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Given a cover U of a family of smooth complex algebraic varieties, we associate
with it a class U, containing U, of structures locally definable in an o-minimal
expansion of the real numbers. We prove that the class is ℵ0-homogenous over
submodels and stable. It follows that U is categorical in cardinality ℵ1. In the
case when the algebraic varieties are curves we prove that a slight modification
of U is an abstract elementary class categorical in all uncountable cardinals.

1. Introduction

1.1. Let k0 ⊆ C, a countable subfield, {Xi : i ∈ I } a collection of nonsingular
irreducible complex algebraic varieties (of dim > 0) defined over k0 and I := (I, ≥)

a lattice with the minimal element 0 determined by unramified k0-rational epi-
morphisms pri ′,i : Xi ′ → Xi , for i ′

≥ i . Let U(C) be a connected complex manifold
and { fi : i ∈ I } a collection of holomorphic covering maps (local biholomorphisms)

fi : U(C) ↠ Xi (C), pri ′,i ◦ fi ′ = fi .

as illustrated by

Xn(C)

Xm(C)

X0(C)

U(C)

prm,n

fm

fn

prn,0

prm,0

MSC2020: 03C75.
Keywords: categoricity, o-minimal, quasiminimal.

© 2024 MSP (Mathematical Sciences Publishers).

http://msp.org
http://msp.org/mt
https://doi.org/10.2140/mt.2024.3-1


102 BORIS ZILBER

1.2. In a number of publications, abstract elementary classes U containing structures
(U, fi , Xi ), with an abstract algebraically closed field K instead of C (pseudoanalytic
structures) have been considered; see [Zilber 2016] for a survey. A typical result is a
formulation of a “natural” Lω1,ω-axiom system 6 which holds for (U(C), fi , Xi (C))

and defines a class U categorical in all uncountable cardinals. The proofs, in each
case, rely on deep results in arithmetic geometry, moreover one often is able to
show that the fact of categoricity of 6 implies the arithmetic results.

The above raised the question of whether an uncountably categorical AEC U

containing (U(C), fi , Xi (C)) exists under general enough assumptions on the data,
leaving aside the question of axiomatisability and related arithmetic theory.

The current paper answers this question in the positive at least in the case when
the Xi are curves. We construct U as the class of structures U(K) (K=R+iR) locally
definable (in the sense of M. Edmundo and others) in models R of an o-minimal
expansion of the real numbers projected (restricted) to the language Lglob (global)
the primitives of which are given by analytic subsets of Um locally defined in the
o-minimal structure. The main theorem states that, for the case when the complex
dimension of U(C) is equal to 1, U can be extended to a class of Lglob-structures
which is an abstract elementary class categorical in all uncountable cardinals. For
the general case we only were able to prove categoricity in ℵ1.

1.3. Our main technical tool is a slightly generalised theory of K-analytic sets in
o-minimal expansions of the real numbers developed by Y. Peterzil and S. Starchenko
[2008]. We also make an essential use of the theory of quasiminimal excellence,
especially the important paper by M. Bays, B. Hart, T. Hyttinen, M. Kesälä and
J. Kirby [Bays et al. 2014].

Note that our main technical results effectively prove that the structures in U are
analytic Zariski in a sense slightly weaker than in [Zilber 2017], where we proved
results similar to the current ones for an analytic Zariski class.

1.4. Most of our examples, see Section 2.3, have become objects of interest in the
theory of o-minimality due to the Pila–Wilkie–Zannier method of counting special
points of Shimura varieties and more generally; see the survey [Scanlon 2012].
Effectively, one counts points of U(L)∩ D ∩ S where D is an open subset of U(C)

definable in the o-minimal structure, S an Lglob-definable analytic subsets of U(C)

and L a number field relevant to the case at hand.
At the same time one should note that in representing an Lglob-structure as U(K),

K = R+ iR, there is a remarkable degree of freedom in the choice of a model R of
the underlying o-minimal theory.

This raises a lot of questions on the interaction between the theory of AEC
and o-minimality, the model theory–arithmetic geometry perspective of categorical
classes and the o-minimal Pila–Wilkie–Zannier method.
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2. Preliminaries

2.1. Let RAn be an o-minimal expansion of the real numbers, C = R + iR in the
language of rings and

ModAn = {R : R ≡ RAn}

the class of models of the complete o-minimal theory Th(RAn) in the language LAn.
To avoid unnecessary complications we assume that LAn is a countable fragment
of the full language of RAn.

We write K for the algebraically closed field K(R) := R+ iR.

2.2. (RAn, { fi })-admissible open cover of U(C). In addition to the data and nota-
tion spelled out in Section 1.1, we assume that:

(i) There is a system of connected open subsets Dn(C) ⊂ U(C), n ∈ N, definable
in RAn (possibly with parameters), such that

for any n ∈ N, Dn ⊆ Dn+1, and
⋃
n

Dn(C) = U(C).

(ii) The restriction fi,n of fi on Dn is definable in RAn for each i ∈ I and n ∈ N,
and for each i there is n such that fi (Dn) = Xi .

(iii) For all i ∈ I , there is a group 0i of biholomorphic transformations on U(C),
so that the restrictions of the transformations to the Dn(C) are LAn-definable
and fibres of fi are 0i -orbits, that is,

fi : U(C) → Xi (C) ∼= U(C)/0i .

Moreover, for i > j , 0i is a finite index subgroup of 0 j , that is, the cover
pri, j : Xi → X j is finite.

(iv) The system of maps fi , i ∈ I is U-complete: there is a chain I0 ⊆ I such that⋂
l∈I0

0l = {1}.

2.3. Examples of admissible RAn. In all our examples RAn is a LAn-reduct of
Rexp,an , the real numbers with exponentiation and restricted analytic functions.
What varies is U, k0 and the choice of the family { fi , Dn : i ∈ I, n ∈ N} the members
of which assumed to be LAn-definable.

(1) U(C) = C, I = N, Xi = Gm for all i ∈ I , the algebraic torus,

Dn = {z ∈ C : −2πn < Im z < 2πn},

fk(z) = exp
( z

k

)
, and k0 = Q.
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(2) U(C) = C, I = N, Xi = Eτ for all i ∈ I , an elliptic curve

fk = expτ,k : C → Eτ ⊂ P2, z 7→ expτ

( z
k

)
,

the covering map for Eτ (expτ is constructed from the Weierstrass P-function and
its derivative P′, with period k3τ = kZ + τkZ).

D1 is the interior of the square in C with vertices (0, 1, τ, τ +1), and Dn = n · D1.
Here k0 is the field of definition of Eτ .

(3) U(C) = H, the upper half-plane.

Dn =
{
z ∈ H : −

1
2 n ≤ Re(z) < 1

2 n & Im(z) > 1
n+1

}
.

For n = 1 this is the interior of the fundamental domain of the j-function

F =
{
z ∈ H : −

1
2 ≤ Re(z) < 1

2 & Im(z) > 1
2

}
and the results of [Peterzil and Starchenko 2013] state that the restriction of j to F
is defined in Rexp,an. Note that, for each n, Dn can be covered by finitely many
shifts of D1 by Möbius transformations from 0 := PSL2(Z). This allows one to
define j on Dn in Rexp,an.

Moreover, we can similarly consider more general functions

jN : H → Y(N ) ∼= H/0(N )

onto level N Shimura curves. A fundamental domain for jN is a finite union of
finitely many shifts of F and the analysis of [Peterzil and Starchenko 2013] shows
that the restriction of jN on its fundamental domain is definable in Rexp,an. Thus
we can take the family { jN } to be our { fi } (i = N ) and Y(N ) to be the Xi . It is
well-known that the Y(N ) and jN are defined over k0 = Qab, the extension of Q by
roots of 1.

(4) U(C) = H. Let 0 is a Fuchsian subgroup of PGL2(R) and {0i : i ∈ I } the
system of all finite index subgroups of 0 (see [Katok 1992]). Then the H/0i

are biholomorphic to compact projective curves Xi (C) with bounded fundamental
domains. Thus one can define Dn and fi as in Section 2.2, with k0 being the union
of the fields of definition of the Xi .

(5) [Peterzil and Starchenko 2013] supplies us with a plethora of other examples,
in particular U(C) = Hg, the Siegel half-space, and Xi moduli spaces of polarised
algebraic varieties.

3. The K-analytic setting

3.1. Abstract structures definable in R. Now we extend notations of Section 2.2
and, assuming R ∈ ModAn be given, let U, Xi , (i ∈ I ), Dn , 0i and fi be defined as
in Section 2.2 in the language LAn. In particular, we read U := U(K), Xi := Xi (K),
for K = K(R), when the choice of the model R does not matter.
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More precisely, we define

U(K) =
⋃
n

Dn(K),

which is an Lω1,ω interpretation of U in R for each i ∈ I . Now fi : U(K) → Xi (K)

is defined to be the map such that it coincides with the map fi,n : Dn(K) → Xi (K)

for each n ∈ N. Note that the latter is K-holomorphic in the sense of [Peterzil
and Starchenko 2008]. We will often say K-holomorphic (analytic) in an extended
sense: the restriction fi,n of fi to Dn(K) is K-holomorphic.

We write Dn ⊂ Um meaning that n = ⟨n1, . . . , nm⟩ ∈ Nm and

Dn = Dn1 × · · · × Dnm .

Define fi on Dn as ⟨u1, . . . , um⟩ 7→ ⟨ fi (u1), . . . , fi (um)⟩. This obviously extends
to the map fi with the domain Um .

We will often restrict our analysis of K-analytic sets to open neighbourhoods,
where open always means definable open.

Let k0 be a subfield of K such that k0 ⊆ dcl(∅), that is any point of k0 is definable
in R without parameters. Note that k0 contains any point of the form fi (a) for i ∈ I
and a definable point a ∈ Dn .

More generally, we will work with an arbitrary k such that k0 ⊆ k ⊂ K.

Definition 3.2. Given S ⊂ Um we say that S is Lglob(k)-primitive if there are IS ⊆ I
and Zariski closed Zi ⊆ Xm

i , i ∈ IS , defined over k, such that

S =
⋂

i∈IS

f −1
i (Zi ).

Remark 3.3. In Definition 3.2 we may assume without loss of generality that IS is
a chain and, for i ′

≥ i in IS ,

pri ′i (Zi ′) = Zi . (1)

Proof. First, we may assume that IS = I by setting for i ∈ I \ IS , Zi := Xm
i .

For a finite J ⊆ I , take a i J ∈ I such that i J ≥ J . Set, for each k ∈ J ,

Zi J ,k := pr−1
i J ,k(Zk) ⊆ Xm

i J
and Z∗

i J
=

⋂
k∈J

Zi J ,k .

Then, since fk = pri J ,k ◦ fi J ,

f −1
i J

(Zi J ,k) = f −1
k (Zi ) and

⋂
k∈J

f −1
k (Zi ) = f −1

i J
(Z∗

i J
). (2)

Since I is a countable lattice we can represent

I =
⋃

n∈N

Jn

where Jn ⊆ IS are finite and Jn+1 ⊇ Jn for each n.
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Consider (2) with J = Jn and write i Jn as in . Clearly, in+1 ≥ in and

S =
⋂

n∈N

f −1
in

(Z∗

in
). (3)

Finally, note that in (3) prin,il
(Z∗

in
) ⊆ Z∗

il
for n ≥ l, and prin,il

(Z∗

in
) is a Zariski

closed subset of Xm
il

since prin,il
is unramified (and étale). Hence, we may replace

Z∗

il
by

⋂
n≥l prin,il

(Z∗

in
) while keeping (3). Doing this consecutively for l = 1, 2, . . .

delivers us (1). □

Remark. The equality relation is Lglob(k0)-primitive.

3.4. K-holomorphic maps and K-analytic subsets. We refer to [Peterzil and
Starchenko 2008] for definitions and basic facts on K-analyticity in open definable
subsets Dn . By slight abuse of the terminology we call a subset S ⊆ Um K-analytic
if S ∩ Dn is K-analytic for each Dn ⊂ Um .

Since the complex covering maps fi are holomorphic, the maps fi,n : Dn(K) →

Xi (K) are K-holomorphic and locally K-biholomorphic. It follows the sets f −1
i (Zi )

in Definition 3.2 are K-analytic and are locally K-biholomorphically isomorphic
to the Zi .

The dimension dim is always the K-dimension of a K-analytic set. When Z is
an algebraic variety, the dimension of the respective K-analytic set is dim Z :=

dim Z(K), and this coincides with the dimension in the sense of algebraic geometry.

Lemma 3.5. Given an Lglob(k)-primitive S, S ∩ Dn is K-analytic in Dn . S is
K-analytic in Um .

Proof. Let S be as in Definition 3.2 with the assumption (1) and let Si := f −1
i (Zi ).

It follows by definition that the Si ∩ Dn are K-analytic. We need to prove that⋂
i∈IS

Si ∩ Dn is analytic.
Let s ∈ S ∩ Dn . For each i ∈ IS there is an open neighbourhood Os,i of s such

that Si ∩ Os,i is irreducible. We may assume that Si ′ ∩ Os,i ′ ⊆ Si ∩ Os,i for i ′
≥ i .

Then there exists i0 ∈ IS such that for i ′
≥ i ≥ i0, dim Si ′ ∩ Os,i ′ = dim Si ∩ Os,i .

Since Si ∩ Os,i is irreducible, Si ′ ∩ Os,i = Si ∩ Os,i for all i ′
≥ i ≥ i0. Thus

S ∩ Os,i = Si ∩ Os,i , which proves that S is K-analytic in the neighbourhood, and
hence in Dn . □

Remark 3.6. Ssing, the set of singular points of Lglob(k)-primitive S, is also an
Lglob(k)-primitive since

Ssing
=

⋂
i∈IS

f −1
i (Z sing

i ).

Proposition 3.7. Let S ⊆Um be Lglob(k)-primitive and let, for some n, S j,n ⊆ S∩Dn

be a K-analytic irreducible component of S ∩ Dn . Then:
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(i) For any Dn′ ⊇ Dn there is unique S j,n′ ⊇ S j,n a K-analytic irreducible compo-
nent of S ∩ Dn′ . The set

S j :=
⋃

Dn′⊇Dn

S j,n′

is well-defined. (Call it an irreducible component of S.)

(ii) The number of K-analytic components S j of S is at most countable.

(iii) The irreducible components S j are Lglob(k′)-primitive for some algebraic
extension k′ of k.

(iv) For any i , fi (S j ) is a Zariski closed k′-definable geometrically irreducible
subset of Xm

i .

Proof. By [Peterzil and Starchenko 2008, 4.12], S j,n′ is irreducible if and only
if S j,n′ \Ssing

j,n′ is definably connected. The union of any two irreducible extensions of
S j,n \ Ssing

j,n will be connected, since any two points in the union can be connected by
a definable path passing through S j,n \ Ssing

j,n . Hence the extensions coincide, which
gives us the first statement of proposition.

The number of such irreducible components is at most countable since the number
of components in each Dn′ is finite. This proves (i) and (ii).

Define dim S j to be dim S j,n , which does not depend on Dn as long as S j ∩Dn ̸=∅,
since irreducible sets are of pure dimension (the proof is the same as in the complex
case, see also [Peterzil and Starchenko 2008]). Define

dim S := max
j

dim S j . (4)

We may assume that
S =

⋂
i∈I0

f −1
i (Zi )

for some chain I0 ⊆ I , some Zariski closed Zi ⊆ Xm
i such that dim Zi = dim S and

pri,l(Zi ) = Zl for i > l in I0.
Let Si

:= f −1
i (Zi ) and let Si

=
⋃

j∈Ji
Si

j be the decomposition into irreducible
analytic components with maximum dimension equal to dim S. It follows that the
components of Si are also components of Sl for i > l, and thus S j is a component
of f −1

l (Zl).
Fix l for the time being. We can represent Zl =

⋃
p∈P Zl,p, a finite union of

geometrically irreducible algebraic subvarieties Zl,p defined over some algebraic
extension k′ of k. Also, S can be represented as a finite union of Lglob(k′)-primitives,

S =
⋃

p∈P
Tl,p, where Tl,p = S ∩ f −1

l (Zl,p)

and the irreducible component S j of S is an irreducible component of one of Tl,p.
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We assume without loss of generality that Zl is geometrically irreducible, P is a
singleton and, since we are only interested in S j , assume

S = f −1
l (Zl).

We omit the subscript l in the claim below.

Claim. f (S j ) = Z and for any other component Sk of S there is γ ∈ 0 such that
γ · S j = Sk .

Proof. By Section 1.1 there is n such that f (Dn) = Xm .
By our assumption then

Z = f
( ⋃

k∈J
Sk

)
=

⋃
k∈J

f (Sk ∩ Dn) =
⋃

k∈J0

f (Sk ∩ Dn)

where J lists all the components of S and J0 lists the components Sk such that
Sk ∩ Dn ̸= ∅, so J0 is finite.

Hence for the finite J1, J0 ⊆ J1 ⊆ J , we have

Z =
⋃

k∈J1

f (Sk).

Let Z sing the singular points of Z and Ssing the singular points of S, which by
the fact that f is a local biholomorphisms are related as

f −1(Z sing) = Ssing. (5)

Note that if s ∈ S j ∩ Sk , a common point of two distinct components of S then
s ∈ Ssing. That is S \ Ssing, the analytic subset of the open set Um

\ Ssing, splits into
nonintersecting analytic components Sk \ Ssing. We get from (5)

Z \ Z sing
=

⋃
k∈J1

f (Sk \ Ssing). (6)

The union on the right cannot be disjoint, that is, either J1 is a singleton, or there
are distinct k0, k1 ∈ J1 such that f (Sk0 \ Ssing)∩ f (Sk1 \ Ssing) ̸=∅. Indeed, suppose
for a contradiction that it is disjoint. Note that for a respective Dn , f : Dn ↠ Xm

is a (definably) closed covering map since it is locally biholomorphisms. Hence
f (Dn ∩ Sk \ Ssing), k ∈ J1, are disjoint definably closed subsets the union of which
is the definably connected algebraic set Z \ Z sing, which is a contradiction.

Now we claim that

f (Sk0 \ Ssing) = Z \ Z sing for a k0 ∈ J1. (7)

Indeed, otherwise there are k0, k1 ∈ J1 such that f (Sk0 \ Ssing) ̸= f (Sk1 \ Ssing) but
f (Sk0 \ Ssing) ∩ f (Sk1 \ Ssing) ̸= ∅. The latter means that there are s0 ∈ Sk0 \ Ssing

and s1 ∈ Sk1 \ Ssing such that f (s1) = f (s0), and hence s1 = γ · s0 for some γ ∈ 0.



NONELEMENTARY CATEGORICITY & PROJECTIVE LOCALLY O-MINIMAL CLASSES 109

It follows that the K-analytic sets Sk1 and γ · Sk0 intersect in a nonsingular point of
S ∩ Dn and thus Sk1 ∩ Dn = γ · Sk0 ∩ Dn , and so

Sk1 = γ · Sk0 and f (Sk1) = f (Sk0).

(7) follows. This finishes the proof of the claim and of the statement (iv). □

Now, for any i ∈ I consider

Zi j := fi (S j )

which we proved to be Zariski closed irreducible and

f −1
i (Zi j ) =

⋃
γ∈0i

γ · S j .

Since by assumption
⋂

l∈I 0l is trivial, for some chain I1 ⊆ I extending I0 we have

S j =
⋂

l∈I1

f −1
l (Zl j ),

proving (iii). □

Definitions 3.8. For an m-tuple u in U and a subfield k ⊂ K the locus of u over k,
written loc(u/k), is the minimum Lglob(k)-primitive containing u.

We say an Lglob(k)-primitive S is k-irreducible if S cannot be represented as
S1 ∪ S2 with Lglob(k)-primitives S1 and S2, both distinct from S.

Remark. Note that loc(u/k) is k-irreducible.

4. Lglob-structures

4.1. Recall, see [Pillay and Steinhorn 1986], that an o-minimal structure R is a
pregeometry, i.e., has a well-behaved dependence relation, and one can define a
notion of a (combinatorial) dimension cdim A of a subset A ⊆R (not to be confused
with K-dimension) as the cardinality of a maximal independent subset of A.

In particular, cdimR0 = 0 for the prime model R0 of the theory Th(RAn). And,
if cardR = κ > ℵ0, then cdimR = κ .

This has the following relationship with dimR S (the “real” dimension in the
sense of [Peterzil and Starchenko 2008]) for an R-manifold S ⊆ Rm defined over a
set C : assuming cdimR/C ≥ m, for any d ∈ N,

dimR S ≥ d if and only if there exists ⟨s1, . . . , sm⟩ ∈ S such that
cdim({s1, . . . , sm}/C) ≥ d. (8)

Recall that if S is K-analytic, then

dim S =
1
2 dimR S. (9)
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Definition 4.2. Given R∈ModAn, defineU(R) to be the structure with universe U(K)

(K the field R+ iR) in the language of Lglob(k0)-primitives.
Define U to be the class of all structures of the form U(R).

Fact 4.3. For K an algebraically closed field, consider the structure X(K)Zar,k0

on an infinite algebraic variety X(K) over k0 equipped with relations Z ⊆ Xm , all
Zariski closed Z over k0.

The field structure K together with its k0-points is ∅-interpretable in X(K)Zar,k0 .

This is well-known. A detailed proof is given in [Bays 2009, Appendix A].

Proposition 4.4. U(R) interprets in the first order way over ∅ the field K, points of
the subfield k0 and all the maps fi : U → Xi (K).

Proof. First note that the equivalence relations on U,

Ei (u1, u2) :≡ fi (u1) = fi (u2),

are Lglob(k)-primitives. Thus the sets Xi (K) are ∅-interpretable as U/Ei together
with the maps fi : U → U/Ei .

Given a Zariski closed Zi ⊂ Xm
i we have ZU

i := f −1
i (Zi ), a definable subset

of Um . Thus Zi = fi (ZU
i ) are ∅-interpretable.

Now the structure X0(K)Zar,k0 equipped with relations Z ⊆ Xm
0 , for all Zariski

closed Z over k0, is ∅-interpretable.
It follows from Fact 4.3 that one can interpret K and k0-points in U(R). □

Corollary 4.5. Any Lglob(K)-primitive is type-definable in U(R) using parameters.

Below U is always the universe U(K) for some U(R) in U.

Lemma 4.6. If k is algebraically closed then loc(u/k), the locus of u over k, is
K-analytically irreducible.

If S ⊆ Um is an Lglob(k)-primitive and K-analytically irreducible, then S =

loc(u/k), for some u ∈ S.

Proof. The first statement is just a corollary to Proposition 3.7(iv).
Let dim S = d. By (8) and (9) there is a u ∈ S such that u = ⟨s1, . . . , sm⟩

with cdim(s1, . . . , sm/k) = 2d. Then loc(u/k) ⊆ S and, again by (8) and (9),
dim loc(u/k) ≥ d . Since S is K-analytically irreducible, loc(u/k) = S. □

Lemma 4.7. Let S ⊂ Um be an Lglob(k)-primitive, dim S = d. Assume also
cdim(R/k) ≥ ℵ0. Then, for any family L j∈J of Lglob(k)-primitives such that
dim L j < d, for all j ∈ J ,

S \
⋃
j∈J

L j ̸= ∅. (10)

Proof. S contains a point u = ⟨s1, . . . , sm⟩ with cdim(s1, . . . , sm/k) = 2d , which is
not a point of any L j . □
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Proposition 4.8 (the projection of an irreducible analytic set). Let k be algebraically
closed, cdim(R/k) ≥ ℵ0. Let T ⊆ Um+1 be an Lglob(k)-primitive K-analytically
irreducible, and let p : Um+1

→ Um be the projection onto the first m coordinates.
Then there are an Lglob(k)-primitive S ⊆ Um , an i0 ∈ I and a Zariski closed subset
R ⊆ Xm

i0
defined over k such that dim R < dim S and

S \ f −1
i0

(R) ⊆ p(T ) ⊆ S. (11)

Moreover, for any d ≤ dim T −dim S, there is a Zariski closed Rd ⊂ Xm
i0

defined
over k such that R ⊆ Rd , dim Rd < dim S and

p(T ) \ f −1
i0

(Rd) = pd(T ), (12)

where
pd(T ) := {s ∈ p(T ) : dim( p−1(s) ∩ T ) ≤ d}.

Proof. By Lemma 4.6,
T = loc(uv/k)

for some uv ∈ Um+1, (u ∈ Um , v ∈ U).
Let

S = loc(u/k).

By definition
S =

⋂
i∈I0

f −1
i (Zi ), T =

⋂
i∈I0

f −1
i (Wi )

for some Zariski closed Zi ⊆ Xm
i , Wi ⊆ Xm+1

i over k and we apply the same notation
to the projection map p : Xm+1

i → Xm
i . By Proposition 3.7(iv) we may assume

that all the Zi and Wi are irreducible and of dimension equal to that of S and T
respectively,

fi (S) = Zi and fi (T ) = Wi for all i ∈ I0,

and fi (u) is a generic point of Zi , fi (u)⌢ fi (v) a generic point of Wi .
By basic algebraic geometry, p(Wi ) is a constructible irreducible set and fi (u)

its generic point, and thus the Zariski closure of p(Wi ) is equal to Zi . That is, there
are Zariski closed Ri ⊂ Zi over k such that

Zi = p(Wi ) ∪ Ri and dim Ri < dim Zi . (13)

Since
p
(⋂

i∈I
f −1
i (Wi )

)
⊆

⋂
i∈I0

p( f −1
i (Wi )) =

⋂
i∈I0

f −1
i ( p(Wi )),

we have
p(T ) ⊆ S.



112 BORIS ZILBER

Let i0 be an element of I0 and, for simplicity of notation, f := fi0 , so f (T ) = W ,
f (S) = Z and Z = p(W ) ∪ R as in (13).

By the basic assumptions, given arbitrary t ∈ T , s = p(t), for some R-definable
open neighbourhood U ⊂ Um of s and open neighbourhood U × V ⊂ Um+1 of t ,
with V ⊂ U, the restriction fU : U → Xm and fU×V : U × V → Xm+1 are injective.

Thus we obtain the commutative diagram

T ∩ (U × V )
fU×V //

p
��

W

p
��

S ∩ U
fU // p(W ) ⊇ Z \ R

(14)

By comparing images of the downward-pointing arrows we conclude

S ∩ U ⊇ p(T ∩ (U × V )) ⊇ f −1
U (Z \ R).

Note that
f −1
U (Z \ R) = S ∩ U \ f −1(R),

and the choice of R is independent on the choice of U . Hence p(T ) ⊇ S \ f −1(R)

and (11) is proved.
To prove the second statement recall another basic fact of algebraic geometry:

there is a Zariski closed Rd ⊂ Xm such that

p(W ) \ Rd = pd(W ) := {z ∈ p(W ) : dim p−1(z) ∩ W ≤ d}.

Now repeat the argument with the diagram (14) with pd(W ) in place of p(W ).
This proves (12). □

Recall the notion of an analytic Zariski structure, see [Zilber 2010; 2017].

Corollary 4.9. Assuming that k is algebraically closed and cdim(R/k) ≥ ℵ0, the
structure U(R) in the language Lglob(k) is an analytic Zariski structure.

Proof. The statement of Proposition 4.8 asserts that the structure on U determined
by Lglob(k)-primitives satisfies the key axioms (WP) and (FC) of the definition of
an analytic Zariski structure. The rest of the axioms follow easily from definitions
and basic algebraic geometry. □

The next statements and their proofs are similar to one of the main statements of
[Zilber 2017] for analytic Zariski structures. More early work of M. Gavrilovich
also proves this for complex analytic Zariski structures.

Proposition 4.10. U is ℵ0-homogeneous over algebraically closed subfields:
Suppose U(R1),U(R2) ∈ U, R0,R1,R2 ∈ ModAn, R0 ⊆ R1, R0 ⊆ R1.
Let k⊆K0 =K(R0) be an algebraically closed subfield such that cdim(R1/k)≥ℵ0

and cdim(R2/k) ≥ ℵ0.
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Then for any u1 ∈ Um(K1), u2 ∈ Um(K2), and w1 ∈ U(K1) such that

loc(u1/k) = loc(u2/k)

there is w2 ∈ U(K2) such that

loc(u1w1/k) = loc(u2w2/k).

Proof. Let S = loc(u1/k) and T = loc(u1w1/k). Note that u1 and u2 are nonsingular
points of S and u1w1 a nonsingular point of T , by Remark 3.6.

Let d := dim p−1(u1) ∩ T be the dimension of the fibre over u1, and the subset
pd(T ) be as defined in Proposition 4.8. Note that by the dimension theorem of
algebraic geometry dim pd(T ) = dim S, since dim pd(W ) = dim S (in the notation
of Proposition 4.8). Note also that

dim T = dim S + d

since respective equality holds for the dimensions of W and Z .
It follows that pd(T ) contains all generic over k points of S, u2 ∈ pd(T ) and thus

dim p−1(u2) ∩ T = d.

Thus there exists w2 such that u2w2 ∈ p−1(u2) ∩ T and dim(w2/u2k) = d.
Since T is k-irreducible,

T = loc(u2w2/k). □

Lemma 4.11. Let S ⊆ Um+n be an Lglob(k)-primitive and u ∈ Um . Let

Su = {v ∈ Un
: uv ∈ S}.

Then Su is an Lglob(k′)-primitive, for k′, extension of k by coordinates of fi (u),
i ∈ I .

Proof. By definition S =
⋂

i∈I f −1
i (Zi ) for Zi ⊆ Xm+n

i .
Let, for zi ∈ Xm

i (K),

Zi,zi = {xi ∈ Xn
i (K) : zi xi ∈ Zi }.

Thus
Su =

{
v ∈ Un

:
∧
i∈I

fi (u) fi (v) ∈ Zi
}

=
⋂
i∈I

f −1
i (Zi, fi (u)). □

Corollary 4.12. Assuming k0 is algebraically closed, U is ℵ0-homogenous over ∅
and over small submodels: Using the notation of Proposition 4.10, let V = ∅ or
V = U(K0) and assume cdim(Ri/K0) ≥ ℵ0 for i = 1, 2.

Then, for any u1 ∈ Um(K1), u2 ∈ Um(K2), w1 ∈ Um(K1) such that

tp(u1/V ) = tp(u2/V )

there is w2 ∈ Um(K2) such that

tp(u1w1/V ) = tp(u2w2/V ),

where tp is the quantifier-free type of the form (10).
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Proof. For the language without parameters use Proposition 4.10 with k = k0. Over
the submodel use the statement of Proposition 4.10 with k = K0. □

Lemma 4.13. The structure U(R0), for R0 the prime model of the o-minimal theory
Th(RAn), is a prime model of U, that is, there is an Lglob-embedding U(R0) ⊆ U(R)

for any R ∈ ModAn.

Proof. An embedding R0 ≼ R induces an embedding U(R0) ⊆ U(R). □

Theorem 4.14. Suppose k0 is algebraically closed.
Let R1,R2 ∈ ModAn and ℵ0 ≤ cdimR1 = cdimR2 ≤ ℵ1. Then

U(R1) ∼= U(R2).

In particular, U is categorical in cardinality ℵ1.

Proof. First consider the case when cdimR1 = cdimR2 =ℵ0. Then U(R1) and U(R2)

are countable and so we can construct an isomorphism via a countable back-and-
forth process using Corollary 4.12, where K0 = K(R0), R0 is the prime model
of Th(RAn).

In the case when cdimR1 = cdimR2 = ℵ1, we represent by

R1 =
⋃

α<ℵ1

R1,α and R2 =
⋃

α<ℵ1

R2,α

the ascending chains of elementary extensions, cdim(Ri,α+1/Ri,α) = ℵ0 for i = 1, 2,
and R1,0 = R2,0 are prime models. Then the required isomorphism is constructed by
induction on α: Assume that R1,α

∼=R2,α , and even that both are equal to a Rα . Now
apply Corollary 4.12 with K0 = K(Rα), K1 = K(R1,α+1), and K2 = K(R2,α+1). This
again produces an isomorphism R1,α+1 ∼= R2,α+1 by the back-and-forth procedure.

For limit indices the extension of isomorphism is obvious. □

5. The one-dimensional case

5.1. Let P(U) stand for the power-set of U. Define a closure operator cl : P(U) →

P(U) by the condition

u ∈ cl(w) if and only if dim loc(uw/k) = dim loc(w/k)

for w ⊂ U finite. And

cl(W ) =
⋃

{cl(w) : w ⊆fin W }

for W infinite.

Lemma 5.2. Suppose W ∈ P(U) and cl(W ) = W . Then, for any i ∈ I , the subset
fi (W ) ⊂ Xi (K) is closed under acl, the algebraic closure in the sense of fields.
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There is an algebraically closed subfield L = LW ⊆ K.

fi (W ) = Xi (L) for all i ∈ I.

Proof. Let w ∈ W n and fi (w) = x ∈ Xn
i (K). Let y ∈ Xi (K) such that y ∈ acl(x),

where acl is over the base field k. Thus, for

X = loc(x/k), Y = loc(x y/k)

we have dim X = dim Y . Hence, since fi is a local biholomorphism, for any
v ∈ f −1

i (y), we have

dim loc(w/k) = dim loc(wv/k),

which implies v ∈ cl(w) ⊂ W . This proves that fi (W ) is closed under acl and hence
fi (W ) = Xi (L) for some algebraically closed field L = LW,i .

We claim that LW,i = LW, j for any i, j ∈ I . Indeed, consider the direct product
U × U instead of U and

fi × f j : U × U ↠ X i × X j

instead of fi and f j , which still are local biholomorphisms onto smooth algebraic
varieties. Clearly, cl(W × W ) = W × W for cl in the product structure and

Xi (LW,i j ) × X j (LW,i j ) = ( fi × f j )(W × W ) = Xi (LW,i ) × X j (LW, j ),

that is, LW,i j = LW,i = LW, j = L . □

5.3. Recall (see [Bays et al. 2014]) that one calls (U, cl) a quasiminimal pregeometry
structure if the following holds:

QM1 The pregeometry is determined by the language. That is, if tp(vw)= tp(v′w′)

then v ∈ cl(w) if and only if v′
∈ cl(w′).

QM2 U is infinite-dimensional with respect to cl.

QM3 (Countable closure property) If W ⊂ U is finite then cl(W ) is countable.

QM4 (Uniqueness of the generic type) Suppose that W, W ′
⊆ U are countable sub-

sets, cl(W )= W , cl(W ′)= W ′ and W, W ′ enumerated so that tp(W )= tp(W ′).
If v ∈ U \ W and v′

∈ U \ W ′ then tp(Wv) = tp(W ′v′) (with respect to the
same enumerations for W and W ′).

QM5 (ℵ0-homogeneity over closed sets and the empty set) Let W, W ′
⊆ U be

countable closed subsets or empty, enumerated such that tp(W ) = tp(W ′),
and let w, w′ be finite tuples from U such that tp(Ww) = tp(W ′w′), and let
v ∈ cl(Ww). Then there is v′

∈ U that tp(wvW ) = tp(w′v′W ′).

Proposition 5.4. Assume that k0 is algebraically closed, dim U=1 and cdimR≥ℵ0.
Then (U(R), cl) is a quasiminimal pregeometry.
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Proof. QM1 is by definition.
QM2 is by the assumption on R.
QM3 follows from the fact that in the language of o-minimal structure acl(W ) is

countable and that cl(W ) ⊆ acl(W ), by (8) and (9).
QM4 follows from the fact that U is one-dimensional irreducible and v /∈ cl(W ),

v′ /∈ cl(W ′).
QM5. If W and W ′ are empty then the required follows from Proposition 4.10

when k = k0. In the nonempty case we may assume by ℵ0-homogeneity over ∅
that W = W ′. Now Lemma 5.2 allows us to replace tp(wW ) and tp(w′W ′) by
loc(w/LW ) and loc(w′/LW ), and tp(wvW ) and tp(w′v′W ′) by loc(wv/LW ) and
loc(w′v′/LW ), respectively.

The existence of v′ follows from Proposition 4.10 when k = LW . □

Now we recall that given a quasiminimal pregeometry structure (U, cl) one can
associate with it an abstract elementary class containing the structure, see [Bays et al.
2014, 2.2–2.3], or more generally [Zilber 2017, 2.17–2.18]. Call this class Uglob.

By definition, one starts with a structure U = U(R) for a R of cardinality ℵ1.
Define U−

glob to be the class of all cl-closed substructures of U with embedding ≺ of
structures defined as a closed embedding, that is, U1 ≺ U2 if and only if U1 ⊂ U2

and, for finite W ⊂ U1,
clU1(W ) = clU2(W ).

Now define Uglob to be the smallest class which contains U−

glob and is closed
under unions of ≺-chains.

Lemma 5.5. U ⊆ Uglob.

Proof. We need to show that U(R) ∈ Uglob, for any R ∈ ModAn.
We prove by induction on κ = cardR ≥ ℵ1 that there is a κ-chain

{Uλ ∈ Uglob : λ ∈ κ} such that
⋃
λ∈κ

Uλ = U(R).

Indeed, R can be represented as

R =
⋃
λ<κ

Rλ

for an elementary chain

{Rλ ∈: λ ∈ κ}, cardRλ = card λ + ℵ0, Rλ ≺ Rµ for λ < µ.

Hence
Uλ := U(Rλ) ∈ Uglob

which proves the inductive step and the lemma. □
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Theorem 5.6. Assuming dimK U = 1, the class Uglob is an abstract elementary class
extending U. Uglob is categorical in uncountable cardinals and can be axiomatised
by an Lω1,ω(Q)-sentence.

Proof. The first part is by Proposition 5.4 and Lemma 5.5. The second part is the
main result, Theorem 2.3, of [Bays et al. 2014]. □
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