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A regular partition P for a 3-uniform hypergraph H = (V, E) consists of a
partition V = V; U--- U V; and for each ij € ([;]), a partition K[V;, V;] =
Pi}. U---u Pfi such that certain quasirandomness properties hold. The complexity
of P is the pair (¢, £). In this paper we show that if a 3-uniform hypergraph H
has VC,-dimension at most k, then there is such a regular partition P for H of
complexity (¢, £), where £ is bounded by a polynomial in the degree of regularity.
This is a vast improvement on the bound arising from the proof of this regularity
lemma in general, in which the bound generated for £ is of Wowzer type. This can
be seen as a higher arity analogue of the efficient regularity lemmas for graphs and
hypergraphs of bounded VC-dimension due to Alon-Fischer—Newman, Lovasz—
Szegedy, and Fox—Pach—Suk.

1. Introduction

Szemerédi’s regularity lemma is an important theorem with many applications in
extremal combinatorics. The proof of the regularity lemma, which first appeared in
the 70s [24], was well known to produce tower-type bounds in €. The question of
whether this type of bound is necessary was resolved in the late 90s by Gowers’
lower bound construction [10], which showed tower bounds are indeed required
(see also [7; 17; 6]).

Hypergraph regularity was developed in the 2000s by Frankl, Gowers, Ko-
hayakawa, Nagle, Rodl, Skokan, Schacht [9; 11; 12; 21; 20; 19], in order to prove
a general counting lemma for hypergraphs. These types of regularity lemmas are
substantially more complicated than prior regularity lemmas. In particular, a regular
partition of a k-uniform hypergraph involves a sequence Py, ..., P;r_1, Where P;
is a collection of subsets (‘l/) such that certain quasirandomness properties hold
for each P; relative to Py, ..., P;—1. The proofs of these strong regularity lemmas
produce Ackerman style bounds for the size of each P;. Given a function f, let
7@ denote the i -times iterate of f. We then define Ack; (x) = 2¥, and fori > 1,

The author was partially supported by NSF grant DMS-2115518.
MSC2020: 03C45, 05D99.
Keywords: model theory, VC-dimension, regularity lemmas, hypergraph regularity.

© 2023 MSP (Mathematical Sciences Publishers).


http://msp.org
http://msp.org/mt
https://doi.org/10.2140/mt.2023.2-2

326 CAROLINE TERRY

Ack;(x) = Ackl(cil1 (x). The proofs of the strong regularity lemma for k-uniform
hypergraphs produce bounds for the size of each P; of the form Acky. It was shown
by Moshkovitz and Shapira [18] that this type of bound is indeed necessary for the
size of P1, which corresponds to the partition of the vertex set.

In the case of 3-uniform hypergraphs, a decomposition in this sense consists of
a partition Py = {V1,..., Vi} of V, and a set

Py ={P%:ij e (Y). e}

where for each ij € ([;]), Pl-} U---u Plf- is a partition of K»[V;, V;]. The complexity
of P is the pair (¢,£). We give a formal statement of the regularity lemma for
3-graphs here for reference, and refer the reader to Section 2B for the precise
definitions involved. The version stated below is a refinement of a regularity lemma

due to Gowers [12] (for more details see Section 2B).

Theorem 1.1 (strong regularity lemma for 3-graphs). For all €; > 0, and every
function €3 : N — (0, 1], there exist positive integers Ty, Lo, and ng such that for any
3-graph H = (V, E) on n > ng vertices, there exists a devs 3(€1, €2({))-regular,
(t,4, €1, e2(f))-decomposition P for H witht < Ty and £ < Ly.

In Theorem 1.1, the parameter Ty is the bound for ¢, the size of the vertex
partition, and L is the bound for ¢, the size of the partition of K>[V;, V;], for
each ij € ([;]). The proof of Theorem 1.1 generates a Wowzer (i.e., Acks) type
bound for both ¢ and £. Moshkovitz and Shapira showed in [18] that there ex-
ist 3-uniform hypergraphs requiring a Wowzer type bound for the size of ¢ in
Theorem 1.1. Less attention has been paid to the form of the bound Lg, and it
remains open whether this is necessarily of Wowzer type. In recent work of the
author and Wolf [26], the partition P, plays a crucial role in the proof of a strong
version of Theorem 1.1 in a combinatorially tame setting. This work suggests that
understanding the form of the bound for £ is also an interesting problem.

In the case of graphs, it was shown that dramatic improvements on the bounds
in Szemerédi’s regularity lemma can be obtained under the hypothesis of bounded
VC-dimension. In particular, Alon, Fischer, and Newman [1] showed that if a
bipartite graph G has VC-dimension less than k, the it has an e-regular partition
of size at most (k/€)9® . Lovasz and Szegedy [16] extended this to all graphs
of VC-dimension less than k, with a bound of the form 6—0(k2)' Fox, Pach, and
Suck [8] strengthened the bound to one of the form 0(62k _1), and extended these
results to hypergraphs of bounded VC-dimension. Related results were obtained
with weaker polynomial bounds by Chernikov and Starchenko [3].

In this paper we prove an analogous theorem in the context of strong regularity
for 3-uniform hypergraphs, where VC-dimension is replaced by a higher arity
analogue called VC,-dimension.
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Definition 1.2. Suppose H = (V, E) is a 3-graph. The VC,-dimension of H,
VC,(H), is the largest integer k so that there exist ay,...,ag,b1,...,br € V and
cs € V for each S C [k]?, such that a;b;cs € E if and only if (i, j) € S.

The notion of VC;-dimension was first introduced by Shelah [22], who also
studied it in the context of groups [23]. It was later shown to have nice model-
theoretic characterizations by Chernikov, Palacin, and Takeuchi [5] to have further
natural connections to groups and fields by Hempel and Chernikov [15; 2], and to
have applications in combinatorics by the author [25].

Using infinitary techniques, Chernikov and Towsner [4] proved a strong regularity
lemma for 3-uniform hypergraphs of bounded VC;-dimension without explicit
bounds (in fact they proved results for k-uniform hypergraphs of bounded VCj_;-
dimension). Similar results were proved by the author and Wolf [26] in the 3-uniform
case with Wowzer type bounds. In this paper, we show that 3-uniform hypergraphs
of uniformly bounded VCs-dimension have regular decompositions with vastly
improved bounds on the size of £; in particular, £ can be guaranteed to be polynomial
in size, rather than Wowzer. We include the formal statement of our main theorem
below, and refer the reader to the next section for details on the definitions involved.

Theorem 1.3. For all k > 1, there are €] > 0 and €5 : N — (0, 1] such that the
following holds. Suppose 0 <€ <€} and €2 : N — (0, 1] satisfies 0 < €2(x) < €5 (x)
forall x € N. There is T = T (€1, €2) such that every sufficiently large 3-graph
H = (V,E) has a devy 3(e1, €2(€))-regular (t,4, €1, €2(£))-decomposition with
C<er%® andr < T.

The bound 7" in Theorem 1.3 is generated from an application of Theorem 1.1,
and is also of Wowzer type (see Theorem 3.1 for a more precise statement regarding
this). The regular partition in Theorem 1.3 has the additional property that the
regular triads have edge densities near 0 or 1, which also occurs in the results
from [4; 26]. The ingredients in the proof of Theorem 1.3 include the improved
regularity lemma for 3-graphs of bounded VC,-dimension from [26], a method of
producing quotient graphs from regular partitions of 3-graphs developed in [26],
and ideas from [8] for producing weak regular partitions of hypergraphs of bounded
VC-dimension.

The fact that the bound for £ can be brought all the way down to polynomial in
Theorem 1.3 is somewhat surprising, given that the proof for arbitrary hypergraphs
yields a Wowzer bound. This raises the question of what the correct form of the
bound is, in general, for £. The author conjectures it is at least a tower function
(i.e., Ackp).

It was conjectured in [4] that the bound for ¢ can also be made sub-Wowzer
under the assumption of bounded VC,-dimension, however, the author has been
unable to prove this is the case. This leaves the following open problem.
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Problem 1.4. Given a fixed integer k > 1, are there arbitrarily large 3-uniform
hypergraphs of VC,-dimension at most k& which require Wowzer type bounds for
To in Theorem 1.1?

2. Preliminaries

In this section we cover the requisite preliminaries, including graph and hypergraph
regularity (Section 2B), VC and VC;-dimension (Sections 2C, 2E, and 2F), auxiliary
graphs defined from regular decompositions of 3-graphs (Section 2D), and basic
lemmas around regularity and counting (Section 2G).

2A. Notation. We include here some basic notation needed for the other prelimi-
nary sections. Given a set V and k > 1, let

(Z):{XgV:|X|:k}.

A k-uniform hypergraph is a pair (V, E) where E C (I,:) For a k-uniform hyper-
graph G, V(G) denotes the vertex set of V' and E(G) denotes the edge set of G.
Throughout the paper, all vertex sets are assumed to be finite.

When k = 2, we refer to a k-uniform hypergraph as simply a graph. When
k = 3, we refer to a k-uniform hypergraph as a 3-graph.

Given distinct elements x, y, we write xy for the set {x, y}. Similarly, for distinct
x,y,z,we write xyz for the set {x, y, z}. Given sets X, Y, Z, we set

KX, Y]={xy:xeX,yeY,x#y} and
K3 X, Y, Z]={xyz:xeX,yeY,zeZ,x#y,yF#z,x #z}.

If G =(V,E)isagraph and X,Y C V are disjoint, we let G[X, Y] be the bipartite
graph (X UY, EN K[X,Y])).

Given a k-uniform hypergraph G = (V, E), 1 <i <k,and e € (¥

i

). set

Ng(e) = {e’e (klii) :eUe/EE}.

A bipartite edge-colored graph is a tuple G = (AU B, Ey, E1, ..., E;), where
i > 1and K>[A,B] = EoU E; U---U E;. In this case, given u € {0,1,...,i}
and x € AU B, we let Ng,(x) ={y € AU B :ab € E,}. Similarly, a tripartite
edge-colored 3-graph is a tuple G = (AU BUC, Ey, Eq, ..., E;), where i > 1
and K3[A,B,C] = Eo U E; U---U E;. In this case, given u € {0,1,...,i}
and x,y € V:= AUBUC, we let Ng,(x) = {uv € (12/) :xuv € Ey} and
Ng,(xy) ={veV  :xuve Ey}.

For two functions f1, f2:N— (0, 1], we write f] < f> to denote that f1(x)< f2(x)
for all x € N. For real numbers r, 7> and € > 0, we write r; = rp & € to denote
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that r; € (rp —€,72 + €). Given a natural number n > 1, [n] = {1,...,n}. An
equipartition of a set V' is a partition V' =V U---UV; such that foreach 1 <i, j <t,
we have “V,|—|VJH <1

2B. Regularity. In this section we define graph regularity, as well as a strong notion
of regularity for 3-graphs. We state our definitions in terms of the quasirandomness
notion known as “dev”, which is one of three notions of quasirandomness which
are now known to be equivalent, the other two being “oct” and “disc”. For more
details on these and the equivalences, we refer the reader to [19].

We begin a notion of quasirandomness for graphs.

Definition 2.1. Suppose B = (U UW, E) is a bipartite graph, and |E|=dg|U||W|.
We say B has deva(e,d) if dp = d + € and

oY I TT ei-vp) <elupviz,
uo,u1 €U wo,w1 €W ie€{0,1} j€{0,1}
where g(u,v) =1—dp ifuv € E and g(u,v) = —dp ifuv ¢ E.

We now define a generalization of Definition 2.1 to 3-graphs due to Gowers [11].
If G = (V, E) is a graph, let K§2) (G) denote the set of triples from V forming a
triangle in G, i.e.,

Vv
ng)(G) = {xyZ € (3 ) XY, yZ,XZ € E}
Now given a 3-graph H = (V, R) on the same vertex set, we say that G underlies
Hif R < K (G).

Definition 2.2. Assume €1,¢€; >0, H = (V, E) isa3-graph, G = (UUWUZ, E)
is a 3-partite graph underlying H, and |E| = d3|K§2)(G)|. We say that (H, G)
has devy 3(€1, €2) if there is da € (0, 1) such that G[U, W], G[U, Z], and G[W, Z]
each have devj (€3, d2), and

Yoo > 11 rmewiwiz) <ad?lUPIWPZP,

uo,u1 €U wo,w1 €W z¢,21€Z (i,j,k)€{0,1}3

where @)
1-d3 ifxyze ENK;7(G),
haG(x.y.2)=1—ds ifxyze KP(G)\E,

0 if xyz ¢ K2(G).

For the reader unfamiliar with hypergraph regularity, we note that in the no-
tation of Definition 2.2, d 12|U |2|W|?|Z|? is approximately the number of tu-
ples (ug,u1, wo, w1, Zo,21) € U? x W2 x Z2 with Ujw;zg € K (G) for each
(i, j, k) € {0,1}3 (this is a consequence of the graph counting lemma and the
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assumption that G[U, W], G[U, Z], and G[W, Z] have dev, (€3, d2)). Therefore,
the first displayed equation in Definition 2.2 is bounding the quantity

> 2 2 Il haetuwiz

ug,u1 €U wo, w1 €W zo,z1€Z (i,j,k)€{0,1}3

in terms of total number of tuples (ug, U1, wo, W1, Zo, Z1) € U2 x W?2x Z2, where
[, k)et0,133 hH,6 (Wi, wj, Zx) is nonzero.

We now define a (¢, £)-decomposition for a vertex set V', which partitions V, as
well as pairs from V.

Definition 2.3. Let IV be a vertex set and ¢, £ € N0, A (¢, £)-decomposition P for
V consists of a partition P; = {V3 U---UV;} of V,and foreach 1 <i #£ j <t,a
.. Y e t
partition K>[V;, V] = Pl.}. U---UP;. Welet P, = {Pl.‘; 1ij € ([2]),a < E}.
A triad of P is a 3-partite graph of the form

ik
Gl =(ViUV; UV PEUPEUPY),

for some ijk € ([ ]) and o, B,y <{. Let Triads(P) denote the set of all triads of P,
and observe that { K3 (2) (G) : G € Triads(P)} partitions the set of triples xyz € (V)
which are in distinct elements of P;.

For a 3-graph H = (V, R), a decomposition P of V, and G € Triads(P), define
H|G := (V(G), RN K?(G)). Note that G always underlies H|G.

Definition 2.4. Given a 3-graph H = (V, R), a decomposition P of V, and
G € Triads(P), we say G has devy 3(€1,€2) with respect to H if (H|G,G)
has dev, 3(€1, €2).

To define a regular decomposition for a 3-graph, we need one more notion,
namely that of an “equitable” decomposition.

Definition 2.5. We say that P is a (¢, £, €1, €2)-decomposition if 7?1 ={V,...,Vs}
is an equipartition and for at least (1 — 61)(“2/|) many xy € ( ) there is some
Pl.‘; € P, containing xy such that (V; UV}, Pi‘}f) has devs (€2, 1/4).

Definition 2.6. Suppose that H = (V, E) is a 3-graph and P is a (¢,£,€1,¢€2)-
decomposition of V. We say that P is dev 3(€1, €2)-regular for H if for all but at
most €173 many triples xyz € ( ), the unique G € Triads(P) with xyz € K (2)(G)
satisfies devy 3(€1, €2) with respect to H..

We can now restate the regularity lemma for dev, 3-quasirandomness.

Theorem 2.7. For all €1 > 0, every function €3 : N — (0, 1], and every Lo, to > 1,
there exist positive integers To = Ty (€1, €2, to, Lo) and Lo = Lo(€1, €2, to, £o), such
that for every sufficiently large 3-graph H = (V, E), there exists a dev, 3(€1, €2({))-
regular, (t,£, €1, €3(£))-decomposition P for H withtg <t < Ty and £y < { < L.
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This theorem was first proved in a slightly different form by Gowers in [11]. In
particular, in [11], the partition of the pairs P, is not required to be equitable as it is
in Theorem 2.7. Theorem 2.7 as stated appears in [19], where it is pointed out that
the additional equitability requirement can be obtained using techniques from [9].

2C. VC-dimension. In this subsection we give some preliminaries around VC and
VC;-dimension. We begin by defining VC-dimension.

Givenaset V, FCP(V),and X CV,let |[FNX|:={FNX:F eF}. Wesay
that X is shattered by F if | F N X| = 2/X|. The VC-dimension of F is then defined
to be the size of the largest subset of V' which is shattered by F.

For a graph G = (V, E), the VC-dimension of G is the VC-dimension of the set
system {Ng(x):x € V} CP(V). We now give a simple recharacterization of this.
Given k > 1, let A = {a; :i € [k]}, and Co(k)) = {cs : S C [k]}.

Definition 2.8. For k > 1, define U(k) to be the bipartite graph (A U Cp (k). E).
where £ = {ajcs :i € S}.

Then it is well known that a graph G has VC-dimension at least k if and only
if there is a map f : V(U(k)) — V(G) so that for all a € Ag and ¢ € Cp([x)),
ab € E(U(k)) if and only if f(a) f(b) € E(G).

2D. Encodings. In this subsection, we define an auxiliary edge-colored graph
associated to a regular decomposition of a 3-graph. We then state a result from [26]
which shows that encodings of U(k) cannot occur when the auxiliary edge-colored
graph arises from a regular decomposition of a 3-graph with VCs-dimension less
than k.

Definition 2.9. Suppose €1,€2 >0, £,z > 1, Visaset,and Pisa (¢,£,€1,€2)-
decomposition for V consisting of Py ={V; :i € [t]} and P, = {Pl-‘; lij e ([2]), a <At}
Define

.. t .
Per = {P;;Pii tijk e ([3]),(1”3 <¢, and P, Pl.’j- satisfy devj (€2, l/ﬁ)},

Pedge = { P € P2 : Pjj satisfies deva(ez, 1/0)}.

In the above, cnr stands for “corner”. Observe that for each P} € Pegge and
P,f;v Pl € Penr, if {v, w} = {i, j}, then the pair (Pl.‘j‘., Puﬂv PJ,,) corresponds to a
triad from P, namely G}0%.

js

Definition 2.10. Suppose €1,€5 >0,£,t > 1, H = (V, E) is a 3-graph, and P is a
(t,4, €1, €2)-decomposition for V. Define

2 2
Eo = {PA(P5, P) € Ka[Peage Pend] : |[EN KGR < LK (G

2 2
Ey = {PE(Ph P}) € KalPeage Pene) : [E N KGR = LIKP(GEE)]}, and
E; = KZ[Pedgea 7D(:nr] \ (El U EO)-
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Note that Definition 2.10 gives us a natural bipartite edge-colored graph with
vertex set Pegge U Penr and edge sets given by Eg, Eq, E>. The author and Wolf
showed in [26] that these auxiliary edge-colored graphs are useful for understanding
3-graphs of bounded VC;-dimension. To explain why, we require the following
notion of an “encoding”.

Definition 2.11. Let €1, > 0 and ¢,£ > 1. Suppose R = (AU B,ER) is a
bipartite graph, H = (V, E) is a 3-graph, and P is a (¢, £, €1, €2)-decomposition
of V. An (A, B)-encoding of R in (H,P) consists of a pair of functions (g, f),
where g : A — Pepr and f 1 B — Pegge are such that the following hold for some

Joko € (1)

(1) Im(f) € {P%, o < £}, and Im(g) C (PE P ciel]. By <t}

(2) Foralla e Aand b € B, if ab € Eg, then g(a) f(b) € E1, and if ab ¢ ER,
then g(a) f(b) € Ey.

An encoding of U(k) will always mean an (Ag, Cp(x]))-encoding of U(k).
In [26], we proved the following proposition connecting encodings of U(k) and
VC,-dimension (see Theorem 6.5(2) in [26]).

Proposition 2.12. Forall k > 1, there are €1 > 0 and €3 : N — (0, 1] such that for all
t,£ > 1, there is N such that the following hold. Suppose H = (V, E) is a 3-graph
with |V| > N, and P is a devy 3(e2(€), €1)-regular (¢, £, €1, €2(£))-decomposition
of V. If there exists an encoding of U(k) in (H, P), then H has k-1P;.

Moreover, there is a constant C = C(k) so that €; = (1/2)C.

We remark here that Proposition 2.12 is actually proved in [26] for an equiv-
alent notion of quasirandomness called disc; 3, and without the final “Moreover”
statement regarding the quantitative form for €; (see Proposition 5.6 in [26]).
Tracing the bounds in the proof of Proposition 5.6 in [26], one finds that €; has
the form p = w(eq, k), where p comes from a version of the counting lemma (see
Theorem 3.1 in [26]). An explicit value for this u is unclear, as the proof of the
counting lemma for discy 3 passes through its equivalence with oct; 3, and then
the counting lemma for octy 3. The author has not found proofs of these results in
the literature which are explicit in the parameters (see Corollary 2.3 in [19]). It
seems that one could produce such an explicit result from [19] and [14] with some
effort, however, we have instead chosen to side-step the issue by working with the
quasirandomness notion dev, rather than disc.

In particular, all the ingredients used to prove Proposition 5.6 of [26] have well
known analogues for dev. By running the same arguments as in [26] using dev
rather than disc, one obtains Proposition 2.12 as stated. The additional “Moreover”
statement about the explicit form for €; then arises from the fact that there is a
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proof of the counting lemma for devs 3 which is explicit in the parameters (see [11,
Theorem 6.8]).

2E. Haussler’s packing lemma. We will be applying techniques for proving im-
proved regularity lemmas for graphs and hypergraphs of bounded VC-dimension to
the edge-colored auxiliary graphs defined in the previous subsection. In particular,
we will use ideas from the proof of Theorem 1.3 in [8]. We begin by describing the
relevant result from VC-theory, namely Haussler’s packing lemma.

Suppose V is a set and F C V. We say that a subset X C F is §-separated
if for all distinct X, X’ € X, | XAX| > §. The following packing lemma, due to
Haussler, shows that if F has bounded VC-dimension, the size a of a §-separated
family cannot be too large [13].

Theorem 2.13 (Haussler’s packing lemma). Suppose F C P(V), where |V | =n
and F has VC-dimension at most k. Then the maximal size of a §-separated
subcollection of F is at most ¢1(n/8)*, for some constant ¢y = ¢y (k).

We will apply Theorem 2.13 in the setting of edge-colored graphs. This technique
is inspired by the proof of Theorem 1.3 in [8].

Suppose G = (AU B, Ey, E1, E>) is a bipartite edge-colored graph. We say
that G has an Eo/E;-copy of U(k) if there are vy,...,vx € A and for each
S C [k] a vertex ws € B such that i € S implies v;ws € Ej and i ¢ S implies
viws € Eg. Given a,a’ € A and § > 0, write a ~g a’ if for each u € {0, 1,2},
|INE, (a)ANE, (a’)| <§|B]. Our main application of Theorem 2.13 is the following
lemma.

Lemma 2.14. Suppose k > 1 and c1 = c1(k) is as in Theorem 2.13. Suppose d > 1
and §,¢ > 0 satisfy € < 61_2(8/8)2k+2. Assume G = (AU B, Eo, E1,E») is a
bipartite edge-colored graph, and assume there is no Eo/ E1-copy of U(k) in G,
and that | E,| < €|A||B|.

Then there is an integer m < 2c¢ (8/8)_k, vertices X1,...,Xm € A, and a set
U C Awith |U| < /€ |Al|, so that foralla € A\ U, |Ng,(a)| < /€ |B| and there

is some 1 <i <m so that a ~g x;.

Proof. Let U = {v € A : |[Ng,(v)| > /€ |B|}. Since |Ez| < €|A||B|, we know
that |U| < /e |A|. Let A” = A\ U. Let m be maximal such that there exist
X1,...,Xxm €A, sothat {Ng, (x;):i €[m]}is a §/2-separated family of sets on B.
We show m < 201(8/8)_k.

Suppose towards a contradiction that m > [2¢1(8/8)7%]. Let

B = B\(CJ Ez(xi)),

i=1



334 CAROLINE TERRY

and let F := {Ng, (x;) N B’ :i € [m]}. Notice | B\ B’| <m+/e|B|. We claim that
F is §/4-separated. Consider 1 <i # j <m. Then we know that

|NE1 (Xl‘)ANEl(Xj) N B,| = |NE1(XI)ANE1(XJ)| _m\/E|B|

> |B[(8/2—m+/e€)
> |B|§/4,

where the last inequality is by our assumptions on 8, €. By Theorem 2.13, F shatters
a set of size k. By construction, for each 1 <i <m, B’ \ Ng,(x;) € NEg,(x;).
Consequently, we must have that there exists an Eo/E;-copy of U(k) in G, a
contradiction.

Thus, m < 2¢1(8/8) 7K. Forall a € A\ U, we know that |Ng,(a)| < /€ |B]|,
and there is some 1 <i <m so that |Ng, (a)ANE,(x;)| < §|B|/2. We claim that
a ~gs x;. We already know that |Ng, (a) N Ng, (x;)| < §|B|. Since a, x; are both
in A’, we have

INE,(@)ANE, (xi)| < [NE, ()| +|NE, ()| < 2+/€|B| < §8|B|/2.
Combining these facts, we have that
|NEo(a)ANE,(xi)| < |NE,(a)| + [NE,(a)| + INE, (@) ANE, (xi)| < 6|B]|.
Thus a ~§ x;, as desired. O

2F. Tame regularity for 3-graphs of bounded VCj-dimension. In this subsec-
tion we state the tame regularity lemma for 3-graphs of bounded VC,-dimension
from [26].

Definition 2.15. Suppose H = (V, E) is a 3-graph with |V'| =n and @ > 0. Suppose
t,£ > 1and P is a (¢, £)-decomposition of V. We say that P is u-homogeneous
with respect to H if at least (1— ) () triples xyz € (Z) satisfy the following: there
is some G € Triads(P) such that xyz € ng)(G) and either

IENKP (@) < plKP(G)] or |[ENKP(G) = (1-pw)KP(G)].

Given a 3-graph H = (V, E) and a (¢, £, €1, €3)-decomposition P of V', we say
that P is p-homogeneous with respect to H if at least (1 — ) (“;') triples xyz € (13/)
are in a i-homogeneous triad of P. We have the following theorem from [26].

Theorem 2.16. For all k > 1, there are € > 0, €5 : N — (0, 1], and a function
f:(0,1] = (0, 1] with limy—¢ f(x) = 0 such that the following hold.

Suppose tg, g > 1,0 < €1 < €], and €3 : N — (0, 1] satisfies €2 < €5. Let
N, T, and L be as in Theorem 2.7 for €1, €2, to,Lo. Suppose H = (V, E) is a
3-graph with |V| > N and VCy(H) < k. Then there existty <t <T,{o <l <L,
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and a (1,4, €1, €2())-decomposition of V which is dev 3(€1, €2({))-regular and
f(€1)-homogeneous with respect to H.

1/D

Moreover, | may be taken to have the form x''*, where D > 1 depends only

onk.

Since the bounds in Theorem 2.16 come from Theorem 2.7, they are of Wowzer
type. We also note that the proof of Theorem 2.16 in fact guarantees something
slightly stronger, namely that every dev, 3(€1, €2(£))-regular triad of P is f(€1)-
homogeneous.

We remark here that Theorem 2.16 was proved in [26] for the notion of discy 3
rather than devy 3, and without the “moreover” statement regarding the form of the
function f (see Proposition 3.2 in [26]). Examination of the proof of Proposition 3.2
in [26] shows that the function f depends on k and a version of the counting
lemma for 3-graphs (namely Theorem 3.1 in [26]). An explicit expression for f(x)
in Proposition 3.2 of [26] would thus require a version of the counting lemma
for discp 3 which is explicit in the parameters. However, one can rerun all the
arguments in [26] using the quasirandomness notion dev, 3 in place of disca 3 to
obtain Theorem 2.16 as stated. In this case, an explicit expression for f can be
obtained using the counting lemma for dev; 3 (see also the discussion following
Proposition 2.12).

2G. Other preliminaries. In this subsection we give several lemmas, most of
which are basic facts about regularity and counting. First, we will use the following
version of the triangle counting lemma.

Proposition 2.17 (counting lemma). Suppose €,d > 0. Let G = (AU BUC, E) be
a 3-partite graph such that each of G[A, B, G[B, C], and G[A, C] has deva (e, d).
Then

1K$P(G)|—d?|Al|BIIC| < 44| 4]|B|C].

For a proof, see [11, Lemma 3.4]. The following symmetry lemma was proved
in [26] (see Lemma 4.9 there).

Lemma 2.18 (symmetry lemma). Forall 0 <e < % there is n such that the following
holds. Suppose G = (U U W, E) is a bipartite graph, |U|,|W|>n,and U' C U,
W' C W satisfy [U'| = (1 —¢€)|U| and |W'| = (1 —€)|W|. Suppose that for all
uel’,

max{|N ) N W|,|[=Nw) "W} = (1-¢)|W],

and for all w € W',
max{|N(w) NU|, [=Nw)NU[} = (1-¢e)[U].
Then |E|/|U||W| € [0,2¢Y/2) U (1—2€1/2,1].
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We will use the following immediate corollary of this.

Corollary 2.19. Forall 0 <e < % there is n such that the following holds. Suppose
G = (U UW,E) is a bipartite graph with |U|,|W| > n, and |E|/|U||W| €
(2€1/2,1 = 2¢'/2). Then one of the following hold.

(1) Thereis U' C U with |U’| > €|U|, so that for all u € U,
|NE(u) NW|

e(e,1—¢).
W
(2) There is W C W with |W'| > €|W|, so that for all w € W,
N nU
M (= (E, 1 _6).
U

We will use a lemma which was originally proved by Frankl and Rodl (see [9,
Lemma 3.8]) for another notion of quasirandomness for graphs, called disc;.

Definition 2.20. Suppose B = (UUW, E) is a bipartite graph, and | E| =dg|U||W|.
We say B has disca(€,d) if dg =d e and forall U’ CU and W C W,

IEN KU W =d|U'[|W'|| < elU||W].

Gowers proved the following quantitative equivalence between disc, and dev,
(see Theorem 3.1 in [11]).

Theorem 2.21. Suppose B = (U UW, E) is a bipartite graph. If B has disc, (¢, d)
then it has devy (e, d). If B has deva (€, d), then it has disco(e1/4, d).
Combining Theorem 2.21 with Lemma 3.8 in [9], we obtain the following.

Lemma 2.22. Forall e > 0, p > 2¢,0 < p < p/2, and § > 0, there is my =
mo(€, p, ) such that the following holds. Suppose |U| = |V| = m > my, and
G = (U UV, E) is a bipartite graph satisfying dev,(€) with density p. Then if
¢ =[1/p)and € = 10(1/4m) /3, there is a partition E = EgU E; U---U Ey such
that

(1) Foreach 1 <i <{, (U UV, E;) has deva(e'/*) with density pp(1 £ §8), and
(2) |Eo| < pp(1 4 8§)m>.
Further,if 1/p € Z, then Ey = .

We will also use the following fact, which can be obtained from Fact 2.3 in [26]
along with Theorem 2.21.

Fact 2.23. Suppose E1 and E, are disjoint subsets of Ko[U, V. If (U UV, Ey)
has devy(e1,d1), and (U UV, Ey) has deva (€3, d3), then (U UV, E1 U E3) has
deva(el/* +el/4 dy 4 dy).
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Finally, we will use the fact that triads with density near O or 1 are quasirandom.
For completeness, we include a proof of this in the Appendix.

Proposition 2.24. For all 0 < € < % d> >0, and 0 < § < (d2/2)*8, there is
N such that the following holds. Suppose H = (V1 UV, U Vi, R) is a 3-partite
3-graph on n > N vertices, and for each i, j € [3], ||V,| -V |‘ < &|V;|. Suppose
G = (ViUVoUV3, E) is a 3-partite graph, where foreach 1 <i < j <3, G[V;, V}]
has dev, (8, d»), and assume

IRNKP(G)] < el KD (G)).
Then (H|G, G) has dev, 3(8, 6€).

3. Proof of main theorem

We first give a more precise statement of our main theorem.

Theorem 3.1. For all k > 1, there are polynomials p1(x), p2(x,y), p3(x), a
constant €§ > 0, and a function €5 : N — (0, 1] such that the following holds, where
To(x,y,z,w) is as in Theorem 2.7.

Forall 0 < €1 < €] and €3 : N — (0, 1] satisfying €2 < €3, there is L < el_ok(k)
such that the following holds for T = Ty(p1(€1), €2 0 g2, p3(€1_1), 1), where
q2(y) = p2(€1. y).

Every sufficiently large 3-graph H = (V, E) such that VCy(H) < k has a
devy 3(€1,€2(€))-regular (¢, €, €1, €2(£))-decomposition with { < L andt <T.

We now give a few remarks regarding the bounds. As can be seen above, the
bound T in Theorem 3.1 is obtained by composing the bound 7y from Theorem 2.7
with several polynomial functions. This does not change the fundamental shape
of the bound in terms of the Ackerman hierarchy, and thus the bound for ¢ in
Theorem 3.1 remains a Wowzer type function. On the other hand, we see that the
bound for £ becomes polynomial in 61—1'

The polynomial p3 in Theorem 3.1 depends on the f in Theorem 2.16, which
in turn depends on the hypergraph counting lemma for dev,_ 3. One could therefore
obtain a quantitative version of Theorem 3.1 for the equivalent quasirandomness
notions of disca 3 and octy 3 using the same arguments, given a quantitative version
of their respective counting lemmas.

The general strategy for the proof of Theorem 3.1 is as follows. Given a large
3-graph H of VC,-dimension less than k, we first apply Theorem 2.16 to obtain
a homogeneous, regular partition P for H. We then consider the auxiliary edge-
colored graphs associated to P, as described in Section 2D. These contain no
copies of U(k) by Proposition 2.12, allowing us to apply Lemma 2.14. This yields
decompositions for the auxiliary edge-colored graphs, which we eventually use to
define a new decomposition Q for H which is still regular and homogeneous, but
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which has a polynomial bound for the parameter £. This last part requires the most
work, as well as most of the lemmas from Section 2G.

We have not sought to optimize constants which do not effect the overall form
of the bounds involved.

Proof of Theorem 1.3. Fix k > 1 and let ¢; = ¢1(k) be as in Theorem 2.13. Let
01 >0, p2 :N— (0,1], and f be as in Theorem 2.16 for k, and let D = D(k) be
so that f(x) = x'/P (see Theorem 2.16). Let j; > 0, iz : N — (0, 1] be as in
Proposition 2.12 for k. Set €] = min{u1, p1, (1/4)P} and define €5 N —(0,1]
by setting €5 (x) = min{ua(x), p2(x), (1/2x)48}, for each x € N.

Suppose 0 < €1 < ei“ and €, : N — (0, 1] satisfies €5 < e;‘. We now choose a
series of new constants. Set 71 = efD and note 17 < f(€1). Set § = r{‘OO/IOOO,
€} = (8/8c1)2kH1000 1y = [2¢1(8/8)2k~2], and €/ = (€})?/1000. Next, define
€5.€5 : N — (0, 1] by setting, for each x € N, €}(x) = e’l’ez(x)ez(248_8k_10)
and €5 (x) = 62(8_4m4)e’2(x)5/4. Note there are polynomials pq(x), p2(x, y)
depending only on k such that €] = pi(e1) and €5 (x) = pa(e1, x). To aid the
reader in keeping track of the constants, we point out that the following inequalities

hold:
! / k " / *
€] <€ <8<t1<€1<€; and €, <€, <€x<é€,.

t3 t
g Z (1 _6,1, (3)7

1 —3¢” t3
1D )

(3) =6 = = a5 (3).

Note there is some polynomial p(x) depending only on k so that we can take
to = p(el_l). Finally, choose Ty, L1, and Ny as in Theorem 2.7 for €7, €}, to
and f() =1.

Set L = [§~*m*], T = T1, and choose N sufficiently large compared to all the
previously chosen constants. Notice that L = Oy (el_ok(l)) and

Choose 7 sufficiently large so that

T = To(p1(€1). €202, p(e7 1), 1),

where To(x, y,z,w) is as in Theorem 2.7 and g»2(y) = p2(€1, y).

Suppose H = (V, E) is a 3-graph with |V| > N satisfying VC(H) < k.
Theorem 2.16 implies there exist 1 <{ < Ly, t9 <t <Ty,and Py a (t,£, €], €5 (£))-
decomposition of V' which is dev, 3(e7, €5 (£1))-regular and f(e])-homogeneous
with respect to H. Say

Pr={Vi.....Vi} and Pr={P%:ije ([;]),oee G
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Note that f(€/) = (¢/)1/P < 1. Recall that as mentioned after Theorem 2.16, we
may assume that all devy 3(e7, 62 ) (€))-regular triads of P are f(e/)-homogeneous
with respect to H.
Given ij € ([t]) and a € [{], let Gl‘.’j = (Vi uV;, P ) Given ijs € ([ ]) and
l1<a, B,y <Z, set
GEPY =i uv; UV, PEUPLUPY) and

H ’*‘”_(V,UV,UVS,EmK@)(G“BV)).

ijs ijs

We will use throughout that since €} (x) < €} (x)> /4, Proposition 2.17 implies
that for all ijs € ([;]) and o, B,y € [€],

3
KP @RI = (1 £e0)(77) )

We use P to construct a different decomposition of V', which we call Q, so that
Q1 =P but Q> 55 P,. Set

F., = {ij‘sﬂ ¥ € Triads(P) : (Hgsﬁ v Ggsﬂ V) fails discz (€], €5 (£))},
F, = {Gl-j’f ¥ e Triads(P) \ Ferr Uf V'>1- f(e))}, and
Fo = {G{:P7 € Triads(P) \ Ferr 1 450 < f(e])).

By assumption, Triads(P) = Fe, UF; LU Fo, and at most €]n? triples xyz € (V)
are in K(z)(G) for some G € Feir. By (1), this implies

. n n t
[Triads(P) \ Fer = ((3) —e’{n3)/(W<1 —0) = (5)Ca-e.
where the last inequality uses that ¢ > ¢y and n is large. Thus, |Fer| < e/lt3£3. Let

= (ViV} 1 [{G™Y € Fopr some s € [1] and o, B, y € [€]}]| = (€)%/*€%1).

ijs

Since [Fer| < €(13¢3, we have that |¥| < (€})'/4+2. Given ij € ([;]), let £;; be the

number of @ € [£] such that Glf"j has deva (e (£), 1/£). After relabeling, we may

assume Gllj, e Gf;j each have dev, (€5 (£), 1/£). We claim that for V;V; ¢ W,
;i > (1=2(e)¥*)e.

Indeed, given V;V; ¢ W, if it were the case that £;; < (1 — 2(6’1)3/4)6, then we

would have that

|{Gaﬂy € Fer some s € [t] and o, B,y € [€]}| = (1 —2)€>(€ — ;)

ijs
> 2(eD)¥ 4t —2)03 = (€))¥ 403,

contradicting V; V; ¢ W. Thus we have that for all V; V; ¢ W, £;; > (1 _2(6/1)3/4)@
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For each V; Vj ¢ W, let H;; be the edge-colored graph (U;; UW;;, EX EL E2 ),

ij> iy
where
={ o <L,
Ui = {PfiP]s s €M\, j} B < lis,y < s,
EY = {PE(PLP)) € Ka[Wij. Uyl GEPY e Fy),
:{ 4(PLPY) € Ka[Wij, Uyjl: GE2Y € Ry},
= {PE(PEP)) € KalWij. Uij]: GIP € Fer).

By Proposition 2.12, and since f(e}) < 3, H;; contains no E1 /E copy of U(k),
and since V;V; ¢ W, |E | < (€] )3/4€3t We will later need the followmg size
estimates for W;; and U,] By the above, |W;;| = £;; > (1 —2(€} )3/4)¢. We claim
that |U;; | > (1—2(¢} )3/4)¢2¢ . Indeed, observe that |Uij| = Zse[t]\{z,]} Lisljs and
HG“'BV € Fer some s € [t]and o, B,y € [Z]H

ijs
> 3 P lig) + list(E— L)
se[t]\{i,j}

o P —tliglys =t -2 —€|Uy; .
selt\Gi,/}

Since V;V; ¢ W, this shows that
()43 > (1t —2)03 — Uy |.
Rearranging, this yields that
Uij| > (t —2)0% — (€))%t > t£%(1 - 2(€})*'%),

where the last inequality is because ¢ > .
Given v, v" € W;;, write v ~ v" € Wj; if for each w € {0, 1, 2},

|E (W)AES; (") < 8|U;j .

By Lemma 2.14, there are W0 C W;; of size at most (] )3/8|W,]| an integer
mij <m, andxj "]’ eW,j sothatforallveW,]\W thereis 1 <a <m;;
so that v ~ x%, and further |NE2 )] < (61)3/8|U,]| For each 1 <u<mjj,let

W ={veW; \WJ:v~x}and forall I <u’ <u,vf>oxl?‘j}.

Note Wul U---u Wl.;"ij is a partition of W;; \ W,
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We now define a series of sets to help us zero in on certain well behaved sets of
triples. First, define

Qo = {ijSE ([;]) ViV ViVe ViVs ¢ W) and
Q={WIWIWY 1ijs € Qo1 <u<mjj,1 <v<mjs, 1 <w <mjs}.

Since |W| < (e)) /412, |Q0] = (§) — W]t = (1 —6(ef)1/*)(§). Let

J— u v w
Yo={J  Ks[Wj Wi, Wil
Wi WA W eQ

We have that for all ijs € Qo, |I/I/'Z-‘J)-|, |Wig|, |ng| < (6/1)3/86, and therefore |Yp| is
at least the following:

Yol = (;)63 _63‘([;]) \Qo‘ — |0l(e))?/ 803
> (;)63 _6(6’1)1/4(;)53 _ (;>(€/1)3/8£3
= (3)P0 - @'

where the last inequality is since t > fg.
Given ij ¢ W, let us call WZ’J‘ nontrivial if it has size at least §1/2¢/m; ;. Define

Q= {WiWLWY € Q:each of Wi, WS, W,Y are nontrivial},

— u v w
and set Y; = UW;’?W;%WKEQI K3[W W5 W;J]. Then we have that

Y1] = |Yo| — 16> > oo 8P /my)
ije(hy {uelm;; :W}; wivialy
> |Yo| — t£2(t28V/20) = |Yo| — 8124343,
Define
Ri = (PEPEPY Gl €Ty,
Ro= P PP GEE € ol
Ry ={PAPEPL: GEPY € Fer).

Note that (P> U Py U P;, Ry, Ry, Rz) is a 3-partite edge-colored 3-graph, and
|R>| < €}13€3. Now set

Qo = {WWAWY € Q0 : [Ra 0 KW Wi W < /e W WS WY}
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— u v w
and Y, = UWZ-_”,‘-W}QW,-‘;’GQz K3[WiWiW; (1. Note that

Rolz S0 IWEHIWEIWE
WUWE WY €01\

= > WA WS WY

WHWE W eQ1\Q02

ij"jsis
Therefore,
-1 -1
> IWHIIWSIWY | < e |Ra| < e e’ < [Je[ >0,
WEW WS i\

This implies that | V2| > [Y1]| — /ej3€3.
Given ijs € Q9, let us call a triple Pl.‘;. Pl.'i Pj); troublesome if one of the following
hold:

e For some u € [m;;], Pf € Wl?, and there are o1 # 02 € {0, 1,2} such that
PP PY P2 ¢ ROV and PP PY x% € RO2.

is”jstij is” jsvij

 For some w € [mg], 1-};/ € WJ';’, and there are o1 # o0, € {0, 1,2} such

that P2 P2 PY € ROV and PP Pax® ¢ RO2,

istijtjs istijtjs

» For some v € [mjs], Pi[; € W, and there are 01 # 02 € {0, 1,2} such that

PePY PP c ROV and PEPY x? € RO,

ijrjsTis ijtjstis

Let Tr be the set of troublesome triples. Define

Qs = (WIWAWY € Qo [KWIWEWE N T < 8 WEWAIWY 1},

N

and set Y3 = UW-Z,;WIZW-Z?GQ3 K3[VVJVV]1;VV;;}] We claim |Y3| > (3)63(1 —281/2).

Given V;V; ¢ W, 1 <u < myj, and Pf € W}

o o
ij We know that Pij ~ X and
therefore

{PEPY seli\ti,j}.B.y <t PEPYPEeTr

is”js is”jstij

2
< (@@ =2) = Ui+ D INgx (PHANE (x}5)]
x=0

<2())¥*021 + 35142
< 48162,
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2 u 20,20y — 484303
Thus, |Tr| < 4614 (ZVZ v, ¢wueim;,1 IWif |) < 48142 (t20) = 4813£3. Therefore

48070 = |Tr| = Yo SR

W W €22\

:81/4

U7V W
U K3[I/VijVVjsVVis :
WEWE WP eQr\Q3

1 7S s
Rearranging, this yields that
U K3[WEWAWY]| <87 1/448303 = 483433,

W W €22\

Thus
V3] > |Ya| —83/413¢03
> V1| — e[ 1303 — 4534133
> Y| _s1/243p3 _ \/zt3£3 _ 483144343
> (;)63(1 — (DB 812303 — \Jerr303 — 45341303
> (;)53(1—251/2).
Therefore, using (1), we have

B pv
Pl.‘j. P PjseY3

= (§)Pa -2 (10— )

> (’;)(1 35172y,

where the last inequality is because # is large.

Our next goal is to prove Claim 3.2, which says that for each Wl’; Wi Wj‘;’ € Qs,
K3 [Wl'j‘, Wi, Wj';’] is either mostly contained in Ry or mostly contained in Ry. For
the proof of this claim, we will require the following notation. Given ijs € ([g]),
a,0/ <, 1<v<mjs,and | <w <mjs, we write Pl.‘;‘. ~ s vw Pl.‘j‘./ if Pi‘;f, Pl.‘;f/ € Wl;‘
for some 1 <u <m;j, and

[{(PE. PY) e Wl x WP : for some o1 # 02 €{0.1,2}, PLPY P% € R

is*tjs is” jstij

and PP PY P¥ € R%2}| < V3 |W2||WP).

istjstij

Claim 3.2. For any Wl’]‘ Wy W]’;’ € Q3, there is 0 € {0, 1} such that

|Ry N K3[WH, WP

ij* s’

KW W

ij° s

VV}I;)” > 1_gl/100
we

N
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Proof. Suppose towards a contradiction there is Wg Wi W]‘;’ € Q3 such that for

each o € {0, 1},
|Ro VK [W, W2, WP

|K3[Wi. Wi Wil

ij>"is?

<1 —81/100.

To ease notation, let 4 = W” B=W2Y and C = W“’

15°
We now define a series of subsets of A which will contaln “well behaved” vertices.

First, we set A1 ={a € A:a ~jsyw xl'j} Since WU“WI’;WJ’;’ € Q3,
SUMWHIIWSIIWS | = ITe N K3 [WEWAWE] = [A\ A8 S Iws 1wy
Thus |A\ A| < 87V/881/4|W| = §1/8|W¥|. Now set
Ay ={a € A:|Ng,(a)| < (¢)"/*|B||C]}.
Because Wl'j‘ Wi W]’;’ € Q5, we have that
(€))'/2|A]|B||C| = | R2 N K3[A. B.C]| = |A\ A2(€))"/*| B|C].

Therefore, | A\ 42| < (€})1/*|A|. Now set

Az ={a € A:|Ng,(a)|/|B||C| € (§V/%* 1—5/%%)} and

Ay ={a e A:|Ng,(@)|/|B||C| € (8?8, 1-5"/12%),

We claim xj; € AY. Suppose towards a contradiction that x ¢ AL Suppose first
that | Ng, (x“)| > (1 §1/128)| B||C|. Then for all a € Ay, smce a~jsow X, We
have |NR](a)| > (1—81/128 _§1/8)|B||C|, and thus,

ij’
|Ry N Ka[WEWEWY]| = (18128 — §1/8)| 44| | B |C]|
> (181128 —1/8)(1-6/8)|A]|B]|C]
> (1-8'199)4]|B]|C|.,
a contradiction. So we must have |NR1(x” )|<81/128|B||C|. Thenforallac A1NA>,
a~jsvw x - and [Ng,(a)| < (61)1/4|B||C| implies
|NRo(@)] = (1—8'/128 —§1/8 — ()1 B||C|.
Therefore
|RoNK3[WHEWEWE = (1-81/128-81/8—()1/*)| 41 N A, | B| C]
> (1=8/128—§18— () V4) (1-8"/8—(e}) /)| 4] | B| ||
> (1-81/190)] 4] | B]|C].
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again a contradiction. Thus, we must have that xl?‘j € A5. This implies that for all
a€ A NAs,

|NR1 (a)| = |NR1 (x;;)| - |NR1 (xluj)ANRl (a)l

> §1/128 B |C|(1 - 8'/8) > §1/%4|B||C|
and " "
INRy(@)] = |NR, (x)| = |NRo (@) = |NRy (x1) AN R, (a)]

> §1/128|B|C|(1- 88 — ()%

> §1/%4|B|C|.
Thus a € A3. This shows that A1 N A> € Az, and therefore

|A3] = |A|(1— 88 — ()%,

Now define
Ap ={a € A:|{b € B :|Ng, (ab)ANRg, (ax)| < 816|C [} > (1—-8/19)|B]},
Ac ={a € A:l{c € C:|Ng,(ac)ANg, (axs)| < 8Y'6|B}| > (1-8'19)|C]}.
Observe that 481/4|A||B||C| > |Tr N K3[A, B, C]| > §/16|4\ Ag||B||C]|, and

therefore |A\ Ag| < §~1/16451/4|A| = 483/16| A|. A similar computation shows
|A\ Ac| < 483/16| A|. Consequently, setting A4 := A3 N A N Ac, we have that

| A4l > |A3] = |A\ Ac| — A\ Ap| > |A](1— 88310 — (e)) /4 —§1/8) > 0.
Fix some ax € A4. We will use ax to control the other edges in the triple. Let
S1 = NRl(a*), So = NRO(a*), and Sp = NRz(a*).

Note (B UC, Sp U S1 U S>) is a 3-partite edge-colored 3-graph. Since ax € A3,
|S11/|B]|C]| € (81/64, 1— 81/64). Therefore, Corollary 2.19 implies that one of the
following hold:

(a) There is B; C B such that |B;| > §1/32|B|/2 and for all b € By,
N5, ()] _ (51/32 1_51/32)
|C| 27 2 )

(b) There is C; € C such that |Cy| > §'/32|C|/2 and for all ¢ € Cy,
N5, @I _ (51/32 1_51/32)
|B] 27 2 )

Without loss of generality, let us assume (a) holds (other case is symmetric). Define
By ={b € By :|Ns,(b)| < (¢))'/1°|C}. We claim | B| > §'/32| B|/4. Indeed, we
know that since ax € Aj,

€DY4IBI|C| = 1S2] = (/)1 By \ By |CI.
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Thus, |By \ Bz| < (€})71/10(e/) /4| B| = (¢))V/12|B], so

1/32 §1/321
ol = 181l — (€218 = (27 - )2 = T

Note that for all b € B, we have that |Ng, (b)| > §'/32|C|/2 > §'/32|C|/4 and

§1/32 §1/321c
N5y )] = 1€\ Vs, )] = I, )] = (25 = 1= 1L

Now, let e
By ={b € By :|Ng, (b)ANs, (x})| < 5'/1¢|C]}.

Since a« € Ap,
1/32 §1/32/p
|B3| > |B2| —8'/1°|B| > (87—81/16)|B| > % > 0.

Fix some by € Bz and set Qg = Ng,(bx) and Q1 = Ng,(b«). By above, since
bs € By, min{| Q1],|Qol} > §1/32|C]/4.

We claim | S N K»[B3, 01]| = (1—108'/32)| Q|| B3|. Indeed, fix b € B3. Then
we know |Ns, (b)) ANs, (x%,)| < 81/1€|C| and |Ns, (bx)ANs, (x2)| < §'/16|C],
and therefore |Ng, (b)) ANg, (bs)| <26 1/16|C|. Consequently,

C

Ns, (b) N Q1] = | Q1] —26"¢|C| = |Q1|(1 _251/16||Q ||)
1

> |011(1—-28"19(4871/3%)) = 101 |(1 - 108'/32).

This shows that |S; N K»[B3, Q1] > (1 —108'/32)|0,]||Bs].
Similarly, we claim |So N K2[B3, Qo]| > (1—108/32)| B3||Q¢|. Indeed, for all
b € B3, |Ns,(b)| < (€;,)1/1€|C| and, as above, |Ns, (b)) ANs, (bs)| < 28'/16|C].
Thus |Ns, (b) ANs, (b+)| < ((€})/16 4 281/16)|C|. Therefore,
|Nso(b) N Qol = [Qol — (D) /* +28119)|C|
IC|

> [Qol (1 - ((6,1)1/4 + 281/16)@)
0

> [Qol(1— ((e))!/* +261/19)4571/%2)
> 101(1-105'/32),
where the last inequality uses the definition of €]. This shows
[So M K2[B3. Qol| = (1~ 108"/°%)| B3| Qo].
Now let
Q) ={c € 01:|Ns,(c)N B3| > (1-+108%)|B3|} and
Q6 = {c € 00 :|Nsy(c) N B3| > (1 —108'/6%)| B3|},
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Since both
1S1 N K2[B3, Q1]] > (1—108'/32)| 04| B3| and

1So N K2[B3, Qo] > (1 —1081/32)|B3]| Qo

we have that | Q| > (1—+/108'/6%)| Q1] and | Q| > (1—~+/1081/64)| Q¢|. Finally,
let
C* ={c € C:|Ns,(c)ANs, (x}3)] < 8'/'%|B|}.

Since as € Ac, |C*| = (1 —8/16)|C|. Thus,
|0 NC*|>(1- «/1051/64)IQ1| N Radtel

81/32|C|
81/64 51/16 C .
V1 ki €12 ——
Similarly,
10N C*| > (1—~/1051/64)|Qo|—51/16|C|
1/32
> (1— /_51/64) 1/16|C|>M'
- 10

Consequently, there are ¢; € Q7 N C* and ¢g € QN C*. Since cg,c1 € C*, we
can see that |[Ng, (c1)ANs, (co)| < 251/16| B|. However, we also have that

|Ns, (c1) N Ns,(co) N Ba| = (1 —2+/108/%%)| B3|
B
> (1 —2@81/64)81/32% > 261161 B|.

But this is a contradiction, since Ng, (¢) N Ns,(co) N B3 € Ng,(c1)ANg,(co). O

Let £; = [§~*m*]. Suppose ViVi ¢ Wand 1 < u < {;; is such that W? is
nontrivial. Define W, = P W P/, let G, be the bipartite graph (V; UV, W),

ij°
and define
0= Vi
pii(u) = .
Y \ana

By Fact 2.23, Gj; has dev, (L(e(£))"/*) and

|W | = (1%4(e) (3))1/4)w

Using the size estimate above and the fact that WZ’J‘ is nontrivial, we have

pij () = (1 £(e5 () H—1 ” > (1 £(e (z))l/“)#zzz(eg(@)”“,

where the last inequality is by choice of €/ (£). Set p;; (1) = pj; (u)~1/y, and let
sij (u) =[1/ pij (u)]. Observe that p;; p;; = 1/£1. Note (¢ ‘(N4> 1001/s|Vi Y>3



348 CAROLINE TERRY

(since n is very large), and since W“ is nontrivial and £(e7 ()4 < 1
14
pij () = (1 £ (e (£)>1/4>|W“|/£>81/2(/’"”) 8112/ mij 7-

Further, 0 < p;; (u) < p;j(u)/2 since

< §3/2 - Pij(u)’

4
pij ) = (L L) 4 ms™ 2 < s V280 < S0 P

where the last inequality uses that p;; (1) > §1/2 /m. Thus by Lemma 2.22, there is
a partition
W = W (0) U U WIS (55 (),

so that |W A(0)] < pijpij(1 + €D|VillV;| and for each 1 < x < s;;(u), the
bipartite graph G“ (x):=W; U V,,W” (x)) has deva(£(e) (Z))l/“,p,j pij), i.e.,
dev (L(€y '(€))1/4, 1/61) Since (€} (Z))1/4m < €2(£1), and by definition of €,
we have that for each 1 < x < s;;(u), G;‘J (x) has deva(e2(£1),1/£). Let

Sij = Z sij(u).

1<u<m;;
Give a reenumeration
{XU,... s”} {W (W):1=<v=<s;(u),1<u<m;}.
Then let X;; s+l X ‘1 pe any partition of K[V}, VJ \ Us”

For V; V] € lIJ choose a partition K»[V;, V;] = X1 -U Xﬁ such that for each
1 <x<{, X has dev,(€2(€1), 1/£1) (such a partltlon ex1sts by Lemma 2.22).
Now define Q to be the decomposition of V' with

Qi ={V:ielf]} and Qz={X£}rvfﬁl’ff€([§]>}-

We claim this is a (¢, £1, €1, €2(£1))-decomposition of V. Indeed, by construction,
any xy € (12/) which is not in an element of Q5 satisfying disca(€2(£1), 1/£1) is in

the set
sij+1 £
U X;7T U u X
ViV¢w
Observe that

mj;

s Y3 wy (0>|+‘K2[m,vj]\( U P;;)‘- )

VZVJ¢\Ilu 1 Pl.‘jeWU
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We have that
mi;;
DY WEOI= Y mi(L+eDpijpij Vil V)
ViV ¢W u=1 ViV;¢w
(n/,)z
5( ) (1+2€,)

=54( )(1+2 1)( /) <252’%,

where the last inequality is because 7 is large. Then, by definition of § and m, this
shows that 3y, v, ¢w Zm” W) <€ (5)/2. We also have that

> | (U )

ViV;¢w PYeW;; ViV
<y (|V, Wi = Wi 11+ ey ’)
ViV, ¢W
1
= X wal(1-tsa+ )
ViV v
< Y WVl = (1 =2)¥ (0 + €4(0)
ViV
= 2 WIED = ) (5).
ViV;¢w

Combining these with (2) yields that |I'| < e1(3)/2 + (¢))/8(3) < €1(3}), and
therefore, Q is a (¢, £, €1, €2(£))-decomposition of V.

We now show that Q is €1 /6-homogeneous with respect to H. We show first that
for any WYWEWY € Q3, GUEY := (V; UV; U Vs, WE UWE UWE) is 2§1/100_

ijs
homogeneous w1th respect to H, and second that almost all xyz € K5 2) (Gurw

ijs
are in an €1 /6-homogenous triad of Q.
Fix le wh W]';’ € Q3. We know by Claim 3.2, that there is o € {0, 1} such that

Ww]l > (1 81/100)|K [Wu W

IRy N K3[WH, WY LW W,

ijr "is»

This implies, by (1) and definition of R, that the following holds, where E! = E
and E® = (})\ E' (recall E = E(H)):

o 2 uvw
|E K( )(GZ]S )l
1

> (1 =810 (1 — ) [Ka (WY, W, W11 — ¢, (f))IViI VillVsl 55
(WS W W,

63

= (1-819% (1 —€])(1 - £3€,(0))
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On the other hand, note that by (1),

Vil lV511Vs]

K2 (G = W W W11 £ £3€,(8) E

ijs
Combining this with the above, we see that

|E° N K3 (GER™))
= (1=81) (1= €))(1 = ey (0)(1 + L) [KE? (G
= (1-28"1 K G,
where the last inequality is by definition of €} and €]'. This shows G}‘j‘;w is 2§1/100_
homogeneous. We now show that almost all xyz € K§2) (G¥¥™) are in an €1/6-

ijs
homogeneous triad of Q. Set

So(ijs,uvw) =1{0,....5;; )} x{0,...,855)}x{0,...,5;5(w)}.
Given (x, y,z) € X, set

G/ (x,y,2) = (Vi UV; U Vs Wi (x) UWE () UWTL(2)).

ijs
Note that K2 (G¥?¥) = J N KP(G¥¥ (x, y, 7). Define
3 ijs (x,y,z)€Xo(ijs,uvw) ™3 ijs Vs :
3q(ijs, uvw)
={(x,y,2)€{0,...,5;; ()} x{0, ..., si5(v)} x{0,...,5;5(w)}: x,y orzis 0},

and set X (ijs, uvw) = Lo(ijs, uvw) \ X1(ijs, uvw). Note that by construction,
for all (x, y, z) € Xa(ijs, uvw), G (x, y, z) € Triads(Q). Observe that
3 KD (G2 (x, y, 2)]
b b E ij b
(o DERWR < W O]V + [WE (0)] V)] + W (0)]]Vi]
< (L+eDWVillVi1Vsl(pij pij + pispis + pjs Pjs)
1
:3(1+€,1)|Vi||Vj||Vs|E
<31 +e8*Vil| V|| Vslm™

I\ 4
=30+ (WS IWRIWEI5)  m KD G|

sU/2\=3 _
<30+est(%,0) T mTHEP G
=3(1 +e/1)81/2m‘1|K§2)(G§-‘,-‘;w)|
< 5| KP(G1ewy),

ijs
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where the last inequality uses the definition of m. Let X3(ijs, uvw) be the set of
(x,y,z) € Xa(ijs,uvw) such that

|E7 N KP (G2 (x, y, 2))| < (1—8/290) | KD (G1ov (x, y, 2))),

ijs ijs
and set

Sa(ijs,uvw) = Lo (ijs, uvw) \ T3(ijs, uvw).

By definition, and since §1/200 < ¢, /6, every triad of the form K3 ) (G:‘]’;w (x,y,2))

for (x,y,z) € ¥4(ijs,uvw) is in an €1 /6- homogeneous triad of Q. We now show
that U (x.y.2)e 54 (ijs.uvw) K( (G¥¥") is most of K )(G*¥¥). Observe

ijs ijs
ECNRPGEDs Y KGR )]
(x,y,2)eX(ijs,uvw)
2
(=872 K@@ (x, y,2)|

(x,y,z)eX3(ijs,uvw)

2
+ Y KRG (x.y.2))
(x,y,2)€X4q(ijs,uvw)

< 8|K(2) (Guvw)|

ijs
2
+(1=81200 3 KPR G (x.y. )]
(x,y,z)eXs(ijs,uvw)

2
+ Y KRG xy.0)l.
(x,y,2)€Z4(ijs,uvw)

Thus, since | E® N K§7 (G| = (1—281/190) KD (GLaw)|,

ijs

( 281/100 8)|K(2)(Guvw)|

ijs
2
(18200 N KPR GE (x, y.2))]
(x,y,z)eX3(ijs,uvw)
2
+ > kPG (x.y.0)
(x,y,2)€Z4(ijs,uvw)
= Yoo KGR (x, y. )
(x,y,2)€X2(ijs,uvw)
=120 3 KPP G (v 2.

(x,y,2)€X3(ijs,uvw)

Rearranging this inequality, we have the following upper bound for the sum
) ,
2 ey, 2)eSsjsavw) K3 (GEEY (x,y,2))]:



352 CAROLINE TERRY

§71/200 > |K§2)<G?;;w(x,y,z))|—(1—281/1°°—8>|K§2)(G;y;"’>|)
(x.y.2)€Ba(ifsuvw) 1/200/ 1-(2) 1/100
< 571200 kP (Gryw) 38t
< 381/200|K§2)(G:411;w)|

Consequently,

> KRG (xy, )] = K@) (1-381/200),

ijs ijs
(x,y,2)€X4(ijs,uvw)

We have now established that U(X’y’z)ez (s uvw) ng) (G;.‘jgw) covers most
of ng)(G;‘j‘;w), and for all (x, y,z) € Z4(ijs, uvw), G;fj’;w(x,y,z) is an €1/6-
homogeneous triad of Q. For all (x, y, z) € Za(ijs, uvw), Wi (x), Wi (y), W (2)

all have deva(€2(£1),1/£1), and thus, by Proposition 2.24, G}‘j';ws(x, y,z) has
devy 3(€1, €2(€1)) with respect to H.

Using this and our lower bound on the size of Y3, we can now give the following
lower bound on the number of triples xyz € (13/) in a devy 3(€2(£1), €1)-regular
triad of P:

3 > KD G (x.y.2))
WEWYWWeQs (x,y,2)EX4(js,uvw)
ij"is"js 2
= > (=3 kPG
Wi Wi Wiies
2
=(1-3512) N kPG
Wi Wi Wi eQs
>(1— 381/200)(1 _ 351/2)(’;)
n
where the last inequality is by definition of §. This finishes the proof. O

Appendix: Proof of Proposition 2.24

We will use the following fact:

Lemma A.1. Forall §,r, u € (0, 1] satisfying 2128 < u?r'2, the following holds.
Suppose G = (V1 UV, U V3, E) is a 3-partite graph such that for each ij € ([g]),
IVi|—=|V; || < 8|Vi| and G[Vi. V;] has deva (8. r). Given uovowo € K2 (G), define
K32 2[u0, vo, wo

= {urviwi € K3[Vi, Va, V3] : for each € 40,1}, (e, , vey» Wes) € K2 (G)).
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Then if J := {uvw € ng)(G) :|K2,2,2[u0, vo, wol| < (14 pw)r®[Vi||Va| | Va]}, we
have that |J | = (1—p)r3|Vi||Va|| V3.

Proof. Let KzG,z,z[Vl’ V2, V3] be the set
{(uo,u1, wo, w1,20.21) € VE x V5 x V3
: for each € € {0, 1}°, Ue, WerZes € RN ng)(G)}.
By Theorem 3.5 in [11],
K222V, Vo, Vall < 2 ViR Vo P V3 4212814 v 2 Va | V3 2.
Suppose towards a contradiction that |J | > (1 — )r3|V1||V2||V3]|. Then
|K2,2,2[V1, V2, V3l = [ |(1 4 p0)r® Vi [ [Vl [Va] > (1= u?)r 2 IVa 2 Vo Vs 2.

Combining with the above, this implies 712 4212§1/4 > (1—2)r12, which implies

w2r12 < 212§1/4 3 contradiction. O

Proof of Proposition 2.24. Fix 0 <e < 1,0 <d> < 1, and 0 < § < (d»/2)*8, and
choose N sufficiently large.

Suppose H = (V; UV, U V3, R) is a 3-partite 3-graph on n > N vertices and
for each i, j € [3], ||Vi| = |V;|| < 8|Vi|. Suppose G = (V1 U V2 U V3, E)is a 3-
partite graph, where for each 1 <i < j <3, G[V;, V;] has dev2 (8, d>), and assume
IRNKP(G)| < €| kP (G)]. Let d be such that RN KP(G)| = d|KP(G)).
By assumption d < €. Define g(x, y,z) : (‘3/) — [0, 1] by

1—d ifxyze RDK§2)(G),
glx.y.2)=4-d ifxyze KP(G)\R,
0 otherwise.

Given ugvowg € K§2) (G), define

K32 2[u0, vo, wo] = {u1viwy € K3[V1, V2, V3]
- for each (i, j.k) € {0, 1}, (ui. vj, wi) € K2(G)}.

Let u = d212. Note that 212§ < (d»/2)3% < d236 = /dezlz. Set
J = {uvw € KP(G) : |Ka,2,2[u0, vo, wol| < (14 w)d3|Vi||Val| V3]
By Lemma A.1, we have that |J| > (1 —,u)d23|V1| [V2]]V3]|. Now set

2 2 3
Iy = {(uo. u1, wo, w1, 20,21) € V{ x V3 x V3

:for each (i, j, k) € {0, 1}3,u,~wjzk €ERN ng)(G)}
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and let

I = {(uo, u1, wo, w1, 29, 21) € (Vl2 X V22 X V33) \ 11

- for each (i, j. k) € {0, 1}, u;w; 7 € KP(G)}.

Then

Z Z Z l—[ g, wy, zx)

uo,u1€V1 wo,w1€V2 20,21€V3 (i, j,k)€{0,1}3

Z Z Z l_[ g(ui, wj, z)

uo,u1€V1 wo,w1€V2 z0,21€V3 (i, ,k)€{0,1}3

> 2 x| Il stwwz

uo,u1€V1 wo,w1€V2 20,21€V3 (i, j,k)€{0,1}3

= > (1-d)°

(uo,u1,wo,w1,20,21)€l

+ >, ‘ [T e w2zl

(u()aul’w()awl 920’21)612 (i,j,k)€{0,1}3

=

IA

For each (ug, u1, wo, w1, 2o, z1) € 12,

<d(1-d),

‘ [T e@iw.z)

@i.j.k)€{0,1}3

since at least one of the g(u;, w;, zx) is equal to —d, and | —d| < |1 —d| (since
d<e< %). Thus we have, by above, that

P DS [T eGiw.z0)<(1-a)°|11|+d(1-d)*| I2).

uo,u1€V1 wo,w1€V2 z0,21€V3 (i, ,k)€{0,1}3
Note

L= > |Kapo(o.wo.zo)l+ Y. |Kaz.2(u0. wo. 20)|

uowozo€J uowozo€R\J
< |J|(1 4 w3 V1| V2| V3] + |R\ J||R|
< |RI(1+ s Vil IVal| V3] + nd3 ViVl [V3ld | K$P(G)]
<d|KP (G)|(1+ d3 Vi | Val V3] + nd3 Vi [Val [V3ld |K$P(G)]
< V2l V3l LK (6)|(d (1 + pydf? +dd)?),
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where the last inequality is by definition of . By the counting lemma [11, Theo-
rem 3.5], |K§2)(G)| < (1+238Y%)|V1||Va||V3|. Therefore, we have that

|| < VA2 V2 2 V3214238 Y4 (d (14 p)d )2 +d d)f?) < 3ddL2 Vi 2| Va 2| Vs 2.

On the other hand, |I2| < |K2,2,2[V2. V2, V3]|, which, by [11, Theorem 3.5], has
size at most (d;2 + 21251/4) |1 12|V |2|V3|?. Combining the bounds above with
the fact that d < €, we have that

> 2 2 I stiwzo

uo,u1€V1 wo,w1€V2 20,21€V3 (i, j,k)€{0,1}3
<(1=d)’[I|+d(1—d)}|D]
< IVi2 Va2 V32 (Bedi? + e(al? + 21251/4))
< 6edy > |Vi*|Val?| V3,

where the last inequality is due to § < (d2/2)*8. This shows that (H, G) has
devy 3(8, 6¢€), as required. O
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