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Bounded ultraimaginary independence
and its total Morley sequences
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We investigate the following model-theoretic independence relation: b |⌣
bu
A c if

and only if bddu(Ab) ∩ bddu(Ac) = bddu(A), where bddu(X) is the class of all
ultraimaginaries bounded over X . In particular, we sharpen a result of Wagner
to show that b |⌣

bu
A c if and only if ⟨Autf(M/Ab) ∪ Autf(M/Ac)⟩ = Autf(M/A),

and we establish full existence over hyperimaginary parameters (i.e., for any
set of hyperimaginaries A and ultraimaginaries b and c, there is a b′

≡A b such
that b′

|⌣
bu
A c). Extension then follows as an immediate corollary.

We also study total |⌣
bu-Morley sequences (i.e., A-indiscernible sequences I

satisfying J |⌣
bu
A K for any J and K with J + K ≡

EM
A I ), and we prove that an

A-indiscernible sequence I is a total |⌣
bu-Morley sequence over A if and only if

whenever I and I ′ have the same Lascar strong type over A, I and I ′ are related by
the transitive, symmetric closure of the relation “J + K is A-indiscernible”. This
is also equivalent to I being “based on” A in a sense defined by Shelah (1980) in
his study of simple unstable theories.

Finally, we show that for any A and b in any theory T , if there is an Erdős
cardinal κ(α) with |Ab| + |T | < κ(α), then there is a total |⌣

bu-Morley sequence
(bi )i<ω over A with b0 = b.

Introduction

A central theme in neostability theory is the importance of various kinds of “generic”
indiscernible sequences — usually with Michael Morley’s name attached to them —
such as Morley sequences in stable and simple theories, strict Morley sequences in
NIP and NTP2 theories, tree Morley sequences in NSOP1 theories, and |⌣

þ-Morley
sequences in rosy theories. A very broad question one might ask is this: How
generically can we build indiscernible sequences in arbitrary theories?

Over a model M , we can always extend a given type p(x) ∈ Sx(M) to a global
M-invariant type q(x) ⊃ p(x) and then use this to generate a sequence (bi )i<ω

satisfying bi |H q↾Mb<i for each i < ω. In some cases the particular choice of q(x)

matters, but typically these sequences are robustly generic. Sequences produced in
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this way have a certain property, which is that they are based on M in the sense of
Simon; i.e., for any I and J with I ≡M J ≡M b<ω, there is a K such that I + K
and J + K are both M-indiscernible. In NIP theories, the sequences with this
property are precisely the sequences generated by an invariant type [Simon 2015,
Proposition 2.38]. Over an arbitrary set of parameters A, however, there may fail to
be any indiscernible sequences based on A. In the dense circular order, for instance,
there are no indiscernible sequences based on ∅. Other technical issues also arise
when working over arbitrary sets, such as the necessity of considering Lascar strong
types over and above ordinary types.

A notion of independence |⌣
∗ is said to satisfy full existence if for any A, b, and c,

there is a b′
≡A b such that b′

|⌣
∗

A c. Together with a common model-theoretic
application of the Erdős-Rado theorem (Fact 1.2), this implies that for any A and b,
one can build an |⌣

∗-Morley sequence, an A-indiscernible sequence (bi )i<ω with
b0 = b satisfying bi |⌣

∗

A b<i for each i < ω (assuming |⌣
∗ also satisfies right

monotonicity). Model-theoretically tame theories often have full existence for
powerful independence notions, such as nonforking, but this does fail in some
notable tame contexts.

One independence notion that is known to satisfy full existence in arbitrary
theories is that of algebraic independence [Adler 2009, Proposition 1.5]: b |⌣

a
A c if

acleq(Ab)∩acleq(Ac)= acleq(A). A natural modification of this concept is bounded
hyperimaginary independence: b |⌣

b
A c if bddheq(Ab) ∩ bddheq(Ac) = bddheq(A).

Despite perhaps sounding like an intro-to-model-theory exercise, the combinatorics
necessary to prove full existence for |⌣

a are somewhat subtle. It was established
in [Conant and Hanson 2022] that |⌣

a satisfies full existence in continuous logic
and, relatedly, that |⌣

b satisfies full existence in discrete (and continuous) logic,
answering a question of Adler [2005, Question A.8]. While the relations of |⌣

a

and |⌣
b are algebraically nice,1 they seem to lack semantic consequences outside

of certain special theories (such as those with a canonical independence relation in
the sense of Adler [2005, Lemma 3.2]).

While being able to build |⌣
∗-Morley sequences is certainly good, in many

applications the important property is really that of being a total |⌣
∗-Morley

sequence,2 which is an A-indiscernible sequence satisfying b≥i |⌣
∗

A b<i for every
i <ω. When |⌣

∗ lacks the algebraic properties necessary to imply that all |⌣
∗-Morley

sequences are total |⌣
∗-Morley sequences, it can in general be difficult to ensure their

existence. Total |⌣
a-Morley sequences arise in Adler’s characterization of canonical

independence relations. And building total |⌣
K-Morley sequences, where |⌣

K is

1In the sense of the algebra of an independence relation, not the sense of the algebra in “algebraic
closure”.

2This use of the term “total” in the context of Morley sequences was originally introduced in
[Kaplan and Ramsey 2020].
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the relation of non-Kim-forking, is a crucial technical step in Kaplan and Ramsey’s
proofs [2020] of the symmetry of Kim-forking and the independence theorem in
NSOP1 theories.

In simple theories, Morley sequences over A are not generally based on A in the
sense of Simon. They do however nearly satisfy this property. If I and J are Morley
sequences over A with I ≡

L
A J ,3 then there are I ′ and K such that I + I ′, I ′

+K , and
J + K are A-indiscernible. In an NSOP1 theory T , if I is a tree Morley sequence
over M |H T and J ≡M I , then we can find K0, K1, and K2 such that I + K0,
K1+K0, K1+K2, and J +K2 are all M-indiscernible (see Proposition 4.28). These
facts suggest the consideration of the following equivalence relation, originally
introduced in [Shelah 1980, Definition 5.1]: Let ≈A be the transitive, symmetric
closure of the relation “I + J is A-indiscernible”. The intuition is that what it
means for an A-indiscernible sequence I to be “based on A” is that there are few
≈A-classes among the realizations of tp(I/A). We say that I is based on A in the
sense of Shelah if there does not exist a sequence (Ii )i<κ (with κ large) such that
Ii ≡A I for each i < κ and Ii ̸≈A I j for each i < j < κ . A simple compactness
argument shows that I is based on A in the sense of Shelah if and only if the set of
realizations of tp(I/A) decomposes into a bounded number of ≈A-classes. Buechler
[1997, Definition 2.4]4 used this relation to define a notion of canonical base. He
focused on ∅-indiscernible sequences and gave the following definition: A is a
canonical base of the ∅-indiscernible sequence I if any automorphism σ ∈ Aut(M)

fixes A pointwise if and only if it fixes the ≈∅-class of I . One difficulty with this
concept, of course, is that not all indiscernible sequences have canonical bases in
this sense (even in T eq, e.g., [Adler 2005, Example 3.13]).

Two of the problems we have mentioned — the lack of canonical bases for
indiscernible sequences and the lack of semantic consequences of |⌣

a and |⌣
b —

can both be solved by an extremely blunt move: the introduction of ultraimaginary
parameters. An ultraimaginary is an equivalence class of an arbitrary invariant
equivalence relation (as opposed to a type-definable equivalence relation, as in the
definition of hyperimaginaries). Every indiscernible sequence I trivially has an
ultraimaginary canonical base in the sense of Buechler, i.e., the ≈∅-class of I itself.

Another appealing aspect of ultraimaginaries is that they characterize Lascar
strong type in the same way that hyperimaginaries characterize Kim–Pillay strong
type. An ultraimaginary [b]E is bounded over A if it has boundedly many conjugates
under Aut(M/A). We will write bddu(A) for the class of ultraimaginaries bounded
over A. In general, it turns out that b and c have the same Lascar strong type

3The equivalence relation ≡
L
A is the transitive closure of the relation “there is a model M ⊇ A

such that b ≡M c”. If b ≡
L
A c, we say that b and c have the same Lascar strong type over A.

4This preprint is difficult to track down. The relevant ideas are developed further in [Adler 2005,
Section 3.2], which is easily available.
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over A if and only if they “have the same type over bddu(A)”, once this concept is
defined precisely.

Pure analogical thinking might lead one to consider the following independence
notion: b |⌣

bu
A c if bddu(Ab) ∩ bddu(Ac) = bddu(A). This notion is implicit in a

result of Wagner [2015, Proposition 2.12], which we restate and expand slightly
(Proposition 2.4): b |⌣

bu
A c if and only if ⟨Autf(M/Ab)∪Autf(M/Ac)⟩=Autf(M/A)

(where ⟨X⟩ is the group generated by X ). This characterization is clearly seman-
tically meaningful, and moreover it allows one to discuss |⌣

bu without actually
mentioning ultraimaginaries at all. One way to see why this equivalence works is
the fact that ultraimaginaries are “dual” to co-small sets of automorphisms; a group
G ≤ Aut(M) is co-small if there is a small model M such that Aut(M/M) ≤ G. For
every co-small group G, there is an ultraimaginary aE such that Aut(M/aE) = G
(Proposition 1.7).

As |⌣
bu lacks finite character, total |⌣

bu-Morley sequences over A seem to be
correctly defined as A-indiscernible sequences (bi )i<ω with the property that for any
I + J ≡

EM
A b<ω,5 we have that I |⌣

bu
A J . The automorphism group characterization

of |⌣
bu, together with its the nice algebraic properties and the malleability of

indiscernible sequences, leads to a pleasing characterization of total |⌣
bu-Morley

sequences over sets of hyperimaginary parameters (Theorem 4.8), the equivalence
of the following.

• (bi )i<ω is a total |⌣
bu-Morley sequence over A.

• For some infinite I and J , we have that I + J ≡
EM
A b<ω and I |⌣

bu
A J .

• For any I , I ≈A b<ω if and only if there is I ′
≡

L
A I such that b<ω + I ′ is

A-indiscernible.

• b<ω is based on A in the sense of Shelah; i.e., [b<ω]≈A ∈ bddu(A).

The condition in the third bullet point is a natural mutual generalization of Lascar
strong type and Ehrenfeucht–Mostowski type (Definition 4.5). Theorem 4.8 also
tells us that when total |⌣

bu-Morley sequences exist, they act as particularly uniform
witnesses of Lascar strong type (Proposition 4.3).

Of course this all leaves two critical questions: Does |⌣
bu always satisfy full

existence? And, even if it does, can we actually build total |⌣
bu-Morley sequences

in any type over any set under any theory? The bluntness of ultraimaginaries
leaves us without one of the most important tools in model theory, compactness.
Furthermore, |⌣

bu’s lack of finite character gives us less leeway in applying the
Erdős-Rado theorem to construct indiscernible sequences with certain properties;

5 I ≡
EM
A J means that I and J have the same Ehrenfeucht–Mostowski type over A (i.e., for any

increasing tuples b ∈ I and c ∈ J of the same length, b ≡A c). Note that I and J do not need to have
the same order type.
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we now need to be more concerned with the particular order types of the sequences
involved.

Using some of the indiscernible tree technology from [Kaplan and Ramsey
2020], we are able to prove that |⌣

bu does satisfy full existence over arbitrary
sets of (hyperimaginary) parameters in arbitrary (discrete or continuous) theories
(Theorem 3.6).6 With regards to building total |⌣

bu-Morley sequences, Theorem 4.8
tells us that we don’t need to worry too much about order types. All we need to
get a total |⌣

bu-Morley sequence over A is an A-indiscernible sequence (bi )i<ω+ω

with b≥ω |⌣
bu
A b<ω. This is fortunate because constructing ill-ordered |⌣

bu-Morley
sequences directly seems daunting. Unfortunately, ω + ω appears to be about
one ω further than we can go without a large cardinal. What we do get is this
(Theorem 4.22): For any A and b in any theory T , if there is an Erdős cardinal κ(α)

with |Ab| + |T | < κ(α) (for any α ≥ ω), then there is a total |⌣
bu-Morley sequence

(bi )i<ω over A with b0 = b. Without a large cardinal, the best we seem to be able
to do (Proposition 4.17) is a half-infinite, half-arbitrary-finite approximation of a
total |⌣

bu-Morley sequence, which we call a weakly total |⌣
bu-Morley sequence.

These sequences also serve as uniform witnesses of Lascar strong type without any
set-theoretic hypotheses (Corollary 4.18).

1. Ultraimaginaries

Here we will set definitions and conventions, and we also take the opportunity to
collect some basic facts about ultraimaginaries which are likely folklore, although
we could not find explicit references.

Fix a theory T and a set-sized monster model M |H T .

Definition 1.1. An invariant equivalence relation of arity κ is an equivalence
relation E on Mx (with |x | = κ) such that for any a, b, c, d ∈ Mx with ab ≡ cd,
aEb if and only if cEd .

An ultraimaginary of arity κ is a pair (E, aE) consisting of an invariant equiva-
lence relation E (of arity κ) and an E-equivalence class aE of some tuple a ∈ Mx .
By an abuse of notation, we will write aE for the pair (E, aE), and we may also
write [a]E if necessary for notational clarity.

Given an ultraimaginary aE , Aut(M/aE) is the set of automorphisms σ ∈ Aut(M)

with the property that aE(σ · a). We write Autf(M/aE) for the group generated by
{σ ∈ Aut(M/M) : M ⪯ M, Aut(M/M) ≤ Aut(M/aE)}.

We say that bF is definable over aE if bF is fixed by every automorphism
in Aut(M/aE). We write dclu(aE) for the class of all ultraimaginaries definable

6Although this result partially supersedes a result in [Conant and Hanson 2022] (full existence for
|⌣
a in continuous logic and |⌣

b in discrete or continuous logic), the proof there gives more detailed
numerical information which may be especially useful in the metric context.
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over aE . For any κ , we write dcluκ(aE) for the set of elements of dclu(aE) of arity
at most κ . We say that bF and cG are interdefinable over aE if bF ∈ dclu(aE cG)

and cG ∈ dclu(aE bF ).
We say that bF is bounded over aE if the Aut(M/aE)-orbit of bF is bounded.7

We write bddu(aE) for the class of all ultraimaginaries bounded over aE . We write
bddu

κ(aE) for the set of elements of bddu(aE) of arity at most κ . We say that bF

and cG are interbounded over aE if bF ∈ bddu(aE cG) and cG ∈ bddu(aE bF ).
We write aE ≡ bE to mean that there is an automorphism σ ∈ Aut(M) with

σ · aE = bE . We write bF ≡aE cF to mean that aE bF ≡ aE cF (i.e., there is
σ ∈ Aut(M/aE) such that σ · bF = cF ).

Note that real elements, imaginaries, and hyperimaginaries can all be regarded
as ultraimaginaries.

An easy counting argument shows that bddu is a closure operator (i.e., for any
aE , bF , and cG , if bF ∈ bddu(aE) and cG ∈ bddu(bF ), then cG ∈ bddu(aE)).

We will also sometimes define an invariant equivalence relation E on the
realizations of a single type p(x) over ∅. Equivalence classes of such can be
thought of as ultraimaginaries by using the same trick that is commonly used with
hyperimaginaries: Consider the invariant equivalence relation E ′(x, y) defined by
x = y ∨ (E(x, y) ∧ x |H p ∧ y |H p).

For the sake of clarity, we will reserve the notation aE for ultraimaginaries
and write hyperimaginaries in the same way we write real elements. For the sake
of cardinality issues, we will also take all hyperimaginaries to be quotients of
countable tuples by countably type-definable equivalence relations. It is a standard
fact that every hyperimaginary is interdefinable with some set of hyperimaginaries
of this form.

Fact 1.2 [Shelah 1980].8 Let (bi )i<λ be a sequence of tuples with |bi | < κ and let A
be some set of parameters. If λ ≥ ℶ(2κ+|A|+|T |)+ , then there is an A-indiscernible
sequence (b′

i )i<ω such that for every n < ω, there are i0 < · · · < in < κ such that
b′

0 . . . b′
n ≡A bi0 . . . bin .

Lemma 1.3. Let M be a model. If aE ∈ bddu(M), then aE ∈ dclu(M).

Proof. Assume that aE /∈ dclu(M). Let p(x) be a global M-invariant type extending
tp(a/M). Assume that there are a0 and a1 realizing tp(a/M) such that a0 /Ea1. For
any i > 1, given a<i , let ai |H p↾Ma<i . Since ai a j ≡M ai ak for any j, k < i , we
must have that ai /Ea j for any j < i . Since we can do this indefinitely, we have
that aE is not bounded over M . □

7Specifically, by Proposition 1.4, this is equivalent to bF having at most 2|ab|+|T | conjugates
over aE .

8See [Tent and Ziegler 2012, Lemma 7.2.12] for a modern presentation of the result.
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Proposition 1.4. For any ultraimaginaries aE and bF , the following are equivalent.

(1) bF /∈ bddu(aE).

(2) There is an a-indiscernible sequence (ci )i<ω such that c0 ≡aE b and ci /Fc j for
each i < j < ω.

(3) |Aut(M/aE) · bF | > 2|ab|+|T |.

Proof. (3)⇒(2). Let (bi
F )i<(2|ab|+|T |)+ be an enumeration of Aut(M/aE) · bF . Let

M ⊇ a be a model with |M | ≤ |a| + |T |. Let x be a tuple of variables of the same
length as b. There are at most 2|ab|+|T | types in Sx(M). Therefore, there must
be i < j < (2|ab|+|T |)+ such that bi

≡M b j . Let p(x) be a global M-invariant
type extending tp(bi/M), and let (ci )i<ω be a Morley sequence generated by p(x)

over Mbi b j . Since bi /Fb j , we must have that c0 /Fbi . Therefore ci /Fc j for any
i < j < λ, and so (ci )i<ω is the required a-indiscernible sequence.

(2)⇒(1). Given an a-indiscernible sequence (ci )i<ω as in the statement of the
proposition, we can extend it to an a-indiscernible sequence (ci )i<λ for any λ.
These sequences will still satisfy that ci /Fc j for any i < j < λ, so bF has an
unbounded number of Aut(M/aE)-conjugates and bF /∈ bddu(aE).

(1)⇒(3). This is immediate from the definition of bddu(aE). □

Corollary 1.5. For any λ, bddu
λ(aE) has cardinality at most 2|a|+2λ+|T |

.

Proof. For each α ≤ λ, |Sα+α(T )| ≤ 2λ+|T |. Since an invariant equivalence relation
on α-tuples is specified by a subset of Sα+α(T ), this implies that for each α ≤ λ,
there are at most 22λ+|T |

invariant equivalence relations on α-tuples. Therefore
the total number of invariant equivalence relations on tuples of length at most λ

is λ · 22λ+|T |

= 22λ+|T |

. For each such F , the set {bF : bF ∈ bddu
λ(aE)} has cardinality

at most 2|a|+λ+|T | by Proposition 1.4. Finally, 22λ+|T |

· 2|a|+λ+|T |
= 2|a|+2λ+|T |

. □

Co-small groups of automorphisms. Here we will see that ultraimaginaries are
essentially the same thing as reasonable subgroups of Aut(M).

Definition 1.6. A group G ≤ Aut(M) is co-small if there is a small model M such
that Aut(M/M) ≤ G.

Clearly for any ultraimaginary aE , Aut(M/aE) is co-small. The converse is true
as well.

Proposition 1.7. For any co-small G, if Aut(M/M) ≤ G, then there is an ultra-
imaginary aE such that G = Aut(M/aE) where a is some enumeration of M.

Proof. Let M be a small model witnessing that G is co-small. Consider the binary
relation defined on realizations of tp(M) (in some fixed enumeration) defined by
E(M0, M1) if and only if there is σ ∈ Aut(M) and τ ∈ G such that σ · M = M0
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and στ · M = M1. We need to verify that E is an invariant equivalence relation.
Reflexivity is obvious.

Invariance. Suppose that E(M0, M1), as witnessed by σ ∈ Aut(M) and τ ∈ G. Fix
σ ′

∈ Aut(M). We then have that σ ′σ · M = σ ′
· M0 and σ ′στ · M = σ ′

· M1, whence
E(σ ′

· M0, σ
′
· M1).

Symmetry. If σ · M = M0 and στ · M = M1 with σ ∈ Aut(M) and τ ∈ G, then
σττ−1

· M = M0 and στ · M = M1. We have στ ∈ Aut(M) and τ−1
∈ G, so

E(M1, M0).

Transitivity. Suppose that for σ, σ ′
∈Aut(M) and τ, τ ′

∈ G, we have that σ ·M = M0,
στ ·M =σ ′

·M = M1, and σ ′τ ′
·M = M2. This implies that (στ)−1σ ′

= τ−1σ−1σ ′
∈

Aut(M/M) ≤ G. Since τ ∈ G as well, we have that σ−1σ ′
∈ G. Therefore

σ−1σ ′τ ′
∈ G. Finally, σσ−1σ ′τ ′

· M = M2, so E(M0, M2).

Consider the ultraimaginary ME . For any τ ∈ G, we clearly have E(M, τ · M),
so G ≤ Aut(M/ME). Conversely, suppose that α ∈ Aut(M/ME). By definition, this
implies that E(M, α · M), so there are σ ∈ Aut(M) and τ ∈ G such that σ · M = M
and στ · M = α · M . Therefore σ, τ−1σ−1α ∈ Aut(M/M) ≤ G. Since τ−1

∈ G, we
therefore have that α ∈ G. □

Corollary 1.8. If bF ∈ bddu(aE), then there is cG ∈ bddu(aE) of arity at most
|a| + |T | such that bF and cG are interdefinable over ∅. Furthermore, c can be
taken to be an enumeration of any model of size at most |a| + |T | containing a.

Proof. There is a model M ⊇ a with |M | ≤ |a| + |T |. By Lemma 1.3, we have that
Aut(M/M) ≤ Aut(M/bF ), so by Proposition 1.7, we have that there is cG with arity
at most |a|+|T | which satisfies that Aut(M/cG) = Aut(M/bF ) (i.e., cG and bF are
interdefinable over ∅). Furthermore, we can take c to be an enumeration of M . □

Definition 1.9. For any co-small group G, we write [[G]] for some arbitrary ultra-
imaginary aE of minimal arity satisfying G = Aut(M/aE). We will write dclu[[G]]

and dcluλ[[G]] for dclu([[G]]) and dcluλ([[G]]) and likewise with bddu. (Note that
dclu[[G]] and bddu

[[G]] only depend on G, not on the particular choice of [[G]].)

It is immediate from Proposition 1.7 that for any co-small G and H, [[G]]∈dclu[[H]]

if and only if G ≥ H . A similar statement for bddu is given in Proposition 1.12.
Now we can see that intersections of dclu-closed sets (and therefore also bddu-

closed sets) have semantic significance in arbitrary theories, in that intersections
correspond to joins in the lattice of co-small groups of automorphisms.

Proposition 1.10. For any aE , bF , cG , and c′

G , the following are equivalent.

(1) cG ≡dcluλ(aE )∩dcluλ(bF ) c′

G for all λ.

(2) There is σ ∈ ⟨Aut(M/aE) ∪ Aut(M/bF )⟩ such that σ · cG = c′

G .
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(3) There is a sequence (ai bi ci )i≤n such that a0
= a, b0

= b, c0
= c, cn

G = c′

G , and
for each i < n,

• if i is even, then ai
= ai+1 and bi

F ci
G ≡ai

E
bi+1

F ci+1
G and

• if i is odd, then bi
= bi+1 and ai

E ci
G ≡bi

F
ai+1

E ci+1
G .

Proof. Let H = ⟨Aut(M/aE) ∪ Aut(M/bF )⟩.

Claim. dcluλ(aE)∩dcluλ(bF ) and [[H ]] are interdefinable (i.e., dcluλ(aE)∩dcluλ(bF )⊆

dclu([[H ]]) and [[H ]] ∈ dclu(dcluλ(aE) ∩ dcluλ(bF ))) for all sufficiently large λ.

Proof of claim. Clearly [[H ]] ∈ dclu(aE)∩ dclu(bF ), so [[H ]] ∈ dcluλ(aE)∩ dcluλ(bF )

for all sufficiently large λ.
Conversely, suppose that dI ∈ dclu(aE)∩ dclu(bF ). Any σ ∈ H is a product of

elements of Aut(M/aE) and Aut(M/bF ), so it must fix dI . Thus Aut(M/dI ) ≥ H
and hence dI ∈ dclu[[H ]]. □claim

So now we have that cG ≡dcluλ(aE )∩dcluλ(bF ) c′

G holds for sufficiently large λ if and
only if cG ≡[[H ]] c′

G . Also note that cG ≡dcluλ(aE )∩dcluλ(bF ) c′

G for sufficiently large λ

and only if the same holds for any λ. Therefore (1) and (2) are equivalent.
There is a σ ∈ H with σ · cG = c′

G if and only if there are α0, . . . , αn−1 ∈

Aut(M/aE) and β0, . . . , βn−1 ∈ Aut(M/bF ) such that σ = αn−1βn−1 . . . β1α0β0.
For (2)⇒(3), assume that there are such α and β for which

αn−1βn−1αn−2 . . . β1α0β0 · cG = c′

G .

Let a0b0c0
= abc, a1b1c1

= αn−1 · (a0b0c0), a2b2c2
= αn−1βn−1 · (a0b0c0), and

so on up to a2nb2nc2n
= αn−1βn−1αn−2 . . . β1α0β0 · (a0b0c0). Clearly we have that

c2n
G = c′

G , so we just need to verify that (ai bi ci )i≤2n is the required sequence. If
i < 2n is even, then αi ∈ Aut(M/aE), so ai

E = ai+1
E . Furthermore, b0

F c0
G ≡a0

E
αi · (b0

F c0
G), so by invariance,

αn−1βn−1 . . . βi+1 · (b0
F c0

G) ≡αn−1βn−1...βi+1·a0
E

αn−1βn−1 . . . βi+1αi · (b0
F c0

G),

which is the same as bi
F ci

G ≡ai
E

bi+1
F ci+1

G . If i < 2n is odd, then the same argument
tells us that bi

F = bi+1
F and ai

E ci
G ≡bi

F
ai+1

E ci+1
G .

For (3)⇒(2), the above argument is reversible. Fix (ai
E bi

F ci
G)i≤2n satisfying

the conditions of (3). First of all we can find αn−1 ∈ Aut(M/aE) such that
α−1

n−1 · (a1
E b1

F c1
G) = a0

E b0
F c0

G . Then we can find βn−1 ∈ Aut(M/bF ) such that
β−1

n−1α
−1
n−1 · (a2

E b2
F c2

G) = a0
E b0

F c0
G . Then we can find αn−2 ∈ Aut(M/aE) such that

α−1
n−2β

−1
n−1α

−1
n−1 · (a3

E b3
F c3

G) = a0
E b0

F c0
G . Continuing inductively in this way, we find

α0, . . . , αn−1 ∈ Aut(M/aE) and β0, . . . , βn−1 ∈ Aut(M/bF ) such that the same
equalities as in the (2)⇒(3) proof hold. Therefore there is a σ ∈ H (namely
αn−1βn−1αn−2 . . . β1α0β0) such that σ · cG = c′

G . □
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A similar statement is true for arbitrary families of ultraimaginaries: If (ai
Ei

)i∈I

is a (possibly large) family of ultraimaginaries, then cG ≡⋂
i∈I dcluλ(a

i
Ei

) c′

G if and only
if there is a σ ∈

〈⋃
i∈I Aut(M/ai

Ei
)
〉

such that σ · cG = c′

G . There is also an analog
of (3), but it is more awkward to state.

Lascar strong type.

Definition 1.11. For any co-small group G ≤ Aut(M), let G f be the group gen-
erated by all groups of the form Aut(M/M) ≤ G with M a small model. For any
ultraimaginary aE , let Autf(M/aE) = Aut(M/aE) f .

We say that bF and cF have the same Lascar strong type over aE , written
bF ≡

L
aE

cF , if there is σ ∈ Autf(M/aE) such that σ · bF = cF .

Proposition 1.12. For any co-small groups G and H , [[G]] ∈ bddu
[[H ]] if and only

if G ≥ H f .

Proof. Assume that [[G]] ∈ bddu
[[H ]]. Note that for a model M , by Lemma 1.3,

we have that [[G]] ∈ bddu(M) if and only if G ≥ Aut(M/M). Therefore, for any
model M with [[H ]] ∈ bddu(M), we must have that [[G]] ∈ bddu

[[H ]] ⊆ bddu(M)

and so G ≥ Aut(M/M). Since [[H ]] ∈ bddu(M) if and only if H ≥ Aut(M/M), we
have that G ≥ H f .

Conversely, assume that G ≥ H f . This implies that for any small model M with
[[H ]]∈bddu(M), we have H f ≥Aut(M/M), so G ≥Aut(M/M) and [[G]]∈dclu(M).
Fix some such model N . Assume for the sake of contradiction that [[G]] /∈ bddu

[[H ]].
For any λ, we can find (σi )i<λ in H = Aut(M/[[H ]]) such that σi · [[G]] ̸= σ j · [[G]]

for each i < j < λ. Since [[G]] = aE for some a with |a| ≤ |N | by Proposition 1.7,
we have that if λ is larger than 2|N |+|T |, there must be i < j < λ such that
σi ·[[G]]≡N σ j ·[[G]]. Let N ′

=σ−1
i ·N . N ′ is now a model satisfying Aut(M/N ′)≤G.

So [[G]] ∈ dclu(N ′), but [[G]] ≡N ′ σ−1
i σ j · [[G]] and [[G]] ̸= σ−1

i σ j · [[G]], which is a
contradiction. □

An important fact about ultraimaginaries is that bddu has the same relationship
with Lascar strong types that bddheq has with Kim–Pillay strong types.

For any aE and bF , by an abuse of notation, we’ll write [bF ]≡L
aE

for [ab]G ,
where G(ab, a′b′) holds if and only if aEa′ and bF ≡

L
aE

b′

F . Note in particular that
[bF ]≡L

aE
= [b′

F ]≡L
aE

if and only if bF ≡
L
aE

b′

F .

Proposition 1.13. For any ultraimaginaries aE , bF , and cF , the following are
equivalent.

(1) bF ≡
L
aE

cF .

(2) bF ≡bddu
λ(aE ) cF for all λ.

(3) bF ≡bddu
|a|+|T |

(aE ) cF .
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Proof. To see that (1) implies (3), fix a model M with aE ∈ bddu(M) and some
automorphism σ ∈ Aut(M/M). By Lemma 1.3, we have that Aut(M/M) ≤

Aut(M/ bddu
|a|+|T |

(aE)). Therefore bF ≡bddu
|a|+|T |

(aE ) σ · bF . By induction, we
therefore have that bF ≡

L
aE

cF implies bF ≡bddu
|a|+|T |

(aE ) cF .
Corollary 1.8 implies that Aut(M/ bddu

λ(aE))≥ Aut(M/ bddu
|a|+|T |

(aE)) for all λ,
so (3) implies (2).

To see that (2) implies (1), note that [bF ]≡L
aE

∈ bddu
λ(aE) for some sufficiently

large λ (because there are a bounded number of Lascar strong types over aE ). Thus if
bF ≡bddu

λ(aE ) cF , we must have [bF ]≡L
aE

= [cF ]≡L
aE

or, in other words, bF ≡
L
aE

cF . □

2. Bounded ultraimaginary independence

Definition 2.1. Given sets of ultraimaginaries A, B, and C , we write B |⌣
bu
A C to

mean that bddu(AB) ∩ bddu(AC) = bddu(A).

Recall that bddu is a closure operator (i.e., if cG ∈ bddu(bF ) and bF ∈ bddu(aE),
then cG ∈bddu(aE)). We will ultimately show (in Proposition 2.3) that the following
are equivalent: bF |⌣

bu
aE

cG , bddu
κ(aE bF ) ∩ bddu

κ(aE cG) = bddu
κ(aE) for all κ , and

bddu
κ(aE bF )∩ bddu

κ(aE cG) = bddu
κ(aE) for κ = |T | + |abc|. |⌣

bu satisfies some of
the familiar properties of |⌣

a.

Proposition 2.2. Fix ultraimaginaries aE , bF , cG , and eI .

• (Invariance) If aE bF cG ≡ a′

E b′

F c′

G , then bF |⌣
bu
aE

cG if and only if b′

F |⌣
bu
a′

E
c′

G .

• (Symmetry) bF |⌣
bu
aE

cG if and only if cG |⌣
bu
aE

bF .

• (Monotonicity) If bF cG |⌣
bu
aE

dH eI , then bF |⌣
bu
aE

dH .

• (Transitivity) If bF |⌣
bu
aE

cG and dH |⌣
bu
aE bF

cG , then bF dH |⌣
bu
aE

cG .

• (Normality) If bF |⌣
bu
aE

cG , then aE bF |⌣
bu
aE

aE cG .

• (Anti-reflexivity) If bF |⌣
bu
aE

bF , then bF ∈ bddu(aE).

Proof. Everything except transitivity is immediate. The argument for transitivity
is the same as the argument for transitivity of |⌣

a: Assume that bF |⌣
bu
aE

cG and
dH |⌣

bu
aE bF

cG . Let eI be an element of bddu(aE bF dH ) ∩ bddu(aE cG). This im-
plies that it is an element of bddu(aE bF dH ) ∩ bddu(aE bF cG), so by assumption
it is an element of bddu(aE bF ). But this means that it’s in both bddu(aE bF ) and
bddu(aE cG), so, by assumption again, it is an element of bddu(aE). □

Part of the goal of this paper is to prove full existence and therefore also extension
for |⌣

bu (although only over hyperimaginary bases).

• (Full existence over hyperimaginaries) For any set of hyperimaginaries A and
ultraimaginaries bE and cF , there is c′

F ≡A cF such that bE |⌣
bu
A c′

F .
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• (Extension over hyperimaginaries) For any set of hyperimaginaries A and
ultraimaginaries bE , cF , and dG , if bE |⌣

bu
A cF , then there is b′

E ≡AcF bE such
that b′

E |⌣
bu
A cF dG .

A fairly general argument will allow us to upgrade ≡A to ≡
L
A in the above two

conditions, which we establish in Theorem 3.6 and Corollary 3.8.
Finite character fails very badly, of course: As considered in [Wagner 2015,

Example 2.8], if E is the equivalence relation on ω-tuples of equality on cofinitely
many indices, then for some sequences (ai )i<ω, we will have a<n |⌣

bu
[a<ω]E for

all n, yet a<ω ̸ |⌣
bu

[a<ω]E . Given the existence of higher and higher cardinality
generalizations of the previous example (e.g., equality on co-countably many indices
on ω1-tuples), local character seems unlikely except possibly in the presence of
large cardinals. We do have some control over the relevant cardinalities, however.

Proposition 2.3. For any aE , bF , and cG , bF |⌣
bu
aE

cG if and only if

bddu
λ(aE bF ) ∩ bddu

λ(aE cG) = bddu
λ(aE),

where λ = |ab| + |T |.

Proof. Let λ=|ab|+|T |. If bF |⌣
bu
aE

cG , then bddu
λ(aE bF )∩bddu

λ(aE cG)=bddu
λ(aE).

Conversely, assume that bF ̸ |⌣
bu
aE

cG . There is some

dH ∈ (bddu(aE bF ) ∩ bddu(aE cG)) \ bddu(aE).

By Corollary 1.8, there is eI of arity at most λ such that dH and eI are interde-
finable. This means that eI ∈ (bddu

λ(aE bF ) ∩ bddu
λ(aE cG)) \ bddu

λ(aE). Therefore
bddu

λ(aE bF ) ∩ bddu
λ(aE cG) ̸= bddu

λ(aE). □

The following characterization of |⌣
bu (and the manner of proof) is essentially

due to Wagner [2015].

Proposition 2.4. For any ultraimaginaries aE , bF , and cG , the following are
equivalent.

(1) bF |⌣
bu
aE

cG .

(2) For any b′

F ≡
L
aE

bF , there are b0, c0, b1, c1, . . . , cn−1, bn such that b0
= b,

c0
= c, bn

= b′, and for each i < n, bi
F ≡

L
aE ci

G
bi+1

F and ci
G ≡

L
aE bi+1

F
ci+1

G if
i < n − 1.

(3) ⟨Autf(M/aE bF ) ∪ Autf(M/aE cG)⟩ = Autf(M/aE).

Proof. Let H = ⟨Autf(M/aE bF ) ∪ Autf(M/aE cG)⟩.

¬(3)⇒¬(1). Assume H ̸= Autf(M/aE), which implies that H < Autf(M/aE) =

Autf(M/aE) f . By Proposition 1.12, we have that [[H ]] /∈ bddu
[[Autf(M/aE)]] =

bddu(aE). But since Autf(M/aE bF )=Autf(M/aE bF ) f ≤ H and Autf(M/aE cG)=

Autf(M/aE cG) f ≤ H , we have that [[H ]] ∈ bddu(aE bF ) ∩ bddu(aE cG) again by
Proposition 1.12.
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(3)⇒(1). Suppose H = Autf(M/aE). Fix an ultraimaginary dI ∈ bddu(aE bF ) ∩

bddu(aE cG). By Proposition 1.12, we have that H ≤Autf(M/aE dI )≤Autf(M/aE),
which implies that Autf(M/aE dI ) = H . Hence by Proposition 1.12, dI ∈ bddu(aE).
Since we can do this for any such ultraimaginary, we have that bF |⌣

bu
aE

cG .

(1)⇒(2). Let b∗

F∗ = [[Autf(M/aE bF )]] and c∗

G∗ = [[Autf(M/aE cG)]]. Note that
bddu(aE bF ) = dclu(b∗

F∗) and bddu(aE cG) = dclu(c∗

G∗) (by Definition 1.9 and
Proposition 1.12). In particular, we have that dclu(b∗

F∗)∩dclu(c∗

G∗) = bddu(aE). Fix
b′

F ≡
L
aE

bF . By passing to a different representative of the F-equivalence class b′

F ,
we may assume that b′

≡
L
aE

b. Fix c′ such that bc ≡
L
aE

b′c′. By Proposition 1.13, we
have that b′c′

≡bddu
λ(aE ) bc for all λ, so b′c′

≡dcluλ(b
∗

F∗ )∩dcluλ(c
∗

G∗ ) bc for all λ. Therefore,
by Proposition 1.10, we can find a sequence (b∗i c∗i bi ci )i≤n such that b∗0

= b∗,
c∗0

= c∗, b0c0
= bc, bncn

= b′c′, and for each i < n,

• if i is even, b∗i
= b∗i+1 and c∗i bi ci

≡b∗i c∗i+1bi+1ci+1 and

• if i is odd, c∗i
= c∗i+1 and b∗i bi ci

≡c∗i b∗i+1bi+1ci+1.

This implies, by induction, that bi ci
≡L

aE bi
F

bi+1ci+1 and bi
F = bi+1

F for each even i
and bi ci

≡
L
aE ci

G
bi+1ci+1 and ci

G = ci+1
G for each odd i , so b0c1b2c3 . . . cn−1bn is

the sequence required by the proposition (after reindexing).

(2)⇒(1). Assume (2), but also assume for the sake of contradiction that (1)
fails. Let dH be an element of (bddu(aE bF ) ∩ bddu(aE cG)) \ bddu(aE). Since
dH is not bounded over aE , there must be some d ′

H ≡
L
aE

dH such that d ′

H /∈

bddu(aE bE) ∩ bddu(aE cG). Find b′

F such that bF dH ≡
L
aE

b′

F d ′

H . Let b0, c0, b1,
c1 . . . , cn−1, bn be as in (2), with bn

= b′. Find d1/2, d1, d3/2, d2, . . . , dn−(1/2), dn

such that d1/2
= d and for each i < n,

• bi
F d i+(1/2)

H ≡
L
aE ci

G
bi+1

F d i+1 and

• ci
Gd i+1

H ≡
L
aE bi+1

F
ci+1

G d i+(3/2)

H if i < n − 1.

We now have that b′

F d ′

H ≡
L
aE

bF dH ≡
L
aE

b′

F dn
H , so in particular, d ′

H ≡
L
aE b′

F
dn

H . For
some i < n, consider eI ∈ bddu(aE bi

F )∩ bddu(aE ci
G). Since eI ∈ bddu(aE ci

G) and
since bi

F d i+(1/2)

H ≡bddu
λ(aE ci

G) bi+1
F d i+1 for all λ (by Proposition 1.13), we must have

that bi
F d i+(1/2)

H ≡aE eI bi+1
F d i+1 and so eI ∈ bddu(aE bi+1

F ) as well. By the reverse
argument and since we can do this for any such ultraimaginary, we get that

bddu(aE bi
F ) ∩ bddu(aE ci

G) = bddu(aE bi+1
F ) ∩ bddu(aE ci

G).

Likewise, for any i < n − 1, we get

bddu(aE bi+1
F ) ∩ bddu(aE ci

G) = bddu(aE bi+1
F ) ∩ bddu(aE ci+1

G ).
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Therefore dn
H ∈ bddu(aE bn

F ) ∩ bddu(aE cn−1
G ), so since dn

H ≡
L
aE bn

F
d ′

H and so
dn

H ≡bddu
λ(aE bn

F ) d ′

H for every λ (by Proposition 1.13), we must also have

d ′

H ∈ bddu(aE bn
F ) ∩ bddu(aE cn−1

G ) = bddu(aE bF ) ∩ bddu(aE cG),

which is a contradiction. □

3. Full existence

We will use the tree bookkeeping machinery from [Kaplan and Ramsey 2020], with
some minor extensions (the notation T ∗

α and Fα).

Definition 3.1. For any ordinal α, Ls,α is the language

{⊴, ∧, <lex, P0, P1, . . . , Pβ(β < α), . . . },

with ⊴ and <lex binary relations, ∧ a binary function, and each Pβ a unary relation.
For any ordinal α, we write T ∗

α for the set of functions f with codomain ω and
finite support such that dom( f ) is an end segment of α. (For the sake of some
minor edge cases, we will regard the empty functions in various T ∗

α ’s as distinct
objects.) We write Tα for the set of functions f ∈ T ∗

α with dom( f ) = [β, α) for a
nonlimit ordinal β. We write Fα+1 (for forest) for Tα+1 \ {∅}.

We interpret T ∗
α and Tα as Ls,α-structures by

• f ⊴ g if and only if f ⊆ g;

• f ∧ g = f ↾[β, α) = g↾[β, α), where β = min{γ : f ↾[γ, α) = g↾[γ, α)} (with
the understanding that min∅ = α);

• f <lex g if and only if either f ◁ g or f and g are ⊴-incomparable, dom( f ∧

g) = [γ, α), and f (γ ) < g(γ ); and

• Pβ( f ) holds if and only if dom( f ) = [β, α).

We write ⟨i⟩α for the function {(α, i)} (which is an element of T ∗

α+1). Given
i < ω and f ∈ T ∗

α with dom( f ) = [β + 1, α), we write f ⌢ i to mean the function
f ∪{(β, i)} (which is an element of T ∗

α ). Given i < ω and f ∈ T ∗
α , we write i ⌢ f

to mean the function {(α, i)} ∪ f (which is an element of T ∗

α+1).9

For α < β, we define the canonical inclusion map ιαβ : Tα → Tβ by ιαβ( f ) =

f ∪ {(γ, 0) : γ ∈ β \ α}. (Note that ια,α+1( f ) = 0 ⌢ f .)
For β ≤ α, we write ζ α

β for the function whose domain is [β, α) with the property
that ζ α

β (γ ) = 0 for all γ ∈ [β, α). (Note that ζ α
α is Tα’s copy of the empty function.)

Given a family (b f ) f ∈X , we may refer to it briefly as b∈X .

9Note that this notation is not ambiguous when f is an empty function, as we are regarding the
empty functions in different T ∗

α ’s as distinct objects.



BOUNDED ULTRAIMAGINARY INDEPENDENCE & ITS TOTAL MORLEY SEQUENCES 53

Definition 3.2. Given X ⊆ T ∗
α , we say that a family (b f ) f ∈X is s-indiscernible

over A if for any tuples f0 . . . fn−1 and g0 . . . gn−1 in X with f0 . . . fn−1 ≡
qf

g0 . . . gn−1, b f0 . . . b fn−1 ≡A bg0 . . . bgn−1 , where quantifier-free type is in the lan-
guage Ls,α . (Note that this does not entail that b f ’s on different levels are tuples of
the same sort.)

Given f ∈ Tα, we write b⊵ f to refer to some fixed enumeration of the set
{bg : g ∈ Tα, f ⊴ g}. In particular, we choose this enumeration in a uniform way
so that if (b f ) f ∈Tα

is s-indiscernible over A, then for any f with domain [β +1, α),
the sequence (b⊵ f ⌢i )i<ω is A-indiscernible. When f is an element of T ∗

α , we will
also write b⊵ f for some fixed enumeration of the set {bg : g ∈ Tα, f ⊆ g}. One
particular example of this will be sequences of the form (b⊵ζ α

β+1⌢i )i<ω, where β is a
limit ordinal. This is essentially the only situation in which we need to consider T ∗

α .
Note that for a limit ordinal α, (b f ) f ∈Tα

is s-indiscernible over A if and only if
(b f ) f ∈ιβ,α(Tβ ) is s-indiscernible over A for every β < α.

We will also need the following fact.

Fact 3.3 (modeling property for s-indiscernibles [Kim et al. 2014, Theorem 4.3]).
Let X be Tα or Fα+1. For any (b f ) f ∈X and any set A of hyperimaginaries, there
is a family of tuples (c f ) f ∈X that is s-indiscernible over A and locally based
on b∈X (i.e., for any finite tuple f0 . . . fn−1 from X and any neighborhood U
of tp(c f0 . . . c fn−1/A) (in the appropriate type space), there is a tuple g0 . . . gn−1

from X such that f0 . . . fn−1 ≡
qf g0 . . . gn−1 and tp(bg0 . . . bgn−1/A) ∈ U ).

Note that while Fact 3.3 is normally formulated for discrete logic, the corre-
sponding statement in continuous logic follows easily from a very soft general
argument: Given a metric structure M and a tree (b f ) f ∈X of elements of M , find α

large enough that M , Th(M), and b∈X are elements of Vα and apply [Kim et al.
2014, Theorem 4.3] to Vα as a discrete structure and get some A-s-indiscernible
family (c∗

f ) f ∈X of elements of an elementary extension V ∗
α ⪰ Vα. These elements

live inside a structure M∗
∈ V ∗

α that is internally a model of Th(M). By taking the
standard parts of each real-valued predicate in M∗ and then completing with regards
to the metric, we get a metric structure N that is an elementary extension of M . For
each f ∈ X , let c f be the image in N of c∗

f under the canonical map from M∗ to N .
It is straightforward to check that (c f ) f ∈X is the required A-s-indiscernible family.

Before proving full existence for |⌣
bu, we will need a lemma.

Lemma 3.4. Fix α and γ > α. Let (e f ) f ∈Fγ+1 be an s-indiscernible family of real
tuples over a set A of hyperimaginary parameters. Let λ = |Ae⊵ζ

γ
α
| + |T |. Suppose

that there is an ultraimaginary cF such that cF ∈ bddu
λ(Ae⊵ζ

γ+1
α

)∩ bddu
λ(Ae⊵1⌢ζ

γ
α
).

Then there is a model M with AcF ⊆ dclu(M) and |M | ≤ λ such that (e f ) f ∈Fγ+1 is
s-indiscernible over M.
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Proof. By Fact 3.3, we can find a set of real parameters B such that |B| ≤ |A|+ |T |,
A ⊆ bddheq(B), and (e f ) f ∈Fγ+1 is s-indiscernible over B.

Let T ′ be a Skolemization of T with |T ′
| = |T |. Let M′ be the monster model

of T ′, which we may think of as an expansion of M. By Fact 3.3, we can find
(b′

f ) f ∈Fγ+1 locally based on (e f ) f ∈Fγ+1 which is s-indiscernible over B (in T ′). By
considering an automorphism of M (in T ), we may assume that (b′

f ) f ∈Fγ+1 actually
is (e f ) f ∈Fγ+1 , so that (e f ) f ∈Fγ+1 is s-indiscernible over B (in T ′).

Find an automorphism σ ∈ Aut(M′/B) satisfying σ · e⊵⟨i+1⟩γ+1 = e⊵⟨i⟩γ+1 for
every i < ω. Let M be the Skolem hull of B ∪ σ · e⊵ζ

γ+1
α

. Note that (e f ) f ∈Fγ+1 is
s-indiscernible over M (and therefore the same is true in T ). Furthermore, note
that |M | ≤ λ.

Let Mi be the Skolem hull of Be⊵i⌢ζ
γ
α

for both i ∈ {0, 1}. Note that cF ∈

bddu
λ(M1) and |M1| ≤ λ. Pass back to the theory T . Note that M , M0, and

M1 are still models of T . By Corollary 1.8, there is an invariant equivalence
relation G (in T ) such that cF and [M1]G are interdefinable. Therefore we have
that [M1]G ∈ bddu

λ(Ae⊵ζ
γ+1
α

) ⊆ bddu(M0) = dclu(M0). Find an automorphism τ ∈

Aut(M/M1) such that τ(M0) = M (which exists by indiscernibility). τ witnesses
that [M1]G ∈ dclu(M) and therefore cF ∈ dclu(M), so M is the required model. □

Now we are ready to prove full existence for |⌣
bu, but we will take the opportunity

to prove a certain technical strengthening which we will need later in the construction
of |⌣

bu-Morley trees.

Lemma 3.5. If (b f ) f ∈Tα
is a tree of real elements that is s-indiscernible over a set

of hyperimaginaries A, then there is a γ > α and a tree (e f ) f ∈Tγ+1 such that

• e∈Tγ+1 is s-indiscernible over A,

• for each f ∈ Tα, b f = eια,γ+1( f ), and

• e⊵ζ
γ+1
α

|⌣
bu
A e⊵1⌢ζ

γ
α

.

(Note that e⊵ζ
γ+1
α

is the original tree.)

Proof. If b∈Tα
∈ acl(A), then the statement is trivial, so assume that b∈Tα

/∈ acl(A).
Fix λ = |Ab∈Tα

|+|T |. By Proposition 2.3, we have that b∈Tα
|⌣

bu
A c if and only if

bddu
λ(Ab∈Tα

)∩bddu
λ(Ac) = bddu

λ(A) for any c. Let µ = |bddu
λ(Ab∈Tα

)\bddu
λ(A)|+.

We will build a family (e f : f ∈ ιγ+1,µ(Tγ+1)) inductively, where γ is some
successor ordinal less than µ. By an abuse of notation, we will systematically
conflate the sets ια,µ(Tα) and Tα (and likewise for ια,µ(Fα+1) and Fα+1) for all
α < µ. Note that in general this will mean that e⊵ζ

µ
β

is the same thing as e∈Tβ
.

Let e f = b f for all f ∈ Tα . Since b∈Tα
/∈ acl(A), we can find a family (d f ) f ∈Fα+1

extending e∈Tα
such that (d⊵ζ

µ

α+1⌢i )i<ω is a nonconstant A-indiscernible sequence.
By Fact 3.3, we can define e f for all f ∈ Fα+1 in such a way that the family
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e∈Fα+1 is locally based on d∈Fα+1 . In particular, (e⊵ζ
µ

α+1⌢i )i<ω will be a nonconstant
A-indiscernible sequence.

At successor stage β + 1 ≥ α, assume that we have defined e f for all f ∈

Fβ+1 and that the family (e f ) f ∈Fβ+1 is s-indiscernible over A. If there is no
dE ∈ bddu

λ(Ab∈Tα
) \ bddu

λ(A) such that the family (e f ) f ∈Fβ+1 is s-indiscernible
over Ad , let eζ

µ
β+1

=∅ and γ = β and halt the construction. Otherwise, let eζ
µ
β+1

= d .
For later reference, let Eβ+1 be E . Note that the family e∈Tβ+1 is s-indiscernible
over A. Since dE /∈ bddu

λ(A), we can find, by Proposition 1.4, a sequence (σi )i<ω of
elements of Aut(M/A) such that (σi ·d)i<ω is an A-indiscernible sequence satisfying
(σi · d) /Eβ+1(σ j · d) for any i < j < ω. Now choose (e f ) f ∈Fβ+2 in such a way that
e∈Fβ+2 extends what was already defined, is s-indiscernible over A, and is locally
based on the family (c f ) f ∈Fβ+2 defined by ci⌢ f = σi · e f for all f ∈ Tβ+1 (which
is possible by Fact 3.3). In particular, note that for any i < j < ω, we still have that
(eζ

µ

β+2⌢i , eζ
µ

β+2⌢ j ) ≡A (σ0 · d, σ1 · d) and so, in particular, eζ
µ

β+2⌢i /Eβ+1eζ
µ

β+2⌢ j .
At limit stage β, we have constructed the family (e f ) f ∈Tβ

. Note that this
family is automatically s-indiscernible over A. Extend it to a family e∈Fβ+1 that is
s-indiscernible over A. (This is always possible by Fact 3.3.)

Claim. For any β < δ < µ, if Eβ+1 = Eδ+1, then eζ
µ

β+1
/Eβ+1eζ

µ

δ+1
.

Proof of claim. The sequence (eζ
µ

β+2⌢i )i<ω is eζ
µ

δ+1
-indiscernible. Since

eζ
µ

β+2⌢0 /Eβ+1eζ
µ

β+2⌢1,

it must be the case that eζ
µ

δ+1
/Eβ+1eζ

µ

β+2⌢i for all i < ω. □claim

Let g be the partial function taking β to [eζ
µ

β+1
]Eβ+1 . By the claim, this is an

injection into bddu
λ(Ab∈Tα

) \ bddu
λ(A). By the choice of µ, g’s domain cannot be

cofinal in µ, so the construction must have halted at some γ < µ.
Extend e∈Tγ

to e∈Fγ+1 in such a way that the resulting family is s-indiscernible
over A. Set eζ

µ

γ+1
= ∅.

Claim. For any cF ∈ bddu
λ(Ae⊵ζ

µ
α
) \ bddu

λ(A), cF /∈ bddu
λ(Ae⊵1⌢ζ

γ
α
).

Proof of claim. Assume there is some cF ∈(bddu
λ(Ae⊵ζ

µ
α
)∩bddu

λ(Ae⊵1⌢ζ
γ
α
))\bddu

λ(A).
By Lemma 3.4, we can find a model M with AcF ⊆ dclu(M) and |M | ≤ λ such that
e∈Fγ+1 is s-indiscernible over M . By Corollary 1.8, there is an invariant equivalence
relation G such that cF and [M]G are interdefinable. But this means that we could
have chosen [M]G to be dE at stage γ , contradicting the fact that the construction
halted. Therefore no such cF can exist. □claim

So, by the claim, we have that bddu
λ(Ae⊵ζ

µ
α
) ∩ bddu

λ(Ae⊵1⌢ζ
γ
α
) = bddu

λ(A).
Therefore, by the choice of λ, e⊵ζ

µ
α

|⌣
bu
A e⊵1⌢ζ

γ
α

, as required. □



56 JAMES E. HANSON

Theorem 3.6 (full existence). For any set of hyperimaginaries A and real tuples b
and c, there is b′

≡
L
A b such that b′

|⌣
bu
A c.10

Proof. It is sufficient to show this in the special case that b = c. Specifically, given d
and e, if we can find d ′e′

≡A de such that d ′e′
|⌣

bu
A de, then we have d ′

|⌣
bu
A e by

monotonicity. So fix a set of hyperimaginaries A and a real tuple b. Let B be a set
containing realizations of all Lascar strong types extending tp(b/A). We can now
apply Lemma 3.5 to the family (B f ) f ∈T0 with B∅ = B to get a family (E f ) f ∈Tγ+1

such that E
ζ

γ+1
0

= B for some f ∈ Tγ+1, B ≡A B f , and B |⌣
bu
A B f . Let σ be an

automorphism fixing A taking B f to B. Let B ′
= σ · B. B ′ still contains realizations

of all Lascar strong types extending tp(b/A), so we can find b′
∈ B ′ with b′

≡
L
A b,

which is the required element. □

Corollary 3.7. For any set of hyperimaginaries A and any ultraimaginaries bE

and cF , there is b′

E ≡
L
A bE such that b′

E |⌣
bu
A cF .

Proof. Apply Theorem 3.6 to b and c to get b′
≡

L
A b such that b′

|⌣
bu
A c. We then

have that bddu(b′) |⌣
bu
A bddu(c), so by monotonicity, b′

E |⌣
bu
A cF . □

Corollary 3.8 (extension). For any set of hyperimaginaries A and any ultra-
imaginaries bE , cF , and dG , if bE |⌣

bu
A cF , then there is b′

E ≡
L
AcF

bE such that
b′

E |⌣
bu
A cF dG .

Proof. By Corollary 3.7, we can find b′

E ≡
L
AcF

b such that b′

E |⌣
bu
AcF

dG . By
symmetry and transitivity, we have that b′

E |⌣
bu
A cF dG . □

Compactness is essential in the proof of Fact 3.3 and therefore also Theorem 3.6,
which raises the following question.

Question 3.9. Does Theorem 3.6 hold when A is a set of ultraimaginaries?

4. Total |⌣
bu-Morley sequences

Definition 4.1. A |⌣
bu-Morley sequence over A is an A-indiscernible sequence

(bi )i<ω such that bi |⌣
bu
A b<i for each i < ω.

A weakly total |⌣
bu-Morley sequence over A is an A-indiscernible sequence

(bi )i<ω such that for any finite I and any J (of any order type), if I + J ≡
EM
A b<ω,

then I |⌣
bu
A J .11

10Anand Pillay has pointed out to us that Theorem 3.6 also follows from Theorem 615 of [Lascar
1982] (together with Wagner’s characterization |⌣

bu from [Wagner 2015] given in our Proposition 2.4).
Theorem 615 is stated for countable sets of parameters in a countable theory, but it is clear that the
proof generalizes to the uncountable case as well.

11Note that if we modified this definition to allow I to be any order type and require that J be
finite, the resulting sequences would be precisely the order-reversals of the weakly total |⌣

bu-Morley
sequences as we have defined the term here (by symmetry of |⌣

bu).
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A total |⌣
bu-Morley sequence over A is an A-indiscernible sequence (bi )i<ω such

that for any I and J (of any order type), if I + J ≡
EM
A b<ω, then I |⌣

bu
A J .

We could write down stronger and weaker forms of the |⌣
bu-Morley condition,

but we are really only interested in total |⌣
bu-Morley sequences, as they seem to be

a fairly robust class (see Theorem 4.8). Weakly total |⌣
bu-Morley sequences seem

to be the best we can get without large cardinals, however, which does raise the
following question.

Question 4.2. Is every weakly total |⌣
bu-Morley sequence a total |⌣

bu-Morley
sequence?

One immediate property of total |⌣
bu-Morley sequences is that they act as

universal witnesses of the relation ≡
L
A in a strong way.

Proposition 4.3. For any A and b, if there is a total |⌣
bu-Morley sequence (bi )i<ω

over A with b0 = b, then for any b′, b′
≡

L
A b if and only if there are I0, J0, I1, . . . ,

Jn−1, In such that b ∈ I0, b′
∈ In , and, for each i < n, Ii + Ji and Ii+1 + Ji are both

A-indiscernible and have the same EM-type as b<ω.

Proof. Let I = (bi )i<ω. We only need to prove that if b′
≡

L
A b, then the required

configuration exists (as the required configuration is clearly sufficient to witness that
b′

≡
L
A b). Choose I ′ so that bI ≡

L
A b′ I ′. Extend I to an A-indiscernible sequence

I + J with I ≡A J . By assumption I |⌣
bu
A J , so by Proposition 2.4, there are

I0, J0, I1, J1, . . . , Jn−1, In such that I0 = I , J0 = J , In = I ′, and for each i < n,
Ii ≡

L
AJi

Ii+1 and Ji ≡
L
AIi+1

Ji+1 if i < n. Since I0 + J0 is A-indiscernible, we can
show by induction that Ii + Ji and Ii+1 + Ji are both A-indiscernible and have the
same EM-type as I0 = b<ω. □

A similar statement is true for weakly total |⌣
bu-Morley sequences, which we

will state in Corollary 4.18 after we have shown that weakly total |⌣
bu-Morley

sequences always exist without set-theoretic hypotheses.

Characterization of total |⌣
bu-Morley sequences.

Definition 4.4. For any set of parameters A, we write ≈A for the transitive closure of
the relation I ∼A J that holds if and only if I and J are both infinite A-indiscernible
sequences (of real or hyperimaginary elements) and either I + J or J + I is an
A-indiscernible sequence.

By an abuse of notation, we write [I ]≈A for the ultraimaginary [AI ]E , where E
is the equivalence relation on tuples of the same length as AI such that E(AI, B J )

holds if and only if A = B in our fixed enumeration and I ≈A J .

Note that we do not in general require that I and J have the same order type. Also
note that ≈A is reflexive: For any infinite A-indiscernible sequence I , we can find
an infinite sequence J such that I + J is also A-indiscernible. Then I ∼A J ∼A I ,
so I ≈A I .
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We will additionally need an appropriate Lascar strong type generalization of
Ehrenfeucht–Mostowski type.

Definition 4.5. Given two infinite A-indiscernible sequences I and J , we say that I
and J have the same Lascar–Ehrenfeucht–Mostowski type (or LEM type) over A,
written I ≡

LEM
A J , if there is some J ′

≡
L
A J such that I + J ′ is A-indiscernible.

To see that the name is justified, note that two infinite A-indiscernible sequences I
and J have the same Ehrenfeucht–Mostowski type over A if and only if there is a
J ′

≡A J such that I + J ′ is A-indiscernible.

Lemma 4.6. For any infinite order types O and O ′, I ≈A J if and only if there are
K0, L0, K1, . . . , Ln−1, Kn such that

• K0 = I and Kn = J ,

• for 0 < i < n, Ki is a sequence of order type O ,

• for i < n, L i is a sequence of order type O ′, and

• for i < n, Ki + L i and Ki+1 + L i are A-indiscernible.

Proof. The ⇐ direction is obvious.
For the ⇒ direction, we will proceed by induction. First assume that I ∼A J .

If I + J is A-indiscernible, then find L of order type O ′ such that I + J + L is
A-indiscernible. We then have that I + L and J + L are A-indiscernible. If J + I is
A-indiscernible, then find L of order type O ′ such that J + I + L is A-indiscernible.
We then have that I + L and J + L are A-indiscernible.

Now assume that we know the statement holds for any I and J such that there
is a sequence I ′

0, . . . , I ′
n with I ′

0 = I , I ′
n = J , and I ′

i ∼A I ′

i+1 for each i < n. Now
assume that there is a sequence I ′

0, . . . , I ′

n+1 with I ′

0 = I , I ′

n+1 = J , and I ′

i ∼A I ′

i+1
for each i ≤ n. Apply the induction hypothesis to get K0, L0, K1, . . . , Lm−1, Km

satisfying the properties in the statement of the lemma with K0 = I and Km = I ′
n .

Now since I ′
n ∼A I ′

n+1 = J , we can apply the n = 1 case to get Lm such that
I ′
n + Lm and I ′

n+1 + Lm are both A-indiscernible. By compactness, we can find
K ∗

m of order type O such that K ∗
m + Lm and K ∗

m + Lm−1 are both A-indiscernible.
We then have that K0, L0, K1, L1, . . . , Km−1, Lm−1, K ∗

m, Lm, Km+1 is the require
sequence, where Km+1 = J . □

Proposition 4.7. Fix a set of hyperimaginary parameters A.

(1) ≡
LEM
A is an equivalence relation on the class of infinite A-indiscernible

sequences.

(2) If I and J have the same order type, then I ≡
L
A J if and only if I ≡

LEM
A J .

(3) If I ≡
LEM
A J , then I ≡

EM
A J .

(4) If I ≈A J , then I ≡
LEM
A J .
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Proof. Recall the following fact: If I and J have the same order type and I + J is
A-indiscernible, then I ≡

L
A J .12

(1). First, to see that ≡
LEM
A is reflexive, note that if I is an infinite A-indiscernible

sequence, then any infinite A-indiscernible extension I + I ′ will witness that
I ≡

LEM
A I . To see that ≡

LEM
A is symmetric, assume that I ≡

LEM
A J , and let J ′ be

as in the definition of ≡
LEM. Find I ′ such that I J ′

≡
L
A I ′ J . Then extend I ′

+ J to
I ′

+ J + I ′′, where I ′′ has the same order type as I . We then have that I ′′
≡

L
A I ′

≡
L
A I ,

so J ≡
LEM
A I . To see that ≡

LEM
A is transitive, assume that I ≡

LEM
A J and J ≡

LEM
A K .

Let this be witnessed by J ′ and K ′ such that I + J ′ and J + K ′ are A-indiscernible.
Find K ′′ with the same order type as K such that I + J ′

+ K ′′ is A-indiscernible.
Then find K ∗ such that J ′K ′′

≡
L
A J K ∗. Note that both J + K ∗ and J + K ′ are

A-indiscernible. By compactness, we can find K ∗∗ of the same order type as K
such that K ∗∗

+ J + K ∗ and K ∗∗
+ J + K ′ are both A-indiscernible. By the above

fact, we then have that K ∗
≡

L
A K ∗∗

≡
L
A K ′. Finally, K ′

≡
L
A K by assumption, so

we have that K ′′
≡

L
A K and therefore that I ≡

LEM
A K .

(2) is immediate from the fact. (3) is obvious.

For (4), it is sufficient to show that I ∼A J ⇒ I ≡
LEM
A J . This follows immediately

from the fact that I ≡
L
A I and J ≡

L
A J . □

Now we will see that total |⌣
bu-Morley sequences over A are precisely those

which are “as generic as possible” in terms of ≈A (i.e., their ≡
LEM
A -equivalence

class decomposes into a single ≈A-equivalence class).

Theorem 4.8. For any A-indiscernible sequence (bi )i<ω (with A a set of hyper-
imaginary parameters), the following are equivalent.

(1) b<ω is a total |⌣
bu-Morley sequence over A.

(2) There exists a pair of infinite sequences I and J (of any, possibly distinct order
types) such that I + J ≡

EM
A b<ω and I |⌣

bu
A J .

(3) For any K , K ≈A b<ω if and only if K ≡
LEM
A b<ω.

(4) [b<ω]≈A ∈ bddu(A).

Proof. (1)⇒(2). This is immediate from the definition.

(2)⇒(3). First note that if K ≈A b<ω, then K ≡
LEM
A b<ω by Proposition 4.7. Let

I and J be as in the statement of (2). By compactness, we may find I ′
≡A b<ω

such that I ′
+ I + J is A-indiscernible. By applying an automorphism fixing A, we

12To see this, assume that I and J have the same order type and I + J is A-indiscernible for
some set of hyperimaginary parameters. Let M be a model with A ⊆ bddheq(M). We can find an
M-indiscernible sequence I ′

+ J ′ finitely based on I + J . In particular, this will have I ′
+ J ′

≡A I + J .
Therefore we can find a model M ′

≡A M such that I + J is M ′-indiscernible. We then have that
I ≡M ′ J , whereby I ≡

L
A J .
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may assume that b<ω + I + J is A-indiscernible. Fix K such that K ≡
LEM
A b<ω. By

compactness, we can find a K ′
≡A K such that b<ω + I + K ′

+ J is A-indiscernible.
We have that K ≡

LEM
A b<ω ∼A K ′ and therefore K ≡

L
A K ′ by Proposition 4.7. Let

aE ∈ bddu(AI ) be an ultraimaginary satisfying dclu(aE) = bddu(AI ). Likewise,
let bF ∈ bddu(AJ ) be an ultraimaginary satisfying dclu(bF ) = bddu(AJ ).13 Since
dclu(aF ) ∩ dclu(bF ) = bdd(A), we have that K ≡dcluλ(I aF )∩dcluλ(JbF ) K ′ for all λ.
Therefore, by Proposition 1.10, we can find a sequence (I i ai J i bi K i )i≤n satisfying
that I 0a0

= I a, J 0b0
= Jb, K 0

= K ′, K n
= K , and for each i < n,

• if i is even, then I i ai
= I i+1ai+1 and J i bi K i

≡A J i+1bi+1K i+1 and

• if i is odd, then J i bi
= J i+1bi+1 and I i ai K i

≡A I i+1ai+1K i+1.

By induction, we have that I i
+ K i

+ J i is A-indiscernible for each i ≤ n. We
therefore have that

K ′
= K 0

∼A I 0
∼A J 1

∼A I 2
∼A J 3

∼A · · · ∼A L ∼A K n
= K ,

where L is either I n or J n . Therefore K ′
≈A K .

(3)⇒(1). Assume that for any K ≡
LEM
A b<ω, K ≈A b<ω. Let I and J be infinite

sequences satisfying I+J ≡
EM
A b<ω. By applying an automorphism fixing A to I+J ,

we may assume that b<ω + I + J is A-indiscernible. Fix some I ′
≡

L
A I . We have

that I ′
≡

LEM
A b<ω, which by assumption implies that I ′

≈A b<ω. Since b<ω ∼A I ,
we have that I ≈A I ′. By Lemma 4.6, we can find K0, L0, K1, L1, . . . , Ln−1, Kn

such that K0 = I , Kn = I ′, L0 has the same order type as J , Ki has the same
order type as I for each i ≤ n, L i has the same order type as J for each i < n,
and Ki + L i and Ki+1 + L i are A-indiscernible for each i < n. Let K−1 = I and
L−1 = J . We now have that for each nonnegative i < n, Ki−1 ≡

L
AL i−1

Ki and
L i−1 ≡

L
AKi

L i .14 Therefore K−1, L−1, K0, L0, . . . , Ln−1, Kn is precisely the kind
of sequence needed to apply Proposition 2.4 (with the indices shifted down by 1).
Since we can do this for any I ′

≡
L
A I , we have that I |⌣

bu
A J .

(3)⇒(4). Let x be a tuple of variables in the same sorts as b<ω. There are at
most 2|Ab<ω|+|T | many Lascar strong types in x over A. (3) implies therefore that
there are at most 2|Ab<ω|+|T | many ≈A classes with representatives that realize
tp(b<ω/A). Therefore [c<ω]≈A ∈ bddu(A) for any c<ω ≡A b<ω and so a fortiori
[b<ω]≈A ∈ bddu(A).

(4)⇒(3). Let I ≡
LEM
A b<ω. Find I ′ such that I ≡

L
A I ′ and b<ω+ I ′ is A-indiscernible.

Since [b<ω]≈A ∈ bddu(A), we must have, by Proposition 1.4, that there are at most
2|Ab<ω|+|T | conjugates of [b<ω]≈A under Aut(M/A). For any I ′′

≡A I ′, we can find

13We can take aE to be [[Autf(M/AI )]] and bF to be [[Autf(M/AJ )]] by Definition 1.9 and
Proposition 1.12.

14For i = 0, we have that K−1 ≡
L
AL−1

K0 trivially, since K−1 = I = K0.
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c<ω ≡A b<ω such that I ′′
∼A c<ω. Therefore there are at most 2|Ab<ω|+|T | conjugates

of [I ′
]≈A under Aut(M/A) as well, and so [I ′

]≈A ∈ bddu(A) by Proposition 1.4
again. By Proposition 1.13, there must be an automorphism σ ∈ Aut(M/A, [I ′

]≈A)

such that σ · I ′
= I . Therefore [I ′

]≈A = [I ]≈A and hence I ≈A b<ω. □

Building ((weakly) total) |⌣
bu-Morley sequences. Given that |⌣

bu satisfies full
existence, an immediate, familiar Erdős-Rado argument gives that |⌣

bu-Morley
sequences exist, but in the end we will need a technical strengthening of this result.

Proposition 4.9. If (b f ) f ∈Tα
is a family of real elements that is s-indiscernible over

a set of hyperimaginaries A, then there is a family (c f ) f ∈Fα+1 such that

• c∈Fα+1 is s-indiscernible over A,

• cια,α+1( f ) = b f for each f ∈ Tα, and

• the sequence (c⊵⟨i⟩)i<ω is an |⌣
bu-Morley sequence over A.

Proof. Let κ be sufficiently large to apply Erdős-Rado to a sequence of tuples of
the same length as b∈Tα

over the set A.
Let γ (0)=α. Let c0

f =b f for all f ∈Tγ (0) =Tα . Let g0 =∅ (as an element of Tα).
At successor stage β + 1, assume we have (cβ

f )Tγ (β)
which is s-indiscernible

over A and which satisfies cβ

ιγ (δ),γ (β)( f ) = cδ
f for all δ < β. By Lemma 3.5, we can

build a family (cβ+1
f )Tγ (β+1)

(for some successor ordinal γ (β +1) > γ (β)) such that

• (cβ+1
f ) f ∈Tγ (β+1)

is s-indiscernible over A,

• for each f ∈ Tγ (β), cβ

f = cβ+1
ιγ (β),γ (β+1)( f ), and

• cβ+1
⊵ζ

γ (β+1)

γ (β)

|⌣
bu
A cβ+1

⊵1⌢ζ
γ (β+1)−1
γ (β)

.

Let gβ+1 ∈ T ∗

γ (β+1) be 1 ⌢ ζ
γ (β+1)−1
α . Note that gβ+1 ⊵ h. Also note that by

construction we have that

cβ+1
⊵gβ+1

|⌣
bu
A{cβ+1

⊵ιγ (δ),γ (β+1)(gδ)
: δ ∈ (β + 1) \ lim(β + 1)},

since ιγ (δ),γ (β+1)(gδ) ⊵ ζ
γ (β+1)

γ (β) for all nonlimit δ < β + 1.
At limit stage β, let γ (β) = supδ<β γ (δ) and let (cβ

f ) f ∈Tγ (β)
be the direct limit

of (cδ
f ) f ∈Tγ (δ)

for δ < β. Leave gβ undefined.
Stop once we have (cκ

f ) f ∈Tγ (κ)
. Consider the sequence (cκ

⊵ιγ (β),γ (κ)(gβ ))β∈κ\lim κ .15

By our choice of κ and a standard application of the Erdős-Rado theorem, we can
find a family (c f ) f ∈Fα+1 such that the sequence (c⊵⟨i⟩α )i<ω is A-indiscernible and

15We write lim α for the set of limit ordinals in α.
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for every increasing tuple ı̄ < ω, there is β ∈ κ \ lim κ such that c⊵⟨i0⟩α . . . c⊵⟨ik⟩α ≡A

cκ
⊵ιγ (β0),γ (κ)(gβ0 ) . . . cκ

⊵ιγ (βk ),γ (κ)(gβk ).

In particular, note that this implies that

c⊵⟨i⟩α |⌣
bu
A{c⊵⟨ j⟩α : j < i}

for every i < ω. Clearly by applying an automorphism, we may assume that
cια,α+1( f ) = b f for each f ∈ Tα , so all we need to do is show that the family c∈Fα+1

is s-indiscernible over A.
Since the sequence (c⊵⟨i⟩α )i<ω is A-indiscernible, it is sufficient, by induction, to

show the following statement: For any sequence f 0, f 1, . . . , f k, . . . , f ℓ of tuples
of elements of Fα+1 satisfying f i ⊵ ⟨i⟩α for all i ≤ ℓ and any h ⊵ ⟨k⟩α such that
f k and h realize the same quantifier-free type, we have that c f k

and ch realize the
same type over Ac f 0

. . . c f k−1
c f k+1

. . . c f ℓ
.

So let f 0, . . . , f ℓ and h be as in the statement. By construction, there are
β0, . . . , βℓ such that c⊵⟨i⟩α ≡A cκ

⊵ιγ (βi ),γ (κ)(gβi )
for each i ≤ ℓ. Let f ′

0, . . . , f ′

ℓ, h′ be
the corresponding elements of Tγ (κ). (So, in particular, f ′

i ⊵ gβi for each i ≤ ℓ

and h′ ⊵ gβk ). We now have that f ′

k and h′ realize the same quantifier-free type.
Therefore, by the s-indiscernible of cκ

∈Tγ (κ)
, we have that cκ

f ′

k
and cκ

h′
realize the same

type over Acκ
f ′

0
. . . cκ

f ′

k−1
cκ

f ′

k+1
. . . cκ

f ′

ℓ
. From this the required statement follows, and

we have that c∈Fα+1 is s-indiscernible over A. □

Corollary 4.10. For any set of hyperimaginaries A and any real tuple b, there is an
|⌣

bu-Morley sequence (bi )i<ω over A with b0 = b.

Proof. Apply Proposition 4.9 to the tree (b f ) f ∈T0 defined by b∅ = b.16 □

The order type ω is essential, however; Erdős-Rado only guarantees the existence
of sequences that satisfy the relevant condition on finite tuples. Fortunately, this is
more than sufficient for the following weak “chain condition”.

Lemma 4.11. If (bi )i<ω is an |⌣
bu-Morley sequence over A that is moreover Ac-

indiscernible, then b0 |⌣
bu
A c.

Proof. Fix λ. Let µ = |bddu
λ(Ac)\bddu

λ(A)|. Extend b<ω to (bi )i<µ+ . We still have
that for any i < j < µ+, bi |⌣

bu
A b j (since this is only a property of tp(bi b j/A)).

Therefore the sets bddu
λ(Abi ) \ bddu

λ(A) are pairwise disjoint. Since there are µ+

many of them, one of them must be disjoint from bddu
λ(Ac) \ bddu

λ(A). Therefore
by indiscernibility, we must have b0 |⌣

bu
A c. □

We will not use the following corollary of Lemma 4.11, but it is worth pointing
out.

16This can also be proven directly by the standard argument for the existence of Morley sequences.
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Corollary 4.12. If I is a total |⌣
bu-Morley sequence over A that is Ac-indiscernible,

then I |⌣
bu
A c.

Proof. Extend I to an Ac-indiscernible sequence I0 + I1 + I2 + . . . with I0 = I .
Since I is totally |⌣

bu-Morley, we have that (Ii )i<ω is an |⌣
bu-Morley sequence

over A. So by Lemma 4.11, we have I = I0 |⌣
bu
A c. □

Parts (2) and (3) of following definition are equivalent to [Kim et al. 2014,
Definitions 2.1, 3.4] in our context; this formulation is used implicitly in [Kaplan
and Ramsey 2020] and its equivalence to the standard definition is discussed in
[Kaplan and Ramsey 2020, Remark 5.8]. The rest of it is based on [Kaplan and
Ramsey 2020, Definition 5.7], although we have had to modify the definition of
restriction slightly in order to deal with limit ordinals more smoothly.

Definition 4.13. Fix a family (b f ) f ∈Tα
.

(1) For w ⊆ α, the restriction of Tα to the set of levels w is given by

Tα↾w = { f ∈ Tα : min dom( f ) ∈ w, β ∈ dom( f ) \ w ⇒ f (β) = 0}.

(2) A family (b f ) f ∈Tα
is str-indiscernible over A if it is s-indiscernible over A

and satisfies that for any finite w, v ⊆ α \ lim α with |w| = |v|, b∈Tα↾w and
b∈Tα↾v realize the same type over A (where we take b∈Tα↾w to be enumerated
according to <lex, which is a well-ordering on Tα↾w for finite w).

(3) We say that b∈Tα
is |⌣

bu-spread-out over A if for any f ∈ T ∗
α (with dom( f ) =

[β + 1, α) for some β < α), the sequence (b⊵ f ⌢i )i<ω is an |⌣
bu-Morley

sequence over A.

(4) We say that b∈Tα↾w is |⌣
bu-spread-out over A if for any f ∈T ∗

α (with dom( f )=

[β + 1, α) for some β < α and satisfying that ( f ⌢ i)i<ω is a sequence of
elements of Tα↾w), the sequence (b⊵ f ⌢i )i<ω is an |⌣

bu-Morley sequence
over A (where we interpret b f as ∅ if f /∈ Tα↾w).

(5) b∈Tα
is an |⌣

bu-Morley tree over A if it is |⌣
bu-spread-out and str -indiscernible

over A.

Note that if b∈Tα
is |⌣

bu-spread-out over A, then any restriction b∈Tα↾w is also
|⌣

bu-spread-out over A (even for infinite w). Also note that, by a basic compactness
argument, if α is infinite and (b f ) f ∈Tα

is str -indiscernible over A, then for any β,
we can find a tree (c f ) f ∈Tβ

which is str-indiscernible over A such that for any
w ∈ [α]

<ω and v ∈ [β]
<ω with |w| = |v|, b∈Tα↾w ≡A c∈Tβ↾v.

Proposition 4.14. For any set of hyperimaginaries A, real tuple b, and κ , there is a
tree (b f ) f ∈Tκ

that is |⌣
bu-spread-out and s-indiscernible over A such that for each

f ∈ Tκ , b f ≡A b.
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Proof. Let (b0
f ) f ∈T0 be defined by b0

∅ = b. This is vacuously |⌣
bu-spread-out and

s-indiscernible over A.
At successor stage α + 1, given (bα

f ) f ∈Tα
which is |⌣

bu-spread-out and s-
indiscernible by Proposition 4.9, we can find an extension (bα+1

f ) f ∈Fα+1 satis-
fying bα+1

ια,α+1( f ) = bα
f for all f ∈ Tα such that bα+1

∈Fα+1
is s-indiscernible over A and

(bα+1
⊵⟨i⟩α )i<ω is an |⌣

bu-Morley sequence over A. By Fact 3.3, we can find bα+1
∅ ≡A b

such that the tree (bα+1
f ) f ∈Tα+1 is s-indiscernible over A. By construction, we now

have that (bα+1
f ) f ∈Tα+1 is |⌣

bu-spread-out over A.
At limit stage α, let (bα

f ) f ∈Tα
be the direct limit of (bβ

f ) f ∈Tβ
for β < α. It is im-

mediate from the definitions that bα
∈Tα

is |⌣
bu-spread-out and s-indiscernible over A.

Once we have constructed (bκ
f ) f ∈Tκ

, let b f = bκ
f for each f ∈ Tκ . We have

that b∈Tκ
is the required tree by induction. □

By the same argument as in [Kaplan and Ramsey 2020, Lemma 5.10], we get
the following.

Fact 4.15. Fix a set of real parameters A, and let (b f ) f ∈Tκ
be a family of tuples

of real parameters of the same length that is s-indiscernible over A. If κ ≥ ℶλ+(λ)

(where λ = 2|Ab f |+|T |), then there is an str-indiscernible tree (c f ) f ∈Tω
such that

for any w ∈ [ω]
<ω, there is v ∈ [κ]

<ω such that (b f ) f ∈Tκ↾v ≡A (c f ) f ∈Tω↾w. (∗)A

Note that Fact 4.15 generalizes to continuous logic by the same soft argument as
in the discussion after Fact 3.3.

Lemma 4.16. Suppose that a family of tuples of real elements (b f ) f ∈Tκ
is |⌣

bu-
spread-out and s-indiscernible over a set of hyperimaginaries A with all b f tuples of
the same length. If κ ≥ ℶλ+(λ) (where λ = 2|Ab f |+|T |), then there is an |⌣

bu-Morley
tree (c f ) f ∈Tω

over A such that condition (∗)A from Fact 4.15 holds.

Proof. Find a model M with |M | ≤ |A| + ℵ0 such that A ⊆ bddheq(M). Apply
Fact 4.15 with M as the base to the family (b f ) f ∈Tκ

to get a tree (c f ) f ∈Tω
that

is str-indiscernible over M and satisfies (∗)M . This is enough to imply that c∈Tω

is str-indiscernible over A and satisfies (∗)A. Furthermore, since the tree c∈Tω

has height ω and since b∈Tκ
is |⌣

bu-spread-out over A, (∗)A implies that c∈Tω
is

|⌣
bu-spread-out over A. Therefore c∈Tω

is an |⌣
bu-Morley tree over A. □

Proposition 4.17. If (b f ) f ∈Tω
is a family of tuples of real elements that is an

|⌣
bu-Morley tree over a set of hyperimaginaries A, then (bζω

β
)β<ω is a weakly total

|⌣
bu-Morley sequence over A.

Proof. Fix a linear order O . Let cα = bζω
α

for each α < ω.
For each positive n < ω and each i < j < ω, we have that b⊵ζω

n ⌢i |⌣
bu
A b⊵ζω

n ⌢ j

and that the sequence (b⊵ζω
n ⌢i )i<ω is Ac≥n-indiscernible. By compactness, we can
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find (ci )i∈O such that (ci )i∈ω+O is A-indiscernible and such that (b⊵ζω
n ⌢i )i<ω is

Ac∈[n,ω)+O -indiscernible for each n < ω.
Therefore, by Lemma 4.11, we have that c<n |⌣

bu
A c∈[n,ω)+O . Hence, (bζω

β
)β<ω is

a weakly total |⌣
bu-Morley sequence. □

Corollary 4.18. For any set of hyperimaginaries A and tuple of real elements b,
there is an A-indiscernible sequence (bi )i<ω with b0 = b such that for any b′

≡
L
A b

and n < ω, there are I0, J0, I1, J1 . . . , Jk−1, Ik with

• b the first element of I0,

• b′ the first element of Ik ,

• |Ii | = n for all i ≤ k,

• Ji infinite for all i < k, and

• Ii + Ji and Ii+1 + Ji realizing the same EM-type over A as b<ω for all i < k.

We can also arrange it so that Ii is infinite for all i ≤ k, |Ji | = n for all i < k, and
Ii + Ji and Ii+1 + Ji realize the same EM-type over A as b<ω in the reverse order
for all i < k (with the same choice of b<ω but possibly a different k).

Proof. By Lemma 4.16 and Proposition 4.17, we can find a sequence (bi )i<ω with
b0 = b that is a weakly total |⌣

bu-Morley sequence over A. Fix n < ω, and write
b<ω as I + J with |I | = n. By repeating the proof of Proposition 4.3, we get the
required configuration of Ii ’s and Ji ’s.

For the final statement, by compactness, we can find an indiscernible sequence K
of order type ω which has b as its first element and realizes the reverse of the
EM-type of b<ω over A. Fix an n < ω. If we partition K as I + J where |J | = n and
again repeat the proof of Proposition 4.3, we get the second required configuration
of Ii ’s and Ji ’s. □

To go further, we will need the following fact from [Silver 1971]. Recall that the
statement κ → (α)<ω

γ means that whenever f : [κ]
<ω

→ γ is a function, there is a
set X ⊆ κ of order type α such that for each n < ω, f is constant on [X ]

n .

Fact 4.19 [Silver 1971, Chapter 4]. For any limit ordinal α, if κ is the smallest
cardinal satisfying κ → (α)<ω

2 , then for any γ < κ , κ → (α)<ω
γ . Furthermore, κ is

strongly inaccessible.

The smallest cardinal λ satisfying λ → (α)<ω
2 is called the Erdős cardinal κ(α).

In the specific case of α = ω, we will also need the following lemma.

Lemma 4.20. If κ → (ω)<ω
γ , then (γ κ)+ → (ω+1)<ω

γ . In particular, if κ(ω) exists,
then (2κ(ω))+ → (ω + 1)<ω

γ for any γ < κ(ω).

Proof. Fix a set X of cardinality (γ κ)+ and a coloring f : [X ]
<ω

→ γ . Fix an
ordering (xα)α<(γ κ )+ of X . Recall that a subset Y ⊆ X is end-homogeneous if for any
δ0 < · · ·<δn−1 <α <β <(γ κ)+, f ({xδ0, . . . , xδn−1, xα})= f ({xδ0, . . . , xδn−1, xβ}).
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By [Erdős et al. 1984, Lemma 15.2], there is an end-homogeneous set Y ⊆ X of order
type κ+1. Let (yα)α<κ+1 be an enumeration of Y in order. Let g(A) = f (A∪{yκ}).
By assumption, there is a g-homogeneous subset Z ⊆ Y of order type ω. Therefore,
by construction, Z ∪{yκ} is the required f -homogeneous subset of order type ω+1.

The last statement follows from the fact that κ(ω) is strongly inaccessible and
cardinal arithmetic (i.e., 2κ(ω)

= γ κ(ω) for γ > 1 with γ < κ(ω)). □

Lemma 4.21. Suppose (b f ) f ∈Tλ
is |⌣

bu-spread-out and s-indiscernible over A
with all b f tuples of the same length. If λ → (ω + 1)<ω

2|Ab|+|T | , then there is a set
X ⊆ λ \ lim λ with order type ω + 1 such that b∈Tλ↾X is an |⌣

bu-Morley tree over A.

Proof. Let t be the function on [λ \ lim λ]
<ω that takes w ∈ [λ \ lim λ]

<ω to
tp(b∈Tλ↾w/A). By assumption, we can find X ⊂ λ \ lim λ of order type ω + 1 such
that t is homogeneous on X . b∈Tλ↾X is s-indiscernible over A and |⌣

bu-spread-out
over A, since these properties are both preserved by passing to restrictions. □

Theorem 4.22. For any A and b in any theory T , if there is a cardinal λ satisfying
λ → (ω + 1)<ω

2|Ab|+|T | , then there is a total |⌣
bu-Morley sequence (bi )i<ω over A with

b0 = b.
In particular, it is enough if there is an Erdős cardinal κ(α) such that |Ab|+|T |<

κ(α) (for any limit α ≥ ω).

Proof. If the Erdős cardinal κ(α) exists and |Ab|+|T |<κ(α), then by Fact 4.19, we
have 2|Ab|+|T | <κ(α) as well. Then if α =ω, we have that (2κ(ω))+ → (ω+1)<ω

2|Ab|+|T |

by Lemma 4.20. If α > ω, we clearly have κ(α) → (ω+1)<ω
2|Ab|+|T | by Fact 4.19. So

in any such case we have the required λ.
Let λ be a cardinal such that λ → (ω + 1)<ω

2|Ab|+|T | holds. By Proposition 4.14, we
can build a tree (b f ) f ∈Tλ

that is s-indiscernible and |⌣
bu-spread-out over A. By

Lemma 4.21 and the choice of λ, we can extract an |⌣
bu-Morley tree (c f ) f ∈Tω+1

from this.
By compactness, we can extend this to a tree (c f ) f ∈Tω+ω

that is str -indiscernible
over A. We still have that for any i < j < ω,

c⊵ζω+ω
ω+1 ⌢i |⌣

bu
A c⊵ζω+ω

ω+1 ⌢ j

but now we also have that the (c⊵ζω+ω
ω+1 ⌢i )i<ω is A ∪ {cζω+ω

ω+i
: i < ω}-indiscernible,

by str -indiscernibility of the full tree c∈Tω+ω
. Therefore, by Lemma 4.11,

c⊵ζω+ω
ω+1 ⌢0 |⌣

bu
A{cζω+ω

ω+i
: i < ω},

so in particular,

{cζω+ω
i

: i < ω} |⌣
bu
A{cζω+ω

ω+i
: i < ω}.
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Let di = cζω+ω
i

for each i < ω + ω. We have that (di )i<ω+ω is A-indiscernible.
Furthermore, by Theorem 4.8, we have that d<ω is a total |⌣

bu-Morley sequence.
By applying an automorphism, we get the required b<ω. □

So if we assume that for every λ, there is a κ such that κ → (ω + 1)<ω
λ , we get

that Lascar strong type is always witnessed by total |⌣
bu-Morley sequences in the

manner of Proposition 4.3.
The use of large cardinals in Theorem 4.22 leaves an obvious question.

Question 4.23. Does the statement “for every A and b, there is a total |⌣
bu-Morley

sequence (bi )i<ω over A with b0 = b” have any set-theoretic strength? What if we
add cardinality restrictions, such as |A| + |T | ≤ ℵ0 and |b| < ℵ0?

Total |⌣
bu-Morley sequences in tame theories. Lemma 4.11 can be used to show

that |⌣
d implies |⌣

bu (where b |⌣
d
A c means that tp(b/Ac) does not divide over A),

something which was previously established for bounded hyperimaginary indepen-
dence, |⌣

b, in [Conant and Hanson 2022, Corollary 4.13] and which was originally
folklore for algebraic independence, |⌣

a.17

Proposition 4.24. For any real elements A, b, and c, if b |⌣
d
A c, then b |⌣

bu
A c.

Proof. Let (ci )i<ω be an |⌣
bu-Morley sequence over A with c0 = c. Since b |⌣

d
A c,

we may assume that c<ω is Ab-indiscernible. Hence, by Lemma 4.11, b |⌣
bu
A c. □

Corollary 4.25. If (bi )i<ω is a (nondividing) Morley sequence over A, then it is a
total |⌣

bu-Morley sequence over A. □

In simple theories, we get the converse (Proposition 4.27). Recall that B |⌣
b
A C

means bddheq(AB) ∩ bddheq(AC) = bddheq(A).

Lemma 4.26. Let T be a simple theory. For any A, b, and c, b |⌣
f
A C if and only

if there is an AC-indiscernible sequence (bi )i<ω with b0 = b such that for any J
and K with J + K ≡

EM
A b<ω, J |⌣

b
A K .

Proof. (The argument here is similar to the proof of [Adler 2005, Lemma 3.2], but
we will give a proof for the sake of completeness.) If b |⌣

f
A C , then we can build

an AC-indiscernible |⌣
f-Morley sequence (bi )i<ω over A with b0 = b (since T

is simple). By some forking calculus, we have that J |⌣
f
A K for any J and K

with J + K ≡
EM
A b<ω. Therefore, by [Conant and Hanson 2022, Corollary 4.13],

J |⌣
b
A K for any such J and K as well.

Conversely, assume that there is an AC-indiscernible sequence (bi )i<ω with
b0 = b such that for any J and K with J + K ≡

EM
A b<ω, J |⌣

b
A K . Let κ be a

regular cardinal such that every type (in the same sort as C) does not fork over
some set of cardinality less than κ . Let (bi )i<κ+κ∗ be an AC-indiscernible sequence

17There is an incorrect proof of this in the literature. To the author’s knowledge, the first correct
published proof of this is in [Conant and Hanson 2022, Theorem 4.11].
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extending b<ω, where κ∗ is an order-reversed copy of κ . Now we clearly have that
b<κ |⌣

b
A b∈κ∗ . By local character, there is a set D ⊆ Ab<κ with |D| < κ such that

C |⌣
f
D Ab<κ . Since κ is regular, there is a λ < κ such that D ⊆ Ab<λ. Therefore,

by base monotonicity, C |⌣
f
Ab<λ

Ab<κ . Since b≥λ is Ab<λC-indiscernible, we have
that C |⌣

f
Ab<λ

Ab∈κ+κ∗ . Therefore, by base monotonicity again, C |⌣
f
Ab<κ

Ab∈κ+κ∗ .
By the symmetric argument, C |⌣

f
Ab∈κ∗

Ab∈κ+κ∗ as well.
In simple theories, forking is characterized by canonical bases in the following

way: E |⌣
f
D F (with D ⊆ F) holds if and only if cb(tp(E/ bddheq(F)))∈bddheq(D)

[Kim 2014, Lemma 4.3.4]. Therefore, we have that cb(tp(C/ bddheq(Ab∈κ+κ∗))) ∈

bddheq(Ab<κ)∩bddheq(Ab∈κ∗), but bddheq(Ab<κ)∩bddheq(Ab∈κ∗) = bddheq(A) by
assumption. So C |⌣

f
A b∈κ+κ∗ , whence C |⌣

f
A b0 and hence b0 |⌣

f
A C , as required.

□

Proposition 4.27. Let T be a simple theory. For any A and A-indiscernible se-
quence I , the following are equivalent.

(1) I is an |⌣
f-Morley sequence over A.

(2) For any J and K with J + K ≡
EM
A I , J |⌣

b
A K .

(3) I is a total |⌣
bu-Morley sequence over A.

Proof. (1)⇒(3) is Corollary 4.25. (3)⇒(2) is obvious. For (2)⇒(1), assume that (2)
holds. Fix (bi )i<ω+ω ≡

EM
A I . (bi )ω≤i<ω+ω is Ab<ω-indiscernible. Therefore by

Lemma 4.26, bω |⌣
f
A b<ω, and we have that b<ω+ω, and therefore I , is an |⌣

f-Morley
sequence over A. □

On the other hand, there are easy examples in NIP theories (such as DLO) of total
|⌣

bu-Morley sequences that are not strict Morley sequences (i.e., sequences b<ω

satisfying that bi |⌣
f
A b<i and b<i |⌣

f
A bi for all i < ω). Fix a model M of DLO and

let (ai bi )i<ω be a sequence of elements above M satisfying ai < ai+1 < bi+1 < bi

for all i < ω. This is a total |⌣
bu-Morley sequence since it is generated by an

M-invariant type, but it is clearly not a strict Morley sequence. DLO can also
be used to show that not every |⌣

þ-Morley sequence in a rosy theory is a total
|⌣

bu-Morley sequence (e.g., [Adler 2005, Example 3.13] is an |⌣
þ-Morley sequence

since þ-forking in DLO is trivial but fails to even be an |⌣
b-Morley sequence).

In NSOP1 theories, we do get that tree Morley sequences are total |⌣
bu-Morley

sequences.

Proposition 4.28. Let T be an NSOP1 theory, and let M |H T . If I is a tree Morley
sequence over M , then it is a total |⌣

bu-Morley sequence over M.

Proof. Let J be a sequence realizing the same EM-type as I over M . Find K ≡M I
such that K |⌣

K
M I J . Let I ′, J ′, and K ′ have the same order type such that I + I ′,

J + J ′, and K + K ′ are all M-indiscernible. Since these are tree Morley sequences,
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we have that I |⌣
K
M I ′, J |⌣

K
M J ′, and K |⌣

K
M K ′. Therefore, by the independence

theorem for NSOP1 theories, we can find I ′′ and J ′′ such that I + I ′′, K + I ′′,
K + J ′′, and J + J ′′ are all M-indiscernible, so I ≈M J .

Since we can do this for any such J , we have that I is a total |⌣
bu-Morley

sequence by Theorem 4.8 and the fact that Lascar strong types are types over
models. □

The converse is unclear. The argument in the context of simple theories relies
on the existence of canonical bases for types.

Question 4.29. If T is NSOP1, is every total |⌣
bu-Morley sequence over M |H T a

tree Morley sequence over M?
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