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Remarks around the nonexistence of difference closure

Zoé Chatzidakis

This paper shows that in general, difference fields do not have a difference closure.
However, we introduce a stronger notion of closure (κ-closure), and show that
every algebraically closed difference field K of characteristic 0, with fixed field
satisfying a certain natural condition, has a κ-closure, and this closure is unique
up to isomorphism over K .

Introduction

In this paper, a difference field is a field K with a distinguished automorphism σ . A
difference field L is difference closed if every finite system of difference equations
with coefficients in L which has a solution in a difference field extending L , already
has a solution in L .

If K is a difference field, then a difference closure of K is a difference closed field
containing K , and which K-embeds into every difference closed field containing K .

The algebra of difference fields was developed by Ritt, in analogy with the algebra
of differential fields. It is well-known that any differential field of characteristic 0 has
a differential closure, and that this differential closure is unique up to isomorphism
over the field. In 2016, Michael Singer asked whether this result generalises to the
context of difference fields. One of the main results of this paper is that it does
not, even after imposing some natural conditions on the difference field K . We
will show by two examples (Examples 1.3 and 1.4) that even the existence of a
difference closure can fail.

There are several natural strengthenings of the notions of difference closed and
difference closure (originating from model theory but having a natural algebraic
translation), and we will show that these notions do satisfy existence and uniqueness
of closure, provided we work over an algebraically closed difference field of
characteristic 0 whose fixed subfield is large enough.

The theory of difference closed difference fields has been extensively studied,
and is commonly denoted by ACFA. The proof of our result uses in an essential
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way the characteristic 0 hypothesis, as it allows us to use techniques of stability
theory. They provide examples of structures which are stable over a predicate; see
[13; 14] for definitions. The main result of the paper is as follows:

Theorem 3.14. Let κ be an uncountable cardinal or ℵε, and let K be an alge-
braically closed difference field of characteristic 0 such that F := Fix(σ )(K ) is
pseudofinite and is κ-saturated. Then there is a κ-prime model of ACFA over K .
Furthermore, it is unique up to isomorphism over K .

Here is an algebraic translation of this result for κ ≥ ℵ1: Call a difference field
U κ-closed if every system of < κ difference equations over U which has a solution
in some difference field extending U has a solution in U . The field U is a κ-closure
of the difference field K if it is κ-closed, contains K , and K-embeds into every
κ-closed difference field containing K . Then Theorem 3.14 states, for κ ≥ ℵ1:

Let K be an algebraically closed difference field of characteristic 0, whose
fixed field F is pseudofinite and such that every system of < κ polynomial
equations over F which has a solution in a regular extension of F already
has a solution in F. Then K has a κ-closure, and it is unique up to
K-isomorphism.

It is unlikely that this result can be generalised to the characteristic p context,
and in fact, I conjecture that unless the difference field K of characteristic p > 0 is
of cardinality < κ or is already κ-closed, then it does not have a κ-closure.

The paper is organised as follows. In Section 1 we discuss the problem and
reformulate it in model-theoretic terms, and describe the two examples. In Section 2,
we state the preliminary results we will need from difference algebra and model
theory. Section 3 contains the proof of Theorem 3.14.

1. Discussion of the problems and the examples

1.1. Notation and conventions. All difference fields will be inversive, i.e., the
endomorphism σ will be onto. Let K be a difference field, contained in some
large difference field U . If a is a tuple in U , we denote by K (a)σ the difference
field generated by a over K , i.e., the subfield K (σ i (a))i∈Z of U . The algebraic
and separable closure of a field L are denoted by Lalg and Ls , respectively, and
G(K ) denotes the absolute Galois group of K , i.e., Gal(K s/K ). If A ⊂ U , then
acl(A) denotes the smallest algebraically closed difference field containing A; it
coincides with the model-theoretic algebraic closure of A for the theory ACFA [5,
Proposition 1.7]. We denote by L the language {+,−, ·, 0, 1, σ }.

1.2. Translation into model-theoretic terms. Let K be a difference field. Recall
that any complete theory extending the theory ACFA of difference closed difference
fields is supersimple, unstable, of SU-rank ω, and does not eliminate quantifiers, but
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it eliminates imaginaries. It is extensively studied in [5]. The reason ACFA does
not eliminate quantifiers is that given an automorphism σ of a field K , there may be
several nonisomorphic ways of extending σ to K alg. So, the first obvious obstacle
to the existence of a difference closure is that, and a natural condition to impose is
to assume that K is algebraically closed. There is another natural condition one
needs to impose: if L is difference closed, then its fixed field

Fix(σ )(L)= {a ∈ L | σ(a)= a}

is pseudofinite. Moreover, every pseudofinite field can occur as the fixed field of
some difference closed field [1]. Thus if L is the difference closure of a difference
field K , then Fix(σ )(L)must be prime over Fix(σ )(K ) (for its theory in the language
of rings). Duret showed in [8] that any completion of the theory of pseudofinite
fields has the independence property. From his proof one extracts easily the fact
that nonalgebraic types are nonisolated, and this forces us to require in case K
is countable that Fix(σ )(K ) be pseudofinite in order to hope to have a difference
closure. The case when K is uncountable is a little more complicated, the question
is addressed and solved in [3].

It is therefore reasonable to make the following two assumptions:

K is algebraically closed, and Fix(σ )(K ) is pseudofinite.

But even this is not enough. To show this does not suffice, what we need to do
is the following:

Exhibit a difference field K satisfying the above two conditions, and
a finite system of difference equations which does not have a solution
in K , and such that any finite strengthening of this system has several
completions.

This looks easy, since even our stable types are only superstable, not ω-stable.
However, the first obvious examples do not satisfy the first condition. Here is a
more involved example, taken from [5, Example 6.7]:

Example 1.3 (an example in characteristic 0). Let k be a countable pseudofinite
field of characteristic 0 containing Qalg, and consider K = (kalg, σ ), where σ is
a (topological) generator of Gal(K/k). We consider the elliptic curve Ja , with
j-invariant a /∈ K , and which is defined by

y2
+ xy = x3

−
36

a−1728
x −

1
a−1728

.

We let A′ be a cyclic subgroup of Ja of order p2, A = [p]A′ and a1 the j -invariant
of the elliptic curve Ja/A, a2 the j-invariant of the elliptic curve Ja/A′. Then the
map Qalg(a, a1)→ Qalg(a1, a2) which is the identity on Qalg and sends (a, a1) to
(a1, a2) extends to a field automorphism of Q(a)alg, which in turns extends to an
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automorphism of K (a)alg which agrees with σ on K . Let 8(x, x1, x2) be the finite
system of polynomial equations which describe the algebraic locus of (a, a1, a2)

over K ; in the notation of [11, Chapter 5, §3] (see in particular Theorem 5),
8(x, x1, x2) can be written as

8p2(x2, x)=8p(x1, x)=8p(x2, x1)= 0.

(The equation 8n(y, x) = 0 says that y is the j-invariant of the quotient of the
elliptic curve Jx with j-invariant x by a cyclic subgroup of order n.) We now
consider the formula ψ(x) given by 8(x, σ (x), σ 2(x))∧ σ(x) ̸= x . Let b be any
solution of ψ(x). Note that necessarily, the kernel of the map Jb → Jσ n(b) for
n > 0 is cyclic of order pn . Indeed, note that σ n(b) satisfies ψ for every n; hence,
the kernel of the map Jσ n(b) → Jσ n+2(b) is cyclic of order p2, and this map is the
composite of the two maps Jσ n(b) → Jσ n+1(b) and Jσ n+1(b) → Jσ n+2(b), which both
have kernel of order p. An easy induction then gives the result.

As σ(b) ̸= b, we know that b is transcendental. Hence the curve Jb is not of CM-
type, its endomorphism group is isomorphic to Z, and therefore Jb is not isomorphic
to any of its quotients by finite cyclic subgroups; see, e.g., [15, Section C.11].
Therefore, the elements b, σ (b), σ 2(b), . . . are all distinct, and b /∈ K . Furthermore,
the isomorphism type of K (b)σ over K is determined by8(b, σ (b), σ 2(b)), because
as we saw above, the kernel of the map Jb → Jσ n(b) is cyclic of order pn for n > 0
(see also the discussion at the bottom of page 3058 in [5]).

So any difference closed field containing K must contain a solution of ψ(x).
However, Example 6.7 of [5] shows that if b is as above, and L is any finite extension
of K (b)σ , then there are 2ℵ0 nonisomorphic ways of extending σ to Lalg. Thus K
does not have a difference closure.

One can build other examples along the same lines, using moduli spaces of
abelian varieties.

Example 1.4 (an example in characteristic p > 0). Let K = k(A)alg
σ , where k is a

countable pseudofinite field fixed by σ , σ restricts to a generator of Gal(kalg/k), and
A is the set of solutions of the equation σ(x)p

−σ(x)+ x p
= 0 (in some countable

difference closed overfield). Then in any difference closed field containing K , the
set B of solutions of the equation σ(x)− x p

+ x = 0 is an infinite-dimensional
Fp-vector space. However, as was shown in Example 6.5 of [5], there are 2|A|

ways of extending σ from K k(B)alg
σ to K (B)alg

σ : there is a definable nondegenerate
bilinear map q : A × B → Fp, which can be chosen totally arbitrarily.

In fact this example is part of a large family of examples: let f and g be additive
polynomials with coefficients in a difference field K , and assume that the subgroup
A of Ga defined by f (x)= g(σ (x)) is locally modular. Then there is a definable
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subgroup B of Ga , and a definable nondegenerate bilinear map A × B → Fp. As
above, there is no prime model over K (A)σ .

While we provided examples of difference fields not having a difference closure,
we did not provide a procedure which, given a difference field which is not difference
closed, exhibits a nonisolated type which needs to be realised. So, the following
remains open:

Question 1.5. Are there any difference fields which are not difference closed but
admit a difference closure?

Omar León Sánchez and Marcus Tressl introduced in [12] the notion of large
differential fields of characteristic 0, and they showed that their (field-theoretic)
algebraic closure are differentially closed, thus showing that the theory DCF0 can
have minimal prime models. One may try introducing the notion of large difference
field, and hope for a similar result.

2. Preliminaries

Basic difference algebra.

2.1. Let K ⊂ U be difference fields. If X = (X1, . . . , Xn), the ring

K [X ]σ = K [σ i (X j )]1≤ j≤n,i∈N

is called the n-fold difference polynomial ring. A difference equation is an equation
of the form f (X)= 0 for some f (X) ∈ K [X ]σ .

If a is a finite tuple in U , and L is a difference subfield of K (a)σ containing K ,
then L = K (b)σ for some finite tuple b [7, 5.23.18].

An element a ∈ U is transformally algebraic over K if it satisfies some nontrivial
difference equation with parameters in K . Otherwise, it is transformally transcen-
dental over K . A tuple a is transformally algebraic over K if all its elements
are. A (maybe infinite) tuple of elements of U is transformally independent over
K if it does not satisfy any nontrivial difference equation with coefficients in K .
A transformal transcendence basis of U over K is a subset B of U which is
transformally independent over K and maximal such; every element of K will
then be transformally algebraic over K (B)σ . We denote by 1(K ) the transformal
transcendence degree of K , i.e., the cardinality of a transformal transcendence basis
of K , and if L is a difference field containing K , by 1(L/K ) the cardinality of a
transformal transcendence basis of L over K .

2.2. The fixed field. The fixed field of U is the field Fix(σ )(U) :={a ∈U |σ(a)=a}.
Then Fix(σ )(U) and K are linearly disjoint over their intersection. (Choose n
minimal such that there are c1, c2, . . . , cn ∈ Fix(σ ) and d1 = 1, d2, . . . , dn ∈ K
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such that
∑

i ci di = 0; applying σ we get that
∑

ciσ(di )= 0, and by minimality
of n, that σ(di )= di for all i .) This implies in particular that if E is a difference
subfield of K , then E Fix(σ )(U) and K are linearly disjoint over their intersec-
tion E(Fix(σ )(U)∩ K ). In positive characteristic, similar results hold for the other
fixed fields Fix(σ n Frobm).

Basic model-theoretic facts.

2.3. For references see [5]. The theory ACFA is supersimple, of SU-rank ω. It
eliminates imaginaries, but does not eliminate quantifiers. The completions of
ACFA are given by describing the isomorphism type of the automorphism σ of the
algebraic closure of the prime field [5, Corollary 1.4].

We let U be a sufficiently saturated model of ACFA, and K a difference subfield
of U .

2.4. Types, algebraic closure, independence. If a is a tuple of elements of U , then
tp(a/K ) is determined by the isomorphism type of the difference field acl(K a)=

K (a)alg
σ over K : a and b have the same type over K if and only if there is a K-

isomorphism of difference fields K (a)σ → K (b)σ which sends a to b and extends
to the algebraic closure of K (a)σ [5, Corollary 1.5]. The SU-rank of a over K ,
denoted by SU(a/K ), is bounded by tr.deg(K (a)σ/K ), and is finite if and only if
tr.deg(K (a)σ/K ) is finite (if and only if a is transformally algebraic over K ).

Let A, B,C be subsets of U . Then A is independent from B over C , denoted
A |⌣C B, if and only if the fields acl(AC) and acl(BC) are free over acl(C).
Equivalently, if whenever a is a tuple of elements in A, then the prime σ -ideal
Iσ (a/ acl(BC)) := { f (X) ∈ acl(BC)[X ]σ | f (a) = 0} is generated (as a σ -ideal)
by its intersection with acl(C)[X ]σ . Then independence coincides with nonforking,
and we also say, in that case, that tp(A/BC) does not fork over C .

2.5. Reducts. For an integer n>0, denote by L[n] the language {+,−, ·, 0, 1, σ n
},

and by U[n] the reduct (U, σ n) to the language L[n]. By [5, Corollaries to (1.12)],
U[n] ⊨ ACFA. If a is a tuple in U , then tp(a/K )[n] denotes the type of a in the
reduct U[n], and qftp(a/K )[n] the quantifier-free type of a in the reduct U[n].

2.6. Notions of canonical bases. If a is a tuple in U , then Cb(a/K ) denotes the
smallest difference field over which Iσ (a/K ) is defined. Then tp(a/K ) does not
fork over Cb(a/K ). Also, Cb(a/K ) is contained in the algebraic closure over K of
finitely many independent realisations of tp(a/K ); if K (a)σ is a regular extension
of K , then Cb(a/K ) is contained in the difference field generated over K by finitely
many independent realisations of tp(a/K ) (see the proof of Lemma 2.13(4) in [5]).
Cb(a/K ) denotes Cb(a/K )alg. Note that a (finitary) type does not fork over some
finite set.
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2.7. The generic type. The generic 1-type is the type of a transformally transcenden-
tal element. It is axiomatised by its quantifier-free part, is definable and stationary.1

Similarly, if V is a variety defined over the algebraically closed difference field K ,
then the generic type of V (which is characterised by having a realisation a with
1(K (a)σ/K )= dim(V )) is axiomatised by its quantifier-free part, is definable and
stationary [5, Corollaries 2.11].

2.8. Orthogonality of types. Let p and q be (partial) types over A and B, respec-
tively. If A = B, we say that p and q are almost orthogonal (or weakly orthogonal),
denoted by p ⊥

a q , if whenever a realises p and b realises q , then a |⌣A b. We say
that p and q are orthogonal, denoted by p ⊥ q , if whenever C contains A ∪ B, and
a realises p, b realises q , and a |⌣A C , b |⌣B C , then a |⌣C b.

2.9. The dichotomy in characteristic 0. Recall that a partial type π over a set A is
called one-based 2 if whenever a1, . . . ,an realise π and B⊃A, then (a1 . . . an) |⌣C B,
where C = acl(Aa1, . . . , an)∩ acl(B).3

Types of finite SU-rank are analysable in terms of types of SU-rank 1. The main
result of [5] says that in characteristic 0, a type q of SU-rank 1 is either one-based,
or nonorthogonal to the fixed field. Moreover, if q is one-based, then it is stable
stably embedded and definable. See Theorem 4.10 in [5].

2.10. Stable embeddability of the fixed field. Recall that a subset S of Un , which
is definable or ∞-definable, is stably embedded if whenever D ⊂ Unm is definable
with parameters from U , then D ∩ Sm is definable with parameters from S. An
important result of [5] (Proposition 1.11) says that the fixed field F := Fix(σ )
of U is stably embedded: if D ⊂ Fn is definable in the difference field U (with
parameters from U), then it is definable in the pure field language in F (with
parameters from F). In fact, one has more: let C = acl(C)⊂ U , and b a tuple in F .
Then tpF (b/C ∩ F) ⊢ tpU (b/C); indeed, all finite σ -stable extensions of CF are
contained in CFalg (see Lemma 4.2 in [4]), and therefore any (C ∩F)-automorphism
of the field F extends to a C-automorphism of the difference field acl(CF), since it
obviously extends to a C-automorphism of CF, and the automorphism σ of CFalg

extends uniquely to acl(CF) up to isomorphism over CFalg by Babbitt’s theorem
(see, e.g., Lemma 2.8 in [5]).

For more properties of stably embedded sets or types, see the appendix of [5].

2.11. More on stable stably embedded types. For a definition of a (partial) type
being stable stably embedded, see Lemma 2 of the appendix of [5]. Here we use

1A type p over a set A is stationary if whenever B ⊃ A, then p has a unique nonforking extension
to B.

2In [5], they are called modular.
3Here we are using the fact that any completion of ACFA eliminates imaginaries.
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the following consequence: let A = acl(A) be algebraically closed, and suppose
that tp(a/A) is stable stably embedded. Then tp(a/A) is definable (over A; see
Lemma 1 in the Appendix of [5]). Also, if B = Cb(a/A) and tp(a/B)⊥a tp(A/B),
then tp(a/B)⊢ tp(a/A); this is because tp(a/B) has a unique nonforking extension
to any superset of the algebraically closed set B.

Definition 2.12 (internality to the fixed field). Let π be a partial type over A ⊂ U ,
and F = Fix(σ )(U).

(1) π is qf-internal to Fix(σ ) if there is some finitely generated over A difference
field C such that whenever a realises π , there is a tuple b in F such that
a ∈ C(b). I.e., a ∈ CF.

(2) π is almost internal to Fix(σ ) if there is some finitely generated over A
difference field C such that whenever a realises π , there is a tuple b in F such
that a ∈ acl(Cb).

Remarks 2.13. Clearly qf-internality implies almost internality. Moreover, to show
qf-internality or almost internality of a (complete) type p, it is enough to do it for
a particular realisation a of the type p, i.e., to find C independent from a over A
such that a ∈ CF or a ∈ acl(CF). See Lemma 5.2 in [5].

Internality or almost internality (to Fix(σ )) of a type is in fact a property of its
quantifier-free part.

Recall that a difference field E is linearly disjoint from F over F ∩ E . It follows
that in (1) above, the tuple b can be taken so that C(b)= C(a)σ : take a generating
tuple d of the (pure) field extension F ∩ C(a)σ of F ∩ C ; as F is linearly disjoint
from C(a)σ over F ∩ C(a)σ , we get that CF is linearly disjoint from C(a)σ over
C(d), i.e., that C(a)σ = C(d) since a ∈ CF.

Lemma 2.14. Let A = acl(A), and assume that tp(a/A) is almost internal to Fix(σ ).
Then there is a′

∈ A(a)σ such that tp(a′/A) is qf-internal to Fix(σ ), σ(a′) ∈ A(a′),
and a ∈ acl(Aa′).

Proof. By assumption there is some tuple c independent from a over A and such
that a ∈ acl(AFc). Taking b in F such that A(c, a)σ ∩ F = (F ∩ A)(b), we
obtain that F is linearly disjoint from A(c, a)σ over (F ∩ A)(b), and therefore that
AF(c, b)σ and A(c, a)σ are linearly disjoint over A(c, b)σ , so that a ∈ acl(Acb)
(since a ∈ acl(AFcb)). As c is independent from a over A = acl(A), it follows
that A(c, a)σ = A(c, a, b)σ is a regular extension of A(a)σ , and therefore that
Cb(b, c/A(a)σ ) is contained in the difference field generated by finitely many inde-
pendent realisations of tp(b, c/A(a)σ ) (see 2.6). Again, as c is independent from
a over A and b is in F , it follows that if a′ is such that Cb(c, b/A(a)σ )= A(a′)σ ,
then tp(a′/A) is qf-internal to Fix(σ ). As b ∈ A(a′, c)σ and c is independent
from a over A, it follows that a ∈ acl(Aa′) as desired. As A(c, a′)σ = A(c, b)σ
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and b ∈ F , it follows that A(c, a′)σ is finitely generated as a field extension of A(c)σ .
But as a′ and c are independent over A, the same holds of the field extension
A(a′)σ/A, i.e., for some n, σ n(a′) ∈ A(a′, σ (a′), . . . , σ n−1(a′)). We then replace
a′ by (a′, σ (a′), . . . , σ n−1(a′)). □

2.15. The semiminimal analysis. Let a be a tuple which is transformally algebraic
over K . Thus SU(a/K ) < ω. As Th(U) is supersimple, there is a sequence
a1, . . . , an ∈ acl(K a) such that a ∈ acl(K a1, . . . , an), and for every 0 < i ≤ n,
tp(ai/ acl(K a1, . . . , ai−1)) is either one-based of rank 1, or almost internal to a
non-one-based type of rank 1. This is a classical result in supersimple theories;
for a proof in our case in characteristic 0, see Theorem 5.5 in [5]. Note that in
characteristic 0, by the dichotomy of 2.9, all non-one-based types of rank 1 are
nonorthogonal to σ(x)= x , and by Lemma 2.14, almost internality to Fix(σ ) may
be replaced by qf-internality to Fix(σ ).

Definition 2.16. Let T be a completion of ACFA, M a model of T .

(1) We say that M is ℵε-saturated if whenever A ⊆ M is finite, then every strong
1-type over A is realised in M . Equivalently, as our theory eliminates imaginaries,
if every 1-type over acl(A) is realised in M .

(2) Let κ be an infinite cardinal or ℵε, and A ⊆ M . We say that M is κ-prime
over A if M is κ-saturated, and A-embeds elementarily into every κ-saturated model
of Th(M, a)a∈A. When κ = ℵε, one also says that M is a-prime over A.

(3) Let κ be an infinite cardinal or ℵε. We say that A ⊆ M is small if A = acl(A0),
where A0 is finite if we are dealing with ℵε-saturation, and has cardinality<κ if we
are dealing with κ-saturation. We also say that A ⊆ M is very small if A = acl(A0),
where A0 is finite. Note that a (very) small set is in particular algebraically closed.

(4) Let κ be an infinite cardinal or ℵε, and A ⊆ M . A type p over A is κ-isolated
if it is implied by its restriction to some small subset of acl(A).

(5) We say that M is κ-atomic over A ⊆ M if whenever a is a (finite) tuple in M ,
then tp(a/A) is κ-isolated. Recall also that M is atomic over A if every finite tuple
realises an isolated type over A.

(6) We say that B = acl(B)⊆ M is κ-constructed over A ⊆ M if there is a sequence
(dα)α<µ in B \ A such that for every α < µ, tp(dα/ acl(Adβ | β < α)) is κ-isolated
and B = acl(Adα | α < µ).

Remarks 2.17. (1) If κ is a regular cardinal, then κ-atomicity is transitive: if
A ⊆ B ⊆ C ⊆ M , with B κ-atomic over A and C κ-atomic over B, then C is
κ-atomic over A. This is however not necessarily true when κ is singular. However,
this holds if B = acl(Ab) for some finite tuple b (since every finite tuple in B
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realises an isolated type over Ab), or if C is atomic over B. (There are stronger
statements involving cardinals λ < cf(κ).)

(2) If M is a κ-saturated model of T containing A and M is κ-constructed over A,
then M is κ-prime over A.

(3) The property of being κ-constructed is preserved under towers and unions of
chains indexed by ordinals.

2.18. Algebraic translation of the model-theoretic notions. Let us translate what
the notions of saturation mean in our case. We will be dealing with either un-
countable cardinals or ℵε. Recall from 2.4 that tp(a/A) is entirely determined by
the isomorphism type over the difference field generated by A of the difference
field acl(Aa). So, for κ an uncountable cardinal, the κ-saturation of a model M of
ACFA simply means that every system of <κ difference equations with coefficients
in M which has a solution in a difference field extending M already has a solution
in M . This is what was called κ-closed in the introduction.

The notion of κ-prime over a difference subfield corresponds to being a κ-closure
of that difference field.

In the case of ℵε-saturation, the algebraic description is a little more complicated,
and is better expressed in terms of embedding problems: Work inside a large
model U , and consider a submodel M of U . Then M is ℵε-saturated if whenever a
is a finite tuple of elements of M and b an element of U , there is an acl(a)-embedding
of acl(a, b) inside M .

A similar description holds for κ-saturated, with the base set a of cardinality <κ:
a model M of ACFA is κ saturated if whenever A ⊂ M is small and b is a finite
tuple in some difference field U containing M , then there is an A-embedding of
acl(Ab) into M . Note that |A|-many difference equations are necessary to describe
the isomorphism type of acl(Ab) over A.

3. The results

Results of Hrushovski [10] show that if F is a pseudofinite field and C ⊂ F , then
Th(F, c)c∈C eliminates imaginaries if and only if the absolute Galois group of the
relative algebraic closure inside F of the field generated by C is isomorphic to Ẑ. It
may therefore happen that Th(F) eliminates imaginaries in the ring language, but
it may also happen that extra elements are needed, for instance if F contains Qalg.
The following lemma will therefore be useful when dealing with ℵε-saturation.

Lemma 3.1. Let F be an ℵε-saturated pseudofinite field and a a finite tuple in F.
Then there is a finitely generated subfield A of F containing a and such that

G(Aalg
∩ F)≃ Ẑ.
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Proof. Let k be the relative algebraic closure inside F of the subfield generated by a,
and consider k(t), where t is transcendental over k. Let Q0 be the set consisting
of all integers n which are either prime numbers or 4 and such that G(k) does not
have a quotient isomorphic to Z/nZ. If char(k) ̸= 0, we let Q = Q0 \ {4}, and if
char(k)= 0, we let Q = Q0 \ {2}. If Q is empty, then G(k)≃ Ẑ, and we are done.
So, we assume that Q is nonempty.

By Proposition 16.3.5 of [9], for each n, k(t) has a Galois extension Ln which
is regular over k and with Gal(Ln/k(t)) = Z/nZ. Let L be the field composite
of all Ln , n ∈ Q. Then Gal(L/k(t)) ≃

∏
n∈Q Z/nZ. Observe that L ∩ kalg

= k,
because all the Ln are regular extensions of k and Galois over k(t) of relatively
prime order.

Take a topological generator σ0 of Gal(L/k(t)), and a topological generator σ1

of G(k). Let σ ∈ G(k(t)) extend (σ0, σ1)∈Gal(Lkalg/k(t))≃Gal(L/k(t))×G(k);
then the subfield A of k(t)alg fixed by σ is a regular extension of k, with Galois
group isomorphic to Ẑ, since its Galois group is procyclic, projects onto G(k), onto
all Z/pZ with p a prime, and onto Z/4Z if char(k)= 0.

By general properties of pseudofinite fields and by ℵε-saturation of F , there is
a k-embedding ϕ of A inside F , in such a way that ϕ(A)alg

∩ F = ϕ(A). This is
classical, and follows for instance from Lemma 20.2.2 in [9]. □

Lemma 3.2. Let κ be an uncountable cardinal or ℵε, and let K be a difference field
with Fix(σ )(K ) pseudofinite and κ-saturated. Then there is a model U of ACFA
containing K which is κ-saturated and with Fix(σ )(U)= Fix(σ )(K ).

Proof. (Compare with Afshordel’s result [1].) Let U1 be a κ-saturated model of
ACFA containing K , and let U ⊆ U1 be maximal such that

F := Fix(σ )(U)= Fix(σ )(K ).

We show that U satisfies our conclusion. First observe that U is algebraically closed.
Let A = acl(A)⊂ U be small and let p ∈ S1(A). Then p is realised in U1, and we
take some a ∈ U1 realising p, with SU(a/U) minimal. Let B ⊃ A be small such
that a |⌣B U , and replace p by tp(a/B).

If tp(a/U)⊥a Fix(σ ), then U(a)alg
σ has the same fixed field as U : indeed, U(a)alg

σ

and Fix(σ )(U1) are linearly disjoint over their intersection, which is contained in U
and therefore in K . So by maximality of U , a ∈ U .

Assume now that tp(a/U) ̸⊥
a Fix(σ ). Then there is some small C ⊂ U contain-

ing B, and a realisation a′ of tp(a/B) such that C(a′)σ ∩Fix(σ )(U1) contains some
element b not in U . We may and do assume that Fix(σ )(C) has absolute Galois group
isomorphic to Ẑ (by Lemma 3.1). But as F is κ-saturated, tpF (b/C ∩ F) is realised
in F , by some b1. Then b1 realises tp(b/C) (see the first paragraph of 2.10). Thus,
by κ-saturation of U1, there is some a1 ∈ U1 such that tp(a1, b1/C)= tp(a′, b/C).
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But then a1 realises p, and SU(a1/U)≤ SU(a′/B)−SU(b/C) < SU(a/B), which
gives us the desired contradiction.

So in both cases, p is realised in U . □

Corollary 3.3. Let κ be as above, and K an algebraically closed difference field
with Fix(σ )(K ) κ-saturated. If U is a κ-prime model of ACFA over K then
Fix(σ )(U)= Fix(σ )(K ).

Lemma 3.4. Let U be an ℵε-saturated model of ACFA of characteristic 0, and let K
be an algebraically closed difference subfield of U which contains F := Fix(σ )(U).
Let a ∈ U be such that p = tp(a/K ) is qf-internal to Fix(σ ), p ⊥

a Fix(σ ), and
assume that σ(a) ∈ K (a). Then there are a (very) small A ⊆ K and a tuple b ∈ U
of realisations of p such that

(1) F A(b) contains all realisations (in U) of qftp(a/A)[ℓ], for any ℓ≥ 1;

(2) if b′
∈ U realises qftp(b/A)[m] for some m ≥ 1, then F A(b′) contains all

realisations (in U) of qftp(a/A)[ℓ] for ℓ≥ 1;

(3) tp(a/A) ⊢ tp(a/K ), and tp(b/A) ⊢ tp(b/K ).

Proof. Let k ⊂ K be small such that a |⌣k K and Gal(Fix(σ )(k)alg/Fix(σ )(k)) is
isomorphic to Ẑ. Then σ(a) ∈ k(a) and k F contains Fix(σ ℓ)(U) for all ℓ≥ 1. By
assumption, there is some small B (in U , by ℵε-saturation of U) independent from
a over k such that a ∈ B F . Hence, there is a tuple c in B(a)σ ∩ F = B(a)∩ F such
that B(a)= B(c) (by Remarks 2.13). Let D = Cb(a, c/B). Then D(c)= D(a), and
D ⊂ k(c1, a1, . . . , cn, an) for some independent realisations (ci , ai ) of qftp(c, a/B)
(in some elementary extension of U). By ℵε-saturation of U , we may assume
that (c1, a1, . . . , cn, an) is in U , and is independent from (c, a) over D. We let
b = (a1, . . . , an), A = Cb(k, c1, a1, . . . , cn, an/K ); then D ⊂ k F(b), and A is
small. As A contains c1, . . . , cn (∈ F ⊂ K ) and k, we also have D ⊂ A(b), whence
a ∈ F A(b). Note that a |⌣k A since A ⊂ K .

If a′
∈ U realises qftp(a/A(b)), then the difference fields D(a) and D(a′) are

isomorphic. Hence there is some c′
∈ D(a′) ∩ F such that D(c′) = D(a′), i.e.,

a′
∈ F A(b).
Let a′ be an arbitrary realisation of qftp(a/A), and let b′ be a realisation

of qftp(b/A), which is independent from (b, a′) over A. By the previous paragraph
(as b′ consists of n realisations of qftp(a/A(b))) we know that b′

∈ F A(b). The dif-
ference fields A(b) and A(b′) are A-isomorphic, and this isomorphism extends to an
isomorphism of difference fields A(b, a)→ A(b′, a′). Hence, a′

∈ F A(b′)⊆ F A(b),
as desired. If a′ realises qftp(a/A)[ℓ] and is independent from D over k, then the
σ ℓ-difference fields D(a′) and D(a) are isomorphic over D. Let f (x) be the tuple
of rational functions over D such that f (a) = c; then σ ℓ( f (a′)) = f (a′) and
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D(a′) = D( f (a′)). Hence a′ belongs to F A(b). An argument similar to the one
given in the first case shows it for arbitrary realisation of qftp(a/A)[ℓ] and shows (1).

Note that we have in fact shown that F A(b′) = F A(b), and so the conclusion
of (1) also holds for b′. An easy argument allows to remove the assumption that
b′ is independent from b over A: let b′′ realise qftp(b/A), independent from (b, b′)

over A; then by the proof of the first part: F A(b′′)= F A(b) and F A(b′)= F A(b′′).
Working in U[ℓ], and noting that if m | ℓ then the realisations of qftp(a/A)[m]

also realise qftp(a/A)[ℓ], part (1) gives (2).
For the proof of (3), we first show that every realisation b′ of qftp(b/A)[ℓ] (in U)

is independent from K over A. Indeed, by (2), we know that F A(b) = F A(b′),
and therefore FK (b)= FK (b′)= K (b)= K (b′) (as A, F ⊆ K ). This implies that
tr.deg(b/K )= tr.deg(b′/K ), and therefore that b′ |⌣A K . As U is ℵε-saturated and
A is small, this shows that if d ∈ K , then

qftp(b/A)[ℓ] ⊥
a qftp(d/A)[ℓ].

By Proposition 4.9 of [5], if tp(b/A) ̸⊢ tp(b/K ), then there would be some tuple
d ∈ K and integer ℓ ≥ 1 such that qftp(d/A)[ℓ] ̸⊥

a tp(b/A)[ℓ]. But as we just
saw, this is impossible, and this gives us (3). (This is where the characteristic 0
assumption is crucial.) □

Remark 3.5. In the above notation, note that if U ≺ U ′ and F ′
= Fix(σ )(U ′), then

F ′ A(b) contains all realisations of qftp(a/A)[ℓ] in U ′, for any ℓ≥ 1.

Lemma 3.6. Let K , A, b,U be as in Lemma 3.4, and let L be a difference subfield of
U containing K . Then there is a small A′ containing A such that tp(b/A′)⊢ tp(b/L).
In particular, tp(a/A′) ⊢ tp(a/L).

Proof. Let A′
⊂ L be small, containing A and such that b |⌣A′ L . Then the proof

of (3) works. □

Corollary 3.7. Let K and U be as in Lemma 3.4, and p be a type which is almost
internal to Fix(σ ). Then any K-indiscernible sequence (ai ) of realisations of p in
U is finite.

Proof. Let (ai )i<ω be a sequence of realisations of p in U which is K-indiscernible.
Then either a0 ∈ K , or tp(a0/K ) is almost orthogonal to Fix(σ ) (since K contains
F := Fix(σ )(U)). By Lemma 2.14 there is a′

0 ∈ K (a0)σ such that σ(a′

0) ∈ K (a′

0),
a0 ∈ K (a′

0)
alg and tp(a′

0/K ) is qf-internal to Fix(σ ). It suffices to show the result
for p = tp(a′

0/K ). Let b be the finite tuple of realisations of tp(a′

0/K ) given by
Lemma 3.4. If n > d = tr.deg(K (b)/K ) and tp(a′

i , ai/K ) = tp(a′

0, a0/K ), then
we know that a′

n ∈ K (a′

0, . . . , a′

d−1)
alg (because K ⊃ F). Hence the sequence is

finite. □
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Definition 3.8. We call a type p over a set A acceptable (in K ⊃ A) if A is
the algebraic closure of a finite tuple, and either SU(p) = 1 and p is one-based,
or p is qf-internal to Fix(σ ), almost orthogonal to Fix(σ ), and if b realises p
then σ(b) ∈ A(b), tp(b/A) ⊢ tp(b/K ), and the set of realisations of qftp(b/A)[ℓ]
for ℓ≥ 1, in some model U of ACFA containing K , is contained in A(b)Fix(σ )(U).
Notation 3.9. Let p be a one-based type of SU-rank 1 over the very small set A. If
A ⊂ B ⊂ C , we denote by p|B the unique nonforking extension of p to B, and by
dimB p(C) the cardinality of a maximal B-independent subset of realisations of
p|B in C .

Lemma 3.10. Let p be an acceptable one-based type over the very small A, and let
K be an algebraically closed difference field containing A. We work in a sufficiently
saturated model U of ACFA. Let κ be an uncountable cardinal or ℵε.

(1) If K contains κ many A-independent realisations of p, then the nonforking
extension of p to K is not κ-isolated, and conversely.

(2) Assume that dimA p(K ) < κ . One of the following holds:
(a) There is some n < ω and realisations a0, . . . , an−1 of p|K such that

dimA p(acl(K a0, . . . , an−1)) ≥ κ > dimA p(K ). Furthermore, if n is
minimal with this property, then tp(a0, . . . , an−1/K ) is κ-isolated (but
p| acl(K a0, . . . , an−1) is not).

(b) If B is a set of K-independent realisations of p|K of size λ < κ , then
dimA p(acl(KB)) < κ .

Proof. (1) If C = acl(C) ⊂ K is small, then C contains < κ A-independent
realisations of p, so that the nonforking extension of p to C is realised in K , and
p|K is not κ-isolated. The converse is clear: the nonforking extension of p to K is
implied by its restriction to acl(A, p(K )).

(2) Case (a) is clear by (1) and because dim is additive. So, assume that there is no
such n, and let B be as in (b), and (ai )i<λ ⊂ B a maximal sequence of independent
over K realisations of p, and assume that λ < dimA p(acl(KB)) = µ ≥ κ . So
acl(K ai | i < λ) contains a set C consisting of µ many A-independent realisations
of p. Then for each c ∈ C , there is some finite Ic ⊂ λ such that c ∈ acl(K ai | i ∈ Ic).
As λ < µ, some set Ic appears µ times. Thus dimA p(acl(K ai | i ∈ Ic))= µ ≥ κ ,
which contradicts our assumption. □

Remark 3.11. Let p be the generic 1-type over K , and κ an infinite cardinal. Then
p is κ-isolated if and only if 1(K ) < κ . This follows easily from the description
and properties of the generic types (see 2.7).

Definition 3.12. Let K = acl(K )⊂ L = acl(L)⊂ U . We say that L is normal over
K (in U) if whenever a is a tuple in L , then L contains all realisations of tp(a/K )
in U .
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Lemma 3.13. Let κ be an uncountable cardinal or ℵε, let K ⊆ L be algebraically
closed difference subfields of U , where U is κ-saturated, and suppose Fix(σ )(U)⊂ K .
Assume that U is κ-atomic over K .

(1) Let a be a finite tuple in U . Then U is κ-atomic over acl(K a).

(2) Let B ⊂ U be transformally independent over K , and assume that either
|B|< κ , or that B is a transformal transcendence basis of U over K . Then U
is κ-atomic over acl(KB).

(3) If L is normal over K then U is κ-atomic over L.

Proof. (1) Clearly U is κ-atomic over K a, but we want something stronger. Let b∈U
be a finite tuple, and let C be a small subset of K such that tp(a, b/C)⊢ tp(a, b/K ).
Note that if b′ realises tp(b/Ca) then b′ |⌣Ca K , since (a, b′) |⌣C K by κ-isolation
of tp(a, b/K ). Let us first show the result when SU(b/Ca) < ω. If SU(b/Ca)= 0,
then b ∈ acl(Ca) and the result is obvious. The proof is by induction on SU(b/Ca);
using the semiminimal analysis of tp(b/ acl(Ca)) and induction, we may assume
that tp(b/ acl(Ca)) is either 1-based of SU-rank 1, or almost internal to Fix(σ ). If
tp(b/ acl(Ca)) is one-based, then it is also stable, hence has a unique nonforking
extension to any superset of acl(Ca), in particular to acl(K a), and by the remark
in the previous paragraph, we get the result: tp(b/ acl(Ca)) ⊢ tp(b/ acl(K a)).

Assume now that tp(b/acl(Ca)) is almost internal to Fix(σ), and let b′
∈acl(Cab)

be such that b ∈ acl(Cab′), σ(b′) ∈ acl(Ca)(b′), and tp(b′/ acl(Ca)) is qf-internal
to Fix(σ ) (see Lemma 2.14). By Lemma 3.4, there is a finite tuple e ∈ acl(K a) such
that tp(b′/ acl(e))⊢ tp(b′/ acl(K a)). Then tp(b′/ acl(Cae))⊢ tp(b′/ acl(K a)), and
because b ∈ acl(Cab′), we get the desired conclusion.

For the general case, because b is a finite tuple, there is a finite tuple d ∈

acl(Cab) such that SU(d/Ca) < ω, and tp(b/ acl(Cad)) is orthogonal to all types
of finite SU-rank. (Indeed, this follows from supersimplicity: if tp(b/ acl(Ca)) is
nonorthogonal to some type q of finite SU-rank, then there is b1 ∈ acl(Cab) with
0<SU(b1/ acl(Ca))<ω; repeat the procedure with tp(b/ acl(Cab1)) until it stops.)
By the first case, we know that there is a small C ′

⊂ acl(K a) containing C such
that tp(d/ acl(C ′a))⊢ tp(d/ acl(K a)), and that acl(K ad) is κ-atomic over acl(K a).
By Remarks 2.17(1), it suffices to show that tp(b/ acl(K ad)) is κ-isolated. By [6,
Theorem 5.3] (see also [6, Appendix B]), tp(b/ acl(Cad)) is stationary. But by the
first paragraph of the proof, we know that every realisation of tp(b/ acl(Cad)) is
independent from K over acl(Cad), and this gives the result.

(2) If B = ∅ there is nothing to prove, so suppose it is not. Then 1(K ) < κ

by Remark 3.11. Let a be a finite tuple in U , and let b ⊂ B be a finite tu-
ple such that a |⌣K b B. Let c ⊂ a be a transformal transcendence basis of
K (a, b)σ over K (b)σ (and therefore also over K (B)σ ). If c ̸= ∅, then |B| < κ ,
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1(K (B)) < κ , and therefore tp(c/ acl(KB)) is κ-isolated. Moreover, as a is trans-
formally algebraic over K (b, c)σ , and B \{b} is purely transformally transcendental
over K (b, c)σ , tp(a/ acl(K bc)) and tp(B/ acl(K bc)) are orthogonal, and by sta-
tionarity of tp(B/ acl(K bc)), we get that tp(B/ acl(K bc)) ⊢ tp(B/ acl(K ba)). By
symmetry,

tp(a/ acl(K bc)) ⊢ tp(a/ acl(KBc)).

But tp(a, b, c/K ) is κ-isolated, hence so is tp(a/ acl(K bc)) by (1), and this gives
the result.

(3) Let a be a finite tuple in U , and consider tp(a/L). Let d ⊂ a be maximal trans-
formally independent over L . If d ̸=∅, then d is transformally independent over K ,
which implies that1(L/K )= 0 (by normality of L/K ), and that1(K )=1(L)<κ
(by κ-isolation of tp(d/K )). Therefore tp(d/L) is κ-isolated.

If 1(L/K ) ̸= 0, note that by normality of L over K in U , every element of the
tuple a which is not in L is transformally algebraic over K . So, replacing a by a\L ,
we may assume they are all transformally algebraic over K , i.e., that SU(a/K ) < ω.
We then let d = ∅.

In both cases, by (2), U is κ-atomic over acl(K d), and the normality of L over
K implies the normality of acl(Ld) over acl(K d). Working over acl(K d), we may
therefore assume that a and D := Cb(a/L) are transformally algebraic over K .

We use induction on SU(a/L), and using the semiminimal analysis, we find
b ∈ acl(Da) such that tp(a/ acl(Db)) is either one-based of SU-rank 1, or almost
internal to Fix(σ ).

If tp(a/ acl(Db)) is almost internal to Fix(σ ), then so is tp(a/ acl(Lb)). By
Lemma 2.14, there is a′

∈ acl(Lba) such that a ∈ acl(Lba′) and tp(a′/ acl(Lb))
is qf-internal to Fix(σ ). By Lemma 3.4, there is a very small D′

⊇ D such that
tp(a′/ acl(D′b)) ⊢ tp(a′/ acl(Lb)), and we may choose it so that a ∈ acl(D′ba′).
This shows that tp(a/ acl(Lb)) is κ-isolated, and therefore so is tp(a/L).

So assume that p := tp(a/ acl(Db)) is one-based of SU-rank 1, and let c be
a tuple containing b such that acl(Db) = acl(c) =: C . We need to show that
dimC p(acl(Lc)) < κ . As U is κ-atomic over K , we know that tp(a, c/K ) is κ-
isolated, and therefore dimC p(acl(K c)) < κ . So, if dimC p(acl(Lc)) ≥ κ , then
there is some a′

∈ acl(Lc)\acl(K c) realising p. Recall that by our earlier step, c, a′

are transformally algebraic over K , and therefore so is e = Cb(K ca′/L). Consider
now acl(K ca′)∩ acl(K e)=: E ⊂ L; by Proposition 3.1 of [2], tp(e/E) is almost
internal to Fix(σ ), and therefore orthogonal to all one-based types. As tp(a′/K c)
is one-based, and a′

∈ acl(K ce) \ acl(K c), it follows that e ∈ E , since almost
internality to Fix(σ ) and nonorthogonality to a one-based type imply algebraicity.
That is, e ∈ acl(K ca′)∩ L , and as a′ /∈ acl(K c), the tuples a′ and e are equialgebraic
over acl(K c). Hence acl(K ca) contains a realisation of tp(e/ acl(K c)), because
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tp(a/ acl(K c)) = tp(a′/ acl(K c)). But this contradicts the normality of acl(Lc)
over acl(K c). So, dimC(p(acl(Lc)) < κ , and tp(a/Lb) is κ-isolated. □

Theorem 3.14. Let κ be an uncountable cardinal or ℵε, and let K be an alge-
braically closed difference field of characteristic 0 such that F := Fix(σ )(K ) is
pseudofinite and κ-saturated.

(1) Then there is a κ-prime model U over K .

(2) Furthermore, U is κ-atomic over K , and every sequence of K-indiscernibles
has length ≤ κ (i.e., if κ = ℵε, ≤ ℵ0; by convention, if κ is meant as a cardinal,
then ℵε will mean ℵ0).

Proof. By Lemma 3.2, there is a κ-saturated model U1 of ACFA containing K and
with fixed field F = Fix(σ )(K ). We will construct a submodel U of U1 which is
κ-prime over K and satisfies (2). This U will be κ-constructed.

Step 0. Taking care of the transformal transcendence degree.

If the transformal transcendence degree of K is < κ , then as any κ-saturated
model of ACFA has transformal transcendence degree at least κ , we enlarge K
as follows: let B ⊂ U1 be a set which is transformally independent over K and
of cardinality κ; by [5, Corollaries 2.11], this condition completely determines
the K-isomorphism type of K (B)alg

σ , and therefore any κ-prime model contains
a K-isomorphic copy of K (B)alg

σ . We let K0 = K (B)alg
σ . We need to show (2).

Each finite subset of B realises a κ-isolated type over K , since the transformal
transcendence degree of K is < κ . Moreover, every tuple in K0 realises an isolated
type over K (B)σ ; hence K0 is κ-atomic over K . It is also κ-constructed over K .

Let (ai )i<λ ⊂ K0 be a K-indiscernible sequence and λ a cardinal. If the ai are
transformally independent over K , then we know that |λ| ≤ κ . If not, then by
indiscernibility, the transformal transcendence degree of K (ai | i < λ)σ over K is
finite, and we choose a finite subset c of B such that K (ai | i < λ)σ is transfor-
mally algebraic over K (c)σ . As the elements of B are transformally independent
over K , this implies that all the ai are in fact algebraic over K (c)σ . Consider now
D := Cb(c/K ai | i < λ). For every i , we know that ai ∈ K (c)alg

σ , and therefore
by definition of D, ai ∈ D(c)alg

σ . But c is finite, D is contained in the algebraic
closure of a finite set (by 2.6), and therefore D(c)alg

σ is countable. Hence so is λ.
This shows condition (2) for the extension K0/K .

We build a sequence Kn , n<ω, of algebraically closed difference subfields of U1

such that

(i) if p is an acceptable type over a very small A ⊂ Kn , then Kn+1 contains
κ-many A-independent realisations of p;

(ii) Kn+1 is κ-constructed over Kn .
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We let K0 = K if the transformal transcendence degree of K is ≥ κ , and K (B)alg
σ

as in step 0 otherwise. We assume Kn constructed and wish to build Kn+1. Let pβ ,
β < λ, be an enumeration of the acceptable types in Kn , with corresponding very
small bases Aβ .

Step 1. Defining Kn+1 =
⋃
β<λ K ′

β .

We build the sequence K ′

β by induction on β, and let K ′

0 = Kn . If β is a limit
ordinal, then we let K ′

β =
⋃
γ<β K ′

γ , and Kn+1 = K ′

λ. We build them so that K ′

β+1
satisfies the following:

(i′) K ′

β+1 contains κ-many Aβ-independent realisations of pβ ;

(ii′) K ′

β+1 is κ-constructed over K ′

β .

Assume K ′

β constructed. If pβ has κ-many Aβ-independent realisations in K ′

β ,
then we let K ′

β+1 = K ′

β . Otherwise, we need to distinguish two cases:

Case 1: pβ is one-based.
Let ai , i < κ , be a sequence of K ′

β-independent realisations of pβ (a priori, in
some elementary extension of U1). By Lemma 3.10, either there is n < ω such that
acl(K ′

β, ai | i < n) contains κ-many Aβ-independent realisations of pβ ; in that case,
taking a minimal such n, tp(a0, . . . , an−1/K ′

β) is κ-isolated and therefore realised
in U1, so that we may assume a0, . . . , an−1∈U1 and we set K ′

β+1=acl(K ′

β, ai | i<n).
Then (i′) and (ii′) follow.

If there is no such n, then for every λ < κ , acl(K ′

βai | i < λ) does not contain
κ-many Aβ-independent realisations of p; by the same reasoning we may assume
the ai are in U1 and we define K ′

β+1 = acl(K ai | i < κ). Then (i′) and (ii′) again
are satisfied.

Case 2: Not case 1.
Let aβ ∈ U1 realise pβ , K ′

β+1 = K ′

β(aβ)
alg. By assumption on pβ , we have

tp(aβ/Aβ)⊢ tp(aβ/Kn). By Lemma 3.6, there is a very small subset B of K ′

β which
contains Aβ and is such that tp(aβ/B) ⊢ tp(a/K ′

β). So, tp(aβ/K ′

β) is κ-isolated.
We let K ′

β+1 = K ′

β(aβ)
alg
σ . We know that FK ′

β(aβ)σ contains all realisations of
tp(aβ/B) in U1. But since U1 is κ-saturated, it therefore contains κ independent
realisations of tp(aβ/Aβ), which shows (i′).

We now define U =
⋃

n∈ω Kn .

Step 2. Show that U is κ-saturated.

Let C ⊂U be small, and p a 1-type over C , realised by a in U1. If SU(p)=ω, then
a is transformally transcendental over C ; as C is small, K0 contains a realisation
of p. So we may assume that SU(p) < ω, and the proof is by induction on SU(p):
we assume that for any small D, any 1-type q over D of smaller SU-rank than p is
realised in U .
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If SU(p) = 0 there is nothing to prove, as p is realised in C . If there is
some b ∈ C(a)alg

σ such that 0 < SU(b/C) < SU(a/C), then we get the result
by induction: tp(b/C) is realised by some b′

∈ U , and there is a′
∈ U such that

tp(a′, b′/C)= tp(a, b/C) since acl(Cb′) is small and SU(a/Cb) < SU(p).
Hence we may assume that there is no such b, whence p is either one-based of

SU-rank 1 or almost internal to Fix(σ ) (by the semiminimal analysis of 2.15). We
need to distinguish three cases.

Case 1: p is one-based of SU-rank 1.
Let A ⊂ C be very small such that p does not fork over A. Let n < ω be such

that A ⊂ Kn; then p, being acceptable, occurs as a pβ , and is therefore realised
in Kn+1.

Case 2: p is realised in Fix(σ ).
If a ∈ Fix(σ ), we saw in 2.10 that tpF (a/C ∩ F) ⊢ tp(a/C). The saturation

hypothesis on F then gives the result: p is realised in F .

Case 3: Assume now that p ⊥
a Fix(σ ), p almost internal to Fix(σ ).

By Lemma 2.14, there is a1 ∈ C(a)σ such that tp(a1/C) is qf-internal to Fix(σ ),
σ(a1) ∈ C(a1), and a ∈ C(a1)

alg. We may replace p by tp(a1/C), i.e., assume that
p is qf-internal to Fix(σ ). Let C0 ⊂ C be very small such that p does not fork
over C0. By Lemma 3.4 there is a tuple b of realisations of p and a very small D
containing C0, contained in acl(CF), such that FD(b) contains all realisations of
qftp(a/D), and tp(b/D) ⊢ tp(b/ acl(CF)). Thus, tp(b/D) is acceptable, and if n
is such that D ⊂ Kn , then p in realised in Kn+1.

Step 3. U is κ-prime over K .

This is clear, by Remarks 2.17(2)–(3).

Step 4. U is κ-atomic over K .

When κ is regular or ℵε, then this follows from U being κ-constructed over K .
The proof in the singular case is a little more delicate, and is done by induction.
We already saw that K0 is κ-atomic over K . Let a be a finite tuple in U , and (in
the notation of Step 1) choose n minimal such that a ∈ Kn+1, and β minimal such
that a ∈ K ′

β+1. If n = −1, there is nothing to prove (by Step 0), so assume n ≥ 0.
By definition of K ′

β+1, there are a tuple b in K ′

β and a tuple c of realisations of
pβ such that a ∈ acl(K bc). We may assume that acl(K b) contains Aβ , and that
c |⌣K b K ′

β . By the induction hypothesis, tp(b/K ) is κ-isolated, and it therefore
suffices to show that tp(c/ acl(K b)) is κ-isolated (by Remarks 2.17(1)). If pβ is
qf-internal to Fix(σ ) then we know by Lemma 3.4 that there is some very small
D ⊂ acl(K b) such that tp(c/D) ⊢ tp(c/ acl(K b)), and we are done.

If pβ is one-based, then we may assume that the elements of the tuple c are inde-
pendent over K ′

β , maybe at the cost of increasing b ∈ K ′

β . Then, by the construction
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of K ′

β+1 in Step 1, we know that tp(c/K ′

β) is κ-isolated, so that if c′ is a proper sub-
tuple of c (consisting of realisations of pβ), then dimAβ pβ(acl(K ′

βc′)) < κ . In par-
ticular, dimAβ p(acl(K bc′))< κ , and tp(c/ acl(K b)) is κ-isolated (by Lemma 3.10).

Remark (notation as in Step 1 and above). The same proof shows that U is κ-atomic
over each Kn , and over each K ′

β . Moreover, the fact that U is κ-atomic over K ′

β

implies that pβ(U)⊂ K ′

β+1.

Step 5. If (bi )i<λ ⊂ U is K-indiscernible, with λ a cardinal, then λ≤ κ .

By supersimplicity, for some n < ω the elements bi , n < i < λ, are independent
over K (b0, . . . , bn)σ . If SU(bn+1/K b0, . . . , bn)≥ ω, then the tuple bn+1 contains
an element which is transformally transcendental over K , and as the transformal
transcendence degree of U over K is ≤ κ , we get λ ≤ κ . So we may assume
SU(bn+1/ acl(K b0, . . . , bn)) < ω.

Let L = acl(K b0, . . . , bn). Then the sequence (bi )n<i<λ is indiscernible over L .
Note that the sequence acl(Lbi ), n < i < λ, is also indiscernible over L under
a suitable enumeration of each acl(Lbi ). Hence, if cn+1 ∈ acl(Lbn+1), there are
ci ∈ acl(Lbi ), n + 1< i < λ, such that the sequence (ci )n<i<λ is indiscernible over
L . Using the semiminimal analysis (2.15) we may therefore assume that either
tp(ci/L) is one-based of SU-rank 1, or that tp(ci/L) is almost internal to Fix(σ ).
If tp(ci/L) is almost internal to Fix(σ ), then the result follows by Corollary 3.7.
The one-based case is a little more complicated.

Towards a contradiction, assume that λ > κ and tp(cn+1/L) is one-based of
SU-rank 1, let C ⊂ L be a very small set such that tp(cn+1/L) does not fork over C ,
and set p = tp(cn+1/C). Then the tuples ci , n < i < λ, form a Morley sequence
over C and over L . Let N be κ-prime over M := acl(L , ci | n < i < κ). We may
assume that N ≺ U .

Claim. U is κ-prime over L .

It suffices to show that U is κ-constructed over L . To do that it is enough to show
that each L Km is κ-constructed over L Km−1.

If m = 0 and K0 ̸= K , let B0 be a finite subset of B (the transformal tran-
scendence basis of U over K ) such that b := (b0, . . . , bn) is independent from K0

over acl(KB0). In particular, b is transformally algebraic over acl(KB0), and there-
fore tp(B/ acl(KB0))⊢ tp(B/ acl(LB0)) (reason as in the proof of Lemma 3.13(1)),
and as tp(B0/L) is κ-isolated, it follows that K0 is κ-constructed over L .

Assume now m > 0, and that we have shown that L K ′

β is κ-constructed over L .
If pβ is not one-based, then by Lemma 3.6, tp(aβ/ acl(L K ′

β)) is κ-isolated, and we
are done. Assume now that pβ is one-based; by construction there is a set (aα)α<µ
of K ′

β-independent realisations of pβ |K ′

β such that K ′

β+1 = acl(K ′

β, aα | α < µ),
and either µ ∈ ω or µ= κ .
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If µ ∈ ω, as U is κ-atomic over K ′

β , we get that tp(a0, . . . , aµ−1, b/K ′

β) is
κ-isolated and therefore L K ′

β+1 is κ-constructed over L K ′

β . If µ = κ , then
dimK ′

β
pβ(acl(K ′

β, b, aγ | γ < α)) < κ for each α < κ , so that L K ′

β+1 is κ-
constructed over L K ′

β (here we use that pβ(U)⊂ K ′

β+1 and that b is finite).
Hence, U being κ-prime over L , there is an L-embedding f of U into N . So

we have L ⊂ f (U) ≺ N ≺ U . As λ > κ and the ci are independent over L , there
is some n < j < λ such that f (c j ) /∈ M . But dimM(p) ≥ κ , and by Lemma 3.10,
p|M is not isolated. But N is κ-atomic over M , and f (c j ) realises p and is not
in M , which gives us the desired contradiction. This finishes the proof of (2) and
of the theorem. □

Proposition 3.15. Let κ be an uncountable cardinal or ℵε, and let U and U ′ be
κ-saturated models of ACFA of characteristic 0. Assume that U (resp., U ′) contains
an algebraically closed difference field K (resp., K ′), over which it is κ-atomic
and over which every sequence of indiscernibles has length ≤ κ . Assume moreover
that F := Fix(σ )(K )= Fix(σ )(U), Fix(σ )(K ′)= Fix(σ )(U ′), and that we have an
isomorphism f : K → K ′. Let p be an acceptable type over some very small A ⊂ K ,
and p′

= f (p). If L = acl(K p(U)) and L ′
= acl(K p′(U ′)), then f extends to an

isomorphism between L and L ′.

Proof. Note that p′ is also acceptable, with very small basis A′
= f (A). If p

is not one-based, then this is clear by Lemma 3.4: L = acl(K b), L ′
= acl(K ′b′)

for some tuples b realising p and b′ realising p′. We extend f |A to an isomor-
phism g0 : acl(Ab) → acl(A′b′) which sends b to b′; as tp(b/A) ⊢ tp(b/K ) and
tp(b′/A′) ⊢ tp(b′/K ′), g0 ∪ f extends to an isomorphism acl(K b)→ acl(K ′b′).

Assume now that p is one-based. Any κ-saturated model of ACFA containing
A contains (at least) κ realisations of p which are independent over A; hence
so do U and U ′. Let (ai )i<λ ⊂ U be a set of realisations of p which is max-
imal independent over K , with λ a cardinal, and let (a′

i )i<µ ⊂ U ′ be defined
analogously over K ′. By Lemma 3.10 and our hypothesis on the length of K-
indiscernible sequences, either λ is finite or λ = κ . If λ = n < ω, then as
tp(a′

0, . . . , a′

n−1/K ′)= f (tp(a0, . . . , an−1/K )), it follows that acl(K ′a′

0, . . . , a′

n−1)

contains κ-many independent realisations of f (p), so that µ≤ n. The symmetric
argument gives µ = λ. Define g on K (ai | i < λ)σ by g(ai ) = a′

i , and extend
to L = acl(K ai | i < λ). □

Theorem 3.16. Let κ be an uncountable cardinal or ℵε, and let U and U ′ be κ-
saturated models of ACFA of characteristic 0 containing an algebraically closed
difference field K , with F := Fix(σ )(K )= Fix(σ )(U)= Fix(σ )(U ′). Assume that
U and U ′ are κ-atomic over K , and that any sequence of K-indiscernibles in U or
in U ′ has length ≤ κ . Then U ≃K U ′.
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Proof. We start with the generic type: if the transformal transcendence degree of K
is ≥ κ , then U and U ′ are transformally algebraic over K . If not, then let D be a
transformal transcendence basis of U over K and D′ a transformal transcendence
basis of U ′ over K . They have the same cardinality κ , and there is a K-isomorphism
K (D)alg

σ → K (D′)
alg
σ . By Lemma 3.13, U and U ′ still satisfy the hypotheses over

K (D)alg
σ and K (D′)

alg
σ . Hence we may assume that both U and U ′ are transformally

algebraic over K . We define by induction on n an increasing sequence Kn of
algebraically closed subfields of U such that for each n, if p is an acceptable type
over some (very small) A ⊂ Kn−1, then Kn contains all realisations of p in U , and
furthermore, Kn = acl(Kn−1 P) for the set P of all realisations (in U) of acceptable
types over some subset of Kn−1. Then each Kn is normal over Kn−1 (and in fact
over K ), and so by Lemma 3.13, U satisfies the hypotheses over Kn . Note also that
U =

⋃
n<ω Kn . We let Ln ⊂ U ′ be defined analogously. It then suffices to build a

sequence gn of K-isomorphisms Kn → Ln .
Assume gn−1 already built. Let pβ , β < λ, be an enumeration of all acceptable

types over a subset of Kn−1, with associated small basis Aβ . Note that f (pβ), β <λ,
enumerates all acceptable types over subsets of Ln−1, since if q is an acceptable
type over the very small C ⊂ Ln−1, so is g−1

n−1(q) (over g−1
n−1(C) ⊂ Kn−1). We

build by induction on β < λ an increasing sequence K ′

β of algebraically closed
difference subfields of U such that K ′

β contains all realisations in U of pγ for
all γ <β. Assume we have extended gn−1 to an isomorphism fβ : K ′

β → L ′

β , where
L ′

β contains all realisations in U ′ of gn−1(pγ ) for all γ < β. As U is κ-atomic
over Kn−1, it is also κ-atomic over K ′

β (by Lemma 3.13), and similarly, U ′ is κ-
atomic over L ′

β = fβ(K ′

β). Extending fβ to an isomorphism fβ+1 : K ′

β+1 → L ′

β+1
is given by Proposition 3.15.

As remarked before, if q is an acceptable type over some A′
⊂ L ′

n−1, then
g−1

n−1(q)= pβ for some β<λ, and so L ′
n contains q(U ′), and K ′

n contains g−1
n−1(q)(U).

This finishes the induction step. Then g =
⋃

n<ω gn is a K-isomorphism between
U and U ′. □

Theorem 3.17. Let κ be an uncountable cardinal or ℵε and let K be an alge-
braically closed difference field of characteristic 0, with Fix(σ )(K ) pseudofinite
and κ-saturated. Then ACFA has a κ-prime model over K , and it is unique up to
K-isomorphism.

Proof. This follows immediately from Theorem 3.16 together with Theorem 3.14,
as the properties are preserved by elementary substructures. □

Remark 3.18. Note that the result also holds under the weaker hypothesis that K is
algebraically closed, |Fix(σ)(K )|<κ , and κ<κ=κ≥ℵ1, so that the theory of pseudo-
finite fields has a unique (up to K-isomorphism) saturated model of cardinality κ
containing Fix(σ )(K ). (This uses the stable embeddability of Fix(σ ); see 2.10.)
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