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We extend previous work on Hrushovski’s stabilizer theorem and prove a measure-
theoretic version of a well-known result of Pillay–Scanlon–Wagner on products of
three types. This generalizes results of Gowers on products of three sets and yields
model-theoretic proofs of existing asymptotic results for quasirandom groups.
We also obtain a model-theoretic proof of Roth’s theorem on the existence of
arithmetic progressions of length 3 for subsets of positive density in suitable
definably amenable groups, such as countable amenable abelian groups without
involutions and ultraproducts of finite abelian groups of odd order.

Introduction

Szemerédi [1975] answered positively a question of Erdős and Turán by showing
that every subset A of N of upper density

lim sup
n→∞

|A ∩ {1, . . . , n}|

n
> 0

must contain an arithmetic progression of length k for every natural number k.
For k = 3, the existence of arithmetic progressions of length 3 (in short 3-AP)
was already proven by Roth [1953] in what is now called Roth’s theorem on
arithmetic progressions (not to be confused with Roth’s theorem on diophantine
approximation of algebraic integers). There has been (and still is) impressive work
done on understanding Roth’s and Szemerédi’s theorems, explicitly computing
lower bounds for the density as well as extending these results to more general
settings. In the second direction, it is worth mentioning Green and Tao’s result
[2008] on the existence of arbitrarily long finite arithmetic progressions among the
subset of prime numbers, which however has upper density 0.
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In the noncommutative setting, proving single instances of Szemerédi’s theorem,
particularly Roth’s theorem, becomes highly nontrivial. Note that the sequence
(a, ab, ab2) can be seen as a 3-AP, even for noncommutative groups. Gowers
[2008, Question 6.5] asked whether the proportion of pairs (a, b) in PSL2(q), for
q a prime power, such that a, ab and ab2 all lie in a fixed subset A of density δ,
approximately equals δ3. Gowers’s question was positively answered by Tao [2013]
and later extended to arbitrary nonabelian finite simple groups by Peluse [2018].
For arithmetic progressions (a, ab, ab2, ab3) of length 4 in PSL2(q), a partial result
was obtained in [Tao 2013], whenever the element b is diagonalizable over the finite
field Fq (which happens half of the time).

A different generalization of Roth’s theorem, present in [Sanders 2009; Henriot
2016], concerns the existence of a 3-AP in finite sets of small doubling in abelian
groups. Recall that a finite set A of a group has doubling at most K if the productset
A · A = {ab}a,b∈A has cardinality |A · A| ≤ K |A|. More generally, a finite set has
tripling at most K if |A · A · A| ≤ K |A|. If A has tripling at most K , the comparable
set A ∪ A−1

∪ {idG} (of size at most 2|A| + 1) has tripling at most (C K C)2 with
respect to some explicit absolute constant C > 0, so we may assume that A is
symmetric and contains the neutral element. Archetypal sets of small doubling are
approximate subgroups, that is, symmetric sets A such that A · A is covered by
finitely many translates of A.

The model-theoretic study of approximate subgroups originated in Hrushovski’s
striking paper [2012], which contained the so-called stabilizer theorem, adapting
techniques of stability theory to an abstract measure-theoretic setting. Hrushovski’s
work has led to several remarkable applications of model theory to additive combi-
natorics.

In classical geometric model theory, and more generally, in a group G definable
in a simple theory, Hrushovski’s stabilizer of a generic type over an elementary
substructure M is the connected component G00

M , that is, the smallest type-definable
subgroup over M of bounded index (bounded with respect to the saturation of the
ambient universal model). Generic types in G00

M are called principal types. If the
theory is stable, there is a unique principal type, but this need not be the case for
simple theories. However, Pillay, Scanlon and Wagner [1998, Proposition 2.2]
noticed that for every three principal types p, q and r in a simple theory over an
elementary substructure M , there are independent realizations a of p and b of q
over M such that a · b realizes r . The main ingredient in their proof is a clever
application of 3-complete amalgamation (also known as the independence theorem)
over the elementary substructure M .

For the purpose of the present work, we shall not define what a general complete
amalgamation problem is, but a variation of it, restricting the problem to conditions
given by products with respect to the underlying group law:
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Question. Fix a natural number n ≥ 2. For each nonempty subset F of {1, . . . , n},
let pF be a principal generic (that is, weakly random) type over the elementary
substructure M . Can we find (under suitable conditions) an independent (weakly
random) tuple (a1, . . . , an) of Gn such that for all ∅ ̸= F ⊆ {1, . . . , n}, the element
aF realizes pF , where aF stands for the product of all ai , with i in F , written with
the indices in increasing order?

The above formulation resonates with [Green and Tao 2008, Theorem 5.3] for
quasirandom groups and agrees for n = 2 with the aforementioned result of Pillay,
Scanlon and Wagner.

In this work, we give a (partial) positive solution for n = 2 (Theorem 3.10) to
the above question for definable groups equipped with a definable Keisler measure
satisfying Fubini (e.g., ultraproducts of groups equipped with the associated counting
measure localized with respect to a distinguished finite set, as in Example 1.5). As
a by-product, we obtain a measure-theoretic version of the result of Pillay, Scanlon
and Wagner (Theorem 3.10):

Main Theorem. Given a pseudofinite subset X of small tripling in a sufficiently
saturated group G and a countable elementary substructure M , for every weakly
random type q and almost all pairs (p, r) of weakly random types over M concen-
trated in the subgroup ⟨X⟩ generated by X , there is a weakly random pair (a, b)
over M in p × q with a · b realizing r , whenever Cos(p) · Cos(q)= Cos(r), where
Cos(p) is the coset of ⟨X⟩

00
M determined by the type p.

The result of Pillay, Scanlon and Wagner holds for all such pairs (p, r) of generic
types. Unfortunately, our techniques can only prove the analogous result outside
a set of measure 0. Whilst we do not know how to obtain the result for all pairs
(p, r) of weakly random types over M , our results however suffice to reprove
model-theoretically some known results. Using a model-theoretic analog of Croot–
Sisask’s almost periodicity [Croot and Sisask 2010, Corollary 1.2] (Corollary 3.2),
we easily deduce a nonquantitative version of Roth’s theorem (Theorem 3.14) on
3-AP for finite subsets of small doubling in abelian groups with trivial 2-torsion,
which resembles previous work of Sanders [2009, Theorem 7.1] and generalizes a
result of Frankl, Graham and Rödl [1987, Theorem 1].

In Section 4, we reprove model-theoretically results valid for ultra-quasirandom
groups, that is, asymptotic limits of quasirandom groups, already studied in [Bergel-
son and Tao 2014], and later in [Palacín 2020]. In particular, in Corollary 4.8
we give nonquantitative model-theoretic proofs of [Gowers 2008, Theorems 3.3
and 5.3]. In Section 5, we explore further this analogy to extend some of the results
of Gowers to a local setting, without imposing that the group is an ultraproduct of
quasirandom groups (see Corollaries 5.12 and 5.13).
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We assume throughout the text a certain familiarity with basic notions in model
theory. Sections 1, 2 and 3 contain the model-theoretic core of the paper, whilst
Sections 4 and 5 contain applications to additive combinatorics.

1. Randomness and Fubini

Most of the material in this section can be found in [Halmos 1974; Hrushovski
2012; Massicot and Wagner 2015; Simon 2015].

We work inside a sufficiently saturated model U of a complete first-order theory
(with infinite models) in a countable language L, that is, the model U is saturated
and strongly homogeneous with respect to some sufficiently large cardinal κ . All
sets and tuples are taken inside U.

A subset X of Un is definable over the parameter set A if there exists a formula
ϕ(x1, . . . , xn, y1, . . . , ym) and a tuple a = (a1, . . . , am) in A such that an n-tuple
b belongs to X if and only if ϕ(b, a) holds in U. As usual, we identify a definable
subset of U with a formula defining it. Unless explicitly stated, when we use the
word definable, we mean definably possibly with parameters. It follows that a subset
X is definable over the parameter set A if and only if X is definable (over some
set of parameters) and invariant under the action of the group of automorphisms
Aut(U/A) of U fixing A pointwise. The subset X of U is type-definable if it is the
intersection of a bounded number of definable sets, where bounded means that its
size is strictly smaller than the degree of saturation of U.

For our applications we mainly consider the case where the language L contains
the language of groups and the universe of our ambient model is a group. Nonethe-
less, our model-theoretic setting works as well for an arbitrary definable group, that
is, a group whose underlying set and its group law are both definable.

Definition 1.1. A definably amenable pair (G, X) consists of an underlying defin-
able group G together with the following data:

• a definable subset X of G;

• the (boolean) ring R of definable sets contained in the subgroup ⟨X⟩ generated
by X , that is, the subcollection R is closed under finite unions and relative
set-theoretic differences;

• a finitely additive measure µ on R invariant under both left and right translation
with µ(X)= 1. (Note that we require translation invariance under both actions).

Note that the subgroup ⟨X⟩ generated by the subset X need not be definable, but
it is locally definable, for the subgroup ⟨X⟩ is a countable union of definable sets
of the form

X⊙n
= X1 · · · X1︸ ︷︷ ︸

n

,
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where X1 is the definable set X ∪ X−1
∪{idG}. Furthermore, every definable subset

Y of ⟨X⟩ is contained in some finite product X⊙n , by compactness and saturation
of the ambient model.

Remark 1.2. Model-theoretic compactness implies that the finitely additive measure
µ satisfies Carathéodory’s criterion, so there exists a unique σ -additive measure on
the σ -algebra generated by R. On the other hand, for every definable set Y of R over
any set of parameters C , the measure µ extends to a regular Borel finite measure on
the Stone space SY (C) of complete types over C containing the C-definable set Y ;
see [Simon 2015, p. 99].

We denote the above extension of µ again by µ, though there will be (most
likely) Borel sets of infinite measure, as noticed by Massicot and Wagner:

Fact 1.3 [Massicot and Wagner 2015, Remark 4]. The subgroup ⟨X⟩ is definable if
and only if µ(⟨X⟩) is finite.

Throughout the paper, we always assume that the language L is rich enough
(see [Starchenko 2017, Definition 3.19]) to render the measure µ definable without
parameters.

Definition 1.4. The measure µ of a definably amenable pair (G, X) is definable
without parameters if for every L-formula ϕ(x, y), every natural number n ≥ 1 and
every ϵ > 0, there is a partition of the L-definable set

{y ∈ U|y|
| ϕ(U, y)⊆ X⊙n

}

into L-formulae ρ1(y), . . . , ρm(y) such that whenever a pair (b, b′) in U|y|
× U|y|

realizes ρi (y)∧ ρi (y′), then

|µ(ϕ(x, b))−µ(ϕ(x, b′))|< ϵ.

The above definition is a mere adaptation of [Starchenko 2017, Definition 3.19]
to the locally definable context, by imposing that the restriction of µ to every
definable subset X⊙n is definable in the sense of [Starchenko 2017, Definition 3.19].
In particular, a definable measure of a definably amenable pair (G, X) is invariant,
that is, its value is invariant under the action of Aut(U). Notice that whenever
the measure µ is definable, given a definable subset ϕ(x, b) of measure r and a
value ϵ > 0, the tuple b lies in some definable subset which is contained in{

y ∈ U|y|
| r − ϵ ≤ µ(ϕ(U, y))≤ r + ϵ

}
.

Assuming that µ is definable, its extension to the σ -algebra generated by the
definable subsets of ⟨X⟩ is again invariant under left and right translations, as well
as under automorphisms. Indeed, every automorphism τ of Aut(U) (likewise for
left and right translations) gives rise to a measure µτ , such that µτ (Y )= µ(τ(Y ))
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for every measurable subset Y of ⟨X⟩. Since µτ agrees with µ on R, we conclude
that the σ -additive measure µτ is µ by the uniqueness of the extension. Thus, the
measure of a Borel subset Y in the space of types containing a fixed definable set
Z in R depends solely on the type of the parameters defining Y .

Example 1.5. Let (Gn)n∈N be an infinite family of groups, each with a distinguished
finite subset Xn . Expand the language of groups to a language L including a unary
predicate and set Mn to be an L-structure with universe Gn , equipped with its
group operation, and interpret the predicate as Xn . Following [Hrushovski 2012,
Section 2.6] we can further assume that L has predicates Qr,ϕ(y) for each r in
Q≥0 and every formula ϕ(x, y) in L such that Qr,ϕ(b) holds if and only if the set
ϕ(Mn, b) is finite with |ϕ(Mn, b)| ≤ r |Xn|. Note that if the original language was
countable, so is the extension L.

Consider now the ultraproduct M of the L-structures (Mn)n∈N with respect to
some nonprincipal ultrafilter U . Denote by G and X the corresponding interpreta-
tions in a sufficiently saturated elementary extension U of M . For each L-formula
ϕ(x, y) and every tuple b in U|y| such that ϕ(U, b) is a subset of ⟨X⟩, define

µ(ϕ(x, b))= inf{r ∈ Q≥0
| Qr,ϕ(b) holds},

where we assign ∞ if Qr,ϕ(b) holds for no value r . This is easily seen to be a
finitely additive definable measure on the ring R of definable subsets of ⟨X⟩ which
is invariant under left and right translation. In particular, the pair (G, X) is definably
amenable.

Throughout this paper we consider two main examples:

(a) The set X equals G itself, which happens whenever the subset Xn = Gn for
U-almost all n in N. The normalized counting measure µ defined above is a
definable Keisler measure [Keisler 1987] on the pseudofinite group G. Note
that in this case the ring of sets R coincides with the Boolean algebra of all
definable subsets of G.

(b) For U-almost all n, the set Xn has small tripling: there is a constant K > 0 such
that |Xn Xn Xn| ≤ K |Xn|. The noncommutative Plünnecke–Ruzsa inequality
[Tao 2008, Lemma 3.4] yields that |X⊙m

n | ≤ K Om(1)|Xn|, so the measure µ(Y )
is finite for every definable subset Y of ⟨X⟩, since Y is then contained in X⊙m

for some m in N. In particular, the corresponding σ -additive measure µ is
again σ -finite.

Whilst each subset Xn in the example (b) must be finite, we do not impose that
the groups Gn are finite. If the set Xn has tripling at most K , the set X⊙1

=

Xn ∪ X−1
n ∪ {idG} has size at most 2|Xn| + 1 and tripling at most (C K C)2 with

respect to some explicit absolute constant C > 0. Thus, taking ultraproducts, both
structures (G, X) and (G, X⊙1) will have the same sets of positive measure (or



COMPLETE TYPE AMALGAMATION FOR NONSTANDARD FINITE GROUPS 7

density), though the values may differ. Hence, we may assume that in a definably
amenable pair (G, X) the corresponding definable set X is symmetric and contains
the neutral element of G.

The above example can be adapted to consider countable amenable groups.

Example 1.6. Recall that a countable group is amenable if it is equipped with a
sequence (Fn)n∈N of finite sets of increasing cardinalities (so limn→∞ |Fn| = ∞)
such that for all g in G,

lim
n→∞

|Fn ∩ g · Fn|

|Fn|
= 1.

Such a sequence of finite sets is called a left Følner sequence. The archetypal
example of an amenable group is Z with left Følner sequence Fn = {−n, . . . , n}.

By [Namioka 1964, Corollary 5.3], if a group is amenable, then there is a
distinguished left Følner sequence where each Fn is symmetric. In particular, the
sequence (Fn)n∈N is also a right Følner sequence:

lim
n→∞

|Fn ∩ Fn · g|

|Fn|
= 1 for all g in G.

Notice also that a subsequence of a Følner sequence is again Følner and so is the
sequence (Fn × Fn)n∈N in the group G × G. Given an amenable group G with a
distinguished Følner sequence (Fn)n∈N consisting of symmetric sets as well as a
nonprincipal ultrafilter U on N, the ultralimit

µ(Y )= lim
n→U

|Y ∩ Fn|

|Fn|

induces a finitely additive measure on the Boolean algebra of subsets of G which is
invariant under left and right translation.

Starting from a fixed countable language L expanding the language of groups,
we can render the above measure definable, similarly as in Example 1.5. Hence,
we can consider every countable amenable group G as a definably amenable pair,
setting X = G.

Example 1.7. Every stable group G has finitely satisfiable generics (is fsg) and thus
is equipped with a unique left and right translation invariant Keisler measure which
is generically stable (see [Hrushovski et al. 2013; Simon 2015, Example 8.34]).

Similarly, a compact semialgebraic Lie group G(R), or more generally a definably
compact group G definable in an o-minimal expansion of a real closed field, is
again fsg. If the group is the R-rational points of a compact semialgebraic Lie
group, this measure coincides with the normalized Haar measure.

Hence, we can consider in these two previous cases (stable and o-minimal
compact) the group G as a definably amenable pair, setting X = G.
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If a group G is definable, so is every finite cartesian product. Moreover, the
construction in Examples 1.5 and 1.6 can also be carried out for a finite cartesian
product to produce for every n ≥ 1 in N a definably amenable pair (Gn, Xn), where
⟨Xn

⟩ = ⟨X⟩
n , equipped with a definable σ -finite measure µn . Thus, the following

assumption is satisfied by our Examples 1.5, 1.6 and 1.7.

Assumption 1. For every n ≥ 1, the pair (Gn, Xn) is definably amenable for a
definable σ -finite measure µn in a compatible fashion: the measure µn+m extends
the corresponding product measure µn ×µm .

The definability condition in Definition 1.4 implies that the function

Fϕµn,C : Sm(C)→ R, tp(b/C) 7→ µn(ϕ(x, b)),

is well-defined and continuous for every LC -formula ϕ(x, y) with |x | = n and
|y| = m such that ϕ(x, y) defines a subset of ⟨X⟩

n+m . Therefore, for such LC -
formulae ϕ(x, y), consider the LC -definable subset Y = {y ∈ ⟨X⟩

m
| ∃x ϕ(x, y)}

and the corresponding clopen subset [Y ] of Sm(C). Thus, we can consider the
following measure ν on ⟨X⟩

n+m :

ν(ϕ(x, y))=

∫
q∈[Y ]

Fϕµn,C(q) dµm =

∫
y∈Y

µn(ϕ(x, y)) dµm .

By an abuse of notation, we write
∫
⟨X⟩m µn(ϕ(x, y)) dµm for

∫
Y µn(ϕ(x, y)) dµm .

For the pseudofinite measures described in Example 1.5, the above integral equals
the ultralimit

lim
k→U

1
|Xk |

m

∑
y∈⟨Xk⟩m

|ϕ(x, y)|
|Xk |

n ,

so ν equals µn+m and consequently Fubini–Tonelli holds; see (the proof of) [Bergel-
son and Tao 2014, Theorem 19]. The same holds whenever the measure is given by
densities with respect to a Følner sequence in an amenable group, as in Example 1.6.
For arbitrary definably amenable pairs, whilst the measure ν extends the product
measure µn ×µm , it need not be a priori µn+m [Starchenko 2017, Remark 3.28].
Keisler [1987, Theorem 6.15] exhibited a Fubini–Tonelli type theorem for general
Keisler measures under certain conditions. These conditions hold for the unique
generically stable translation invariant measure of an fsg group (see Example 1.7).
We will impose a further restriction on the definably amenable pairs we consider,
taking Examples 1.5, 1.6 and 1.7 as a guideline.

Assumption 2. For every definably amenable pair (G, X) and its corresponding
compatible system of definable measures (µn)n∈N on the Cartesian powers of ⟨X⟩,
the Fubini condition holds: whenever a definable subset of ⟨X⟩

n+m is given by an
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LC -formula ϕ(x, y) with |x | = n and |y| = m, we have

µn+m(ϕ(x, y))=

∫
⟨X⟩m

µn(ϕ(x, y)) dµm =

∫
⟨X⟩n

µm(ϕ(x, y)) dµn.

(Note that the above integrals do not run over the locally definable sets ⟨X⟩
m

and ⟨X⟩
n , but rather over definable subsets, for ϕ(x, y) is itself definable).

Whilst this assumption is stated for definable sets, it extends to certain Borel
sets, whenever the language LC is countable.

Remark 1.8. Assume that LC is countable and fix a natural number k ≥1. Following
[Conant et al. 2023, Definition 2.6], for every Borel subset Z of Sn+m(C) of types
q(x, y) with |x | = n and |y| = m, set

Z(x, b)= {p ∈ Sn(U) | tp(a, b/C) belongs to Z for some a realizing p↾C,b}.

Note that Z(x, b) only depends on tp(b/C) by [Conant et al. 2023, Lemma 2.7]. If
Z is contained in the clopen set determined by the LC -definable set (X⊙k)n+m , we
define analogously as before a function

F Z
µn,C : Sm(C)→ R, tp(b/C) 7→ µn(Z(x, b)).

This function is Borel, and thus measurable, by the definability of the measure as
well as the monotone convergence theorem, for it agrees with Fϕµn,C whenever Z is
the clopen [ϕ]. Furthermore, the identity

µn+m(Z(x, y))=

∫
⟨X⟩m

µn(Z(x, y)) dµm =

∫
⟨X⟩n

µm(Z(x, y)) dµn,

holds by a straightforward application as in [Bergelson and Tao 2014, Theorem 20]
of the monotone class theorem, using the fact that µ(X⊙k) is finite. In particular, the
above identity of integrals holds for every Borel set of finite measure by regularity.

Remark 1.9. The examples listed in Examples 1.5, 1.6 and 1.7 satisfy both As-
sumptions 1 and 2.

Henceforth, the language is countable and all definably amenable pairs satisfy
Assumptions 1 and 2.

Adopting some terminology from additive combinatorics, we use the word density
for the value of the measure of a subset in R of a definably amenable pair (G, X).
A (partial) type is said to be weakly random if it contains a definable subset in R of
positive density but no definable subset in R of density 0. Note that every weakly
random partial type 6(x) over a parameter set A implies a definable set X⊙k in R
for some k in N and thus it can be completed to a weakly random complete type
over any arbitrary set B containing A, since the collection of formulae

6(x)∪ {X⊙k
\ Z | Z in R is B-definable of density 0}
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is finitely consistent. Thus, weakly random types exist (yet the partial type x = x is
not weakly random whenever G ̸= ⟨X⟩). As usual, we say that an element b of G
is weakly random over A if tp(b/A) is.

Weakly random elements satisfy a weak notion of transitivity.

Lemma 1.10. Let b be weakly random over a set of parameters C and a be weakly
random over C, b. The pair (a, b) is weakly random over C.

Proof. We need to show that every C-definable subset Z of ⟨X⟩
n+m containing the

pair (a, b) has positive density with respect to the product measure µn+m , where
n = |a| and m = |b|. Since a is weakly random over C, b, the fiber Zb of Z over
b has measure µn(Zb) = 2r for some real number 0 < r . Hence b belongs to a
C-definable subset Y of

{y ∈ Um
| r ≤ µn(Z y)≤ 3r},

by the definability of the measure. In particular, the measure µm(Y ) is strictly
positive. Thus,

µn+m(Z)=

∫
⟨X⟩m

µn(Z y) dµm ≥

∫
Y
µn(Z y) dµm ≥ µm(Y )r > 0,

as desired. □

Note that the tuple b above may not be weakly random over C, a. To remedy the
failure of symmetry in the notion of randomness, we introduce random types, which
will play a fundamental role in Section 3. Though random types already appear in
[Hrushovski 2013, Subsection 2.23] (see also [Hrushovski 2012, Subsection 2.20]),
we take the opportunity here to recall Hrushovski’s definition of ω-randomness.
All the ideas here until the end of this section are due to Hrushovski and we are
merely writing down some of the details for the sake of the presentation.

Fix some countable elementary substructure M and some Y in R definable over
M (so Y ⊆ (X⊙k) for some k in N). As in Remark 1.2, we denote by SY m (M) the
compact subset of the space of types over M containing the M-definable subset Y m .

Definition 1.11. Denote by BY
M the smallest Boolean algebra of subsets of SY m (M),

as m varies, containing all clopen subsets of SY m (M) and closed under the following
operations:

• The preimage of a set W ⊆ SY m (M) in BY
M under the natural continuous map

SY n (M) → SY m (M) given by the restriction to a choice of m coordinates
belongs again to BY

M .

• If Z ⊆ SY n+m (M) belongs to BY
M , then so does

(F Z
µn,M)

−1({0})= {tp(b/M) ∈ SY m (M) | µn(Z(x, b))= 0},

with Z(x, b) as in Remark 1.8.
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Note that each element of BY
M is a Borel subset of the appropriate space of types

by Remark 1.8. Furthermore, it is countable since it can be inductively built from
the Boolean algebras of clopen subsets of the SY m (M)’s by adding in the next step
all Borel sets of the form (F Z

µn,M)
−1({0}) and closing under Boolean operations.

The collection BY
M contains new sets which are neither open nor closed.

Definition 1.12. Let Y in R be definable over the countable elementary substruc-
ture M . An n-tuple a of elements in Y is random over M ∪ B, where B is some
countable subset of parameters, if µn(Z(x, b)) > 0 for every finite subtuple b in B
and every Borel subset Z in BY

M with tp(a, b/M) in Z .
For B = ∅, we simply say that the tuple is random over M .

Remark 1.13. Since BY
M contains all clopen sets given by M-definable subsets,

it is easy to see that a tuple random over M ∪ B is weakly random over M ∪ B,
which justifies our choice of terminology (instead of using the term wide type from
[Hrushovski 2012]).

Randomness is preserved under the group law: if a is an element of ⟨X⟩ random
over M ∪ B, then so are a−1 and b · a for every element b in B ∩ ⟨X⟩.

Furthermore, note that randomness is a property of the type: if a and a′ have the
same type over M ∪ B, then a is random over M ∪ B if and only if a′ is.

Remark 1.14. Since BY
M is countable, the σ -additivity of the measure yields that

every measurable subset of SY m (M ∪ B), with B countable, of positive density
contains a random element over M∪B. In particular, every weakly random definable
subset of Y m contains random elements over M, B.

Randomness is a symmetric notion.

Lemma 1.15 [Hrushovski 2013, Exercise 2.25]. Let Y in R be definable over the
countable elementary substructure M. A finite tuple (a, b) of elements in Y is
random over M if and only if b is random over M and a is random over M, b.

Proof. Assume first that (a, b) is random over M . Clearly so is b by Fubini and
Remark 1.8. Thus we need only prove that a is random over M, b. Suppose for
a contradiction that µ|a|(Z(x, b))= 0 for some Z ⊆ SY |a|+|b|(M) of BY

M containing
tp(a, b). The type of the pair (a, b) belongs to

Z̃ = Z ∩π−1((F Z
µ|a|,M)

−1({0})
)

= Z ∩
{
tp(c, d/M) ∈ SY |a|+|b|(M) | µ|a|(Z(x, d))= 0

}
,

where π = π|a|+|b|,|b| is the corresponding restriction map. Now, the set Z̃ belongs
to BY

M and contains (a, b), so it cannot have density 0. However, Remark 1.8 yields

0< µ|a|+|b|(Z̃)=

∫
Y |b|

µ|a|(Z̃(x, d)) dµ|b| ≤

∫
Y |b|

µ|a|(Z(x, d)) dµ|b| = 0,

which gives the desired contradiction.
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Assume now that b is random over M and a is random over M, b. Suppose for a
contradiction that tp(a, b/M) lies in some Borel Z(x, y) of BY

M with µ|a|+|b|(Z)=0.
By Remark 1.8,

0 = µ|a|+|b|(Z)=

∫
Y |b|

µ|a|(Z(x, d)) dµ|b|,

so µ|a|(Z(x, d))= 0 for µ|b|-almost all types tp(d/M) in SY |b|(M). Hence, the set
(F Z
µ|a|,M)

−1({0}) has measure µ|b|(Y |b|). Since a is random over M, b, we have
that µ|a|(Z(x, b)) > 0, so tp(b/M) belongs to the complement of (F Z

µ|a|,M)
−1({0}),

which belongs to BY
M and has µ|b|-measure 0. We conclude that the element b is

not random over M , which gives the desired contradiction. □

Symmetry of randomness will allow us in Sections 3 and 4 to transfer ideas
arisen from the study of definable groups in simple theories to the pseudofinite
context as well as to definably compact groups definable in o-minimal expansions
of real closed fields. Whilst weak randomness is not symmetric, a weak form of
symmetry holds (as pointed out by the anonymous referee, to whom we would like
to express our sincere gratitude again).

Lemma 1.16 (the referee’s lemma). Let Y in R be a subset of positive density
definable over the countable elementary substructure M. Given two finite tuples
a and b of elements in Y with a weakly random over M and b random over M, a,
then a is weakly random over M, b.

Proof. Assuming otherwise, there is an M-definable set Z containing (a, b) such
that the fiber Zb has µ|a|-measure 0. Definability of the measure Definition 1.4
yields that the set

W = (F Z
µ|a|,M)

−1({0})= {tp(d/M) ∈ SY |b|(M) | µ|a|(Zd)= 0}

is closed and thus it can be written as a countable intersection W =
⋂

m∈N Wm of
M-definable sets with Wm+1 ⊆ Wm . Now, the closed set [Z(x, y)] ∩ W (y) belongs
to BY

M and contains tp(a, b/M), so µ|b|([Z(a, y)] ∩ W (y)) > 0, since b is random
over M, a.

Claim. There exists some M-definable subset V containing a such that

µ|b|([Z(a′, y)] ∩ W (y)) > 0

for all a′ in V .

Note that V has positive density, for tp(a/M) is weakly random.

Proof of Claim. Assume for a contradiction that this is not the case. Since both the
language and M are countable, we may list all M-definable subsets containing a as
{Vn}n∈N with Vn+1 ⊆ Vn . Therefore, for every n in N there is some an in Vn with
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µ|b|([Z(an, y)]∩W (y)) < 1/(n +1). As W is a countable intersection of the Wm’s,
there is some mn in N such that

µ|b|(Z(an, y)∩ Wmn (y)) <
1

n+1
.

Notice that we may construct the sequence such that mn+1 > mn . Set

θ<(Z ,Wmn )=

{
x ∈ Y |a|

∣∣ µ|b|(Z(x, y)∩ Wmn (y)) <
1

n+1

}
and define θ≤(Z ,Wmn ) analogously. By definability of the measure, there is some
M-definable subset θ(Z ,Wmn ) such that

θ<(Z ,Wmn )⊆ θ(Z ,Wmn )⊆ θ≤(Z ,Wmn ).

In particular, we have that θ(Z ,Wmn+1) ⊆ θ(Z ,Wmn ) for mn+1 > mn . Now, the
collection of LM -formulae {Vn(x)∧ θ(Z ,Wmn )(x)}n∈N cannot be consistent, for it
would yield the existence of a tuple a′ realizing tp(a/M) with

µ|b|([Z(a′, y)] ∩ W (y))≤ µ|b|(Z(a′, y)∩ Wmn (y))≤
1

n+1

for every n in N, so µ|b|([Z(a′, y)] ∩ W (y))= 0< µ|b|([Z(a, y)] ∩ W (y)), which
is a contradiction. By compactness, there exists some ℓ in N such that no realization
of Vℓ satisfies some θ(Z ,Wm j ) with j ≤ ℓ. However, the element aℓ belongs to
Vℓ∩θ<(Z ,Wmℓ

), so aℓ lies in every θ(Z ,Wm j ) with j ≤ ℓ, which gives the desired
contradiction. □Claim

Consider now the closed set W ′
= [V (x)]∩[Z(x, y)]∩W . The Fubini condition

(Remark 1.8) yields that

0
Claim
<

∫
tp(c/M)∈[V ]

µ|b|([Z(c, y)] ∩ W ) dµ|b|

= µ(W ′)=

∫
tp(d/M)∈W

µ|a|(V (x)∩ Z(x, d)) dµ|a|

≤

∫
tp(d/M)∈W

µ|a|(Z(x, d)) dµ|a| = 0.

We deduce from the above contradiction that a lies in no definable set Zb over M, b
of density 0, so a is weakly random over M, b, as desired. □

2. Forking and measures

As in Section 1, we work inside a sufficiently saturated structure and a definably
amenable pair (G, X) in a fixed countable language L satisfying Assumptions 1
and 2, though the classical notions of forking and stability do not require the
presence of a group nor of a measure.
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Recall that a definable set ϕ(x, a) divides over a subset C of parameters if there
exists an indiscernible sequence (ai )i∈N over C with a0 =a such that the intersection⋂

i ϕ(x, ai ) is empty. Archetypal examples of dividing formulae are of the form
x = a for some element a not algebraic over C . Since dividing formulae need not
be closed under finite disjunctions, witnessed for example by a circular order, we
say that a formula ψ(x) forks over C if it belongs to the ideal generated by the
formulae dividing over C , that is, if ψ implies a finite disjunction of formulae, each
dividing over C . A type divides (resp. forks) over C if it contains an instance which
does.

Remark 2.1. Since the measure is invariant under automorphisms and σ -finite, no
definable subset of ⟨X⟩ of positive density divides, and thus no weakly random type
forks over the empty set; see [Hrushovski 2012, Lemma 2.9 and Example 2.12].

Nonforking need not define a tame notion of independence. For example it need
not be symmetric, yet it behaves extremely well with respect to certain invariant
relations, called stable.

Definition 2.2. An A-invariant relation R(x, y) is stable if there exists no A-
indiscernible sequence (ai , bi )i∈N such that R(ai , b j ) holds if and only if i < j.

A straightforward Ramsey argument yields that the collection of invariant stable
relations is closed under Boolean combinations. Furthermore, an A-invariant
relation is stable if there is no A-indiscernible sequence as in the definition of
length some fixed infinite ordinal.

The following remark will be very useful in the following sections.

Remark 2.3 [Hrushovski 2012, Lemma 2.3]. Suppose that the type tp(a/M, b)
does not fork over the elementary substructure M and that the M-invariant relation
R(x, y) is stable. Then the following are equivalent:

(a) The relation R(a, b) holds.

(b) The relation R(a′, b) holds, whenever a′
≡M a and tp(a′/Mb) does not fork.

(c) The relation R(a′, b) holds, whenever a′
≡M a and tp(b/Ma′) does not fork.

(d) The relation R(a′, b′) holds, whenever a′
≡M a and b′

≡M a such that
tp(a′/M, b′) or tp(b′/M, a′) does not fork.

A clever use of the Krein–Milman theorem on the locally compact Hausdorff topo-
logical real vector space of all σ -additive probability measures allowed Hrushovski
to prove the following striking result (the case α = 0 is an easy consequence of the
inclusion-exclusion principle).

Fact 2.4 [Hrushovski 2012, Lemma 2.10 and Proposition 2.25]. Given a real num-
ber α and LM -formulae ϕ(x, z) and ψ(y, z) with parameters over an elementary
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substructure M , the M-invariant relation on the definably amenable pair (G, X)

Rαϕ,ψ(a, b) ⇔ µ|z|(ϕ(a, z)∧ψ(b, z))= α

is stable. In particular, for any partial types 8(x, z) and 9(y, z) over M , the
relation

Q8,9(a, b) ⇔ 8(a, z)∧9(b, z) is weakly random

is stable.

Strictly speaking, Hrushovski’s result in its original version is stated for arbitrary
Keisler measures (in any theory). To deduce the statement above it suffices to
normalize the measure µ|z| by µ|z|((X |z|)⊙k) for some natural number k such that
(X |z|)⊙k contains the corresponding instances of ϕ(x, z) and ψ(y, z).

We finish this section with a summarized version of Hrushovski’s stabilizer
theorem tailored to the context of definably amenable pairs. Before stating it, we
first need to introduce some notation.

Definition 2.5. Let X be a definable subset of a definable group G and let M be an
elementary substructure. We denote by ⟨X⟩

00
M the intersection of all subgroups of

⟨X⟩ type-definable over M and of bounded index.

If a subgroup of bounded index type-definable over M exists, the subgroup ⟨X⟩
00
M

is again type-definable over M and has bounded index; see [Hrushovski 2012,
Lemmata 3.2 and 3.3]. Furthermore, it is also normal in ⟨X⟩ [Hrushovski 2012,
Lemma 3.4].

Fact 2.6 [Hrushovski 2012, Theorem 3.5; Montenegro et al. 2020, Theorem 2.12].
Let (G, X) be a definably amenable pair and let M be an elementary substructure.
The subgroup ⟨X⟩

00
M exists and equals

⟨X⟩
00
M = (p · p−1)2

for any weakly random type p over M , where we identify a type with its realizations
in the ambient structure U. Furthermore, the set pp−1 p is a coset of ⟨X⟩

00
M . For

every element a in ⟨X⟩
00
M weakly random over M , the partial type p ∩a · p is weakly

random. In particular, every weakly random element in ⟨X⟩
00
M over M lies in p · p−1.

If the definably amenable pair we consider happens to be as in the first case of
Example 1.5 or a stable group as in Example 1.7, our notation coincides with the
classical notation G00

M .

3. On 3-amalgamation and solutions of x y = z

As in Section 1, we fix a definably amenable pair (G, X) satisfying Assumptions 1
and 2. Throughout this section, we work over some fixed elementary substructure M .
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We denote by suppM(µ) the support ofµ, that is, the collection of all weakly random
types over M contained in ⟨X⟩.

Note that each coset of the subgroup ⟨X⟩
00
M of Definition 2.5 is type-definable

over M and hence M-invariant, though it need not have a representative in M . Thus,
every type p over M contained in ⟨X⟩ must determine a coset of ⟨X⟩

00
M . We denote

by Cos(p) the coset of ⟨X⟩
00
M of ⟨X⟩ containing some (and hence every) realization

of p. The following result resonates with [Terry and Wolf 2019, Corollary 1] and
[Conant et al. 2020, Theorem 1.3] beyond the definable context.

Proposition 3.1. Consider an M-invariant subset S of ⟨X⟩ such that the relation
u · v ∈ S is stable, as in Definition 2.2. The set S must be, up to M-definable sets
of measure 0, a union of cosets of ⟨X⟩

00
M , that is, if an element g in ⟨X⟩ belongs to

S with q = tp(g/M) in suppM(µ), then every element h in Cos(q) weakly random
over M belongs to S as well.

Our proof is mostly an adaptation of [Pillay et al. 1998, Proposition 2.2]. Whilst
the authors used the independence theorem from simple theories, we use the stability
of the M-invariant relation S instead.

Proof. Assume that the element g as above belongs to the stable M-invariant
relation S. Let h be in Cos(tp(g/M)) weakly random over M and choose a
realization b of tp(h/M) weakly random over M, g. Now, the elements g and
b both lie in the same coset of ⟨X⟩

00
M , so the difference b · g−1 lies in ⟨X⟩

00
M and

is weakly random over M, g. Since weakly random types do not fork, the type
tp(b · g−1/M, g) does not fork over M .

Fact 2.6 yields that the partial type tp(g/M) ∩ (b · g−1) · tp(g/M) is weakly
random. Choose therefore some element g1 realizing tp(g/M) weakly random over
M, g, b such that b · g−1

· g1 ≡M g. By invariance of S, we have that b · g−1
· g1

belongs to S as well.
Summarizing, the M-invariant relation S = {(u, v) ∈ ⟨X⟩ × ⟨X⟩ | u · v ∈ S}

holds for the pair (b · g−1, g1) with tp(g1/M, b · g−1) weakly random and hence
nonforking over M . Since the above relation is stable, for any pair (w, z) such that

w ≡M b · g−1, z ≡M g1 and tp(w/M, z) nonforking over M,

the relation S must also hold. Setting now w = b · g−1 and z = g, we deduce that
b = b · g−1

· g belongs to S. As the element h realizes tp(b/M), we conclude by
M-invariance that h belongs to S, as desired. □

Given now two M-definable subsets A and B, the relation

RαA,B(u, v) ⇔ “µ(u A ∩ vB)= α”
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is stable by Fact 2.4. So, setting S = {g ∈ ⟨X⟩ | µ(A ∩ gB)= α}, Proposition 3.1
yields immediately the following result, which we personally think resonates with
Croot–Sisask’s almost-periodicity [Croot and Sisask 2010, Corollary 1.2].

Corollary 3.2. Given two M-definable subsets A and B, the values µ(A ∩ gB) and
µ(A ∩ h B) agree for any two weakly random elements g and h over M within the
same coset of ⟨X⟩

00
M . □

Given now two types p1 and p2 over M and an element g of ⟨X⟩ such that the
partial type p1 ·g ∩ p2 is consistent, it follows that the type tp(g/M) determines the
coset Cos(p1)

−1
· Cos(p2), so Cos(p1) · Cos(tp(g/M))= Cos(p2). The following

result can be seen as a sort of converse. Notice that

S = {g ∈ ⟨X⟩ | p1 · g ∩ p2 is weakly random over M}

is M-invariant and u · v ∈ S is stable, by Fact 2.4.

Corollary 3.3. Let p, q and r be three coset-compatible types in suppM(µ), that is,

Cos(p) · Cos(q)= Cos(r).

If p · g ∩ r is weakly random for some element g in ⟨X⟩ with tp(g/M) in suppM(µ),
then so is p · h ∩ r for every weakly random element h whose type over M is
concentrated in Cos(q). □

The above result was first observed for principal generic types in a simple theory
in [Pillay et al. 1998, Proposition 2.2] and later generalized to nonprincipal types
in [Martin-Pizarro and Pillay 2004, Lemma 2.3]. For weakly random types with
respect to a pseudofinite Keisler measure, a preliminary version was obtained in
[Palacín 2020, Proposition 3.2] for ultra-quasirandom groups.

For the rest of this section, we assume that M is countable. Fix some k in N and
consider Y = (X⊙k). The value k should be chosen large enough to ensure that all
the products and inverses of elements in the subsequent statements still belong to Y .
By an abuse of language, we use the word random to mean a random type with
respect to the corresponding class BY

M as in Definitions 1.11 and 1.12.

Remark 3.4. It follows immediately from Remark 1.14 that the Borel set of ran-
dom types over M is dense in the compact Hausdorff space of weakly randoms
concentrated on Y , that is, the space [Y ] ∩ suppM(µ), where [Y ] is the clopen set
given by the M-definable set Y . We denote by R(BY

M) the collection of random
types over M concentrated on Y .

Lemma 3.5. Given M-definable subsets A and B of Y of positive density, there
exists some random element g over M with µ(Ag ∩ B) > 0.
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Proof. By Remark 1.14, let c be random in B over M and choose now g−1 in
c−1 A random over M, c. The element g is also random over M, c. By symmetry of
randomness, the pair (c, g) is random over M , so c is random over M, g. Clearly
the element c lies in Ag ∩ B, so the set Ag ∩ B has positive density, as desired. □

Remark 3.6. Notice that the above results yields the existence of an element h
random over M such that h A ∩ B, and thus A ∩ h−1 B, has positive density. Indeed,
apply the statement to the definable subsets B−1 and A−1.

For any two fixed types p and r in suppM(µ), the statement

“p · y ∩ r is weakly random and y is weakly random”

as a property of y is finitely consistent. Indeed, given finitely many M-definable sub-
sets A1, . . . , An in p and B1, . . . , Bn in r , the M-definable subsets A =

⋂
1≤i≤n Ai

and B =
⋂

1≤i≤n Bi lie in p and r , respectively, so they both have positive density.
By Lemma 3.5, there exists a random element g in ⟨X⟩ over M with Ai g ∩ B j of
positive density for all 1 ≤ i, j ≤ n.

However, the condition “p · y ∩ r is weakly random” is a Gδ-condition on y,
namely ⋂

A∈p
B∈r

{y ∈ A−1 B | µ(A · y ∩ B) > 0}.

Thus, we cannot use compactness to deduce from the above argument that we fulfill
the conditions of Corollary 3.3 for all weakly random types p, q and r . We are
grateful to Angus Matthews for pointing out a mistake in a previous version of this
paper.

To circumvent the aforementioned issue, we use the so-called disintegration
theorem, which allows us to fulfill the conditions of Corollary 3.3 for almost all
pairs of types p and r . Whilst there are plenty of excellent references on this subject
worth being named, we just refer to [Bogachev 2007; Simmons 2012].

Remark 3.7. Given n in N consider a set � and a surjective map F : SY n (M)→�

such that the set {(p, q)∈ SY n (M)×SY n (M) | F(p)= F(q)} is closed. For example,
consider a type-definable equivalence relation E(x, y) on Y n

× Y n with parameters
over M and set p ∼ q if and only if

p(x)∪ q(y)∪ E(x, y) is consistent.

The relation ∼ is a closed equivalence relation on SY n (M), so set � to be the
collection of ∼-equivalence classes and F the natural projection map.

We can now equip � with the final topology with respect to F , so a subset C of
� is closed if and only if F−1(C) is closed in the topological space SY n (M). It is
immediate to see that � with this topology becomes a compact Hausdorff separable
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space. Furthermore, we can define a measure on �, the push-forward measure F∗µ,
given by F∗µ(B)= µ(F−1(B)) for every Borel subset B of �.

Fact 3.8 (disintegration theorem). Consider the normalized measure µY n on the
space of types SY n (M), so it becomes a probability space. Given F : SY n (M)→�

as in Remark 3.7, there exists a disintegration of µY n by a (uniquely determined)
family of Radon conditional probability measures on SY n (M) with respect to the
continuous function F : SY n (M)→�, i.e., there exists a mapping

(Z , t) 7→ ν(Z , t)= µt(Z),

where Z is a Borel set of SY n (M) and t is an element of �, with the following
properties:

(a) for all t in �, the measure µt is a Borel inner regular probability measure
on SY n (M);

(b) for every measurable subset Z of SY n (M), the function t 7→ µt(Z) is measur-
able with respect to the measure F∗µY n ;

(c) each measure µt is concentrated on the fiber F−1(t), that is, the measure
µt(SY n (M) \ F−1(t))= 0, so µt(Z)= µt(Z ∩ F−1(t)) for every Borel subset
Z of SY n (M);

(d) for every measurable function f : SY n (M)→ R, we have that∫
SY n (M)

f dµY n =

∫
t∈�

∫
F−1(t)

f dµt d F∗µY n .

In particular, setting f to be the characteristic function 1Z of the measurable
subset Z of SY×Y (M), we have that

µY n (Z)=

∫
t∈�

µt(Z) d F∗µY n .

Lemma 3.9. Consider the natural restriction map

π : SY 2(M)→ SY (M)× SY (M), q(y1, y2) 7→ (q↾y1(y1), q↾y2(y2)).

Every pair of types (p, r) of SY (M)× SY (M) outside of a π∗µY 2-measure 0 set can
be completed to a random type of SY 2(M).

Proof. Let R(BY 2

M ) be the Borel set of random types on SY 2(M). It follows from
Remark 1.14 thatµY 2(R(BY 2

M ))= 1. Apply now the disintegration theorem (Fact 3.8)
with �= SY (M)× SY (M) and F = π , and deduce from

1 = µY 2(R(BY 2

M ))=

∫
(p,r)∈SY (M)×SY (M)

µ(p,r)(R(BY 2

M )) dπ∗µY 2
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that µ(p,r)(R(BY 2

M )) = 1 for π∗µY 2-almost all pairs (p, r), since each function
µ(p,r) takes values in the interval [0, 1]. In particular, the set π−1(p, r)∩ R(BY 2

M )

is nonempty by Fact 3.8(c). Every such completion yields a random pair (a, b)
over M , with a realizing p and b realizing r , as desired. □

Theorem 3.10. For every pair of types (p, r) of SY (M) × SY (M) outside of a
π∗µY 2-measure 0 set and every weakly random type q = tp(b/M) concentrated on
Y with Cos(p) · Cos(q)= Cos(r), there is a realization a of p weakly random over
M, b such that a · b realizes r .

Proof. By Lemma 3.9, for every pair (p, r) of SY (M)× SY (M) outside of a π∗µY 2-
measure 0 set there exists a random pair (c, d) over M , with c realizing p and
d realizing r . By Remark 1.13 and Lemma 1.15, the pair (c−1

· d, d) is random
over M , so the partial type p · (c−1

· d)∩ r admits a random realization, and thus it
is weakly random. The element c−1

· d is (weakly) random over M and belongs
to Cos(q), since p, q and r are coset-compatible. We can thus apply Corollary 3.3
to deduce that p ·b ∩ r is weakly random. Choose some realization f of this partial
type weakly random over M, b and notice that the element a = f · b−1 is weakly
random over M, b and realizes p. By construction, the product a · b = f realizes r ,
as desired. □

Whilst Theorem 3.10 holds for almost all types (p, r), the corresponding π∗µY 2-
measure 0 set could possibly contain all diagonal pairs (p, p), with p in suppM(µ).
We conclude this section with an elementary observation, the consequences of
which will be explored in detail in Section 4.

Remark 3.11. Fix a countable elementary substructure M . If there exists a random
pair (a, b) over M with a ≡M b, then there exists a random type concentrated
in ⟨X⟩

00
M . Indeed, the element b−1

· a is random over M by Remark 1.13 and
Lemma 1.15. Clearly, the element g = b−1

· a lies in ⟨X⟩
00
M , as desired.

Question. Is there a random pair (a, b) over M with a ≡M b? More generally, is
there a random type concentrated in ⟨X⟩

00
M ?

A digression: Roth’s theorem on arithmetic progressions

We now show how Corollary 3.2 yields solutions to the equation x ·z = y2 in subsets
of positive density for every definably amenable pair such that the squaring function
x 7→ x2 preserves randomness.

Definition 3.12. The function f : X → G in the definably amenable pair (G, X)
preserves randomness if for every element a in X and every subset C of parameters,
we have that a is (weakly) random over C if and only if f (a) is (weakly) random
over C (so f (a) must lie in ⟨X⟩).
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Remark 3.13. Examples 1.5, 1.6 and 1.7 always have the property that the square
function preserves randomness if the map f : X → G defined by f (x) = x2 has
finite fibers. This is always the case whenever X has distinct squares as in [Sanders
2017, Theorem 1.5] or if G is abelian and there are only finitely many involutions
in ⟨X⟩.

Theorem 3.14. Consider a definably amenable pair (G, X) such that the square
function preserves randomness. If the definable subset A of X has positive density,
then the set

{(x1, x2) ∈ A × A | x1 · x2 ∈ A2
}

has positive µ2-density, where A2
= {x2

}x∈A.

Assume A is definable over the countable elementary substructure M . Every
pair (a, c) in the above set random over M gives raise to a generalized 3-AP in A.
Indeed, the product a · c belongs to A2 so a · c = b2 for some b in A. Since the
square function preserves randomness, we have that b is random over M, a by
Lemma 1.15. Set now g = b−1

· a = b · c−1 and observe that the elements c, g · c
and g · c · g all belong to A. If the group is abelian, this is an actual 3-AP as in the
introduction.

Proof. We may assume that A is definable over a countable elementary substruc-
ture M , so it contains a weakly random type p over M . Choose some weakly
random element g in ⟨X⟩

00
M . By Fact 2.6, the partial type p ·g∩ p is weakly random,

so the set A · g ∩ A has positive density. By Remark 1.14, choose an element a in
A · g ∩ A random over M, g and notice that b = a · g−1 lies in A as well.

Since squaring preserves randomness, the element a2 is also random over M, g
and hence so is a · b = a2

· g−1 by Remark 1.13. By Lemma 1.16, the element g is
weakly random over M, a ·b, and hence a2

= (a ·b)·g is weakly random over M, a ·b.
We deduce that a is weakly random over M, a ·b, for squaring preserves randomness.
Furthermore, multiplying on the left by (a ·b)−1 we conclude that b−1, and hence b,
is weakly random over M, a · b.

Note that b belongs to A−1
· (a · b)∩ A, so this intersection must have positive

density. Corollary 3.2 yields that the set A−1
· a2

∩ A has positive measure, for a2

and a ·b lie in the same coset modulo ⟨X⟩
00
M . Choose now some random element a1

in A over M, a with a−1
1 · a2

= a2 in A. Remark 1.13 and Lemma 1.15 yield that
the pair (a1, a2) is random over M . Thus, the M-definable set

{(x1, x2) ∈ A × A | x1 · x2 ∈ A2
}

has positive µ2-measure, as desired. □

Question. Consider a definably amenable pair (G, X) such that the square function
preserves randomness and let M be a countable elementary substructure M . Given
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an M-definable subset A of ⟨X⟩ of positive density, does the M-definable set

{(x1, x2) ∈ A × A | x2 · x−1
1 · x2 ∈ A}

have positive µ2-density? Equivalently, is there a random pair (a, b) in A × A over
M with b · a−1

· b in A?

Such a pair (a, b) as above yields a 3-AP in A of the form (a, a · g, a · g2) with
g = a−1b. We do not currently know whether the above question has a positive
answer, though it is the case for ultra-quasirandom groups, by [Tao 2013].

Remark 3.15. The proof of Theorem 3.14 in the abelian context yields immediately
the existence of solutions to translation-invariant equations of the form

n1x1 + · · · + nm xm = ky,

whenever k =
∑m

j=1 n j and each of the maps x 7→ n1x , x 7→ kx and x 7→ n′x
preserves randomness, with n′

=
∑m

j=2 n j . That is, for every M-definable subset A
of X of positive density, the set

E(A)=
{
(x1, . . . , xm) ∈ A×

m
· · · ×A | n1x1 + · · · + nm xm = kc for some c in A

}
has positive µm-measure. Indeed, choose g, a and b as in the proof of Theorem 3.14,
so g = a − b. If we denote by ℓA = {ℓd}d∈A, we will first show that the set
n1 A + n′a ∩ k A has positive density: By Corollary 3.2, we need only show that
n1 A + ka − n1b ∩ k A has positive density. Now, the element

ka − n1b = n′a + n1g

is random over M, g, since a is random over M, g. So g, and thus kg, is weakly
random over M, ka − n1b by Lemma 1.16. Since

kg = ka − kb = (ka − n1b)− n′b,

we deduce that −n′b, and hence n1b, is weakly random over M, ka − n1b. Hence,
the element ka = n1b+(ka−n1b) is weakly random over M, ka−n1b and belongs
to n1 A + ka − n1b ∩ k A, as desired.

Choose now a2, . . . , am realizations of tp(a/M) with each a j weakly random
over M, a, g, a2, . . . , a j−1. Hence, the differences a j − a all belong to ⟨X⟩

00
M , by

Fact 2.6. Corollary 3.2 and the above paragraph yield that n1 A+
∑m

j=2 n j a j ∩k A has
positive density, so choose an element a1 in A weakly random over M, a2, . . . , am

exemplifying that the above intersection has positive density. The weakly random
type tp(a1, . . . , am/M) contains the M-definable set E(A), as desired.
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4. Ultra-quasirandomness revisited

Given a definably amenable pair (G, X)with ⟨X⟩= G, a straightforward application
of compactness yields that X⊙n

= G for some natural number n, so X generates
G in finitely many steps. Up to scaling the σ -finite measure, we may assume that
G = X , so µ(G) = 1. This observation, together with Examples 1.5(a) and 1.7,
motivates the following notion.

Definition 4.1. Let (G, X) be a definably amenable pair with X = G. We say that
the pair is generically principal if G = G00

M for some elementary substructure M .

In an abuse of notation, we simply say that the group G is generically principal.

Remark 4.2. By [Martin-Pizarro and Palacín 2019, Corollary 2.6], a group G is
generically principal if and only if G = G00

M for every elementary substructure M ,
so we may assume that M is countable.

In particular, a generically principal group contains trivially random elements
concentrated in ⟨X⟩

00
M = G for every countable elementary substructure M .

Example 4.3. Three known classes of groups are generically principal:

• Connected stable groups, such as every connected algebraic group over an alge-
braically closed field.

• Simple definably compact groups definable in some o-minimal expansion of a
real closed field, such as PSLn(R).
• Ultra-quasirandom groups, introduced in [Bergelson and Tao 2014]. Let us briefly
recall this notion. A finite group is d-quasirandom, with d ≥ 1, if all its nontrivial
representations have degree at least d. An ultraproduct of finite groups (Gn)n∈N

with respect to a nonprincipal ultrafilter U is said to be ultra-quasirandom if for
every integer d ≥ 1, the set {n ∈ N | Gn is d-quasirandom} belongs to U .

The work of Gowers [2008, Theorem 3.3] yields that every definable subset
A of positive density of an ultra-quasirandom group G(M) is not product-free,
i.e., it contains a solution to the equation xy = z, and thus the same holds in
every elementary extension. Therefore, no weakly random type over an elementary
substructure is product-free and thus G = G00

N over any elementary substructure N
by [Martin-Pizarro and Palacín 2019, Corollary 2.6], so ultra-quasirandom groups
are generically principal.

Proposition 3.1 and its corollaries yield now a short proof of the result mentioned
in the above paragraph.

Lemma 4.4. The following conditions are equivalent for a definably amenable
pair (G,G):

(a) The group G is generically principal.
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(b) Given two definable subsets A and B of positive density, we have that A · B
has measure 1. In particular, whenever the definable subset C has positive
measure, so is G = A · B · C.

(c) There is no definable product-free set of positive density.

Proof. For (a) ⇒ (b): Given two subsets A and B of positive density definable over
some countable elementary substructure M , we need only show that every weakly
random element g lies in A · B. Now, Lemma 3.5 yields that there exists some
random element h over M with µ(A ∩ h B−1) > 0. Corollary 3.2 gives that every
element g of G weakly random over M satisfies that µ(A ∩ gB−1) > 0 as well. So
the definable set A · B has measure 1, as desired.

For the second assertion, given a definable set C of positive density, let g in G
be arbitrary. Now,

µ(A · B ∩ gC−1)= µ(gC−1)= µ(C) > 0,

so g belongs to A · B · C , as desired.
The implication (b) ⇒ (c) is clear, taking A and B to be the same set. Thus,

we are left to consider the implication (c) ⇒ (a). Suppose that G ̸= G00
M for

some countable elementary substructure M and take a weakly random type p in
a nontrivial coset Cos(p) of G00

M . Note that p−1
· p · p ⊆ Cos(p). A standard

compactness argument yields the existence of some M-definable set A in p such
that idG does not lie in A−1

· A · A, so A is product-free. Since p is weakly random,
the definable subset A has positive density. □

The following result on weak mixing, already present as is in [Bergelson and
Tao 2014], was implicit in [Gowers 2008]. It will play a crucial role in studying
some instances of complete amalgamation of equations in a group.

Corollary 4.5 (cf. [Bergelson and Tao 2014, Lemma 33]). Let G be a generically
principal group. Given two definable subsets A and B of positive density,

µ(A ∩ gB)= µ(A)µ(B)

for µ-almost all elements g.

Proof. As before, fix some countable elementary substructure M such that both
A and B are M-definable. We may assume that the measure µ is also definable
over M . By Corollary 3.2, set α = µ(A ∩ gB) for some (or equivalently, every)
weakly random element g over M . Notice that α > 0 by Remark 3.6.

The subset
Z = {x ∈ A · B−1

| µ(A ∩ x B)= α}

is type-definable over M and contains all weakly random elements over M . Clearly,
the measure µ(Z)≤ µ(AB−1) and the latter equals 1, by Lemma 4.4. If we have
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µ(Z) < µ(A · B−1), there is an M-definable set Z̃ with Z ⊆ Z̃ ⊆ A · B−1 such
that µ(A · B−1

\ Z̃) > 0. Thus, the set A · B−1
\ Z̃ has positive density and it must

contain a weakly random element over M , which gives the desired contradiction,
so µ(Z)= µ(A · B−1)= 1.

Consider now the set W = {(a, z) ∈ A × A · B−1
| z = a · b−1 for some b in B}.

Note a belongs to A ∩ z · B and z lies in aB−1 if (a, z) belongs to W . If we denote
by µ2 the normalized measure in G × G, an easy computation yields that

µ2(W )=

∫
z∈A·B−1

µ(A ∩ zB)= αµ(A · B−1)
4.4
= α.

By Fubini, we also have that

α = µ2(W )=

∫
a∈A

µ(aB−1)=

∫
a∈A

µ(B)= µ(A)µ(B),

which gives the desired conclusion. □

A standard translation using Łoś’s theorem yields the following finitary version:

Corollary 4.6 (cf. [Gowers 2008, Lemma 5.1; Bergelson and Tao 2014, Propo-
sition 3]). For every positive δ, ϵ and η there is some integer d = d(δ, ϵ, η) such
that for every finite d-quasirandom group G and subsets A and B of G of density at
least δ, we have that∣∣{x ∈ G | |A ∩ x B||G|< (1 − η)|A||B|}

∣∣< ϵ|G|.

Proof. Assume for a contradiction that the statement does not hold, so there are
some fixed positive numbers δ, ϵ and η such that for each natural number d we
find two subsets Ad and Bd of a finite d-quasirandom group Gd , each of density at
least δ, such that the cardinality of the subset

X (Gd)= {x ∈ Gd | |Ad ∩ x Bd ||Gd |< (1 − η)|Ad ||Bd |}

is at least ϵ|Gd |.
Following the approach of Example 1.5(a), we consider a suitable expansion L

of the language of groups and regard each group Gd as an L-structure Nd . Choose
a nonprincipal ultrafilter U on N and consider the ultraproduct N =

∏
U Nd . The

language L is chosen in such a way that the sets A =
∏

U Ad and B =
∏

U Bd

are L-definable in the ultra-quasirandom group G =
∏

U Gd . Furthermore, the
normalized counting measure on Gd induces a definable Keisler measure µ on G,
taking the standard part of the ultralimit. By Corollary 4.5, for µ-almost all g in G,
we have µ(A ∩ gB)= µ(A)µ(B). Hence, the type-definable set

6 = {x ∈ G | µ(A ∩ x B)≤ (1 − η)µ(A)µ(B)}
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does not contain any weakly random type. By compactness, it is contained in a
definable set W whose density is 0, and in particular its density is strictly less than
the fixed value ϵ. Since every element in the ultraproduct of the sets X (Gd) clearly
lies in 6, we conclude by Łoś’s theorem that |X (Gd)| ≤ |W (Gd)| < ϵ|Gd | for
infinitely many d , which yields the desired contradiction. □

The following result is a verbatim adaption of [Gowers 2008, Theorem 5.3] and
may be seen as a first attempt to solve complete amalgamation problems whilst
restricting the conditions to those given by products.

Theorem 4.7. Fix a natural number n ≥ 2. For each nonempty subset F of
{1, . . . , n}, let AF be a subset of positive density of the generically principal
group G. The set

Xn =
{
(a1, . . . , an) ∈ Gn

| aF ∈ AF for all ∅ ̸= F ⊆ {1, . . . , n}
}

has measure
∏

F µ(AF ) with respect to the measure µn on Gn , where aF stands
for the product of all ai with i in F written with the indices in increasing order.

Proof. We reproduce Gowers’s proof of [Gowers 2008, Theorem 5.3] and proceed
by induction on n. For n = 2, set B = A{2} and C = A{1,2}. A pair (a, b) lies in X2

if and only if a belongs to A{1} and b to B ∩ a−1C . Thus

µ2(X2)=

∫
A{1}

µ(B ∩ a−1C) dµ 4.5
= µ(B)µ(C)µ(A{1}),

as desired. For the general case, for any a in A{1}, set BF1(a) = AF1 ∩ a−1 A1,F1 ,
for ∅ ̸= F1 ⊆ {2, . . . , n}. Corollary 4.5 yields that µ(BF1(a))= µ(AF1)µ(A1,F1)

for µ-almost all a in A{1}. A tuple (a1, . . . , an) in Gn belongs to Xn if and only if
the first coordinate a1 lies in A{1} and the tuple (a2, . . . , an) belongs to

Xn−1(a1)=
{
(x2, . . . , xn) ∈ Gn−1

| xF1 ∈ BF1(a1) for all ∅ ̸= F1 ⊆ {2, . . . , n}
}
.

By induction, the set Xn−1(a) has constant µn−1-measure
∏

F1
µ(AF1)µ(A1,F1),

where F1 now runs through all nonempty subsets of {2, . . . , n}. Thus

µn(Xn)=

∫
A1

µn−1(Xn−1(a1)) dµ= µ(A1)
∏
F1

µ(AF1)µ(A1,F1)=

∏
F

µ(AF ),

which yields the desired result. □

A standard translation using Łoś’s theorem (we refer to the proof of Corollary 4.6
to avoid repetitions) yields the following finitary version, which was already present
in a quantitative form in [Gowers 2008].

Corollary 4.8 (cf. [Gowers 2008, Theorem 5.3]). Fix a natural number n ≥ 2. For
every ∅ ̸= F ⊆ {1, . . . , n} let δF > 0 be given. For every η > 0 there is some integer



COMPLETE TYPE AMALGAMATION FOR NONSTANDARD FINITE GROUPS 27

d = d(n, δF , η) such that for every finite d-quasirandom group G and subsets AF

of G of density at least δF , we have that

|Xn| ≥
1 − η

|G|2
n−1−n

∏
F

|AF |,

where Xn is defined as in Theorem 4.7 with respect to the group G.

The above corollary yields in particular that∣∣{(a, b, c) ∈ A × B × C | ab = c}
∣∣> 1 − η

|G|
|A||B||C |

as first proved by Gowers [2008, Theorem 3.3], which implies that the number of
such triples is a proportion (uniformly on the densities and η) of |G|

2.
To conclude this section we answer affirmatively the question in the introduction

for generically principal groups, whenever all the types are based over a common
countable elementary substructure.

Theorem 4.9. Fix a natural number n ≥ 2 and a countable elementary substructure
M of the generically principal definably amenable pair (G, X). For each nonempty
subset F of {1, . . . , n}, let pF be a weakly random type over M. There exists a
weakly random n-tuple (a1, . . . , an) in Gn such that aF realizes pF for all nonempty
F ⊆ {1, . . . , n}, where aF stands for the product of all ai with i in F written with
the indices in increasing order.

Proof. Since M is countable, enumerate all the formulae occurring in each type pF

in a decreasing way, that is, write pF = {AF,k}k∈N with AF,k+1 ⊆ AF,k for every
natural number k. We want to show that the set

Xn = {(x1, . . . , xn) ∈ Gn
| pF (xF ) for all ∅ ̸= F ⊆ {1, . . . , n}}

is weakly random over M , that is, we need to prove that the partial type

{¬ψ(x1, . . . , xn)}ψ∈6 ∪ {xF ∈ AF,k}F∈P, k∈N

is consistent, where P = P({1, . . . , n}) \ {∅} and 6 is the set of LM -formulae of
µn-measure 0. By compactness, since the subsets AF,k are enumerated decreasingly,
we need only consider a finite subset of the above partial type where the level k0 is
the same for each of the subsets AF,k0 of positive density. By Theorem 4.7 the set

Xn,k0 = {(a1, . . . , an) ∈ Gn
| aF ∈ AF,k0 for all nonempty F ⊆ {1, . . . , n}}

has µn-measure
∏

F µ(AF,k0) > 0, so we conclude the desired result. □
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5. Local ultra-quasirandomness

In this final section, we adapt some of the ideas present in Section 4 to arbitrary
finite groups.

Theorem 3.10 holds in any definably amenable pair for almost all three weakly
random types, whenever their cosets modulo G00

M are product-compatible. Thus,
it yields asymptotic information for subsets of positive density in arbitrary finite
groups satisfying certain regularity conditions, which force some completions
in the ultraproduct to be in a suitable position to apply our main Theorem 3.10.
We present two examples of such regularity notions. Our intuition behind these
notions is purely model-theoretic and we ignore whether it is meaningful from a
combinatorial perspective. We would like to express our gratitude to Julia Wolf
(and indirectly to Tom Sanders) for pointing out that our previous definition of
principal subsets did not extend to the abelian case.

Definition 5.1. Let A be a definable subset of ⟨X⟩ of positive density in a definably
amenable pair (G, X). We say that A is principal over the parameter set B if

µ(A ∩ (Y · Y )) > 0

whenever Y is a B-definable neighborhood of the identity (that is, the set Y is
symmetric and contains the identity) such that finitely many left translates of Y
cover A · A−1

· A · A−1.
Analogously, we say that A is hereditarily principal over the parameter set B if

all of its B-definable subsets of positive density are principal.

Remark 5.2. Let A be a definable subset of ⟨X⟩ of positive density of a definably
amenable pair (G, X) such that µ(A ∩ (Y · Y ))= µ(A), whenever Y is a definable
neighborhood of the identity which covers A · A−1

· A · A−1 with finitely many left
translates. Then the set A is hereditarily principal over any subset of parameters.

Proof. Let A0 be a definable subset of A of positive measure. Notice that there is a
maximal finite subset F of (AA−1)2 with the property thatµ(x A0∩y A0)=0 for any
two distinct x and y in F . In particular, the set (AA−1)2 is contained in F · A0 · A−1

0 .
Thus, any definable neighborhood Y of the identity such that finitely many left
translates of cover A0 A−1

0 A0 A−1
0 also cover AA−1 AA−1, so µ(A∩(Y ·Y ))=µ(A)

by assumption on A. Hence µ(A0 ∩ (Y Y ))= µ(A0) > 0, as desired. □

Example 5.3. If G is generically principal, every definable subset A of positive
density is hereditarily principal over any parameter set. Indeed, Lemma 4.4 yields
that G = A · A−1

· A · A−1. Therefore, finitely many translates of the neighborhood
Y must cover G, so Y has positive measure and hence µ(Y · Y )= 1 by Lemma 4.4.

By the previous remark, the definable subset A satisfies thatµ(A∩(Y ·Y ))=µ(A),
so A is hereditarily principal over any subset of parameters.
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Example 5.4. Fix some enumeration (qn)n∈N of all the primes and consider the
family of groups (Gn = PSL2(qn)× Z2)n∈N, each equipped with the distinguished
subset Xn =PSL2(qn)×{0̄}. This family produces a definably amenable pair (G, X),
as in Example 1.5. Note that

G = PSL2(F)× Z2 and X = PSL2(F)× {0̄}

for some infinite (pseudofinite) field F. Over any elementary substructure M we
have that G00

M equals the simple group X = PSL2(F)×{0̄}, which is clearly definable.
The definable subset G is clearly principal yet not hereditarily principal, for the
dense subset X · (0PSL2(F), 1̄) does not intersect X = G00

M .

Lemma 5.5. Let M be a countable elementary substructure of a definably amenable
pair (G, X).

(a) Principal definable sets over M contain weakly random principal types in
Sµ(M), that is, types concentrated in ⟨X⟩

00
M .

(b) Every weakly random type over M containing a hereditarily principal definable
set is principal.

Proof. For (a), assume that the M-definable set A is principal over the model M .
Note that we can write the type-definable subgroup ⟨X⟩

00
M as a countable intersection

⟨X⟩
00
M =

⋂
i∈N

Vi ,

where the decreasing chain (Vi )i∈N consists of M-definable neighborhoods of the
identity such that Vi+1 · Vi+1 ⊆ Vi for all i in N. Since ⟨X⟩

00
M has bounded index in

the subgroup ⟨X⟩, compactness yields that finitely many translates of each Vi cover
the subset A · A−1

· A · A−1 (yet the number of translates possibly depends on i).
Hence, the type-definable subset A ∩ ⟨X⟩

00
M is weakly random, since A is principal,

so A contains a weakly random type concentrated in ⟨X⟩
00
M , as desired.

For (b), suppose that the M-definable set A is hereditarily principal yet it contains
a weakly random type q which does not concentrate on ⟨X⟩

00
M =

⋂
i∈N Vi , with

the same notation as above. By compactness, this implies the existence of some i
in N and some M-definable subset A0 of A of positive density with A0 ∩ Vi = ∅.
The subset A0 ∩ (Vi+1 · Vi+1) has in particular measure 0, so A0 is not principal,
contradicting our assumption on A. □

Proposition 5.6. Consider a subset A of positive density definable over a count-
able elementary substructure M of a sufficiently saturated definably amenable
pair (G, X). If A contains a weakly random type p concentrated in ⟨X⟩

00
M , then the

subset
{(a, b) ∈ A × A | a · b ∈ A}
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has positive µ2-measure. In particular, if A is principal, then the above set of pairs
has positive µ2-measure.

Notice that the definable set A above cannot be product-free, for the equation
x · y = z has a solution in A.

Proof. The proof is an immediate application of Fact 2.6. Indeed, for every
realization a of p, the partial type p ∩ a−1

· p is weakly random (for the weakly
random element a over M belongs to ⟨X⟩

00
M ), so choose a weakly random element

b over M, a realizing p such that a · b does as well. By Lemma 1.10, we obtain a
weakly random type tp(a, b/M) with all three elements a, b and a · b in A, which
yields immediately the desired result. □

Proposition 5.6 resonates with [Schur 1917, Hilfssatz] on the number of mono-
chromatic triples (x, y, x · y) in any finite coloring (or cover) of the natural numbers
1, . . . , N , for N sufficiently large. In fact, by a standard application of Łoś’s
theorem, the above argument yields a nonquantitative version of the following result
of Sanders [2019, Theorem 1.1]:

For every natural number k ≥ 1 there is some η = η(k) > 0 with the
following property: given any coloring on a finite group G with k many
colors A1, . . . , Ak , there exists some color A j , with 1 ≤ j ≤ k, such that∣∣{(a, b, c) ∈ A j × A j × A j | a · b = c}

∣∣ ≥ η|G|
2.

Motivated by [Gowers 2008, Theorem 5.3] for (ultra-)quasirandom groups, we
now provide a weaker version of it, taking all AF ’s to be the same subset A, for
∅ ̸= F ⊆ {1, . . . , n} as in Corollary 4.8.

Corollary 5.7. In a sufficiently saturated definably amenable pair (G, X) with
associated measure µ, consider a definable subset A of X of positive density which
is hereditarily principal over the parameter set G itself. For every countable
elementary substructure M of (G, X) such that both the measure and the sets A
are M-definable, there is a tuple (a1, . . . , an) in Gn weakly random over M such
that the product aF (as in Theorem 4.9) lies in A for every subset F as above.

An inspection of the proof shows that it suffices if the definable set A is hered-
itarily principal over N , where N is an ℵ1-saturated elementary substructure of
(G, X) containing M . This is not surprising, since an easy compactness argument
shows that a set A which is hereditarily principal over an ℵ1-saturated elementary
substructure N of (G, X) must be hereditarily principal over the parameter set G
itself.

Proof. We proceed by induction on the natural number n. Since both the base case
n = 3 and the induction step have similar proofs, we assume that the statement of
the corollary has already been shown for n − 1.
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The set A is principal, so it contains a weakly random type concentrated in ⟨X⟩
00
M ,

by Lemma 5.5(a). As in the proof of Proposition 5.6, there is a weakly random
element a1 in A over M such that A′

= A ∩ a−1
1 · A has positive density. Notice

that A′ is no longer definable over M , yet it is again hereditarily principal over
the parameter set G. By downwards Löwenheim–Skolem, choose some countable
elementary substructure M1 of (G, X) containing M ∪ {a1}. By induction, there
is a tuple (a2, . . . , an), weakly random over M1, such that each product aF1 lies
in A′ for every subset ∅ ̸= F1 ⊆ {2, . . . , n}. For n = 3, we obtain such a tuple by
applying Proposition 5.6 to the principal M1-definable set A′.

Lemma 1.10 yields now that the tuple (a1, . . . , an) is weakly random over M .
By construction, the product aF lies in A for every subset ∅ ̸= F ⊆ {1, . . . , n}, as
desired. □

Motivated by the above result, we isolate a particular instance of a complete
amalgamation problem (cf. the question in the introduction).

Question. Let M be a countable elementary substructure of a sufficiently saturated
definably amenable pair (G, X) and p be a weakly random type in ⟨X⟩

00
M . Given a

natural number n, is there a tuple (a1, . . . , an) in Gn weakly random over M such
that aF realizes p for all ∅ ̸= F ⊆ {1, . . . , n}, where aF stands for the product,
enumerated in an increasing order, of all ai with i in F?

At the moment of writing, we do not have a solid guess what the answer to the
above question will be. Following the lines of the proof of Corollary 5.7, the above
question would have a positive answer if the following statement is true:

Let p = tp(a/M0) be a weakly random type in ⟨X⟩
00
M0

, where M0 is a
countable elementary substructure of a saturated definably amenable
pair (G, X). Then there are an elementary substructure M1 containing
M0 ∪ {a} and a weakly random type q in ⟨X⟩

00
M1

extending p ∩ a−1
· p

Nonetheless, if the question could be positively answered, it would imply by a
standard compactness argument a finitary version of Hindman’s theorem [Hindman
1974].

Remark 5.8. If the above question has a positive answer, then for every natural
numbers k and n there is some constant η = η(k, n) > 0 such that in any coloring
on a finite group G with k many colors A1, . . . , Ak , there exists some color A j ,
with 1 ≤ j ≤ k such that∣∣{(a1, . . . , an) ∈ Gn

| aF ∈ A j for all ∅ ̸= F ⊆ {1, . . . , n}}
∣∣ ≥ η|G|

n,

where aF stands for the product, enumerated in an increasing order, of all ai with i
in F .
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We can now state the finitary versions of principal sets to provide finitary analogs
of Proposition 5.6 and Corollary 5.7.

Definition 5.9. Fix ϵ > 0 and k in N. A finite subset A of a group G is (k, ϵ)-
principal if

|A ∩ (Y · Y )| ≥ ϵ|A|

whenever Y is a neighborhood of the identity (that is, the set Y is symmetric
and contains the identity) such that k many left translates (or equivalently, right
translates) of Y cover A · A−1

· A · A−1.
We say that the finite subset A is hereditarily (k, ϵ)-principal up to ρ if all its

subset of relative density at least ρ (in A) are (k, ϵ)-principal.

Example 5.10. Consider the finite group G = Zn×Z2. The set G is clearly (k, 1/k)-
principal for every natural number k ̸= 0, yet it is not hereditarily (2, 1/k)-principal
up to 1/2 for any k ̸= 0, for the subset A = Zn ×{1̄} does not intersect Y = Zn ×{0̄},
which covers G in 2 steps.

Example 5.11. Given a subset A of a finite group G of density at least ϵ, the
symmetric set AA−1 is (k, ϵ/k)-principal. Indeed, if Y is a given neighborhood of
the identity such that k many right translates of Y cover (AA−1)4, then there exists
some c in G such that |Ac ∩ Y | ≥ |A|/k and so |AA−1

∩ Y Y | ≥ ϵ|AA−1
|/k, since

(Ac ∩ Y )(Ac ∩ Y )−1
⊆ AA−1

∩ Y Y .

Corollary 5.12. Let K > 0 and δ > 0 be given real numbers. There are real values
ϵ = ϵ(K , δ) > 0 and η= η(K , δ) > 0 as well as a natural number k = k(K , δ) such
that for every group G and a finite subset X of G of tripling at most K together
with a (k, ϵ)-principal subset A of X of relative density at least δ with respect to X ,
the collection of triples

{(a, b) ∈ A × A | a · b ∈ A}

has size at least η|X |
2.

Proof. Assume for a contradiction that the statement does not hold. Negating
quantifiers, there are positive constants K and δ such that for each triple ℓ̄= (k, n,m)
of natural numbers there exists a group G ℓ̄ and a finite subset X ℓ̄ of G ℓ̄ of tripling
at most K as well as a (k, 1/n)-principal subset Aℓ̄ of X ℓ̄ of relative density at least
δ such that the cardinality of the subset

Y(G ℓ̄)= {(x, y) ∈ Aℓ̄ × Aℓ̄ | x · y ∈ Aℓ̄}

is bounded above by |X ℓ̄|
2/m.

Following the approach of Example 1.5(b), we consider a suitable countable
expansion L of the language of groups and regard each such group G ℓ̄, with ℓ̄ of the
form (k, k, k), as an L-structure Nℓ̄ in such a way that L contains predicates for X ℓ̄
and Aℓ̄. Identify now the set of such triples (k, k, k) with the natural numbers in a
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natural way and choose a nonprincipal ultrafilter U on N. Consider the ultraproduct
N =

∏
U Nℓ̄. As outlined in Example 1.5, this construction gives rise to a definable

amenable pair (G, X) with respect to a measure µ equipped with an ∅-definable
subset A of X of positive density (at least δ) such that µ2(Y(G))= 0. Notice that
A is now principal over the parameter set N , by Łoś’s theorem.

Fix a countable elementary substructure M of N . By Proposition 5.6, the set

Y(G)= {(x, y) ∈ A × A | x · y ∈ A}

has positive density with respect to µ2, which contradicts the ultraproduct construc-
tion. □

The proof of the next result follows from Corollary 5.7 along the same lines
as Corollary 5.12 by a standard ultraproduct argument using Łoś’s theorem (and
implicitly that a nonprincipal ultraproduct of finite sets is ℵ1-saturated).

Corollary 5.13. For a natural number n ≥ 3, let real numbers K > 0 and δF > 0,
with ∅ ̸= F ⊆{1, . . . , n}, be given. There are ϵ= ϵ(n, K , δF )> 0, ρ= ρ(n, K , δF )

and η = η(n, K , δF ) > 0 as well as a natural number k = k(n, K , δF ) such that
for every group G and a finite subset X of G of tripling at most K together with a
subset A of X of relative density at least δ, whenever∣∣{(a1, . . . , an) ∈ Gn

| aF ∈ A for all ∅ ̸= F ⊆ {1, . . . , n}}
∣∣< η|X |

n,

where aF stands for the product, enumerated in an increasing order, of all the ai

with i in F , then A cannot be hereditarily (k, ϵ)-principal up to ρ.

In order to extend Proposition 5.6 to pairs (a, b) in the cartesian product A × B
with a · b in C , we introduce a new notion, which we refer to as compatibility for
certain subsets in a definably amenable pair.

Definition 5.14. Let A, B and C be subsets of ⟨X⟩ of positive density in a definably
amenable pair (G, X), all three definable over the countable elementary substruc-
ture M . We say that A and B are compatible with respect to C over M if there
exists a random pair (a, b) in A × B over M such that a · b lies in the same coset
modulo ⟨X⟩

00
M as some element c of C which is weakly random over M .

It is clear that every two definable subsets A and B of positive density in a
generically principal group G are compatible with respect to any subset C of
positive density over any countable elementary substructure M containing the
parameters of definition of all three sets. More generally, we have the following
observation.

Remark 5.15. Given three definable subsets A, B and C of positive density at
least δ > 0 in a definably amenable pair (G, X), all three defined over a countable
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elementary substructure M , every weakly random type of ⟨X⟩
00
M is contained in

A · A−1
∩ B · B−1

∩ C · C−1,

by Fact 2.6. Hence, the M-definable set

{(x, y) ∈ (A · A−1)× (B · B−1) | x · y ∈ C · C−1
}

contains a pair (a1, b1) with a1 and b1 both in ⟨X⟩
00
M weakly random over M such

that b1 is weakly random over M, a1. Hence, the above set has positive density, so
there exists a random pair (a, b) in AA−1

× B B−1 over M such that a · b belongs
to CC−1. Since a · b is (weakly) random over M , we deduce that A · A−1 and
B · B−1 are compatible with respect to C · C−1.

Lemma 5.16. Let A, B and C be subsets of ⟨X⟩ of positive density in a definably
amenable pair (G, X), all three definable over the countable elementary substruc-
ture M.

(a) If for some element g in ⟨X⟩
00
M weakly random over M , the definable subset

Zg = {(a, b) ∈ A × B | a · b ∈ C · g}

has positive µ2-measure, then A and B are compatible with respect to C
over M.

(b) If A and B are compatible with respect to C over M , then the M-definable set

{(a, b) ∈ A × B | a · b ∈ C}

has positive µ2-measure.

Proof. For (a), given a weakly random element g in ⟨X⟩
00
M , suppose that the definable

set Zg has positive density. By Remark 1.14, choose some (a, b) in Zg random
over M, g, so the element c = a ·b · g is again random over M by Remark 1.13 and
Lemma 1.15. This immediately yields that A and B are compatible with respect to
C over M .

For (b), suppose that A and B are compatible with respect to C over M , so by
definition, there is a random pair (a, b) in A × B over M such that a · b lies in the
same coset of ⟨X⟩

00
M as some element c in C whose type over M is weakly random.

By Lemma 1.15, the pair (a−1, a · b) is a random pair over M , so the definable
set A−1

· (a · b) ∩ B has positive measure, for it belongs to the weakly random
type tp(b/M, a · b). By Corollary 3.2, we deduce that A−1

· c ∩ B has positive
measure, so choose b1 in B weakly random over M, c such that c = a1 · b1. In
particular, the M-definable set

{(y, z) ∈ B × C | z · y−1
∈ A}
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has positive µ2-measure and so it contains a random pair (b2, c2) over M . The pair
(a2, b2) of A × B, with a2 = c2 · b−1

2 is again random over M by Lemma 1.15 and
satisfies that a2 · b2 belongs to C , as desired. □

Remark 5.17. If the definable set A has positive density and the pair (A, A) is
compatible with respect to A over a countable elementary substructure M , then A
is not product-free (cf. the corresponding comment after Proposition 5.6). On the
other hand, is it the case that every principal definable set yields a compatible pair?
Or are the two notions unrelated, even if they provide the same positive answer?

Lemma 5.16 yields a sufficient condition to ensure that the corresponding ultra-
products of finite subsets will be compatible. We have several candidates of finitary
versions of compatibility, which will allow us to obtain a local version of [Gowers
2008, Theorem 5.3] to count the number of pairs in A× B such that the product a ·b
lies in the subset C of positive density, all within a finite subset of small tripling.
However, it is unclear to us how combinatorially relevant our tentative definitions
are, so we would rather leave the ultraproduct formulation as an open question: Is
there a meaningful combinatorial definition (akin to Definition 5.9) of when two
finite sets A and B are compatible with respect to the finite set C?
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