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Additive reducts of real closed fields
and strongly bounded structures

Hind Abu Saleh and Ya’acov Peterzil

Given a real closed field R, we identify exactly four proper reducts of R which
expand the underlying (unordered) R-vector space structure. Towards this theo-
rem we introduce the new notion of strongly bounded reducts of linearly ordered
structures: a reduct M of a linearly ordered structure ⟨R;<, . . . ⟩ is called strongly
bounded if every M-definable subset of R is either bounded or cobounded in R.
We investigate strongly bounded additive reducts of o-minimal structures and
prove the above theorem on additive reducts of real closed fields.

1. Introduction

The study of ordered additive reducts of real closed fields starts with the work of
Pillay, Scowcroft and Steinhorn [Pillay et al. 1989], followed by Marker, Peterzil
and Pillay [Marker et al. 1992]. The motivation behind the work here is a conjecture
about unordered such reducts from [Peterzil 1993]. Before stating the conjecture,
let us clarify our usage of the notion of “reduct” here.

Definition 1.1. Given two structures M and N , we say that M is a reduct of N (or,
N is an expansion of M), denoted by M ⊆̇N , if M and N have the same universe
and every set that is definable in M is also definable in N (where definability allows
parameters). We say that M and N are interdefinable, denoted by M =̇ N , if M
is a reduct of N and N is reduct of M.

We say M is a proper reduct of N (or N a proper expansion of M) if M ⊆̇ N
and not M =̇ N .

Below, we let 3R be the family of all R-linear maps λa(x)= αx for all α ∈ R.
Our ultimate goal here is to prove the following:
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Theorem 1.2. Let R be a real closed field. Then the only reducts between the vector
space ⟨R; +,3R⟩ and the field ⟨R;<,+, ·⟩ are as follows:

Ralg = ⟨R; +, ·, <⟩,

Rsb = ⟨R; +, <,3R,B⟩,

Rsemi = ⟨R; +, <,3R⟩, Rbd = ⟨R; +, <∗,3R,B⟩,

R∗

lin = ⟨R; +, <∗,3R⟩,

Rlin = ⟨R; +,3R⟩,

where <∗ is the linear order on the interval (0, 1) and Bsa the collection of all
bounded semialgebraic sets over R.

Remark 1.3. (1) The definable sets in Ralg are called semialgebraic, while those
definable in Rsemi are semilinear. The structure Rsb above is called semibounded, as
it expands the ordered vector space by a collection of bounded sets. Semibounded
structures were studied in several articles, for example, [Edmundo 2000; Belegradek
2004; Peterzil 2009].

(2) Notice that because all the above structures expand the full underlying R-vector
space, then once <∗ is definable then the restriction of < to every bounded interval
is definable.

(3) A similar project, in the setting of Presburger arithmetic, was carried out in
[Conant 2018], where it was proven that there are no proper reducts between ⟨Z; +⟩

and ⟨Z;<,+⟩. We expect that in arbitrary models of Presburger arithmetic, an
analogous result to Theorem 1.2 holds, with the intermediate reducts corresponding
to possible restrictions of < to infinite subintervals.

Some of the work towards the proof of Theorem 1.2 can be read off earlier results.
In particular, the fact that the semibounded reduct Rsb is the only proper reduct
between Rsemi and Ralg was proven over R in [Peterzil 1993] and can be deduced
for arbitrary real closed fields from [Edmundo 2000] (see Fact 5.1 below). However,
the bulk of the work here is to show that if a reduct M of Ralg does not define the
full order then it is necessarily a reduct of Rbd. Towards that, we introduce a new
notion of “a strongly bounded structure” in a more general setting, and most of our
results here are about such structures.

Definition 1.4. Let R = ⟨R;<, . . . ⟩ be a linearly ordered structure. A reduct
M= ⟨R; . . . ⟩ of R is called strongly bounded if every M-definable X ⊆ R is either
bounded or cobounded (namely, R \ X is bounded).

Remark 1.5. (1) The term “strongly bounded” was chosen to reflect a combination
of a semibounded structure with a strongly minimal one. Almost all of our work
here concerns strongly bounded additive reducts of o-minimal structures, where
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the underlying linear order is dense. Analogous definitions could be given for, say,
models of Presburger arithmetic if one wishes to study all reducts which expand
the underlying ordered group.

(2) The definition of a strongly bounded structure requires an ambient linear order.
Thus it might not seem amenable to working in elementarily equivalent structures.
However, in practice we only work in sufficiently saturated elementary extensions
of a strongly bounded M as above, and thus we may assume that this elementary
extension is also a reduct of a linearly ordered elementary extension of R.

By definition, if M is a strongly bounded reduct of a linearly ordered structure
then the ordering < is not definable in M. We prove several results about strongly
bounded reducts of o-minimal structures (see, for example, Theorems 4.5 and 4.27):

Theorem. Let ⟨R;<,+, . . . ⟩ be an o-minimal expansion of an ordered group and
let M = ⟨R,+, . . . ⟩ be a strongly bounded reduct.

(1) Every M-definable subset of Rn is already definable in ⟨R; +,3M,B
∗
⟩,

where 3M is the collection of M-definable endomorphisms of ⟨R,+⟩ and B∗

is the collection of all M-definable bounded sets.

(2) For every N ≡ M, the model theoretic algebraic closure equals the definable
closure.

2. Proper expansions of Rlin

In this section we assume that Romin is an o-minimal expansion of a real closed
field R and M = ⟨R; +, . . . ⟩ is an additive reduct of Romin.

Theorem 2.1. If M is not a reduct of Rlin = ⟨R; +,3R⟩, then <∗ is definable
in M.

Proof. It is sufficient to prove that some interval [0, b] is M-definable, for b > 0.

Claim 2.2. Th(M) is unstable.

Proof. This is based on work of Hasson, Onshuus and Peterzil [Hasson et al. 2010].
Assume towards contradiction that Th(M) is stable. By [Hasson et al. 2010,

Theorem 1], every 1-dimensional stable structure interpretable in an o-minimal
structure is necessarily 1-based. So M is 1-based. By [Hrushovski and Pillay 1987,
Theorem 4.1], it follows that every M-definable set is a boolean combination of
cosets of definable subgroups of Rn . Every definable subgroup of ⟨Rn

; +⟩ in an
o-minimal structure is an R-vector subspace of Rn and therefore every M-definable
set is definable in Rlin, a contradiction. Hence M is unstable. □

Because M is unstable, it is in particular not strongly minimal. This generally
implies that in some elementary extension of M, we have an M-definable subset
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in one variable which is infinite and coinfinite. However, o-minimal structures
eliminate ∃

∞, and therefore so does M. It follows that there is some M-definable
subset of R itself which is infinite and coinfinite. Call this set Y .

In the special case where both Y and R \ Y are unbounded in R we can prove a
stronger result which will be used several times here, and thus we state it separately.

Lemma 2.3. Assume that Y ⊆ R is definable in an o-minimal expansion of an
ordered group. If both Y and R \ Y are unbounded then the full linear order is
definable in ⟨R; +, Y ⟩.

Proof. By o-minimality, Y has the form

Y := I1 ∪ I2 ∪ · · · ∪ In ∪ L , (1)

such that for every i ∈ {1, . . . , n}, Ii := (ai , bi ), L is a finite set and in addition
−∞ ≤ a1 < b1 < a2 < · · ·< an < bn ≤ +∞. Without loss of generality L = ∅.

Since both Y and R\Y are unbounded, Y has the form (1) above and without loss
of generality, we may assume that I1 = (−∞, b1), and Ii = (ai , bi ) for i ∈{2, . . . , n}.

By replacing Y by Y − b1 we may assume that b1 = 0, and then

−Y ∩ Y = (−bn,−an)∪ · · · ∪ (−b2,−a2)∪ (a2, b2)∪ · · · ∪ (an, bn).

So (−Y ∩Y )∩[(−Y ∩Y )+(an +bn)] equals the interval In = (an, bn) in Y . Replace
Y by Y1 := Y \ In; now Y1 contains an unbounded ray together with n − 2 bounded
intervals. Continuing in this way we obtain a ray (−∞, 0) that is definable, so we
can define <. □

In the remaining case, either Y or R \ Y are bounded, so we assume that Y is
bounded, and as above

Y := (a1, b1)∪ · · · ∪ (a,bn),

with ai , bi ∈ M .
Let α := bn − b1. The set (Y + α) ∩ Y defines a single interval whose right

endpoint is bn . So, we are done. If Y is unbounded then replace Y by R \ Y and
finish as before. Hence, we have showed that <∗ is definable in M. □

3. Reducts of Ralg which are not semilinear

Here R is a real closed field and Ralg = ⟨R;<,+, · ⟩. Before the next theorem we
recall previous work from [Loveys and Peterzil 1993] (see a corrected and more
general proof in [Belegradek 2004]), which will be used in its proof.

Given a > 0 in R, let I = (−a, a). Denote by +
∗ the partial function obtained

by intersecting the graph of + with I 3, and for each α ∈ R, let λ∗
α be the partial

function obtained by intersecting the graph of λα with I 2. Finally, let <∗ be the
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restriction of < to I 2. Notice that for each X ⊆ Rn such that ⟨R;<,+, ·, X⟩ is
o-minimal, the structure

I = ⟨I;<∗,+∗, {λ∗

α}α∈R, X ∩ I n
⟩

is o-minimal as well.
In [Loveys and Peterzil 1993] the structure ⟨I ;<∗,+∗

⟩ was called a group-
interval and its o-minimal expansions were studied there.

A partial endomorphism (p.e. for short) of this group-interval was a function
f : I → I which respects addition when defined: namely, if x, y, x +

∗ y ∈ I then
f (x +

∗ y)= f (x)+∗ f (y).
Notice that in our setting every I-definable p.e. is necessarily the restriction of

λα for some α ∈ R. Indeed, if f : I → I is an I-definable p.e. then it is not hard to
verify that

H = {r ∈ R : ∃ε > 0 ∀x ∈ (−ε, ε) f (r x)= r f (x)}

is a semialgebraic subgroup of ⟨R,+⟩ which contains all integers.
O-minimality of the real field implies that H = R and therefore f is the restriction

of an R-linear map, namely the restriction of λα for some R.
Now, without going through their precise definition of “a linear theory”, it

was shown in [Loveys and Peterzil 1993, Proposition 4.2] that if Th(I) is linear
then every I-definable set is already defined in the structure ⟨I ; +

∗, <∗, {λ∗
α}α∈R⟩

(possibly together with additional parameters). Thus if Th(I) is linear then X ∩ I n

is a semilinear set.
The following proposition seems to be obvious but for the sake of completion

we include a proof in the Appendix.

Fact 3.1. Let R be a real closed field and X ⊆ Rn a definable set in an o-minimal
expansion of ⟨R;<,+, · ⟩. If X is not semilinear then, in M = ⟨R;<∗,+,3R, X⟩,
there exists a definable bounded set which is not semilinear.

Theorem 3.2. If X ⊆ Rn is semialgebraic and not definable in Rsemi, then every
bounded R-semialgebraic set is definable in ⟨R; +,3R, X⟩.

Proof. Let M := ⟨R; +,3R, X⟩. By Theorem 2.1, the relation <∗ is definable
in M. Let us first see that M defines a real closed field on some interval.

By Fact 3.1, we may assume that X ∩ I n is not semilinear, for some bounded
interval I = (−a, a). Consider the o-minimal structure

I := ⟨I ;<∗,+∗, {λ∗

α}α∈R, X ∩ I n
⟩,

as we described before stating the theorem. We noted that if Th(I) is linear then
the set X ∩ I n must be semilinear. Because X ∩ I n is not semilinear then Th(I) is
not linear in the sense of [Loveys and Peterzil 1993]. Therefore, by [Peterzil and
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Starchenko 1998, Theorem 1.2], a real closed field is I-definable, and hence also
M-definable, on some interval J ⊆ I .

Without loss of generality, assume that J = (−a0, a0), a0> 0. Denote the field by

J = ⟨J,⊕,⊙⟩.

The structure J is M-definable. By [Peterzil 1993, Corollary 2.4], every R-
semialgebraic subset of J k , k ∈ N, is definable in J , and therefore in M.

Let B ⊆ (−b, b)n for some b > 0 in R. Using scalar multiplication from 3R ,
we can contract (−b, b) into (−a0, a0), so it is definable in J . It follows that B is
definable in M. □

4. Strongly bounded structures

The ultimate goal of this section is to prove:

Theorem 4.1. Let R be a real closed field. If X ⊆ Rn is semialgebraic and not
definable in Rbd = ⟨R;<∗,+,3R,Bsa⟩, then < is definable in ⟨R; +,3R, X⟩.

We are going to work in a more general setting than that of a real closed field.
Recall that a strongly bounded reduct of a linearly ordered ⟨R;<, . . . ⟩ is one in
which every definable subset of R is bounded or cobounded. Below, we will mostly
be interested in strongly bounded reducts of o-minimal structures. By Lemma 2.3
and the definition of a strongly bounded structure, we have:

Lemma 4.2. Let Romin = ⟨R;<,+, . . . ⟩ be an o-minimal expansion of an ordered
group. If M = ⟨R; +, . . . ⟩ is a reduct of Romin then M is strongly bounded if and
only if < is not definable in M.

So in order to prove Theorem 4.1 it is sufficient to prove that if X ⊆ Rn is definable
in a strongly bounded M = ⟨R; +, . . . ⟩ then X is definable in ⟨R; +,3M,BM⟩,
where BM is the collection of all M-definable bounded sets. A more precise and
slightly stronger theorem — Theorem 4.5 — will be proved soon. We first make a
general observation which we shall exploit repeatedly.

Definability of “boundedness”. For X ⊆ T × Rn , T ⊆ Rm and t ∈ T , we let

X t = {a ∈ Rn
: ⟨t, a⟩ ∈ X}.

The following general result will be very useful here.

Proposition 4.3. Let M = ⟨R; +, . . . ⟩ be any reduct of an o-minimal expansion of
an ordered group. If {X t : t ∈ T } is an M-definable family of subsets of Rn , then
the set

{t ∈ T : X t is bounded in Rn
}

is definable in M.
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Proof. Note that a set Y ⊆ Rn is bounded if and only if for each i , the image of
Y under the projection map πi : ⟨y1, . . . , yn⟩ 7→ yi is bounded in R. Thus, it is
sufficient to prove the result under the assumption that all X t are subsets of R.

By o-minimality, each X t ⊆ R is unbounded if and only if it contains an un-
bounded ray. Thus, it is easy to see that

{t ∈ T : X t is bounded} = {t ∈ T : ∃a (a + X t ∩ X t = ∅)},

and hence the set is definable in M. □

The strongly bounded setting. We first clarify and somewhat generalize our setting.

Let Romin = ⟨R, <,+, . . . ⟩ denote an o-minimal expansion of an ordered group
in the language Lomin, and let M = ⟨R; +, . . . ⟩ denote a strongly bounded reduct
of Romin, in the language L, such that aclM(∅) contains at least one nonzero
element (it follows that aclM(∅) is infinite).

Definition 4.4. An interval (a, b)⊆ R is called a ∅-interval in M if a, b ∈ aclM(∅).
A subset X ⊆ Rn is called ∅-bounded in M if X is contained in some I n , for I a
∅-interval in M.

Our standing assumption is that for every ∅-interval I ⊆ R, the restricted
order <↾I is ∅-definable in M. Notice that, using Theorem 2.1, this is true when
M is elementarily equivalent to a reduct of a real closed field which properly
expands Rlin.

We let 3M be the collection of all M-definable endomorphisms of ⟨R,+⟩,
defined over ∅. We let Lbd(M) be the language consisting of {+, {λ}λ∈3M},
augmented by a predicate for every ∅-definable, ∅-bounded set in M.

By expanding L and Lomin by function symbols and predicates for ∅-definable
sets, we may assume that

Lbd ⊆ L ⊆ Lomin.

We let Mbd be the reduct of M to Lbd.
Our ultimate goal in this section is to prove:

Theorem 4.5. For M strongly bounded as above, every definable subset of Rn is
definable in Mbd.

One of our main difficulties in working with strongly bounded structures is
the failure of global cell decomposition. For instance, the set R \ {0} cannot be
decomposed definably into definable cells in a strongly bounded structure, because
no ray is definable there.

Another difficulty is the fact that a priori we do not know whether the model the-
oretic algebraic closure equals the definable closure in strongly bounded structures.
However, we shall eventually show in Theorem 4.27 that acl = dcl in this setting.
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We assume for the rest of this section that M is strongly bounded as above.

Definable subsets of R in strongly bounded structures. Notice that although the
full order is not definable in M, a basis for the <-topology on R and the product
topology on Rn is definable in M, using the restricted order. Thus we have:

Lemma 4.6. If {X t : t ∈ T } is an M-definable family of subsets of Rn , then the
families

{Cl(X t) : t ∈ T }, {Int(X t) : t ∈ T }, {Fr(X t) : t ∈ T }

are definable in M.

Every M-definable X ⊆ R is a union of finitely many pairwise disjoint maximal
open subintervals of X (which are possibly not M-definable) and a finite set.
Below, when we say that I is an interval in X we mean that I is one of these open
components of X .

Definition 4.7. Let Y ⊆ R be an M-definable set. We define

∂−(Y ) := {y ∈ R : y is a left endpoint of an interval in Y },

∂+(Y ) := {y ∈ R : y is a right endpoint of an interval in Y }.

Lemma 4.8. If {Yt : t ∈ T } is an M-definable family of bounded subsets of R,
then the families {∂−(Yt) : t ∈ T }, {∂+(Yt) : t ∈ T } are M-definable over the same
parameter set.

Proof. We fix an M-definable <↾(0, a0) for some a0 > 0. We define ∂−(Yt) by the
formula

(x /∈ Yt ∧ ∃ε<a0 (x, x + ε)⊆ Yt)

∨
(
x ∈ Yt ∧ ∃ε≤a0 (x − ε, x)∩ Yt = ∅∧ (x, x + ε)⊆ Yt

)
.

Because of the definability of <∗ in M, {∂−(Yt) : t ∈ T } is M-definable. We
similarly handle ∂+(Yt). □

The next theorem is an important component of our analysis of strongly bounded
structures.

Theorem 4.9. If {X t : t ∈ T } is an M-definable family of bounded subsets of R,
then there is a uniform bound on the length of each interval in X t . Moreover, there
exists such a bound in dclM(∅).
Proof. By Proposition 4.3, every M-definable family {X t : t ∈ T } of bounded subsets
of R is a subfamily of a ∅-definable family of such sets. Namely, if ϕ(x, t, a) is
the formula defining the X t ’s over a, as t varies, then we can consider the formula

ψ(x, t, y) : ϕ(x, t, y)∧ ψ(R, t, y) is a bounded set.

Thus, it is sufficient to prove the result for ∅-definable families.
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By Lemma 4.6, we may assume that each X t is an open set. We use induction
on the maximum number n of intervals in X t , for t ∈ T .

For n = 1, write X t = (at , bt). Consider the family {X t − at : t ∈ T }. By
Lemma 4.8, the family is ∅-definable. Thus, the set Y =

⋃
t∈T X t − at is an

M-definable interval, over ∅, whose left endpoint is 0. Because M is strongly
bounded, this interval must be bounded, and hence its right endpoint is some K ∈ M .
By Lemma 4.8, the point K is definable over ∅.

Consider now the case n = k + 1, i.e., each X t consists of at most k + 1 pairwise
disjoint open intervals. For each t ∈ T , let Dt = {c1 − c2 : c1, c2 ∈ ∂−(X t)}, an
M-definable set by Lemma 4.8.

Claim 4.10. For each t ∈ T , there exists d ∈ Dt such that (X t + d)∩ X t is one of
the intervals in X t .

Proof. Let X t = I1,t ∪ I2,t ∪ · · · ∪ Ik+1,t , where each Im,t := (am,t , bm,t), such that

a1,t < b1,t < a2,t < b2,t < · · ·< ak+1,t < bk+1,t .

For an interval I = (a, b), let |I | = b − a.
Let d = ak+1,t − a1,t . In the set X t + d, for each m, the interval Im,t is shifted

to Im,t + d. So (X t + d)∩ X t consists of either Ik+1,t (when |Ik+1,t | < |I1,t |) or
I1,t + d (when |Ik+1,t |> |I1,t |).

If it consists of Ik+1 we are done. Otherwise we take

d ′
= a1,t − ak+1,t ∈ Dt

and then (X t + d ′)∩ X t = I1,t .
So in both cases there exists d ∈ Dt such that X t + d ∩ X t is one of the intervals

in X t . □

We define the set

D′

t := {d ∈ Dt : (X t + d)∩ X t is one of the intervals in X t }.

Claim 4.11. The family {D′
t : t ∈ T } is an M-definable family of nonempty sets.

Proof. For t ∈ T , d ∈ D′
t if and only if the following two statements hold:

(1) ∂−((X t + d)∩ X t)⊆ ∂−(X t) and |∂−((X t + d)∩ X t)| = 1, and

(2) ∂+((X t + d)∩ X t)⊆ ∂+(X t) and |∂+((X t + d)∩ X t)| = 1.

By Lemma 4.8, (1) and (2) are definable properties in M. By Claim 4.10, each
D′

t is nonempty. □

We proceed with the proof of Theorem 4.9. Consider the M-definable family

{Yt,d := X t + d ∩ X t : d ∈ D′

t , t ∈ T },
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still defined in M over ∅. For every t and d ∈ D′
t , the set Yt,d consists of a single

interval which is one of the intervals in X t . By case n = 1 we know that there is
a uniform bound w1 on the length of each Yt,d , which can be chosen in dclM(∅).
We now define, still over ∅, the family

{Z t,d := X t \ Yt,d : d ∈ D′

t , t ∈ T }.

Each subset Z t,d consists of at most k intervals among the k +1 intervals of X t . By
the induction hypothesis, we know that there is a uniform bound w2 on the length
of each interval, which we may choose in dclM(∅).

Thus the maximum of w1, w2, which is in dclM(∅), is the bound on the length
of each interval of X t , as t varies. This ends the proof of Theorem 4.9. □

As a corollary we can now match, definably in M, each left endpoint of an
interval in X t with the corresponding right endpoint:

Proposition 4.12. Let {X t : t ∈ T } be an M-definable family of bounded subsets
of R, and let

L t = {⟨a, b⟩ ∈ ∂−(X t)× ∂
+(X t) : the interval (a, b) is one the intervals of X t }.

Then the family {L t : t ∈ T } is M-definable.

Proof. By Theorem 4.9, there is a bound K ∈ dclM(∅) for the length of each
interval in X t , for all t ∈ T . For each t ∈ T , we have

⟨a, b⟩ ∈ L t ⇐⇒ a ∈ ∂−(X t) and b = min(∂+(X t)∩ [a, a + K ]). (∗)

By Lemma 4.8, ∂−(X t) and ∂+(X t) are definable families and since in (∗) we only
use the order on [0, K ], the family {L t : t ∈ T } is definable in M. □

Remark 4.13. (1) Notice that Theorem 4.9 fails without the assumption that the
X t ’s are bounded sets. Namely, it is not true in general that the lengths of the
bounded components of X t are bounded in t . For example, the set X t = R \ {−t, t}
has (−t, t) as an open component, with unbounded length as t → ∞.

Also, even if each X t is bounded it is not true that the diameter of the X t ’s is
uniformly bounded. For example, take the family {(−t, t − 1)∪ (t, t + 1) : t ∈ R}

that is definable using <↾ (0, 1).

(2) We do not know whether Proposition 4.12 holds if we drop the assumption that
the X t ’s are bounded. Can we still match definably the left and right endpoints of
the bounded components of X t , when the X t ’s are unbounded?

Affine sets and functions. Recall that Romin is an o-minimal expansion of an
ordered divisible abelian group R, and we assume that M = ⟨R; +, . . . ⟩ is a
strongly bounded reduct of Romin in which < is ∅-definable on every ∅-interval.
We let <∗ denote the ordering on some fixed interval we call (0, 1).
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Definition 4.14. Let ⟨R;<,+⟩ be an abelian ordered divisible group.

(1) A map f : Rn
→ Rk is affine if it is of the form ℓ(x)+ d for ℓ : Rn

→ Rk a
homomorphism between ⟨Rn,+⟩ and ⟨Rk,+⟩, and d ∈ Rk .

(2) A (partial) function f : R → R is eventually affine if there exists a > 0 such
that (a,∞)⊆ dom( f ) and the restriction of f to (a,+∞) is affine.

(3) X ⊆ Rn is locally affine at a ∈ X if there is an open neighborhood U ∋ a such
that for all x, y, z ∈ U ∩ X , x − y + z ∈ X . The affine part of X is the set

A (X)= {x ∈ X : X is locally affine at x}.

Notice that if X is the graph of an affine map then A (X) = X . Conversely,
if X is the graph of a definable function from an open subset of Rk into Rℓ and
a = (a′, f (a′)) ∈ A(X) then f is an affine map in a neighborhood of a1.

Because a basis for the Rn-topology is definable in M, we immediately have:

Lemma 4.15. Let {X t : t ∈ T } be an M-definable family of subsets of Rn , defined
over ∅. Then the family {A (X t) : t ∈ T } is M-definable over ∅.

Proposition 4.16. Every M-definable endomorphism f : R → R is ∅-definable.

Proof. Assume that f is defined by an M-formula ϕ(x, y, a) over the parameter a.
We show that f can be defined without parameters.

Since being an R-endomorphism is M-definable, we may assume that there is
some M-definable T ⊆ Rk such that for all t ∈ T , if ϕ(R2, t) is nonempty then it
defines a nonzero endomorphism ft of ⟨R; +⟩.

Assume first that the set of endomorphisms ft defined by ϕ is finite. Define t1 Et2
if ft1 = ft2 , an M-definable equivalence relation. Consider the functions near 0,
and define [t1]E < [t2]E if for all x > 0 sufficiently small, we have ft1(x) < ft2(x).
By o-minimality, we obtain a linear ordering of the finitely many E-classes, and
since < is M-definable in a neighborhood of 0, this ordering is M-definable. Thus,
each ft in this finite family of endomorphisms is ∅-definable.

Assume now that the family { ft : t ∈ T } is infinite, and we shall reach a
contradiction. Consider the set { ft(1) : t ∈ T }. By o-minimality it contains an
open interval (a, b), and by replacing each ft with ft − ft0 , for some t0 ∈ T for
which ft0 ∈ (a, b), we may assume that the interval (a, b) contains 0 and the
ordering on (a, b) is M-definable (we think of ft(a) as “the slope” of ft ). Let
T0 = {t ∈ T : ft(1) ∈ (0, b)}.

We write t1 ∼ t2 if ft1 = ft2 , and let [t] be the equivalence class of t . In abuse of
notation we let f[t] denote the corresponding endomorphism of R.

By o-minimality, if ft1(1)= ft1(1) then ft1 = ft2 . Thus we obtain an M-definable
function t : (0, b) → T0/ ∼, defined by f[t (x)](1) = x . Namely, f[t (x)] is the
endomorphism whose “slope” is x . Fix an element d > 0, and define σ : (0, b)→ R
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by σ(x)= f −1
[t (x)](d). Namely, σ(x)= y if there exists t ∈ T0 such that ft(1)= x and

ft(y)= d (we may think of σ(x) as “d/x”). The function σ is also M-definable.
For every t ∈ T0, we have ft(1) > 0, and hence ft(x) > 0 if and only if x > 0.
Therefore, σ is positive on (0, b).

Claim. Im(σ ) is unbounded in R.

Indeed, assume towards contradiction that K = sup(Im(σ )) < ∞. By our
observation, K > 0. Choose y0 ∈ Im(σ ), y0 < K and sufficiently close to K such
that K < 2y0. By assumption, there exists t0 ∈ T0 and x0 > 0 such that ft0(1)= x0

and ft0(y0)= d .
Let t1 ∈ T0 be such that [t1] = t (x0/2). Then ft1(1)= x0/2 = ft0(1)/2. It follows

that ft1 = ft0/2 and hence

ft1(2y0)= ft0(2y0)/2 = ft0(y0)= d.

But then ft1(1) = x0/2 and ft1(2y0) = d, so by definition, σ(x0/2) = 2y0 > K ,
contradicting the assumption that K bounds Im(σ ).

Thus, Im(σ ) is an M-definable set which is unbounded and positive, contradict-
ing the assumption that M is strongly bounded. □

Definition 4.17. We denote by 3omin the set of all Romin-definable endomorphisms
f : ⟨R,+⟩ → ⟨R,+⟩, and we still let 3M denote the set of all M-definable
endomorphisms of R, which by Proposition 4.16, is necessarily ∅-definable. Let
3∗

omin and 3∗
M denote those nonzero endomorphisms.

Definable functions of one variable. Our goal is to describe definable functions in
one variable, and prove that M has no definable “poles”.

Proposition 4.18. If g : R → R is an M-definable partial function whose domain
is cobounded and Im(g) is bounded, then g is constant on a cobounded set.

Proof. By o-minimality, there exists L ∈ R such that limx→+∞ g(x)= L . We shall
see that g ≡ L on a cobounded set.

The function g is definable in an o-minimal structure, so there exists a1 ∈ R such
that g ↾ (a1,+∞) is either constant or strictly monotone, and there exists a2 such
that g is constant or strictly monotone on (−∞, a2).

If g is constant L on (a1,+∞) then {x ∈ R : g(x)= L} is unbounded and since
M is strongly bounded the set must be cobounded and we are done. Assume
towards contradiction that g ↾ (a1,∞) is strictly monotone.

Assume first that g is strictly increasing on (a1,∞). Notice that the property of be-
ing locally increasing in a neighborhood of x ∈ R is definable using<∗. Thus the set

{x ∈ R : g is locally increasing at x}

is M-definable, contains (a1,∞) and hence must be cobounded. It follows that g
is strictly increasing on (−∞, a2).
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Because limx→∞ g(x)= L and g is increasing, there exists b ∈ R such that for
all x > b, L − 1< g(x) < L . Because <∗ is M-definable the set of all x ∈ R such
that L − 1 < g(x) < L is M-definable, so must be cobounded. In particular, we
may assume that L − 1< g(x) < L for all x < a2 and thus g(x) has a limit L1 ∈ R
as x → −∞.

But since g is increasing on x < a2, it follows that L1 < L and in addition there
exists a′

2 ≤ a2 and ε > 0, such that for all x < a′

2,

L1 < g(x) < L1 + ε < L .

Using <∗ again, this is an M-definable property of x so must hold also for
all x > a′

1, contradicting the fact that limx→+∞ g(x)= L .
A similar argument works when g is eventually decreasing. □

Remark 4.19. By [Edmundo 2000], if N = ⟨R;<,+, . . . ⟩ is an o-minimal expan-
sion of an ordered group in which every definable bounded function is eventually
constant then N is semibounded, namely every definable set is definable using the
underlying ordered vector space, together with all the definable bounded sets. This
might suggest a fast deduction of Theorem 4.5 from Proposition 4.18. The problem
of this approach is that we do not know that the definable functions in the strongly
bounded M= ⟨R; +, <∗, . . . ⟩ are the same as in its expansion by the full <. Thus,
we do not see how to apply Edmundo’s theorem here.

Next, using almost identical arguments to [Edmundo 2000] we show that every
M-definable function f : R → R is affine on a cobounded set. For that, we recall
some notation and facts, based on [Miller and Starchenko 1998].

Notation. For Romin-definable positive (partial) functions f, g : R → R such
that (a,∞) ⊆ dom( f ), dom(g), we write f ≤ g (or f < g) if f (x) ≤ g(x)
(or f (x) < g(x)) for all large enough x .

We write v( f ) < v(g) if | f |> |λ ◦ g| for all λ ∈3∗

omin such that λ > 0. We also
write v( f )= v(g) if there are λ1, λ2 ∈3∗

omin, both positive, such that

|λ1 ◦ g| ≤ | f | ≤ |λ2 ◦ g|.

This is easily seen to be an equivalence relation, which roughly says that the rate of
growth of f and g at +∞ is of the same scale. In the case where R expands a real
closed field then v( f )=v(g) if and only if f and g belong to the same Archimedean
class with respect to R, namely there exists r ∈ R such that (1/r)|g| ≤ f ≤ r |g|.

Finally, we write 1( f )= f (x + 1)− f (x).

Fact 4.20 [Edmundo 2000]. For every Romin-definable function on an unbounded
ray,

(1) if v( f ) > v(x) then limx→∞1( f )= 0;
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(2) if v( f ) < v(x) then v( f −1) > v(x);

(3) if v( f )= v(x) then 1( f )(x) has a limit in R as x → ∞.

The following is just a warm-up towards Theorem 4.25. The proof follows
closely the proof of [Edmundo 2000, Proposition 2.8], which uses results of [Miller
and Starchenko 1998].

Lemma 4.21. If f : R → R is M-definable on a cobounded set, then f is eventually
affine. Moreover, there exists a ∅-definable endomorphism λ ∈ 3M and A > 0
such that for all x with |x |> A, we have f (x)= λ(x)+ d for some d ∈ R.

Proof. Assume towards contradiction that f : R → R is not eventually affine.
Without loss of generality, f is eventually increasing, and by Proposition 4.18, it
must approach +∞. If v( f ) > v(x) then by Fact 4.20, limx→∞1( f )= 0. Since
1( f ) := f (x + 1)− f (x) is definable in M, it follows from Proposition 4.18 that
it must be eventually 0 and therefore f is eventually affine.

If v( f ) < v(x) then by Fact 4.20, v( f −1) > v(x), where f −1 is taken to be the
eventual compositional inverse of f , which is also definable in M. Thus, as above,
f −1 is eventually affine so also f is.

We are left with the case v( f )= v(x). By Fact 4.20(3), the M-definable function
1( f ) approaches a limit c in R. By Proposition 4.18, we have 1( f ) eventually
constant, and thus, by o-minimality, f is eventually affine.

Thus, we showed so far that there exists a definable endomorphism λ ∈ 3M
such that f (x) = λ(x)+ d for all x > 0 large enough. By Proposition 4.16, λ is
∅-definable. The set

{x ∈ R : f (x)= λ(x)+ d}

is M-definable and contains an unbounded ray so must be cobounded. □

Before the next proposition, we introduce a new notion.

Definition 4.22. Given X ⊆ Rn , let

Stabbd(X) := {a ∈ Rn
: (a + X)△X is bounded},

where A△B = A ∪ B \ A ∩ B.

For a function f , we let 0( f ) denote its graph.
By Proposition 4.3, if X is definable in M over A then so is Stabbd(X). The

following facts are easy to verify:

Fact 4.23. (1) For every X ⊆ Rn , Stabbd(X) is a subgroup of ⟨Rn,+⟩.

(2) If X ⊆ R2 is the graph of an affine function f (x)= λ(x)+ b, on a cobounded
subset of R, then

Stabbd(X)= 0(λ).
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(3) If a definable set X ⊆ R2 is a finite union of graphs of affine functions, all of
the form λ+ d for a fixed λ, and at least one of the functions is defined on an
unbounded set, then Stabbd(X)= 0(λ).

The following statement would have been immediately true if definable sets in
M admitted definable cell decomposition (with respect to the ambient ordering).

Proposition 4.24. Assume that X ⊆ R2 is M-definable over A, and dim(X) ≤ 1.
Assume that there exists an Romin-definable endomorphism λ : R → R, and some
a, d ∈ R such that graph of λ(x) + d ↾ (a,∞) is contained in X. Then λ is
M-definable (necessarily over ∅).

Proof. Recall that A (X), the affine part of X is M-definable over A. For large
enough a, it contains 0(λ+d ↾ (a,∞)). So, without loss of generality, X = A (X).

We define for each x, y ∈ X , the relation x ∼ y if there exist open sets U, V ∋ 0
in R2 such that

(y − x)+ (x + U ∩ X)= y + V ∩ X.

Said differently, up to translation, X has the same germ at x and at y. Because a
basis for the R2 topology is definable in M, the relation ∼ is definable in M.

Notice that for x large enough, all elements on 0(λ+ d)∩ X are in the same
∼-class, so we may replace X by this ∼-class, which is M-definable.

Thus, we may assume that all elements of X are ∼-equivalent, and X contains
0(λ+ d ↾ (a,∞)). It follows that X is contained in finitely many translates of
the graph of λ. Applying Fact 4.23(3), we conclude that Stabbd(X) is exactly the
graph of λ, and thus the function λ(x) is M-definable. By Proposition 4.16, λ is
∅-definable. □

Definable subsets of R2. The next result is the main structure theorem of the paper.

Theorem 4.25. Under our standing assumptions on M, assume that X ⊆ R2 is
definable in M over a parameter set A ⊆ R, with dim(X) ≤ 1. Then there are
λ1, . . . , λr ∈3M and M-definable finite sets Di ⊆ R, i = 1, . . . , r , and D ⊆ R all
defined over A, such that

(i) For every i = 1, . . . , r , and d ∈ Di , 0(λi + d) \ X is bounded (i.e., X contains
the restriction of λi + d to a cobounded set).

(ii) For every d ∈ D, ({d} × R) \ X is bounded.

(iii) The set

X \

( r⋃
i=1

⋃
d∈Di

0(λi + d) ∪

⋃
d∈D

{d} × R
)

is bounded in R2.
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Proof. If X is bounded then there is nothing to prove, so we assume dim(X)= 1
and X is unbounded. By the cell decomposition theorem in o-minimal structures,
X can be decomposed into a finite union of cells of dimension 0 and 1. However,
these cells are not in general definable in M.

Assume first that X contains the graph of a function f : (a,+∞)→ R, and let
9(x, y) be the M-formula that defines X .

Case (i): f is bounded at ∞.
In this case we prove a general statement:

Claim 4.26. If dim X ≤ 1 and X contains the graph of a bounded function
f : (a,∞)→ R then f is eventually constant.

Proof. By o-minimality, limx→+∞ f (x)= L for some L ∈ R.
By our standing assumption,<↾ (0, a0) is M-definable, for some a0> 0, and thus

< is definable on every interval of length ≤ a0. Let X L := R×[L −a0, L +a0])∩ X .
By o-minimality, there exists m ∈ N such that for all large enough a ∈ R, we
have |Xa| ≤ m. The set Z = {a ∈ R : |Xa| ≤ m} is definable in M and unbounded,
so we may replace X L by X L ∩ Z × R, containing the graph of f . We call it X L

again.
Using the restricted order, we can partition X L , definably in M, into finitely

many graphs of functions g1, g2, . . . , gk , k ≤ m. For instance, we let

g1(x)= min{y ∈ [L − a0, L + a0] : ⟨x, y⟩ ∈ X L}

and continue similarly to obtain the other gi ’s. For x large enough, the function f
is one of those gi ’s, and therefore it is M-definable. Using Proposition 4.18 we get
that f is eventually constant. □

Case (ii): limx→+∞ f (x)= +∞.
We recall the proof of Lemma 4.21, and consider three cases: v( f ) > v(x),

v( f ) < v(x) and v( f )= v(x) (remembering though that we do not know yet that
f is an M-definable function).

Assume first that v( f ) > v(x). By Fact 4.20, f (x + 1)− f (x)→ 0, as x → ∞.
We want to capture 1( f )= f (x + 1)− f (x) within an M-definable set.

The formula

ϕ(x, y) := ∃z1∃z2 (9(x + 1, z1)∧9(x, z2)∧ (y = z1 − z2))

defines in M a new subset of R2 — call it 1(X)— which contains the graph of
1( f ) (but possibly more functions).

We first note that dim(1(X))= 1. Indeed, for a ∈ R, 1(X)a is infinite if either
Xa or Xa+1 is infinite. Since only finitely many Xa’s are infinite the same is
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true for 1(X). Thus, the graph of 1( f ) is contained in the one-dimensional M-
definable set 1(X), so by Claim 4.26, 1( f ) must be eventually constant, implying
that f is eventually affine.

Assume now that v( f ) < v(x). The formula ϒ(x, y) :=9(y, x) defines in M
a new set X−1 containing the graph of f −1 (a partial function). The graph of f −1

is still contained in X−1 and we have v( f −1) > v(x). Thus, applying the case we
already handled, we see that f −1, and hence also f is eventually affine.

We are left with the case v( f )= v(x). Using Fact 4.20(3), the function 1( f )
tends to a constant. Thus, as above, we may use the M-definable set 1(X) to
deduce that 1( f ) is eventually constant and thus f is eventually affine.

So far we handled all cases where the unbounded cell in X is the graph of some
function on a ray (a,∞). The same reasoning applies to rays (−∞, a). Applying
this reasoning to X−1, we obtain in addition those functions which are eventually
constant in X−1, namely sets of the form {d} × R whose intersection with X is
co-unbounded in {d} × R. The set of all such d is clearly definable over A.

To summarize, we showed that every unbounded cell in X is either contained
in the graph of an eventually affine function f definable in M, or in {d} × R for
some d. By Proposition 4.24, the function f has the form λ(x)+ d for λ ∈3M.
Thus, we have λ1, . . . , λk ∈ 3M, and for each such i = 1, . . . , k, the set Di of
d ∈ R such that 0(λi + d)∩ X is unbounded, is M-definable over A, and must be
finite. For every such d , 0(λi + d) \ X is bounded.

The above proof handles all unbounded cells, so the set

X \

( r⋃
i=1

⋃
d∈Di

0(λi + d)∪
⋃
d∈D

{d} × R
)

is bounded. □

The algebraic closure and definable closure in strongly bounded structures. Even
though the full ordering on R is not definable, we can still prove:

Theorem 4.27. The algebraic closure in M equals the definable closure. Moreover,
if a ∈ aclM(b̄) then a is in the Lbd-definable closure of b̄.

Proof. We use acl, dcl and aclbd, dclbd to denote the corresponding operations in
M and Mbd, respectively. We prove by induction on n that if a ∈ acl(b1, . . . , bn),
for some a, bi ∈ R, then a ∈ dclbd(b1, . . . bn).

We first handle the case n = 0, namely a ∈ acl(∅). In this case, there is a finite
∅-definable set A ⊆ M such that a ∈ A. Viewing the set A in Romin, we can order
the elements a1 < · · ·< an . The interval (a1, an) is a ∅-interval, and <↾ (a1, an) is
Mbd-definable over ∅, so each ai is in dclbd(∅).

We proceed by induction, and assume that we proved the result for n−1. Assume
now that a ∈ acl(b1, . . . , bn−1, bn). Let X ⊆ Rn+1 be a ∅-definable set such that
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⟨b1, . . . , bn, a⟩ and Xb1,...,bn has size m. Without loss of generality, for every b′
n ,

the set Xb1,...,bn−1,b′
n

has size m.
Let b′

= (b1, . . . , bn−1) and consider the set Xb′ = {⟨x, y⟩ ∈ R2
: ⟨b′, x, y⟩ ∈ X}.

By our assumption, dim(Xb′)≤ 1 and ⟨bn, a⟩ ∈ Xb′ .
We now apply Theorem 4.25. We obtain finitely many ∅-definable endomor-

phisms λ1, . . . , λk ∈3M and for each i = 1, . . . , k, we have a b′-definable finite
set Ai such that

Xbd
b′ = Xb′ \

( k⋃
i=1

⋃
d∈Ai

0(λi + d)
)

is bounded in R2.
Since |b′

|=n−1, it follows by induction that every d ∈ Ai is in dclbd(b′). Assume
first that ⟨bn, a⟩ is in the graph of one of the λi +d , d ∈ Ai , namely a = λi (bn)+d .
Because λi is ∅-definable and d ∈ dclbd(b′) it follows that a ∈ dclbd(b1, . . . , bn).

We are left with the case ⟨bn, a⟩ ∈ Xbd
b′ . The set Xbd

b′ is b′-definable so we may
assume that Xb′ = Xbd

b′ is bounded (but possibly not ∅-bounded). Let π1, π2 be the
projection of Xb′ onto the first and second coordinates. Each of these is a finite
union of points and pairwise disjoint bounded open intervals. Let

π1(Xb′)= F1 ∪

k⋃
i=1

(ai , bi ) for F1 finite and a1 < b1 < · · ·< ak < bk ,

and

π2(Xb′)= F2 ∪

r⋃
j=1

(c j , d j ) for F2 finite and c1 < d1 < · · ·< cr < dr .

By Theorem 4.9, there is a fixed K ∈ dcl(∅) such that for all i,= 1, . . . , k and
j = 1, . . . , r , we have bi − ai , d j − c j ≤ K .

By Lemma 4.8, the sets {ai }, {bi }, {c j }, {d j } are all finite and M-definable
over b′, and thus, by induction each of these endpoints is in dclbd(b′). Assume that
⟨bn, a⟩ ∈ X ∩(ai , bi )×(c j , d j ) for some i = 1, . . . , k and j = 1, . . . , r . We replace
X by the b′-definable set X1 = X −⟨ai , c j ⟩ ∩ (0, bi − ai )× (0, d j − c j )⊆ (0, K )2.
Notice that ⟨bn −ai , a −c j ⟩ ∈ X ′, and the fiber in X ′ over bn −ai is finite. Because
the ordering on (0, K ) is Mbd-definable over ∅, we have a−c j ∈ dclbd(b′, bn −ai ),
but since ai , c j ∈ dclbd(b′) we have a ∈ dclbd(b′, bn). This ends the proof that
acl = dclbd in M. □

Definable subsets of Rn. We are now ready to prove the main theorem, under the
assumptions outlined on p. 387.

Theorem 4.28. If X ⊆ Rn is M-definable over A ⊆ R then X is definable in Mbd

over A.
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Proof. It is sufficient to prove the result in N ≻ M, so by replacing Romin (thus
also its reducts) by a sufficiently saturated extension, we may assume that M is
ω-saturated.

We prove the result by induction on n. For X ⊆ R, the set X is either bounded
or cobounded, so we may assume that it is bounded. Thus, it can be written as a
disjoint union

(a1, b1)∪ · · · ∪ (an, bn)∪ F,

with a1 < b1 < · · · < an < bn and F finite. By Lemma 4.8, each ai and bi is in
aclM(A), so by Theorem 4.27, it belong to dclbd(A). Similarly, F ⊆ dclbd(A). By
Theorem 4.9, there is K ∈ dclbd(∅) such that all intervals (ai , bi ) are of length
at most K . But then each interval (0, bi − ai ) is contained in a ∅-interval, hence
definable in Mbd over A, so also (ai , bi ) is Mbd-definable over A. It follows that
X is definable in Mbd.

We now use induction on n. Given X ⊆ Rn+1 that is M-definable over A, we
consider, for each t ∈ Rn , the set

X t = {b ∈ R : ⟨t, b⟩ ∈ X} ⊆ R.

By the case n = 1, each X t is Mbd-definable over At . Thus, by compactness and
saturation, we can find Lbd-formulas over A, ϕ1(t, x), . . . , ϕk(t, x) such that for
every t ∈ Rn , one of the ϕi (t, x) defines X t . Let

Ti =
{
t ∈ Rn

: ∃x
(
⟨t, x⟩ ∈ X ∧ ∀x (x ∈ X t ↔ ϕi (t, x))

)}
.

The set Ti is M-definable, over A, and thus, by induction, it is Mbd-definable
over A by some ψi (t). The formula ϕi (t, x)∧ψi (t) defines X ∩ Ti × R, so X is
definable in Mbd over A. □

A comment on failure of definable choice in strongly bounded M. Recall that
a structure M has definable choice if for every definable family {X t : t ∈ T }

of sets, there is a definable function f : T →
⋃

X t such that f (t) ∈ X t and if
t1 = t2 then f (t1)= f (t2). Equivalently, every definable equivalence relation has
a definable set of representatives. This fails in strongly bounded M, because the
relation x Ey ⇔ y = −x on R cannot have a definable set of representatives. If it
did then it would contain either a positive or a negative ray (without its inverse).

We believe that elimination of imaginaries similarly fails.

5. Conclusion: The proof of Theorem 1.2

We are now ready to collect the results proved thus far in order to prove Theorem 1.2.
Recall that we want to prove that the only reducts between Rlin and Ralg are as

follows:
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Ralg = ⟨R; +, ·, <⟩,

Rsb = ⟨R; +, <,3R,B⟩,

Rsemi = ⟨R; +, <,3R⟩, Rbd = ⟨R; +, <∗,3R,B⟩,

R∗

lin = ⟨R; +, <∗,3R⟩,

Rlin = ⟨R; +,3R⟩.

First, we note that using [Edmundo 2000] we can generalize [Peterzil 1993,
Theorem 1.1] from R to arbitrary real closed fields, and show:

Fact 5.1. Let R be a real closed field. The only reduct between Rsemi and Ralg

is Rsb.

Proof. Assume that M is a reduct of Ralg which properly expands Rsemi. By
[Edmundo 2000, Fact 1.6], either M is a reduct of Rsb or a real closed field
F = ⟨R; ⊕,⊙⟩ whose universe R is definable in M. Assume the latter, and then
since the field is semialgebraic then, again by [Peterzil 1993, Corollary 2.4], every
semialgebraic subset of R is definable in F and hence in M. Thus, M =̇ Ralg.

If M is a reduct of Rsb which is not semilinear then by Theorem 3.2, every
bounded R-semialgebraic set is definable in M, and thus M =̇ Rsb. □

We now consider an arbitrary reduct M of Ralg. Our goal is to show that M is
one of the reducts in the above list.

First, if M is stable then by Claim 2.2, Rlin =̇ M. If M is unstable then by
Theorem 2.1, <∗ is definable in M. So R∗

lin ⊆̇ M. So, we may assume that <∗ is
definable in M, i.e., R∗

lin ⊆̇ M.

Case 1: M is strongly bounded and M ⊆̇ Rsemi.
We claim that M =̇ R∗

lin. Indeed, because M is strongly bounded then, by
Theorem 4.5, M =̇Mbd. Because M ⊆̇Rsemi, every M-definable set is semilinear,
and in particular this is true for each of the ∅-bounded sets in Mbd. However, it is
easy to verify that every bounded semilinear set is definable in R∗

lin, so the whole
structure Mbd is a reduct of R∗

lin, and thus so is M as well. The converse R∗

lin ⊆̇M
is already assumed.

Case 2: M is strongly bounded and M ⊈̇Rsemi.
We claim that M =̇Rbd. As in Case 1, every M-definable set is definable in Mbd.

Because M is a reduct of Ralg then Mbd is a reduct of Rbd and so M ⊆̇Rbd. By the
assumption that M ⊈̇Rsemi, we know that there is an M-definable semialgebraic set
which is not semilinear, so by Theorem 3.2, we get that every bounded semialgebraic
set is definable in M, hence Rbd ⊆̇ M.

Next we assume that M is not strongly bounded.
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Case 3: M is not strongly bounded and M ⊆̇ Rsemi.
By Lemma 2.3, the linear order < is definable in M, so, since R∗

semi ⊆̇ M, we
have Rsemi =̇ M.

Case 4: M is not strongly bounded and M ⊈̇Rsemi.
As in Case 3, the linear order < is definable in M, so Rsemi ⊆̇ M. So we

know that M is a reduct of Ralg which properly expands Rsemi. By Fact 5.1, either
M =̇ Ralg or M =̇ Rbd.

This completes the proof that if M is a reduct of Ralg expanding Rlin, then it is
one of the reducts in the above diagram.

It is left to see that all reducts in the above diagram are distinct. Because Rlin is
stable and R∗

lin is unstable, these two are distinct. Also, the fact that R∗

lin and Rbd

are distinct is easy to verify (e.g., the unit circle is definable in Rbd but not in R∗

lin).
The fact that Rbd is different than Rsb and Rsemi follows from the next lemma.

Lemma 5.2. Let R be a real closed field. If B∗ is any collection of bounded subsets
of Rn , n ∈ N, then < is not definable in M = ⟨R; +,3R,B∗

⟩.

Proof. We use a similar idea to [Peterzil 1992] Assume towards a contradiction that
< is definable in M, and let N = ⟨R : +, <,3R,B

∗
⟩.

Let ψ(x, y, ā), ā ∈ R be the M-formula that defines <. Namely,

N |H ∀x∀y (ψ(x, y, ā)↔ x < y).

Let Ñ = ⟨R̃; +, <,3R,B
∗
⟩ ≻ N be an |N |

+-saturated elementary extension
whose reduct to the M-language is M̃. It follows that ψ(x, y, ā) defines < in Ñ
as well.

We show that there is an automorphism of M̃ which fixes ā, thus leaving
ψ(R̃ × R̃, ā) invariant, and yet not respecting <, leading to a contradiction.

The group ⟨R̃,+⟩ is a vector space over R. We define an R-vector subspace of
R̃ by

A = {x ∈ R̃ : ∃α∈R (|x |< λα(1))}.

So, by Zorn’s lemma, there exists an R-vector space V ⊆ R̃ such that R̃ =A⊕V ,
and by the saturation assumption, V is nontrivial. Now we define the following
automorphism of the R-vector space R̃: on A we define τ1(v)= v, on ⟨V,+⟩ we
define τ2(v)= −v, and we let τ : R̃ → R̃ be

τ(v1 + v2)= τ1(v1)+ τ2(v2)= v1 − v2.

This automorphism fixes all elements in A and in particular fixes all sets in B∗

pointwise, but does not respect < (as positive elements in V are sent to negative
ones). In model theoretic language τ is an automorphism of the structure M̃ which
fixes ā (since ā ∈ A). However, τ does not preserve <, contradiction. □

This completes the proof of Theorem 1.2. □
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Appendix: The proof of Fact 3.1

Fact 3.1. Let R be a real closed field and X ⊆ Rn a definable set in an o-minimal
expansion of ⟨R;<,+, · ⟩. If X is not definable in Rsemi then, in the structure
M = ⟨R;<∗,+,3R, X⟩ there exists a definable bounded set which is not definable
in Rsemi.

Proof. We believe that this is known so we shall be brief. We prove the result by
induction on dim(X), where the case dim X = 0 is trivially true. Consider the affine
part of X , A (X), which is definable in M.

Assume first A (X) is not dense in X . Then there is an open box U ⊆ Rn such
that U ∩ X ̸=∅ and U ∩A (X)=∅. We claim that U ∩ X is not semilinear. Indeed,
if it were then A (U ∩ X) must be nonempty, but because U ∩ X is relatively open
in X then

A (U ∩ X)= U ∩ A (X)= ∅,
a contradiction.

Thus, U ∩ X above is not semilinear. and this gives the desired box when A (X)
is not dense in X .

We assume then that A (X) is dense in X , and consider two cases: A (X) is
either semilinear or not. If it were semilinear then necessarily X \ A (X) is not
semilinear, and because of the density assumption, dim(X \ A (X)) < dim(X) and
we can finish by induction.

Thus, we are left with the case that A (X) is not semilinear. For simplicity, we
may assume now that X = A (X). We recall the M-definable relation a ∼ b from
the proof of Proposition 4.24, defined by letting a ∼ b if X has the same germ at a
and b, up to translation.

Because X = A (X), each ∼-class is open in X , and thus there are finitely
many classes, at least one of which is not semilinear. Thus, we may assume that
X = A (X) consists of a single ∼-class. It follows that there is some R-subspace
L ⊆ Rn , dim L = dim X , such that X is contained in a finite union of cosets of L .
Thus each definably connected component of X is contained in a single such coset
of L .

Each L is definable in M using 3R , so the intersection of X with each of these
cosets is definable in M. One of these intersections is not semilinear, so we may
assume that X ⊆ c + L for some c. Because dim X = dim L , and A (X) = X ,
then X is open in c + L . We claim that Fr(X)⊆ c + L is not semilinear: Indeed,
Fr(X) is a closed subset of c + L , and X consists of finitely many components
of c + L \ Fr(X). If Fr(X) were semilinear then each of its components would also
be, so X would be semilinear.

Thus, Fr(X) is not semilinear, and definable in M. By o-minimality,

dim(Fr(X)) < dim(X).
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Therefore, by induction we may find an M-definable bounded set which is not
semilinear. □

In fact, a stronger result is true: If X ⊆ Rn is definable in an o-minimal expansion
of the field R and not semilinear, then there is some bounded open box U ⊆ Rn such
that U ∩ X is not semilinear (we omit the proof here as we do not need it). Notice
that this last statement fails if we replace “not semilinear” by “not semialgebraic”,
as Rolin’s example from [Le Gal and Rolin 2009] shows: There exists a definable
function f : R → R in an o-minimal expansion of the real field such that the
restriction of f to every bounded interval is semialgebraic but f itself is not
semialgebraic.
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