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Higher amalgamation properties in measured structures

David M. Evans

Using an infinitary version of the hypergraph removal lemma due to Towsner, we
prove a model-theoretic higher amalgamation result. In particular, we obtain an
independent amalgamation property which holds in structures that are measurable
in the sense of Macpherson and Steinhorn, but which is not generally true in
structures that are supersimple of finite SU-rank. We use this to show that some
of Hrushovski’s non-locally-modular, supersimple ω-categorical structures are
not MS-measurable.

1. Introduction

Towsner [2018] gives an infinitary version of the hypergraph removal lemma (quoted
as Theorem 2.3 here), stated as a rather general measure-theoretic result. We use
this to prove a model-theoretic higher amalgamation result (Theorem 2.4), again
in the presence of a definable measure. In particular, we obtain an independent
amalgamation property (Corollary 3.2; quoted below as Corollary 1.1) which holds
in structures that are measurable in the sense of Macpherson and Steinhorn.

The statement of this independent amalgamation property makes no mention of
measure and it makes sense in any supersimple structure of finite SU-rank. However,
it is not generally true in structures which are supersimple of finite SU-rank. In
Theorem 4.7, we use a Hrushovski construction to produce a structure which is
ω-categorical, supersimple of SU-rank 1 and which does not satisfy the conclusion
of Corollary 3.2. It follows that this structure is not MS-measurable.

The question of whether any (nontrivial) ω-categorical Hrushovski construction
can be MS-measurable is open, and this is an important special case of the more
general question of whether ω-categorical MS-measurable structures are necessarily
one-based. Paolo Marimon [2022a; 2022b] has used a different and more generally
applicable approach to show that a much wider class of ω-categorical, supersimple
Hrushovski constructions are not MS-measurable. It is also unknown whether any
of the ω-categorical Hrushovski constructions can be pseudofinite. In Remarks 4.6
we note that, as a by-product of our approach to non-MS-measurability, we obtain
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information about what coarse pseudofinite dimension would have to be in such a
structure, if it were pseudofinite.

We begin with a rough outline of what we mean by a “higher amalgamation
property”. This is adapted to the form of the Towsner’s paper, so is slightly different
from other presentations (for example in [Hrushovski 2012]).

Suppose L is a first-order language and M is an L-structure with domain M
and C ⊆ M . Let T denote the theory of M. We will assume that M is “large” (for
example ℵ1-saturated, if L is countable) and C has smaller cardinality than that
of M . Suppose n ≥ 2 is a natural number. In an n-amalgamation problem over C
we are looking for an n-tuple b̄ = (b1, . . . , bn) which satisfies certain constraints on
subtuples b̄I = (bi : i ∈ I ) with I ⊆ [n] = {1, . . . , n} of size n − 1. The constraints
should be in terms of the parameters C , say in the form of satisfying a type, or
partial type, 8I (x̄ I ), over C . Here, x̄ = (x1, . . . , xn) is an n-tuple of variables
and x I = (xi : i ∈ I ). So, subject to reasonable compatibility requirements, such
as 8I (x̄ I ) and 8J (x̄ J ) having the same restriction to x̄ I∩J , we are looking for a
solution b̄ |H

∧
I 8I (x̄ I ), or, in terms of the sets AI = {ā ∈ Mn

: M |H8I (ā)}, an
element of

⋂
I AI . If the 8I are complete types over C , we might refer to this as a

type-amalgamation problem.
There are well-known variations on this. If M carries a notion of independence

(or dimension on definable sets) then in an independent n-amalgamation problem
over C , we are also looking for the bi to be independent over C . Of course,
in this case, the individual constraints 8I (x̄ I ) should have solutions which are
independent over C . For example, if T is stable, then for all n, any independent
type-amalgamation problem over a model (with n complete types over the model)
has a solution. If T is simple, then this is true for n = 2, 3 (the case n = 3
is of course the independence theorem of Kim and Pillay). However, there are
examples of supersimple theories of finite SU-rank which do not have independent
4-amalgamation over a model.

Our main result, Theorem 2.4, is an n-amalgamation property which holds in a
general context where the set of n-tuples from which we are looking for a solution
carries a well-behaved probability measure (see Section 2A for a precise statement).
The general form of the statement is that we assume there our n-amalgamation
problem has “degenerate” solutions b̄ = (b1, . . . , bn), where the bi are interalgebraic
over C . The conclusion is that the set of all solutions is of positive measure (and in
particular, there are solutions where the bi are not interalgebraic). Of course, for
this to work, we need to ensure that there are enough solutions to the 8I : in the
above notation, we require that the measure of AI is positive, for each (n−1)-set I .

If M is an MS-measurable structure (see Section 3B for definitions and back-
ground) there is a strong interaction between dimension and measure. The struc-
ture M is supersimple of finite SU-rank and each definable subset has an associated
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dimension (which can be taken as SU-rank for the purposes of this introduction).
Each definable set also carries a (definable) probability measure on its definable
subsets with the property that a subset has positive measure if and only if it has the
same dimension as the ambient definable set.

From Theorem 2.4 we obtain the following independent amalgamation result
(Corollary 3.2), which holds in any MS-measurable M .

Corollary 1.1. Suppose M is an MS-measurable structure and S1, . . . , Sn are
infinite C-definable sets, for some finite C ⊂ M. Let S = S1 × · · · × Sn and for
I ⊂ [n] = {1, . . . , n}, let πI : S →

∏
i∈I Si be the projection map. Suppose E ⊆ S

is a C-definable subset such that

(a) if I ⊂ [n] and |I | = n − 1, then dim(πI (E))=
∑

i∈I dim(Si ), and

(b) if (b1, . . . , bn) ∈ E , then bi ∈ acl(C ∪ {b j : j ̸= i}).

Then

dim
{
b̄ ∈ S : πI (b̄) ∈ πI (E) for all I with |I | = n − 1

}
= dim(S).

Note that this does not tell us anything if M has trivial algebraic closure. Note
also that it does not refer to the measure, so it makes sense in any supersimple theory
(more properly, any S1-theory) of finite SU-rank. In Section 4 we give an example
of a supersimple structure of SU-rank 1 which does not satisfy the above result:
so we have an independent amalgamation result which holds in MS-measurable
structures, but which is not generally true in finite rank supersimple structures.

This paper is a revised version of some unpublished notes written in 2011–2012.
The original version made use of Towsner’s unpublished article [2010] and proved
Theorem 2.4 under stronger assumptions on the definability of the measure and the
behaviour of the measure under projection maps with finite fibres. In 2019, I sent a
copy of the notes to Ehud Hrushovski, who observed that these assumptions could
be weakened. He also gave examples of additional contexts in which the weaker
assumptions would hold: see Section 3C here.

Towsner’s published paper [2018] contains a reworking of [Towsner 2010] which
involves a weaker assumption on the definability of the measure. In revising the
original notes, I have therefore rewritten the proof of Theorem 2.4 to follow the
approach and notation of [Towsner 2018].

The structure of the paper is as follows. In Section 2A we give the necessary
notation and background to state Towsner’s version of the hypergraph removal
lemma from [Towsner 2018]. In Section 2B we deduce the main result, Theorem 2.4,
from this. Our result is related to a standard deduction of Szemerédi’s theorem from
the hypergraph removal lemma: we make this explicit in Section 3A. In Section 3B,
we discuss MS-measurability and prove Corollary 3.2, stated above. Additional
examples in NIP theories are mentioned briefly in Section 3C. In Section 4, we
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discuss the ω-categorical Hrushovski constructions and their relationship to various
open questions around MS-measurable ω-categorical structures. The main result of
the section is Theorem 4.7, where we construct an ω-categorical structure which is
of SU-rank 1 and which does not satisfy the amalgamation property in Corollary 3.2.

2. An amalgamation theorem for measured structures

2A. Measured structures. The following setup is taken from Towsner’s paper
[2018]. Chapter 1 of [Kallenberg 1997] is a convenient reference for the basic
measure theory we need.

We work with a structure M with domain M . The following notation is introduced
in [Towsner 2018, Section 2]. If V is a finite set of indices, then a V -tuple from M
is a function āV : V → M and we denote the set of these by MV . A V -tuple of
variables will generally be denoted by x̄V . If I ⊆ V then āI ∈ M I is the restriction
of this to I . If U and W are disjoint sets, we write āU ∪ āW for the (U∪W )-tuple
extending āU and āW . If B ⊆ MU∪W and āW ∈ MW , then B(āW ) denotes the fibre
(or “slice”) {āU ∈ MU

: āU ∪ āW ∈ B}.
In what follows, V is a fixed finite set of indices V = {1, . . . , n} = [n] for

some n ∈N. We often denote āV or x̄V simply by ā or x̄ , dropping the reference to V .

Definition 2.1 [Towsner 2018, Definition 4.1]. Suppose that for each U ⊆ V we
have a Boolean algebra B0

U of subsets of MU such that

• ∅ ∈ B0
U ;

• B0
U ×B0

W ⊆ B0
U∪W for disjoint U,W ⊆ V ;

• if U,W ⊆ V are disjoint, āW ∈ MW and B ∈ B0
U∪W , then B(āW ) ∈ B0

U .

For I ⊆ V we define B0
V,I to be the Boolean algebra generated by subsets

{āV ∈ MV
: āI ∈ B},

where B ∈ B0
I .

In all cases we will drop the superscript 0 to indicate the σ -algebra generated by
the Boolean algebra.

The main result we need from [Towsner 2018] is Theorem 2.3 below. When we
use this, B0

V will consist of the parameter-definable subsets of MV , so the reader
may assume this from now on. We then refer to the elements of BV as Borel sets.
If X ⊆ M , then B0

V (X) will denote the X -definable subsets of MV , and we use a
corresponding variation in the notation for the algebras introduced above. We will
assume sufficient saturation, so that it makes sense to identify a formula defining
a Borel set with its solution set in M . In particular, if the language is countable,
we assume that M is ℵ1-saturated. If the model is multisorted, then we can restrict
each variable to having values in a particular sort.
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Suppose, with the above notation, that ν = νV is a probability measure on
(MV

;BV ). If I ⊆ V , let ν I denote the pushforward measure on (M I
;BI ). So for

A ∈BI , we have ν I (A)= ν(π−1
I (A)), where πI : MV

→ M I is the projection map.
Recall that if ν is a probability measure on a σ -algebra B of subsets of a set N ,

then L∞(B) denotes the space of B-measurable functions N → R which are
essentially bounded, that is, are bounded outside a set of measure 0.

Henceforth, we shall assume that the following conditions on ν hold.
• Definability: For all J ⊆ V and B ∈ BV , the function x J 7→ νV \J (B(x J )) is
BJ -measurable.

• Fubini: Suppose J ⊆ V and f ∈ L∞(νV ). Then
∫

f dνV
=

∫∫
f dν J dνV \J .

Remarks 2.2. (1) It would be more correct to refer to the definability condition as
“Borel definability”, but we will not do this.

(2) It suffices to check that the definability property holds for all B ∈ B0
V , as the

set of elements of BV for which it holds is a σ -subalgebra.

(3) The definability property is a weaker requirement than asking that ν be invariant
(over the empty set, or a small submodel).

(4) The definability property implies that, in the statement of the Fubini condition,
the map

x̄V \J 7→

∫
f (x̄ J x̄V \J ) dν J (x̄ J )

is BV \J -measurable for almost all x̄V \J ∈ MV \J . This is a standard argument using
approximation by indicator functions of sets in BV . The same sort of argument
shows that it suffices to check the Fubini condition in the case where f is the
indicator function 1B of a set B ∈ B0

V .

The following is Towsner’s infinitary analogue of the hypergraph removal lemma.
We refer to Towsner [2010; 2018] for a discussion of the origins of the proof and
the finitary versions of this. The statement follows by combining Theorem 5.3 and
Lemma 5.4 of [Towsner 2018]. Theorem 5.3 of [Towsner 2018] holds under weaker
conditions than the Fubini property (involving the notion of J -regularity of νV ),
but we will not make use of this. Lemma 5.4 of [Towsner 2018] states that the
definability and Fubini conditions imply J -regularity of νV for all J ⊆ V .

Theorem 2.3 [Towsner 2018, Theorem 5.3]. Suppose M is sufficiently saturated and
B0

V consists of the definable subsets of MV . Suppose νV is a probability measure
on BV which satisfies the definability and Fubini conditions. Let k < n = |V | and
J = [V ]

k , the set of k-subsets from V .
Let AI ∈ BV,I for I ∈ J. Suppose there is δ > 0 such that whenever BI ∈ B0

V,I
are such that νV(AI \ BI ) < δ, then

⋂
I∈J BI ̸= ∅.

Then νV
(⋂

I∈J AI
)
> 0. □
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2B. A model-theoretic corollary. In the following, we give model-theoretic condi-
tions which allows us to verify the hypotheses in Theorem 2.3. The setup is:

• M is an ℵ1-saturated structure in a countable language L .

• V = {1, . . . , n} is a set of indices (each associated to a particular sort); we let
J = {1, . . . , n − 1} ⊆ V , and J is the set of (n−1)-subsets of V .

• For each I ⊆ V , B0
I is the Boolean algebra of M-definable subsets of M I .

• ν = νV is a probability measure on BV which satisfies the definability and
Fubini conditions.

For I ⊆ V let πI denote the projection map MV
→ M I and denote by ν I the

pushforward measure induced on BI by ν. Each ν I also satisfies the corresponding
definability and Fubini properties.

Theorem 2.4. With the above notation and assumptions, suppose E ∈ BV is such
that

(a) ν J (πJ (E)) > 0;

(b) there is l ∈ N such that for all I ∈ J and ā ∈ M I , we have that π−1
I (ā)∩ E has

at most l elements;

(c) there is k > 0 such that if F ∈B0
V , then ν J (πJ (F ∩ E))≤ kν I (πI (F ∩ E)) for

all I ∈ J.

Then νV({b̄ ∈ MV
: πI (b̄) ∈ πI (E) for all I ∈ J}) > 0.

Remarks 2.5. We make some comments about the conditions on E . By the second
condition, we should not expect that ν(E) > 0. However, suppose that we also have
a measure λ on the definable subsets of E with λ(E) > 0 and r, s > 0 such that for
all F ∈ BV

0 and I ̸= J we have

rν J (πJ (F ∩ E))≤ λ(F ∩ E)≤ sν I (πI (F ∩ E)).

Then ν J (π(F ∩ E))≤ (s/r)ν I (πI (F ∩ E)), so the third condition holds.
In general, without assuming the existence of such a λ, we can define a measure ν J

I
on πJ (E) by setting ν J

I (X)= ν I
(
πI (π

−1
J (X)∩ E)

)
. Condition (c) implies that ν J

is absolutely continuous with respect to ν J
I and k is a bound on the Radon–Nikodým

derivative.

Before proving Theorem 2.4 we note the following lemmas.

Lemma 2.6. With the notation as in Theorem 2.4, suppose F ⊆ E is a countable
intersection of sets in B0

V with E. Then:

(1) ν J (πJ (F))≤ kν I (πI (F)).

(2) If J ̸= I ∈ J and C ∈ B0
I then

ν J (πJ (F \π−1
I (C))

)
≥ ν J (πJ (F))− kν I (C ∩πI (F)).
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(3) If J ̸= I ∈ J and B ∈ B0
I , then

ν J (πJ (F ∩π−1
I (B))

)
≥ ν J (πJ (F))− kν I (πI (F) \ B).

Proof. (1) Write F = E ∩
⋂

i<ω Fi , where each Fi is in B0
V . We can assume that

Fi ⊇ Fi+1. Then ℵ1-saturation implies πJ (F)=
⋂

i<ω πJ (E∩Fi ) and ν J (πJ (F))=
inf{ν J (πJ (E ∩ Fi )) : i < ω}. By assumption on E , we have ν J (πJ (E ∩ Fi )) ≤

kν I (πI (E ∩ Fi )) for each i ; taking the limit gives what we require.

(2) By (1) we have

ν J (πJ (π
−1
I (C)∩ F)

)
≤ kν I (πI (F)∩ C).

Of course, πJ (F)= πJ (π
−1
I (C)∩ F)∪πJ (F \π−1

I (C)), so

ν J (πJ (F))≤ ν J (πJ (π
−1
I (C)∩ F)

)
+ ν J (πJ (F \π−1

I (C))
)
.

Putting these together gives the required result.

(3) Apply (2), taking C to be the complement of B. □

Lemma 2.7. Suppose E ∈ BV with ν J (πJ (E)) > 0 and, for all ā ∈ E , we have
that π−1

J (πJ (ā))∩ E has at most l elements. Let X ⊆ M be a countable set over
which E is definable.

(1) There is some F ∈ BV (X) with F ⊆ E , a natural number r and an L(X)-
formula ψ(x̄) such that ν J (πJ (F)) > 0, and if ā ∈ F , then ψ(āJ , xn) isolates
tpM(an/āJ X), and this type has precisely r solutions in M. The set F can be
taken to be a countable intersection of sets in B0

V (X) with E.

(2) If X is chosen so that r in (1) is minimal, then for countable Y ⊇ X and for
almost all āJ ∈ πJ (F), if (āJ , an) ∈ F , then ψ(āJ , xn) isolates tpM(an/āJ Y )
(and therefore this type has the same solutions as tpM(an/āJ X)).

Proof. (1) For each V -variable formulaψ(x̄)∈ L(X) and r ≤ l, consider the set Eψ,r
consisting of those (a1, . . . , an) ∈ E such that the formula ψ(a1, . . . , an−1, xn)

isolates tp(an/a1, . . . , an−1, X) and this type has r solutions in M. As E is defined
over X , all of these solutions lie in E . Note that Eψ,r is defined by the conjunction
of E , and∧
χ∈L(X)

(
ψ(x1, . . . , xn)∧ (∃

=r xn)ψ(x1, . . . , xn)

∧ (∀y)
(
ψ(x1, . . . , xn−1, y)→

(
χ(x1, . . . , xn)↔χ(x1, . . . , xn−1, y)

)))
,

so is in BV (X). Moreover,
⋃
ψ; r≤l Eψ,r = E (by the algebraicity). So as this is a

countable union, there are ψ and r ≤ l with ν J (πJ (Eψ,r )) > 0. Then F = Eψ,r has
the required properties.
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(2) Let Y ⊇ X be a countable subset of M and consider

E ′
= {ā ∈ F : ψ(āJ , xn) does not isolate tp(an/āJ Y )}.

As in (1), we have E ′
∈ BV (Y ). Suppose for a contradiction that ν J (πJ (E ′)) > 0.

Applying (1) we obtain F ′
∈BV (Y ) with F ′

⊆ E ′ and ν J (πJ (F ′))> 0, some r ′
∈ N

and an L(Y )-formula ψ ′ such that for all ā ∈ F ′, ψ ′(āJ , xn) isolates tp(an/āJ Y )
and the latter has r ′ solutions. By definition of E ′ we have r ′< r and this contradicts
the choice of r . Thus ν J (πJ (E ′))= 0 and the result follows. □

We now prove Theorem 2.4.

Proof of Theorem 2.4. From Lemma 2.7(2), there is a countable subset X of M
containing the parameters for E and a countable intersection F of X -definable sets
with E such that

• ν J (πJ (F)) > 0;

• if (a1, . . . , an−1, an), (a1, . . . , an−1, a′
n)∈ F , then tpM(an/a1, . . . , an−1, X)=

tpM(a′
n/a1, . . . , an−1, X);

• if Y ⊇ X is countable, then for almost all ā ∈ F , the types tpM(an/āJ X) and
tpM(an/āJ Y ) have the same solutions.

To see the second point here, note that the two types are isolated by the same
formula, so must be equal. The other points are directly from Lemma 2.7.

For I ∈ J, let AI = π−1
I (πI (F)). So of course, AI ∈ BV,I and F ⊆

⋂
I∈J AI .

We verify that the hypotheses of Theorem 2.3 hold.
Let δ > 0 (to be fixed later) and BI ∈ B0

V,I with νV (AI \ BI ) < δ. Note that
νV(AI )= ν I (πI (F)) and similarly ν I (πI (F) \πI (BI ))= νV(AI \ BI ). Therefore,
with k as in condition (c) of Theorem 2.4 and I ̸= J , Lemma 2.6(3) gives

ν J (πJ (F ∩ BI ))≥ ν J (πJ (F))− kν I (πI (F) \πI (BI )) > ν
J (πJ (F))− kδ.

This also holds with I = J , as k ≥ 1.
Now let η = ν J (πJ (F)) (so η > 0, by choice of F) and δ =

1
2ηkn. We obtain,

for all I ∈ J,
ν J (πJ (F ∩ BI ))≥

(
1 −

1
2 n

)
η.

The measure of the union of the complements of the sets πJ (F ∩ BI ) in πJ (F)
is therefore at most 1

2η, and so

ν J
( ⋂

I∈J

πJ (F ∩ BI )

)
≥

1
2η.

Let Y be the union of X and the parameter sets of the BI . Then we can find
b̄J = (b1, . . . , bn−1) ∈

⋂
I πJ (F ∩ BI ) such that if (b̄J , bn) ∈ F and (b̄J , b′

n) ∈ F ,
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then they have the same type over Y . Indeed, almost all b̄J ∈ πJ (F) have this
property, by our conditions on F .

Take bn ∈ M with b̄ = (b1, . . . , bn−1, bn) ∈ F . We show that (b1, . . . , bn) ∈⋂
I BI , and thus the hypotheses of Theorem 2.3 hold.
Clearly b̄ ∈ BJ . Take I ̸= J . Because (b1, . . . , bn−1) ∈ πJ (F ∩ BI ), there is

(b′

1, b′

2, . . . , b′
n) ∈ F ∩ BI such that (b′

1, . . . , b′

n−1) = (b1, . . . , bn−1). Therefore
(b1, . . . , bn−1, bn), (b1, . . . , bn−1, b′

n) ∈ F , and thus bn and b′
n have the same type

over Y ∪ {b1, . . . , bn−1}. As BI is defined over Y and (b1, . . . , bn−1, b′
n) ∈ BI , it

follows that (b1, . . . , bn−1, bn) ∈ BI , as required.
We have shown

⋂
I BI ̸= ∅, so Theorem 2.3 applies to give that ν

(⋂
I AI

)
> 0.

As
⋂

I AI ⊆ {b̄ ∈ MV
: πI (b̄) ∈ πI (E) for all I ∈ J}, we have the result. □

3. Examples and applications

3A. Pseudofinite structures and Szemerédi’s theorem. In [Towsner 2010] (and
[Towsner 2018, Section 5]), the structure M is an ultraproduct of finite structures
(Fi : i < ω) and the measures arise by taking the standard part of ultraproducts
of normalised counting measures on the Fi . The original language is enriched to
ensure definability of the measure. The Fubini property then follows, as we are
dealing with counting measures.

In [Towsner 2010, Section 2], Szemerédi’s theorem is deduced from Theorem 2.3
in the following way (we do not give the details: the point is to explain where the
statement of Theorem 2.4 comes from). The original language is that of abelian
groups (written additively) and there is a predicate A( · ) for a subset of the group.
Each Fi is cyclic of prime order (increasing with i) and A[Fi ] is some subset of Fi .
Denoting the ultraproduct (in the enriched language) by G, the main assumption is
that the measure of A[G] is strictly positive.

So (G,+) is a torsion-free, divisible abelian group, and if n ∈ N and n ≥ 3,
we have a definable measure νn on the definable subsets of Gn which satisfies the
hypotheses of Theorem 2.4. The measure is invariant under definable bijections (in
particular, under translations and taking i-th roots). Let

E =

{(
x1, . . . , xn−1,

∑
i<n

xi

)
:

∑
i<n

i xi ∈ A
}
.

This is definable, and in the notation of Theorem 2.4, πJ (E)= ν1(A) > 0 (using
the divisibility of G and invariance of the measure under definable bijections). The
projection maps πI (with |I | = n − 1) are injective on E and thus the remaining
two conditions in Theorem 2.4 hold (with k = l = 1).

So, by Theorem 2.4, there is some b̄ = (b1, . . . , bn)∈ Gn such that πI (b̄)∈πI (E)
for all I of size n−1, and by positivity of the measure, we can take d =bn−

∑
i<n b j
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to be nonzero. The definition of E means that if we set a =
∑

i<n ibi , then
a, a + d, . . . , a + (n − 1)d ∈ A. Therefore, as d ̸= 0, we have an n-term arithmetic
progression in A.

3B. An amalgamation result in MS-measurable structures. The notion of a mea-
surable structure was introduced by Macpherson and Steinhorn [2008], following on
from observations of Chatzidakis, van den Dries and Macintyre in [Chatzidakis et al.
1992]. Elwes and Macpherson [2008] give a survey of results and open questions.
Following [Kestner and Pillay 2011], we refer to this notion as MS-measurability.

We recall the definition of MS-measurability [Macpherson and Steinhorn 2008,
Definition 5.1]. For a (first-order) L-structure M we denote by Def(M) the collec-
tion of all nonempty parameter definable subsets of Mn (for all n ≥ 1).

Definition 3.1. A structure M is MS-measurable if there is a dimension–measure
function h : Def(M)→ N × R>0 satisfying the following, where we write h(X)=

(dim(X), µ(X)):

(i) If X is finite (and nonempty) then h(X)= (0, |X |).

(ii) For every formula φ(x̄, ȳ) there is a finite set Dφ ⊆ N×R>0 of possible values
for h(φ(x̄, ā)) (with ā ∈ Mn), and for each such value, the set of ā giving this
value is 0-definable.

(iii) Fubini property: Suppose X, Y ∈ Def(M) and f : X → Y is a definable surjec-
tion. By (ii), Y can be partitioned into disjoint definable sets Y1, . . . , Yr such
that h( f −1(y)) is constant, equal to (di ,mi ), for y ∈ Yi . Let h(Yi )= (ei , ni ).
Let c be the maximum of di + ei and suppose this is attained for i = 1, . . . , s.
Then h(X)= (c,m1n1 + · · · + msns).

In the above, dim(X) is the dimension and µ(X) the measure of X . Clearly
we can normalise and assume that µ(M) = 1. We also extend the definition so
that µ(∅) = 0. Note that MS-measurability is a property of the theory of M ,
so any elementary extension or submodel of M is MS-measurable if M is. As
observed in [Macpherson and Steinhorn 2008, Remark 5.2], measurability implies
supersimplicity and dimension dominates D-rank, but is not necessarily equal to it.
By [Macpherson and Steinhorn 2008, Proposition 5.10], the dimension–measure
function extends to definable subsets of Meq.

We suppose (for convenience) that L is countable and suppose that M is an ℵ1-
saturated MS-measurable structure with dimension–measure function h = (dim, µ).
Let S ∈ Def(M) be infinite and let B0

S denote the set of definable subsets of S.
For D ∈ B0

S we define

νS(D)=

{
µ(D)/µ(S) if dim(D)= dim(S),

0 otherwise.
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If X1, X2 ∈ B0
S are disjoint, then (iii) of Definition 3.1 (with Y a two-point set)

shows that νS(X1 ∪ X2)= νS(X1)+ν
S(X2). So νS is a finitely additive probability

measure on B0
S and it therefore extends uniquely to a probability measure on BS ,

which we will also denote by νS .
Now suppose that S1, . . . , Sn ∈ Def(M) are infinite and S = S1 × · · · × Sn . If

I ⊆ V = {1, . . . , n}, let SI be the product of the Si for i ∈ I . As previously,
πI : S → SI is the projection map. By considering this, (iii) in Definition 3.1 gives
that dim(S)= dim(SI )+ dim(SV \I ) and µ(S)= µ(SI )µ(SV \I ).

Let ν = νV
= νS . If I ⊆ V , then the pushforward measure ν I on BSI obtained

from ν and πI is equal to νSI , as defined above. Indeed, it suffices to check this
for D ∈ B0

SI
. If dim(D)= dim(SI ), then

ν I (D)= νV(D × SV \I )

= µ(D × SV \I )/µ(S)= µ(D)µ(SV \I )/µ(S)= µ(D)/µ(SI ),

and this is equal to νSI (D). If dim(D) < dim(SI ), then dim(D × SV \I ) < dim(S),
so both ν I (D) and νSI (D) are zero.

The definability and Fubini properties given in Section 2A hold for the ν I , using
(ii) and (iii) of Definition 3.1 (see Remarks 2.2).

From Theorem 2.4 we obtain the following, which can be seen as a weak form
of independent n-amalgamation:

Corollary 3.2. Suppose M is an MS-measurable structure and S1, . . . , Sn ∈Def(M)
are infinite and defined over a finite set C ⊂ M. Let S = S1 × · · · × Sn and suppose
E ⊆ S is a C-definable subset such that

(a) dim(πI (E))=
∑

i∈I dim(Si ) for all I ∈ [n]
n−1, and

(b) if (b1, . . . , bn) ∈ E , then bi ∈ acl(C ∪ {b j : j ̸= i}).

Then
dim

{
b̄ ∈ S : πI (b̄) ∈ πI (E) for all I ∈ [n]

n−1}
= dim(S).

Remarks 3.3. Assumptions (a) and (b) in Corollary 3.2 imply that the Si have the
same dimension. Indeed,

∑
j<n dim(S j )=dim(πJ (E))=dim(E)=dim(πI (E))=∑

i∈I dim(Si ) for all I ∈ [n]
n−1. So dim(S j )= dim(Sn) for all j < n.

We now prove Corollary 3.2.

Proof. We may assume that M is ℵ1-saturated. We check that the three conditions
of Theorem 2.4 hold.

By (a), dim(πJ (E))= dim(SJ ), so ν J (πJ (E))= µ(πJ (E))/µ(SJ ) > 0.
As E is definable, by compactness we have a uniform bound l on the algebraicity

in assumption (b). This gives the second condition required by Theorem 2.4.
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Suppose I ∈ [n]
n−1. The restriction of the projection map E → πI (E) has finite

fibres, of size at most l. Suppose X ⊆ E is definable. If we decompose πI (X)
according to the size of the fibres X →πI (X) and apply (i) and (iii) of Definition 3.1,
we obtain

µ(πI (X))≤ µ(X)≤ lµ(πI (X)).

Thus
µ(πJ (X))≤ µ(X)≤ lµ(πI (X)).

If dim(X)= dim(E), then dim(πI (X))= dim(πI (E))= dim(SI ) (by (a)) and we
obtain

ν J (πJ (X))≤ l
µ(SI )

µ(SJ )
ν I (πI (X)).

If dim(X) < dim(E) then the inequality is also true, as both sides are zero. So we
have the third condition required by Theorem 2.4.

So, by Theorem 2.4,

νV({b̄ ∈ S : πI (b̄) ∈ πI (E) for all I ∈ [n]
n−1

}) > 0,

and the conclusion follows. □

3C. Further examples. If Th(M) is NIP, then generically stable measures (see
[Hrushovski and Pillay 2011] or [Simon 2015]) provide examples of measures sat-
isfying the definability and Fubini conditions. More precisely, suppose νx1, . . . , νxn

are generically stable measures for M (in the indicated variables) and let νV
=

νx1 ⊗ · · · ⊗ νxn . Then νV has the definability and Fubini properties, and therefore
Theorems 2.3 and 2.4 hold. It would be interesting to know whether either of these
results is saying something new, or at least nontrivial, in this context.

4. MS-measurability and the Hrushovski construction

In [Elwes and Macpherson 2008, Definition 3.13], a complete theory is defined
to be unimodular if in any model M, whenever fi : X → Y are definable ki -to-1
surjections in Meq (for i = 1, 2), then k1 = k2. (See [Kestner and Pillay 2011] for
comments on this and, in particular, on why it should more properly be termed
weak unimodularlity.) An MS-measurable structure is necessarily superstable of
finite SU-rank and unimodular, and Question 7 of [Elwes and Macpherson 2008]
asks whether the converse holds. Unimodularity is implied by ω-categoricity
[Elwes and Macpherson 2008, Proposition 3.16], and in a similar vein, Question 2
of [Elwes and Macpherson 2008] asks whether a MS-measurable ω-categorical
structure is necessarily one-based. For both of these questions the key examples
to be considered are Hrushovski’s non-locally-modular supersimple ω-categorical
structures [1997; 1988]. In this section we apply Corollary 3.2 to show that some



HIGHER AMALGAMATION PROPERTIES IN MEASURED STRUCTURES 245

of Hrushovski’s examples are not MS-measurable. In particular, this answers
Question 7 of [Elwes and Macpherson 2008]: there is a supersimple, finite rank
unimodular theory (even, ω-categorical, SU-rank 1) which is not MS-measurable.

4A. The Hrushovski construction for ω-categorical structures. We recall briefly
some details of the construction method. The original version is in [Hrushovski
1988], where it is used to provide a counterexample to Lachlan’s conjecture, and
in [Hrushovski 1997], where it is used to construct a nonmodular, supersimple
ℵ0-categorical structure. The book [Wagner 2000] is a very convenient reference for
this (see Section 6.2.1). Generalisations and reworkings of the method (particularly
relating to simple theories) are also to be found in [Evans 2002]. We will restrict
to the simplest form of the construction appropriate for producing ω-categorical
structures of SU-rank 1.

We work with a finite relational language L = {Ri : i ≤ m}. For later use, it will
be convenient to assume that this contains some 3-ary relation R. Recall that if
B and C are L-structures with a common substructure A then the free amalgam
B ⨿A C of B and C over A is the L-structure whose domain is the disjoint union
of B and C over A and whose atomic relations are precisely those of B together
with those of C . Let K be the class of L-structures and denote by K the finite
structures in K.

For A ∈ K define the predimension δ(A) to be equal to |A| −
∑

i |Ri [A]|. If
A ⊆ B ∈K write A ≤ B to mean δ(A) < δ(B ′) for all A ⊂ B ′

⊆ B. (We sometimes
say that A is self-sufficient in B.) For structures in K, one has

• if X ⊆ B and A ≤ B, then X ∩ A ≤ X ;

• if A ≤ B ≤ C , then A ≤ C .

Consequently (see [Wagner 2000, Corollary 6.2.8]), for each B ∈ K there is a
closure operation given by clB(X)=

⋂
{A : X ⊆ A ≤ B} ≤ B for X ⊆ B. Of course,

if B ≤ C ∈ K and X ⊆ B, then clB(X)= clC(X).
The relation ≤ can be extended to infinite structures so that the above properties

still hold: if M ∈K and A ⊆ M , write A ≤ M to mean that A ∩ X ≤ X for all finite
X ⊆ M .

If A, B ∈ K, an embedding α : A → B with α(A)≤ B is called a ≤-embedding.
Now consider K0, the class of B ∈K with ∅≤ B. Equivalently, if A ⊆ B is finite

and nonempty, then δ(A)> 0. Let K0 be the finite structures in K0. Any structure B
in K0 carries a notion of dimension d B associated to the predimension δ and a
notion of d B-independence. If X, Y ⊆ B are finite, write d B(X) = δ(clB(X)) =

min{δ(Y ) : X ⊆ Y ⊆ B} and d B(X/Y ) = d B(X ∪ Y )− d B(Y ). If the ambient
structure B is clear from the context, then we omit it from the notation. Say that
finite X and Z are d-independent over Y (in B) if d B(X/Y Z) = d B(X/Y ). In
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particular, this implies clB(XY ) ∩ clB(Y Z) = clB(Y ). (Here, we use the usual
shorthand of Y Z for Y ∪ Z .) For the particular predimension which we have given,
it can be shown that clB satisfies the exchange condition, and therefore gives a
pregeometry; furthermore, d B is the dimension in this pregeometry.

We look at a version of the construction (also from [Hrushovski 1997]) where
closure is uniformly locally finite. For this, we have a continuous, increasing
f : R≥0

→ R with f (x) → ∞ as x → ∞ and we consider K f = {A ∈ K0 :

δ(X) ≥ f (|X |) for all X ⊆ A}. For suitable choice of f (call these good f ),
(K f ,≤) has the free ≤-amalgamation property: if A0 ≤ A1, A2 ∈ K f , then Ai ≤

A1 ⨿A0 A2 ∈ K f . In this case we have an associated generic structure M f (see
[Wagner 2000, Theorem 6.2.13]). This is a countable structure characterised by the
following properties:

(i) M f is the union of a chain of finite self-sufficient substructures, all in K f .

(ii) ≤-extension property: If A ≤ M f is finite and A ≤ B ∈ K f , then there is
a ≤-embedding β : B → M f with β(a)= a for all a ∈ A.

Equivalently, K f is the class of finite substructures of M f , and isomorphisms
between finite self-sufficient substructures of M f extend to automorphisms of M f

(we refer to the latter property as ≤-homogeneity). Because of the function f ,
closure in M f is uniformly locally finite and (using free amalgamation and the
≤-extension property) it is equal to algebraic closure [Wagner 2000, Lemma 6.2.17].
It then follows from ≤-homogeneity that M f is ω-categorical and the type of a
tuple is determined by the isomorphism type of its closure.

Remarks 4.1. To construct good functions, we can take f which are piecewise
smooth, and where the right derivative f ′ satisfies f ′(x)≤ 1/(x + 1) and is nonin-
creasing. The latter condition implies that f (x + y)≤ f (x)+ y f ′(x) (for y ≥ 0). It
can be shown that under these conditions, K f has the free ≤-amalgamation property.
(This is originally from [Hrushovski 1988]; see also [Wagner 2000, Example 6.2.27]
or [Evans 2002, Lemma 3.3].)

Remarks 4.2 ([Hrushovski 1997]; see also [Wagner 2000, Example 6.2.27; Evans
2002, Corollary 2.24, Theorem 3.6]). If f also satisfies the slower growth condition

f (3x)≤ f (x)+ 1,

then the structure M f is supersimple of SU-rank 1. Moreover, for tuples ā and b̄
in M f , we have SU(tp(b̄/ā))= d(b̄/ā). To see the latter, note that (by additivity
of both sides) it suffices to prove this when b̄ is a single element b. Now, d(b/ā)
is a natural number and at most δ(b), so is 0 or 1. If it is 0, then b ∈ acl(ā)
so SU(b/ā) = 0. Thus, it suffices to show that if tp(b/ā) divides over ∅, then
d(b/ā) < d(b/∅). This is done (in greater generality) in the above references.
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4B. The dimension function. For the rest of the section suppose that f is a good
function as in Remarks 4.1 and M f is the corresponding generic structure. We
suppose that h = (dim, µ) : Def(M f )→ R>0 is a dimension–measure function. In
this subsection we relate dim to the dimension d coming from the predimension
(which will be the same as SU-rank if M f is simple), and the measure will not be
used.

Notation 4.3. For tuples ā and b̄ in M f , let loc(b̄/ā), the locus of b̄ over ā, be the
set of realisations in M f of tpL(b̄/ā), the L-type of b̄ over ā. By ω-categoricity,
this is definable by an L-formula with parameters from ā. Let dim(b̄/ā) denote the
dimension of this set.

The Fubini property in MS-measurability implies that dim is additive: dim(b̄/ā)=
dim(āb̄/∅)−dim(ā/∅). We also have dim(Mn

f )= n dim(M f ). Note the existence
of dim-generic points: if D ∈ Def(M f ) is definable over a finite tuple ā, then
dim(D)= max{dim(b̄/ā) : b̄ ∈ D}. From this we deduce that if D′

⊆ D is definable,
then dim(D′)≤ dim(D). A further property of dim which we require is the weak
algebraicity property that if b̄ ∈ acl(ā), then dim(b̄/ā)= 0. Of course, d also has
these properties.

Under these assumptions on dim (and the given conditions on f ) we will show
that dim is just a scaled version of the dimension d .

Theorem 4.4. Suppose f ′(x) ≤
1
2(1/(x + 1)). If ā and b̄ are finite tuples in M f ,

then we have
dim(b̄/ā)= dim(M f )d(b̄/ā).

The theorem follows from the following (always assuming the given condition
on f ).

Proposition 4.5. Let ā, b ∈ M f with b ̸∈ acl(ā) and P = loc(b/ā). Then, for
every r ∈ N and ȳ ∈ Mr , there is some x̄ ∈ Pr+2 with ȳ ∈ acl(x̄ ā).

We note that Marimon (unpublished work) shows that Theorem 4.4 holds for a
wider class of Hrushovski constructions than we give here.

First we show how Theorem 4.4 follows from the proposition.

Proof of Theorem 4.4. By the additivity property of both dim and d, it will suffice
to prove the statement when b̄ = b is a single element. If b ∈ acl(ā), then the
statement holds as both sides of the equation are zero, by the weak algebraicity
property of dim and d. So now suppose that b ̸∈ acl(ā). Let P = loc(b/ā), as in
Proposition 4.5. Consider

Y = {ȳ = (y1, . . . , yr ) ∈ Mr
f : y1, . . . , yr ∈ acl(x̄ ā) for some x̄ ∈ P2+r

}.

By ω-categoricity, this set is definable by an L-formula with parameters from ā (for
example, it is invariant under automorphisms of M f fixing ā). Thus (by existence
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of generic points for dim) there is c̄ ∈ Y with dim(Y ) = dim(c̄/ā). By definition
of Y , there are b1, . . . , br+2 ∈ P with c̄ ∈ acl(āb1 · · · br+2). It follows (using weak
algebraicity) that

dim(Y )= dim(c̄/ā)≤ dim(b1 · · · br+2/ā)≤ dim(Mr+2
f )= (r + 2) dim(M f ).

But, by Proposition 4.5, we have Y = Mr
f . So

r dim(M f )= dim(Mr
f )= dim(Y )≤ (r + 2) dim(M f ).

Dividing by (r + 2) and letting r → ∞, we obtain that dim(b/ā)= dim(M f ). As
d(b/ā)= 1, this gives dim(b/ā)= dim(M f )d(b/ā), as required. □

The proof of Proposition 4.5 is a technical argument with Hrushovski construc-
tions, so we relegate it to a separate section (Section 4D). Marimon’s approach
[2022a; 2022b] to proving non-MS-measurability of other examples of ω-categorical
Hrushovski constructions avoids the need for a result such as Theorem 4.4.

Remarks 4.6. It is an open problem to determine whether any of the M f are (or
are not) pseudofinite. We note that Theorem 4.4 provides some information relevant
to this question. Suppose that f is a good function with f ′(x) ≤

1
2(1/(x + 1))

and K f is the corresponding amalgamation class with generic structure M f . Assume
that M f is elementarily equivalent to an ultraproduct M=

∏
U Fi of finite structures.

Following [Hrushovski 2013], if 8(x̄) is a formula with parameters from M , then
the coarse pseudofinite dimension 1(8(x̄)) is the standard part of the nonstandard
real

∏
U log|8(Fi )|/ log|Fi |. We will show that for every L-formula8(x̄) (without

parameters), we have 1(8(x̄))= d(8(x̄)).
In principle, we could deduce the result from Theorem 4.4 as 1 has the prop-

erties required in the proof of Theorem 4.4, as long as we expand the language
by dimension quantifiers so that it becomes continuous (see [Hrushovski 2013,
Section 2.7]). However, it seems clearer to give a fuller argument which is essentially
a modification of that given for Theorem 4.4.

If ā is a finite tuple in M f , let 8ā(x̄) denote an L-formula isolating tp(ā/∅)
(the L-type of ā in M f ). Such a formula exists, by ω-categoricity. If b̄ is another
tuple, then 8āb̄(ā, ȳ) isolates tp(b̄/ā).

Claim. Suppose ā is a k-tuple in M f and b ∈ M f . Suppose ū is a k-tuple in M and
M |H8ā(ū). Then 1(8āb(ū, y))= d(b/ā).

Proof of claim. If d(b/ā) = 0 then b is algebraic over ā. The size of acl(ā) is
bounded uniformly (actually, in k), so 8āb(ū, y) has finitely many solutions in M.
Thus its pseudofinite dimension is 0.

Now suppose that b ̸∈ acl(ā), so that d(b/ā)= 1. Let r ∈ N. There is a formula
Cr (y, x1 · · · xr+2 z̄) such that if8āb(ā′bi ) (for i ≤r+2), then Cr (M f , b1 · · · br+2, ā′)

is acl(b1 · · · br+2, ā′). Let K (r) bound the size of this algebraic closure.
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The set Y in the proof of Theorem 4.4 is defined by Y (ȳ, ā), where Y (ȳ, z̄) is
the formula

∃x1, . . . , xr+2
∧

i≤r+2

8āb(z̄xi )∧
∧
j≤r

Cr (y j , x1 · · · xr+2 z̄).

Moreover, by Proposition 4.5,

M f |H (∀z̄)
(
8ā(z̄)→ ∀y1, . . . , yr Y (y1 · · · yr z̄)

)
,

so this formula also holds in M.
Suppose ū ∈ M and M |H8ā(ū). Denote by ūi the k-tuple of i-th coordinates

(in Fi ) in ū. From the definition of Y , for almost all i , we have

|Y (Fi , ūi )| ≤ K (r)r |8āb(ūi , Fi )|
r+2.

Thus, as Y (M, ū)= Mr , for almost all i ,

K (r)r |8āb(ūi , Fi )|
r+2

≥ |Fi |
r .

As |Fi | → ∞, we obtain 1(8āb(ū, y))≥ r/(r + 2). But r here is arbitrary, and
thus 1(8āb(ū, y))≥ 1. The reverse inequality is trivial, so we have the claim. □

Now suppose that b̄ = (b1, . . . , bn) is an n-tuple in M f . We show that if ū is a
tuple in M and M |H8ā(ū), then1(8āb̄(ū, ȳ))= d(b̄/ā). The required formula for
general L-definable sets follows as each such is a finite union of pairwise disjoint sets
of this form. We may assume that d(b̄/ā)= n and we prove the result by induction
on n. Let D be 8āb̄(ū,M) ⊆ Mn and E = 8āb1···bn−1(ū,M). Let f : D → E
be projection onto the first n − 1 coordinates. By the claim, the fibres of f have
coarse pseudofinite dimension d(bn/b1 · · · bn−1ā)= 1. By the induction hypothesis,
1(E)= n−1. Thus, by Lemma 2.8(4) of [Hrushovski 2013],1(D)= n−1+1 = n,
as required. (In order to apply the results from [Hrushovski 2013], we need to first
enrich the language so that 1 becomes continuous, but this has no effect on the
dimension of formulas in the original language.)

4C. A structure which is not MS-measurable.

Theorem 4.7. There is an ω-categorical, supersimple structure M f of SU-rank 1
which does not satisfy the amalgamation property in Corollary 3.2. In particular,
M f is not MS-measurable.

Proof. We choose f so that K f is a free amalgamation class; the generic M f is
supersimple of SU-rank 1; the independent amalgamation property, Corollary 3.2,
does not hold. We are only interested in providing an example, so we choose
economy of effort over elegance.

Take L to have a 3-ary relation R, a 10-ary relation S and a 11-ary relation U . Let
f (x)= log8(x + 1). Then f ′(x)=

1
ln 8(1/(x + 1)) < 1

2(1/(x + 1)), and therefore,
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by Remarks 4.1, K f is a free amalgamation class and the hypothesis on f in
Theorem 4.4 holds. We also have f (3x) ≤ f (x) + 1, so by Remarks 4.2, the
generic M f is supersimple, with d-independence being the same as nonforking,
and M f is of SU-rank 1.

Consider the L-structure A with points a1, . . . , a10, u1, . . . , ur , where r =89
−11,

and relations S(a1, . . . , a10) and U (a1, . . . , a10, ui ) (for i ≤ r). Then δ(A) = 9
and |A| = 89

− 1, so δ(A) ≥ f (|A|). It is easy to check that for any X ⊂ A we
have δ(X)≥ f (|X |), so A ∈ K f . Moreover (in the notation of Corollary 3.2), for
each I ∈ [10]

9, the tuple āI is d-independent (in A) and has closure A. Note also
that if I ∈ [10]

8, then āI ≤ A.
Suppose, for a contradiction, that the conclusion of Corollary 3.2 holds, where

dim is given by SU-rank (in this case, given by the dimension function d). We will
apply this where n = 10, S = M10

f and

E = {α(a1 · · · a10) | α : A → M f is an ≤-embedding}.

Note that E is ∅-definable, the algebraic closure (equal to the ≤-closure) of every
element of E is isomorphic to A, and (by the ≤-homogeneity of M f ) all elements
of E have the same type over ∅.

Therefore, if the conclusion of Corollary 3.2 holds, there exists a d-independent
set B0 = {b1, . . . , b10} of distinct elements of M f with the property that for
each I ∈ [10]

9 we have aclM f (BI ) ∼= A (via an isomorphism taking b̄i 7→ āi ),
where BI = {bi : i ∈ I }. Let B = acl(B0). By the d-independence, δ(B)= 10 and
we have acl(BI )∩ acl(BI ′)= BI ∩ BI ′ = BI∩I ′ for I ̸= I ′

∈ [10]
9.

Thus

|B| ≥ |B0| +

∣∣∣∣ ⋃
I∈[10]9

acl(BI ) \ B0

∣∣∣∣
= |B0| +

∑
I∈[10]9

|acl(BI ) \ B0|

≥ 10 + 10(89
− 1 − 9)= 10.89

− 90.
So

f (|B|)≥ log8(10.89
− 89) > 10 = δ(B),

and thus B ̸∈ K f , a contradiction. So the amalgamation property in the conclusion
of Corollary 3.2 does not hold, and in particular, M f is not MS-measurable. □

4D. Proof of Proposition 4.5. Before the proof, we give a technical lemma.

Lemma 4.8. Suppose R is a 3-ary relation in L and f ′(x) ≤
1
2(1/(x + 1)). Let

A ≤ C, T ∈ K f (with A ̸= C, T ), and let E be the free amalgam of C and T
over A. Suppose t1, . . . , tr ∈ T \ A are d-independent over A, and let c ∈ C \ A.
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Let F = E ∪{s1, . . . , sr } with additional relations R(c, si , ti ) ( for 1 ≤ i ≤ r ). Then
As1 · · · sr ,C, T ≤ F and F ∈ K f .

Proof. Suppose C ⊂ V ⊆ F . If V ∩ T = A, then (by construction) δ(V ) =

δ(C)+ |V \ C |; if V ∩ T ⊃ A then δ(V ) ≥ δ(C)+ δ(V ∩ T )− δ(A) > δ(C). In
either case, δ(V ) > δ(C), so C ≤ F . A similar argument shows T ≤ F .

By free amalgamation, it is enough to prove the rest of the lemma in the case
where T = clT (At1 · · · tr ) and C = clC(Ac). So henceforth assume this. Suppose
As1 · · · sr ⊂ V ⊆ F has δ(V ) ≤ δ(As1 · · · sr ) = δ(A)+ r . We can assume that
V ≤ F . Clearly c ∈ V and therefore t1, . . . , tr ∈ V . It follows that V = F . But
δ(F)= δ(A)+ r + 1, a contradiction.

Finally we show that F ∈ K f . Let X ⊆ F . We need to show δ(X) ≥ f (|X |).
As X ∩ (T ∪ C) is the free amalgamation of X ∩ T and X ∩ C over X ∩ A, the
structure X is of the same form as F (possibly together with some points si not
lying in any relation in X ). So it will suffice to prove that δ(F)≥ f (|F |).

Case 1: Suppose |T \ A| ≤ r |C \ A|.
Note that |F | = |C | + |T \ A| + r and δ(F) = δ(C)+ r . As C ∈ K f we have

δ(C)≥ f (|C |). Furthermore, as the graph of f lies below its tangent at any point,
and f ′(x)≤

1
2(1/(x + 1))≤ 1/(x + 1), we have

f (|F |)≤ f (|C |)+ (|T \ A| + r) f ′(|C |)

≤ f (|C |)+
1

(|C |+1)
r(|C \ A| + 1)≤ δ(C)+ r = δ(F),

as required.

Case 2: Suppose |T \ A| ≥ r |C \ A|.
This is similar. We have |F | = |T | + |C \ A| + r and δ(F)= δ(T )+ 1. Then

f (|F |)≤ f (|T |)+ (|C \ A| + r) f ′(|T |)

≤ f (|T |)+
1

2|T |
(|C \ A| + r)≤ δ(T )+ 1 = δ(F),

using the fact that |T \ A| ≥ |C \ A|, r . □

Proof of Proposition 4.5. Recall that we are assuming that the language L contains
a 3-ary relation symbol R, so we can use the previous lemma. Let A = acl(ā) and
B = acl(Ab).

First, we note that it is enough to prove the proposition in the case where ȳ
is d-independent over ā (that is, d(ȳ/ā) = r). To see this, take ȳ1 ⊆ ȳ which
is d-independent over ā and has ȳ ∈ acl(ȳ1ā); extend this to an r-tuple ȳ′ which
is d-independent over ā. If x̄ ∈ Pr+2 has ȳ1 ∈ acl(ā x̄), then ȳ ∈ acl(ā x̄).

Step 1: We first assume that ȳ = (s1, . . . , sr ) is d-independent over ā and Aȳ ≤ M f .
We shall show that there is (b0, . . . , br ) ∈ Pr+1 with ȳ ∈ acl(ā, b0, . . . , br ).
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We apply Lemma 4.8 with T the free amalgam of r copies B j (1 ≤ j ≤ r ) of B
over A and C another copy of B. Let b1, . . . , br , b0 be the corresponding copies
of b (over A) inside B1, . . . , Br ,C respectively. Let F be the disjoint union over A
of Aȳ, C and T , but with the extra relations R(b j , s j , b0), where 1 ≤ j ≤ r , as in
the lemma. Then, by the lemma,

(i) Aȳ ≤ F ;

(ii) B j ≤ F ; and

(iii) F ∈ K f .

Then by (i), (iii) and the ≤-extension property we can assume F ≤ M f ; by (ii), we
then have x̄ = (b0, b1, . . . , br ) ∈ Pr+1; then, because of the relations R(b j , s j , b0)

we have s j ∈ acl(b0, b j , A), so ȳ ∈ acl(ā x̄), as required.

Step 2: Now let ȳ = (t1, . . . , tr ) be d-independent over A and let T = acl(Aȳ).
Let C be a copy of B over A with c the copy of b over A inside C , and let F be
constructed as in the lemma. As in Step 1, we can assume that F ≤ M f . So c ∈ P and
ȳ ∈ acl(ā, c, s1, . . . , sr ). But by Step 1 (and As1 · · · sr ≤ F) the tuple (s1, . . . , sr )

is in acl(āz̄) for some z̄ ∈ Pr+1. The result follows. □
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