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We prove a reconstruction theorem valid for arbitrary theories in continuous (or
classical) logic in a countable language, that is to say that we provide a complete
bi-interpretation invariant for such theories, taking the form of an open Polish
topological groupoid.

More explicitly, for every such theory 7" we construct a groupoid G*(T') that
only depends on the bi-interpretation class of T, and conversely, we reconstruct
from G*(T') a theory that is bi-interpretable with 7. The basis of G*(T") (namely,
the set of objects, when viewed as a category) is always homeomorphic to the
Lelek fan.

We break the construction of the invariant into two steps. In the second step
we construct a groupoid from any sort of codes for models, while in the first
step such a sort is constructed. This allows us to place our result in a common
framework with previously established ones, which only differ by their different
choice of sort of codes.
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Introduction

This paper deals with what we have come to refer to as reconstruction theorems.
By this we mean a procedure that associates to a theory 7' (possibly under some
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hypotheses) a topological group-like object that is a complete bi-interpretation
invariant for 7. In other words, if 7’ is bi-interpretable with T', then we associate
to it the same object (up to an appropriate notion of isomorphism), and conversely,
the isomorphism class of this object determines the bi-interpretation class of T'.

The best-known result of this kind is due to Coquand, and appears in [Ahlbrandt
and Ziegler 1986]. It states that if 7 is an Np-categorical theory (in a countable
language), then the topological group G(T) = Aut(M), where M is the unique
countable model, is such an invariant. This was originally proved for theories in
classical (Boolean-valued) logic, and subsequently extended by Kaichouh and the
author [Ben Yaacov and Kaichouh 2016] to continuous (real-valued) logic.

In [Ben Yaacov 2022] we proposed a reconstruction result that also covers some
non-Rp-categorical theories, using a topological groupoid (rather than a group) as
invariant. The result was presented in two forms, first for classical logic and then for
the more general continuous logic. This was not done for the sake of presentation
(doing the more familiar case first), but because of a fundamental difference between
the two cases. In classical logic, we have a straightforward construction of a sort of
“codes of models” (more about this later). In continuous logic, on the other hand,
no such construction exists in general, and we were reduced to assuming that such
a sort (satisfying appropriate axioms) existed, and was given to us. Worse still, we
gave an example of a theory for which no such sort existed, and consequently, for
which our reconstruction theorem was inapplicable.

In the present paper we seek to remedy this deficiency, proposing a reconstruction
theorem that holds for all theories (in a countable language). This time, we work
exclusively in continuous logic, keeping in mind that this contains classical logic
as a special case.

In Section 1 we provide a few reminders regarding continuous logic in general,
and interpretable sorts in particular. We (re)define the notions of interpretation and
bi-interpretation, in a manner that is particularly appropriate for the use we shall
make of them, and that avoids the rather tedious notions of interpretation schemes.

In Section 2 we discuss various ways in which one sort E can be “coded” in
another sort D, both uniform (e.g., E is interpretable in D) and nonuniform (e.g.,
each a € E is in the definable closure of some b € D). We define a coding sort D
as a sort which codes models. Every sort is coded in a coding sort in a nonuniform
fashion, and therefore in a uniform fashion as well.

In Section 3 we associate to a coding sort D a topological groupoid G p(T'), from
which a theory T p, bi-interpretable with 7', can be recovered. In particular, G p(T')
determines the bi-interpretation class of 7. If, in addition, D only depends on the
bi-interpretation class of T, then so does G p(T), in which case it is a complete
bi-interpretation invariant. We point out, rather briefly, how previous reconstruction
theorems fit in this general setting.
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In Sections 4 and 5 we define star spaces and star sorts. These, by their very
nature, require us to work in continuous (rather than classical) logic. In particular,
we define a notion of a universal star sort, and show that if it exists, then it is unique
up to definable bijection, and only depends on the bi-interpretation class of 7.

In Section 6 we use the star sort formalism to give a construction that is analogous
to, though not a direct generalisation of, the construction of the coding sort for
classical theories in [Ben Yaacov 2022]. We then prove that the resulting sort is a
universal star sort, so one always exists. Moreover, the construction is independent
of the theory: we simply construct, for any countable language £, a star sort D*
that is universal in any £-theory, complete or incomplete.

We conclude in Section 7, showing that the universal star sort must be a coding
sort, whence our most general reconstruction theorem: in a countable language,
the groupoid G p=(T) is a complete bi-interpretation invariant for 7. We also show
that the type-space of the sort D*, relative to any complete theory T, is the Lelek
fan L. Finally, in case T does fall into one of the cases covered by previous results,
we show that our last result can be viewed as some kind of generalisation. More
precisely, using the Lelek fan, we can recover the coding sort D*, and therefore the
corresponding groupoid G p+(T'), from those given by the earlier results.

1. Sorts and interpretations

As said in the introduction, we work exclusively in continuous first order logic, and
assume that the reader is familiar with it. For a general exposition, see [Ben Yaacov
and Usvyatsov 2010; Ben Yaacov et al. 2008]. We allow formulas to take truth
values in arbitrary compact subsets of R, so connectives are arbitrary continuous
functions from R” to R. For a countable family of connectives, it suffices to take all
rational constants, addition and multiplication, to which we add the absolute value
operation. Closing these under composition yields a (countable) family of functions
that is dense among all continuous functions on each compact subset of R”.

Notation 1.1. Using the absolute value operation we may define maximum and
minimum directly (i.e., without passing to a limit). We use infix notation Vv and A
for those. We also write ¢ = s for the truncated subtraction (t —s) Vv 0.

We allow the language to be many-sorted. Some of the time we also require
the language to be countable, which means in particular that the set of sorts is
countable, although this is not a requirement for the present section.

We are going to talk quite a bit about sorts and interpretations, so let us begin
with a few reminders. By a sort we mean an interpretable sort in the sense of
continuous logic, as discussed, for example, in [Ben Yaacov and Kaichouh 2016;
Ben Yaacov 2022]. Sorts are obtained by closing the family of basic sorts (namely,
sorts named in the language) by
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adding the constant sort {0, 1} (so it is always implicitly interpretable),
« countable product,

» quotient by a definable pseudodistance (in a model that is not saturated, this
may also require a passage to the completion), and

« nonempty definable subset.

We follow the convention that a natural number n € N is coded by the set
{0,...,n—1}, so {0, 1} may sometimes be denoted by 2 (this is especially true of
its powers: the Cantor space is 2N).

Throughout, by definable we mean definable by a formula, without parameters
(unless parameters are given explicitly). Any function {0, 1} — R is a formula on
the sort {0, 1}. Formulas on a finite product of sorts are constructed in the usual way,
using function and predicate symbols, connectives and quantifiers, and closing the
lot under uniform limits. In particular, if ¢; (x) are formulas on a sort D for i < 2",
then ¢ (i, x) = ¢;(x) is a formula on 2" x D. Formulas on an infinite product of
sorts consist of all formulas on finite subproducts (extended to the whole product
through the addition of dummy variables), as well as all uniform limits of such
(where the subproducts through which they factor may vary). If 4 is a definable
pseudodistance on a sort D (defined by a formula on D x D), then formulas on the
quotient (D, d) are formulas on D that are uniformly continuous with respect to d,
and similarly for formulas on a product of several quotient sorts.

Finally, we recall that a definable subset of a sort D is a subset E C D, the
distance to which is definable (this is significantly more involved than the notion
of a definable subset in classical logic). Equivalently, if for every formula ¢(x, y),
where x is a variable in D and y is a tuple of variables in arbitrary sorts, the
predicate sup, .z ¢(x, y) is definable by a formula v (y). Formulas on a product of
definable subsets of sorts are restrictions of formulas on the corresponding product
of ambient sorts.

Notice that every compact metric space is a quotient space of 2N by a continuous
pseudodistance, and therefore a sort, on which the formulas are the continuous
functions. Conversely, we could have chosen any nontrivial compact metric space
as a basic constant sort in place of {0, 1} (the other obvious candidate being [0, 1]),
and realise {0, 1} as any two-point set therein.

Remark 1.2. An obvious, yet crucial remark, is that if ¢(x, y) is an arbitrary
formula on £ x D, then

dy(y,y") =suplex, y) —o(x, y)|

xekE

defines a pseudodistance on D. In addition, if D = E, and ¢ happens to define a
pseudodistance on D, then it agrees with d,,.
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This has numerous useful consequences, let us state two of them explicitly.
First of all, one may be bothered by the fact that a formula ¢(x, y) defining a
pseudodistance on a sort D may depend on the structure(s) under consideration.
However, we may restrict the “quotient by a pseudodistance” step to pseudodistances
of the form d,,, that always define pseudodistances, without any loss of generality.

A second consequence is that if £ C D are two sorts, then every definable
pseudodistance d on E extends to one on D. Indeed, extend it first in an arbitrary
fashion to a formula ¢(x, y) on E x D. Then d,, is a pseudodistance on D, and it
agrees with d on E.

Remark 1.3. A formula ¥ (x) defining the distance to a subset is another property
that depends on the structure under consideration, or on its theory. However, we do
not know a general construction of definable sets from arbitrary formulas, analogous
to that of Remark 1.2, and have good reason to believe that none such exists.

In other words, as far as we know, the set of interpretable sorts depends in
a nontrivial way on the theory. This makes it all the more noteworthy that our
construction of the universal star sort as Dy, can be carried out in a manner that
depends only on the language, and not on the theory.

A definable map between two sorts o : D — E is one whose graph is the zero-
set of some formula. Composing a formula with a definable map yields another
formula. A special case of such a composition is the formula d (o (x), y), on the
product D x E, whose zero-set is indeed the graph of o. Every formula is uniformly
continuous in its arguments, and d(o (x), y) is no exception. It follows that every
definable map o : D — E is uniformly continuous.

Two sorts that admit a definable bijection are, for most intents and purposes (in
particular, for those of the present paper) one and the same. Moreover, every sort
is in definable bijection with one obtained from the basic sorts by applying each
of the operations once, in the given order, so we may pretend that every sort is
indeed of this form. Similarly, we may say that a sort D (which may be a basic
sort, or one that has already been obtained through some interpretation procedure)
is interpretable in a family of sorts (E;) if we can construct from this family (E;) a
sort D’ that admits a definable bijection with D.

Consider two languages £ C £’, where £’ is allowed to add not only symbols, but
also sorts. If M’ is an £’'-structure, and M is the L-structure obtained by dropping
the sorts and symbols not present in £, then M is the L-reduct of M" and M’ is an
L'-expansion of M. If T’ is an £'-theory and T is the collection of L-sentences
in T/, then T is also the theory of all £L-reducts of models of T’ (notice, however,
that an arbitrary model of T need only admit an elementary extension that is a
reduct of a model of 7). In this situation we say that T is the L-reduct of T' and
that 77 is an L -expansion of T.
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One special case of an expansion is a definitional expansion, in which £ and £’
have the same sorts, and each new symbol of £’ admits an £-definition in 7”. In this
case, T’ is entirely determined by 7T together with these definitions. A more general
case is that of an interpretational expansion of T, where T’ identifies each new sort
of £’ with an interpretable sort of T, and gives £-definitions to all new symbols
in £’ (for this to work we also require £’ to contain, in particular, those new symbols
that allow 7" to identify the new sorts with the corresponding interpretable ones).
Again, T, together with the list of interpretations of the new sorts and definitions of
the new symbols, determine 7’. Moreover, unlike the general situation described in
the previous paragraph, here every model of T expands to a model of T’.

Definition 1.4. Let 7 and 7’ be two theories, say in disjoint languages. We say that
T’ is interpretable in T if T’ is a reduct of an interpretational expansion of 7. The
two theories are bi-interpretable if they admit a common interpretational expansion
(which is stronger than just each being interpretable in the other).

A theory has the same sorts (up to a natural identification) as an interpretational
expansion. Therefore, somewhat informally, we may say that two theories are
bi-interpretable if and only if they have the same sorts.

Let us consider a few more possible constructions of sorts that will become
useful at later stages, and show that they can be reduced to the basic construction
steps that we allow.

Lemma 1.5. Let

Do«ﬂl)l«ﬂ...

be an inverse system of sorts with surjective definable maps m, : D+ — D,. Then
the inverse limit D =lim D, C [[ D, is again a sort, which we may equip with the
distance

d(x,y) =) 27" Ad(xn, y)) @)

(or with the restriction of any other definable distance on [ | D).

Proof. Indeed, D is the zero-set in [ | D, of the formula

P(x) =Y (27" Ad(xn. T(xat1))).

n

Let ¢ > 0, and choose N € N large enough depending on ¢, and § > 0 small
enough depending on both. Let a € [[ D,, and assume that ¢(a) < 8. Since the
maps are surjective, there exists b € D such that by = ay. This determines b,, for
all n < N, and having chosen § small enough, we have d(a,, b,) as small as desired
for all n < N. Having chosen N large enough, this yields d(a, D) <d(a, b) < ¢.
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In other words, we have found a formula ¢(x) that vanishes on D, such that
@(x) < 8 = 4(¢) implies p(x, D) < €. This implies that D is a definable subset
(see [Ben Yaacov et al. 2008]). ([l

Proposition 1.6. Assume that (D,,) is a sequence of sorts, equipped with isometric
definable embeddings D, — D, 1. For convenience, let us pretend these embed-
dings are the identity map, so Dy € Dy C --- C D, C --- is a chain. Assume
moreover that the sequence is Cauchy in the Hausdorff distance. In other words,
assume that if n is large enough and n < m, then

d?(D,, D,,) = sup inf d(x,y)

xeD,, YEDn
is as small as desired.

Then the completion E = UBk is a sort (with definable isometric embedding
D, CE). If o(x,y) is a formula on E x F, for some sort (or product of sorts) F,
and @, is its restriction to D, X F, then (¢,) is an equicontinuous compatible family
(by compatible, we mean that each ¢, is the restriction of ¢,+1). Conversely, every
such family arises from a unique formula on E x F.

Proof. Assume first that we have a large ambient sort £ and compatible iso-
metric embeddings D, C E;. Since each D, is a sort, the distance d(x, D,) =
infyep, d(x, y) is definable in E;. By hypothesis, these formulas converge uni-
formly, and their limit is d(x, E). Then E is a definable subset of E, and therefore
a sort.

In the general case, we construct E; as a quotient of Ey = [[ D,, whose mem-
bers we may view as sequences in E. We may freely pass to a subsequence,
and assume that 47 (D,,, D,1) < 277!, Say that a € Eq converges quickly if
d(ay, an) <27"+27™ or equivalently, if d(a,, b) <27" where a, — b in E. By
our hypothesis regarding the rate of convergence of (D,), every b € E is the limit
of a quickly converging sequence.

Recall the forced limit construction from [Ben Yaacov and Usvyatsov 2010].
Formally, it consists of a continuous function lim! : RN — R which is monotone,
1-Lipschitz in the supremum norm on RN, and most importantly, if 7, — s fast
enough (say |t, —s| <27"), then lim" (¢, : n € N) = 5. We render the expression
lim" (7, : n € N) as im",,_, o0 7,1, considering it a limit construct. Since lim" is
continuous, we may apply it to formulas.

Let us fix n, and define on D, x E( a formula

,On(x’ y) = hmF d(xv ym)-
m—00

If b € Ey converges quickly to ¢ € E, then p,(a, b) = d(a, c) for every a € D,,.
When b € E does not converge quickly (or possibly, at all), the value p,(a, b) is
well defined, but potentially meaningless. If n < k, then p,, is the restriction of py,
so we may just denote all of them by p.
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As in Remark 1.2, we define pseudodistances on Ej by

dy,(y,y") = sup |p(x,y) —p(x,y)l.

xeDy,

The sequence of formulas (d,,) is increasing. Moreover, if x, y € D, and z € E,
then
lo(x,2) = p(y, Dl < supld(x, zm) —d(y, zm)| = d(x, y),
m

sod,, <d,,, , =<d, +27". Therefore, the sequence (d,,) converges uniformly
to a formula d, on Ey x E(, which must define a pseudodistance as well. Let
E1 = (Ey, d,) be the quotient sort. By definition, each p,(x, y) is 1-Lipschitz in
y with respect to d,, so it may be viewed as a formula on D, x E;. It is also
1-Lipschitz in x with respect to the distance on D,,.

Consider a € Dy and b, c € E|, and assume that b, — a quickly (but ¢ may be
quite arbitrary). We have already observed that p(x, b) = d(x, a) for every x € D,,,
for every n. Then, for every n > k,

dpn(bv C): sup |/0(x’b)_p(x,c)| == sup |d(x,a)—,0(x,c)| :,O(a,C),

xeD, xeD,

sod,(b,c) =p(a,c) = p(a,c). If follows that the class of b in Ey only depends
on a. Moreover, the map oy : Dy — E;, which sends a to the class of any b € Ey
that converges quickly to a, is definable, by d,(ox(x), y) = pr(x, y).

If b, b’ € Ey both converge quickly to a, a’ € Dy, respectively, then the same
reasoning as above yields d,, (b, b’) = d(a,a’) for every n > k, and therefore
dy(b,b')=d(a,a’). Therefore, oy : D — E| is an isometric embedding for each k.
Since the pi are restrictions of one another, these embeddings are compatible, and
we have successfully reduced to the special case treated in the beginning of the
proof.

Regarding formulas, the only thing we need to prove is that any compatible
equicontinuous family of formulas ¢,(x, y) on D, x F is the restriction of a
formula on E x F. Notice that our hypotheses imply that the formulas ¢, are
uniformly bounded, say |¢,| < M. We may now construct an inverse modulus
of continuity, namely a continuous function A~ (0, 00) — (0, 00) such that
l0n(x, ¥) — @ (x, )| < A"V od(x, x") (see [Ben Yaacov and Usvyatsov 2010];
since the family is equicontinuous, we can do this simultaneously for all ¢,,). Define
on E x F formulas

Yn(x, )= inf (pu(x', y) + A7 od(x, X)),
x'eD,

Then v, agrees with ¢, on D, X F, and equicontinuity together with the convergence
of (D,) ind" implies that (1,,) converges uniformly to a formula v (x, y) on E x F
that must extend each ¢,, as claimed. ([l
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It was pointed out by James Hanson that our Proposition 1.6 already appeared
in his Ph.D. thesis [Hanson 2020, Proposition 3.4.8]. Similarly, in [Hanson 2020,
Remark 3.5.7] he asserts (without proof) something that, to the extent that we
understand it (terminology and notation being somewhat nonstandard), is related to
our Proposition 2.1.

2. Coding sorts in other sorts

If a and b are two elements in sorts £ and D in some structure (model of T), then
a is definable from b, or lies in the definable closure of b— in symbols a € dcl(b) —
if a is the unique realisation of tp(a/b) in that structure, as well as in any elementary
extension. This implies, and indeed is equivalent to, the predicate d(x, a) being
definable with b as parameter, say by a formula ¢(x, b) (see [Ben Yaacov 2010]).

Let us consider two sorts D and E. In what sense(s) can E be coded in D?
A fairly uniform fashion for this to happen is if E is interpretable in D, i.e., if
it embeds definably in a quotient of DN, or, at the very worst, DN x 2N, This
would imply a nonuniform version: for every a € E there exists b € DN such
that a € dcl(b). In fact, the converse implication holds as well; this follows fairly
easily from Proposition 2.1 below, together with the presentation of | J D, as a
subset of a quotient of [ | D,.

In any case, we want to explore a stronger condition of “nonuniform coding”, by
singletons in D.

Proposition 2.1. Let E and D be sorts of a theory T. Assume that for every a € E
(in a model of T) there exists b € D (possibly in an elementary extension) such
that a € dcl(b). Then E can be embedded in a limit sort of the form \_J D, as per
Proposition 1.6, where each D, is a quotient of D x 2N,

Proof. Consider a type p € Sg(T), so p =tp(a) for some a € E in a model of T'.
We may assume that b € D in the same model is such that a € dcl(b), as witnessed
by d(x,a) = ¢,(x, b).
For ¢ > 0, let
Yp(x, y) =supld(x, x') — ¢, (X', y)l,
o

Xp,s(y) =1~ (il;pr(x, )7)/8 = 1).

The formula v, (x, y) measures the extent to which ¢, (x’, y) fails to give us the
distance to x. The formula x, . (y) tells us whether x" = ¢, (x’, y) is close to being
the distance to some x € E: x, .(y) =1 if y codes some x quite well (error less
than ¢), vanishes if y does not code anything well enough (error at least 2¢), and
in all cases its value lies in [0, 1]. Of course, ¥,(a, b) =0, so inf, ¥, (x,y) <&
defines an open neighbourhood of p.
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Let us fix ¢ > 0 and let p vary. Then the conditions inf, ¥, (x, y) < & define an
open covering of Sg(7T). By compactness, there exists a family (p; : i < n) such
that for every g € Sg(T), infy ¥, (¢, y) < ¢ for at least one i < n. Repeating this,
with smaller and smaller €, we may construct a sequence of types (p,,), as well as
&, — 0 such that for every ng, the open conditions inf, ¥, (x, y) <&, forn > ng
cover Sg(T).

Letn e N. We view n ={0, ..., n—1} as a quotient of 2N and similarly for [0, 1].
Therefore, D xn x [0, 1] is a quotient of D x 2N For (x, v, k,t) e ExDxnx|0,1],
define

Pn (X, y ko 1) =1 Xpp e (V) - @p (X, ).

This is indeed a formula, giving rise to a pseudodistance on D x n x [0, 1]:

dp,(y. k. 1,y K 1)) = sup |pn(x, .k, 1) — pu(x, Y, K ).
xekE
In fact, we may drop n and just write p and d,: the only role played by n is being
greater than k.

Let D, be the quotient (D xn x[0, 1], d,) (which s, in turn, a quotient of D x 2Ny,
The inclusion D xn x [0, 1] € D x (n+1) x [0, 1] induces an isometric embedding
D, — D, 4. Therefore, in order to show that the hypotheses of Proposition 1.6
are satisfied, all we need to show is that for n < m large enough, every member of
D,, is close to some member of D,,.

Let ¢ > 0 be given. Find ng such that ¢, < ¢ for n > ng. Then, by compact-
ness, find ny > ng such that inf, ¥, (x,y) < &, for ng < n < ny cover Sg(T).
Assume now that n; < m, and let [b, k, t] be some class in D,,. If kK < ny, then
[b, k,t] € Dy,. If inf, ¥, (x, b) > 2¢4, then p,(x, b, k, t) = 0 regardless of x, so
[b,k,t] =[b,0,0] € D,,. We may therefore assume that n; < k < m and there
exists a € E such that v, (a, b) < 2¢y.

By our hypothesis regarding the covering of Sg(T), there exists ng < £ < nj
such that infy v, (a, y) < €. Let ¢ € D be such that v, (a,c) < &, and let
s =1 Xpp.e (D). Then

il)‘clpr[(x’c)<8€a Xp[,é‘e(c)=17 p(x,c,ﬂ,s)=s'(ppe(x,c),
SO
do(b,k,t,c,l,s)=s-sup |l (x,b) — ¢, (x,c)]
X
< sup |gp, (x, b) —d(x,a)| +sup|d(x,a) —¢p,(x, c)|
X X

=Yp(a,b)+ ¥y (a,c) <2e +e <3e.

Then/[ci, s] € Dy, is close enough to [b, k, t]. By Proposition 1.6, a limit sort
F = D, exists.
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Now let us embed E — F. We have already constructed a family (p,) of
formulas on E x Dj; let us write them as p,(x, z). Each is 1-Lipschitz in z by
definition of the distance on D,, and they are compatible, so they extend to a
formula p(x,z) on E x F.

Consider a € E, and let ¢ > 0. As above, there exists £ such that &; < ¢, and
c € D such that ¥, (a,c) < &. Leta’ =|[c, €, 1] € Dy C F. Again, as above,
Xpee(€) =1,50 p(x,a’) =¢,,(x,c), and

sup |d(x,a) — p(x,a")| =sup|d(x,a) — @p,(x,c)| =¥, (a,c) <& <e.
X X

Doing this with & — 0, we obtain a sequence (a,) in F such that p(x, a,) converges
uniformly to d(x, a). By definition of the distance on F as d,, this sequence is
Cauchy, with limit a € F, say, and p(x, a) = d(x, a). In particular, for z € F,

d(z,a) =sup|p(x,z) — p(x,a)| =sup|p(x,z) —d(x,a)l,
X X
S0 a > a is definable. By the same reasoning, if a, a’ € E, then
d(a,a") =suplp(x,a) — p(x,a)| =supld(x,a) —d(x,a)| = d(a,a’),
X X

so the embedding is isometric, completing the proof. ([

Remark 2.2. A closer inspection of the proof can yield a necessary and sufficient
conditi/orﬂ)ut we shall not use this): A sort E can be embedded in a limit sort of the
form | J D,,, where each D, is a quotient of D x 2N, if and only if, for every a € E
and ¢ > 0, there exists b € D and a formula ¢(x, b) that approximates d(x, a) with
error at most €.

In Proposition 2.1, we cannot replace D x 2N with just D (if D is a singleton,
then any increasing union of quotients of D is a singleton, and yet E = {0, 1}
satisfies the hypothesis of Proposition 2.1). Instead, let us prove that this does not
change much, in the sense that formulas on D x 2N or on just D are almost the
same thing.

Lemma 2.3. Let D and E be sorts, and let (x, t, y) be a formula on D x 2N x E.
Then ¢ can be expressed as a uniform limit of continuous combinations of formulas

on D x E and on 2N separately (recalling that formulas on 2N are just continuous
functions 2N — R).

Proof. Forn e N and k € 2", let 6, x(t) = 1 if ¢ extends k, and O otherwise. Let also
k € 2N be the extension of k by zeros, and ¢, r(x, ¥) = @(x, k, y).

Then ¢, x is a formula on D x E and §, 4 is a formula on 2N so we may define
a formula

o, 1, 3) = D Suk(Ogni(x, ).

ke{o,1)n
Since ¢(x, t, y) is uniformly continuous in ¢, ¢,, — ¢ uniformly. (]
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Definition 2.4. Let T be a theory, D a sort, and D C D a definable subset (or
even type-definable, namely, the zero-set of a formula). We say that D is a coding
sort, with exceptional set DY, if the following hold:

(1) Coding models: if M ET and a € D(M) ~ D°(M), then there exists N < M
such that dcl(a) = dcl(N). We then say that a codes N.

(ii) Density: if M E T is separable, then the set of those a € D(M) D°(M) that
code M is dense in D(M).

We may denote a coding sort by D alone, considering D as implicitly given
together with D.

The need for an exceptional set will arise at a later stage; for the time being, we
are simply going to ensure that its presence does not cause any trouble.

Definition 2.5. Let T be a theory in a language £, and let D be a coding sort for 7.

We define a single-sorted language £,p to consist of a binary predicate symbol
for each formula on D x D (possibly restricting this to a dense family of such
formulas). We define T,p as the £, p-theory of D — namely, the theory of all D(M),
viewed naturally as £,p-structures, where M varies over models of T'.

Clearly, T5p is interpretable from 7. The 2 is there to remind us that only binary
predicates on D are named in the language.

Our aim, in the end, is to recover from a groupoid the theory of some coding
sort D, and show that it is bi-interpretable with 7. In particular, we need to recover
the definable predicates on D from the groupoid. In [Ben Yaacov 2022] we managed
to recover predicates of all arities, at the price of some additional work. In the
present paper we choose to follow a different path, recovering only binary predicates
(i.e., only T7p), and instead show that these suffice.

Proposition 2.6. Let T be a theory in a language L, and let D be a coding sort
for T. Then T,p is bi-interpretable with T

Proof. Consider T’, obtained from T by adjoining D as a new sort, and naming the
full induced structure. It is, by definition, an interpretational expansion of 7', and it
suffices to show that it is also an interpretational expansion of T5p.

By Lemma 2.3, every formula on (D x 2N) x (D x 2N) is definable in T»p. In
particular, every quotient of D x 2N is interpretable in T3p, as is every embedding
of one such quotient in another. Therefore, if (D,) is an increasing chain of
quotients of D x 2N that converges in the sense of Proposition 1.6, then E = D,
is interpretable in T, p.

Consider now a sort E of T. Every member of E belongs to a separable model
of T and is therefore definable from a member of D. By Proposition 2.1, we may
embed E in a sort E which is of the form U D, for appropriate quotients of D x 2N,
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as in the previous paragraph. This presentation of E need not be unique, so let us
just fix one such. .

Say E’ is another sort of T, so E' € E' = D! as above. Any formula on
E x Eis, by Proposition 1.6, coded by a sequence of formulas on D,, x D), (its
restrictions), i.e., by formulas on (D x 2N)2_ 1t is therefore definable in T>p. In
particular, the distance to (the copy of) E in E is definable in T»p, so each sort E of
T can be interpreted in T, (or at least, some isometric copy of E is 1nterpretable)
Similarly, every formula on E x E’, can be extended to a formula on Ex E', soit
is definable in T>p (on the copies of E and E’).

Consider now a finite product E =[],_, Ei of sorts of T. We have already
chosen embeddings E C E and E; C E; as above. The projection map 7; : E — E;
can be coded by a formula on E x E;, namely

Fm(-x’ y) =dE,'(-xi7 y)’

where I' stands for “graph”. We have already observed that such a formula is
definable in T, p. It follows that the structure of E as a product of the E; is definable
in T, p. Finally, any formula on Ey x - - - X E,_; can be viewed as a unary formula
on the product E, which is, again, definable in 7p.

In conclusion, we can interpret every sort of T in T>p, and recover the full
structure on these sorts. In other words, 7" is indeed an interpretational expansion
of T,p, completing the proof. U

3. Groupoid constructions and reconstruction strategies

In this section we propose a general framework for “reconstruction theorems”. To
any coding sort D (see Definition 2.4) we associate a topological groupoid G p(T)
from which the theory T;p of Proposition 2.6 can be reconstructed. Since 7T is
bi-interpretable with T,p, the groupoid G p(T) determines the bi-interpretation
class of T'. If the coding sort is moreover determined by the bi-interpretation class
of T (up to definable bijection), then the groupoid is a bi-interpretation invariant.
Various previously known constructions fit in this framework, as well as the one
towards which the present paper aims.

For a general treatment of topological groupoids, we refer the reader to [Macken-
zie 1987], or, for the bare essentials we need here, to [Ben Yaacov 2022]. We recall
that a groupoid G is defined either as a small category in which all morphisms are
invertible, or algebraically, as a single set (of all morphisms), equipped with a partial
composition law and a total inversion map, satisfying appropriate axioms. When
viewed as a category, the set of objects can be identified with the set of identity
morphisms, and we call it the basis B of G. In the algebraic formalism, which we
follow here, the basisis B={ec G:e’>=¢} C G. If g€ G, then s(g) = g~ 'g and
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t(g) = gg~! are both defined, and belong to B, being the source and target of g,
respectively. The domain of the composition law is

dom(-) ={(g, h):s(g) =t(h)} C G*.

A topological groupoid is a groupoid equipped with a topology in which the
partial composition law and total inversion map are continuous. In a topological
groupoid the source and target maps s, t : G — B are continuous as well, B is
closed in G, and dom( -) closed in G%. A topological groupoid G is open if, in
addition, the composition law - : dom(-) — G is open, or equivalently, if the source
map s : G — B (or target map ¢t : G — B) is open.

A (topological) group is a (topological) groupoid whose basis is a singleton.
Such a topological groupoid is always open.

Definition 3.1. Let 7 be a theory in a countable language, and D a coding sort.
We let Spxp(T) denote the space of types of pairs of elements of D. We define
the following two subsets of Spy p(T):

G)(T) = {tp(a.a) :a € D"},

Gp(T)=G%(T)U{tp(a,b) :a,b e D~ D° and dcl(a) = dcl(b)},
where a and b vary over all members of D (or D°) in models of 7. We equip
G p(T) with the induced topology, as well as with the following inversion law and
partial composition law:

tp(a, b))~ =tp(b, a), tp(a, b) - tp(b, ¢) =tp(a, ¢).
We also write Bp (T') for Sp(T'), and identify tp(a) € Bp(T) withtp(a, a) e Gp(T).
This identifies BY(T) = Spo(T) with G%(T).
Notice that the density hypothesis in Definition 2.4 implies that G p(T') is dense

in SDXD(T)-

Convention 3.2. We usually consider the theory T and the coding sort D to be
fixed and drop them from notation, so G = Gp(T), B = Bp(T), and so on.

Lemma 3.3. Let D be a coding sort for T.

(1) As defined above G = G p(T) is a Polish open topological groupoid with basis
B = Bp(T).

(ii) If g =tp(a, b) € G, then s(g) = tp(b) € B is its source, and t (g) = tp(a) € B
its target.

(iii) Ifd is a definable distance on D, then the family of sets
U,={tp(a,b) e G:d(a,b) <r},

forr > 0, forms a basis of open neighbourhoods for B in G.
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Proof. It is easy to check that G is a topological groupoid with basis B and the
stated source and target. Since the language is countable, the space Spxp(7) is
compact metrisable, and therefore Polish. As a condition on tp(a, b), the property
dcl(a) = dcl(b) is Gs by [Ben Yaacov 2022, Lemma 5.1], and a, b ¢ DY is open.
Therefore G is Polish, as the union of a closed subset and a G5 subset of a Polish
space.

Each set U, is open and contains B. On the other hand, if U is any open
neighbourhood of B in G, then it must be of the form W N G, where W is an
open neighbourhood of B in Sp«p(T). Since B is defined there by the condition
d(x,y) =0, and by compactness, W must contain [d(x, y) < r] for some r > 0, so
U contains U,.

It is left to show that the target map ¢ : G — B is open. First, consider
g€ GG CSp,p(T). Let [x € D°1 € Sp.p(T) be the set of types p(x, y) that
imply x € DY, and similarly for y, observing that g ¢ [x € D°]U[y € D). Since
this union is a closed set, g admits a basis of neighbourhoods in Sp, p(T) that are
disjoint from [x € D°]U [y € D°]. By Urysohn’s lemma and the identification of
formulas with continuous functions on types, g admits a basis of neighbourhoods
of the form [¢(x, y) > 0], where ¢(x, y) vanishes if x € D? or y € D, The family
of sets [¢(x, y) > 0] N G for such ¢ is a basis of neighbourhoods for g in G.

Assume we are given such a neighbourhood g € U = [¢(x, y) > 0] N G (so
¢(x, y) vanishes if x € D® or y € D). Let V = [sup, ¢(x, y) > 0] € Sp(T) = B.
Then V is open, and clearly 1 (U) C V. Conversely, assume that tp(a) € V, where
a € D(M) for some M F T. Then there exists b € D(M) such that ¢(a, b) > 0.
By hypothesis on ¢, it follows that a, b ¢ D°. In particular, a codes a separable
N < M, and we may assume that b € D(N). Now, by the density property and the
uniform continuity of ¢, we may assume that b also codes N, so tp(a, b) € U. This
proves that t(U) = V.

Now let g = tp(a,a) € G°. We have a basis of neighbourhoods of g in G
consisting of sets of the form

U=lex)>0]N[dx,y) <rlNG,

where ¢(a) > 0. It is then easily checked that 1 (U) = [¢(x) > 0], since we may
always take y = x as witness. This completes the proof. U

Definition 3.4. Let G be a topological groupoid. Say that a function ¢ : G — R
is uniformly continuous and continuous (UCC) if it is continuous on G, and in
addition satisfies the following uniform continuity condition: for every ¢ > 0 there
exists an open neighbourhood U of the basis B such that for every g € G,

heUglU = |p(g)—eh)|<e.
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Notice that unlike the situation for groups, the uniform continuity condition does
not imply continuity (it is quite possible that g, — h while & ¢ Gg,G for any n).

Proposition 3.5. Assume that D is a coding sort for T, and let G = Gp(T). Let
@(x,y) be a formula on D x D, and let g : G — R be the naturally induced
Sfunction

g=tpla,b) = ¢c(g) =¢l(a,b).

Then the map ¢ — @g defines a bijection between formulas on D x D, up to
equivalence, and UCC functions on G.

Proof. Let us first check that if ¢ is a formula, then ¢g is UCC. It is clearly
continuous. The uniform continuity condition follows from the fact that ¢ is
uniformly continuous in each argument, together with the fact that for any § > 0
we may take choose U = [d(x, y) < §]NG.

Conversely, assume that i : G — R is UCC. By density, the function ¥ admits
at most one continuous extension to Sp.p(7T), and we need to show that one
such exists. In other words, given p € Sp«p(T) and & > 0, it suffices to find a
neighbourhood p € V C Sp« p(T) such that  varies by less than € on VN G. This
is easy if p € G, so we may assume that p ¢ G.

Let us fix ¢ > 0 first. By uniform continuity of i and Lemma 3.3(iii), there exists
6 > 0 such that | (g) — ¥ (ugv)| < & whenever g € G, u,v € [d(x,y) <3]NG,
and ugv is defined.

Given p = tp(ag, bg), we may assume that ag, by € D(M) for some separable
model M. Since p ¢ G, we must have ag # by, and (possibly decreasing §) we may
assume that d(ag, bg) > 26. By the density property, there exist a;, by € D(M) that
code M, with d(ag, a;) +d(by, b)) < 8, sod(ay, by) > 3. Let gy =tp(ay, by) €G.
By continuity, there exists an open neighbourhood g; € V| € Spx p(T') such that
| (g1) — ¥ (h)| < e for every h € Vi N G. Possibly decreasing V|, we may further
assume that tp(a, b) € V| implies d(a, b) > 6. We may even assume that V; is
of the form [x < 8], where x (x, y) > 0 is a formula and x (a;, b1) = x(g1) = 0.
Define

x'(x,y) = infld(x, xX)+d(y, )+ &y,

V=[x'(x,y) <81 S Spxp(T).

Then V is open, p € V, and tp(a, b) € V implies a # b (in other words, VN B = ©).

In order to conclude, consider any g, = tp(az, b) € V N G. Since a, # by, they
cannot belong to the exceptional set, so both code some separable model N. By
definition of V, there exist a3, b3 € D(N) such that

x (a3, b3) +d(az, az) +d (b, b3) <.



STAR SORTS, LELEK FANS, AND RECONSTRUCTION 301

By the density property, and uniform continuity of x, we may assume that a3
and b3 code N as well. Let g3 = tp(as, b3), u = tp(as, a2), v = tp(by, b3). Then
g3 =ugrv € Vy,so

[V (g2) =¥ (gD = ¥ (82) =¥ (g3) + ¥ (g3) — ¥ (g =< 2e.

Therefore, ¥ varies by less than 4¢ on V N G, which is good enough. (]
Corollary 3.6. Every UCC function on Gp(T) is bounded.

Definition 3.7. Let G be a groupoid. A seminorm on G is a function p : G — R™
that satisfies

° prB = O$
« p(g)=p(g~ "), and
e p(gh) < p(g)+ p(h), when defined.

It is a norm if p(g) = 0 implies g € B.
A norm p is compatible with a topology on G if it is continuous, and the sets

{lo<r}={geG:p(g <r}
for r > 0, form a basis of neighbourhoods for B.

Corollary 3.8. The correspondence of Proposition 3.5 restricts to a one-to-one
correspondence between definable distances d on D and compatible norms on

G=Gp(T).

Proof. Let d be a definable distance on D x D and p; the corresponding UCC
function on G. Then py is clearly a continuous norm, and it is a compatible norm
by Lemma 3.3(iii).

The converse is more delicate. Let p be a compatible norm. Then it is continuous,
and it is easy to see that every continuous seminorm is UCC, so p = ¢¢ (in the
notations of Proposition 3.5) for some formula ¢(x, y). If a, b, ¢ € D all code the
same separable model, then ¢(a, a) =0 and ¢(a, b) < ¢(a, c) + ¢(b, c). The set
of types of such triplets is dense in Spxpxp(7T), by the density property, so the
same holds throughout and ¢ defines a pseudodistance.

It is left to show that ¢ defines a distance (and not merely a pseudodistance). Let
d be any definable distance on D, say the one distinguished in the language. We
already know that p; is a compatible norm. Therefore, for every ¢ > 0O there exists
8 > 0 such that {p < 6} C {ps < €}. As in the previous paragraph, this means that
the (closed) condition ¢(a, b) <8 =— d(a, b) < € holds on a dense set of types,
and therefore throughout. In particular, if ¢(a, b) =0, then a = b, and the proof is
complete. (]
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Let T be a theory, D a coding sort for T, and G = G p(T). Then from G, given
as a topological groupoid, we can essentially recover the language £p and the
theory T»p follows.

(i) Choose an arbitrary compatible norm p on G (which exists, by Corollary 3.8).

(i) Let L consists of a single sort, also named D, together with a binary pred-
icate symbol Py, for each UCC function ¥ on G. We know that v is bounded
(Corollary 3.6), and we impose the same bound on Py,. We also know that for
every ¢ > 0 there exists a neighbourhood U of B such that 4 € UgU implies
[V (g) — ¥ (h)| < ¢, and since p is compatible, there exists § = 8, (¢) > 0 such that
the same holds when U = {p < §}. We then impose the corresponding modulus of
uniform continuity on Py, namely requiring that

dx,xyvd(y,y) <8y(e) = [|Py(x,y)—Pyx',y)|<e.

We also use the bound on p as bound on the distance predicate.

(ii1) Let us fix e € B, and consider the set
eG={geG:t,=e}.
If g, h € eG, then g~ 'h is defined, and for any UCC v we let

Py(g, h) =y (g 'h).

In particular, d(g, h) = P,(g, h) = p(g~'h) is a distance function on eG.
Assume now that g, h’ € eG as well, and d(g, g') Vd(h,h') <8 =35y(¢e). Let
u=g''gandv=~h""0. Then g~ "W =ug 'hv, and u, v € {p < 8}, so indeed

|Py (g, h) — Py(g', )| <e,

as required. The bounds are also respected, so eG, equipped with the distance
and interpretations of Py, is an Lg-prestructure, and its completion eG is an
L g-structure.

(iv) We define T¢ as the theory of the collection of all Lg-structures of this form:
T =ThLG(e/G .ec B).
By “essentially recover”, we mean the following.

Theorem 3.9. Let T be a theory, D a coding sort for T, and G = Gp(T). Let Lg
and Tg be constructed as in the preceding discussion. Then Tg and T,p are one
and the same, up to renaming the binary predicate symbols, and up to an arbitrary
choice of the distance on the sort D (from among all definable distances).

In particular, this procedure allows us to recover from G a theory Tg that is
bi-interpretable with T.
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Proof. By Corollary 3.8, step (i) consists exactly of choosing a definable distance d
on D, and the corresponding norm p = dg. This choice is irremediably arbitrary.
By Proposition 3.5, in step (ii) there is a natural bijection between symbols of Lp
(corresponding to formulas ¢(x, y) on D x D, up to equivalence) and symbols
of Lg: to ¢ we associate the UCC function v, = ¢g, to which in turn we associate
the symbol Py, .

Finally, let M E T be separable, a € D(M) a code for M, and e = tp(a) € B.
Let D(M); denote the set of b € D(M) that also code M. If b € D(M)1, then
g» =tp(a, b) € eG. Moreover, if b, c € D(M); and ¢ is a formula on D x D, then
tp(b,c) =g, 'gc € G, so

o(b,c) =Yy(g; ' g0) = Py, (8, 80)-

In particular, d(b, c¢) = d(gp, g.) (Where the first is the distance we chose on D, and
the second the distance we defined on eG in step (iii)). Thus, up to representing ¢
by the symbol Py, , the map b > g, defines an isomorphism of the £p-prestructure
D(M); with the Lg-prestructure ¢G. This extends to an isomorphism of the
respective completions: D(M) >~ ¢G.

It follows that, up to this change of language (and choice of distance), the theory
T defined in step (iv) is the theory of all separable models of 7>p. Since T is in a
countable language, T»p is in a “separable language”, so it is equal to the theory of
all its separable models.

By Proposition 2.6, T is bi-interpretable with 75 p, and therefore also with Tg. [J

Having achieved this, we are ready to start producing reconstruction theorems:
all we need is a coding sort that only depends (up to definable bijection) on the
bi-interpretation class of T'.

Example 3.10. Let 7 be an 8y-categorical theory. Let M be its unique separable
model, and let a be any sequence (possibly infinite, but countable), in any sort
or sorts, such that dcl(a) = dcl(M) (for example, any dense sequence will do).
Let Dr o be the set of realisations of p = tp(a). Since T is Np-categorical, Dr
is a definable set, i.e., a sort. It is easy to check that it is a coding sort (with no
exceptional set).

If b is another code for M, and D/T,O is the set of realisations of tp(b), then
dcl(a) = dcl(b) and tp(a, b) defines the graph of a definable bijection D7 o > D’T’O.
Therefore, Dr o does not depend on the choice of a. Moreover, assume that 7"’ is an
interpretational expansion of 7. Then it has a model M’ that expands M accordingly.
But then dcl(M’) = dcl(M) = dcl(a) (as calculated when working in T”), so
D70 = Dr . It follows that D7 ¢ only depend on the bi-interpretation class of 7T'.

Since Sp, ,(T) = {p} is a singleton, the groupoid

G(T)=Gp;,(T)
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is in fact a group. It only depends on the bi-interpretation class of T (since Dr o only
depends on it) and by Theorem 3.9, it is a complete bi-interpretation invariant for 7'.
We leave it to the reader to check that

G(T) ~ Aut(M),

and that the reconstruction result is just a complicated restatement of those of
[Ahlbrandt and Ziegler 1986; Ben Yaacov and Kaichouh 2016].

Example 3.11. Let 7 be a theory in classical logic. In [Ben Yaacov 2022], using
an arbitrary parameter ®, we gave an explicit construction of a set of infinite
sequences Dg. We showed that it is a definable set in the sense of continuous logic,
and that its interpretation in models of 7" only depend on the bi-interpretation class
of T (up to a definable bijection). It also follows from what we showed that it is
a coding sort (without exceptional set). Since it is unique, let us denote it by Dy
(in fact, we could also just denote it by D: its construction only depends on the
language, and then we simply restrict our consideration of it to models of 7). We
then proved that the groupoid

G(T)=Gp,(T)
is a complete bi-interpretation invariant for 7'. This is a special case of Theorem 3.9.

Example 3.12. Let 7 be a (complete) theory in continuous logic. In [Ben Yaacov
2022] we defined when a sort Dy is a universal Skolem sort, and proved that if such
a sort exists, then it is unique, and only depends on the bi-interpretation class of T’
(in contrast with the previous example, here we do not have a general construction
for such a sort, let alone a uniform one, so it really does depend on 7'). We proved
that if 7 admits a universal Skolem sort D7, then

G(T)=6Gp,(T)

is a complete bi-interpretation invariant for 7.
Again, we also proved that Dr is a coding sort, so this is a special case of
Theorem 3.9.

Remark 3.13. Example 3.12 encompasses the two previous examples in the fol-
lowing sense.

o If T is classical, then the sort Dy of Example 3.11 is a universal Skolem sort,
so Example 3.11 is a special case of Example 3.12.

o If T is Np-categorical, then Dy = D1 o X 2N is a universal Skolem sort, so

G(T)~2Nx G(T) x 2N, with groupoid law («, g, B) - (B, h, y) = (a, gh, y).
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Consequently, B(T) = 2N and if e € B(T), then G(T) ~ eG(T)e. Therefore,
the reconstruction of Example 3.10 can be recovered from a special case of
Example 3.12.

In both Example 3.11 and Example 3.12, the basis Sp, (") is homeomorphic to the
Cantor space 2N,

However, in [Ben Yaacov 2022] we also gave an example of a continuous theory
which does not admit a universal Skolem sort. In particular, the explicit construction
of Dr as D¢ in the case of a classical theory simply does not extend, as is, to
continuous logic. The rest of this article is dedicated to presenting a modified version
of this construction, giving rise to a coding sort that does have an exceptional set (a
very simple one, consisting of a single point), allowing us to prove a reconstruction
theorem for every first-order theory in a countable language (in continuous or
classical logic).

4. Star spaces

Before we can construct our coding sort, we require a technical detour, where we
introduce star sets in general, and, in the model-theoretic context, star sorts. For
the time being, we must ask the reader to bear with us — the usefulness of these
notions for our goal is explained in some detail at the beginning of Section 6.

Definition 4.1. (i) A retraction set is a set X equipped with an action of the
multiplicative monoid [0, 1]. In particular, 1-x =x forall x € X, and ¢ (Bx) = («B)x
(so this is a little stronger than a homotopy).

(ii) Itis a star set if 0- x does not depend on x. We then denote this common value
by 0 € X, and call it the root of X.

(iii) A topological retraction (star) space is one equipped with a topology making
the action [0, 1] x X — X continuous.

(iv) A metric star space is one equipped with a distance function satisfying
d(ax,ay) <ad(x,y) and d(ax, fx) = o — B|[|lx||, where [[x|| = d(x, 0).

Notice that a retraction set X can be fibred over 0 - X, with each fibre a star set.
We could also define a metric retraction space by putting infinite distance between
fibres.

Example 4.2. The real half line R is naturally a topological and metric star space.
The interval [0, 1] (or [0, r] for any r > 0) is a compact topological and bounded
metric star space.

Example 4.3. If X and Y are two star sets, then X x Y, equipped with the diagonal
action a(x, y) = (ax, ay), is again a star set. If both are metric star spaces, then
equipping the product with the maximum distance makes it a metric star space as
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well (here the maximum distance is preferable to the sum distance, since it preserves
bound hypotheses on the diameter).

Example 4.4. Let X be a set, and equip [0, 1] x X with the equivalence relation
(@, x)~(B,y) <= (x,x)=(B,y) or a=p=0.
The cone of X is the quotient space
*X = ([0, 1] x X)/~.

A member of X is denoted by [, x]. We equip it with the action «-[ 8, x] =[S, x].
This makes it a star set, with [0, x] = 0 regardless of x.

We tend to identify x € X with [1, x] € %X, so [«, x] may also be denoted by a.x.

When X is a compact Hausdorff space, the relation ~ is closed, *X is again
compact and Hausdorff, and the identification X C %X is a topological embedding.
When X is a bounded metric space, say diam(X) < 2, we propose to metrise xX
b

’ d(ax, By) = la— |+ (@A p)d(x, y). 2

In particular, if either o or B vanishes, then the right-hand side does not depend on
either x or y, so d is well defined, and d(0, x) = 1 for all x € X.

The only property that is not entirely obvious is the triangle inequality, namely

le—yl+(any)d(x,2) <|la—Bl+(a@AB)d(x, y)+IB—yI+(BAY)d(y, 2). (3)

We may assume that ¢ > y,soax Ay = y. If 8 > y, then (3) holds trivially since
anB >y =pBAy.Ilf B <y, then the right-hand side evaluates to

(¢ —y)+2(y —B)+Bd(x,y)+ Bd(y, 2).

Applying the triangle inequality for X and the hypothesis that 2 > d(x, z), we
obtain (3) in this case as well.

We conclude that (xX, d) is a metric space. The embedding X C %X is isometric,
and diam(xX) = 1 v diam(X). If X is complete, then so is *X.

A special instance of this is the cone of a singleton, which can be identified with
the interval [0, 1] equipped with the natural star, topological or metric structures.

Example 4.5. More generally, let S be a star set, X an arbitrary set, and define

(s, x)~(t,y) <= (s,x)=(,y) or s=t=0,
Sk X =(SxX)/~.

As in the definition of a cone, a member of S % X is denoted by [s, x] or s * x
(in analogy with the notation ax). We make S * X into a star set by defining
o-(s*x)=(as)*x.

This indeed generalises the cone construction, with «X = [0, 1] % X.
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When S and X are compact Hausdorff spaces, the relation ~ is closed, and S * X
is again compact and Hausdorff. When S and X are bounded metric spaces, say
diam(X) <2 and ||s|| <1 for all s € S, we equip S * X with the distance function

d(sxx,txy)=d(s, 1) vVd(lslx, l7]y),

where d (||s]|x, ||¢]|y) is calculated in % X. Notice that ||s*x]| = ||s||, and the distance
functions on [0, 1] * X and %X agree.

Remark 4.6. The generalised cone construction of Example 4.5 can be easily
iterated: S (X x Y) = (S % X) % Y, identifying s * (x, y) = s % x * y. In the
metric case, assume that X and Y are both of diameter at most two. Equipping
products with the maximum distance, diam(X x Y) < 2 as well, and the obvious
map *(X x ¥) — %X x xY sending «(x, y) — (ax, ay) is isometric. It follows
that the identification S x (X x Y) = (§ * X) x Y is isometric:

dsxx*xy, txuxv)=d(s*x,txu)Vvd(s*xx|y, ||t *xulv)
=d(s,t) vVd(llsllx, lzllw) vdlslly, 7llv)

=d(s,t)vd(lIsl(x, y), I, v))
=d(s*(x,y),t*u,v)).

In particular, (X x Y) = (xX) % Y.

Definition 4.7. Let X and Y be two retraction (star) spaces. Amap f: X — Y
is homogeneous if f(ax) = af (x). It is subhomogeneous if f(ax) = Bf (x) for
some B < a. The latter is mostly used when ¥ = R, in which subhomogeneity
becomes f(ax) < af(x).

We may also equip a retraction space with a partial order defined by ax < x
whenever « € [0, 1]. This induces the usual partial order on R*, and subhomogeneity
can be stated as f(ax) <o f (x) for arbitrary maps between retraction spaces. Notice
also that our definition of a metric retraction space X simply requires the distance
function to be subhomogeneous on X x X.

5. Star sorts

Definition 5.1. A star sort is a sort equipped with a definable structure of a metric
star space. In particular, this means that the map (o, x) — ax is definable (and not
just x — ax for each «). Star sorts are usually denoted by D*, E*, and so on.

Definition 5.2. Let D* be a star sort and ¢(u, y) a formula on D* x E. We say
that ¢ is subhomogeneous if it satisfies a@(u, y) > ¢p(au, y) > 0.

We may specify that it is subhomogeneous in the variable u, especially if u is not
the first variable. More generally, we may say that ¢(u, v, ...) is subhomogeneous
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in (u,v) ifap(u,v,...) > ¢(oeu, av,...) >0, and similarly for any other tuple of
variables. If it is subhomogeneous in the tuple of all its variables, we just say that
@ is jointly subhomogeneous.

Example 5.3. (i) If D is any sort (of diameter at most two), then the cone *D,
equipped with the distance proposed in Example 4.4, is a star sort. More generally,
if D* is a star sort and E an arbitrary sort, then D* % E, as per Example 4.5, is a
star sort.

(i) Any finite product of star sorts, equipped with the diagonal action of [0, 1] and
the maximum or sum distance, is again a star sort. Similarly, any countable product
of star sorts, equipped with
dy(uy, vy)
d b - .— 9
(. v) Z 2" diam(d,)

is again a star sort, and the same holds with supremum in place of sum.

(iii) If D* is a star sort and d’(u, v) a jointly subhomogeneous definable pseudo-
distance on D*, then the quotient (D*, d") can be equipped with an induced star
structure, making it again a star sort.

(iv) Let D* be a star sort and E* C D* a definable subset. Then the distance
d(u, E*) is subhomogeneous if and only if E* is closed under multiplication by
a € [0, 1], in which case E* is again a star sort.

Notice that ¢(u, y) is subhomogeneous in u if for every fixed parameter b, the
formula ¢(u, b) (in u alone) is subhomogeneous.

For an alternate point of view, notice that a subhomogeneous formula ¢ (u, y)
does not depend on y when u = 0. It can therefore be viewed as a formula ¢ (u * y)
in the sort D* x E (see Example 4.5). Since «(u * y) = (ou) * y, a subhomogeneous
(in u) formula ¢ (u, y) is the same thing as a subhomogeneous formula ¢ (u * y) in
a single variable from the sort D* x E.

Similarly, a formula ¢ (u, v) on D* x E* is jointly subhomogeneous if and only
if it is subhomogeneous as a formula on the product star sort.

Question 5.4. We ordered the clauses of Example 5.3 in order to reflect the three
operations by which we construct sorts in general. Still, something more probably
needs to be said regarding the construction of subhomogeneous pseudodistance
functions. In the usual context of plain sorts (and plain pseudodistances), to every
formula ¢(x, t) on D x E we can associate a formula on D x D, defined by

dy(x,y) = Sl:p lp(x, 1) —@(y, 1)].

This is always a definable pseudodistance on D. Moreover, in the case where £ = D
and ¢ already defines a pseudodistance, d,, agrees with .
Can something analogous be done in the present context as well?
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The following essentially asserts that we can retract continuously (with Lipschitz
constant one, even) all formulas into subhomogeneous ones. The analogous result
for a formula in several variables, with respect to joint subhomogeneity in some of
them, follows.

Proposition 5.5. Let D* be a star sort and ¢ (u, y) > 0 a positive formula on D* X E.
For k € N, define

(SHy @) (u, y) = inf (o', y) + kd(au', u)), whereu' € D*, a €0, 1].
u',o

(1) For any ¢ = 0 and k, the formula (SHy ¢)(u, y) is k-Lipschitz and subhomoge-
neous in u, and SHy ¢ < ¢.

(1) For any two formulas ¢, W >0andr >0, if o <yr+r, then SHy ¢ < (SHy ¥)+r.
Consequently, |(SHy ) — (SHy ¥)| < ¢ — ¥ 1.

(iii) If ¢ is subhomogeneous, then (SHy ¢) — ¢ uniformly, at a rate that only
depends on the bound and uniform continuity modulus of ¢.

Proof. Clearly, (SHy ¢)(u, y) is k-Lipschitz in u. If (SHy ¢)(u, y) <r and B €[0, 1],
then there exist u’ and o such that a@(u’, y) + kd(au’, u) < r. Then

afe’, y) +kd(aBu’, Bu) < r,

showing that (SHy ¢)(Bu) < Br. This proves subhomogeneity. We also always
have (SHy @) (u, y) < 1-9(u, y) +d(1-u,u) =¢(u, y).

The second item is immediate.

For the third item, we assume that ¢ is subhomogeneous, in which case

(SHr @) (u, y) = i}ll,f(fp(u’, V) +kd', u) <o, y).

Say that |¢| <M and d(u, u’) < § implies | (u, y)—¢ W', y)| <e,and letk >2M/3.
If du',u) > &, then o', y) + kd(u',u) > ¢(u), so such u’ may be ignored.
Restricting to those where d(u’, u) < §, we see that (SHy ¢) > ¢ — €. [l

Definition 5.6. We say that a formula ¢ (x, y) is witness-normalised (in x, unless
another variable is specified explicitly) if inf, ¢ = 0 (equivalently, if ¢ > 0 and
sup, inf, ¢ =0).

More generally, for ¢ > 0, we say that ¢(x, y) is e-witness-normalised (in x) if
0<inf, ¢ <e.

Witness-normalised formulas are analogous to formulas ¢ (x, y) in classical logic
for which 3y ¢ is valid: in either case, we require that witnesses exist. If ¢(x, y) is
any formula, then ¢(x, y) —inf; ¢ (x, z) is witness-normalised (we may say that it
is syntactically witness normalised), where we subtract a “normalising” term.

By definition, a subhomogeneous or a witness-normalised formula is positive. If
@ 1s witness-normalised in any of its arguments and ¢ > ¢ > 0, then so is 1. This
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applies in particular to the formulas SHy ¢ constructed in Proposition 5.5, assuming
@ is witness-normalised.

Definition 5.7. Let D* and E* be two star sorts. A star correspondence between
D* and E* is a formula ¢(u, v) on D* x E* that is subhomogeneous in (u, v) and
witness-normalised in each of u and v.

Similarly, an e-star correspondence is a jointly subhomogeneous formula that is
e-witness-normalised in each argument.

Remark 5.8. If ¢ is e-witness-normalised (in one of its variables), then ¢’ = ¢ ~ ¢
is witness-normalised (in the same), and |¢ — ¢'| < &. If ¢ is subhomogeneous,
then so is ¢ = ¢,

Therefore, if ¢ is an g-star correspondence, then ¢’ = ¢ = ¢ is a star correspon-
dence, and |p — ¢'| < e.

Say that a definable map o : D — E is densely surjective if it is surjective in
every sufficiently saturated model of the ambient theory, or equivalently, if o has
dense image in every model. Recall that a definable map o : D* — E™* between
star sorts is homogeneous if o (au) = oo (u).

Notice that a definable map o : D* — E* is homogeneous if and only if the
formula d(ou, v) is subhomogeneous in (u, v), and it is always witness-normalised
in u. If o is densely surjective, then it is homogeneous if and only if d(cu, v) is a
star correspondence. If o is bijective, then this is further equivalent to d(u, o ~'v)
being a star correspondence.

Definition 5.9. Say that a star sort D* is universal (as a star sort) if for every star
sort E*, every star correspondence ¢ between D* and E*, and every ¢ > 0, there
exists a %—star correspondence ¥ such that, in addition, if ¥ (u, v;) < 1 fori =0, 1,
then ¢ (u, v;) < € and d(vy, V1) < €.

This just says that condition (ii) of Proposition 5.10, which may be easier to
parse, holds “approximately”. The choice of 1 and % is quite arbitrary, and any
two constants 0 < r; < ro would do just as well (in the proof of Proposition 5.10(1)
below, replace 2v = 1 with (¢ =r()/(ra — r1)).

Proposition 5.10. Let D* and E* be star sorts, ¢(u, v) a star correspondence on
D* x E*, and ¢ > 0.

(1) If D* is a universal star sort, then there exists Y as in Definition 5.9 that is a
star correspondence (rather than a mere %-star correspondence).

(ii) If D* is a universal star sort, then there exists a densely surjective homogeneous
definable map o : D* — E* such that ¢(u, ou) <.

(iii) If both D* and E* are both universal star sorts, then the same can be achieved
with o bijective.
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Proof. For (i), let ¢ be as in the conclusion of Definition 5.9. Then 2y = 1 will do.

For (ii), define a sequence of formulas ¢, (u, v) as follows. We start with ¢y = ¢,
and we may assume that 0 < & < 1. Then, assuming that ¢, is a star correspondence,
we find a star correspondence ¢, such that ¢,41(u, v;) < 1 implies ¢, (1, v;) <&
and d(vg, v1) < €/2". Let X,, € D* x E* be the (type-definable) set defined by
¢n <€ and X = () X,,. By hypothesis, for every u € D* and n, there exists v € E*
such that (u, v) € X,,. We also have X,,+; C X,,, so in a sufficiently saturated model
there exists v € E* such that («, v) € X. By the second hypothesis on ¢,, such v is
unique, so X is the graph of a definable map o (and v belongs to any model that
contains u). By the same reasoning as above, for every v € E* there exists u € D*
(not necessarily unique, so potentially only in a sufficiently saturated model) such
that (1, v) € X, so o is densely surjective.

Assume now that v = ou, i.e., (u, v) € X. Since each ¢, is subhomogeneous,
(oxu, av) € X for every « € [0, 1], i.e., «v = o (au), and o is homogeneous. Finally,
since ¢g = ¢, we have (u, ou) € X C Xg, so ¢(u,ou) <e.

For (iii) we use a back-and-forth version of the previous argument, with the roles
of D* and E* reversed at odd steps. O

Notice that the zero formula is (trivially) a star correspondence on any two star
sorts. Therefore, if a universal star sort exists, then it is unique, up to a homogeneous
definable bijection.

Lemma 5.11. Let (D};) be an inverse system of star sorts, where each v, D, ,— D,
is surjective and homogeneous.

(i) The inverse limit D* = lim D} is a star sort, with the natural action a(u,) =
(auy) and the distance proposed in Example 5.3.

(ii) A star correspondence between D* and E* that factors through D;; x E* is the
same thing as a star correspondence between D) and E*.

(iii) In order for D* to be a universal star sort, it is enough for it to satisfy the
condition of Definition 5.9 for star-correspondences ¢ that factor through
Dy x E* for some n.

Proof. The first two assertions are fairly evident. In what follows, we are going to
identify a formula ¢ (u,, v) on D x E* with the formula ¢ (7, (1), v) on D* x E*,
which is essentially what the second point says.

For the last one, say that ¢ is a star correspondence between D* and E*, and
let ¢ > 0. For n large enough we may find a formula ¢ (u,, v) on D} x E* such that
@ > @1 > @ = ¢ (with the identification proposed in the previous paragraph). Since
¢ is jointly subhomogeneous, so is ¢ = ¢. Using the construction of Proposition 5.5,
this implies that for large enough k£ we have

@ > SHy ¢ > SHy 1 > SHy (¢ =€) > ¢ = 2e.
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Since ¢’ = SHy, ¢ is jointly subhomogeneous, it is a star correspondence, and it
factors through D} x E*. Assume now that ¥ (u, v) exists, as per Definition 5.9,
for ¢’ and ¢. In particular, if ¥ (1, v) < 1, then ¢’ (u, v) < €, s0 ¢(u, v) < 3¢, which
is good enough. U

6. Sorts with witnesses

In this section, we provide an explicit construction of a universal star sort. We
follow a path similar to the construction of D¢ in [Ben Yaacov 2022], seeking a
sort that contains “all witnesses”.

Let us consider first the case of a single formula ¢(x, y) on D x E, which we
assume to be witness-normalised (namely, such that inf, ¢ = 0; see Definition 5.6).
The sort D is viewed as the sort of parameters, and E is the sort of potential
witnesses. One may then wish to consider the set of “parameters with witnesses”,
namely the collection of all pairs (x, y) such that ¢(x, y) = 0, but this may be
problematic for several reasons.

First of all, in a fixed (nonsaturated) structure, for all a there exist b such that
¢(a, b) is arbitrarily small, but not necessarily such that ¢(a, b) = 0. This can be
overcome by allowing an error, e.g., by considering all the solution set of p(x, y) <e
for some ¢ > 0. In fact, it is enough to consider the solution set of p(x, y) < 1: if
we want a smaller error, we need only replace ¢ with ¢/¢.

A second, and more serious issue, is that the resulting set(s) need not be definable.
That is to say that it may happen that 1 < ¢(a, b) < 1+ ¢ for arbitrarily small ¢ > 0
without there existing a pair (a’, b) close to (a, b) such that ¢(a’, b’) < 1. We can
solve this by allowing a variable error, considering triplets (r, x, y) where r € R
and ¢(x,y) <r. Now, if ¢(x, y) < r + ¢, then the triplet (r, x, y) is very close
to (r + ¢, x, ¥), which does belong to our set.

This may seem too easy, and raises some new issues. For example, if we allow
errors greater than the bound for ¢, then the condition ¢(x, y) <r becomes vacuous.
This is not, in fact, a real problem, since soon enough we are going to let ¢ vary
(or more precisely, consider an infinite family of formulas simultaneously), and any
finite bound r will be meaningful for some of the formulas under consideration.
However, in order for the previous argument to work, r cannot be bounded (we
must always be able to replace it with » + ¢). By compactness, r = 400 must be
allowed as well —and now there is no way around the fact that p(x, y) < oo is
vacuous, regardless of ¢.

We seem to be chasing our own tail, each time shovelling the difficulty underneath
a different rug—indeed, a complete solution is impossible, or else we could
construct a universal Skolem sort, which was shown in [Ben Yaacov 2022] to be
impossible in general. What we propose here is a “second best”: allow infinite
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error, but use the formalism of star sorts to identify all instances with infinite error
as the distinguished root element. Thus, at the root, all information regarding the
(meaningless) witnesses will be lost, while every point outside the root will involve
finite error, and therefore meaningful witnesses. Since we want the root to be at
zero, rather than at infinity, we replace r € [1, oo] with @ = 1/r € [0, 1].

Let D* be a star sort, E a sort. The set D*« E ={u*xy:u € D*, y € E}, as per
Example 4.5, is again a star sort, in which 0 *x y = 0 regardless of y.

Lemma 6.1. Let D* be a star sort, E a sort, and ¢(u, y) a formula on D* x E,
witness-normalised and subhomogeneous in u. Then

Dy ={uxy:ueD"andp(u,y) <1} S D*xE

is again a star sort, and the natural projection map Dy — D*, sending u x y — u,
is surjective.

Proof. We may view ¢ as a formula on D*x E, since, by subhomogeneity, ¢ (0, y) =0
regardless of y. The set D:; is the zero-set in D* x E of the formula ¢ = 1. Assume
now that a xb € D* % E and ¢(a,b) =1 <. Then (1 —8§)a*xb € D:;, and it is
as close as desired (given § small enough) to a x b. Therefore, Dy is definable.
Since ¢ is subhomogeneous, Dy is closed under multiplication by « € [0, 1] and is
therefore a star sort. Since ¢ is witness-normalised, the projection is onto. ]

Let us iterate this construction. Recall from Remark 4.6 that (xD)*E =*(D X E),
identifying (ax) * y = a(x, y). Therefore, if D* C xD (with the induced star
structure), then D* x E C (D x E).

Definition 6.2. Fix a sort D, as well as a sequence of formulas ® = (¢,), where
each ¢, (x-,, y) is a witness-normalised formula on D" x D. Since ® determines
the sort D, we say that ® is a sequence on D. We then define

Dy ={ax_, :agp(xok, xx) <1 forall k <n} Cx(D"),
Dy = {ox : agy(x<p, x,) <1 foralln} C *(DN).
In other words,
Dj = [0, 1] = x(singleton), ni1 = D)y, Dy =1im D},

where ¢ (ax—p, y) = a@(x<,, y). By Lemma 6.1, each D} is a star sort, and the
natural projection D), — D; is onto. By Lemma 1.5, Dg = lim Dj; is also a sort,
and therefore a star sort by Lemma 5.11.

Notice that any formula in D;; can be viewed, implicitly, as a formula in Dj
for any k > n, or even in Dy, via the projections D} — D or Dg — D; (this
is, essentially, an addition of dummy variables). In what follows, variables in D}
are denoted by u, or ax_, (where x_, € D"), and similarly, variables in D}, are
denoted by u or ax.
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Definition 6.3. We say that the sequence ® on a sort D is rich if D admits a
definable projection onto any countable product of basic sorts, and for every witness-
normalised formula ¢(x.,, y) in D" x D and every ¢ > O there exist arbitrarily big
k > n such that |@r (X<, ¥) —@(x <, )| < € (s0 ¢ is viewed as a formula in x g, y
through the addition of dummy variables).

Lemma 6.4. Under our standing hypothesis that the language is countable, with
countably many basic sorts, there exists a rich sequence ® (on an appropriate
sort D). Moreover, we may construct ® (and D) in a manner that only depends on
the language and not on the theory of any specific structure.

Proof. For D we may take the (countable) product of all infinite countable powers
of the basic sorts. For each £ we may choose a countable dense family of for-
mulas on DF x D, call them Yie.m (X<k, y). Replacing them with xx , (x<k, ¥) =
Yie.m (X<k, y) —inf; Yx m (X<, 2), we obtain a countable dense family of witness-
normalised (in x_;) formulas on D¥ x D. We may now construct a rich sequence ®
in which each xi ,, occurs infinitely often (with additional dummy x variables). [J

Let ® = (¢,) (and D) be fixed, with @ rich. We define a formula on D" by

1
1 Vv \/k<n (pk(x<k’ Xk) .

Pn(X<n) =

In other words, p,(x~,) is the maximal « € [0, 1] such that wx_, € D}, or equiva-
lently, such that x_, can be extended to x with ax € Dj,.

Lemma 6.5. Let ® = (¢,) be rich. Let E* be another star sort, (u,, v) a star
correspondence on Dy x E* that factors through D), x E*, and & > 0. Then
factors through D} x E* for every k > n, and for every large enough k the formula
1//{‘ X<k, V) = V(o (X<p)X<p, V) is e-witness-normalised in either argument.

Proof. If k > n, then pi(x<x) < pp(x<n), SO pr(x<k)X<n € D;i. Since ¥ (uy,, v) is
witness-normalised in u,,, wf (x <k, v) is witness-normalised in x_. It is left to
show that for k large enough, it is also e-witness-normalised in v.

Our hypothesis regarding D implies, among other things, that there exists a
surjective definable map x : D — [0, 1] (namely, a surjective formula). Therefore,
for a constant C that we shall choose later, there exists m > n such that

Cx(y) = omxam,y) = Cx(y)—1/C.

Assume that k > m. For every possible value of v € E*, which we consider as
fixed, there exists ax-, € D such that ¥ (ex—,, v) < &. We can always extend x_,
to X, in such a manner that p,, (x<,,) = pn(x<n) > @, s0 ax—,, € D). We choose
Xm SO ¥ (xm) = (@C Vv 1)~!, and extend X<m 10 X<k SO P (X<k) = Pm+1(X<m)-
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If «C > 1, then 1/ > @y (X<, Xim) = 1/a —1/C, so
o < Pt (X<m) <a(l—a/C)7 L.

Having chosen C large enough, px (x<x) = pm+1(x<;) is as close to « as desired. If
aC<1,then0<a<1/Cand0 < pg4+1(x<x) <1/(C—1/C), so the same conclusion
holds. Either way, having chosen C large enough, 1/[{‘ (x<k, v) is as close as desired
to ¥ (ex<y, v), and in particular z//{‘(x<k, v) < 2¢, which is good enough. O

Given our hypothesis regarding D, every sort can be expressed as a definable
subset of a quotient of D by a pseudodistance. Such a quotient is denoted by (D, d)
(which includes an implicit step of identifying points at d-distance zero).

Convention 6.6. From this point, and through the proof of Lemma 6.8, we fix a
star sort E*. By the preceding remark, we may assume that (E*, dg+) € (D, d)
isometrically, where d is a definable pseudodistance on D, which we also fix. In
particular, the distance on E* is also denoted by d. If y € D, we denote its image
in the quotient (D, d) by ¥.

It is worthwhile to point out that if ax € DY, then for every k € N and § > 0,

(a8/2)(@r (x <k, xi) + 1) = (8/2) (cvgpre (x <k, xk) + ) < 6. “)

Given n <k and § > 0, let us define, for ax € D3, ve E* and y € D,
x"(ax,y,v) = wig*[g(apn(xq)_lw, v) +ad(y, w)],
X" (ox, v) = X" (ox, e, v) = inf [d(@pn (x<n) ™ w, v) +ed (i, w)].
weE*

Let us explain this. First of all, since ax € D}, we must have o < p,(x-,), so the
expression ap, (x<»)"'w makes sense. Also, if & = 0, then x"(ax, y, v) = ||v]|
does not depend on x, so this is well defined.

Now, let y € D (possibly, y = x4 for some k > n, but this will happen later). We
want v to be equal to ap,(x-,) "'y, and in particular, we want y to belong to E*.
We may not multiply by ap,(x-,)~! outside E*, but we may quantify over E*.
Therefore, we ask for y to be very close to some w € E*, and for «p, (x<n) 'w,
which always makes sense, to be close to v.

Lemma 6.7. The formula x"*(u, v) has the following properties:
(1) It is jointly subhomogeneous in its arguments.
(ii) For every n, e > 0 there exists 6 = §(n, &) > 0 such that, if x"(u,y,v;) <6
fori=0,1, then d(vg, v) <e&. In particular, for any k, if)(”’k(u, v;) <4 for
i =0,1, then E(UO, V) <&
(iii) Assuming that or(x<, y) > 2d(y, E*)/8 — 1, the formula x™*(u, v) is §-
witness-normalised in u.
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Proof. Ttem (i) is immediate (among other things, we use the fact that d is subho-
mogeneous on E*).

For (ii), assume that x" (ax, y, v;) = 0. Then either « = 0, in which case v; =0,
or @ > 0, in which case we have y € E* and v; = ap, (x<n)_1y. Either way, vo = vy,
and in particular d(vg, v1) < &. The conclusion follows by compactness.

For (iii), let u = ax € D}. By (4) we have ad (¥, E*) <§. Choose w € E* such
that ard (X, w) < 8, and let v = ap, (x=,) " 'w. Then x™*(u, v) <. O

Lemma 6.8. Ler ® = (¢,) be rich. Let E* C (D, d) be a star sort, as per
Convention 6.6, y(u, v) a star correspondence on Dy x E*, and ¢ > 0. Then
there exist n < k and 8 > 0 such that x*(u, v) is a 8-star correspondence between
Dy and E*, and in addition, ifx”*k(u, v;)) <268 fori =0,1, then ¥(u,v;) <e
and d(vg, v;) < e.

Proof. By Lemma 5.11 and Lemma 6.5, for some # (in fact, any n large enough),
we may assume that i is a star correspondence that factors as ¥ (u,,, v) through
D} x E*, and that Y1 (X<, v) = ¥ (0 (X<) X <p, V) is e-witness-normalised in either
argument. In particular, ¥ = ¢ is witness-normalised.

We may extend v —¢ to D" x (D, d), obtaining a formula ¥»(x,, y) on D" x D,
which is uniformly d-continuous in y. Since ¥r; > 0, we may assume that iy, > 0,
and even that _

Yo (xan, y) 2 d(Y, E*)

Let us choose é > 0 small enough, based on choices made so far. Since ¥»(x—,, y)
is witness-normalised in x_, (choosing witnesses y € E™*), there exists k > n
such that |¢r — 21, /8| < 1. By Lemma 6.7, having chosen § small enough, the
formula x™*(u, v) is jointly subhomogeneous, 8-witness-normalised in u, and
x5 (u, v;) <28 implies d(vy, v;) < €. Two more properties remain to be checked.

First, we need to check that X"’k(u, v) is §-witness-normalised in v. Indeed,
given v =y € E*, we know that there exists a sequence x., € D" such that
Yi(x<p,v) =& =0. Let @ = p,(x-,), S0 ax, € D, and extend the sequence
X<pn to x- keeping ax; € D;. We now choose x; =y, so Y2 (x<p, x¢) = 0 and
ok (x<k, xx) < 1. Therefore, ax<; € D;; 1 and we may complete the sequence to
x € DN such that ax € Dy . Then x"*(ax, v) =0, as witnessed by w = v (recalling
that we chose @ = p,, (x;)).

Second, we need to check that, having chosen & appropriately, x™*(ax, v) <28
implies ¥ (ax, v) <e. Indeed, following a path similar to the proof of Lemma 6.7(ii),
assume that

x"(ax, y,v) = ayr(x<p, y) =0.
If « =0, then v =0 and ¥ (ax,v) = ¥(0,0) = 0. If « > 0, then y € E*,

V= Olpn(x<n)_1§, and ¥ (pp(Xx<p)x,y) ~ & = Y2(x<y, ¥y) = 0. Since (ax,v) =
0pn (X <n) " (Pp(Xx<p)x, y), it follows that ¥ (ax, v) < ¢ in this case as well. By
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compactness, for § small enough, if x"(ax,y,v) < 2§ and ayr(x<,,y) <6,
then ¥ (ax,v) < 2¢. This last argument does not depend on k, so we may
assume that § was chosen small enough to begin with. By (4), the inequality
ay(x<,, x;) < 6 is automatic when ax € Dy, If, in addition, we assume that
x™K(ax, v) = x™(ax, x, v) < 28, then ¥ (ax, v) <&, completing the proof. [

Theorem 6.9. Let ® be a rich sequence. Then Dy, is universal.
Proof. Immediate from Lemma 6.8, using the formula 2™k /8. U

Let us sum up everything we know about the existence and uniqueness of
universal star sorts.

Corollary 6.10. Every theory T (not necessarily complete) admits a universal star
sort, which is unique up to a bijective homogeneous map. Moreover, this unique
universal sort only depends on the bi-interpretation class of T.

For a more precise statement of the moreover part, assume that T and T’ are
bi-interpretable, so by Definition 1.4, they admit a common interpretational expan-
sion T". Then any two universal star sorts D} and D}, of T and T', respectively,
are also universal star sorts of T". As such, they admit a definable homogeneous
bijection.

Proof. For any theory T, the existence is by Theorem 6.9, and the uniqueness by
Proposition 5.10(iii).

Let us consider two theories 7 and 7', and assume that 7" is an interpretational
expansion of 7. Let D* be a star sort of T. Since 7’ is an expansion of 7', D*
is also a star sort of 7’. Conversely, if E* is a star sort of 7’, then, since T’ is an
interpretational expansion of T, E* admits a definable bijection (in the sense of 7")
with a sort of T, call it E*. This definable bijection induces a star sort structure
on E*. Since T’ is an interpretational expansion of T, it cannot introduce new
structure on sorts already interpretable in 7. Therefore, the star sort structure on
E* is definable in T'. In other words, T and T’ have the same star sorts.

Now let D7 be a universal star sort of 7. Then D7, is also a star sort of 7'. We have
just seen that every star sort of 7’ is also a star sort of 7', so every instance of the
condition of Definition 5.9 for D in 7’ can be translated to such an instance in 7.
Therefore, D7 is also a universal star sort of 7'. The moreover part follows. [

7. Further properties of the universal star sort

In Section 5 we showed that the universal star sort, if it exists, is unique up to a
homogeneous definable bijection, and in Section 6 we showed that one exists as D,
for any rich sequence ®. Let us prove a few additional properties of this special sort.
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Convention 7.1. From now on, D* denotes any universal star sort. Since it is
unique up to a homogeneous definable bijection, multiplication by « € [0, 1] is well
defined regardless of the construction we choose for D*. In particular, its root is
well defined.

Notice that we can construct it as D} in a manner that only depends on the
language (and not on T'): we obtain a universal star sort for 7 simply by restricting
our consideration of this sort to models of 7.

The uniqueness of D* means that we may choose it to be D}, for any rich ®,
and in particular, that we are allowed some leverage in choosing a convenient
sequence @, as in the proof of the following result.

Theorem 7.2. The universal star sort D* is a coding sort for any theory T (see
Definition 2.4), with the exceptional set being the root D° = {0}.

Proof. Being a coding sort (with some exceptional set) is invariant under definable
bijections (that preserve the exceptional set). Therefore, despite the fact that D* is
only well defined up to a homogeneous definable bijection, our statement makes
sense. We may choose a rich sequence ® on a sort D, as per Definition 6.3, and
take D* = Dy.

Let M ET and aa € D3 (M) ~ {0}, and let

N =dcl(xa) C M,

necessarily a closed set (if M is multisorted, closed in each sort separately). Then
o #0,and N = dcl(a). In order to show that N < M, it suffices to show that it
satisfies the Tarski—Vaught criterion: for every formula ¢ (x, y), where x is in the
sort DN and vy is in one of the basic sorts,

. —inf
n w(a,y) blgNw(a,b),

where the truth values are calculated in M. Since D projects, by hypothesis, onto
any basic sort, we replace ¢ with its pull-back and assume that it is a formula
on DN x D. Replacing ¢ with ¢(x, y) — inf, ¢(x, z), we may assume that ¢ is
witness-normalised and the left-hand side vanishes. Then it is enough to show that
for every € > 0 there exists b € N such that ¢(a, b) < ¢, and replacing ¢ with an
appropriate multiple, it is enough to require ¢(a, b) < 1+ 1/«. Choosing n such
that ¢, is a good-enough approximation of ¢, it is enough to find b € D(N) such
that ¢, (a~,, b) < 1/«. For this, b = a, will do. This proves the coding models
property of Definition 2.4.

For the density property, assume that M is separable, and let ca € D(M). Assume
first that o« > 0. We may freely assume that ¢ = 0 infinitely often. Let us fix no,
and define a sequence b € DN as follows.



STAR SORTS, LELEK FANS, AND RECONSTRUCTION 319

o We start with b, = a<p,.

» Having chosen b (for k > ng) such that ab_; € D}, we can always choose
by € D(M) so that ab<; € D,’:H.

o If ¢ = 0, then we may choose any by € D(M) that we desire. Since this
happens infinitely often, we may ensure that dcl(b) = M.

In the end, ab € Dy and dcl(ab) = dcl(b) = M, so ab codes M. Taking n large
enough, ab is as close as desired to aa.

This argument shows, in particular, that there exists «a € D(M) that codes M.
Let o, = a/2". Then a,a € D(M) codes M for each n, and o,a — 0, so the root
can also be approximated by codes for M. (|

Definition 7.3. Let T be any theory in a countable language, and D* its universal
star sort. View it as a coding sort, as per Theorem 7.2, with exceptional set D° = {0},
and define the corresponding groupoid, as per Definition 3.1:

G*(T) =Gp«(T).

We already know that this is an open Polish topological groupoid, with basis
B*(T) ~Sp«(T).

Theorem 7.4. The groupoid G*(T) is a complete bi-interpretation invariant for
the class of theories in countable languages.

Proof. On the one hand, by Corollary 6.10, D* only depends on the bi-interpretation
class of T, and therefore so does G*(T'). Conversely, by Theorem 3.9, a theory
bi-interpretable with 7' (namely, the theory T, p+, up to some arbitrary choices of
definable distance and symbols for the language) can be recovered from G*(7"). [J

Our last task is to calculate the basis S p+(7") explicitly, and show how Theorem 7.4
extends previous results, in a style similar to that of Remark 3.13.

Let us fix a rich sequence ® on a sort D, so we may take D* = D3. We
also fix a formula x (y) on D that is onto [0, 1]. Finally, we may assume that
On(X<pn, ¥) =nyx(y) for infinitely many n.

Let X =Spn(T) and Y = Sp; (T). We may identify S, pn(7') with X, identify-
ing tp(ax) with o tp(x) (here we need to assume that 7' is complete, so there exists
a unique possible complete type for 0 € D). This identifies ¥ with a subset of *X,
namely that of all «p where p(x) implies that wx € D}, or equivalently, such that
a,(p) <1 for all n.

For a € [0, 1], let

Xe={peX:apeVY}.

In particular, Xg = X. Define p : X — [0, 1] by

p(p)=sup{a:apeY}=sup{a:pec Xy}
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Lemma 7.5. Let o« > 0. Then for every p € X we have a < p(p) if and only
if p € Xo, and X is compact, totally disconnected. In particular, p : X — [0, 1] is
upper semicontinuous.

Proof. For the first assertion, it is enough to notice that by compactness, the
supremum is attained, namely, p € X ;). It follows that the condition p(p) > « is
equivalent to p € X, so it is closed, and p is upper semicontinuous.

Assume that «g; € Y and gg # q;. Then for some finite n, there exists a formula
¥ (x,) that separates go from ¢, say ¥ (g;) = i. We may also find a [0, 1]-valued
formula x (y) on D that attains (at least) the values 0 and 1.

By Urysohn’s lemma, there exists a formula ¢(x—,, y) > 0 such that

- O(xX<p, y)ZO,

17
== P(x<p, y) = ;+42-

[V (x<n) +x () — 1| =

| — ] =

[V (xen) +x(y)—1| < ¢

Since y attains both 0 and 1, the formula ¢ (x-,, ¥) is witness-normalised, so there
exists k > n with |¢ — @] < 1.
Assume now that ap € Y. Then ¢ (xf, x¢)? < 1/a, so

a0 <241 <140 and Yo+ x0w0 11> ¢

This splits the set X, in two (cl)open sets, defined by ¥ (x_,) + x (xx) > % and
U(xey) + x(xp) < %, respectively. Since y is [0, 1]-valued, gg must belong to the
latter and g to the former, so they can be separated in X, by clopen sets, completing
the proof. ([

Lemma 7.6. The set X-o={p € X : p(p) >0} =, X is totally disconnected,
admitting a countable family of clopen sets (U, : n € N) that separates points.

Proof. We may write X~ ¢ as |, X,-«. Each X,-« is compact, totally disconnected,
and it is metrisable by countability of the language. Therefore, it admits a basis of
clopen sets.

The inclusion X5« € X,-«-1 is a topological embedding of compact totally
disconnected spaces. Therefore, if U € X,-« is clopen, then we may find a clopen
U’ C X1 such that U' N X,-« = U. Proceeding in this fashion, we may find a
clopen U € X such that U N X, = U.

We can therefore produce a countable family of clopen sets (U, : n € N) in X~¢
such that for each k, (U, N X,—« : n € N) is a basis of clopen sets for X,-«, and in
particular separates points. It follows that (U),) separates points in X . ([l

Given this family (U,,), we may define a map 6y : X~o — 2N, where Oo(p)n =0
if p € U, and 6y(p), = 1 otherwise. It is continuous by definition, and injective
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since the sequence (U,,) separates points. If ap € Y, then eithera =0 or p € X.¢
(or possibly both), and we may define

0(ap) = aby(p) € 2N,

where 6(0) =6(0- p) =0 regardless of p. It is clearly continuous at 0, and at every
point of Y (since 6 is continuous). It is also injective on Y. Since Y is compact,
6 : Y — 2N is a topological embedding.

Lemma 7.7. The set of p(p)p for p € X~¢ isdensein Y.

Proof. We already know that p(p)p € Y. Assume now that U C Y is open and
nonempty, so it must contain some point ap with o > 0.
We may assume that

U={BqeY:|p—al<e qeV},

where V is an open neighbourhood of p in X. The set V may be taken to be defined
by a condition ¥ > 0, where ¥/ (x-,) only involves finitely many variables. By
hypothesis on @, possibly increasing n, we may assume that ¢, (x-,, y) =nx(y),
and we may further assume that o« > 1/n.

Choose a realisation a of p. Let b, = a-, and choose b, so x(b,) = 1/nc.
Then ¢, (bp, by) = 1/, s0 pp+1(b<,) = a, and we may extend b, to a sequence
b such that p(x") = «. In particular, g =tp(b) e VN X.gand ag = p(g)g € U. [

Let us recall from [Charatonik 1989] a few definitions and facts regarding fans.
The Cantor fan is the space *2N. It is a connected compact metrisable topological
space. More generally, a fan F is a connected compact space that embeds in the
Cantor fan. An endpoint of F is a point x € F such that F \ {x} is connected (or
empty, in the extremely degenerate case where F' is reduced to a single point). If
the set of endpoints is dense in F, then F is a Lelek fan. By the main theorem of
[Charatonik 1989], the Lelek fan is unique up to homeomorphism.

Proposition 7.8. Let T be a complete theory. Then Sp+(T), the type-space of the
universal star sort D* in T, is homeomorphic to the Lelek fan.

Proof. By Lemmas 7.5-7.7, the space Sp«(T) is a Lelek fan. ]

This gives us a hint as to how to relate the universal star sort with previously
known coding sorts referred to in the examples of Section 3.

Theorem 7.9. Assume T admits a universal Skolem sort D in the sense of [Ben Yaa-
cov 2022], and let L denote the Lelek fan. Then L x D is a universal star sort.

Proof. We may assume that L C 2N, and moreover, that for every nonempty open
subset U < 2N there exist « > 0 and 7 € U such that ar € L (otherwise, we may
replace 2N with the intersection of all clopen subsets for which this is true).
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For each n € N there is a natural initial projection 2N — 2. This induces in turn
a projection 2N — %2". Let L, C %2" be the image of L under this projection,
so L =1lim L,. Consequently, L x D =lim (L, * D).

Our hypotheses regarding L implies that the endpoints of L, can be enumerated
as {a,t : t € 2"}, with oy > 0. If m > n, then we have a natural projection L,, — L,.
Ifre2", se€2™" andts € 2™ is the concatenation, then o,sts gets sent to o4t € L,
S0 oy < oy, and oy = o, for at least one s. For any § > 0, we may always choose
m large enough such that for every ¢ € 2", the set {oy : s € 277"} is -dense in the
interval [0, o;].

Let ¢ (u, v) be a star correspondence between L, * D and some other star sort £*,
and let € > 0. Choose § > 0 appropriately, and a corresponding m as in the previous
paragraph. Define a formula on 2" x 2"7" x D x E* by

@' (ts, x,v) = @(ayst % x, V).

On the one hand, since ¢ is witness-normalised in the first argument, ¢’ is witness-
normalised in (s, x). On the other hand, if v € E*, then there exist at € L,
(so ¢ <ay) and x € D (possibly in an elementary extension) such that ¢ («t*x, v) =0.
Having chosen § small enough to begin with, and m large enough accordingly, we
may now find s € 27" such that ¢, is close to «, sufficiently so that

@' (ts, x,v) = @t % x,v) < &.

It follows that ¢’ - ¢ is witness-normalised in either (¢s, x) or v.

Let us now evoke a few black boxes from [Ben Yaacov 2022]. First, 2" x D
is again a universal Skolem sort (and therefore stands in definable bijection with
D). Second, since ¢’ — ¢ is witness-normalised in either group of arguments, there
exists a surjective definable function o : 2" x D — E* that satisfies

(' ~e)(ts, x,0(ts, x)) <&,
ie., ¢'(ts,x,o(ts, x)) <2¢. Defineon L, * D x E*
Y(ats xx,v) =d(v, aat_sla(ts, x))

(keeping in mind that if ats € L,,, then o < a,;). This formula is jointly sub-
homogeneous (since d is, on E*). It is also witness-normalised in «ts * x (just
choose v = ozoz,_sla(ts, x)), and in v (since o is surjective, and we may always
choose a = «;5). By construction, ¢(o;st * x, o (ts, x)) < 2¢, so multiplying all
arguments by a(xt;l,

plat*x, ooy, o(ts, x)) < 2e.

Therefore, if ¥ (ats * x, v) is small enough, ¢(at * x, v) < 3¢, and by definition,
if Y (ats *x, v;) is small for i =0, 1, then d(vg, v) is small. Replacing i with a
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multiple, we may replace “small enough” with “smaller than one”, and now, by
Lemma 5.11, L % D is a universal star sort. |

Corollary 7.10. Assume that T is Rg-categorical and let Dy be as in Example 3.10.
In other words, let M E T be the separable model, a € M N 4 dense sequence, and
Dy the collection of realisations of tp(a). Then Dy is a definable set, i.e., a sort,
and L x Dy is a universal star sort.

Proof. In an Ry-categorical theory, every type-definable set is definable. By
[Ben Yaacov 2022, Proposition 4.17], 2N x Dy is a universal Skolem sort. Now,
L 2N € (52N) % 2N = % (2N x 2N) is easily checked to be a fan, whose set of
endpoints is dense, so it is homeomorphic to L. Therefore

Lx(2N x Do) = (L %2N) % Dy ~ L * Dy.
By Theorem 7.9, this is a universal star sort. U

Define L® C L? as the set of pairs (x, y) such that either both x =y =0, or both
are nonzero. This is a Polish, albeit noncompact, star space, with root (0, 0). When
G is a topological groupoid, we may equip L® x G with a groupoid composition
law

[x,y, 8l [y, z, h]l =[x, z, ghl].
If B is the basis of G, then L x B is the basis of L® % G.

Corollary 7.11. Let T be a continuous theory admitting a universal Skolem sort D,
and let G(T) = Gp(T), as in Example 3.12. Then G*(T) ~ L® « G(T). If T is
Ro-categorical, and G (T) is the automorphism group of its unique separable model,
then G*(T) ~ L® %« G(T).

Proof. Just put the identities D* = L x D and D* = L % Dy through the groupoid
construction. O
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