

)
. Hence

we have the following computation:∫
K I

f d(8(λ))

=

∫
K I

f d
(
q∗(γ (λ))

)
=

∫
I
( f ◦ q) d(γ (λ))=

∫
I

fψ d(γ (λ))

=

∫
Sx (G)

fψ d(γ (λ))=
∫

Sx (G)
fψ d

(
lim
j∈J

(
1
n j

n j∑
k=1

δp j,k

))

= lim
j∈J

∫
Sx (G)

fψ d
(

1
n j

n j∑
k=1

δp j,k

)
= lim

j∈J

(
Av( p̄ j )∗µu∗I (ψ(x))

)
(by Fact 2.1(ii))

=
(
(lim

j∈J
Av( p̄ j ))∗µu∗I

)
(ψ(x))= (λ∗µu∗I )(ψ(x))=λ(ψ(x)),

where the last equality holds by Fact 2.34(2), as µu∗I is an idempotent in L . A
similar computation shows that

∫
K I

f d(8(ν)) = ν(ψ(x)) ̸= λ(ψ(x)), so 8 is
injective. □

Claims 1 and 2 establish the theorem. □

Example 6.21. (1) Let G := (R,+, <). Then the semigroup Sinv
x (G,R) is CIG2.

Indeed, the unique minimal left ideal of Sinv
x (G,R) is I = {p−∞, p+∞}, and both

elements of I are idempotents (see Example 4.5(3)). The ideal subgroups of I
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are {p−∞} and {p+∞}, both of which are obviously compact groups under induced
topology. We have M(I ) = {rδp−∞

+ (1 − r)δp+∞
: r ∈ [0, 1]}, and if u = p±∞

then µu∗I = δp±∞
.

Now we let ν ∈ M(I ), and then ν = rδp−∞
+ sδp+∞

for some r, s ∈ [0, 1] with
r +s = 1. Then ν∗µp±∞∗I = (rδp−∞

+sδp+∞
)∗µp±∞∗I = (rδp−∞

+sδp+∞
)∗δp±∞

=

r(δp−∞
∗δp±∞

)+s(δp+∞
∗δp±∞

)=rδp−∞
+sδp+∞

. Therefore M(I )∗µp±∞∗I =M(I ),
and so M(I ) ∗µp±∞∗I ∼= M({0, 1}) is a minimal ideal of (Minv

x (G,R), ∗).

(2) Let G := (Z,+, <). Then the semigroup Sinv
x (G,Z) is CIG2, the unique minimal

left ideal of Sinv
x (G,Z) is I = I +

⊔ I − and the ideal subgroups of I are I + and I −

(see Examples 6.8 and 6.18). Both ideal subgroups are compact groups under
induced topology, isomorphic to Ẑ as a topological group.

Let u+
∈ I + and u−

∈ I − be the identity group elements in I − and I +, respectively.
Then µu±∗I is the Haar measure on I ± ∼= Ẑ. For every ν ∈ M(I ) we can write
ν = rν−

+ sν+ for the measures ν− and ν+ defined by

ν−(ϕ(x))=
ν(ϕ(x)∧ x < b)

ν(x < b)
, ν+(ϕ(x))=

ν(ϕ(x)∧ x > c)
ν(x > c)

and b < Z< c.

We also have ν ∗µu±∗I = (rν−
+ sν+)∗µu±∗I = r(ν−

∗µu±∗I )+ s(ν+
∗µu±∗I )=

rµu−∗I + sµu+∗I . Therefore M(I ) ∗µu±∞∗I = {rµu−∗I + sµu+∗I : r + s = 1} ∼=

M({0, 1}) is a minimal ideal of (Minv
x (G,R), ∗).

Fact 6.22 [Gismatullin et al. 2015]. Let R ≺ R be a saturated real closed field,
G := SL2(R) and G := SL2(R). Consider the definable subgroups of G given by

T :=

{([
x −y
y x

])
: x2

+ y2
= 1

}
and H :=

{([
b c
0 b−1

])
: b ∈ R>0, c ∈ R

}
.

Let p0 := tp((b, c)/R) such that b > R and c > dcl(R ∪ {b}). We view p0 as a
type in SH(R)3 identifying (b, c) with the matrix

[ b
0

c
b−1

]
. Let q0 := tp((x, y)/R),

where y is positive infinitesimal and x > 0 is the positive square root of 1 − y2.
We view q0 as a type in ST (R) identifying (x, y) with the matrix

[ x
y

−y
x

]
. We let r0

be tp(t ·h/R)∈ SG(R), where h ∈H realizes p0 and t ∈ T realizes the unique coheir
of q0 over R ∪ {h}. Then

(1) Sfs
G (R,R) ∗ r0 is a minimal left ideal of Sfs

G (R,R);

(2) any ideal subgroup of Sfs
G (R,R)∗r0 is isomorphic to Z/2Z; in particular, if we

let r1 be the unique element in Sfs
G (R,R)∗ r0 such that r1 ∗ r1 = r0 and r1 ̸= r0,

then {r0, r1} is an ideal subgroup.

3As usual, we denote by SH(−) the space of types concentrating on the definable set H; all of our
results can be modified in an obvious manner to apply to definable groups in an arbitrary theory, as
opposed to theories expanding a group.
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Example 6.23. Let G = SL2(R) and Sfs
G (R,R) be the collection of global types

concentrated on G which are finitely satisfiable in SL2(R). By Fact 6.22, {r0, r1} is
an ideal subgroup of Sfs

G (R,R) which is trivially a compact group with the induced
topology, and 1

2(δr0 + δr1) is the normalized Haar measure on it. By Theorem 6.11,
M(Sfs

G (R,R)∗r0)∗
1
2(δr0 +δr1) is a minimal left ideal in Mfs

G (R,R). Moreover, this
minimal left ideal is affinely homeomorphic to M(KSfs

G (R,R)∗r0
) by Theorem 6.20

(see the notation there), which is a Bauer simplex with infinitely many extreme
points (by Remark 5.26).

More generally, we have:4

Remark 6.24. If G is NIP, not definably amenable and (S†
x (G,G), ∗) is CIG2,

then the quotient K I is infinite for each minimal ideal I in (S†
x (G,G), ∗), and the

minimal ideals in (M†
x(G,G), ∗) are Bauer simplices, each with infinitely many

extreme points (by Fact 2.41(2), Remark 5.26 and Theorem 6.20).

Remark 6.25. Assume that G is NIP and (Sfs
x (G,G), ∗) is CIG2. Then the following

are equivalent:

(1) G is definably amenable.

(2) |K I | = 1 for each minimal left ideal I in Sfs
x (G,G).

(3) K I is finite for some minimal left ideal I in Sfs
x (G,G).

Proof. (1) ⇒ (2) By definable amenability and Proposition 5.16, |J | = 1 for
every minimal left ideal J in (Mfs

x (G,G), ∗). By Theorem 6.20, J is affinely
homeomorphic to M(K I ) for some minimal left ideal I of (Sfs

x (G,G), ∗) and
therefore |K I | = 1 also. By Fact 2.34(6), we have |K I ′ | = 1 for every minimal left
ideal I ′ of (Sfs

x (G,G), ∗).

(2)⇒ (3) This is trivial.

(3)⇒ (1) This is by Remark 6.24 applied for † = fs. □

Remark 6.26. The implication (1) ⇒ (2) in Remark 6.25 does not hold when
(Sfs

x (G,G), ∗) is replaced by (Sinv
x (G,G), ∗). Indeed, (Z,+, <) is NIP, definably

amenable, CIG2, but |K I | = 2 (see Example 6.18(1)).

Question 6.27. It would be interesting to describe minimal left ideals of the
semigroup (M†

x(G,G), ∗) for some nondefinably amenable groups G where a
description of the minimal left ideals/ideal subgroups of (S†

x (G,G), ∗) is known
(other than SL2(R)), including certain algebraic groups definable in Qp [Penazzi
et al. 2019; Bao and Yao 2022] or in certain dp-minimal fields [Jagiella 2021].

Question 6.28. Is the set of extreme points of a minimal left ideal of (M†
x(G,G), ∗)

always closed, or at least Borel, in a (not necessarily definably amenable) NIP
group G?

4We thank the referee for suggesting the following two remarks.
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