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A regular partition P for a 3-uniform hypergraph H D .V;E/ consists of a
partition V D V1 [ � � � [ Vt and for each ij 2

�
Œt�
2

�
, a partition K2ŒVi ; Vj � D

P 1ij [� � �[P
`
ij such that certain quasirandomness properties hold. The complexity

of P is the pair .t; `/. In this paper we show that if a 3-uniform hypergraph H
has VC2-dimension at most k, then there is such a regular partition P for H of
complexity .t; `/, where ` is bounded by a polynomial in the degree of regularity.
This is a vast improvement on the bound arising from the proof of this regularity
lemma in general, in which the bound generated for ` is of Wowzer type. This can
be seen as a higher arity analogue of the efficient regularity lemmas for graphs and
hypergraphs of bounded VC-dimension due to Alon–Fischer–Newman, Lovász–
Szegedy, and Fox–Pach–Suk.

1. Introduction

Szemerédi’s regularity lemma is an important theorem with many applications in
extremal combinatorics. The proof of the regularity lemma, which first appeared in
the 70s [24], was well known to produce tower-type bounds in �. The question of
whether this type of bound is necessary was resolved in the late 90s by Gowers’
lower bound construction [10], which showed tower bounds are indeed required
(see also [7; 17; 6]).

Hypergraph regularity was developed in the 2000s by Frankl, Gowers, Ko-
hayakawa, Nagle, Rödl, Skokan, Schacht [9; 11; 12; 21; 20; 19], in order to prove
a general counting lemma for hypergraphs. These types of regularity lemmas are
substantially more complicated than prior regularity lemmas. In particular, a regular
partition of a k-uniform hypergraph involves a sequence P1; : : : ;Pk�1, where Pi
is a collection of subsets

�
V
i

�
such that certain quasirandomness properties hold

for each Pi relative to P1; : : : ;Pi�1. The proofs of these strong regularity lemmas
produce Ackerman style bounds for the size of each Pi . Given a function f , let
f .i/ denote the i -times iterate of f . We then define Ack1.x/D 2x , and for i > 1,
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Acki .x/D Ack.i/
k�1

.x/. The proofs of the strong regularity lemma for k-uniform
hypergraphs produce bounds for the size of each Pi of the form Ackk . It was shown
by Moshkovitz and Shapira [18] that this type of bound is indeed necessary for the
size of P1, which corresponds to the partition of the vertex set.

In the case of 3-uniform hypergraphs, a decomposition in this sense consists of
a partition P1 D fV1; : : : ; Vtg of V , and a set

P2 D
˚
P ˛ij W ij 2

�
Œt�
2

�
; ˛ 2 Œ`�

	
;

where for each ij 2
�
Œt�
2

�
, P 1ij [� � �[P

`
ij is a partition of K2ŒVi ; Vj �. The complexity

of P is the pair .t; `/. We give a formal statement of the regularity lemma for
3-graphs here for reference, and refer the reader to Section 2B for the precise
definitions involved. The version stated below is a refinement of a regularity lemma
due to Gowers [12] (for more details see Section 2B).

Theorem 1.1 (strong regularity lemma for 3-graphs). For all �1 > 0, and every
function �2 WN! .0; 1�, there exist positive integers T0,L0, and n0 such that for any
3-graph H D .V;E/ on n � n0 vertices, there exists a dev2;3.�1; �2.`//-regular,
.t; `; �1; �2.`//-decomposition P for H with t � T0 and `� L0.

In Theorem 1.1, the parameter T0 is the bound for t , the size of the vertex
partition, and L0 is the bound for `, the size of the partition of K2ŒVi ; Vj �, for
each ij 2

�
Œt�
2

�
. The proof of Theorem 1.1 generates a Wowzer (i.e., Ack3) type

bound for both t and `. Moshkovitz and Shapira showed in [18] that there ex-
ist 3-uniform hypergraphs requiring a Wowzer type bound for the size of t in
Theorem 1.1. Less attention has been paid to the form of the bound L0, and it
remains open whether this is necessarily of Wowzer type. In recent work of the
author and Wolf [26], the partition P2 plays a crucial role in the proof of a strong
version of Theorem 1.1 in a combinatorially tame setting. This work suggests that
understanding the form of the bound for ` is also an interesting problem.

In the case of graphs, it was shown that dramatic improvements on the bounds
in Szemerédi’s regularity lemma can be obtained under the hypothesis of bounded
VC-dimension. In particular, Alon, Fischer, and Newman [1] showed that if a
bipartite graph G has VC-dimension less than k, the it has an �-regular partition
of size at most .k=�/O.k/. Lovász and Szegedy [16] extended this to all graphs
of VC-dimension less than k, with a bound of the form ��O.k

2/. Fox, Pach, and
Suck [8] strengthened the bound to one of the form c.�2k�1/, and extended these
results to hypergraphs of bounded VC-dimension. Related results were obtained
with weaker polynomial bounds by Chernikov and Starchenko [3].

In this paper we prove an analogous theorem in the context of strong regularity
for 3-uniform hypergraphs, where VC-dimension is replaced by a higher arity
analogue called VC2-dimension.
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Definition 1.2. Suppose H D .V;E/ is a 3-graph. The VC2-dimension of H ,
VC2.H/, is the largest integer k so that there exist a1; : : : ; ak; b1; : : : ; bk 2 V and
cS 2 V for each S � Œk�2, such that aibj cS 2E if and only if .i; j / 2 S .

The notion of VC2-dimension was first introduced by Shelah [22], who also
studied it in the context of groups [23]. It was later shown to have nice model-
theoretic characterizations by Chernikov, Palacin, and Takeuchi [5] to have further
natural connections to groups and fields by Hempel and Chernikov [15; 2], and to
have applications in combinatorics by the author [25].

Using infinitary techniques, Chernikov and Towsner [4] proved a strong regularity
lemma for 3-uniform hypergraphs of bounded VC2-dimension without explicit
bounds (in fact they proved results for k-uniform hypergraphs of bounded VCk�1-
dimension). Similar results were proved by the author and Wolf [26] in the 3-uniform
case with Wowzer type bounds. In this paper, we show that 3-uniform hypergraphs
of uniformly bounded VC2-dimension have regular decompositions with vastly
improved bounds on the size of `; in particular, ` can be guaranteed to be polynomial
in size, rather than Wowzer. We include the formal statement of our main theorem
below, and refer the reader to the next section for details on the definitions involved.

Theorem 1.3. For all k � 1, there are ��1 > 0 and ��2 W N! .0; 1� such that the
following holds. Suppose 0<�1<��1 and �2 WN! .0; 1� satisfies 0<�2.x/<��2 .x/
for all x 2 N. There is T D T .�1; �2/ such that every sufficiently large 3-graph
H D .V;E/ has a dev2;3.�1; �2.`//-regular .t; `; �1; �2.`//-decomposition with
`� ��Ok.k/1 and t � T .

The bound T in Theorem 1.3 is generated from an application of Theorem 1.1,
and is also of Wowzer type (see Theorem 3.1 for a more precise statement regarding
this). The regular partition in Theorem 1.3 has the additional property that the
regular triads have edge densities near 0 or 1, which also occurs in the results
from [4; 26]. The ingredients in the proof of Theorem 1.3 include the improved
regularity lemma for 3-graphs of bounded VC2-dimension from [26], a method of
producing quotient graphs from regular partitions of 3-graphs developed in [26],
and ideas from [8] for producing weak regular partitions of hypergraphs of bounded
VC-dimension.

The fact that the bound for ` can be brought all the way down to polynomial in
Theorem 1.3 is somewhat surprising, given that the proof for arbitrary hypergraphs
yields a Wowzer bound. This raises the question of what the correct form of the
bound is, in general, for `. The author conjectures it is at least a tower function
(i.e., Ack2).

It was conjectured in [4] that the bound for t can also be made sub-Wowzer
under the assumption of bounded VC2-dimension, however, the author has been
unable to prove this is the case. This leaves the following open problem.
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Problem 1.4. Given a fixed integer k � 1, are there arbitrarily large 3-uniform
hypergraphs of VC2-dimension at most k which require Wowzer type bounds for
T0 in Theorem 1.1?

2. Preliminaries

In this section we cover the requisite preliminaries, including graph and hypergraph
regularity (Section 2B), VC and VC2-dimension (Sections 2C, 2E, and 2F), auxiliary
graphs defined from regular decompositions of 3-graphs (Section 2D), and basic
lemmas around regularity and counting (Section 2G).

2A. Notation. We include here some basic notation needed for the other prelimi-
nary sections. Given a set V and k � 1, let�V

k

�
D fX � V W jX j D kg:

A k-uniform hypergraph is a pair .V;E/ where E �
�
V
k

�
. For a k-uniform hyper-

graph G, V.G/ denotes the vertex set of V and E.G/ denotes the edge set of G.
Throughout the paper, all vertex sets are assumed to be finite.

When k D 2, we refer to a k-uniform hypergraph as simply a graph. When
k D 3, we refer to a k-uniform hypergraph as a 3-graph.

Given distinct elements x; y, we write xy for the set fx; yg. Similarly, for distinct
x; y; z, we write xyz for the set fx; y; zg. Given sets X; Y;Z, we set

K2ŒX; Y �D fxy W x 2X; y 2 Y; x ¤ yg and

K3ŒX; Y;Z�D fxyz W x 2X; y 2 Y; z 2Z; x ¤ y; y ¤ z; x ¤ zg:

If G D .V;E/ is a graph and X; Y � V are disjoint, we let GŒX; Y � be the bipartite
graph .X [Y;E \K2ŒX; Y �/.

Given a k-uniform hypergraph G D .V;E/, 1� i < k, and e 2
�
V
i

�
, set

NE .e/D
n
e0 2

� V

k�i

�
W e[ e0 2E

o
:

A bipartite edge-colored graph is a tuple G D .A[B;E0; E1; : : : ; Ei /, where
i > 1 and K2ŒA; B� D E0 tE1 t � � � tEi . In this case, given u 2 f0; 1; : : : ; ig
and x 2 A[B , we let NEu.x/ D fy 2 A[B W ab 2 Eug. Similarly, a tripartite
edge-colored 3-graph is a tuple G D .A[B [C;E0; E1; : : : ; Ei /, where i > 1
and K3ŒA; B; C � D E0 t E1 t � � � t Ei . In this case, given u 2 f0; 1; : : : ; ig
and x; y 2 V WD A [ B [ C , we let NEu.x/ D fuv 2

�
V
2

�
W xuv 2 Eug and

NEu.xy/D fv 2 V W xuv 2Eug.
For two functions f1;f2 WN!.0;1�, we write f1<f2 to denote that f1.x/<f2.x/

for all x 2 N. For real numbers r1; r2 and � > 0, we write r1 D r2˙ � to denote
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that r1 2 .r2 � �; r2 C �/. Given a natural number n � 1, Œn� D f1; : : : ; ng. An
equipartition of a set V is a partition V DV1[� � �[Vt such that for each 1� i; j � t ,
we have

ˇ̌
jVi j � jVj j

ˇ̌
� 1.

2B. Regularity. In this section we define graph regularity, as well as a strong notion
of regularity for 3-graphs. We state our definitions in terms of the quasirandomness
notion known as “dev”, which is one of three notions of quasirandomness which
are now known to be equivalent, the other two being “oct” and “disc”. For more
details on these and the equivalences, we refer the reader to [19].

We begin a notion of quasirandomness for graphs.

Definition 2.1. Suppose BD .U [W;E/ is a bipartite graph, and jEjDdB jU jjW j.
We say B has dev2.�; d/ if dB D d ˙ � andX

u0;u12U

X
w0;w12W

Y
i2f0;1g

Y
j2f0;1g

g.ui ; vj /� �jU j
2
jV j2;

where g.u; v/D 1� dB if uv 2E and g.u; v/D�dB if uv …E.

We now define a generalization of Definition 2.1 to 3-graphs due to Gowers [11].
If G D .V;E/ is a graph, let K.2/3 .G/ denote the set of triples from V forming a
triangle in G, i.e.,

K
.2/
3 .G/ WD

n
xyz 2

�V
3

�
W xy; yz; xz 2E

o
:

Now given a 3-graph H D .V;R/ on the same vertex set, we say that G underlies
H if R �K.2/3 .G/.

Definition 2.2. Assume �1; �2 >0, H D .V;E/ is a 3-graph, GD .U [W [Z;E/
is a 3-partite graph underlying H , and jEj D d3jK.2/3 .G/j. We say that .H;G/
has dev2;3.�1; �2/ if there is d2 2 .0; 1/ such that GŒU;W �, GŒU;Z�, and GŒW;Z�
each have dev2.�2; d2/, andX
u0;u12U

X
w0;w12W

X
z0;z12Z

Y
.i;j;k/2f0;1g3

hH;G.ui ; wj ; zk/� �1d
12
2 jU j

2
jW j2jZj2;

where

hH;G.x; y; z/D

8̂<̂
:
1� d3 if xyz 2E \K.2/3 .G/,
�d3 if xyz 2K.2/3 .G/ nE,
0 if xyz …K.2/3 .G/.

For the reader unfamiliar with hypergraph regularity, we note that in the no-
tation of Definition 2.2, d122 jU j

2jW j2jZj2 is approximately the number of tu-
ples .u0; u1; w0; w1; z0; z1/ 2 U 2 �W 2 �Z2 with uiwj zk 2 K

.2/
3 .G/ for each

.i; j; k/ 2 f0; 1g3 (this is a consequence of the graph counting lemma and the
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assumption that GŒU;W �, GŒU;Z�, and GŒW;Z� have dev2.�2; d2/). Therefore,
the first displayed equation in Definition 2.2 is bounding the quantityX

u0;u12U

X
w0;w12W

X
z0;z12Z

Y
.i;j;k/2f0;1g3

hH;G.ui ; wj ; zk/

in terms of total number of tuples .u0; u1; w0; w1; z0; z1/ 2U 2�W 2�Z2, whereQ
.i;j;k/2f0;1g3 hH;G.ui ; wj ; zk/ is nonzero.
We now define a .t; `/-decomposition for a vertex set V , which partitions V , as

well as pairs from V .

Definition 2.3. Let V be a vertex set and t; ` 2 N>0. A .t; `/-decomposition P for
V consists of a partition P1 D fV1[ � � � [Vtg of V , and for each 1� i ¤ j � t , a
partition K2ŒVi ; Vj �D P 1ij [ � � � [P

`
ij . We let P2 D

˚
P ˛ij W ij 2

�
Œt�
2

�
; ˛ � `

	
.

A triad of P is a 3-partite graph of the form

G
ijk

˛;ˇ;
WD .Vi [Vj [Vk; P

˛
ij [P

ˇ

ik
[P



jk
/;

for some ijk 2
�
Œt�
3

�
and ˛; ˇ;  � `. Let Triads.P/ denote the set of all triads of P ,

and observe that fK.2/3 .G/ WG 2 Triads.P/g partitions the set of triples xyz 2
�
V
3

�
which are in distinct elements of P1.

For a 3-graph H D .V;R/, a decomposition P of V , and G 2 Triads.P/, define
H jG WD .V .G/;R\K

.2/
3 .G//. Note that G always underlies H jG.

Definition 2.4. Given a 3-graph H D .V;R/, a decomposition P of V , and
G 2 Triads.P/, we say G has dev2;3.�1; �2/ with respect to H if .H jG;G/
has dev2;3.�1; �2/.

To define a regular decomposition for a 3-graph, we need one more notion,
namely that of an “equitable” decomposition.

Definition 2.5. We say that P is a .t; `; �1; �2/-decomposition if P1DfV1; : : : ; Vtg
is an equipartition and for at least .1 � �1/

�
jV j
2

�
many xy 2

�
V
2

�
, there is some

P ˛ij 2 P2 containing xy such that .Vi [Vj ; P ˛ij / has dev2.�2; 1=`/.

Definition 2.6. Suppose that H D .V;E/ is a 3-graph and P is a .t; `; �1; �2/-
decomposition of V . We say that P is dev2;3.�1; �2/-regular for H if for all but at
most �1n3 many triples xyz 2

�
V
3

�
, the unique G 2 Triads.P/ with xyz 2K.2/3 .G/

satisfies dev2;3.�1; �2/ with respect to H .

We can now restate the regularity lemma for dev2;3-quasirandomness.

Theorem 2.7. For all �1 > 0, every function �2 WN! .0; 1�, and every `0; t0 � 1,
there exist positive integers T0DT0.�1; �2; t0; `0/ andL0DL0.�1; �2; t0; `0/, such
that for every sufficiently large 3-graphH D .V;E/, there exists a dev2;3.�1; �2.`//-
regular, .t; `; �1; �2.`//-decomposition P for H with t0 � t � T0 and `0 � `� L0.
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This theorem was first proved in a slightly different form by Gowers in [11]. In
particular, in [11], the partition of the pairs P2 is not required to be equitable as it is
in Theorem 2.7. Theorem 2.7 as stated appears in [19], where it is pointed out that
the additional equitability requirement can be obtained using techniques from [9].

2C. VC-dimension. In this subsection we give some preliminaries around VC and
VC2-dimension. We begin by defining VC-dimension.

Given a set V , F � P.V /, and X � V , let jF \X j WD fF \X W F 2Fg. We say
that X is shattered by F if jF \X j D 2jX j. The VC-dimension of F is then defined
to be the size of the largest subset of V which is shattered by F .

For a graph G D .V;E/, the VC-dimension of G is the VC-dimension of the set
system fNE .x/ W x 2 V g � P.V /. We now give a simple recharacterization of this.
Given k � 1, let Ak D fai W i 2 Œk�g, and CP.Œk�/ D fcS W S � Œk�g.

Definition 2.8. For k � 1, define U.k/ to be the bipartite graph .Ak [CP.Œk�/; E/,
where E D faicS W i 2 Sg.

Then it is well known that a graph G has VC-dimension at least k if and only
if there is a map f W V.U.k//! V.G/ so that for all a 2 Ak and c 2 CP.Œk�/,
ab 2E.U.k// if and only if f .a/f .b/ 2E.G/.

2D. Encodings. In this subsection, we define an auxiliary edge-colored graph
associated to a regular decomposition of a 3-graph. We then state a result from [26]
which shows that encodings of U.k/ cannot occur when the auxiliary edge-colored
graph arises from a regular decomposition of a 3-graph with VC2-dimension less
than k.

Definition 2.9. Suppose �1; �2 > 0, `; t � 1, V is a set, and P is a .t; `; �1; �2/-
decomposition for V consisting of P1DfVi W i 2 Œt �g and P2DfP ˛ij W ij 2

�
Œt�
2

�
; ˛�`g.

Define

Pcnr D

n
P ˛ijP

ˇ

ik
W ijk 2

� Œt �
3

�
; ˛; ˇ � `; and P ˛ij ; P

ˇ
ij satisfy dev2.�2; 1=`/

o
;

Pedge D fP
˛
ij 2 P2 W P

˛
ij satisfies dev2.�2; 1=`/g:

In the above, cnr stands for “corner”. Observe that for each P ˛ij 2 Pedge and
P
ˇ
uvP


uw 2 Pcnr, if fv;wg D fi; j g, then the pair .P ˛ij ; P

ˇ
uvP


uw/ corresponds to a

triad from P , namely Guvwijs .

Definition 2.10. Suppose �1; �2 > 0, `; t � 1, H D .V;E/ is a 3-graph, and P is a
.t; `; �1; �2/-decomposition for V . Define

E0D
˚
P ˛ij .P

ˇ

jk
P


ik
/2K2ŒPedge;Pcnr� W jE\K

.2/
3 .G

˛ˇ

ijk
/j< 1

2
jK
.2/
3 .G

˛ˇ

ijk
/j
	
;

E1D
˚
P ˛ij .P

ˇ

jk
P


ik
/2K2ŒPedge;Pcnr� W jE\K

.2/
3 .G

˛ˇ

ijk
/j � 1

2
jK
.2/
3 .G

˛ˇ

ijk
/j
	
; and

E2DK2ŒPedge;Pcnr� n .E1[E0/:
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Note that Definition 2.10 gives us a natural bipartite edge-colored graph with
vertex set Pedge [ Pcnr and edge sets given by E0;E1;E2. The author and Wolf
showed in [26] that these auxiliary edge-colored graphs are useful for understanding
3-graphs of bounded VC2-dimension. To explain why, we require the following
notion of an “encoding”.

Definition 2.11. Let �1; �2 > 0 and t; ` � 1. Suppose R D .A [ B;ER/ is a
bipartite graph, H D .V;E/ is a 3-graph, and P is a .t; `; �1; �2/-decomposition
of V . An .A;B/-encoding of R in .H;P/ consists of a pair of functions .g; f /,
where g W A! Pcnr and f W B! Pedge are such that the following hold for some
j0k0 2

�
Œt�
2

�
:

(1) Im.f /� fP ˛
j0k0
W ˛ � `g, and Im.g/� fP ˇij0P



ik0
W i 2 Œt �; ˇ;  � `g.

(2) For all a 2 A and b 2 B , if ab 2 ER, then g.a/f .b/ 2 E1, and if ab … ER,
then g.a/f .b/ 2 E0.

An encoding of U.k/ will always mean an .Ak; CP.Œk�//-encoding of U.k/.
In [26], we proved the following proposition connecting encodings of U.k/ and
VC2-dimension (see Theorem 6.5(2) in [26]).

Proposition 2.12. For all k�1, there are �1>0 and �2 WN! .0; 1� such that for all
t; `� 1, there is N such that the following hold. Suppose H D .V;E/ is a 3-graph
with jV j �N , and P is a dev2;3.�2.`/; �1/-regular .t; `; �1; �2.`//-decomposition
of V . If there exists an encoding of U.k/ in .H;P/, then H has k-IP2.

Moreover, there is a constant C D C.k/ so that �1 D .1=2/C .

We remark here that Proposition 2.12 is actually proved in [26] for an equiv-
alent notion of quasirandomness called disc2;3, and without the final “Moreover”
statement regarding the quantitative form for �1 (see Proposition 5.6 in [26]).
Tracing the bounds in the proof of Proposition 5.6 in [26], one finds that �1 has
the form �D �.�1; k/, where � comes from a version of the counting lemma (see
Theorem 3.1 in [26]). An explicit value for this � is unclear, as the proof of the
counting lemma for disc2;3 passes through its equivalence with oct2;3, and then
the counting lemma for oct2;3. The author has not found proofs of these results in
the literature which are explicit in the parameters (see Corollary 2.3 in [19]). It
seems that one could produce such an explicit result from [19] and [14] with some
effort, however, we have instead chosen to side-step the issue by working with the
quasirandomness notion dev, rather than disc.

In particular, all the ingredients used to prove Proposition 5.6 of [26] have well
known analogues for dev. By running the same arguments as in [26] using dev
rather than disc, one obtains Proposition 2.12 as stated. The additional “Moreover”
statement about the explicit form for �1 then arises from the fact that there is a
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proof of the counting lemma for dev2;3 which is explicit in the parameters (see [11,
Theorem 6.8]).

2E. Haussler’s packing lemma. We will be applying techniques for proving im-
proved regularity lemmas for graphs and hypergraphs of bounded VC-dimension to
the edge-colored auxiliary graphs defined in the previous subsection. In particular,
we will use ideas from the proof of Theorem 1.3 in [8]. We begin by describing the
relevant result from VC-theory, namely Haussler’s packing lemma.

Suppose V is a set and F � V . We say that a subset X � F is ı-separated
if for all distinct X;X 0 2 X , jX�X j > ı. The following packing lemma, due to
Haussler, shows that if F has bounded VC-dimension, the size a of a ı-separated
family cannot be too large [13].

Theorem 2.13 (Haussler’s packing lemma). Suppose F � P.V /, where jV j D n
and F has VC-dimension at most k. Then the maximal size of a ı-separated
subcollection of F is at most c1.n=ı/k , for some constant c1 D c1.k/.

We will apply Theorem 2.13 in the setting of edge-colored graphs. This technique
is inspired by the proof of Theorem 1.3 in [8].

Suppose G D .A[B;E0; E1; E2/ is a bipartite edge-colored graph. We say
that G has an E0=E1-copy of U.k/ if there are v1; : : : ; vk 2 A and for each
S � Œk� a vertex wS 2 B such that i 2 S implies viwS 2 E1 and i … S implies
viwS 2 E0. Given a; a0 2 A and ı > 0, write a �ı a0 if for each u 2 f0; 1; 2g,
jNEu.a/�NEu.a

0/j � ıjBj. Our main application of Theorem 2.13 is the following
lemma.

Lemma 2.14. Suppose k � 1 and c1D c1.k/ is as in Theorem 2.13. Suppose d � 1
and ı; � > 0 satisfy � � c�21 .ı=8/2kC2. Assume G D .A [ B;E0; E1; E2/ is a
bipartite edge-colored graph, and assume there is no E0=E1-copy of U.k/ in G,
and that jE2j � �jAjjBj.

Then there is an integer m � 2c1.ı=8/�k , vertices x1; : : : ; xm 2 A, and a set
U � A with jU j �

p
� jAj, so that for all a 2 A nU , jNE2.a/j �

p
� jBj and there

is some 1� i �m so that a �ı xi .

Proof. Let U D fv 2 A W jNE2.v/j �
p
� jBjg. Since jE2j � �jAjjBj, we know

that jU j �
p
� jAj. Let A0 D A n U . Let m be maximal such that there exist

x1; : : : ; xm 2A
0, so that fNE1.xi / W i 2 Œm�g is a ı=2-separated family of sets on B .

We show m� 2c1.ı=8/
�k .

Suppose towards a contradiction that m� d2c1.ı=8/�ke. Let

B 0 D B n

� m[
iD1

E2.xi /

�
;
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and let F WD fNE1.xi /\B 0 W i 2 Œm�g. Notice jB nB 0j �m
p
� jBj. We claim that

F is ı=4-separated. Consider 1� i ¤ j �m. Then we know that

jNE1.xi /�NE1.xj /\B
0
j � jNE1.xi /�NE1.xj /j �m

p
� jBj

� jBj.ı=2�m
p
�/

� jBjı=4;

where the last inequality is by our assumptions on ı; �. By Theorem 2.13, F shatters
a set of size k. By construction, for each 1 � i � m, B 0 nNE1.xi / � NE0.xi /.
Consequently, we must have that there exists an E0=E1-copy of U.k/ in G, a
contradiction.

Thus, m � 2c1.ı=8/�k . For all a 2 A nU , we know that jNE2.a/j �
p
� jBj,

and there is some 1� i �m so that jNE1.a/�NE1.xi /j � ıjBj=2. We claim that
a �ı xi . We already know that jNE1.a/\NE1.xi /j � ıjBj. Since a; xi are both
in A0, we have

jNE2.a/�NE2.xi /j � jNE2.a/jC jNE2.a/j � 2
p
� jBj< ıjBj=2:

Combining these facts, we have that

jNE0.a/�NE0.xi /j � jNE2.a/jC jNE2.a/jC jNE1.a/�NE1.xi /j � ıjBj:

Thus a �ı xi , as desired. �

2F. Tame regularity for 3-graphs of bounded VC2-dimension. In this subsec-
tion we state the tame regularity lemma for 3-graphs of bounded VC2-dimension
from [26].

Definition 2.15. SupposeH D .V;E/ is a 3-graph with jV jDn and�>0. Suppose
t; ` � 1 and P is a .t; `/-decomposition of V . We say that P is �-homogeneous
with respect toH if at least .1��/

�
n
3

�
triples xyz 2

�
V
3

�
satisfy the following: there

is some G 2 Triads.P/ such that xyz 2K.2/3 .G/ and either

jE \K
.2/
3 .G/j � �jK

.2/
3 .G/j or jE \K.2/3 .G/j � .1��/jK

.2/
3 .G/j:

Given a 3-graph H D .V;E/ and a .t; `; �1; �2/-decomposition P of V , we say
that P is �-homogeneous with respect toH if at least .1��/

�
jV j
3

�
triples xyz 2

�
V
3

�
are in a �-homogeneous triad of P . We have the following theorem from [26].

Theorem 2.16. For all k � 1, there are ��1 > 0, ��2 W N! .0; 1�, and a function
f W .0; 1�! .0; 1� with limx!0 f .x/D 0 such that the following hold.

Suppose t0; `0 � 1, 0 < �1 < ��1 , and �2 W N ! .0; 1� satisfies �2 < ��2 . Let
N , T , and L be as in Theorem 2.7 for �1; �2; t0; `0. Suppose H D .V;E/ is a
3-graph with jV j �N and VC2.H/ < k. Then there exist t0 � t � T , `0 � `� L,
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and a .t; `; �1; �2.`//-decomposition of V which is dev2;3.�1; �2.`//-regular and
f .�1/-homogeneous with respect to H .

Moreover, f may be taken to have the form x1=D , where D � 1 depends only
on k.

Since the bounds in Theorem 2.16 come from Theorem 2.7, they are of Wowzer
type. We also note that the proof of Theorem 2.16 in fact guarantees something
slightly stronger, namely that every dev2;3.�1; �2.`//-regular triad of P is f .�1/-
homogeneous.

We remark here that Theorem 2.16 was proved in [26] for the notion of disc2;3
rather than dev2;3, and without the “moreover” statement regarding the form of the
function f (see Proposition 3.2 in [26]). Examination of the proof of Proposition 3.2
in [26] shows that the function f depends on k and a version of the counting
lemma for 3-graphs (namely Theorem 3.1 in [26]). An explicit expression for f .x/
in Proposition 3.2 of [26] would thus require a version of the counting lemma
for disc2;3 which is explicit in the parameters. However, one can rerun all the
arguments in [26] using the quasirandomness notion dev2;3 in place of disc2;3 to
obtain Theorem 2.16 as stated. In this case, an explicit expression for f can be
obtained using the counting lemma for dev2;3 (see also the discussion following
Proposition 2.12).

2G. Other preliminaries. In this subsection we give several lemmas, most of
which are basic facts about regularity and counting. First, we will use the following
version of the triangle counting lemma.

Proposition 2.17 (counting lemma). Suppose �; d > 0. Let G D .A[B[C;E/ be
a 3-partite graph such that each of GŒA;B�, GŒB;C �, and GŒA;C � has dev2.�; d/.
Then ˇ̌

jK
.2/
3 .G/j � d3jAjjBjjC j

ˇ̌
� 4�1=4jAjjBjjC j:

For a proof, see [11, Lemma 3.4]. The following symmetry lemma was proved
in [26] (see Lemma 4.9 there).

Lemma 2.18 (symmetry lemma). For all 0<�< 1
4

there is n such that the following
holds. Suppose G D .U [W;E/ is a bipartite graph, jU j; jW j � n, and U 0 � U ,
W 0 � W satisfy jU 0j � .1� �/jU j and jW 0j � .1� �/jW j. Suppose that for all
u 2 U 0,

maxfjN.u/\W j; j:N.u/\W jg � .1� �/jW j;

and for all w 2W 0,

maxfjN.w/\U j; j:N.w/\U jg � .1� �/jU j:

Then jEj=jU jjW j 2 Œ0; 2�1=2/[ .1� 2�1=2; 1�.



336 CAROLINE TERRY

We will use the following immediate corollary of this.

Corollary 2.19. For all 0 < � < 1
4

there is n such that the following holds. Suppose
G D .U [ W;E/ is a bipartite graph with jU j; jW j � n, and jEj=jU jjW j 2
.2�1=2; 1� 2�1=2/. Then one of the following hold.

(1) There is U 0 � U with jU 0j � �jU j, so that for all u 2 U ,

jNE .u/\W j

jW j
2 .�; 1� �/:

(2) There is W 0 �W with jW 0j � �jW j, so that for all w 2W ,

jNE .w/\U j

jU j
2 .�; 1� �/:

We will use a lemma which was originally proved by Frankl and Rödl (see [9,
Lemma 3.8]) for another notion of quasirandomness for graphs, called disc2.

Definition 2.20. SupposeBD .U[W;E/ is a bipartite graph, and jEjDdB jU jjW j.
We say B has disc2.�; d/ if dB D d ˙ � and for all U 0 � U and W 0 �W ,ˇ̌

jE \K2ŒU
0; W 0�j � d jU 0jjW 0j

ˇ̌
� �jU jjW j:

Gowers proved the following quantitative equivalence between disc2 and dev2
(see Theorem 3.1 in [11]).

Theorem 2.21. Suppose B D .U [W;E/ is a bipartite graph. If B has disc2.�; d/
then it has dev2.�; d/. If B has dev2.�; d/, then it has disc2.�1=4; d /.

Combining Theorem 2.21 with Lemma 3.8 in [9], we obtain the following.

Lemma 2.22. For all � > 0, � � 2�, 0 < p < �=2, and ı > 0, there is m0 D
m0.�; �; ı/ such that the following holds. Suppose jU j D jV j D m � m0, and
G D .U [ V;E/ is a bipartite graph satisfying dev2.�/ with density �. Then if
`D Œ1=p� and � � 10.1=`m/1=5, there is a partition E DE0[E1[ � � � [E` such
that

(1) For each 1� i � `, .U [V;Ei / has dev2.�1=4/ with density �p.1˙ ı/, and

(2) jE0j � �p.1C ı/m2.

Further, if 1=p 2 Z, then E0 D∅.

We will also use the following fact, which can be obtained from Fact 2.3 in [26]
along with Theorem 2.21.

Fact 2.23. Suppose E1 and E2 are disjoint subsets of K2ŒU; V �. If .U [ V;E1/
has dev2.�1; d1/, and .U [ V;E2/ has dev2.�2; d2/, then .U [ V;E1 [E2/ has
dev2.�1=41 C �1=42 ; d2C d1/.
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Finally, we will use the fact that triads with density near 0 or 1 are quasirandom.
For completeness, we include a proof of this in the Appendix.

Proposition 2.24. For all 0 < � < 1
2

, d2 > 0, and 0 < ı � .d2=2/
48, there is

N such that the following holds. Suppose H D .V1 [ V2 [ V3; R/ is a 3-partite
3-graph on n�N vertices, and for each i; j 2 Œ3�,

ˇ̌
jVi j � jVj j

ˇ̌
� ıjVi j. Suppose

GD .V1[V2[V3; E/ is a 3-partite graph, where for each 1� i < j � 3,GŒVi ; Vj �
has dev2.ı; d2/, and assume

jR\K
.2/
3 .G/j � �jK

.2/
3 .G/j:

Then .H jG;G/ has dev2;3.ı; 6�/.

3. Proof of main theorem

We first give a more precise statement of our main theorem.

Theorem 3.1. For all k � 1, there are polynomials p1.x/; p2.x; y/; p3.x/, a
constant ��1 > 0, and a function ��2 WN! .0; 1� such that the following holds, where
T0.x; y; z; w/ is as in Theorem 2.7.

For all 0 < �1 < ��1 and �2 W N! .0; 1� satisfying �2 < ��2 , there is L� ��Ok.k/1

such that the following holds for T D T0.p1.�1/; �2 ı q2; p3.�
�1
1 /; 1/, where

q2.y/D p2.�1; y/.
Every sufficiently large 3-graph H D .V;E/ such that VC2.H/ < k has a

dev2;3.�1; �2.`//-regular .t; `; �1; �2.`//-decomposition with `� L and t � T .

We now give a few remarks regarding the bounds. As can be seen above, the
bound T in Theorem 3.1 is obtained by composing the bound T0 from Theorem 2.7
with several polynomial functions. This does not change the fundamental shape
of the bound in terms of the Ackerman hierarchy, and thus the bound for t in
Theorem 3.1 remains a Wowzer type function. On the other hand, we see that the
bound for ` becomes polynomial in ��11 .

The polynomial p3 in Theorem 3.1 depends on the f in Theorem 2.16, which
in turn depends on the hypergraph counting lemma for dev2;3. One could therefore
obtain a quantitative version of Theorem 3.1 for the equivalent quasirandomness
notions of disc2;3 and oct2;3 using the same arguments, given a quantitative version
of their respective counting lemmas.

The general strategy for the proof of Theorem 3.1 is as follows. Given a large
3-graph H of VC2-dimension less than k, we first apply Theorem 2.16 to obtain
a homogeneous, regular partition P for H . We then consider the auxiliary edge-
colored graphs associated to P , as described in Section 2D. These contain no
copies of U.k/ by Proposition 2.12, allowing us to apply Lemma 2.14. This yields
decompositions for the auxiliary edge-colored graphs, which we eventually use to
define a new decomposition Q for H which is still regular and homogeneous, but
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which has a polynomial bound for the parameter `. This last part requires the most
work, as well as most of the lemmas from Section 2G.

We have not sought to optimize constants which do not effect the overall form
of the bounds involved.

Proof of Theorem 1.3. Fix k � 1 and let c1 D c1.k/ be as in Theorem 2.13. Let
�1 > 0, �2 W N! .0; 1�, and f be as in Theorem 2.16 for k, and let D DD.k/ be
so that f .x/ D x1=D (see Theorem 2.16). Let �1 > 0, �2 W N! .0; 1� be as in
Proposition 2.12 for k. Set ��1 Dminf�1; �1; .1=4/Dg and define ��2 W N! .0; 1�

by setting ��2 .x/Dminf�2.x/; �2.x/; .1=2x/48g, for each x 2 N.
Suppose 0 < �1 < ��1 and �2 W N! .0; 1� satisfies �2 < ��2 . We now choose a

series of new constants. Set �1 D �4D1 and note �1 < f .�1/. Set ı D �4001 =1000,
�01 D .ı=8c1/

2kC1000, mD d2c1.ı=8/�2k�2e, and �001 D .�
0
1/
2=1000. Next, define

�02; �
00
2 W N ! .0; 1� by setting, for each x 2 N, �02.x/ D �001�2.x/�2.2

4ı�8k�10/

and �002.x/ D �2.ı
�4m4/�02.x/

5=4. Note there are polynomials p1.x/, p2.x; y/
depending only on k such that �001 D p1.�1/ and �002.x/ D p2.�1; x/. To aid the
reader in keeping track of the constants, we point out that the following inequalities
hold:

�001 < �
0
1 < ı < �1 < �1 < �

�
1 and �002 < �

0
2 < �2 < �

�
2 :

Choose t0 sufficiently large so that
t3

6
� .1� �001/

� t
3

�
;

.1� 3�001/t
3

12
� .1� �01/

� t
3

�
; and� t

3

�
.1� 6.�01/

1=4
� .�01/

3=8/� .1� �01/
1=8
� t
3

�
:

Note there is some polynomial p.x/ depending only on k so that we can take
t0 D p.��11 /. Finally, choose T1, L1, and N1 as in Theorem 2.7 for �001 , �002 , t0
and `0 D 1.

Set LD dı�4m4e, T D T1, and choose N sufficiently large compared to all the
previously chosen constants. Notice that LDOk.��Ok.1/1 / and

T D T0.p1.�1/; �2 ı q2; p.�
�1
1 /; 1/;

where T0.x; y; z; w/ is as in Theorem 2.7 and q2.y/D p2.�1; y/.
Suppose H D .V;E/ is a 3-graph with jV j � N satisfying VC2.H/ < k.

Theorem 2.16 implies there exist 1� `�L1, t0 � t � T1, and P1 a .t; `; �001 ; �
00
2.`//-

decomposition of V which is dev2;3.�001 ; �
00
2.`1//-regular and f .�001/-homogeneous

with respect to H . Say

P1 D fV1; : : : ; Vtg and P2 D
n
P ˛ij W ij 2

� Œt �
2

�
; ˛ 2 Œ`�

o
:
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Note that f .�001/D .�
00
1/
1=D < 1

4
. Recall that as mentioned after Theorem 2.16, we

may assume that all dev2;3.�001 ; �
00
2.`//-regular triads of P are f .�001/-homogeneous

with respect to H .
Given ij 2

�
Œt�
2

�
and ˛ 2 Œ`�, let G˛ij D .Vi [ Vj ; P

˛
ij /. Given ijs 2

�
Œt�
3

�
and

1� ˛; ˇ;  � `, set

G
˛;ˇ;
ijs D .Vi [Vj [Vs; P

˛
ij [P

ˇ
js [P


is/ and

H
˛;ˇ;
ijs D .Vi [Vj [Vs; E \K

.2/
3 .G

˛;ˇ;
ijs //:

We will use throughout that since �002.x/� �
0
2.x/

5=4, Proposition 2.17 implies
that for all ijs 2

�
Œt�
3

�
and ˛; ˇ;  2 Œ`�,

jK
.2/
3 .G

˛;ˇ;
ijs /j D .1˙ �02.`//

�
n

`t

�3
: (1)

We use P to construct a different decomposition of V , which we call Q, so that
Q1 D P1 but Q2 ¤ P2. Set

Ferr D
˚
G
˛;ˇ;
ijs 2 Triads.P/ W .H˛;ˇ;

ijs ; G
˛;ˇ;
ijs / fails disc3.�001 ; �

00
2.`//

	
;

F1 D
˚
G
˛;ˇ;
ijs 2 Triads.P/ nFerr W d

˛;ˇ;
ijs � 1�f .�001/

	
; and

F0 D
˚
G
˛;ˇ;
ijs 2 Triads.P/ nFerr W d

˛;ˇ;
ijs � f .�001/

	
:

By assumption, Triads.P/ D Ferr tF1 tF0, and at most �001n
3 triples xyz 2

�
V
3

�
are in K.2/3 .G/ for some G 2 Ferr. By (1), this implies

jTriads.P/ nFerrj �

��n
3

�
� �001n

3
�
=
�
n3

t3`3
.1� �02.`//

�
�

� t
3

�
`3.1� �01/;

where the last inequality uses that t � t0 and n is large. Thus, jFerrj � �
0
1t
3`3. Let

‰ D
˚
ViVj W

ˇ̌
fG

˛ˇ
ijs 2 Ferr some s 2 Œt � and ˛; ˇ;  2 Œ`�g

ˇ̌
� .�01/

3=4`3t
	
:

Since jFerrj � �
0
1t
3`3, we have that j‰j � .�01/

1=4t2. Given ij 2
�
Œt�
2

�
, let `ij be the

number of ˛ 2 Œ`� such that G˛ij has dev2.�002.`/; 1=`/. After relabeling, we may
assume G1ij ; : : : ; G

`ij
ij each have dev2.�002.`/; 1=`/. We claim that for ViVj …‰,

`ij � .1� 2.�
0
1/
3=4/`:

Indeed, given ViVj … ‰, if it were the case that `ij < .1� 2.�01/
3=4/`, then we

would have thatˇ̌˚
G
˛ˇ
ijs 2 Ferr some s 2 Œt � and ˛; ˇ;  2 Œ`�

	ˇ̌
� .t � 2/`2.`� `ij /

> 2.�01/
3=4.t � 2/`3 � .�01/

3=4`3t;

contradicting ViVj …‰. Thus we have that for all ViVj …‰, `ij � .1�2.�01/
3=4/`.
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For each ViVj …‰, let Hij be the edge-colored graph .Uij [Wij ; E0ij ; E
1
ij ; E

2
ij /,

where

Wij D
˚
P ˛ij W ˛ � `ij

	
;

Uij D
˚
P
ˇ
isP


js W s 2 Œt � n fi; j g; ˇ � `is;  � j̀s

	
;

E1ij D
˚
P ˛ij .P

ˇ
isP


js/ 2K2ŒWij ; Uij � WG

˛;ˇ;

ijk
2 F1

	
;

E0ij D
˚
P ˛ij .P

ˇ
isP


js/ 2K2ŒWij ; Uij � WG

˛;ˇ;

ijk
2 F0

	
;

E2ij D
˚
P ˛ij .P

ˇ
isP


js/ 2K2ŒWij ; Uij � WG

˛;ˇ;

ijk
2 Ferr

	
:

By Proposition 2.12, and since f .�001/ <
1
2

, Hij contains no E1ij =E
0
ij copy of U.k/,

and since ViVj … ‰, jE2ij j � .�
0
1/
3=4`3t . We will later need the following size

estimates for Wij and Uij . By the above, jWij j D `ij � .1� 2.�01/
3=4/`. We claim

that jUij j � .1�2.�01/
3=4/`2t . Indeed, observe that jUij j D

P
s2Œt�nfi;j g `is j̀s andˇ̌˚

G
˛ˇ
ijs 2 Ferr some s 2 Œt � and ˛; ˇ;  2 Œ`�

	ˇ̌
�

X
s2Œt�nfi;j g

`2.`� `is/C `is`.`� j̀s/

D

X
s2Œt�nfi;j g

`3� ``is j̀s D .t � 2/`
3
� `jUij j:

Since ViVj …‰, this shows that

.�01/
3=4`3t � .t � 2/`3� `jUij j:

Rearranging, this yields that

jUij j � .t � 2/`
2
� .�01/

3=4`2t � t`2.1� 2.�01/
3=4/;

where the last inequality is because t � t0.
Given v; v0 2Wij , write v � v0 2Wij if for each w 2 f0; 1; 2g,

jEwij .v/�E
w
ij .v

0/j � ıjUij j:

By Lemma 2.14, there are W 0
ij � Wij of size at most .�01/

3=8jWij j, an integer
mij �m, and x1ij ; : : : ; x

mij
ij 2Wij so that for all v 2Wij nW 0

ij , there is 1� ˛�mij
so that v � x˛ij , and further, jNE2

ij
.v/j � .�01/

3=8jUij j. For each 1� u�mij , let

W u
ij D fv 2Wij nW

0
ij W v � x

u
ij and for all 1� u0 < u, v œ xu

0

ij g:

Note W 1
ij [ � � � [W

mij
ij is a partition of Wij nW 0

ij .
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We now define a series of sets to help us zero in on certain well behaved sets of
triples. First, define

�0 D
n
ijs 2

� Œt �
3

�
W ViVj ; VjVs; ViVs …‰

o
and

�D fW u
ijW

v
isW

w
js W ijs 2�0; 1� u�mij ; 1� v �mis; 1� w �mjsg:

Since j‰j � .�01/
1=4t2, j�0j �

�
t
3

�
� j‰jt � .1� 6.�01/

1=4/
�
t
3

�
. Let

Y0 D
[

W u
ij
W v
is
W w
js
2�

K3ŒW
u
ij ; W

v
is; W

w
js �:

We have that for all ijs 2�0, jW 0
ij j; jW

0
isj; jW

0
jsj � .�

0
1/
3=8`, and therefore jY0j is

at least the following:

jY0j �
� t
3

�
`3� `3

ˇ̌̌� Œt �
3

�
n�0

ˇ̌̌
� j�0j.�

0
1/
3=8`3

�

� t
3

�
`3� 6.�01/

1=4
� t
3

�
`3�

� t
3

�
.�01/

3=8`3

�

� t
3

�
`3.1� .�01/

1=8/;

where the last inequality is since t � t0.
Given ij …‰, let us call W u

ij nontrivial if it has size at least ı1=2`=mij . Define

�1 D
˚
W u
ijW

v
jsW

w
is 2� W each of W u

ij ; W
v
js; W

w
is are nontrivial

	
;

and set Y1 D
S
W u
ij
W v
js
W w
is
2�1

K3ŒW
u
ijW

v
jsW

w
is �. Then we have that

jY1j � jY0j � t`
2
X

ij2.Œt�2 /

X
fu2Œmij �WW

u
ij

trivialg

ı1=2.`=mij /

� jY0j � t`
2.t2ı1=2`/D jY0j � ı

1=2t3`3:

Define
R1 D

˚
P ˛ijP

ˇ
isP


js WG

˛;ˇ;

ijk
2 F1

	
;

R0 D
˚
P ˛ijP

ˇ
isP


js WG

˛;ˇ;

ijk
2 F0

	
;

R2 D
˚
P ˛ijP

ˇ
isP


js WG

˛;ˇ;

ijk
2 Ferr

	
:

Note that .P2 [ P2 [ P2; R0; R1; R2/ is a 3-partite edge-colored 3-graph, and
jR2j � �

0
1t
3`3. Now set

�2 D
˚
W u
ijW

v
jsW

w
is 2�1 W jR2\K3ŒW

u
ij ; W

v
is; W

w
js �j �

p
�01 jW

u
ij jjW

v
isjjW

w
js j
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and Y2 D
S
W u
ij
W v
js
W w
is
2�2

K3ŒW
u
ijW

v
jsW

w
is �. Note that

jR2j �
X

W u
ij
W v
js
W w
is
2�1n�2

p
�01 jW

u
ij jjW

v
isjjW

w
js j

�
p
�01

X
W u
ij
W v
js
W w
is
2�1n�2

jW u
ij jjW

v
isjjW

w
js j:

Therefore,X
W u
ij
W v
js
W w
is
2�1n�2

jW u
ij jjW

v
isjjW

w
js j �

p
�01
�1
jR2j<

p
�01
�1
�01t

3`3 �
p
�01 t

3`3:

This implies that jY2j � jY1j �
p
�01t

3`3.
Given ijs 2�0, let us call a triple P ˛ijP

ˇ
isP


js troublesome if one of the following

hold:

� For some u 2 Œmij �, P ˛ij 2W
u
ij , and there are �1 ¤ �2 2 f0; 1; 2g such that

P
ˇ
isP


jsP

˛
ij 2R

�1 and P ˇisP

jsx

u
ij 2R

�2 .

� For some w 2 Œmjs�, P

js 2W

w
js , and there are �1 ¤ �2 2 f0; 1; 2g such

that P ˇisP
˛
ijP


js 2R

�1 and P ˇisP
˛
ijx

w
js 2R

�2 .

� For some v 2 Œmis�, P
ˇ
is 2W

v
is , and there are �1 ¤ �2 2 f0; 1; 2g such that

P ˛ijP

jsP

ˇ
is 2R

�1 and P ˛ijP

jsx

v
is 2R

�2 .

Let Tr be the set of troublesome triples. Define

�3 D
˚
W u
ijW

v
jsW

w
is 2�2 W jK3ŒW

u
ijW

v
jsW

w
is �\Trj � ı1=4jW u

ij jjW
v
jsjjW

w
is j
	
;

and set Y3D
S
W u
ij
W v
js
W w
is
2�3

K3ŒW
u
ijW

v
jsW

w
is �. We claim jY3j �

�
t
3

�
`3.1�2ı1=2/.

Given ViVj … ‰, 1 � u � mij , and P ˛ij 2 W
u
ij , we know that P ˛ij � x

˛
ij , and

thereforeˇ̌˚
P
ˇ
isP


js W s 2 Œt � n fi; j g; ˇ;  � `; P

ˇ
isP


jsP

˛
ij 2 Tr

	ˇ̌
� .`2.t � 2/� jUij j/C

2X
xD0

jNEx
ij
.P ˛ij /�NExij

.xuij /j

� 2.�01/
3=4`2t C 3ıt`2

� 4ıt`2:
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Thus, jTrj � 4ıt`2
�P

ViVj…‰;u2Œmij �
jW u
ij j
�
� 4ıt`2.t2`/D 4ıt3`3. Therefore

4ıt3`3 � jTrj �
X

W u
ij
W v
js
W w
is
2�2n�3

ı1=4jW u
ij jjW

v
jsjjW

w
is j

D ı1=4
ˇ̌̌̌ [
W u
ij
W v
js
W w
is
2�2n�3

K3ŒW
u
ijW

v
jsW

w
is �

ˇ̌̌̌
:

Rearranging, this yields thatˇ̌̌̌ [
W u
ij
W v
js
W w
is
2�2n�3

K3ŒW
u
ijW

v
jsW

w
is �

ˇ̌̌̌
� ı�1=44ıt3`3 D 4ı3=4t3`3:

Thus

jY3j � jY2j � ı
3=4t3`3

� jY1j �
p
�01t

3`3� 4ı3=4t3`3

� jY0j � ı
1=2t3`3�

p
�01t

3`3� 4ı3=4t3`3

�

� t
3

�
`3.1� 7.�01/

1=8/� ı1=2t3`3�
p
�01t

3`3� 4ı3=4t3`3

�

� t
3

�
`3.1� 2ı1=2/:

Therefore, using (1), we haveˇ̌̌̌ [
P˛
ij
P
ˇ

is
P


js
2Y3

K
.2/
3 .G

˛;ˇ;
ijs /

ˇ̌̌̌
�

� t
3

�
`3.1� 2ı1=2/

�
n3

t3`3
.1� �02.`//

�
�

�n
3

�
.1� 3ı1=2/;

where the last inequality is because n is large.
Our next goal is to prove Claim 3.2, which says that for each W u

ijW
v
isW

w
js 2�3,

K3ŒW
u
ij ; W

v
is; W

w
js � is either mostly contained in R1 or mostly contained in R0. For

the proof of this claim, we will require the following notation. Given ijs 2
�
Œt�
3

�
,

˛; ˛0� `, 1�v�mis , and 1�w�mjs , we write P ˛ij �js;vw P
˛0

ij if P ˛ij ; P
˛0

ij 2W
u
ij

for some 1� u�mij , andˇ̌˚
.P

ˇ
is ; P


js/ 2W

v
is �W

w
js W for some �1 ¤ �2 2 f0; 1; 2g; P

ˇ
isP


jsP

˛
ij 2R

�1

and P ˇisP

jsP

˛0

ij 2R
�2
	ˇ̌
� ı1=8jW v

isjjW
w
js j:

Claim 3.2. For any W u
ijW

v
isW

w
js 2�3, there is � 2 f0; 1g such that

jR� \K3ŒW
u
ij ; W

v
is; W

w
js �j

jK3ŒW
u
ij ; W

v
is; W

w
js �j

� 1� ı1=100:
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Proof. Suppose towards a contradiction there is W u
ijW

v
isW

w
js 2�3 such that for

each � 2 f0; 1g,

jR� \K3ŒW
u
ij ; W

v
is; W

w
js �j

jK3ŒW
u
ij ; W

v
is; W

w
js �j

< 1� ı1=100:

To ease notation, let ADW u
ij , B DW v

is , and C DW w
js .

We now define a series of subsets ofAwhich will contain “well behaved” vertices.
First, we set A1 D fa 2 A W a �js;vw xuij g. Since W u

ijW
v
isW

w
js 2�3,

ı1=4jW u
ij jjW

v
isjjW

w
js j � jTr\K3ŒW u

ijW
v
isW

w
js �j � jA nA1jı

1=8
jW v
isjjW

w
js j:

Thus jA nA1j � ı�1=8ı1=4jW u
ij j D ı

1=8jW u
ij j. Now set

A2 D fa 2 A W jNR2.a/j � .�
0
1/
1=4
jBjjC jg:

Because W u
ijW

v
isW

w
js 2�2, we have that

.�01/
1=2
jAjjBjjC j � jR2\K3ŒA; B; C �j � jA nA2j.�

0
1/
1=4
jBjjC j:

Therefore, jA nA2j � .�01/
1=4jAj. Now set

A3 D fa 2 A W jNR1.a/j=jBjjC j 2 .ı
1=64; 1� ı1=64/g and

A03 D fa 2 A W jNR1.a/j=jBjjC j 2 .ı
1=128; 1� ı1=128/g:

We claim xuij 2 A
0
3. Suppose towards a contradiction that xuij … A

0
3. Suppose first

that jNR1.xuij /j � .1� ı
1=128/jBjjC j. Then for all a 2A1, since a�js;vw xuij , we

have jNR1.a/j � .1� ı
1=128� ı1=8/jBjjC j, and thus,

jR1\K3ŒW
u
ijW

v
isW

w
js �j � .1� ı

1=128
� ı1=8/jA1jjBjjC j

� .1� ı1=128� ı1=8/.1� ı1=8/jAjjBjjC j

� .1� ı1=100/jAjjBjjC j;

a contradiction. So we must have jNR1.x
u
ij /j�ı

1=128jBjjC j. Then for all a2A1\A2,
a �js;vw x

u
ij and jNR2.a/j � .�

0
1/
1=4jBjjC j implies

jNR0.a/j � .1� ı
1=128

� ı1=8� .�01/
1=4/jBjjC j:

Therefore

jR0\K3ŒW
u
ijW

v
isW

w
js �j � .1�ı

1=128
�ı1=8�.�01/

1=4/jA1\A2jjBjjC j

� .1�ı1=128�ı1=8�.�01/
1=4/.1�ı1=8�.�01/

1=4/jAjjBjjC j

� .1�ı1=100/jAjjBjjC j;
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again a contradiction. Thus, we must have that xuij 2 A
0
3. This implies that for all

a 2 A1\A2,

jNR1.a/j � jNR1.x
u
ij /j � jNR1.x

u
ij /�NR1.a/j

� ı1=128jBjjC j.1� ı1=8/� ı1=64jBjjC j

and
jNR0.a/j � jNR0.x

u
ij /j � jNR0.a/j � jNR0.x

u
ij /�NR0.a/j

� ı1=128jBjjC j.1� ı1=8� .�01/
1=4/

� ı1=64jBjjC j:

Thus a 2 A3. This shows that A1\A2 � A3, and therefore

jA3j � jAj.1� ı
1=8
� .�01/

1=4/:

Now define

AB D
˚
a 2 A W jfb 2 B W jNR1.ab/�NR1.ax

v
is/j � ı

1=16
jC jgj � .1� ı1=16/jBj

	
;

AC D
˚
a 2 A W jfc 2 C W jNR1.ac/�NR1.ax

w
js/j � ı

1=16
jBjgj � .1� ı1=16/jC j

	
:

Observe that 4ı1=4jAjjBjjC j � jTr\K3ŒA; B; C �j � ı1=16jA nAB jjBjjC j, and
therefore jA nAB j � ı�1=164ı1=4jAj D 4ı3=16jAj. A similar computation shows
jA nAC j � 4ı

3=16jAj. Consequently, setting A4 WD A3\AB \AC , we have that

jA4j � jA3j � jA nAC j � jA nAB j � jAj.1� 8ı
3=16
� .�01/

1=4
� ı1=8/ > 0:

Fix some a� 2 A4. We will use a� to control the other edges in the triple. Let

S1 DNR1.a
�/; S0 DNR0.a

�/; and S2 DNR2.a
�/:

Note .B [C; S0 [ S1 [ S2/ is a 3-partite edge-colored 3-graph. Since a� 2 A3,
jS1j=jBjjC j 2 .ı

1=64; 1� ı1=64/. Therefore, Corollary 2.19 implies that one of the
following hold:

(a) There is B1 � B such that jB1j � ı1=32jBj=2 and for all b 2 B1,

jNS1.b/j

jC j
2

�
ı1=32

2
; 1�

ı1=32

2

�
:

(b) There is C1 � C such that jC1j � ı1=32jC j=2 and for all c 2 C1,

jNS1.c/j

jBj
2

�
ı1=32

2
; 1�

ı1=32

2

�
:

Without loss of generality, let us assume (a) holds (other case is symmetric). Define
B2D fb 2B1 W jNS2.b/j � .�

0
1/
1=16jC jg. We claim jB2j � ı1=32jBj=4. Indeed, we

know that since a� 2 A2,

.�01/
1=4
jBjjC j � jS2j � .�

0
1/
1=16
jB1 nB2jjC j:



346 CAROLINE TERRY

Thus, jB1 nB2j � .�01/
�1=16.�01/

1=4jBj D .�01/
1=12jBj, so

jB2j � jB1j � .�
0
1/
1=12
jBj �

�
ı1=32

2
� .�01/

1=12

�
jBj �

ı1=32jBj

4
:

Note that for all b 2 B2, we have that jNS1.b/j � ı
1=32jC j=2� ı1=32jC j=4 and

jNS0.b/j � jC nNS1.b/j � jNS2.b/j �

�
ı1=32

2
� .�01/

1=16

�
jC j �

ı1=32jC j

4
:

Now, let
B3 D fb 2 B2 W jNS1.b/�NS1.x

v
is/j � ı

1=16
jC jg:

Since a� 2 AB ,

jB3j � jB2j � ı
1=16
jBj �

�
ı1=32

4
� ı1=16

�
jBj �

ı1=32jBj

8
> 0:

Fix some b� 2 B3 and set Q0 D NS0.b�/ and Q1 D NS1.b�/. By above, since
b� 2 B2, minfjQ1j; jQ0jg � ı1=32jC j=4.

We claim jS1\K2ŒB3;Q1�j � .1�10ı1=32/jQ1jjB3j. Indeed, fix b 2B3. Then
we know jNS1.b/�NS1.x

v
is/j � ı

1=16jC j and jNS1.b�/�NS1.x
v
is/j � ı

1=16jC j,
and therefore jNS1.b/�NS1.b�/j � 2ı

1=16jC j. Consequently,

jNS1.b/\Q1j � jQ1j � 2ı
1=16
jC j � jQ1j

�
1� 2ı1=16

jC j

jQ1j

�
� jQ1j.1� 2ı

1=16.4ı�1=32//� jQ1j.1� 10ı
1=32/:

This shows that jS1\K2ŒB3;Q1�j � .1� 10ı1=32/jQ1jjB3j.
Similarly, we claim jS0\K2ŒB3;Q0�j � .1�10ı1=32/jB3jjQ0j. Indeed, for all

b 2 B3, jNS2.b/j � .�
0
1/
1=16jC j and, as above, jNS1.b/�NS1.b�/j � 2ı

1=16jC j.
Thus jNS0.b/�NS0.b�/j � ..�

0
1/
1=16C 2ı1=16/jC j. Therefore,

jNS0.b/\Q0j � jQ0j � ..�
0
1/
1=4
C 2ı1=16/jC j

� jQ0j

�
1� ..�01/

1=4
C 2ı1=16/

jC j

jQ0j

�
� jQ0j.1� ..�

0
1/
1=4
C 2ı1=16/4ı�1=32/

� jQ1j.1� 10ı
1=32/;

where the last inequality uses the definition of �01. This shows

jS0\K2ŒB3;Q0�j � .1� 10ı
1=32/jB3jjQ0j:

Now let

Q01 D
˚
c 2Q1 W jNS1.c/\B3j � .1�

p
10 ı1=64/jB3j

	
and

Q00 D
˚
c 2Q0 W jNS0.c/\B3j � .1�

p
10 ı1=64/jB3j

	
:
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Since both
jS1\K2ŒB3;Q1�j � .1� 10ı

1=32/jQ1jjB3j and

jS0\K2ŒB3;Q0�j � .1� 10ı
1=32/jB3jjQ0j;

we have that jQ01j � .1�
p
10 ı1=64/jQ1j and jQ00j � .1�

p
10 ı1=64/jQ0j. Finally,

let
C � D fc 2 C W jNS1.c/�NS1.x

w
js/j � ı

1=16
jBjg:

Since a� 2 AC , jC �j � .1� ı1=16/jC j. Thus,

jQ01\C
�
j � .1�

p
10 ı1=64/jQ1j � ı

1=16
jC j

� .1�
p
10ı1=64/

ı1=32

4
� ı1=16jC j �

ı1=32jC j

10
:

Similarly,

jQ00\C
�
j � .1�

p
10ı1=64/jQ0j � ı

1=16
jC j

� .1�
p
10ı1=64/

ı1=32

4
� ı1=16jC j �

ı1=32jC j

10
:

Consequently, there are c1 2Q01\C
� and c0 2Q00\C

�. Since c0; c1 2 C �, we
can see that jNS1.c1/�NS1.c0/j � 2ı

1=16jBj. However, we also have that

jNS1.c1/\NS0.c0/\B3j � .1� 2
p
10 ı1=64/jB3j

� .1� 2
p
10 ı1=64/ı1=32

jBj

8
> 2ı1=16jBj:

But this is a contradiction, since NS1.c/\NS0.c0/\B3 �NS1.c1/�NS1.c0/. �

Let `1 D dı�4m4e. Suppose ViVj … ‰ and 1 � u � `ij is such that W u
ij is

nontrivial. Define Wu
ij D

S
P˛
ij
2W u

ij
P uij , let Guij be the bipartite graph .Vi[Vj ;Wu

ij /,
and define

�ij .u/D
jWu

ij j

jVi jjVj j
:

By Fact 2.23, Guij has dev2.`.�002.`//
1=4/ and

jWu
ij j D .1˙ `.�

00
2.`//

1=4/
jW u
ij jjVi jjVj j

`
:

Using the size estimate above and the fact that W u
ij is nontrivial, we have

�ij .u/D .1˙ `.�
00
2.`//

1=4/
jW u
ij j

`
� .1˙ `.�002.`//

1=4/
ı1=2

`
� 2`.�002.`//

1=4;

where the last inequality is by choice of �002.`/. Set pij .u/D �ij .u/�1=`1, and let
sij .u/D Œ1=pij .u/�. Observe that �ijpij D1=`1. Note .�002.`//

1=4�10.1=sjVi j/
1=5
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(since n is very large), and since W u
ij is nontrivial and `.�002.`//

1=4 < 1
4

,

�ij .u/� .1˙ `.�
00
2.`//

1=4/jW u
ij j=`� ı

1=2 .`=mij /

`
D ı1=2=mij �

ı1=2

m
:

Further, 0 < pij .u/ < �ij .u/=2 since

pij .u/� .1˙ `.�
00
2.`//

1=4/�1mı�1=2`�11 �mı
�1=2 ı

4

m4
�
ı3=2

m3
<
�ij .u/

2
;

where the last inequality uses that �ij .u/� ı1=2=m. Thus by Lemma 2.22, there is
a partition

Wu
ij DWu

ij .0/[ � � � [Wu
ij .sij .u//;

so that jWu
ij .0/j � �ijpij .1 C �

0
1/jVi jjVj j and for each 1 � x � sij .u/, the

bipartite graph Guij .x/ WD .Vi [Vj ;W
u
ij .x// has dev2.`.�002.`//

1=4; �ijpij /, i.e.,
dev2.`.�002.`//

1=4; 1=`1/. Since .�002.`//
1=4m < �2.`1/, and by definition of �002 ,

we have that for each 1� x � sij .u/, Guij .x/ has dev2.�2.`1/; 1=`/. Let

sij D
X

1�u�mij

sij .u/:

Give a reenumeration

fX1ij ; : : : ; X
sij
ij g D fW

u
ij .v/ W 1� v � sij .u/; 1� u�mij g:

Then let XsijC1ij ; : : : ; X
`1
ij be any partition of K2ŒVi ; Vj � n

Ssij
xD1X

x
ij .

For ViVj 2‰ choose a partition K2ŒVi ; Vj �DX1ij [ � � � [X
`1
ij such that for each

1� x � `1, X`1ij has dev2.�2.`1/; 1=`1/ (such a partition exists by Lemma 2.22).
Now define Q to be the decomposition of V with

Q1 D fVi W i 2 Œt �g and Q2 D
n
Xvij W v � `1; ij 2

� Œt �
2

�o
:

We claim this is a .t; `1; �1; �2.`1//-decomposition of V . Indeed, by construction,
any xy 2

�
V
2

�
which is not in an element of Q2 satisfying disc2.�2.`1/; 1=`1/ is in

the set
� WD

[
ViVj…‰

X
sijC1

ij [ � � � [X
`1
ij :

Observe that

j�j �
X

ViVj…‰

mijX
uD1

jWu
ij .0/jC

ˇ̌̌̌
K2ŒVi ; Vj � n

� [
P˛
ij
2Wij

P ˛ij

�ˇ̌̌̌
: (2)
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We have thatX
ViVj…‰

mijX
uD1

jWu
ij .0/j �

X
ViVj…‰

mij .1C �
0
1/�ijpij jVi jjVj j

�

� t
2

�
m.1C 2�01/

.n=t/2

`1

D ı4
� t
2

�
.1C 2�01/

.n=t/2

m3
� 2ı2

�
n
2

�
m3
;

where the last inequality is because n is large. Then, by definition of ı and m, this
shows that

P
ViVj…‰

Pmij
uD1 jW

u
ij .0/j � �1

�
n
2

�
=2. We also have thatX

ViVj…‰

ˇ̌̌̌
K2ŒVi ; Vj � n

� [
P˛
ij
2Wij

P ˛ij

�ˇ̌̌̌
�

X
ViVj…‰

�
jVi jjVj j � jWij j.1C �

0
2.`//

jVi jjVj j

`

�
D

X
ViVj…‰

jVi jjVj j

�
1� `ij .1C �

0
2.`//

1

`

�
�

X
ViVj…‰

jVi jjVj j
�
1� .1� 2.�01/

3=4/.1C �02.`//
�

�

X
ViVj…‰

jVi jjVj j.�
0
1/
1=8
� .�01/

1=8
�n
2

�
:

Combining these with (2) yields that j�j � �1
�
n
2

�
=2C .�01/

1=8
�
n
2

�
� �1

�
n
2

�
, and

therefore, Q is a .t; `; �1; �2.`//-decomposition of V .
We now show that Q is �1=6-homogeneous with respect toH . We show first that

for any W u
ijW

v
isW

w
js 2�3, Guvwijs WD .Vi [Vj [Vs;W

u
ij [Wv

is [Ww
js/ is 2ı1=100-

homogeneous with respect to H , and second that almost all xyz 2 K.2/3 .Guvw
ijs /

are in an �1=6-homogenous triad of Q.
Fix W u

ijW
v
isW

w
js 2�3. We know by Claim 3.2, that there is � 2 f0; 1g such that

jR� \K3ŒW
u
ij ; W

v
is; W

w
js �j � .1� ı

1=100/jK3ŒW
u
ij ; W

v
is; W

w
js �j:

This implies, by (1) and definition of R� , that the following holds, where E1 DE
and E0 D

�
V
3

�
nE1 (recall E DE.H/):

jE� \K
.2/
3 .Guvwijs /j

� .1� ı1=100/.1� �001/jK3ŒW
u
ij ; W

v
is; W

w
js �j.1� `

3�02.`//jVi jjVj jjVsj
1

`3

D .1� ı1=100/.1� �001/.1� `
3�02.`//

jW u
ij jjW

v
isjjW

w
js j

`3
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On the other hand, note that by (1),

jK
.2/
3 .Guvwijs /j D jW

u
ij jjW

v
isjjW

w
js j.1˙ `

3�02.`//
jVi jjVj jjVsj

`3
:

Combining this with the above, we see that

jE� \K
.2/
3 .Guvwijs /j

� .1� ı1=100/.1� �001/.1� `
3�02.`//.1C `

3�02.`//
�1
jK
.2/
3 .Guvwijs /j

� .1� 2ı1=100/jK
.2/
3 .Guvwijs /j;

where the last inequality is by definition of �02 and �001 . This shows Guvwijs is 2ı1=100-
homogeneous. We now show that almost all xyz 2 K.2/3 .Guvwijs / are in an �1=6-
homogeneous triad of Q. Set

†0.ijs; uvw/D f0; : : : ; sij .u/g � f0; : : : ; sis.v/g � f0; : : : ; sjs.w/g:

Given .x; y; z/ 2†0, set

Guvwijs .x; y; z/D .Vi [Vj [VsIW
u
ij .x/[Wv

is.y/[Ww
js.z//:

Note that K.2/3 .Guvwijs /D
S
.x;y;z/2†0.ijs;uvw/

K
.2/
3 .Guvwijs .x; y; z//. Define

†1.ijs; uvw/

D f.x;y;z/2f0; : : : ; sij.u/g�f0; : : : ; sis.v/g�f0; : : : ; sjs.w/g W x;y or z is 0g;

and set †2.ijs; uvw/D†0.ijs; uvw/ n†1.ijs; uvw/. Note that by construction,
for all .x; y; z/ 2†2.ijs; uvw/, Guvwijs .x; y; z/ 2 Triads.Q/. Observe thatX
.x;y;z/2†1.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

� jWu
ij .0/jjVsjC jW

v
is.0/jjVj jC jW

w
js.0/jjVi j

� .1C �01/jVi jjVj jjVsj.�ijpij C �ispisC �jspjs/

D 3.1C �01/jVi jjVj jjVsj
1

`1

� 3.1C �01/ı
4
jVi jjVj jjVsjm

�4

� 3.1C �01/ı
4
�
jW u
ij jjW

v
isjjW

w
js j

1

`3

��1
m�4jK

.2/
3 .Guvwijs /j

� 3.1C �01/ı
4
�
ı1=2

m

��3
m�4jK

.2/
3 .Guvwijs /j

D 3.1C �01/ı
1=2m�1jK

.2/
3 .Guvwijs /j

< ıjK
.2/
3 .Guvwijs /j;
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where the last inequality uses the definition of m. Let †3.ijs; uvw/ be the set of
.x; y; z/ 2†2.ijs; uvw/ such that

jE� \K
.2/
3 .Guvwijs .x; y; z//j< .1� ı

1=200/jK
.2/
3 .Guvwijs .x; y; z//j;

and set

†4.ijs; uvw/D†2.ijs; uvw/ n†3.ijs; uvw/:

By definition, and since ı1=200<�1=6, every triad of the formK
.2/
3 .Guvwijs .x; y; z//

for .x; y; z/ 2†4.ijs; uvw/ is in an �1=6-homogeneous triad of Q. We now show
that

S
.x;y;z/2†4.ijs;uvw/

K
.2/
3 .Guvwijs / is most of K.2/3 .Guvwijs /. Observe

jE� \K
.2/
3 .Guvwijs /j �

X
.x;y;z/2†1.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

C .1� ı1=200/
X

.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

C

X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

� ıjK
.2/
3 .Guvwijs /j

C .1� ı1=200/
X

.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

C

X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j:

Thus, since jE� \K.2/3 .Guvwijs /j � .1� 2ı
1=100/jK

.2/
3 .Guvwijs /j,

.1� 2ı1=100� ı/jK
.2/
3 .Guvwijs /j

� .1� ı1=200/
X

.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

C

X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

D

X
.x;y;z/2†2.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

� ı1=200
X

.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j:

Rearranging this inequality, we have the following upper bound for the sumP
.x;y;z/2†3.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j:
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ı�1=200
� X
.x;y;z/2†2.ijs;uvw/

jK
.2/
3 .Guvwijs .x;y;z//j�.1�2ı

1=100
�ı/jK

.2/
3 .Guvwijs /j

�
� ı�1=200jK

.2/
3 .Guvwijs /j3ı

1=100

� 3ı1=200jK
.2/
3 .Guvwijs /j:

Consequently,X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j � jK

.2/
3 .Guvwijs /j.1� 3ı

1=200/:

We have now established that
S
.x;y;z/2†4.ijs;uvw/

K
.2/
3 .Guvw

ijs / covers most
of K.2/3 .Guvwijs /, and for all .x; y; z/ 2 †4.ijs; uvw/, Guvw

ijs .x; y; z/ is an �1=6-
homogeneous triad of Q. For all .x; y; z/2†4.ijs; uvw/,W u

ij .x/;W
v
is.y/;W

w
js .z/

all have dev2.�2.`1/; 1=`1/, and thus, by Proposition 2.24, Guvw
ijs .x; y; z/ has

dev2;3.�1; �2.`1// with respect to H .
Using this and our lower bound on the size of Y3, we can now give the following

lower bound on the number of triples xyz 2
�
V
3

�
in a dev2;3.�2.`1/; �1/-regular

triad of P:X
W u
ij
W v
is
W w
js
2�3

X
.x;y;z/2†4.ijs;uvw/

jK
.2/
3 .Guvwijs .x; y; z//j

�

X
W u
ij
W v
is
W w
js
2�3

.1� 3ı1=200/jK
.2/
3 .Guvwijs /j

D .1� 3ı1=200/
X

W u
ij
W v
is
W w
js
2�3

jK
.2/
3 .Guvwijs /j

� .1� 3ı1=200/.1� 3ı1=2/
�n
3

�
� .1� �1/

�n
3

�
;

where the last inequality is by definition of ı. This finishes the proof. �

Appendix: Proof of Proposition 2.24

We will use the following fact:

Lemma A.1. For all ı; r; � 2 .0; 1� satisfying 212ı < �2r12, the following holds.
Suppose G D .V1[V2[V3; E/ is a 3-partite graph such that for each ij 2

�
Œ3�
2

�
,

jjVi j�jVj jj � ıjVi j andGŒVi ; Vj � has dev2.ı; r/. Given u0v0w0 2K
.2/
3 .G/, define

K2;2;2Œu0; v0; w0�

D
˚
u1v1w12K3ŒV1;V2;V3� W for each �2f0;1g3; .u�1 ;v�2 ;w�3/2K

.2/
3 .G/

	
:
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Then if J WD fuvw 2K.2/3 .G/ W jK2;2;2Œu0; v0; w0�j � .1C�/r
9jV1jjV2jjV3jg, we

have that jJ j � .1��/r3jV1jjV2jjV3j.

Proof. Let KG2;2;2ŒV1; V2; V3� be the set

f.u0; u1; w0; w1; z0; z1/ 2 V
2
1 �V

2
2 �V

3
3

W for each � 2 f0; 1g3; u�1w�2z�3 2R\K
.2/
3 .G/g:

By Theorem 3.5 in [11],

jK2;2;2ŒV1; V2; V3�j � r
12
jV1j

2
jV2j

2
jV3j

2
C 212ı1=4jV1j

2
jV2j

2
jV3j

2:

Suppose towards a contradiction that jJ j> .1��/r3jV1jjV2jjV3j. Then

jK2;2;2ŒV1; V2; V3�j � jJ j.1C�/r
9
jV1jjV2jjV3j> .1��

2/r12jV1j
2
jV2j

2
jV3j

2:

Combining with the above, this implies r12C212ı1=4>.1��2/r12, which implies
�2r12 < 212ı1=4, a contradiction. �

Proof of Proposition 2.24. Fix 0 < � < 1
2

, 0 < d2 < 1
2

, and 0 < ı � .d2=2/48, and
choose N sufficiently large.

Suppose H D .V1 [ V2 [ V3; R/ is a 3-partite 3-graph on n � N vertices and
for each i; j 2 Œ3�, jjVi j � jVj jj � ıjVi j. Suppose G D .V1 [ V2 [ V3; E/ is a 3-
partite graph, where for each 1� i < j � 3, GŒVi ; Vj � has dev2.ı; d2/, and assume
jR\K

.2/
3 .G/j � �jK

.2/
3 .G/j. Let d be such that jR\K.2/3 .G/j D d jK

.2/
3 .G/j.

By assumption d � �. Define g.x; y; z/ W
�
V
3

�
! Œ0; 1� by

g.x; y; z/D

8̂<̂
:
1� d if xyz 2R\K.2/3 .G/,
�d if xyz 2K.2/3 .G/ nR,
0 otherwise.

Given u0v0w0 2K
.2/
3 .G/, define

K2;2;2Œu0; v0; w0�D fu1v1w1 2K3ŒV1; V2; V3�

W for each .i; j; k/ 2 f0; 1g3; .ui ; vj ; wk/ 2K
.2/
3 .G/g:

Let �D d122 . Note that 212ı < .d2=2/36 < d362 D �
2d122 . Set

J WD
˚
uvw 2K

.2/
3 .G/ W jK2;2;2Œu0; v0; w0�j � .1C�/d

9
2 jV1jjV2jjV3j

	
:

By Lemma A.1, we have that jJ j � .1��/d32 jV1jjV2jjV3j. Now set

I1 D
˚
.u0; u1; w0; w1; z0; z1/ 2 V

2
1 �V

2
2 �V

3
3

W for each .i; j; k/ 2 f0; 1g3; uiwj zk 2R\K
.2/
3 .G/
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and let

I2 D f.u0; u1; w0; w1; z0; z1/ 2 .V
2
1 �V

2
2 �V

3
3 / n I1

W for each .i; j; k/ 2 f0; 1g3; uiwj zk 2K
.2/
3 .G/g:

ThenX
u0;u12V1

X
w0;w12V2

X
z0;z12V3

Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

�

ˇ̌̌̌ X
u0;u12V1

X
w0;w12V2

X
z0;z12V3

Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

ˇ̌̌̌

�

X
u0;u12V1

X
w0;w12V2

X
z0;z12V3

ˇ̌̌̌ Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

ˇ̌̌̌
D

X
.u0;u1;w0;w1;z0;z1/2I1

.1� d/9

C

X
.u0;u1;w0;w1;z0;z1/2I2

ˇ̌̌̌ Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

ˇ̌̌̌
:

For each .u0; u1; w0; w1; z0; z1/ 2 I2,ˇ̌̌̌ Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

ˇ̌̌̌
� d.1� d/8;

since at least one of the g.ui ; wj ; zk/ is equal to �d , and j � d j < j1� d j (since
d � � < 1

2
). Thus we have, by above, thatX

u0;u12V1

X
w0;w12V2

X
z0;z12V3

Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/� .1�d/
9
jI1jCd.1�d/

8
jI2j:

Note

jI1j �
X

u0w0z02J

jK2;2;2.u0; w0; z0/jC
X

u0w0z02RnJ

jK2;2;2.u0; w0; z0/j

� jJ j.1C�/d92 jV1jjV2jjV3jC jR nJ jjRj

� jRj.1C�/d92 jV1jjV2jjV3jC�d
3
2 jV1jjV2jjV3jd jK

.2/
3 .G/j

� d jK
.2/
3 .G/j.1C�/d92 jV1jjV2jjV3jC�d

3
2 jV1jjV2jjV3jd jK

.2/
3 .G/j

� jV1jjV2jjV3jjK
.2/
3 .G/j.d.1C�/d122 C dd

12
2 /;
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where the last inequality is by definition of �. By the counting lemma [11, Theo-
rem 3.5], jK.2/3 .G/j � .1C 23ı1=4/jV1jjV2jjV3j. Therefore, we have that

jI1j� jV1j
2
jV2j

2
jV3j

2.1C23ı1=4/.d.1C�/d122 Cdd
12
2 /�3dd

12
2 jV1j

2
jV2j

2
jV3j

2:

On the other hand, jI2j � jK2;2;2ŒV2; V2; V3�j, which, by [11, Theorem 3.5], has
size at most .d122 C 2

12ı1=4/jV1j
2jV2j

2jV3j
2. Combining the bounds above with

the fact that d � �, we have thatX
u0;u12V1

X
w0;w12V2

X
z0;z12V3

Y
.i;j;k/2f0;1g3

g.ui ; wj ; zk/

� .1� d/9jI1jC d.1� d/
8
jI2j

� jV1j
2
jV2j

2
jV3j

2.3�d122 C �.d
12
2 C 2

12ı1=4//

� 6�d122 jV1j
2
jV2j

2
jV3j

2;

where the last inequality is due to ı < .d2=2/
48. This shows that .H;G/ has

dev2;3.ı; 6�/, as required. �
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