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Recently, a new axiomatic framework for tameness in henselian valued fields
was developed by Cluckers, Halupczok, Rideau-Kikuchi and Vermeulen and
termed Hensel minimality. In this article we develop Diophantine applications
of Hensel minimality. We prove a Pila–Wilkie type theorem for transcendental
curves definable in Hensel minimal structures. In order to do so, we introduce a
new notion of point counting in this context related to dimension counting over
the residue field. We examine multiple classes of examples, showcasing the need
for this new dimension counting, and prove that our bounds are optimal.

1. Introduction

1.1. The Pila–Wilkie theorem. In 1989, Bombieri and Pila [1989] developed a very
fruitful method to count integral and rational points on various types of geometric
objects in R2. This method is now called the determinant method and is especially
well suited for proving uniform upper bounds on points of bounded height. For a
subset X ⊆ Rn , recall that the counting function is defined as

N (X; B)= #{x ∈ X ∩ Qn
| H(x)≤ B},

where H(a1/b1, . . . , an/bn) = max(|ai |, |bi |) when gcd(ai , bi ) = 1 for all i . For
example, if f : [0, 1] → [0, 1] is an analytic transcendental function and X denotes
its graph, Bombieri and Pila proved that for any ε>0, there is a constant cε such that

N (X; B)≤ cεBε for all B > 0.
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A vast generalization of this result is the celebrated Pila–Wilkie theorem [Pila and
Wilkie 2006]. It states that, if X ⊆ Rn is definable in an o-minimal structure, then
for any ε > 0, there exists a constant cε such that

N (X trans
; B)≤ cεBε for all B > 0. (1.1.1)

Here X trans denotes the transcendental part of X , obtained from X by removing all
positive-dimensional connected semialgebraic subsets of X . The proof of this result
is based heavily on the existence of Cr -parametrizations, which were originally
developed by Gromov and Yomdin [Yomdin 1987a; 1987b; Gromov 1987].

In the nonarchimedean setting, such parametrization results were first proved
in [Cluckers et al. 2015], and a corresponding Pila–Wilkie theorem was obtained
for subanalytic sets in Qp. These results were further improved in [Cluckers et al.
2020], where a uniform version of these bounds was proved for subanalytic sets in
Qp and Fp((t)).

1.2. Hensel minimality. Hensel minimality, or h-minimality for short, is a recent
framework for tame nonarchimedean geometry, developed by Cluckers, Halupczok
and Rideau-Kikuchi in equicharacteristic zero in [Cluckers et al. 2022] and extended
to mixed characteristic together with the fourth author in [Cluckers et al. 2023]. It
encompasses the aforementioned analytic structure on Qp as a special case, but
it applies more broadly, see, e.g., [Cluckers et al. 2022, Section 6] for several
examples.

Hensel minimality bears a striking resemblance to the classical theory of o-
minimality. In an o-minimal structure K , each definable subset X ⊆ K is a finite
union of intervals and points. In other words, there is some finite tuple (ai )i∈I such
that X is a union of fibers of the map x 7→ (sgn(x − ai ))i∈I . Roughly speaking,
h-minimality replaces the sign map by the leading term map

rv : K → K ×/(1 +MK )∪ {0},

where K is a valued field and MK is the maximal ideal of its valuation ring.
The goal of this article is to develop an analogue of the Pila–Wilkie theorem

in an h-minimal context. For this purpose, we need two important consequences
of Hensel minimality: a cell decomposition statement (Theorem 3.2.5) and the
Jacobian property (Theorem 3.2.1). These theorems are analogues of o-minimal
cell decomposition and the monotonicity theorem, respectively. We use them
to prove a Tr -parametrization statement for curves definable in Hensel minimal
structures (Theorem 4.1.1). These Tr -parametrizations are analogues of the Cr -
parametrizations used in the proof of the o-minimal Pila–Wilkie theorem, and form
a key technical ingredient.
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1.3. Counting dimension. Let k be a field of characteristic zero and denote by k((t))
the field of Laurent series over k. For any natural number s, we let k[t]s ⊆ k((t))
be the set of polynomials in t of degree less than s. For (transcendental definable)
curves X ⊆ k((t))n we study the number of points on Xs := X ∩(k[t]s)

n as a valued
field analogue of rational points of bounded height. In particular, we are interested
in bounding the growth in terms of s, similar to the Pila–Wilkie theorem.

When k = C and X is a transcendental curve definable in the subanalytic structure
on C((t)), then Xs is finite for each s ∈ N [Binyamini et al. 2022, Theorem 1].
However, this result does not carry over to arbitrary h-minimal structures and in
Section 2.4 we give explicit examples of transcendental curves X definable in some
h-minimal structure, with infinite Xs . This issue is resolved by counting relative to
the residue field. More precisely, we introduce the notion of counting dimension,
denoted by #- dim, and consider bounds of the form

#- dim(Xs)≤ (N (s), d, e(s)), (1.3.1)

where N and e are functions N → N and d ∈ N is constant. Intuitively, the above
inequality can be thought of as a means of expressing that

#Xs ≤ N (s) #(k[t]/(te(s)))d ,

even when k is infinite. When N = N (s) is constant, d · e(s) can be thought of as
bounding the growth of the k-dimension of Xs .

For k = Fp, note that the right-hand side becomes N (s)pde(s). Comparing this to
the known results for transcendental definable curves in Fp((t)) [Cluckers et al. 2020,
Theorem B] leads to the following question for transcendental curves X ⊆ k((t))n: if
ε > 0 is given, can we take N = Nε constant, d = 1 and e(s)= ⌈ε ·s⌉ in (1.3.1)? We
stress that the importance of the counting dimension is that it makes this question
meaningful when k is infinite.

We will return to the motivations for the counting dimension after precisely
defining it for any henselian valued field K (and not just k((t))). Theorem 2.2.1 then
positively answers our question above: if K is an equicharacteristic zero henselian
valued field which is h-minimal, satisfying some mild extra conditions, then for any
transcendental definable curve X ⊆ K n and any ε > 0 there exists some constant
Nε > 0 such that

#- dim(Xs)≤ (Nε, 1, ⌈ε · s⌉).

We moreover show that this bound is optimal, by constructing certain transcendental
definable curves of a specific form.

Additionally, we consider the case of algebraic curves in Theorem 2.2.3, and
prove the analogue of the classical Bombieri–Pila bound here. Let us also mention
that the main obstacle in extending these results to higher dimensions is that
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these parametrization results are only known for curves under Hensel minimality.
Especially the higher-dimensional geometry under Hensel minimality has to develop
further.

2. The counting dimension

2.1. Counting in valued fields. In this section we introduce the counting dimension
and prove some basic results about it. We then state our main results on the counting
dimension of transcendental and algebraic curves.

Let K be a nonarchimedean valued field equipped with an L-structure, for some
language L expanding the language of valued fields Lval = {0, 1,+ , · ,OK }. For
A ⊂ K , a set X ⊂ K n is called A-definable if it is definable in L using parameters
only from A. We call a set definable if it is K -definable. We denote by k the residue
field of K , by OK the valuation ring and by MK the maximal ideal. Let 0×

K be the
value group, where the valuation is written multiplicatively | · | : K → 0K .

Assume that K is henselian of equicharacteristic zero. Then there always exists
a lift k̃ ⊂ K of the residue field k, i.e., a subfield of K which maps bijectively to k
under the reduction map OK → k. Fix also a pseudo-uniformizer t ∈ K ; recall that
this is any nonzero element of K with |t |< 1. For a positive integer s, define

k̃[t]s =

{s−1∑
i=0

ai t i
∣∣∣ ai ∈ k̃

}
.

If X is a subset of K n we define Xs to be X ∩ k̃[t]n
s . We call Xs the set of rational

points of height at most s on X . Note that this set depends on the choice of
pseudo-uniformizer t and on the lift k̃.

The prototypical example to keep in mind is K = k((t)) for some characteristic
zero field k, with k̃ = k and t as pseudo-uniformizer. Here k̃[t]s is simply the set of
polynomials over k of degree at most s − 1.

The set Xs is considered as a suitable analogue for the set of rational points of
bounded height on X , where the height is captured by s. We will be interested in
bounding the size of Xs , as s grows, for various types of subsets of K n . We cannot
simply use the number of points on Xs as a measure of size, since this set will
typically be infinite. Instead we introduce the counting dimension, to measure the
size of Xs relative to the residue field.

Definition 2.1.1. Let K be a henselian valued field of equicharacteristic zero
equipped with an L-structure, for some language L expanding the language of
valued fields. Fix a pseudo-uniformizer t of K and a lift k̃ of the residue field.
Let X be a subset of K n , let d be a positive integer and let N , e : N → N be
functions. Then we say that X has counting dimension bounded by (N , d, e) if
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there exists a definable function f : X → Od
K such that for every positive integer s,

the composition

Xs
f

−→ Od
K

proj
−−→

(
OK

(te(s))

)d

has finite fibers of size at most N (s). Here proj is the componentwise reduction
map modulo te(s).

We use the notation

#- dim Xs ≤ (N (s), d, e(s))

to mean that the counting dimension of X is bounded by (N , d, e).

This definition depends on the choice of pseudo-uniformizer t , the lift k̃ and the
language L. However, we suppress these in notation and always assume a fixed
choice of t, k̃ and L.

Our definition of the counting dimension is motivated on the one hand by counting
rational points on definable subsets in local fields of mixed characteristic as in
[Cluckers et al. 2015; 2020; 2023]. In that case, one has to use a different notion of
rational points of bounded height, as there is no lift of the residue field. Consider
for example K = Qp. Then, if X is a subset of Qn

p, define

Xs = {x ∈ X ∩ Zn
| 0 ≤ xi ≤ s for all i}.

Using this definition of rational points, if X has counting dimension bounded by
(N (s), d, e(s)) then for every s, Xs contains no more than N (s)pde(s) points. So a
bound on the counting dimension gives a corresponding bound on the number of
points in Xs .

Our second motivation comes from the relation of the counting dimension to
the Zariski dimension over the residue field, as in [Cluckers et al. 2015, Section 5].
Let K = C((t)) and let X be a subset of K n . Then for every s, Xs is a subset
of C[t]s , which can be naturally identified with Cns . If X is algebraic, then Xs is
a constructible set in Cns , and one can wonder how the Zariski dimension of Xs

grows with s. In [Cluckers et al. 2015, Section 5], a bound for this quantity is
provided. We obtain a similar bound using the counting dimension instead of the
Zariski dimension.

2.2. Main results. Our main results concern the counting dimension of algebraic
and transcendental curves definable in h-minimal structures.

By a curve C ⊂ K n we mean a set for which there exists a linear map p : K n
→ K

such that p(C) is infinite and such that p has finite fibers on C . If the theory of K
in L is 1-h-minimal — see [Cluckers et al. 2022, Definition 2.3.3] or Section 3.1
below — then by dimension theory [Cluckers et al. 2022, Theorem 5.3.4], a definable
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curve in K n is the same as a definable set of dimension 1. We call a curve C ⊂ K n

transcendental if every algebraic curve in K n has finite intersection with C .
Let K be a henselian valued field equipped with an L-structure and assume that

ThL(K ) is 1-h-minimal. Then we say that acl = dcl for K if algebraic Skolem
functions exist in every model of ThL(K ). By this we mean that for any model K ′

of ThL(K ) and any subset A ⊂ K ′ we have that aclK ′(A)= dclK ′(A).
Our main result is the following analogue of the Pila–Wilkie theorem on the

counting dimension of transcendental curves definable in Hensel minimal structures.

Theorem 2.2.1. Suppose that K is a henselian valued field of equicharacteristic
zero equipped with a 1-h-minimal structure. Fix a pseudo-uniformizer t and a lift of
the residue field k̃. Suppose that acl = dcl in K and that the subgroup of b-th powers
in k× has finite index, for some integer b > 1. Let C ⊂ On

K be a transcendental
definable curve. Then for each ε > 0 there is a constant N such that for each
integer s ≥ 0,

#- dim(Cs)≤ (N , 1, ⌈ε · s⌉).

Furthermore, the constant N can be taken to hold uniformly throughout all tran-
scendental members of a given definable family of definable curves.

The key aspect here is the slow growth of the last component of the counting
dimension, similar to the Pila–Wilkie theorem in the o-minimal setting [Pila and
Wilkie 2006, Theorem 1.10]. The strategy of the proof is as follows. We use the no-
tion of Tr -parametrizations, which form a suitable analogue for Cr -parametrizations
in the nonarchimedean setting; see, e.g., [Cluckers et al. 2015; Cluckers et al. 2020].

(1) We apply cell decomposition to find a T1-parametrization of C . The existence
of such a cell decomposition follows from 1-h-minimality under the extra
assumption that acl = dcl in K ; see [Cluckers et al. 2022, Theorem 5.2.4,
Addendum 5] or Section 3.1 below.

(2) Using substitutions of the form x 7→ xr , we may even assume that we have a
Tr -parametrization, for some suitably chosen integer r . For this, we need that
the subgroup of b-th powers of k× has a finite index in k×.

(3) We then use an adaptation of the Bombieri–Pila determinant method to catch
all rational points of bounded height in a small ball in a single hypersurface.

(4) Finally, the fact that C is transcendental and definable in a 1-h-minimal structure
then gives the desired result. Indeed, this follows from uniform finiteness in
definable families; see [Cluckers et al. 2022, Lemma 2.5.3] or Section 3.1
below.

The crucial ingredient to extend Theorem 2.2.1 to higher-dimensional transcendental
sets is the existence of Tr -parametrizations, which have not been proven to exist
in general 1-h-minimal structures. However, if one assumes the existence of these



A PILA–WILKIE THEOREM FOR HENSEL MINIMAL CURVES 125

parametrizations, then Theorem 2.2.1 follows via a similar approach based on the
determinant method.

A mixed characteristic analogue of this result in Qp was proven by Cluckers,
Halupczok, Rideau-Kikuchi and Vermeulen [Cluckers et al. 2023, Theorem 4.1.6].
Here the notion of rational points of bounded height is defined as above. Namely,
for X a subset of Qn

p define

Xs = {x ∈ X ∩ Zn
| 0 ≤ xi ≤ s for all i}.

Then [Cluckers et al. 2023, Theorem 4.1.6] states that if Qp carries a 1-h-minimal
structure with acl = dcl, and if C ⊂ Qn

p is a transcendental definable curve, then
for each ε > 0 there is a constant c such that for all H ≥ 1 we have

#Cs ≤ csε.

In this article, we restrict to equicharacteristic zero. The methods for both proofs
are quite similar, with one major difference being that the residue field is no longer
finite. This is the reason for introducing the counting dimension. Restricting to
equicharacteristic zero has the added benefit that Hensel minimality is slightly easier
to work with.

We also prove that Theorem 2.2.1 is optimal, in the sense that the last component
⌈ε · s⌉ of our bound cannot be improved. In more detail, one cannot replace it by a
sublinear function e(s), even if N (s) is allowed to be completely arbitrary.

Theorem 2.2.2. Let k be a field of characteristic zero. There exists a 1-h-minimal
structure on k((t)) with acl = dcl satisfying the following. Given a sublinear function
e : N → N and any N : N → N, there exists a definable transcendental curve
C ⊆ k((t))2 such that its counting dimension is not bounded by (N (s), 1, e(s)).

In contrast with this result, we consider in Section 5 a specific analytic structure on
Qp((t)) for which we are able to prove that the counting dimension of every definable
transcendental curve is bounded by (N , 1, 1) for some integer N > 0. This structure
already contains many interesting examples of transcendental definable curves. For
example, the graph of the exponential function exp : pZp + tQp[[t]] → Qp((t)) is
definable.

As for algebraic curves, we prove the following theorem, generalizing the results
from [Cluckers et al. 2015, Section 5].

Theorem 2.2.3. Let K be a henselian valued field of equicharacteristic zero
equipped with a 1-h-minimal structure. Assume that acl = dcl and that the sub-
group of b-th powers in k× has finite index for some b > 1. Let C ⊂ K 2 be an
irreducible algebraic curve of degree d for some positive integer d. Then there
exists a constant cd , depending only on d, such that

#- dim Cs ≤ (cds, 1, ⌈s/d⌉).
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This theorem can be considered the analogue of the classical Bombieri–Pila
theorem [Bombieri and Pila 1989]. By considering the example y = xd , we will
show that one cannot improve the last component of the counting dimension in this
result.

2.3. Some basic properties. Let us list some basic properties of the counting
dimension. We will often use these implicitly in our proofs.

Proposition 2.3.1. Let K be a nonarchimedean valued field in some language L
expanding the language of valued fields and let X, X ′ be definable subsets of K n .
Assume that

#- dim(Xs)≤ (N (s), d, e(s)), #- dim(X ′

s)≤ (N ′(s), d ′, e′(s))

for some integers d, d ′ and some functions N , N ′, e, e′
: N → N. Then

(1) #- dim((X ∪ X ′)s)≤ (N (s)+ N ′(s),max{d, d ′
},max{e(s), e′(s)}),

(2) #- dim((X × X ′)s)≤ (N (s)N ′(s), d + d ′,max{e(s), e′(s)}),

(3) if f : X ′
→ X is a definable map with finite fibers of size at most N ′′ for some

integer N ′′, then the counting dimension of X ′ is bounded by (N ′′N , d, e). If
moreover f is surjective and acl = dcl in K , then the counting dimension of X
is bounded by (N ′, d ′, e′).

Proof. The proof of the first two properties is straightforward, so let us prove the
last property. Let g : X → Od

K be a definable map such that for every positive
integer s, the composition

Xs
g
−→ Od

K
proj
−−→

(
OK

(te(s))

)d

has finite fibers of size at most N (s). Take a similar such definable map g′
: X ′

→Od ′

K
for X ′. Then for every positive integer s, the composition

proj ◦g ◦ f : X ′

s →

(
OK

(te(s))

)d

has finite fibers of size at most N ′′N (s), so the counting dimension of X ′ is bounded
by (N ′′N , d, e).

Conversely, using acl = dcl there exists a section f ′
: X → X ′ for f . Then for

every positive integer s, the composition

proj ◦g′
◦ f ′

: Xs →

(
OK

(te′(s))

)d ′

has finite fibers of size at most N ′(s). □
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2.4. Some examples. We give some examples of bounding the counting dimension
of transcendental curves, which the reader can keep in mind throughout this article.
In each of these, we consider a curve C in a valued field K which is definable in
some 1-h-minimal structure on K . We then give an upper bound for the counting
dimension of C by simply computing the sets Cs .

Example 2.4.1. Consider the valued field K = Qp((t)) with valuation ring Qp[[t]].
In Section 5 we argue that there is a 1-h-minimal structure on K in which the
exponential map

exp : pZp + tQp[[t]] → Qp((t)) : z 7→

∑
i≥0

zi

i !

is definable. Let us write U = pZp + tQp[[t]].
Let C be the graph of this exponential function. We claim that this is a tran-

scendental set. Indeed, suppose that f (x, y) ∈ K [x, y] is a nonzero polynomial
such that f (x, exp x)= 0 for infinitely many x ∈ U . We take such an f of minimal
degree. By h-minimality [Cluckers et al. 2022, Lemma 2.5.2], there is then an
open ball B ⊂ U on which this holds. Moreover, exp is differentiable on U with
derivative exp. Write f (x, y)=

∑d
i=0 fi (x)yi . Define the polynomial

g(x, y)=

d∑
i=0

f ′

i (x)y
i
+

d−1∑
i=0

(i − d) fi (x)yi .

This polynomial is nonzero and has degree strictly smaller than f and for x ∈ B
we have

g(x, exp x)=
d

dx
( f (x, exp x))− d f (x, exp x)= 0.

This is the desired contradiction, showing that C is a transcendental set.
To compute the counting dimension, we use t as a uniformizer and Qp ⊂ Qp((t))

as a lift of the residue field. Now, if x is in pZp then exp x is in Qp. Hence

C1 = {(x, exp x) | x ∈ pZp}.

In particular, C1 is infinite. We claim that the counting dimension of C is bounded
by (1, 1, 1). For this purpose, consider the map C →OK : (x, exp x) 7→ x followed
by projection OK → OK /MK = Qp. This clearly has finite fibers on C1. Even
more, if x is an element of U ∩Qp[t] which is not in pZp then automatically exp x
is not in Qp[t]. Thus for any positive integer s, C1 = Cs and the counting dimension
of C is bounded by (1, 1, 1).

Example 2.4.2. Consider the field R((t)) in the language of ordered valued fields.
We expand the language by the full Weierstrass system B as in [Cluckers and
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Lipshitz 2011, Section 3.1]. In more detail, let

An,α((Z))=

{∑
i∈I

fi t i
∣∣∣ fi ∈ An,α, I ⊂ Z well ordered

}
,

where An,α is the ring of real power series in R[[ξ1, . . . , ξn]] with radius of conver-
gence > α, and define Bn,α = An,α(Z). This is a real Weierstrass system in the
sense of [Cluckers and Lipshitz 2011, Definition 3.1.1], and we equip R((t)) with
real analytic B-structure. In particular, we have function symbols for all elements
of the Weierstrass system B. In [Nguyen et al. 2024], it is shown that the theory of
R((t)) in this language is 1-h-minimal. Now, by our choice of B the exponential

exp : (−1, 1)+ tR[[t]] → R((t)) : z 7→

∑
i≥0

zi

i !

is definable. Denote by C the graph of exp, which as above is a transcendental set.
We use R ⊂ R((t)) as a lift of the residue field and t as our choice of uniformizer.
Then C1 is infinite, since if x is in (−1, 1) then exp(x) is again real. Consider the
reduction map

C → OK /(t) : (x, exp x) 7→ x mod t.

Then this has finite fibers of cardinality at most 1 above C1. In fact, if x is in R[t]s

but not in R then exp(x) is never in R[t]. Thus for any s ≥ 1 we have Cs = C1 and
so the counting dimension of C is bounded by (1, 1, 1).

Example 2.4.3. Denote by Lomin the language of ordered rings. For any real number
r > 0, let fr denote the function

R>0 → R>0 : x 7→ xr

and consider the expansion L of Lomin where we have a function symbol for every fr .
The theory of R in L is o-minimal, since it is a reduct of Rexp. Let K be a proper
elementary extension of R. Then we may turn K into a valued field by taking
for OK the convex closure of R. Note that the theory T is power-bounded, so by
[Cluckers et al. 2022, Theorem 7.2.4] the theory of K in the language L∪ {OK }

is 1-h-minimal. Let t be a pseudo-uniformizer of K and denote by k̃ a lift of the
residue field. Then k̃ is again a real closed field. For example, K might be the field
of Hahn series R((tR)) with pseudo-uniformizer t and k̃ = R.

Now let C be the graph of the function

K>0 → K>0 : x 7→ xπ .

This is a definable set by our choice of language. Clearly, this is also a transcendental
set. But C1 is simply the graph of x 7→ xπ on k̃, which certainly contains this graph
on R. In particular, this set is infinite. Also note that Cs = C1 for any s ≥ 1, so that
the counting dimension of C is bounded by (1, 1, 1).
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3. Notation and background

3.1. Hensel minimality. In this section, we record some background material on
Hensel minimality. We refer to [Cluckers et al. 2022; 2023] for further details.

Let L be a language containing Lval = {0, 1,+ , · ,OK }. Let T be a complete L-
theory whose models are nontrivially valued fields of equicharacteristic zero. Let K
be a model of T . We denote by OK the valuation ring of K and by 0×

K the valuation
group. The valuation is denoted by | · | : K → 0K = 0×

K ∪ {0}. By an open ball we
mean a set of the form B<λ(a)= {x ∈ K | |x − a|< λ}, where a ∈ K and λ ∈ 0×

K .
Similarly, a closed ball is a set of the form B≤λ(a)= {x ∈ K | |x − a| ≤ λ}. If B
is an open ball as above, we denote by radop B its radius λ, and similarly we use
radcl B for λ if B is a closed ball.

For λ ≤ 1 an element of 0×

K , let Iλ be the ideal {x ∈ K | |x | < λ}. We define
RV×

λ to be K ×/(1 + Iλ), with quotient map

rvλ : K ×
→ RV×

λ .

We also consider RVλ=RV×

λ ∪{0}. The map rvλ extends to K →RVλ via rvλ(0)=0.
We write RV = RV1 and rv = rv1. The set RV combines information from the
residue field and the value group. Indeed, there is a short exact sequence

1 → (OK /MK )
×

→ RV×
→ 0×

K → 1.

Now let λ≤ 1 be in 0×

K and let X be a subset of K . We say that a finite set C
λ-prepares X if the following holds: for any x, y ∈ K , if

rvλ(x − c)= rvλ(y − c) for all c ∈ C,

then either x and y are both in X , or they are both not in X . If (ξc)c ∈ RV#C
λ then

the set
{x ∈ K | rvλ(x − c)= ξc for all c ∈ C}

is said to be a ball λ-next to C (if it is disjoint from C). Note that if such a set
is disjoint from C , then it is indeed an open ball. We can rephrase preparing as
follows. A finite set C λ-prepares X if for any ball B λ-next to C , either B ⊆ X
or B ∩ X = ∅. Note also that the balls 1-next to a finite set C are precisely the
maximal open balls disjoint from C .

3.2. Consequences of Hensel minimality. For this section, we fix a field K of
equicharacteristic zero equipped with an L-structure which is 1-h-minimal. By
[Cluckers et al. 2022], we may freely add constants from K to the language L and
preserve 1-h-minimality. Many of the results below are formulated only for ∅-
definable objects, but therefore hold just as well for A-definable objects, for A ⊂ K .
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Hensel minimality implies tameness results on various definable objects. For
functions there is the Jacobian property and Taylor approximation.

Theorem 3.2.1 (Jacobian property [Cluckers et al. 2022, Corollary 3.2.6]). Let
f : K → K be a ∅-definable function. Then there exists a finite ∅-definable set
C such that for every λ ≤ 1 in 0×

K , every ball B λ-next to C and every x0, x ∈ B,
x ̸= x0, we have that

(1) the derivative f ′ (as defined in the usual way) exists on B and rvλ ◦ f ′ is
constant on B,

(2) rvλ
(
( f (x)− f (x0))/(x − x0)

)
= rvλ( f ′),

(3) for any open ball B ′
⊂ B, f (B ′) is either a point or an open ball.

Note in particular that (1) implies that | f ′
| is constant on balls 1-next to C , since

0K is a quotient of RVλ. We will also use the following corollary. Recall that
k̃ ⊂ K is a lift of the residue field.

Corollary 3.2.2. Let k̃ ⊂ K be a lift of the residue field of K . Let f : OK → OK be
a ∅-definable function. Then for all but finitely many a ∈ k̃, the following property
holds: for all x, x0 ∈ a +MK , we have

| f (x)− f (x0)| ≤ |x − x0|.

Proof. By the Jacobian property there exists a finite ∅-definable set C ⊆ OK

such that for every ball B which is 1-next to C there is a µB ∈ 0K such that for
all x, x0 ∈ B,

| f (x)− f (x0)| = µB |x − x0|.

Moreover, by [Cluckers et al. 2022, Corollary 3.1.6] we may additionally assume
that if such a B is open, then f (B) is an open ball of radius µB radop(B). As C is
finite and the balls a +MK with a ∈ k̃ are pairwise disjoint, it follows that only
finitely many a +MK contain a point of C . Thus all but finitely many a +MK are
1-next to C . Now suppose µB > 1 for some B = a +MK which is disjoint from C .
This implies that f (a +MK )= OK (and this is only possible if the value group is
discrete). In particular we can only have µB > 1 for finitely many such B. Indeed,
otherwise f −1(y) would be infinite for all y ∈ OK , contradicting [Cluckers et al.
2022, Lemma 2.8.1]. Hence, the desired property holds for cofinitely many a ∈ k̃. □

The second result we need is about Taylor approximation. For a function
f : X ⊂ K → K on an open set X which is r-fold differentiable and x0 ∈ X

we define the r-th order Taylor polynomial of f at x0 to be as usual

T ≤r
f,x0
(x)= T<r+1

f,x0
(x)=

r∑
i=0

f (i)(x0)

i !
(x − x0)

i .
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The following result basically states that any definable function can be well approx-
imated by its Taylor polynomial up to some fixed order, at least away from finitely
many points.

Theorem 3.2.3 (Taylor approximation of order r [Cluckers et al. 2022, Theo-
rem 3.2.2]). Let f : K → K be a ∅-definable function and fix a positive integer r .
Then there exists a finite ∅-definable set C such that for every ball B 1-next to C , f
is (r + 1)-fold differentiable on B, | f (r+1)

| is constant on B and for x, x0 ∈ B we
have

| f (x)− T ≤r
f,x0
(x)| ≤ | f (r+1)(x0)(x − x0)

r+1
|.

We will also need results on cell decomposition. If T is a 1-h-minimal theory,
then by [Cluckers et al. 2022, Proposition 4.3.3] there is an expansion of the
language by predicates on cartesian powers of RV such that the resulting structure
is still 1-h-minimal and we have acl = dcl. In particular, we can typically assume
that acl = dcl without any problems.

Definition 3.2.4. Let A ⊂ K be a parameter set. For n ≥ m, let π≤m : K n
→ K m be

the projection on the first m coordinates and X ⊂ K n an A-definable set. Consider,
for i = 1, . . . , n, values ji ∈ {0, 1} and A-definable functions ci : π<i (X)→ K . Fix
also an A-definable set

R ⊆

n∏
i=1

( ji · RV×),

where 0 · RV×
= {0}. We say that X is an A-definable cell if

X = {x ∈ K n
| rv(xi − ci (π<i (x)))i=1,...,n ∈ R}.

We call X a cell of type ( j1, . . . , jn). The functions ci are called the cell centers.
A twisted box of the cell X is a set of the form

{x ∈ K n
| rv(xi − ci (π<i (x)))i=1,...,n = r},

for r ∈ R.

By [Cluckers et al. 2022, Theorem 5.2.4], for a ∅-definable set X ⊆ K n there
always exists a ∅-definable cell decomposition, i.e., a partition of X into finitely
many ∅-definable cells Aℓ. We will need the following variant. Recall that a
function f : X ⊂ K n

→ K m is said to be 1-Lipschitz if for all x, x ′
∈ X we have

| f (x)− f (x ′)| ≤ |x − x ′
|,

where we use the maximum norm on K n .

Theorem 3.2.5 (cell decomposition [Cluckers et al. 2022, Theorem 5.2.4, Adden-
dum 5]). Assume that K carries a 1-h-minimal structure with acl = dcl. Let X ⊂ K n

be ∅-definable. Then there exist a partition of X into finitely many ∅-definable sets
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Aℓ such that for every ℓ there is some coordinate permutation σℓ : K n
→ K n such

that σℓ(Aℓ) is a cell of type (1, . . . , 1, 0, . . . , 0) and such that each component of
each center is 1-Lipschitz.

3.3. Tr -approximation. We recall some useful definitions and results from [Cluck-
ers et al. 2020, §4.2] about Tr -approximation. Let K be a henselian valued field of
equicharacteristic zero which is 1-h-minimal in some language L expanding the
language of valued fields.

Definition 3.3.1. Let U ⊆ K m be an open set, let ψ = (ψ1, . . . , ψn) : U → On
K be

a function, and let r > 0 be an integer. We say that ψ satisfies Tr -approximation if
for each y ∈ U there is an n-tuple T<r

y of polynomials with coefficients in OK and
of degree less than r that satisfies

|ψ(x)− T<r
y (x)| ≤ |x − y|

r for all x ∈ U. (3.3.1)

Let X be a definable subset of On
K of dimension m. We say that a definable family

(ϕi )i∈I of functions ϕi :Ui → X i ⊆On
K is a Tr -parametrization of X if X =

⋃
i∈I X i

and each ϕi is surjective and satisfies Tr -approximation.

Definition 3.3.2. Let α = (α1, . . . , αm) ∈ Nm and define |α| = α1 + · · · +αm . We
define the following sets and numbers:

3m(k) := {α ∈ Nm
: |α| = k}, Lm(k) := #3m(k)

1m(k) := {α ∈ Nm
: |α| ≤ k}, Dm(k) := #1m(k).

Note that Lm(k) (resp. Dm(k)) is the number of monomials in m variables of
degree exactly (resp. at most) k.

Fix an integer d and define, for all integers n and m such that m<n, the following
integers:

µ(n, d)= Dn(d),

r(m, d)= min{x ∈ Z : Dm(x − 1)≤ µ < Dm(x)},

V (n, d)=

d∑
k=0

kLn(k),

e(n,m, d)=

r−1∑
k=1

kLm(k)+ r(µ− Dm(r − 1)).

(3.3.2)

To apply the determinant method, we need the following lemma. The proof is a
straightforward adaptation from [Cluckers et al. 2015, Lemma 3.3.1].

Lemma 3.3.3. Let K be a henselian field of equicharacteristic zero. Let t be a
pseudo-uniformizer of K . Fix integers µ, r and U an open subset of K m which is
contained in a product of m closed balls of radius |t |ρ , where ρ ≥ 0 is an integer.
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Fix x1, . . . , xµ ∈ U and functions ψ1, . . . , ψµ : U → K . Assume that the ψi satisfy
Tr -approximation on U for some integer r with

Dm(r − 1)≤ µ < Dm(r).

Then
|det(ψi (x j ))i, j | ≤ |t |ρe.

4. Counting rational points on transcendental and algebraic curves

In this section we prove Theorems 2.2.1, 2.2.2 and 2.2.3. Throughout, let K be
an equicharacteristic zero henselian valued field, equipped with a 1-h-minimal
L-structure, for some language L expanding the language of valued fields. We
assume that acl = dcl in K and that the subgroup of b-th powers in the residue
field k× has finite index for some b > 1. Fix a lift k̃ of the residue field and fix a
pseudo-uniformizer t .

4.1. Tr -parametrizations. Crucial to our approach is the following theorem, which
asserts the existence of Tr -parametrizations for definable planar curves.

Theorem 4.1.1. Let K be an equicharacteristic zero valued field, equipped with a
1-h-minimal L-structure. Assume that acl = dcl in K and that the subgroup of b-th
powers in k× has finite index for some b > 1. Let Y ⊂ K n be a definable set. Fix a
positive integer r and let C ⊂ Y ×O2

K be a definable set such that for every y ∈ Y ,
Cy is a curve. Then there exist finitely many maps φ1, . . . , φN : Y ×OK → C such
that for every y ∈ Y , φ1,y, . . . , φN ,y form a Tr -parametrization for Cy .

To prove this theorem, we start with a T1-parametrization of our curve, which
exists because of Theorem 3.2.5. To move from a T1-parametrization to a Tr -
parametrization for curves we will use power substitutions.

Lemma 4.1.2. Let X ⊆ K and let f : X →OK be a ∅-definable 1-Lipschitz function.
Fix a positive integer r . Then there exists a finite ∅-definable set C such that the
following holds. Let B be a ball 1-next to C contained in OK , say 1-next to c ∈ C.
For a, b ∈ OK consider the map pr : K → K : x 7→ a(x − c)r + b. If D is any open
ball not containing 0 with pr (D)⊆ B, then f ◦ pr satisfies Tr -approximation on D
with respect to its Taylor polynomial. Moreover, for y ∈ D and j = 1, . . . , r there
is the bound

|∂ j ( f ◦ pr )(y)| ≤ |y|
r− j .

Proof. Use Theorems 3.2.1 and 3.2.3 to find a finite ∅-definable set C such that f
satisfies Taylor approximation up to order r on balls 1-next to C and such that the
first r derivatives of f satisfy the Jacobian property on balls 1-next to C . Without
loss of generality, let c = 0, a = 1 and b = 0, and fix x0 ∈ D. Then xr

0 ∈ B and
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radop B = |x0|
r since B is 1-next to 0. The fact that f is 1-Lipschitz gives

| f ′(xr
0)| ≤ 1.

By the Jacobian property, the first r derivatives of f all have a constant norm on B.
Thus, for i ≤ r ,

f (i)(B)⊆ {y ∈ K | |y| = | f (i)(xr
0)|},

and hence radop f (i)(B) ≤ | f (i)(xr
0)|. On the other hand, the Jacobian property

yields

| f (i)(xr
0)| =

radop f (i−1)(B)
radop B

≤
| f (i−1)(xr

0)|

|xr
0|

.

Using induction and the fact that f is 1-Lipschitz this gives for 1 ≤ i ≤ r that

| f (i)(xr
0)x

r(i−1)
0 | ≤ 1. (4.1.1)

Let x ∈ D. Then xr is in the same ball 1-next to 0 as xr
0 and so |xr

| = |xr
0|. Since

both f and pr have Taylor approximation up to order r on their respective domains
B and D we can conclude by [Cluckers et al. 2015, Lemma 3.2.7]. □

Proof of Theorem 4.1.1. By enlarging r if necessary, we may assume that r is a
power of b. Using cell decomposition (Theorem 3.2.5) uniformly in y ∈ Y we
obtain for every y ∈ Y finitely many sets Pi,y whose union is Cy such that every
Pi,y is, after a coordinate permutation, a (1, 0)-cell or a (0, 0)-cell with 1-Lipschitz
centers. Since everything below works uniformly in y, we drop the subscript y
from now on.

The (0, 0)-cells are just singletons, so let us focus on one of the (1, 0)-cells,
say Pℓ. After a coordinate transformation and a translation we may assume that Pℓ
is the graph of a 1-Lipschitz map

φ : P ⊂ OK → OK ,

where P is a cell with center 0. The group of r-th powers in k× has finite index
in k×, since r is a power of b. Let a1, . . . , am ∈ O×

K reduce to representatives for
the cosets of (k×)r in k×. For i = 1, . . . ,m and j = 0, . . . , r − 1 let

Di, j = {y ∈ K | ai t j yr
∈ P}.

Then the finitely many maps

pi, j : Di, j → P : y 7→ ai t j yr

cover P . Now by Lemma 4.1.2, we can find a further subdivision of P such that the
φ ◦ pi, j are all Tr on open balls contained in Di, j . We prove that actually φ ◦ pi, j

even has Tr -approximation on all of Di, j . So let x, y ∈ Di, j . Since Di, j is a cell
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with center 0, if rv(x)= rv(y) then x and y are in the same ball contained in Di, j

and we are done. So assume that rv(x) ̸= rv(y). Then

|φ(ai t j xr )− T<r
φ◦pi, j ,y(x)|

≤ max
{
|φ(ai t j xr )−φ(ai t j yr )|, |φ(ai t j yr )− T<r

φ◦pi, j ,y(x)|
}
.

For the first term, use that φ is 1-Lipschitz to obtain

|φ(ai t j xr )−φ(ai t j yr )| ≤ |xr
− yr

| ≤ max{|x |
r , |y|

r
} = |x − y|

r ,

since rv(x) ̸= rv(y). For the second term, we use the bound provided by Lemma 4.1.2
to get that

|φ(ai t j yr )− T<r
φ◦pi, j ,y(x)| ≤ max

ℓ=1,...,r−1

∣∣∣∣∂ℓ(φ ◦ pi, j )(y)
ℓ!

(x − y)ℓ
∣∣∣∣

≤ max
ℓ=1,...,r−1

|y|
r−ℓ

|x − y|
ℓ
≤ |x − y|

r .

So φ ◦ pi, j satisfies Tr -approximation on all of Di, j . In conclusion, the maps

ψi j : Di j → C : y 7→ (pi j (y), φ(pi j (y))

all have Tr -approximation and their images cover Pℓ. □

4.2. Transcendental curves. The following lemma is an adapted version of [Cluck-
ers et al. 2020, Lemma 5.1.3]. We use it to capture rational points of bounded
height in a small ball in a single hypersurface.

Lemma 4.2.1. Fix integers d,m, n with m < n and consider r, V, e as defined
in (3.3.2). Let s be a positive integer, let U ⊆ Om

K and suppose a function
ψ = (ψ1, . . . , ψn) : U → On

K satisfies Tr -approximation. For α > sV/e a positive
integer, denote by p : Om

K → (OK /(tα))m the projection map. Then for any fiber B
of p, the image ψ(B ∩ U )s is contained in an algebraic hypersurface of degree at
most d. Moreover, V/e goes to 0 as d goes to infinity.

Proof. Let B ⊆ Om
K be a product of closed balls of radius |t |α, i.e., a fiber of the

map p, and take points P1, . . . , Pµ in ψ(B ∩ U )s . Take xi ∈ B ∩ U such that
ψ(xi )= Pi . Consider the determinant

1= det((ψ(xi ))
j )1≤i≤µ, j∈1n(d).

For j ∈1n(d), the notation (y1, . . . , yn)
j is to be interpreted as

∏
i y ji

i . Since ψ
satisfies Tr -approximation, Lemma 3.3.3 gives that ordt(1)≥ αe. Since the Pi are
in k̃[t]n

s , if 1 were nonzero then ordt(1)≤ sV . But α > sV/e, so that 1= 0.
Now we use the determinant method. Since 1= 0, the µ vectors ((ψ(xi ))

j ) j

are linearly dependent. This implies that there exists some algebraic hypersurface
of degree at most d passing through all of the points ψ(xi ). Since this holds for
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any µ points in ψ(B ∩ U )s we can find such a hypersurface containing all of
ψ(B ∩ U )s . The last fact follows from an easy explicit calculation; see, e.g., [Pila
2004, p. 212]. □

We need one more projection lemma to reduce to the planar case. Let us call
a set in K 2 nonalgebraic up to degree d if it has a finite intersection with every
algebraic curve of degree at most d .

Lemma 4.2.2. Let C ⊂ K n be a definable transcendental curve and fix a positive
integer d. Then there exists a finite definable partition of C into sets Ci , together
with coordinate projections πi : Ci → K 2, such that πi is a bijection onto its image
and πi (Ci ) is nonalgebraic up to degree d.

Proof. By the cell decomposition Theorem 3.2.5, we may partition C into finitely
many definable sets Ci such that after a coordinate permutation, Ci is a (1, 0, . . . , 0)
cell with 1-Lipschitz centers. (We may disregard the finitely many (0, . . . , 0)-cells
since these are just points.) In other words, Ci is the graph of a map

φ : P → K n−1
: x 7→ (φ1(x), . . . , φn−1(x)),

where all φ j are 1-Lipschitz and P ⊂ K is a 1-cell. Denote by A j ⊂ P the set of
x ∈ P such that in some neighborhood of x , the graph of φ j is nonalgebraic up
to degree d. Then the A j are definable sets, and they cover P , since otherwise φ
would not be transcendental. Thus we can further partition Ci into the graphs of
φ over every A j . Over A j , projection onto the first and j-th coordinate gives the
desired conclusion. □

Remark 4.2.3. The use of this lemma can be avoided by working with cylinders
over X for each possible projection K n

→ K 2; see [Cluckers et al. 2015, p. 45].

With this, we can prove our main result. Recall that the strategy of the proof is
as follows. Using Tr -parametrizations, we represent C as a finite union of graphs
of functions satisfying Tr -approximation. Then Lemma 4.2.1 gives a hypersurface
catching all rational points on C of height at most s. The fact that C is transcendental
then gives the desired conclusion.

Proof of Theorem 2.2.1. Recall the definition of V, e and r from equation (3.3.2)
and recall that V/e goes to zero as d goes to infinity, by Lemma 4.2.1. Take d such
that V

e
< ε.

Up to enlarging r if necessary, we may assume that r is a power of b. By applying
Lemma 4.2.2 we may assume without loss of generality that C is a planar curve in
O2

K which is nonalgebraic up to degree d.
By Theorem 4.1.1 there exist finitely many maps ψi : Ui ⊂ OK → C which

together form a Tr -parametrization of C . Let us focus on one such ψi . By our
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construction, we may apply Lemma 4.2.1 with α=⌈sε⌉. This yields thatψi (Ui ∩B)s
is contained in an algebraic hypersurface X of degree at most d , for any closed ball
B ⊂OK of radius |t |α . Since ψi (Ui ) is contained in C , and since C is nonalgebraic
up to degree d , this intersection X ∩C is finite. Even more, by uniform finiteness in
definable families [Cluckers et al. 2022, Lemma 2.5.2], the intersection of X with
C is uniformly bounded (over all such X ) by some integer N . Thus the counting
dimension of C is bounded by

(NN ′, 1, ⌈εs⌉),

where N ′ is the total number of sets Ui required in the cell decomposition for C .
Finally, to prove a uniform upper bound on counting dimension in definable

families, assume that (Cy)y is a definable family of transcendental curves, for
y ∈ Y ⊆ K m with Y definable. Then the above proof can easily be made uniform
in Cy . Indeed, by Lemma 4.2.2 we can assume that every Cy is a planar curve which
is nonalgebraic up to degree d. The number of maps for a Tr -parametrization can
be uniformly bounded in y since Theorem 4.1.1 is uniform in families. Similarly,
the intersection of an algebraic curve of degree at most d with any Cy is finite, and
thus uniformly bounded by [Cluckers et al. 2022, Lemma 2.5.2]. These two facts
give the desired conclusion. □

4.3. Linear upper bounds are optimal. We now prove Theorem 2.2.2. This shows
that the bound in Theorem 2.2.1 is optimal, in the sense that one cannot replace
the last component ⌈ε · s⌉ by a sublinear function e(s), even if we allow N (s) to be
completely arbitrary.

We recall the notion of rings of strictly convergent power series OK ⟨x1, . . . , xn⟩.
By definition, their elements are those power series

∑
i∈N ai x i with coefficients in

OK such that ai → 0, when |i | → ∞. Each f ∈ OK ⟨x1, . . . , xn⟩ can be naturally
considered as a function On

K → K and then also as a function f : K n
→ K ,

after extending by zero. By [Cluckers et al. 2022, Theorem 6.2.1] there exists a
1-h-minimal structure on K in which these functions are definable. Moreover, by
[Cluckers et al. 2022, Proposition 4.3.3], there exists such a structure in which
acl = dcl.

Proof of Theorem 2.2.2. We work in the structure on K := k((t)) as outlined above,
in which all functions On

K → OK defined by a strictly convergent power series are
definable.

First fix any strictly increasing continuous function δ : R≥0 → R>0 such that
e(s)≤ δ(s) for all s ∈ N, with lims→∞ δ(s)= +∞ and lims→+∞ δ(s)/s = 0. Then
choose any strictly increasing function F : R≥0 → R>0 with F(N)⊆ N and such
that for all s ∈ N,

F(δ(s)) > N (s).



138 V. CANTORAL FARFÁN, K. H. NGUYEN, M. STOUT AND F. VERMEULEN

Next, take any strictly increasing sequence of natural numbers (Nn)n with the
property that for all n ∈ N,

3N 2
n−1 F(Nn−1) <

δ−1(Nn)− 1
Nn

.

Such a sequence exists since limu→∞ δ−1(u)/u = ∞ as δ is sublinear. From these
data, we construct f ∈ OK ⟨x⟩ as

f (x)=

∞∑
n=0

t Nn x Nn

Nn∏
i,ℓ=1

F(Nn)∏
j=1

(x − i − j tℓ).

Letting the sequence (Nn)n grow even faster, if necessary, we may assume that for
each d ∈ N there is some nd such that for all n ≥ nd we have

Nn > d(Nn−1 + N 2
n−1 F(Nn−1)).

Hence, for M = Nn−1 + N 2
n−1 F(Nn−1), the order of contact between f and its

M-th order Taylor approximation exceeds d M . Bézout’s theorem thus implies
that f cannot be algebraic of any degree d ∈ N (as in [Binyamini et al. 2022,
Proposition 1]). Hence the graph C of f : OK → K is a definable transcendental
curve in K 2.

We now show that the counting dimension of C is not bounded by (N , 1, e). Let
g : K 2

→ OK be any definable map. We show that the composition

Cs
g
−→ OK

proj
−−→

OK

(te(s))

has a fiber of size strictly larger than N (s) for some sufficiently large s.
Take any n and let s be such that

δ(s)≤ Nn < δ(s + 1).

For each i, j, ℓ ∈ N, we have by construction that f (i + j tℓ) ∈ k[t]. By our choice
of s, we moreover have that the t-degree of f (Nn + j t Nn ) is strictly smaller than s
when 1 ≤ j ≤ F(Nn). Indeed, it follows from the construction of (Nn)n that

degt( f (Nn + j t Nn ))≤ Nn−1 + Nn Nn−1 + Nn N 2
n−1 F(Nn−1)

≤ 3Nn N 2
n−1 F(Nn−1) < δ

−1(Nn)− 1< s.
Now define

S :=
{
(Nn + j t Nn , f (Nn + j t Nn )) | 1 ≤ j ≤ F(Nn)

}
and note that S ⊆ Cs by the above computation.

Define h :OK →OK : x 7→ g(x, f (x)). By Corollary 3.2.2 we may assume that

|h(Nn + j t Nn )− h(Nn)| ≤ |t Nn | for all j ∈ N,
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possibly after increasing n (and s). As Nn ≥ δ(s)≥ e(s), this implies that all points
of S belong to the fiber at Nn of the composition

Cs
g
−→ OK

proj
−−→

OK

(te(s))
.

But by construction of F , the inequality Nn ≥ δ(s) also implies F(Nn) > N (s). As
#S = F(Nn), we have found a fiber containing more than N (s) elements of Cs . □

4.4. Algebraic curves. In this section we prove Theorem 2.2.3, following along
the lines of [Cluckers et al. 2015, Section 5]. We need some results on Hilbert
functions.

For r a positive integer, denote by K [x0, . . . , xn]r the space of homogeneous
degree r polynomials. For I a homogeneous ideal in K [x0, . . . , xn], let Ir =

K [x0, . . . , xn]r ∩ I and denote by HI (r)= dim K [x0, . . . , xn]r/Ir the Hilbert func-
tion of I . Let < be the monomial order on K [x0, . . . , xn] defined by xα < xβ if
|α|< |β| or |α| = |β| and αi >βi for some i and α j =β j for j < i . After reordering
the variables, this is the graded reverse lexicographic order on monomials. Denote
by LT(I ) the ideal of leading terms of I , where the leading term of a homogeneous
element p(x) of K [x0, . . . , xn] is the monomial in p(x) which is maximal for <.
Then I and LT(I ) have the same Hilbert functions, by [Cox et al. 1992, Chapter 9,
Proposition 3.9]. For i ∈ {0, . . . , n} define

σI,i (r) =

∑
|α|=r, xα /∈LT(I )

αi

and note that r HI (r)=
∑

i σI,i (r). Let X be an irreducible variety in Pn
K of degree

d and dimension m, with homogeneous ideal I . The Hilbert function HI (r) of
I agrees with the Hilbert polynomial PX (r) of X , for r sufficiently large. Recall
that this is a degree m polynomial whose leading coefficient is d/m!. By [Broberg
2004], for i = 0, . . . , n there are real numbers aI,i ≥ 0 such that

σI,i (r)
r HI (r)

= aI,i + On,d(1/r) for r → ∞.

Note also that aI,0 + · · · + aI,n = 1. We can now prove Theorem 2.2.3.

Proof of Theorem 2.2.3. We have an irreducible algebraic curve C in A2
K of degree d .

Put C ′
= C(K )∩O2

K . Consider the embedding

ι : A2
K → P2

K : (x, y) 7→ (1 : x : y)

and let I be the homogeneous ideal of the closure of ι(C) in P2
K . Let δ be a positive

integer, which we will choose later depending on s, and define

M(δ)= { j ∈ N3
| | j | = δ, x j /∈ LT(I )}.
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Let µ= #M(δ)= HI (δ), σi = σI,i (δ) for i = 0, 1, 2 and put e = µ(µ− 1)/2. By
Theorem 4.1.1 there exist finitely many maps φ1, . . . , φN : Yi ⊂ OK → C ′ forming
a Tr -parametrization of C ′. Let Bα be a closed ball in OK of radius |t |α for some
integer α. Fix a positive integer s, take points y1, . . . , yµ in (φi (Bα ∩ Yi ))s and
consider the determinant

1= det(ι(yi )
j ) j∈M(δ), 1≤i≤µ.

By Lemma 3.3.3 we have that |1| ≤ |t |αe. On the other hand, since ι(yi ) has
coordinates which are polynomials of degree < s, we find that1 is in k̃[t] of degree

degt 1≤ (s − 1)(σ1 + σ2).

Therefore, if we take α > (s − 1)(σ1 + σ2)/e, then 1 = 0. As in the proof of
Lemma 4.2.1, using the determinant method, we can find a polynomial H in
two variables, with coefficients in k̃[t] and exponents in M(δ), which vanishes
on (φi (B ∩ Yi ))s . Since the exponents of H lie in M(δ), we also see that H does
not vanish identically on C . By Bézout’s theorem, the intersection of H = 0 and C
consists of at most δd points.

We want to conclude by taking α = ⌈s/d⌉, so we look for a suitable δ now.
Similarly to the proof of [Cluckers et al. 2015, Theorem 5.1.3], one obtains that

σi

e
=

2αi

d
+ Od(δ

−1).

By [Salberger 2007, Lemma 1.12], it follows that

σ1 + σ2

e
≤

1
d

+ Od(δ
−1).

Hence we may take δ = sOd(1) so that

(s − 1)(σ1 + σ2)

e
<

⌈ s
d

⌉
= α.

By Proposition 2.3.1 we can find a definable map f : C ′
→ OK such that the

composition

Cs → OK →
OK

(t⌈s/d⌉)

has finite fibers of size at most Ndδ = NsOd(1), for every s. Now, the number of
cells N required in the Tr -parametrization of C can be made uniform in definable
families. Since the set of degree d curves in K 2 is a definable family, we may
assume that N = Od(1). So we conclude that the counting dimension of C is
bounded by (

sOd(1), 1,
⌈ s

d

⌉)
. □
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Example 4.4.1. We show that one cannot improve the last component in the
counting dimension for algebraic curves. Let K be any equicharacteristic zero
valued field equipped with a 1-h-minimal structure. Fix a pseudo-uniformizer t and
a lift k̃ of the residue field. Denote by C the curve in O2

K defined by y = xd . We
claim that the counting dimension of C is not bounded by (N (s), 1, e(s)) for any
functions N , e : N → N for which e(s) < ⌈s/d⌉ when s is sufficiently large. Let
f : C → OK be any definable map.

Take s ′
= sd +1 sufficiently large that e(s ′) < ⌈s ′/d⌉ = s +1. In particular, note

that e(s ′)≤ s. Define the map g :OK →C : x 7→ (x, xd) and put h = f ◦g :OK →OK .
By Corollary 3.2.2, there exists an a ∈ k̃ such that for any b ∈ k̃ we have that

|h(a)− h(a + bt s)| ≤ |t s
|.

This implies that h(a)≡ h(a + bt s) in OK /(te(s′)), for all b ∈ k̃. Finally, by noting
that g(a + bt s) lies in Cs′ , one sees that the map

Cs′

f
−→ OK

proj
−−→

OK

(te(s′))

has an infinite fiber.

5. Curves with uniformly bounded counting dimension

We now consider an analytic structure on Qp((t)) where each ∅-definable curve C
has an associated constant NC ∈ N such that #- dim(Cs)≤ (NC , 1, 1). Contrast this
with Theorem 2.2.2, where we produced curves, definable in some analytic structure,
whose counting dimension cannot be bounded by any constant triple (N , 1, 1). The
stronger upper bounds in this section result from working in a more restricted
analytic structure. The essential difference with the setting of Theorem 2.2.2 is
that we now only add function symbols for power series whose coefficients do not
involve the uniformizer t .

Throughout this section we take t ∈ Qp((t)) as our chosen pseudo-uniformizer
and k̃ = Qp ⊆ Qp((t)) as our lift of the residue field.

Definition 5.0.1. Let LZp⟨x⟩ be the language expanding the language of valued
fields Lval = {0, 1,+ , · ,OK } by

(1) a binary function symbol “−” and a unary function symbol ( · )−1,

(2) a unary relation symbol OK ,fine,

(3) n-ary function symbols for the elements of the rings of strictly convergent
power series Zp⟨x1, . . . , xn⟩, for n ∈ N.

The field K = Qp((t)) admits a natural LZp⟨x⟩-structure. We interpret OK ,fine

as the valuation ring Zp + tQp[[t]] and OK as its equicharacteristic zero coarsen-
ing Qp[[t]]. Each function symbol f ∈ Zp⟨x1, . . . , xn⟩ is interpreted naturally as a
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function On
K ,fine → K . Finally, “−” and ( · )−1 are just subtraction and inversion

on K , where the latter is extended by 0−1
= 0. Note that Qp((t)), equipped with

the valuation ring OK , is 1-h-minimal for this structure by [Cluckers et al. 2022,
Theorem 6.2.1].

Theorem 5.0.2. For each transcendental curve C ⊆ Qp((t))n ∅-definable in LZp⟨x⟩,
there is some constant NC ∈ N such that

#- dim(Cs)≤ (NC , 1, 1).

Remark 5.0.3. As before, the constant NC can be made uniform in definable
families.

Lemma 5.0.4. For all λ ∈ Z×
p the map

τλ : Qp((t))→ Qp((t)) :

+∞∑
j=k

a j t j
7→

+∞∑
j=k

a j (λt) j

is an LZp⟨x⟩-automorphism.

Proof. Fix some λ ∈ Z×
p . It is clear that τλ fixes the constants 0, 1 and that the

relations x ∈ Qp[[t]] and x ∈ Zp + tQp[[t]] are invariant under τλ. Similarly, it
is straightforward to verify that τλ commutes with addition, multiplication and
inversion.

It thus remains only to check that τλ commutes with all function symbols f
in Zp⟨x1, . . . , xn⟩. Take (xi )

n
i=1 =

(∑
+∞

j=ki
ai j t j

)n
i=1 ∈ Qp((t))n . Then f (x) is

computed as follows:

f (x)=

{
0 if xi /∈ Zp + tQp[[t]] for some i,∑

+∞

s=0 fs((ai j )i, j )t s else,

where each fs is some quasihomogeneous polynomial of degree s in variables ai j ,
each of weight j , for 1 ≤ i ≤ n and 0 ≤ j ≤ s. This precisely means that
fs((λ

j ai j )i, j )= fs((ai, j )i, j )λ
s . It follows that f commutes with τλ. □

We will need that transcendental curves only have finite intersection with any
semialgebraic curve: one-dimensional subsets of K n definable in Lval ∪ K . This
follows from the fact that semialgebraic curves are locally algebraic, as made precise
by the lemma below.

Lemma 5.0.5. Let K be a valued field with valuation ring OK . Let C be a tran-
scendental curve in K n . Then, for any K -definable curve X in Lval, the intersection
C ∩ X is finite.

Proof. By valued field-quantifier elimination for henselian valued fields [Flenner
2011, Proposition 4.3], C is a finite union of sets V ∩ S, where V is the van-
ishing locus of some polynomials with coefficients in K and S is of the form
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(rv( fi (x)))ni=0 ∈ R for certain fi ∈ K [x] and R ⊆ (RV×)n . As X is of dimension
one and S is open, only the zero- and one-dimensional irreducible components of
V can have nonempty intersection with S. In particular, if V ∩ S met C at infinitely
many points, then there would be an algebraic curve X ′

⊆ V containing infinitely
many points of C . □

We now continue along the same lines as in the proof of [Binyamini et al. 2022,
Theorem 1], using Lemma 5.0.4 instead of the quantifier elimination statement used
there.

Proposition 5.0.6. Let C ⊆Qp((t))n be a transcendental curve which is ∅-definable
in LZp⟨x⟩. Then Cs ⊆ C1 for all integers s > 0. In particular, #- dim(Cs)≤ (1, n, 1).

Proof. Suppose
(∑s−1

j=0 ai j t j
)

i ∈ Cs \ C1. Consider Cs as a subset A ⊆ Qns
p via the

identification (s−1∑
j=0

bi j t j
)

i
7→ (bi j )i, j .

Let X be an algebraic curve in Qns
p containing all points (λ j ai j )i, j for λ ∈ Qp. By

the above Lemma 5.0.4, it follows that X ∩ A contains all points (λ j ai j ) for λ ∈ Z×
p .

In particular, it is infinite.
Let Y be the image of X (Qp[[t]]) under (xi j )i, j 7→

(∑s−1
j=0 xi j t j

)
i . As this map

and the curve X (Qp[[t]]) are definable in the 1-h-minimal Lval-structure on Qp((t))
(for the valuation ring Qp[[t]]), it follows from [Cluckers et al. 2022, Proposi-
tion 5.2.4(3,4)] that Y is an Lval ∪ Qp((t))-definable set of dimension at most 1.
Since the infinite set X injects into Y , it then follows by [Cluckers et al. 2022,
Proposition 5.2.4(1)] that Y has dimension exactly 1. Now use that X ∩ A is infinite,
whence so is Y ∩ Cs . By Lemma 5.0.5, this contradicts the assumption that C is
transcendental. □

Proof of Theorem 5.0.2. By [Cluckers et al. 2022, Theorem 5.7.3] we may assume
that C is a single reparametrized cell (A, σ ). As C is one-dimensional, it follows
that either A is a finite collection of points (in which case we are done) or A
is of type (1, 0, . . . , 0), up to a coordinate permutation of K n . Thus A is the
coordinate projection onto K n of the graph of some LZp⟨x⟩-definable function
c : P ⊆ K ×RVℓ

→ K n−1 (for some ℓ∈N). By [Cluckers et al. 2022, Corollary 2.6.7,
Lemma 2.5.2] it holds that #c(x,RVℓ)≤ N for some N ∈ N, independent of x .

Now consider the map g : K n
→ K , which is the projection onto the first

coordinate on On
K and is identically zero on K n

\On
K . For any x ∈OK /(t)∼= k̃ ⊆OK ,

the fiber at x of the composition

A1
g
−→ OK

proj
−−→

OK

(t)
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is precisely ({x}×c(x,RVℓ))∩ A1. In particular, it has size at most N . As As = A1

for all s ∈ N, by Proposition 5.0.6 it follows that #- dim(A)≤ (N , 1, 1). □
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