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Suppose that K is an infinite field which is large (in the sense of Pop) and whose
first-order theory is simple. We show that K is bounded, namely has only finitely
many separable extensions of any given finite degree. We also show that any
genus 0 curve over K has a K-point and if K is additionally perfect then K has
trivial Brauer group. These results give evidence towards the conjecture that
large simple fields are bounded PAC. Combining our results with a theorem of
Lubotzky and van den Dries we show that there is a bounded PAC field L with the
same absolute Galois group as K . In the appendix we show that if K is large and
NSOP∞ and v is a nontrivial valuation on K then (K , v) has separably closed
Henselization, so in particular the residue field of (K , v) is algebraically closed
and the value group is divisible. The appendix also shows that formally real and
formally p-adic fields are SOP∞ (without assuming largeness).

1. Introduction

Throughout K is a field. Large fields were introduced by Pop [1996], one defi-
nition being that K is large if any algebraic curve defined over K with a smooth
(nonsingular) K-point has infinitely many K-points. Finite fields, number fields,
and function fields are not large. Local fields, Henselian fields, quotient fields of
Henselian domains, real closed fields, separably closed fields, pseudofinite fields,
infinite algebraic extensions of finite fields, and fields which satisfy a local-global
principle (in particular pseudo-real closed and pseudo-p-adically closed fields)
are all large. All infinite fields whose first-order theory is known to be “tame” or
well-behaved in various senses are large. Let K sep be a separable closure of K . We
say that K is bounded if for any n there are only finitely many degree n extensions
of K in K sep, or equivalently if the absolute Galois group Aut(K sep/K ) of K has
only finitely many open subgroups of any given finite index. When K is also perfect,
this is also called Serre’s property (F). (Other authors use “bounded” to mean that
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K has only finitely many extensions of each degree.) Koenigsmann has conjectured
that bounded fields are large [Junker and Koenigsmann 2010, p. 496].

Recall that K is pseudoalgebraically closed (PAC) if any geometrically integral
K-variety V has a K-point (and hence the set V (K ) of K-points is Zariski dense
in V ). We mention in passing that a PAC field need not be perfect; if p = Char(K ),
and a ∈ K is not a p-th power, then Spec K [x]/(x p

−a) is not geometrically integral
[Poonen 2017, Example 2.2.9]. PAC fields are large, by definition. PAC fields were
introduced by Ax [1968], who showed that pseudofinite fields are bounded PAC.
Infinite algebraic extensions of finite fields are also bounded PAC [Fried and Jarden
2005, Corollary 11.2.4]. In either case PAC follows from the Hasse–Weil estimates.

On the model-theoretic side, we have various “tame” classes of first-order
theories T , the most “perfect” being stable theories, and some others being simple
theories and NIP theories. It is a well-known theorem of Shelah that a theory is
stable if and only if it is both simple and NIP. Good examples come from theories
of fields. We say that a first-order structure, in particular a field, is stable (simple,
NIP) if its theory is stable (simple, NIP). In general we consider fields as structures
in a language expanding the language of rings, although in the following sentence
they are considered in precisely the language of rings. Separably closed fields
are stable and bounded PAC fields are simple. There is a considerable amount of
work on NIP fields, which include real closed and p-adically closed fields, but this
does not concern us in the present paper. We now recall two longstanding open
conjectures.

Conjecture 1.1. (1) Infinite stable fields are separably closed.

(2) Infinite simple fields are bounded PAC.

Our general idea is that Conjecture 1.1 is both true and tractable after making
the additional assumption of largeness. It is shown in [Johnson et al. 2020] that a
large stable field is separably closed. We describe another proof of this result in
Section 4A. Here we consider (2), and prove:

Theorem 1.2. Suppose that K is large and simple. Then there is a bounded PAC
field L of the same characteristic as K such that the absolute Galois group of L is
isomorphic (as a topological group) to the absolute Galois group of K .

Note that Theorem 1.2 implies that K is bounded. We prove this separately.

Theorem 1.3. If K is large and simple then K is bounded.

The assumption that K is simple can be replaced by the more general assumption
that the field K is definable in some model M of a simple theory. If we also require
M to be highly saturated we can take K to be type-definable (over a small set of
parameters) in M . The latter will follow from our proofs and references and we
will not talk about it again. Theorem 1.3 generalizes the theorem of Chatzidakis
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that a simple PAC field is bounded, which is proven via quite different methods in
[Chatzidakis 1999]. Poizat [1983] proved that an infinite stable bounded field is
separably closed. Combining Poizat’s result with Theorem 1.3 we get the above
mentioned result of [Johnson et al. 2020] that large stable fields are separably
closed.

Theorem 1.3 is reasonably sharp. The restriction to separable extensions is neces-
sary. If K is separably closed of infinite imperfection degree and Char(K )= p > 0
then K is large, stable, and has infinitely many extensions of degree p. There is
an emerging body of work on a generalization of simplicity known as NSOP1. All
known NSOP1 fields are PAC. Theorem 1.3 fails over NSOP1 fields as there are
unbounded PAC NSOP1 fields (equivalently, there are PAC fields that are NSOP1

but not simple). For example if K is characteristic zero, PAC, and the absolute
Galois group of K is a free profinite group on ℵ0 generators then K is unbounded
and NSOP1 [Chernikov and Ramsey 2016, Corollary 6.2].

A profinite group G is projective if any continuous surjective homomorphism
H → G with H profinite has a section. Ax [1968] showed that the absolute Galois
group of a perfect PAC field is projective, and Jarden [1972, Lemma 2.1] proved
this for nonperfect PAC fields.

Theorem 1.4. If K is large and simple then the absolute Galois group of K is
projective.

Theorem 1.2 follows from Theorem 1.3, Theorem 1.4, and the theorem of
Lubotzky and van den Dries that for any field K and projective profinite group G
there is a PAC field extension L of K such that the absolute Galois group of L is
isomorphic to G (see [Fried and Jarden 2005, Corollary 23.1.2]). An earlier version
of this paper proved Theorem 1.4 under the additional assumption that K is perfect.
Philip Dittmann showed us how to remove this assumption.

Theorem 1.5. Suppose that K is perfect, large, and simple. Then the Brauer group
of K is trivial. It follows that

(1) any finite-dimensional division algebra over K is a field, and

(2) any Severi–Brauer K-variety V has a K-point.

We recall the definition of Severi–Brauer variety. Let K alg be an algebraic closure
of K . Given a K-variety V we let VK alg be the base change V ×K Spec K alg of
V to a K alg-variety. A Severi–Brauer variety is a K-variety V such that VK alg is
isomorphic (over K alg) to dim V -dimensional projective space. A Severi–Brauer
variety is geometrically integral, so (2) is a modest step towards the conjecture
that large simple fields are PAC. Theorem 1.5 was proven for supersimple fields
in [Pillay et al. 1998]; our proof closely follows that in [Pillay et al. 1998], so we
do not recall the definition of the Brauer group. (Supersimple fields are perfect,
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but large simple fields need not be perfect.) Items (1) and (2) of Theorem 1.5 are
well-known consequences of triviality of the Brauer group. We refer to [Poonen
2017, Sections 1.5 and 4.5.1] for the definition of the Brauer group and these facts.

Suppose Char(K ) ̸= 2, then we say that a conic over K is a smooth irreducible
projective K-curve of genus 0. One-dimensional Severi–Brauer varieties are exactly
conics [Poonen 2017, Example 4.5.8]. Thus Theorem 1.6 generalizes the one-
dimensional case of Theorem 1.5.2 to imperfect fields.

Theorem 1.6. Suppose that K is large and simple, Char(K ) ̸= 2, and C is a conic
over K . Then C has a K-point, hence (by largeness) C(K ) is infinite.

Let us mention some other earlier work around the conjectures on stable and
simple fields described above. One of the first results on deducing algebraic results
from model-theoretic hypotheses was Macintyre’s theorem [1971] that infinite fields
with ω-stable theory are algebraically closed (generalized to superstable fields in
[Cherlin and Shelah 1980]). Macintyre’s Galois-theoretic method has been used in
many later works including the result on large stable fields [Johnson et al. 2020]
mentioned above. Supersimple theories are simple theories in which there are
not infinite forking chains of types, whereby any complete type has an ordinal
valued dimension called the SU-rank. This gives a so-called “surgical dimension”
as in [Pillay and Poizat 1995] from which one deduces that an infinite field with
supersimple theory is perfect and bounded. So insofar as Conjecture 1.1(2) is
restricted to supersimple theories, it remained to prove that supersimple theories are
PAC, and some partial results were obtained in [Pillay et al. 1998; Martin-Pizarro
and Pillay 2004] for example. A theme of the current paper is that, other than
perfection of K , any results on supersimple fields also hold over large simple fields.

The conclusions of Theorems 1.4, 1.5, and 1.6 are properties of PAC fields.
Another well-known consequence of a field K being PAC is that the Henselization
of any nontrivial valuation on K is separably closed; see [Fried and Jarden 2005,
Corollary 11.5.9]. In an earlier draft of this paper we showed that any nontrivial
valuation on a large simple field has separably closed Henselization. Dittmann
generalized this to Theorem 1.7, which is proven in the Appendix.

Theorem 1.7. Suppose that K is large and NSOP∞. Then any nontrivial valuation
on K has separably closed Henselization. In particular, any nontrivial valuation
on K has algebraically closed residue field and divisible value group.

NSOP∞ is a weakening of simplicity; see the Appendix for a definition and
some discussion. NSOP1 implies NSOP∞ and essentially every known theory
without the strict order property is NSOP∞. It is natural to ask if Theorem 1.7
holds without the assumption of largeness. In the Appendix we give the following
partial generalization.
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Theorem 1.8. If K admits a p-valuation then K is SOP∞. In particular if K is a
subfield of a finite extension of Qp then K is SOP∞.

See Section A2 for the definition of a p-valuation. The proof of Theorem 1.8
uses diophantine work of Anscombe, Dittmann, and Fehm [Anscombe et al. 2020]
in place of largeness. The results of [Anscombe et al. 2020] are p-adic analogues
of classical results on sums of squares. In Section A2 we give a similar argument
using Lagrange’s four-square theorem to show that a formally real field is SOP∞.
If K admits a valuation with formally real residue field then K is formally real
[Bochnak et al. 1998, Corollary 10.1.9]. Thus if K admits a valuation with formally
real residue field then K is SOP∞.

2. Large fields and definability

2A. Algebraic conventions. We let K ∗ be the set of nonzero elements of K and
Char(K ) be the characteristic of K . A K-variety is a separated, reduced K-scheme
of finite type. We let dim V be the usual algebraic dimension and V (K ) be the set of
K-points of a K-variety V . We let An be n-dimensional affine space over K (recall
that An(K )= K n). We often assume irreducibility of the relevant K-varieties. A
K-curve is a one-dimensional K-variety. A morphism is a morphism of K-varieties.

2B. Largeness. Large fields were introduced by Florian Pop. A survey appears
in [Pop 2014], which starts by saying that large fields are fields over which (or in
which) one can do a lot of “interesting mathematics”. So largeness looks like a
field-arithmetic tameness notion. The field K is large if every irreducible K-curve
with a smooth (also called nonsingular) K-point has infinitely many K-points.

Fact 2.1 [Pop 1996]. The following are equivalent:

(1) K is large.

(2) K is existentially closed in K ((t)).

(3) If an irreducible K-variety V has a smooth K-point then V (K ) is Zariski dense
in V .

Fact 2.2 [Pop 2014, Proposition 2.7]. An algebraic extension of a large field is
large.

Fact 2.3 allows us to pass to elementary extensions.

Fact 2.3 [Pop 2014, Proposition 2.1]. Large fields form an elementary class.

2C. Existentially étale sets. Let W be a K-variety. The authors of [Johnson et al.
2020] introduced the étale open topology on W (K ). If K is not large then the étale
open topology is always discrete and if K is large then the étale open topology on
W (K ) is nondiscrete whenever W (K ) is infinite. Our original proofs were given
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in terms of this topology, but at present we mostly avoid the topology and give
proofs from scratch. We use properties of certain special existentially definable
subsets of W (K ). A subset X of W (K ) is an EE set if there is a K-variety V and
an étale morphism f : V → W such that X = f (V (K )). It is shown in [Johnson
et al. 2020] that the EE subsets of W (K ) form a basis for the étale open topology.
(In [Johnson et al. 2020] EE sets are referred to as “étale images”.)

If W is smooth and V → W is an étale morphism then V is also smooth. At
present we are mainly concerned with subsets of K n

= An(K ), so we may restrict
attention to smooth K-varieties. We quickly recall what we need from this setting.
Let V,W be smooth irreducible K-varieties. An étale morphism f : V → W is
a morphism such that the differential d fa is an isomorphism T Va → T W f (a) for
all a ∈ V . In particular if f : An

→ An is a morphism then f is étale at a ∈ K n if and
only if the Jacobian of f at a is invertible. The general notion of an étale morphism
between not necessarily smooth varieties is more complicated but is not needed here.

Fact 2.4 [EGA IV4 1967, Proposition 17.1.3]. Suppose W1,W2, V are smooth K-
varieties and fi : Wi → V is an étale morphism for i ∈ {1, 2}. Let W be the fiber
product W1 ×V W2 and f : W → V be the canonical map. Then W is a smooth
K-variety and f is étale.

We have (W1 ×V W2)(K ) = {(a1, a2) ∈ W1(K )× W2(K ) : f1(a1) = f2(a2)},
from which it easily follows that the image of (W1 ×V W2)(K ) under f agrees with
f1(W1(K ))∩ f2(W2(K )). Corollary 2.5 follows.

Corollary 2.5. Suppose that W is a smooth K-variety. Then the collection of EE
subsets of W (K ) is closed under finite intersections.

Corollary 2.5 holds for an arbitrary K-variety, but we do not need this.

Lemma 2.6. Suppose that K is large, W is a smooth irreducible K-variety, and X
is a nonempty EE subset of W (K ). Then X is Zariski-dense in W . In particular any
nonempty EE subset of K n is Zariski dense in K n .

The identity morphism W → W is étale, so Lemma 2.6 generalizes the fact that
if K is large and W is a smooth irreducible K-variety with W (K ) ̸= ∅ then W (K )
is Zariski dense in W .

Proof. Let V be a K-variety and f : V → W be an étale morphism such that
X = f (V (K )). Suppose that X is not Zariski dense in V . Then X is contained in
a proper closed subvariety Y of W . As W is irreducible we have dim Y < dim W .
Note that f −1(Y ) is a closed subvariety of V containing V (K ). As f is étale it
is finite-to-one, hence dim V = dim W and dim f −1(Y ) = dim Y < dim W . So
f −1(Y ) is a proper closed subvariety of V containing V (K ). This contradicts
Fact 2.1. □

Corollary 2.7 follows from Corollary 2.5 and Lemma 2.6.
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Corollary 2.7. Suppose that K is large. Let W be a smooth irreducible K-variety
and X1, . . . , Xn be EE subsets of W (K )with

⋂k
i=1 X i ̸=∅. Then

⋂k
i=1 X i is Zariski

dense in W . In particular, if X1, . . . , Xk are EE subsets of K n with
⋂k

i=1 X i ̸= ∅
then

⋂k
i=1 X i is Zariski dense in K n .

Fact 2.8 is proven in [Johnson et al. 2020] for arbitrary K-varieties.

Fact 2.8. Let W be a smooth K-variety, g : W → W be a K-variety isomorphism,
and X be an EE subset of W (K ). Then g(X) is also an EE subset of W (K ).

Proof. Let V be a smooth K-variety and f : V → W be an étale morphism such
that X = f (V (K )). Note that g is étale as any K-variety isomorphism is étale. So
g ◦ f : V → W is étale as a composition of étale morphisms is étale. □

We will apply Corollary 2.9 below.

Corollary 2.9. Suppose that X is an EE subset of K n , a = (a1, . . . , an) ∈ K n , and
b = (b1, . . . , bn) ∈ (K ∗)n . Then

X + a = {(c1 + a1, . . . , cn + an) : (c1, . . . , cn) ∈ X},

bX = {(b1c1, . . . , bncn) : (c1, . . . , cn) ∈ X}

are EE subsets of K n .

Proof. The morphisms An
→ An given by (x1, . . . , xn) 7→ (x1 + a1, . . . , xn + an)

and also by (x1, . . . , xn) 7→ (b1x1, . . . , bnxn) are K-variety isomorphisms. Apply
Fact 2.8. □

3. Fields with simple theory

We recall some basic results about fields K whose first-order theory is simple, and
then make an additional observation under the assumption of largeness. For simple
theories see [Kim and Pillay 1997; Casanovas 2011], and for groups definable in
(models of) simple theories, see in addition [Pillay 1998; Pillay et al. 1998]. We
recall the relevant portions of this theory.

3A. Conventions and basic definitions. Our model-theoretic notation is standard.
We let L be a first-order language, T be a complete consistent L-theory, and M
be a highly saturated model of T . For now, x, y, z, . . . range over finite tuples of
variables, a, b, c, . . . range over finite tuples of parameters from M , and A, B,C, . . .
range over small subsets of M . “Definable” means “definable in M , possibly with
parameters”. We sometimes identify definable sets with the formulas defining them.

Given an L-formula ϕ(x, y) and a suitable tuple b we say that ϕ(x, b) divides
over a set A of parameters if {ϕ(x, bi ) : i < ω} is inconsistent for some infinite
A-indiscernible sequence (bi : i <ω) with b0 = b. A partial type 6(x) divides over
A if some formula in 6 divides over A. The theory T is simple if for any small



364 ANAND PILLAY AND ERIK WALSBERG

set A of parameters and complete type 6(x) there is A0 ⊆ A such that |A0| ≤ |T |

and 6(x) does not divide over A0. Simplicity may also be defined in terms of the
combinatorial tree property, but we do not need this. It is worth mentioning that
simplicity is incompatible with the existence of a definable partial ordering which
contains an infinite chain. It follows that real closed fields and nonseparably closed
Henselian fields are not simple. Nondividing yields a good notion of independence
in simple theories: a is independent from B over A if tp(a/B, A) does not divide
over A.

3B. Generics in definable groups. In this section we summarize [Pillay 1998,
Section 3], although we introduce things in a different order and use somewhat
different terminology. Suppose that T is simple and G is an infinite group definable
over ∅ in M . A definable subset X of G is (left) f -generic if every left translate
gX of X does not divide over ∅ and a complete type 6(x) concentrated on G is
(left) f -generic if every formula in 6(x) is left f -generic. Note that if a definable
X ⊆ G is f -generic then aX is f -generic for any a ∈ G. Note that in [Pillay 1998]
“generic” is used for “ f -generic”. (The language was changed after some more
recent work on groups definable in NIP theories.)

Fact 3.1. Suppose that T is simple, G is an ∅-definable group in M , A, B are small
sets of parameters, and a ∈ G.

(1) Left f -genericity is equivalent to right f -genericity (so we just say f -generic).

(2) If X ⊆ G is f -generic then X is f -generic in any expansion of M by constants.

(3) tp(a/A) is f -generic if whenever b ∈ G is independent from a over A then the
product ba is independent of A ∪ {b} over ∅.

(4) If A ⊆ B and a is independent from B over A, then tp(a/B) is f -generic if
and only if tp(a/A) is f -generic.

(5) If b ∈ B then tp(a/A, b) is f -generic if and only if tp(ba/A, b) is f -generic.

(6) An A-definable subset X of G is f -generic if and only if it is contained in an
f -generic complete type over A.

Fact 3.2 is immediate from the definitions and Fact 3.1.

Fact 3.2. If X is a definable subset of G which is not f -generic then we have⋂k
i=1 gi X = ∅ for some g1, . . . , gk ∈ G.

Lemma 3.3. Suppose that T is simple, M is a model of T , G is an ∅-definable
group in M , H is a subgroup of G with |G/H | ≥ ℵ0, and X is a definable subset of
G such that X ⊆ aH for some a ∈ G. Then X is not f -generic. In particular, an
infinite index definable subgroup of G is not f -generic.
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Proof. Let (gi : i < ω) be a sequence of elements of G which lie in distinct cosets
of H . So gi X ∩g j X =∅ when i ̸= j . After passing to a highly saturated elementary
extension and applying Ramsey and saturation we obtain a sequence (hi : i <ω) of
elements of G which is indiscernible over the defining parameters of X and satisfies
hi X ∩ h j X = ∅ when i ̸= j . So X is not f -generic. □

Lemma 3.4. Suppose that T is simple, X is a definable subset of G, ≈ is a definable
equivalence relation on X , and each ≈-class is f -generic. Then there are only
finitely many ≈-classes.

Proof. Suppose towards a contradiction that there are infinitely many ≈-classes.
Let c be a finite tuple of parameters over which X and ≈ are definable. Then there
is an ≈-class D with canonical parameter d such that d /∈ acl(c). Let ϕ(x, d, c)
be a formula defining D and (di : i < ω) be an infinite sequence of realizations of
tp(d/c) which is indiscernible over c and satisfies d0 = d . Then ((c, di ) : i < ω) is
indiscernible, and the formulas ϕ(x, di , c) are pairwise inconsistent, so ϕ(x, d, c)
divides over ∅. This contradicts that ϕ(x, d, c) defines the set D which is an
f -generic subset of K n . □

We now prove Lemma 3.5, which we could not find in the literature.

Lemma 3.5. Suppose T is simple and G, H are ∅-definable groups in M. Fix a
small set A of parameters and (a, b) ∈ G × H. Then tp((a, b)/A) is f -generic in
G × H if and only if the following conditions hold:

(1) tp(a/A) is an f -generic type of G,

(2) tp(b/A) is an f -generic type of H ,

(3) and a is independent from b over A.

Proof. The definitions and “forking calculus” easily show that (1), (2), and (3)
together imply that tp((a, b)/A) is f -generic in G × H . The difficulty lies in
showing that all f -generic types of G × H are of this form. We suppose that
tp((a, b)/A) is f -generic in G×H . It follows directly that tp(a/A) and tp(b/A) are
f -generic types of G and H , respectively. It remains to prove that a is independent
from b over A. Suppose that (c, d) ∈ G × H , tp(c/A), tp(d/A) are f -generic in
G, H , respectively, and (c, d) is independent from (a, b) over A. By Fact 3.1 ca is
independent from db over ∅. As tp((a, b)/A) is f -generic in G × H , and (a, b) is
independent from (c, d) over A, we see that (ca, db) is independent from A, c, d
over ∅. It follows that a is independent from b over A, c, d, and then that a is
independent from b over A. □

3C. Generics in definable fields. Now suppose K is an infinite field definable
(say over ∅) in M |H T . Everything we say remains true for K a type-definable
field in M . We have two attached groups, the additive group (K ,+) and the
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multiplicative group (K ∗,×) (recall that K ∗
= K \ {0}). A definable X ⊆ K is

additively f -generic if it is f -generic in (K ,+) and is multiplicatively f -generic
if X ∩ K ∗ is an f -generic in (K ∗,×), and we make the analogous definitions for
a type concentrated on K . The first two claims of Fact 3.6 are from [Pillay et al.
1998, Proposition 3.1]. Uniqueness of f -generic types in stable fields is [Poizat
2001, Theorem 5.10].

Fact 3.6. Suppose that T is simple. Let X be a definable subset of K , A be a
small set of parameters, and p = tp(a/A) for some a ∈ K . Then the following are
equivalent:

(1) X is an additive f -generic.

(2) X is a multiplicative f -generic.

Furthermore the following are equivalent:

(1) p is an additive f -generic

(2) p is a multiplicative f -generic.

If T is stable then there is a unique additive f -generic type over K .

We let Dn be the group ((K ∗)n,×). Corollary 3.7 is a higher-dimensional version
of Fact 3.6. The first claim of Corollary 3.7 follows from Fact 3.6, Lemma 3.5, and
induction on n. The second claim follows from the first claim and Fact 3.1.5.

Corollary 3.7. Suppose that T is simple, A is a small set of parameters, a =

(a1, . . . , an) ∈ K n , and p(x)= tp(a/A). Then p is an f -generic type of (K n,+)

if and only if p is an f -generic type of Dn . So if X ⊆ K n is definable, then X is
f -generic in (K n,+) if and only if X ∩ Dn is f -generic in Dn .

Proposition 3.8 is our main tool when dealing with large simple fields.

Proposition 3.8. Suppose that T is simple and K is large. Let X be a definable
subset of K n which contains a nonempty EE subset. Then X is f -generic for
(K n,+), and is hence f -generic for Dn .

Thus if T is simple and large then any definable subset of K n with nonempty
interior in the étale open topology is f -generic. If K is perfect, bounded PAC then
a definable subset of K n is f -generic if and only if it has nonempty interior in the
étale open topology [Walsberg and Ye 2023].

Proof. Suppose towards a contradiction that X is not f -generic for (K n,+). By
Corollary 3.7, X ∩ Dn is not f -generic for Dn . We may suppose that X contains
0 = (0, . . . , 0) as both EE subsets and f -generic subsets of K n are closed under
additive translation (by Corollary 2.9 and definitions). Let X ′

= X ∩ Dn . By
Corollary 3.7, X ′ is not f -generic in Dn . By Fact 3.2 there are g1, . . . , gk ∈ Dn such
that

⋂k
i=1 gi X ′

=∅. Then
⋂k

i=1 gi X is nonempty, as it contains 0, but is contained
in K n

\ Dn and is hence not Zariski dense in K n . This contradicts Corollary 2.7. □



GALOIS GROUPS OF LARGE SIMPLE FIELDS 367

Fact 3.9 will be crucial for Theorem 1.5. It is proven in [Pillay et al. 1998].

Fact 3.9. Suppose that T is simple. Let H be a finite index definable subgroup
of (K ∗,×) and H1, H2 be cosets of H. Then H1 + H2 contains K ∗, namely every
nonzero element of K is of the form a + b, where a ∈ H1 and b ∈ H2.

4. Proof of Theorem 1.3

This section is the proof of Theorem 1.3. Our proof follows the strategy of the
“Remarque” at the end of [Pillay and Poizat 1995] which outlines another proof,
suggested by Chatzidakis, of the main result of that paper (that fields equipped with
a certain “surgical dimension” are bounded). Remember that when we say that K
is bounded we mean that for every n, K has only finitely many extensions of any
given degree inside K sep. We first make a few reductions. Fact 4.1 is well-known,
but we include a proof for the sake of completeness.

Fact 4.1. The following are equivalent:

(1) K is bounded.

(2) For any n there are only finitely many degree n separable extensions of K up
to K-algebra isomorphism.

Proof. By the primitive element theorem a degree n separable extension L of K is
of the form L = K (α), where α is a root of a separable irreducible monic degree n
polynomial p(x) ∈ K [x]. So L has at most n distinct conjugates over K in K sep;
the fact easily follows. □

We set some notation. Given a = (a0, . . . , an−1) ∈ K n we let pa(x) denote the
polynomial xn

+an−1xn−1
+· · ·+a1x +a0. We let U be the set of a ∈ K n such that

pa is separable and irreducible in K [x]. Note that U is definable. Given p ∈ K [x]

we let (p) be the ideal in K [x] generated by p. For each a ∈ U the field extension
K (α) generated over K by a root α of pa is isomorphic to K [x]/(pa). For a, b ∈ U ,
we write a ≈ b if K [x]/(pa) is isomorphic over K to K [x]/(pb). So K has finitely
many separable extensions of degree n if and only if there are only finitely many
≈-classes.

Remark 4.2. The equivalence relation ≈ on U is definable in K .

Proof. The field K [x]/(pa) is uniformly interpretable in K (as a varies), as an
n-dimensional vector space over K (with basis 1, α, . . . , αn−1 for α a root of pa(x)
and the appropriate multiplication). Now note that if a, b ∈ U then a ≈ b if and
only if pb has a root in K [x]/(pa). □

Next we have the main result needed to obtain Theorem 1.3:

Theorem 4.3. Suppose that a ∈ U and let D be the ≈-class of a. Then there is an
EE subset X of K n such that a ∈ X ⊆ D.
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Equivalently: every ≈-class is étale open.

Proof of Theorem 4.3. Fix a ∈ U , and let α ∈ K sep be a root of pa(x). Let
x = (x0, . . . , xn−1) and β(x)= x0 +αx1 +· · ·+ xn−1α

n−1. Let α = α1, . . . , αn be
the K-conjugates of α, namely the roots of pa(x) (which are distinct). We write
βi (x) for x0 + x1αi + · · · + xn−1α

n−1
i . So, for b ∈ K n , β1(b), . . . , βn(b) are the

K-conjugates of β(b).
Let V be the set of b = (b0, b1, . . . , bn−1) ∈ K n such that K (β(b)) = K (α).

Note that b ∈ V if and only if β(b) is a root of pc(x) for some (in fact unique)
c ∈ U such that c ≈ a. Note further that b ∈ V if and only if 1, β(b), . . . , β(b)n−1

are linearly independent over K , hence V is a Zariski open subset of K n .
Let e1, . . . , en ∈ Z[x] be the elementary symmetric polynomials in n variables,

i.e.,
ek(x)=

∑
1≤i1<i2<···<ik≤n

xi1 · · · xik .

Given b = (b0, . . . , bn−1) ∈ K n we let

G(b)=
(
−e1(β1(b), . . . , βn(b)), e2(β1(b), . . . , βn(b)),

. . . , (−1)nen(β1(b), . . . , βn(b))
)
.

Claim 4.4. There are G1, . . . ,Gn ∈ K [x] such that G(b) = (G1(b), . . . ,Gn(b))
for all b ∈ K n , and if b ∈ V then G(b)≈ a.

The first claim of Claim 4.4 follows as G is symmetric in α1, . . . , αn . The
second claim follows as pG(b) is the monic polynomial with roots β1(b), . . . , βn(b).
Claim 4.5 below is crucial.

Claim 4.5. G(0, 1, 0, . . . , 0) = a and the Jacobian of G at (0, 1, 0, . . . , 0) is
invertible.

Given a polynomial function f : K n
→ K n we let Jac f (a) be the Jacobian of f

and |Jac f (a)| be the Jacobian determinant of f at a ∈ K n .

Proof. It is clear that G(0, 1, 0, . . . , 0)= a and (0, 1, 0, . . . , 0) ∈ V . Let L = K (α).
To show that the Jacobian of G at (0, 1, 0, . . . , 0) is invertible we first produce
maps D, E, F : Ln

→ Ln such that G agrees with the restriction of D ◦ E ◦ F to V .
We define F : Ln

→ Ln by

F(b0, . . . , bn−1)= (b0 +b1α1 +· · ·+bn−1α
n−1
1 , . . . , b0 +b1αn +· · ·+bn−1α

n−1
n ).

E : Ln
→ Ln is given by

E(b)= (e1(b), . . . , en(b)),

and D : Ln
→ Ln is given by

D(b0, . . . , bn−1)= (−b0, b1,−b2, . . . , (−1)nbn−1).
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So if b ∈ V then G(b)= (D ◦ E ◦ F)(b). Note that F and D are linear, so JacF and
JacD are constant. Applying the chain rule we have

JacG(0, 1, 0, . . . , 0)= JacD JacE(F(0, 1, 0, . . . , 0)) JacF

= JacD JacE(α1, . . . , αn) JacF .

It is clear that |JacD| ∈ {−1, 1}. Furthermore, JacF is a Vandermonde matrix
1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2

1 α3 α2
3 · · · αn−1

3
...
...

... · · ·
...

1 αn α2
n · · · αn−1

n

 .

So JacF is invertible as α1, . . . , αn are distinct. Finally, by [Lascoux and Pragacz
2002],

|JacE(α1, . . . , αn)| =

∏
1≤i< j≤n

(αi −α j ).

This is nonzero as the αi are distinct, so JacE(α1, . . . , αn) is invertible. □

We now deduce Theorem 4.3. Let O be the open subvariety of An given by
|JacG(x)| ̸= 0. So G gives an étale morphism O → An . Then O(K )∩V is a Zariski
open subset of K n , which is nonempty by Claim 4.4. Let W be an open subvariety
of An such that W (K )= O(K )∩V . The restriction of G to W is an étale morphism
W → An . Let X = G(W (K )). So X is a nonempty EE subset of K n contained in
the ≈-class of a. As a was an arbitrary member of U , this concludes the proof of
Theorem 4.3. □

Finally we can complete the proof of Theorem 1.3.

Proof. Let T be a simple theory, M be a model of T , and K be an infinite field
definable in M . As remarked at the beginning of this section, it suffices to fix n and
show that K has only finitely many separable extensions of degree n, and thus that
the definable equivalence relation ≈ on the definable set U ⊂ K n has only finitely
many classes. After possibly passing to an elementary extension we may suppose
that M is highly saturated. By Theorem 4.3 and Proposition 3.8, every ≈-class is
f -generic for (K n,+). By Lemma 3.4 there are only finitely many ≈-classes. □

4A. Another proof that large stable fields are separably closed. We give a proof
that large stable fields are separably closed that avoids Macintyre’s Galois-theoretic
argument. We first prove Lemma 4.6. We continue to use the notation of the
previous section.
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Lemma 4.6. Let Y be the set of a ∈ K n such that pa has n distinct roots in K . Then
Y is an EE subset of K n .

Proof. Let V be the open subvariety of An given by xi ̸= x j for all 1 ≤ i < j ≤ n.
Let H : K n

→ K n be given by H(b) = (−e1(b), e2(b), . . . , (−1)nen(b)). So
pH(a) is the polynomial with roots a1, . . . , an for any a = (a1, . . . , an) ∈ V (K ). It
follows from [Lascoux and Pragacz 2002] that |JacH (a)| agrees up to sign with∏

1≤i< j≤n(ai − a j ) for any a = (a1, . . . , an) ∈ K n . So JacH (a) is invertible for
all a ∈ V (K ). Thus H(V (K )) is an EE subset of K n . □

We now show that a large stable field is separably closed.

Proof. Suppose that K is large and not separably closed. Fact 3.6 and Lemma 3.5
together show that if K is stable then for each n ≥ 1 there is a unique n-ary type
over K which is generic for (K n,+). It follows by Proposition 3.8 that if K is
stable then any two nonempty EE subsets of K n have nonempty intersection. As K
is not separably closed there is a separable, irreducible, and nonconstant p ∈ K [x].
Suppose that p is monic and fix a ∈ K n such that p = pa . By Theorem 4.3 there
is an EE subset X of K n such that a ∈ X and pb is separable and irreducible for
any b ∈ X . Let Y be the set of b ∈ K n such that pb has n distinct roots in K ; by
Lemma 4.6, Y is an EE subset of K n . So X, Y are disjoint nonempty EE subsets
of K n , hence K is unstable. □

The proof above easily adapts to show that an infinite superstable field is
algebraically closed. We describe this proof, assuming some familiarity with
superstability. We let dimU Z be the U -rank of a definable set Z . Suppose that K
is infinite and superstable. A superstable field is perfect, so it suffices to show that
K is separably closed. Suppose otherwise and fix n such that there is a nonconstant
separable irreducible p ∈ K [x]. Let X, Y be as in the proof above. Note that both
X and Y contain a set of the form f (W (K )), where W is a dense open subvariety
of An and f : W → An is étale. So dimU W (K )= dimU K n and the induced map
W (K )→ K n has finite fibers as f is étale. Hence dimU X =dimU K n

=dimU Y . So
X, Y are both f -generic in (K n,+), which contradicts uniqueness of generic types.

4B. Topological corollaries. Suppose that v is a nontrivial Henselian valuation
on K . It follows from the classical Krasner’s lemma that each ≈-class is open in the
v-adic topology on K n . See for example [Poonen 2017, 3.5.13.2] for a treatment
of the case when K is a local field, which easily generalizes to the Henselian case.
It is shown in [Johnson et al. 2020] that if K is not separably closed then the
v-adic topology on each K n agrees with the étale open topology. So Corollary 4.7
generalizes this consequence of Krasner’s lemma.

Corollary 4.7. Fix a ∈ K n such that pa is separable and irreducible. Then the
set of b ∈ K n such that K [x]/(pb) is K-algebra isomorphic to K [x]/(pa) is an
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étale open neighborhood of a. So the set of a ∈ K n such that pa is separable and
irreducible is étale open.

Fact 4.8 is proven in [Johnson et al. 2020] by an application of Macintyre’s
Galois-theoretical argument.

Fact 4.8. If K is not separably closed then the étale open topology on K is Haus-
dorff.

If K is separably closed then the étale open topology agrees with the Zariski
topology on V (K ) for any K-variety V ; equivalently, every EE subset of V (K ) is
Zariski open. We give a proof of Fact 4.8 which avoids Galois theory. We apply
the fact that if V → W is a morphism between K-varieties then the induced map
V (K )→ W (K ) is étale open continuous.

Proof. Equip K with the étale open topology. Any affine transformation x 7→ ax +b,
a ∈ K ∗, b ∈ K gives a homeomorphism K → K . Thus it is enough to produce two
disjoint nonempty étale open subsets of K . The argument of Section 4A yields two
disjoint nonempty étale open subsets X, Y of K n . Fix p ∈ X and q ∈ Y and let
f : K → K n be given by f (t)= (1−t)p+tq . Then f is a continuous map between
étale open topologies so f −1(X), f −1(Y ) are disjoint nonempty étale open subsets
of K . □

Finally, we characterize bounded PAC fields amongst PAC fields.

Corollary 4.9. Suppose that K is PAC and equip each K n with the étale open
topology. Then K is bounded if and only if any definable equivalence relation on
K n has only finitely many classes with interior.

Note that Corollary 4.9 fails when “PAC” is replaced by “large”. For example
Qp is bounded, the étale open topology on Qp agrees with the p-adic topology, and
the equivalence relation E where E(a, b) if and only if a, b ∈ Qp have the same
p-adic valuation is definable and has infinitely many open classes.

Proof. Suppose that K is not bounded. Fix n such that K has infinitely many
separable extensions of degree n. Let U and ≈ be as in the proof of Theorem 1.3.
Then each ≈-class is open and there are infinitely many ≈-classes. Now suppose
that K is bounded and E is a definable equivalence relation on K n . Note that K is
simple. By Proposition 3.8 any E-class with interior is f -generic. The proof of
Lemma 3.4 shows that there are only finitely many f -generic E-classes. □

5. Additional remarks and results

We discuss a few related topics and results, and prove Theorem 1.4. If Char(K )=

p> 0 then we let ℘ : K → K be the Artin–Schreier map ℘(x)= x p
− x . This map

is an additive homomorphism, so ℘(K ) is a subgroup of (K ,+). In this section we
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let Pn = {an
: a ∈ K ∗

} for each n. Some of our proofs below could be simplified
by applying Scanlon’s theorem [Kaplan et al. 2011] that an infinite stable field is
Artin–Schreier closed, but we avoid this.

5A. Boundedness and large stable fields. It is a theorem of Poizat that an infinite
bounded stable field is separably closed. Poizat’s result and Theorem 1.3 together
show that large stable fields are separably closed. Poizat’s result is mentioned
somewhat informally at the bottom of p. 347 in [Poizat 1983] and does not appear to
be well-known, so we take the opportunity to clarify the matter. Fact 5.1 is [Poizat
1983, Lemma 4].

Fact 5.1. Suppose that L is a finite Galois extension of K . Then the following hold.

(1) If q ̸= Char(K ) is a prime then there are only finitely many cosets H of Pq in
(K ∗,×) such that some (equivalently, any) a ∈ H has a q-th root in L.

(2) Suppose Char(K ) = p > 0. Then there are only finitely many cosets H of
℘(K ) in (K ,+) such that some (equivalently, any) a ∈ H is of the form bp

−b
for some b ∈ L.

Fact 5.2 follows from Fact 5.1.

Fact 5.2. Suppose that K is bounded. Then

(1) if q ̸= Char(K ) is prime then Pq has finite index in (K ∗,×), and

(2) if Char(K ) > 0 then ℘(K ) has finite index in (K ,+).

We sketch a proof. See [Fehm and Jahnke 2016, Lemma 2.2] for a proof of the
characteristic zero case of Fact 5.2(1) via Galois cohomology.

Proof. We only prove (1) as the proof of (2) is similar. Suppose a ∈ K ∗ and
α ∈ K sep satisfies αq

= a. Then α and its conjugates generate a degree ≤ q Galois
extension of K . As K is bounded there are only finitely many such extensions. So
by Fact 5.1 Pq has finite index in (K ∗,×). □

Finally, Fact 5.3 is essentially proven in [Macintyre 1971] via a Galois-theoretic
argument.

Fact 5.3. Suppose that the following hold for any finite Galois extension L of K :

(1) the q-th power map L∗
→ L∗ is surjective for any prime q ̸= Char(K ), and

(2) if Char(K ) ̸= 0 then the Artin–Schreier map L → L is surjective.

Then K is separably closed.

We now sketch a proof of Poizat’s theorem.

Corollary 5.4. Suppose that K is infinite, bounded, and stable. Then K is separably
closed.
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Proof. We verify the conditions of Fact 5.3. Suppose that L is a finite Galois
extension of K . Then L is bounded and stable (the latter holds as L is interpretable
in K ). As L is stable there is a unique additive (multiplicative) generic type over K
(see Fact 3.6). It follows that there are no proper finite index definable subgroups
of (L∗,×) or (L ,+). So by Fact 5.2 the q-th power map L∗

→ L∗ is surjective for
any prime q ̸= Char(K ) and if Char(K ) > 0 then the Artin–Schreier map L → L
is surjective. □

We repeat that the below corollary follows from Fact 5.1 and Theorem 1.3.

Corollary 5.5. Suppose that K is large and simple. Then

(1) if q ̸= Char(K ) is prime then Pq has finite index in (K ∗,×), and

(2) if Char(K ) > 0 then ℘(K ) has finite index in (K ,+).

Corollary 5.5(2) is proven more generally for infinite simple fields in [Kaplan
et al. 2011]. We take the opportunity to sketch a direct proof of Corollary 5.5. We let
Gm be the scheme-theoretic multiplicative group Spec K [x, x−1

], so Gm(K )= K ∗.

Proof. We first fix a prime q ̸= Char(K ). The morphism Gm → A1 given by
x 7→ axq is étale for any a ∈ K ∗. So any coset of Pq is an EE subset of K . By the
special (and easier) case of Proposition 3.8 when n = 1, any coset of Pq is f -generic
in (K ∗,×). By Lemma 3.3, Pq has finite index in (K ∗,×). Item (2) follows by
a similar argument and the fact that the Artin–Schreier morphism A1

→ A1 is
étale. □

Fehm and Jahnke construct an unbounded PAC field K such that the group of
n-th powers has finite index in each finite extension of K [Fehm and Jahnke 2016,
Proposition 4.4], so Theorem 1.3 does not follow from Corollary 5.5.

5B. Conics, Brauer group, and projectivity. Corollary 5.6 follows from Fact 3.9
and Corollary 5.5.

Corollary 5.6. Suppose that K is large and simple, a, b ∈ K ∗, and p ̸= Char(K )
is a prime. Then there are c, d ∈ K such that cp

+ ad p
= b.

The proof in [Pillay et al. 1998] that conics over (infinite) supersimple fields
have points now extends to proving Theorem 1.6.

Proof of Theorem 1.6. Let C be a conic, i.e., a smooth projective irreducible K-
curve of genus 0. As Char(K ) ̸= 2 we may assume that C is a closed subvariety
of P2 given by the homogenous equation ax2

+ by2
= z for some a, b ∈ K ∗. By

Corollary 5.6 there are c, d ∈ K such that ac2
+bd2

= 1. So C(K ) is nonempty. □

We let Br K be the Brauer group of K . Recall that the Brauer group of an
arbitrary field is an abelian torsion group. Given a prime p we let Brp K be the
p-part of the Brauer group of K . Facts 5.7 and 5.8 both follow by the proof of
[Pillay et al. 1998, Theorem 4.6].
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Fact 5.7. Let p ̸= Char(K ) be a prime. Suppose that whenever L is a finite
separable extension of K and a ∈ L∗, then {bp

+acp
: b, c ∈ L∗

} contains L∗. Then
Brp K is trivial.

Fact 5.8. Suppose that

(1) K is perfect, and

(2) if L is a finite extension of K, p is a prime, and a∈L∗, then {bp
+acp

:b,c∈L∗
}

contains L∗.

Then the Brauer group of K is trivial.

We now prove Theorem 1.5.

Proof. It suffices to show that the second condition of Fact 5.8 is satisfied. Let L be
a finite extension of K and p be a prime. Note that L is perfect as a finite extension
of a perfect field is perfect; the case when p = Char(K ) follows. Suppose that
p ̸= Char(K ). Note that L is simple as L is interpretable in K and L is large by
Fact 2.2. Apply Corollary 5.6. □

Theorem 1.4 follows from Proposition 5.9 as a field of cohomological dimension
≤ 1 has projective absolute Galois group [Gruenberg 1967].

Proposition 5.9. If K is simple and large then K has cohomological dimension ≤ 1.

See [Serre 1997, Chapter I, §3] for an overview of cohomological dimension.
The proof of Proposition 5.9 is due to Philip Dittmann. The simpler case where
K is assumed to be perfect was proved earlier by the authors. We do not know if
every large simple field has trivial Brauer group.

Proof. Suppose K is simple and large. The same argument as in the proof of
Theorem 1.5 shows that if p ̸= Char(K ) is a prime, L is a finite separable extension
of K , and a ∈ L∗, then {bp

+ acp
: b, c ∈ L∗

} contains L∗. So by Fact 5.7, Brp L
is trivial for every finite extension L of K and prime p ̸= Char(K ). By [Serre
1997, II.2.3 Proposition 4], K has p-cohomological dimension ≤ 1 for every prime
p ̸= Char(K ). By [Serre 1997, II.2.2 Proposition 3], any field L has Char(L)-
cohomological dimension ≤ 1. So K has cohomological dimension ≤ 1. □

Appendix: NSOP∞ fields
by Philip Dittmann

A theory T has the fully finite strong order property if there is a formula ψ(x, y),
with the two tuples of variables x and y having equal length, a model M |H T , and
a sequence (ai )i∈ω of tuples in M satisfying M |H ψ(ai , a j ) for all i < j , and for
any n ≥ 3 the formula ψ(x1, x2)∧ · · · ∧ψ(xn−1, xn)∧ψ(xn, x1) is inconsistent
with T . In short, the binary relation described by ψ admits infinite chains and does
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not admit cycles. In this situation we also say that T has or is SOP∞. A structure
M is SOP∞ if its theory is. A theory or structure is NSOP∞ if it is not SOP∞.

In Shelah’s terminology, T having the fully finite strong order property witnessed
by ψ is equivalent to ψ having the n-strong order property SOPn for T , for all
n ≥ 3 [Shelah 1996, Definition 2.5]. In particular, if T is complete and simple
then T is NSOP∞ [Shelah 1996, Claim 2.7]. The notion “fully finite strong order
property” seems to have first appeared in an unpublished manuscript by Adler
[2008], although it has by now also been used elsewhere [Conant and Terry 2016,
Definition 2.1].

A1. Valuations. The Henselization of a PAC field with respect to any nontrivial
valuation is separably closed [Fried and Jarden 2005, Corollary 11.5.9]. Thus the
following can be seen as supporting evidence for the conjecture that large simple
fields are PAC.

Theorem A.1. Suppose that K is large and v is a nontrivial valuation on K . If
(K , v) has nonseparably closed Henselization then K is SOP∞. In particular, if
either the residue field of v is not algebraically closed or the value group of v is not
divisible then K is SOP∞.

The second claim of Theorem A.1 follows from the first as the Henselization
of (K , v) has the same residue field and value group as (K , v) [Engler and Prestel
2005, Theorem 5.2.5], and a nontrivially valued separably closed field has alge-
braically closed residue field and divisible value group [Engler and Prestel 2005,
Theorem 3.2.11]. We will make use of Fact A.2, proven in [Johnson et al. 2020,
Theorem 6.15].

Fact A.2. Let v be a nontrivial valuation on K . If the Henselization of (K , v) is
not separably closed then the étale open topology refines the v-adic topology on K .

The following argument using generics was used in a preliminary version of the
main article to get the simple case of Theorem A.1. Suppose that K is simple and
the Henselization of (K , v) is not separably closed. By Fact A.2, mv is an étale
open neighborhood of 0, so there is an EE subset U of K satisfying 0 ∈ U ⊂ mv.
By Proposition 3.8 the set U is f -generic for (K ,+). This contradicts Lemma 3.3
as mv is an infinite index subgroup of (K ,+). This argument does not generalize
to large NSOP1 fields as at present there is no theory of generics in NSOP1 groups.
(This is not straightforward: [Dobrowolski 2020] gives an example of a definable
group in an NSOP1 structure in which generics with respect to Kim forking do not
exist.)

Lemma A.3. Suppose that K is large and U ⊆ K is an étale open neighborhood of
zero. Then for any n ≥ 2 there is a ∈ K ∗ such that a, a2, . . . , an

∈ U.
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Proof. For each i ∈ {2, . . . , n} let Vi = {b ∈ K : bi
∈ U }. Each map K → K , b 7→ bi

is continuous with respect to the étale open topology, so each Vi is an étale open
neighborhood of zero. Then V = V1 ∩ · · · ∩ Vn is an étale open neighborhood of
zero. As K is large V contains a nonzero element of K . □

Proof of Theorem A.1. By Fact A.2 there is a nonempty EE subset U of K with
0 ∈ U ⊆ mv. Let ψ(x, y) be the formula (x ̸= 0)∧ (y ̸= 0)∧ (x−1 y ∈ U ). Note
that if K |H ψ(a, b) then b/a ∈ mv, hence v(a) < v(b). We show that ψ(x, y)
witnesses SOP∞. First suppose that a1, . . . , an ∈ K satisfy

ψ(a1, a2)∧ · · · ∧ψ(an−1, an)∧ψ(an, a1).

Then we have v(a1) < v(a2) < · · ·< v(an−1) < v(an) < v(a1), a contradiction. We
now show that for each n ≥ 1 there are a1, . . . , an ∈ K such that K |H ψ(ai , a j )

if and only if i < j . By Lemma A.3 there is a ∈ K ∗ such that a, a2, . . . , an
∈ U .

Then K |H ψ(ai , a j ) for i < j . Thus the binary relation on K defined by ψ admits
chains of arbitrary finite length, and in a saturated elementary extension of K we
obtain an infinite chain. Thus K is SOP∞. □

Recall that EE sets are existentially definable. Note that the formula ψ in the
proof of Theorem A.1 is existential. This is optimal as a quantifier-free formula
in an arbitrary field is stable. This is similar to the result, proven in [Johnson
et al. 2020, Theorem 3.1], that an unstable large field admits an unstable existential
formula. The witnesses for SOP∞ produced in the next section are also existential.

If v is actually Henselian, the same technique as in the proof of Theorem A.1
gives a slightly stronger statement. This is presumably well-known to the experts,
but appears not to be available in the literature.

Theorem A.4. Suppose that v is a nontrivial Henselian valuation on K and K is not
separably closed. Then K has the strict order property [Shelah 1996, Definition 2.1].

Proof. Fact A.2 provides an EE subset U of K with 0 ∈ U ⊆mv . By [Johnson et al.
2020, Theorem B] the v-topology on K agrees with the étale open topology, hence
U is v-open, and in particular contains a ball around 0.1 Therefore, for any element
c ∈ K × with v(c) sufficiently large we have cU ⊊ U . Thus the definable family
{xU : x ∈ K } contains the infinite chain U ⊋ cU ⊋ c2U ⊋ · · · under inclusion.
Hence K has the strict order property. □

A2. Formally real and formally p-adic fields. Corollary 5.6 implies that if K is
large, simple, and of characteristic zero then there are a, b∈ K such that a2

+b2
=−1.

1This argument does not seriously use the étale open topology — we only need that the topology
given by v is definable in the field language. This latter fact is already implicit in [Prestel and Ziegler
1978, Remark 7.11].
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So a large simple field cannot be formally real. Duret [1977] showed that formally
real fields are unstable. Theorem A.5 generalizes these.

Theorem A.5. Suppose that K is formally real. Then K is SOP∞.

Proof. Let ϕ(x, y) be the formula

∃z1, z2, z3, z4 [x − y − 1 = z2
1 + z2

2 + z2
3 + z2

4].

We show that ϕ witnesses SOP∞. An application of Lagrange’s four-square theorem
shows that K |Hϕ(m,m′) for all integers m>m′. Now suppose that a1, . . . , an ∈ K
and we have K |H {ϕ(a1, a2), . . . , ϕ(an−1, an), ϕ(an, a1)}. Then

−n = (a1 − a2 − 1)+ (a2 − a3 − 1)+ · · · + (an−1 − an − 1)+ (an − a1 − 1)

is a sum of squares, a contradiction. □

Fix a prime p. A field K is p-adically closed if K is elementarily equivalent to
a finite extension of Qp and K is formally p-adic if K embeds into a p-adically
closed field. An equivalent definition (which we shall not need) is that there
exists a p-valuation v on K , i.e., v is of mixed characteristic, the residue field
is a finite extension of Fp, and the interval [0, v(p)] in the value group is finite.
Indeed, if v is a p-valuation on K then the so-called p-adic closure of (K , v) is an
elementary extension of a finite extension of Qp. See [Prestel and Roquette 1984]
for a comprehensive treatment of formally p-adic fields.

Theorem A.6. Suppose that K is formally p-adic. Then K is SOP∞.

Proof. Let F be a finite extension of Qp such that K embeds into an elementary
extension of F . Let v be the unique extension of the p-adic valuation on Qp to F
and OF be the valuation ring of v.

By [Anscombe et al. 2020, Propositions 4.7 and 4.8] (applied to the base field
K = Q, the prime p = p of Q, and the relative type τ of F/Qp in the terminology
there), there exists a parameter-free existential formula ψ(x) such that ψ(F)⊆ OF ,
and ψ(Q) = Z(p). (Note that the paper cited phrases the result in terms of a
concrete “diophantine family” Dτ

p,tp,A,B , but this is effectively the same as an
existential formula with parameters from the base field Q [Anscombe et al. 2020,
Remark 3.2], and parameters from Q can be eliminated.)

Let ϕ(x, y) be the formula

(y ̸= 0)∧ ∃z (ψ(z)∧ y = p · x · z).

We show that ϕ(x, y) witnesses SOP∞ for K . Suppose m < m′ are integers. Then
we have Q |H ϕ(pm, pm′

), since pm′

/(p · pm) ∈ Z ⊆ ψ(Q). Since ϕ is existential,
we have K |H ϕ(pm, pm′

). Thus the binary relation on K defined by ϕ admits an
infinite chain.
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Now suppose that K satisfies

2= ∃x1, . . . , xn [ϕ(x1, x2)∧ · · · ∧ϕ(xn−1, xn)∧ϕ(xn, x1)].

As 2 is existential and K embeds into an elementary extension of F , we have
F |H2. Hence there are b1, . . . , bn ∈ F such that

F |H {ϕ(b1, b2), . . . , ϕ(bn−1, bn), ϕ(bn, b1)}.

As ψ(F) ⊆ OF , we see that F |H ϕ(a, a′) implies that v(a) < v(a′) for any
a, a′

∈ F . Thus we have v(b1) < v(b2) < · · · < v(bn−1) < v(bn) < v(b1), a
contradiction. □
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