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We give an account of model theory in the context of compactly generated
triangulated and tensor-triangulated categories 7. We describe pp formulas,
pp-types and free realisations in such categories and we prove elimination of
quantifiers and elimination of imaginaries. We compare the ways in which
definable subcategories of 7 may be specified. Then we link definable sub-
categories of 7 and finite-type torsion theories on the category of modules over
the compact objects of 7. We briefly consider spectra and dualities. If 7 is
tensor-triangulated then new features appear, in particular there is an internal
duality in rigidly-compactly generated tensor-triangulated categories.
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1. Introduction and background

1A. Introduction. Model theory in a compactly generated triangulated category T
falls within the scope of the model theory of modules via the restricted Yoneda
embedding 7 — Mod-7° where 7 denotes the subcategory of compact objects
in 7. The model theory of modules over possibly many-sorted rings, such as 7, is
well-developed, but there are many special features of triangulated categories that
make it worthwhile to directly develop model theory in the triangulated context. That
is what we do here, and we also consider additional features which appear when the
category is tensor-triangulated. A good number of the results appear elsewhere but
we give a detailed and unified account which, we hope, will be a useful reference.

What began as the model theory of modules— the investigation of model-
theoretic questions in the context of modules over a ring— has developed in
scope — to much more general categories —in depth, and in purpose having for a
long time been led by interests and questions coming from representation theory.
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Many aspects — purity, pure-injectives, definable subcategories etc. — can be dealt
with purely algebraically and, in the context of compactly generated triangulated
categories, this was developed by Beligiannis [2000b] and Krause [2000] (for earlier
relevant work, see [Christensen and Strickland 1998; Benson and Gnacadja 1999]).
But, apart from a brief treatment in [Garkusha and Prest 2005], some use in [Arnesen
et al. 2017] and a recent detailed exposition of some aspects in [Bennett-Tennenhaus
2023], there has not been much explicit appearance of model theory in triangulated
categories. To some extent that is because there is a “dictionary” between model
theoretic and algebraic/functor-category methods, allowing much of what can be
proved with model theory to be proved by other methods. But sometimes what is
obvious and natural using one language is not so easily translatable into the other.
Moreover, model theory can give new insights and simpler proofs. Our main aim
in this paper is to make the methods of model theory readily available to be used
in compactly generated triangulated categories. Some aspects — dualities, spectra,
enhancements, extensions to well-generated triangulated categories — are currently
in development, so we don’t aim to be comprehensive but we do present the more
settled material in detail.

Some minimal acquaintance with model theory, at least with basic ideas in the
model theory of modules, will be helpful for the reader but we do keep formal
aspects of model theory to a minimum. Really, all that we need is the notion of a
formula and its solution set in a structure.

We do need to use sorted variables. Variables in a formula are place-holders for
elements from a structure; in our context these elements may belong to different
sorts. The idea is very simple and well-illustrated by representations of the quiver A,
which is e — *. A representation of this quiver in the category of modules over a
ring R consists of two R-modules M,, M, and an R-linear map from M, to M,.
Such a structure is naturally two-sorted, with elements of the sort (labelled by)
being those of M, and those of sort (labelled by) x being those of M,. The variables
we would use in writing formulas reflect that, say with subscripts, and for this
example we would use variables of two sorts (labelled respectively by e and x).
The difference between using a 2-sorted and 1-sorted language is the difference
between treating (2-sorted) representations of that quiver (equivalently modules
over the 2-sorted ring which is the (R-)path category of the quiver) and (1-sorted)
modules over the path algebra of the quiver (the path algebra of the quiver is a
normal, 1-sorted, ring). That is a matter of choice if there are only finitely many
sorts but, because 7° is skeletally infinite, we do need to use sorted structures and
take account of sorts in formulas. For more discussion, and many examples, of this,
see [Prest 2019].

We suppose throughout this paper that T is a compactly generated triangulated
category. We take this to include the requirement that 7 has infinite coproducts. We
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suppose that the reader knows something about these categories, but we do recall
here that the derived category D(Mod-R) of the category Mod-R of R-modules
is a basic example which is obtained from the category of chain complexes of R-
modules by a type of localisation process which preserves homological information.
The exact sequences of Mod- R give rise to triangles — certain triples of composable
morphisms —in D(Mod-R). There is also a shift autoequivalence on D(Mod-R)
which is induced by the shift operation on chain complexes. In general a triangulated
category is an additive category equipped with a structure of triangles and a shift,
subject to certain conditions which can be found in [Neeman 2001; Weibel 1994,
Chapter 10], and [Stevenson 2018] for tensor-triangulated categories.

An object A of a triangulated category 7 is compact if the hom-functor (A, —)
commutes with direct sums and 7 is said to be compactly generated if there is, up
to isomorphism, just a set of compact objects in 7 and if the compact objects of T
see every object in the sense that, if X € 7 and if (A, X) = 0O for every compact
object A in T, then X = 0. The restriction that 7~ be compactly generated could be
weakened to 7 being well-generated but, in that case, model theory using infinitary
languages would be needed, so we would lose the compactness theorem of model
theory and its many consequences. This is an interesting direction to follow and a
start has been made, see [Krause and Letz 2023] for instance, but here we don’t
look any further in that direction (also cf. [Addmek and Rosicky 1994, §5B]).

Let 7° denote the full subcategory of compact objects of 7. Model theory for
the objects of 7 is based on the key idea that the elements of objects of T are
the morphisms from compact objects. That is, if X is an object of 7 and A is a
compact object of 7T, then an element of X of sort (indexed by) A is a morphism
A — X in T, that is, the value of the functor (—, X) : (T%)°?> — Ab on A, where
Ab denotes the category of abelian groups. This is just an extension of the fact that,
if M is a (right) module over a (normal, 1-sorted) ring R, then the elements of M
may be identified with the morphisms from the module Ry to M.

There is, up to isomorphism, just a set of compact objects, so we may use the
objects in a small version of 7° to index the sorts of the language for 7. A “small
version” of 7° means an equivalent category which has just a set of objects. We don’t
go into detail about setting up the language — for that see [Prest 2009, Appendix B]
or various other background references on the model theory of modules, for instance
[Prest 2019, §5; 2011a, Chapter 18] — because all we really need is that it gives us
a way of writing down formulas, in particular (in our context) pp formulas. Each
formula defines, for every X € T, a certain subset of (A1, X) @ ---® (A,, X) with
A; € T (the A; label the sorts of the free variables of the formula).

Of course, for every object X € T, each sort (A, X), for A € T¢, has an abelian
group structure, and this is built into the formal language. Also built into the
language is the action of (a small version of) 7° on objects X € 7 — the morphisms
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of 7¢ “multiply” the “elements” of X, taking those of one sort to a possibly
different sort. Explicitly, if f : A — B is a morphism of 7°, then this induces
be (B, X)) bf € (A, X)—multiplication by f from sort B to sort A. Note how
this generalises the action of a ring on a (1-sorted) right module. In particular, each
sort (A, X) is a right module over End(A) but these multiplications on single sorts
are only some of the multiplications that constitute the action of (the many-sorted
ring) 7° on objects X of T.

In this way an object X of T is replaced by a (many-sorted) set-with-structure,
precisely by the right 7°-module which is the representable functor (—, X) restricted
to 7°. This replacement is effected by the restricted Yoneda functor y : 7 — Mod-T°
which is given on objects by X — (—, X) [ 7¢ and on morphisms f : X — Y by
fr=> (=, f):(—,X)— (—,Y). This functor is neither full nor faithful but, see
Propositions 1.3 and 1.4 below, it loses nothing of the model theory! so we may do
model theory directly in 7 or, equivalently, we may move to the functor/module
category Mod-7°¢, where the well-worked-out model theory of multisorted modules
applies. Sometimes it is more convenient to work in the one category than the other;
in any case, moving from the one context to the other is straightforward (and is
detailed in this paper).

The move to Mod-7° gives us the immediate conclusion that the theory of 7
has pp-elimination of quantifiers.

Theorem 1.1. If T is a compactly generated triangulated category, then every
formula in the language for T is equivalent to the conjunction of a sentence
(which refers to sizes of quotients of pp-definable subgroups) and a finite boolean
combination of pp formulas.

A pp formula (in our context) is an existentially quantified system of linear
equations. A system of R-linear equations over a possibly multisorted ring R can
be written in the form

>z

n
2 xirij =0;
1i=1

J

(read the conjunction symbol A as “and”) or, more compactly, as xG = 0, where
G = (r;j)i; s a matrix over R. Here x; is a variable of sort i and r;; a morphism
from sort j to sort i (we are dealing with right modules, hence the contravariance).
If we denote this (quantifierfree) formula as 6(x), that is, 6(xy, ..., x;,), then its
solution set in a module M is denoted 6(M) and is a subgroup of M| & --- b M,
where M; is the group of elements of M of sort i, that is, (—, ¢;)(M) >~ M(e;),
where e; is the object of R corresponding to sort i.

IThat is because we use finitary model theory; infinitary languages would detect more, including
some phantom morphisms, that is, morphisms f with yf = 0.
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A projection of the solution set for such a system of equations is defined by a
formula of the form

m n
Elxk+1, ceey Xp (/\ Z Xilij IOj).
j=1i=l
A formula (equivalent to one) of this form is a pp (for “positive primitive”) formula
(the term regular formula also is used). We can write a pp formula more compactly
as 3y (¥ )G =0, 0r 35 (% 7)(S,) =0, equivalently 35 G’ = yG”, if we want to
partition the matrix G. If we denote this formula by ¢ (x1, ..., xx) then its solution
set ¢ (M) in M is the subgroup of M| & - - - & M}, obtained by projecting 6 (M) to
the first k components. We refer to such a solution set as a pp-definable subgroup
of M (the terminologies “subgroup of finite definition” and “finitely matrizable
subgroup” also have been used).

Example 1.2. Consider the quiver A4 with orientation shown 1 % 2 £ 3% 4and
let R = K A4 be its path algebra with coefficients from a field K. So left R-modules,
equivalently K -representations of A4 have the shape V| Lo, Vs Ll E V3 LN Vi
where the V; are K-vector spaces and Ty, Tg, T, are K-linear maps. In order to
illustrate the definitions above, we think of these structures as right modules over
the opposite of the 4-object K -linear path category of Ay, that is, over the K -linear
category which has objects o;, i =1, 2, 3, 4, and with End(e;) = K - 1;, (e2, ;) = K,
(o2, 93) = KB, (o4, »3) = Ky and all other morphism groups O.

The corresponding language has four sorts, and the function symbols are, apart
from the additions in each sort, the Af where A € K and f is one of the identity
maps or «, 8 or y. An example of a system of linear equations is

xo—xja—x38 =0, x3y =03,

where sorts are shown by subscripts to variables and zeroes. Note that all terms in
a given equation must have the same sort.
We may quantify out the variables x; and x3 to obtain the pp formula ¢ (x;)
which is
Axi, x3 (2 —x1 —x38 =02 A x3y =03)

which, in matrix format, is

—a 0

dx1, x3 (x1 x2 X3)( 1 0) = (0 0).
By

The solution set ¢ (M) in any module M is the set a(M) + B(kery(y))—a K
vector subspace of Me, (= V; in the representation-of-quivers notation).

All this applies to 7 since the model theory of 7 is essentially that of right
T°-modules. So Theorem 1.1 follows because, if R is a (possibly many sorted)
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ring, then the theory of R-modules has pp-elimination of quantifiers” and so this
applies to the theory of the image of the restricted Yoneda embedding which, as we
have remarked, is the theory of 7.

It turns out, see [Garkusha and Prest 2005, 3.1, 3.2] and Section 2B, that, with
this language, the theory of 7 has complete (positive) elimination of quantifiers —
every (pp) formula is equivalent to a quantifier-free (pp) formula (see Theorem 2.10).
There is also a dual form of this— every pp formula is equivalent to a divisibil-
ity formula (Lemma 2.9). We will also see in Section 2D that the theory of T
has elimination of pp-imaginaries — every pp-pair is definably isomorphic to a
(quantifier-free) formula.

As with any theory of modules, the initial category of sorts, in this case a small
version of (7°)°P, may be completed to the full category L(7)°4* of pp-definable
sorts: the objects are pp-pairs and the morphisms are the pp-definable maps between
these pairs (see Section 2A). In our context, this completed category of sorts has two
manifestations. One is the category of coherent functors [Krause 2002] on 7. The
other is a certain localisation of the category (mod-7<, Ab)® of finitely presented
functors from mod-7 ¢ — the category of finitely presented right 7°-modules — to
the category Ab of abelian groups. In fact, [Prest 2012b, 7.1, 7.2], this localisation
turns out to be equivalent to the opposite of mod-7° which is, in turn, equivalent to
T°-mod. The latter equivalence, Corollary 2.4, reflects the fact that the absolutely
pure = fp-injective 7°-modules coincide with the flat 7°-modules. We will, in
Section 2A, give details of this, as well as the action of each of these manifestations
of L(7)%* on T, respectively on yT.

Free realisations and pp-types are used a lot in the model theory of modules and
applications, so in Section 2C we point out how these look in 7.

In Section 3A we present the various types of data which can specify a de-
finable subcategory of 7. In Section 3B we see the bijection between definable
subcategories of 7 and hereditary torsion theories of finite type on Mod-7° and in
Section 3C we explore that connection in more detail. The category of imaginaries
of a definable subcategory is described in Section 3D. Some connections between
hom-orthogonal pairs in 7 and hereditary torsion theories on Mod-7° are seen
in Section 3E and this is continued in Section 3G with the bijection between
triangulated definable subcategories and smashing subcategories of 7.

Section 3F describes spectra associated to 7 and this is continued for tensor-
triangulated categories in Section 4A.

2For the formal statement see, for instance, [Prest 2009, A.1.1]. That is given for 1-sorted modules
but the general case reduces to this, see [Kucera and Prest 1992, §1], because each formula involves
only finitely many sorts, corresponding to Ay, ..., A, say, so is equivalent to a formula over a 1-sorted
ring, namely End(A|{ @ --- @ Ap).
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For definable subcategories of module categories there is a duality, elementary
duality, which exists at a number of levels, in particular between definable subcate-
gories of Mod-R and R-Mod. This carries over, at least to algebraic triangulated
categories; we outline that in Section 3H. If T is tensor-triangulated with 7° rigid,
then there is also an internal duality, induced by the duality on 7¢; that is described
in Section 4B.

Tensor-closed definable subcategories are briefly considered in Section 4, and in
Section 4C there is some exploration of the wider possibilities for interpreting the
model-theoretic language.

Background on the model theory of modules can be found in various references;
we use [Prest 2009] as a convenient compendium of results and references to the
original papers. We give a few reminders in this paper. The approach in [Prest
2009] is algebraic/functor-category-theoretic; readers coming from model theory
might find [Prest 1988b] or [Prest > 2024] a more approachable introduction. For
model theory of modules over many-sorted rings, see [Prest 2019].

Thanks to Isaac Bird and Jordan Williamson for a number of useful comments
and for sharing their preprint [Bird and Williamson 2022].

1B. The restricted Yoneda functor. The restricted Yoneda functor y : 7 — Mod-T°¢,
X — (—, X) | T underlies most of what we do here. Restricting its domain to
the category 7° of compact objects gives, by the Yoneda lemma and because T
is idempotent-complete (see [Neeman 2001, 1.6.8]), an equivalence between 7°
and the category proj-7° of finitely generated projective right 7°-modules. The
functor y is, however, neither full nor faithful and one effect of this is that the
image of 7 in Mod-7° is not closed under elementary equivalence, indeed it is
not a definable subcategory (see Section 3A) of Mod-7°. We do, however, have
Propositions 1.3 and 1.4 below (the second is just by the Yoneda lemma).

First we recall (see [Prest 2009, §2.1.1]) that an embedding M — N of objects
in a module category, more generally in a definable additive category, is pure if,
for every pp formula ¢, the (image of the) solution set ¢ (M) is the intersection of
¢ (N) “with M”, meaning with the product of sorts of M corresponding to the free
variables of ¢. And M is pure-injective if every pure embedding with domain M is
split. There are many equivalent definitions; see [Prest 2009, §§4.3.1, 4.3.2].

The theory of purity — intimately connected with solution sets of pp formulas
and so with the model theory of additive structures — was developed, in algebraic
terms, in compactly generated triangulated categories in [Beligiannis 2000b; Krause
2000]. Essentially, it is the theory of purity in Mod-7°, more precisely, in the
definable subcategory generated by y7T, pulled back to 7. For example, X € T
is pure-injective if and only if yX is a pure-injective 7°-module. Since yX is
absolutely pure [Krause 2000, Lemma 1.6], that is equivalent to it being an injective
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T¢-module. The pure-injective objects of 7 play the same key role that they
do in the model theory of modules. For instance every (&-)saturated module is
pure-injective and the pure-injective modules are exactly the direct summands of
saturated modules (see [Prest 2011a, Proposition 21.1, Theorem 21.2] or [Prest
1988b, 2.9]); this is equally true in compactly generated triangulated categories.”

Proposition 1.3 [Krause 2000, 1.8]. If X € T is pure-injective then, for every
Y €T, the restricted Yoneda map y : (Y, X) — (yY, yX) is bijective.

Proposition 1.4. If A € T is a compact object then, for every X € T, the restricted
Yonedamap y : (A, X) — (yA, yX) is bijective.

In fact there is symmetry here in that Proposition 1.4 holds more generally for A
pure-projective (that is, a direct summand of a direct sum of compact objects).

We will use the fact that the restricted Yoneda functor induces an equivalence
between the category Pinj(7") of pure-injective objects in 7 and the category Inj-7°
of injective right 7°-modules.

Theorem 1.5 [Krause 2000, 1.9]. The restricted Yoneda functor y : T — Mod-T*
induces an equivalence

Pinj(7) =~ Inj-T*.

1C. Definable subcategories of module categories. Very briefly, we recall the
context of the model theory of modules and the principal associated structures.
Some of this is defined more carefully later in the paper but see the references for
more detail.

In model theory in general, the context is typically the category of models of
some complete theory, with elementary embeddings. In the context of modules, it
turns out to be more natural to work with definable subcategories, meaning full
subcategories of module categories which are closed under elementary equivalence
and which are additive, meaning closed under direct sums and direct summands.
These subcategories are equivalently characterised, without reference to model
theory, as follows (see [Prest 2009, §3.4] for this and various other characterisations
by closure conditions).

Theorem 1.6. A subcategory D of a module category is a definable subcategory if
and only if D is closed under direct products, directed colimits and pure submodules.

If X is a set of modules, then we denote by (X) the definable subcategory
generated by X. 1t is the closure of X under the above operations, equally it
is the smallest additive subcategory containing X' and closed under elementary
equivalence.

3This comment, like a few others, is particularly directed to those coming from model theory.
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It is the case, see [Prest 2009, 3.4.8], that every definable subcategory is closed
under pure-injective hulls where, if M is a module, its pure-injective hull H(M)
is a minimal pure, pure-injective extension of M.* It follows that every definable
subcategory is determined by the pure-injective modules in it. If 7 is a compactly
generated triangulated category and X € 7, then the pure-injective hull of X may
be defined to be the (unique-to-isomorphism over X, by Theorem 1.5) object H (X)
of T such that yH (X) = E(yX), where E denotes injective hull in the module
category Mod-T°.

To each definable category D —meaning a category equivalent to a definable
subcategory of a module category — there is associated a skeletally small abelian
category, fun(D), of functors on D. This can be defined as the category of pp-
imaginaries (see Section 2A) for D, or as a localisation of the free abelian category
on R where D is a definable subcategory of Mod-R (R a possibly many-sorted ring),
or as the category of coherent functors — those that commute with direct products
and directed colimits— from D to Ab. Each definable subcategory’ C of D is
determined by the Serre subcategory S¢ of fun(D) which consists of those functors
which are 0 on C, and then fun(C) is the (abelian) quotient category fun(D)/S¢c —
the Serre localisation (see [Krause 2022, p. 30ff.]) of fun(D) at Sc.

Also associated to a definable category D is its Ziegler spectrum Zg(D) ([Ziegler
1984], see [Prest 2009, Chapter 5]) — a topological space whose points are the
isomorphism classes of indecomposable pure-injective objects in D and whose open
subsets are the complements of zero-sets of sets of coherent functors on D. The
closed subsets of Zg(D) are in natural bijection with the definable subcategories
of D; see [Prest 2009, 5.1.6]. See Section 3F for more on this.

2. Model theory in compactly generated triangulated categories

We use formulas to specify the definable subsets of objects of 7. In order to set
these up, we choose a subset G of 7° which we will assume to be generating in
the sense that, if X € 7T, then (G, X) =0 for every G € G implies X =0, and we
take the (opposite of the) full subcategory on G to be the category of sorts. For
convenience, we will assume that G is equivalent to 7, that is, contains at least
one isomorphic copy of each compact object of 7. By Lg we denote the resulting
language, meaning the resulting set of formulas.

We could take a smaller category of sorts, for instance, if 7 is monogenic,
generated by a single compact object S, then we could consider the 1-sorted
language based on S. The obvious question is whether this would suffice, in the
sense that every set definable in the larger language would also be definable in the

4n fact, M is an elementary submodule of H (M), [Sabbagh 1970, corollaire 4 de théoreme 4].
5The containing module category in Theorem 1.6 may be replaced by any definable category.
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1-sorted language. We don’t pursue this here, but the relative approach and results
in [Garkusha and Prest 2004; 2005] should be helpful in answering this question.

In the other direction, we could make the maximal choice of sorts and use a
language with the category IL(7)°4* of pp-imaginaries (see Section 2A) for the sorts.
Since pp-imaginaries are already definable, this does not increase the collection of
definable subsets. For most purposes the choice of category of sorts does not matter
provided the definable subsets are the same. However, elimination of quantifiers and
elimination of imaginaries are language-dependent, rather than structure-dependent.
Our choice of G as (essentially) 7° is exactly analogous to basing a language for the
model theory of R-modules (R a 1-sorted ring) on the category mod-R of finitely
presented modules, rather than using the 1-sorted language based on the single mod-
ule R (see [Prest 2011b] for more on choices of languages for additive categories).

Having chosen G we introduce a sort s4 for each A € G and a symbol for
addition (and a symbol for the zero) on each sort and, foreach f: A — Bin g, a
corresponding function symbol from sort B to sort A to represent multiplication
by f (= composition with f). Note that the morphisms of G are the “elements of
the ring-with-many-objects G”.

Each object X € 7 then becomes a structure for this language by taking its
elements of sort s4 to be the elements of (A, X) and then interpreting the function
symbols in the usual/obvious way.

Remark 2.1. If 7 is tensor-triangulated and has an internal hom functor right
adjoint to ®, then these sorts, which by definition are abelian groups, can be taken
instead to be objects of 7, in the sense that we could interpret the sort s4(X) to be
the internal hom object [A, X] € T. In this “internal” interpretation of the language,
we have, since (A, X) >~ (1, [A, X]) where 1 is the tensor-unit, the (usual) elements
of X of sort A identified with the morphisms 1 — [A, X].

We will write £(7), or just £ for the language. Since we assume that G is
equivalent to 7°¢, the £(7)-structure X € 7T, which is literally a right G-module,
may be identified with the image, yX = (—, X) [ 7€, of X under the restricted
Yoneda functor y : 7 — Mod-7 €. Therefore the model theory of X as an object of
T is exactly that of yX as a right 7°-module. Indeed, £(7) is equally a language
for 7" and for the module category Mod-7°, but bear in mind that there are more
T°-modules than those which are in the image of 7 in Mod-7°¢, more even than in
the definable subcategory of Mod-7° which is generated by that image.

Indeed, the definable subcategory, (y7), of Mod-7° generated by the image of T
is exactly the subcategory, Flat-7¢ = Abs-T°, consisting of the flat (= absolutely
pure®) 7¢-modules.

5In “most” module categories the flat and absolutely pure modules have little overlap; the fact that
they are equal over the ring 7° is a very characteristic feature here.
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Theorem 2.2 [Beligiannis 2000a, 8.11, 8.12; Krause 2000, 2.7]. If T is a compactly
generated triangulated category and y : T — Mod-T° is the restricted Yoneda
functor, then (yT) = Abs-T° = Flat-T*¢

Therefore the model theory of 7 is the same as the model theory of the flat
(= absolutely pure) right 7¢-modules.” The one difference is that some structures
are missing from 7: except in the case that 7 is pure semisimple [Beligiannis
2000b, Theorem 9.3], there are structures in (y7 ) which are not in y7. However,
the equivalence, Theorem 1.5, of categories Pinj(7) =~ Inj-7° between the pure-
injective objects of 7 and the injective 7 °-modules, implies that y7 does contain
all the pure-injective models, in particular all the saturated models, of its theory. It
follows from Theorem 2.2 that implications and equivalences of pp-formulas on 7
and on Flat-7° = Abs-7° are the same.

For convenience we will sometimes write (—, X) instead of (—, X) [ T =yX
when X € T.

2A. The category of pp-sorts. Let R be a, possibly multisorted, ring and let D be
a definable subcategory of Mod-R. We recall how to define the category L(D)%9"
of pp sorts (or pp-imaginaries) for D.

First, for D = Mod-R, the category L(Mod-R)®*, more briefly denoted [L‘;’qur,
has, for its objects, the pp-pairs ¢/, that is pairs (¢, ) of pp formulas for R-
modules with ¢ > v, meaning ¢ (M) > (M) for all M € Mod-R. For its arrows,
we take the pp-definable maps between these pairs. See [Herzog 1993, §1] or
[Prest 2009, §3.2.2] for details and the fact that this category is abelian. Each such
pp-pair defines a coherent functor M +— ¢ (M)/y¥ (M) from Mod-R to Ab and
every coherent functor has this form, see, for instance, [Prest 2009, §10.2].

For general D, a definable subcategory of Mod-R, we let ®p be the Serre
subcategory of [L;q+ consisting of those pp-pairs ¢ /1 which are closed on, that
is 0 on, every M € D (that is, ¢ (M) = (M) for every M € D). Then L(D)%4"
is defined to be the quotient = Serre-localisation [I_%IJr /®p. So L(D)*4* has the
same objects as [I_;fﬁr — the pp-pairs — and the morphisms in L(D)®d* are given by
pp formulas which on every M € D define a function. In particular the pp-pairs
closed on D are isomorphic to 0 in L(D)®". The localised category L(D)4* also
is abelian; in fact, see [Prest and Rajani 2010, 2.3], every skeletally small abelian
category arises in this way.

An equivalent [Prest 2011a, 12.10], but less explicit, definition is that (D)4 =
(D, Ab)[I= —the category of functors® from D to Ab which commute with direct

7T¢ is both right and left coherent as a ring with many objects (see [Oberst and Rohrl 1970, §4]),
which is why the flat and the absolutely pure objects form definable subcategories (see [Prest 2009,
Theorem 3.4.24]).

8additive, as always assumed in this paper
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products and directed colimits (that is, coherent functors, equivalently [Prest 2011a,
25.3] interpretation functors in the model-theoretic sense).

It is well-known, see [Prest 2009, 10.2.37, 10.2.30], and much-used, that, for
D = Mod-R, the category of pp-pairs is equivalent to the free abelian category
on R° and, also, that it can be realised as the category (mod-R, Ab)™ of finitely
presented functors on finitely presented modules (see [Prest 2009, 10.2.30, 10.2.37])
equivalently, as just said, it is equivalent to the category of coherent functors on all
modules (see [Prest 2009, §10.2.8]). Then, for a general definable subcategory D
of Mod-R, we obtain L(D)® as the Serre-quotient (mod-R, Ab)" /Sp where Sp
is the Serre subcategory of those functors F € (mod-R, Ab)™ with FD =0. Here
F is the unique extension of (a finitely presented) F' : mod-R — Ab to a (coherent)
functor from Mod-R to Ab which commutes with directed colimits. Often we
simplify notation by retaining the notation F for this extension F.

Under the identification of [L%lJr and (mod-R, Ab)™ the Serre subcategory ®p
is identified with Sp.

In applying this in our context, we use the following result, where Flat-R denotes
the category of flat right R-modules and Abs-R denotes the category of absolutely
pure (= fp-injective) right R-modules. For the notion of a left coherent multisorted
ring — one whose category of left modules is locally coherent— see [Oberst and
Rohrl 1970, 4.1].

Theorem 2.3 [Prest 2012b, 7.1/7.2]. If R is any left coherent (multisorted) ring,
then Flat-R is a definable subcategory of Mod-R and

L(Flat-R)®9" ~ R-mod.
If R is a right coherent ring, then Abs-R is a definable subcategory of Mod-R and
L(Abs-R)®It ~ (mod-R)°P.

Because T°¢ is right and left coherent, [Beligiannis 2000a, 8.11, 8.12], and since
Abs-T°¢ = Flat-7°, we have the following corollary.

Corollary 2.4. If T is a compactly generated triangulated category, then there is
an equivalence

d : T¢-mod =~ (mod-7°)°P
and this category is equivalent to the category L(T )" of pp-imaginaries for T.

We write d for the (anti)equivalence in each direction.
There is another description of the category appearing in Corollary 2.4. We
say that a coherent functor on 7 is one which is the cokernel of a map between
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representable functors (A, —) : 7 — Ab with A € T°. Explicitly, if f: A — B is
in 7° then we obtain an exact sequence of functors on 7:

(B, —) L5 (A, —) > Fy— 0

and the cokernel Fy is a typical coherent functor on 7.

In module categories having a presentation of this form, with A and B finitely
presented, is equivalent to commuting with products and directed colimits but trian-
gulated categories don’t have directed colimits. There is the following analogous
characterisation.

Theorem 2.5 [Krause 2002, 5.1]. Suppose that T is a compactly generated triangu-
lated category. Then F : T — Ab is a coherent functor if and only if F commutes
with products and sends homology colimits to colimits.

We denote the category of coherent functors on 7, with the natural transfor-
mations between them, by Coh(7"). This category is abelian; in fact we have the
following.

Theorem 2.6 [Krause 2002, 7.2]. There is a duality
(mod-T7°)°P >~ Coh(T)

and hence

Coh(7) 2~ T*-mod.

Indeed, to go from Coh(7) to 7°-mod we just restrict the action of F' € Coh(7)
to 7¢ and, in the other direction, we apply the projective presentation (B, —) —
(A, —) = G — 0 of a finitely presented left 7°-module in 7 and we get a coherent
functor. The category L(7)%4" of pp-definable sorts and pp-definable maps for 7°
is defined just as for a module category. Since the model theories of 7 and Flat-7°
are identical, it is exactly [(Flat-7°)%4,

Corollary 2.7. The category of pp-imaginaries for a compactly generated triangu-
lated category T can be realised in the forms

L(7)%" ~ Coh(7) ~ T°-mod.

The duality in Theorem 2.6 respects the actions of those categories of functors
on 7. We give the details.

The action of Coh(7") on 7T is given by the exact sequence above presenting F:
if X € T, then Fr(X) is defined by exactness of the sequence

(B,X)— (A, X) = Fr(X)— 0.
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The action of mod-7° on 7 is given by Hom applied after the restricted Yoneda
functor y. Explicitly: the typical finitely presented right 7°-module G ; is given by
an exact sequence (a projective presentation)

yAs yB— Gy -0,
that is,
(— A =L (- B> G, — 0,
where A £ B € 7°. The action of G ron X € T is induced by the action of
(—, yX) on it: we have the exact sequence

0— (Gs. (= X)) = ((—, B), (—, X)) =L 4y, (—, X)),

that is,
0— G(X) — (B, X) L5 (4, x),

defining the value of G ; on the typical object X € 7. So, if G € mod-7° and
X € T, then the action of G on X is defined by

G(X) = (G, yX).

Notice that the morphism f : A — B in 7° has given rise to the exact sequence
of abelian groups:

0— G;(X)— (B, X) L5 (A, X) > Fp(X) — 0. (1

The duality (mod-7°)°? >~ Coh(7) in Theorem 2.6 takes a finitely presented
right 7°-module G to the coherent functor

G°: X+~ (G,yX)=(G, (-, X))

for X € 7 —that is, the action we defined just above. This takes the repre-
sentable functor G = (—, A) where A € T¢, to the representable coherent functor
(A, =) : T — Ab. Therefore, the 4-term exact sequence (1) above can be read as
the application of the following exact sequence of functors in Coh(7) to X:

0— G5 — (B, —) L2 (A, ) - Fy—0. 2)

In the other direction, the duality (mod-7°)°P >~ Coh(T) takes F € Coh(T) to
the finitely presented 7°-module
F°:Cw (F,(C,-))

for C € T¢. So (A, —)° = (—, A). If F = Fy, then applying (—, (C, —)) to the
presentation (2) of Fy and using that (C, —) is injective in Coh(7") (by Theorem 2.6
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and since (—, C) is projective in Mod-7°) allows us to read the resulting 4-term
exact sequence as the application, to C € T°¢, of the following exact sequence of
functors in mod-7°:

0— F2— (=, A) =L (=, B) > Gy — 0. 3)
Applying the duality-equivalences
(=) : (Coh(T)? - Mod-T¢ and (—)°: (Mod-T°)°° — Coh(T)

interchanges (2) — an exact sequence in Coh(7) — and (3) — an exact sequence in
mod-7°.

The equivalences of these functor categories with the category L(7)%4* of pp-
pairs for 7 are given explicitly on objects as follows. Let f : A — B be a morphism
in 7€, so Fy is a typical coherent functor:

ALB

% yB

X

We have that FyX = (A, X)/im(f, X) and hence F is the functor given by the
pp-pair (x4 = x4)/(3yp xa = yp [), that is,

Fr=(xa=xa)/(flxa).

We use subscripts on variables to show their sorts but might sometimes drop
them for readability. We also use variables (which really belong in formulas) to
label morphisms (for which they are place-holders) in what we hope is a usefully
suggestive way.

Also, from the exact sequence (1), we see that G;(—) = ker(f, —) and so is the
functor given by the pp-pair

G =xpf=0)/(xg=0).

Since the duality Coh(7) =~ (mod-7°)°P preserves the actions on 7T, these pp-
pairs also give the actions of, respectively, Fj?. and GronT.

To go from pp-pairs to functors, we may use Theorem 2.15 below, which says
that every pp-pair is isomorphic to one of a form seen above, namely xf = 0/x =0.

2B. Elimination of quantifiers. If aring R is right coherent then every pp formula
is equivalent on Abs-R to an annihilator formula and, if R is left coherent, then
every pp formula on Flat-R is equivalent to a divisibility formula (see [Prest 2009,
2.3.20, 2.3.9, 2.3.19]). These results are equally valid for rings with many objects
(because any formula involves only finitely many sorts, so is equivalent to a formula
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over a ring with one object). It follows that the theory of 7 has elimination of
quantifiers, indeed it has the stronger property elim-q*, meaning that each pp
formula is equivalent to a quantifier-free pp formula, that is, to a conjunction of
equations.” Also 7 has the elementary-dual elimination of pp formulas to divisibility
formulas. But it is instructive to see exactly how this works when the ring is the
category 7° of compact objects of a compactly generated triangulated category 7.
This is an expansion of [Garkusha and Prest 2005, 3.1, 3.2]. We write O for any
n-tuple (0, ..., 0).
Given f: A — B in T¢, form the distinguished triangle'® as shown:

AL BE > DA,

Since T°¢ is triangulated, C € T°¢. Since representable functors on a triangulated
category are exact (meaning that they take triangles to (long) exact sequences), for
every X € T, (C, X) (&%), (B, X) X)) (A, X) is exact so, for xp € (B, X), we
have xp € ker(f, X) if and only if xp € im(g, X), that is, xg f = 0 if and only if
g | xp that is, if and only if Iy¢ (xp = ycg). Thus

xpf=0 < g|xp.

Since 7 has finite direct sums, tuples of variables may be wrapped up into single
variables (we do this explicitly below), so these formulas are general annihilator
and divisibility formulas. Therefore every annihilator formula is equivalent to a
divisibility formula and vice versa. We record this.

Proposition 2.8. If A L BE& C > SAisa distinguished triangle, then the
formula xg f = 0 is equivalent to g | xp.

Before continuing, note that, because 7° is closed under finite direct sums, a
finite sequence (x, ..., x,) of variables, with x; of sort A;, may be regarded as
a single variable of sort A; & - - - @ A,. That simplifies notation and allows us to
treat a general pp formula as one of the form Axp (xp f = xp f'), that is, f/|xf
for short.

B
/ \
A (=)
B/
9Indeed, since our sorts are closed under finite direct sums, every pp formula is equivalent to a

single equation
10We will often write “triangle” meaning distinguished triangle.
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That is equivalent to

() ,
A——B®B
dxp ((XB, xB’)(]J:f) = 0) l(xg Xpgr)

(=)

So form the triangle

(7)

AL pap =98, 0, vA.

By Proposition 2.8 above, the formula 3xp (x5, x5)( jf/) = 0) is equivalent to
dxp Ixc ((xB, Xp) = xcg), that is, to

Ixp Ixc (xp =xcg N xp =xcg’),

and the xp’ is irrelevant now (set xgr = xcg’). So the original formula is equivalent
to g | xp where g is, up to sign, the map which appears in the weak pushout

A B
A
c

B ——
Lemma 2.9. Given morphisms f, ' : A — B in T, the (typical pp) formula

f
—

/

8

Jxp (xpf =xp f)

is equivalent to the divisibility formula g|xp, where g is as in the distinguished
triangle

A@B@B’MC—)EA,
and hence is also equivalent to the annihilation formula xg f” = 0, where
AL B S conA
is a distinguished triangle.

Thus every pp formula is equivalent on 7 to a divisibility formula and hence
also to an annihilator formula. In particular:
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Theorem 2.10 [Garkusha and Prest 2005, 3.1, 3.2]. If T is a compactly generated
triangulated category and L is the language for T based on TC, then (the theory
of''Y T has elimination of quantifiers, indeed has elim-q™.

2C. Types and free realisations. We start with a little model theory but soon come
back to the algebra.

If Ay, ..., A, are compact objects of 7 and if a; : A; — X € T are elements of
X € T, then the type of a = (ay, ..., a,) (in X) is the set of formulas x such that
a € x(X). The pp-type of a € X is

pp* (@) ={¢ pp:a c p(X)}.

Since we have pp-elimination of quantifiers (Theorem 1.1) the type of @ in X
is determined by its subset pp* (@). Indeed it is equivalent, modulo the theory
of T (equivalently, the theory of absolutely pure (= flat) 7°-modules) to the set
pp*(a) U {=y : ¢ pp and ¥ ¢ pp*(a)}."?

As remarked already, because 7°¢ has finite direct sums, we can replace a tuple
(x1,...,x,) of variables x; of sort A; by a single variable of sort A; @& ---® A,
(and, similarly, tuples of elements may be replaced by single elements). So any
pp-definable subgroup of an object X € 7 — that is, the solution set ¢ (X) in X of
some pp formula ¢ — can be taken to be a subgroup of (A, X) for some A € T°.

We say that two formulas are equivalent (on 7)) if they have the same solution
set in every X € 7. There is an ordering on the set of (equivalence classes of) pp
formulas: if ¢, ¢ are pp formulas in the same free variables, then we set ¢ < v
if and only if forall X € T, ¢(X) < ¥ (X). This (having fixed the free variables)
is a lattice with meet given by conjunction ¢ A ¥ (defining the intersection of the
solution sets) and join given by sum ¢ + ¥ (defining the sum of the solution sets).

By a pp-type (without parameters) we mean a deductively closed set of pp
formulas, equivalently a filter (i.e., meet- and upwards-closed) in the lattice of
(equivalence classes of) pp formulas (always with some fixed sequence of free
variables). We note the following analogue of the module category case (see [Prest
2009, 1.2.23]).

Lemma 2.11. Suppose that T is a compactly generated triangulated category and
¢, ¥ are pp formulas with the same free variables. Then ¢ <\ if and only if for all
A €T we have p(A) < Y (A).

1]Meaning that every completion of the theory of 7 has elimination of quantifiers and the
elimination is uniform over these completions.

12This is also true for types with parameters but we don’t use these in this paper. For more on this
see, for instance, [Prest 1988b, 2.20].
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Proof. Suppose that for all A € T7¢ we have ¢(A) < ¥ (A) and let X € 7. Since
yX is a flat object of Mod-T7°¢, it is the direct limit of some directed diagram of
finitely generated projective 7 °-modules. The latter all have the form y A for some
A € T°¢. Since, for any pp formula ¢, ¢ (—) commutes with direct limits (see [Prest
2009, 1.2.31]), we conclude that ¢ (yX) < ¥ (yX), and hence that ¢ (X) < ¥ (X),
as required. ([

In the above proof we made the (harmless and useful) identification of pp formulas
for objects of 7 and for right 7°-modules.

Suppose that p is a pp-type, consisting of pp formulas with free variables
X1, ..., Xn, where x; has sort (labelled by) A; € T°. Then, by [Prest 2009, 3.3.6,
4.1.4], p has a realisation in some object M in the definable subcategory (y7) of
Mod-7°, meaning there is a tuple b of elements in M with pp™ (b) = p. Pp-types
are unchanged by pure embeddings and every such module M is a pure, indeed
elementary, subobject of its pure-injective (= injective) hull, which has the form
yX for some X € 7. So we obtain a realisation of p in some object X € 7T there
is @ = (ay, ...,a,) with a; : A; = X such that pp¥(a) = p. The object X is
pure-injective in 7" 1.5 and, moreover, may be chosen to be minimal such,'? in
which case it is denoted H (p) —the hull of p. This is unique up to isomorphism
in the sense that if N is a pure-injective object of 7 and if ¢ is a tuple from N
with pp" (¢) = p, then there is an embedding of H(p) into N as a direct summand,
taking a to ¢ and this will be an isomorphism if N also is minimal over c. See
[Prest 2009, §4.3.5] for this and related results — these all apply to any compactly
generated triangulated category 7 because its model theory is really just that of a
definable subcategory of Mod-7°, and because all the pure-injective objects of that
definable subcategory are images of objects of 7.

If ¢ is a pp formula, then we have the pp-type it generates:

(P)={W: o=y}

We say that a pp-type is finitely generated (by ¢) if it has this form for some ¢.

If ¢ is a pp formula with free variable of sort A (without loss of generality we
may assume that there is just one free variable) then a free realisation of ¢ is a
pair (C,cq) where C € T¢ and ¢4 : A — C is an element of C of sort A with
ppC(ca) = (¢). We have the following analogue to [Prest 2009, 1.2.7]. In the
statement of this result, we continue to overuse notation by allowing x4 to denote
an element of sort A (in addition to our use of x4 to denote a variable of sort A).

Lemma 2.12. Suppose ¢ is a pp formula with free variable x o (for some A € T°).
Let C € T¢ and suppose cs € (A, C) with cx € ¢(C). Then (C,cn) is a free

13Corresponding to the injective hull of the submodule of M generated by the entries of b.
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realisation of ¢ if and only if for every x4 : A — X € T such that x4 € ¢(X), there
is a morphism h : C — A with hcg = x 4.

Proof. Existence of free realisations in 7 (Corollary 2.14 below) gives the direction
(<) since, if (B, b) is a free realisation of ¢, then there is a morphism g : C — B
with gca = b, 5o pp€(ca) = (¢) (because morphisms are nondecreasing on pp-
types — see [Prest 2009, 1.2.8]). For the converse, if a € ¢ (X), then ya € ¢(yX).14
Since the pp-type of yc4 in yC is exactly that of c4 in C, it is generated by ¢ and
hence, since ya € ¢ (yX), there is, by [Prest 2009, 1.2.7], a morphism f': yC — yX
with f’ - yca = ya. Because C € T¢, there is, by Proposition 1.4, f : C — X
with f' = yf. Therefore y(fca) = ya so, again by Proposition 1.4, fca = a,
as required. ([

We show that every pp formula in the language for 7 has a free realisation in 7.
We use the fact that every formula is equivalent to a divisibility formula.

If a morphism f factors initially through a morphism g —that is, f = hg for
some h — then write g > f.

Lemma 2.13. If f : A— B is a morphism in T° then the pp-type, { f |x4), generated
by the formula f|x4 is, up to equivalence of pp formulas, {g|lxs : g > f}.

Proof. By Lemma 2.9 every pp formula is equivalent to a divisibility formula, so
we need only consider formulas of the form g|x 4.

Ifg> f,sayg:A— Cand f =hg withh:C — B, then,foranyx,:A—> X €T
with f|xa, say x4 = xp f, we have x4 = xphg = xcg with x¢ = xpg, so we
have g|x4. Thatis, g|lxa € (f|xa).

For the converse, if g: A — C isin 7° and g|x4 € (f|xa), then, applying this
with X = B and x4 = f, we obtain that there is 4 : C — B such that hg = f, and
g > f, as required. [l

Corollary 2.14. Suppose that ¢ (x ) is a pp formula for the language of T. Choose
(by Lemma 2.9) a morphism f : A — B in T° such that ¢ is equivalent to f|x4.
Then (B, f) is a free realisation of ¢.

2D. Elimination of imaginaries. Next we prove elimination of pp-imaginaries:
we show that every pp-pair is isomorphic, in the category L(7)%" of pp-pairs, to a
pp formula, indeed by Theorem 2.10, to a quantifier-free pp formula if we identify
a pp formula ¢ (x) with the pp-pair ¢ (x)/(x = 0) in L(7)°4T.

Recall (Corollary 2.7) that the category of pp-imaginaries is equivalent to the
category Coh(T) of coherent functors on 7. So let us take a coherent functor F
defined by the exact sequence (C, —)M)(B, —)—> Fy,— Oforsome g: B— C

l4For clarity, the language for 7T is exactly the language for Mod-7° and the definition of the
solution set ¢ (X) is identical to the definition of the solution set of ¢ (v X).
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in T°. We have the d1st1ngulshed triangle A L B4 €5 S A and extend it to
1C—>A—>B—> C2 3 A then consider the exact sequence of functors on 7:

(24, ) 89, (€, —) &2 (B, —) U2 (4, —) ERD, (m-1c, o
where we have the factorisation

(B, -) —/>(A -)

So Fy >~im(f, —) in (A, —) and therefore F, is isomorphic to the functor given
by the pp formula f | x4 which, by Proposition 2.8, is equivalent to the quantifier-
free pp formula x4 - X~ 'h = 0; that is F, ¢ = GS,_,, (thisis also clear from the above
exact sequence). Thus we have the following.

Theorem 2.15 [Garkusha and Prest 2005, 4.3]. Every pp-pair is pp-definably

isomorphic to a pp formula which may be taken to be quantifier-free (alternatively

a divisibility formula). Thus, (the theory of ) T has elimination of pp imaginaries.
Explicitly, if g : B — C is in T then the (typical) pp-pair

= coker((g, =) : (C, —) — (B, —))

is equivalent to the divisibility formula f|xs and to the annihilation formula
xaX"'h =0, where f and h are such that

hoity’}
—_—

rlc AL B s za)

is a distinguished triangle.

2E. Enhancements, ultraproducts. Arguments using reduced products, in particu-
lar ultraproducts, are often used in model theory. In many cases their use can be
replaced by arguments involving realising types in elementary extensions but in
some cases the more algebraic and “explicit” (modulo use of the axiom of choice'?)
ultraproduct construction is better. At first sight we can’t use ultraproducts in
compactly generated triangulated categories because, even though typically they
have direct products, they almost never have all directed colimits (recall, e.g., [Prest
2009, §3.3.1], that an ultraproduct is a directed colimit of direct products of its
component structures). Homotopy colimits along a countably infinite directed set
are available but that is not enough to form ultraproducts.

5 peeded to extend a filter to a nonprincipal ultrafilter
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Laking [2020] introduced ultraproducts in this context by using Grothendieck
derivators. We don’t go into the details here but see [Laking 2020, §2] for the con-
struction of coherent reduced products for derivators. In [Laking and Vitéria 2020]
a different approach, using dg-categories and model categories, is taken. This gives,
for algebraic compactly generated triangulated categories, a characterisation of defin-
able subcategories (see Section 3A) which is analogous to Theorem 1.6. This extends
to any triangulated category with a suitable enhancement, see [Saorin and Stovicek
2023, 8.8; Bird and Williamson 2022, 6.8] which has the following formulation.

Theorem 2.16 [Laking 2020, 3.11; Laking and Vitéria 2020, 4.7; Saorin and
Stovicek 2023, 8.8; Bird and Williamson 2022, 6.8]. If D is a subcategory of a
compactly generated triangulated category T which is the underlying category of a
strong and stable derivator, then the following are equivalent:

(1) D is a definable subcategory of T.

(i1) D is closed in T under pure subobjects, products and directed homotopy
colimits.

(iii) D is closed in T under pure subobjects, products and pure quotients.

Derived categories, derivators, dg-categories, model categories (in the sense of,
say, [Hovey 1999]) and oo-categories all provide ways of representing triangulated
categories as the result of applying a process to a somewhat more amenable type of
category. In those additive categories with extra structure one can expect the model
theory of (multisorted) modules to be directly applicable to the objects. This gives
the possibility of approaching the model theory of a triangulated category by develop-
ing model theory in such an enhancement and then passing this through a localisation-
type functor to the triangulated category. Examples include setting up elementary
duality as done in [Angeleri Hiigel and Hrbek 2021; Bird and Williamson 2022],
see Section 3H. We don’t pursue this, so far relatively undeveloped, direction here.

3. Definable subcategories

3A. Definable subcategories of T. A full subcategory D of T is definable if
its objects form the zero-class of a set of coherent functors, that is, if there is
A C Coh(7T) such that

D={XeT:FX=0VFeA.

We will write D = Ann(A) = Anns(A).'® We will see in Section 3B how this is
a natural extension of the notion of definable subcategory of a module category.

16We will also use this notation with a set of morphisms replacing A and hope this will not give
rise to confusion.
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Also, if X is a subcategory of T, set
Al’lncoh(T)(X) = {F (S COh(T) FX=0VXe X}

As for module categories, we denote by (X) the definable subcategory of 7 gener-
ated by X — that is, the smallest definable subcategory of 7 containing X'.
Given a set @ of morphisms in 7° we have its annihilator

Anny® ={X € T:YAL Be®, VB X we have bf =0}.

We write the condition VB 2> X (bf =0) succinctly as X f = 0 (this being directly
analogous to the relation Mr =0 for a right module M and ring element r). Of course
we can equally write this condition as (f, X) =0 or (—, X) f =0, according to our
viewpoint. Then, [Krause 2002, §7], Anny® is a (typical) definable subcategory
of T.

In the other direction, if X is a subcategory of 7, then we may set

AmnX ={AL BeT:Xf=0VX e X).
The classes of morphisms of the form Anny<X" are what Krause calls the coho-
mological ideals of T¢; we will refer to them simply as annihilator ideals in T°.

Lemma 3.1 [Krause 2002, §7]. If @ is a set of morphisms in T°, then Annr® is a
definable subcategory of T. If X is any subcategory of T, then Anny(AnnyeX) is
equal to (X}, the definable subcategory of T generated by X. In particular there is
a natural bijection between the definable subcategories of T and the cohomological
(= annihilator) ideals in T°.

We have seen already that if

AL BE o 3A

is a triangle, then
bf =0 < g|b.

So we consider, given a set W of morphisms in 7°,

DiviU ={XeT:VBS CeW, VBS X, 3C 5 X such that b = cg}

BL)C
VJ
w3
X

—the class of W-divisible objects of 7. We write g|X as a succinct expression of
the condition “V B 2 X3C 5 X such that b = cg” (being the analogue of the
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condition that every element of a module M be divisible by an element r of the
ring!”). Then DivW is a (typical) definable subcategory of 7.
And, in the other direction, given a subcategory X of 7, we define!®

DiveX ={B% CeT :g|X VX € X}.

Lemma 3.2 [Angeleri Hiigel and Hrbek 2021, 2.2]. If V is a set of morphisms
in T¢, then DivrV is a definable subcategory of T. If X is any subcategory of T,
then Divy(Divye X) = (X).

Proof. Take Y € Divy(DivyeX). If g € Divye X then g|Y so, if f is as above, Y f =0.
This is so for all such f (as g varies) so, by Lemma 3.1, Y € (X)), as required. [

Corollary 3.3. (1) If D = Anny® is a definable subcategory of T then also
D=Divr{g: A L B4 C—>XAisa distinguished triangle and f € ®}.
(2) If D = DivyV is a definable subcategory of T then also
D=Am;{f: A L B4 C— YAisa distinguished triangle and g € V}.

Definable subcategories are so-called because they can be defined by closure
of certain pairs of pp formulas, that is, by requiring that certain quotients of pp-
definable subgroups be 0. For each of the annihilation and divisibility methods of
specifying these subcategories, the pp-pairs needed are obvious, being respectively
{(xp=xp)/(xpf=0): f:A— Bed}and {(xp=xp)/(glxp):g: B—> C eV}
with &, ¥ as above.

We have used that pp-pairs can be given in both annihilation and divisibility
forms, but there is another, “torsionfree” form that is not so obvious if we consider
only formulas and their reduction to divisibility or annihilator forms, rather than
pp-pairs. Let us consider an extended triangle as before:

slcZM AL ps ol sa

If X € T then we obtain an exact sequence of abelian groups

A, X) &5 (¢, x) &N, (B, x) LX), (4, x) E0X, (w-1c, x).
Then
X eDivy(g) <= (g, X)isepi < (f,X)=0 < (X 'h, X) is monic.
mesponding notation Xg = X would be less appropriate than in the usual module case

because X has many sorts and that equation applies only to the B-sort of X.
18We are overworking the notations Ann and Div but they are useful.
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If we denote by anny (X ~'h) the set {a : A — X : a.X~'h = 0}, then we have
Xf=0 < g|X < annx(Z"'h)=0. 4)
That is,
X € T annihilates f <= X is g-divisible <= X is ¥~ 'h-torsionfree.

This gives us a third way of using morphisms in 7° to cut out definable subcategories
of T. We set, given X C T,

X-Reg={( €T :annx({) =0 VX € X}

and call such classes, for want of a better word, regularity classes (of morphisms
of 7°).

In the other direction, given a set & of morphisms in 7°, we define
E-TF={X €T :annx () =0Vl € E}.
Lemma 3.4. If E is a set of morphisms in T, then E-TF is a definable subcategory
of T. If X is any subcategory of T, then (X-Reg)-TF = (X).
The argument is as for Lemma 3.2.
The set of pp-pairs corresponding to E is {(x4£ =0)/(x4 =0): D LAe g}

The next result summarises some of this; see [Saorin and Stoviek 2023, 8.6] and,
for the case where 7 is the derived category of modules over a ring, [Angeleri Hiigel
and Hrbek 2021, 2.2].

Theorem 3.5. A definable subcategory D of T may be specified by any of the
following means:

e D={XeT:0oX)/Y(X)=0Ve¢/y € ®} where ® is a set of pp-pairs in
L(T);

o D= Anny(A) where A € Coh(T);

o D = Anny® where ® is a set of morphisms in T¢;

o D =DivyV where ¥ is a set of morphisms in T¢;

o D = E-TF where E is a set of morphisms in T°.

The subcategories of Coh(T) of the form Annconcr)(D) are the Serre subcate-
gories, the classes of morphisms of T¢ of the form Annr<(D) are the annihilator =

cohomological ideals."
Moving between the last three specifications is described by (4) above.

19The classes Divy<D and D-Reg are described indirectly, in terms of the functors they present,
at the end of Section 3C.
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In Section 3C we will say this in torsion-theoretic terms with mod-7° in place
of Coh(7). In Section 3B we give the relevant background.

3B. Torsion theories on Mod-T*. A torsion pair in a Grothendieck category, such
as Mod-T°, consists of two classes: G — the torsion class, and F — the forsionfree
class, with (G, F) = 0 and with G, F maximal such. Such a torsion pair, or torsion
theory, is hereditary if G is closed under subobjects, equivalently if F is closed under
injective hulls and, if so, it is of finite type if G is generated, as a hereditary torsion
class, by finitely presented objects, equivalently if F is closed under directed colimits
(see, for instance, [Prest 2009, 11.1.12, 11.1.14]). We also use without further
comment that, for a hereditary torsion theory, if F is a torsionfree module then the
injective hull E(F) of F is torsionfree (and conversely, since the torsionfree class is
closed under subobjects). For background on torsion theories, see [Stenstrom 1975].

The restricted Yoneda functor from 7 to Mod-7° allows us to realise the defin-
able subcategories of 7 as the inverse images of finite-type torsionfree classes on
Mod-T¥, as follows.

Suppose that D is a definable subcategory of 7. Then D is determined by the
class D N Pinj(7) of pure-injectives in it, being the closure of that class under
pure subobjects (by the comments after Theorem 1.6). By Theorem 1.5 the image
E =y(D N Pinj(7)) is a class of injective 7 °-modules which is closed under direct
products and direct summands, hence (e.g., [Prest 2009, 11.1.1]) which is of the
form F NInj-7° for some hereditary torsionfree class F = Fp of 7 -modules.

We recall, [Prest 1979, 3.3] see [Prest 2009, 11.1.20], that a hereditary torsionfree
class of modules is of finite type exactly if it is definable. So we have to show that
definability of D corresponds to definability of Fp, equivalently to definability of
the class of absolutely pure objects in Fp (“equivalently” because Mod-7° is locally
coherent, so the absolutely pure objects form a definable subcategory, see [Prest
2009, 3.4.24], hence so is their intersection with any other definable subcategory; in
the other direction, if 7p N Abs-7° is definable then so also, by, e.g., Theorem 1.6,
is its class of subobjects, which is precisely Fp). So we have to show that the
torsionfree class Fp above is of finite type and that every finite type torsionfree
class arises in this way.

To see, this, note that, if X € 7 and F € Coh(7), then (Section 2A) FX =0
if and only if (F° yX) = 0. Set A = Anncen¢)(D). We have the duality
from Section 2A between Coh(7) and mod-7°, so consider the corresponding
set A° = {F° : F € A} of finitely presented 7°-modules. Since A is a Serre
subcategory of Coh(7), this is a Serre subcategory of mod-7°¢; we set Sp = A°.
The li_ng—closure,20 8_1; in Mod-7° of Sp is a typical hereditary torsion class of

201f Sis a subcategory of a module category, then we will denote its lim-closure —its closure
under directed colimits —by S.
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finite type in Mod-7°¢ (see [Prest 2009, 11.1.36]). The corresponding hereditary
torsionfree class 7 = {M € Mod-T° : (S_D), M) = 0} is just the hom-perp of
Sp: F={M eMod-T°: (Sp, M) =0}. If M € F is injective, hence (Theorem 1.5)
of the form y N for some pure-injective N € T, then the condition (Sp =A%, M) =0
is exactly the condition FN =0 for every F € A, that is, the condition that N is in D.
Thus F = Fp and we have the correspondence between classes of pure-injectives
in 7 of the form D N Pinj(7) and classes of injectives in Mod-7° of the form
F NInj-7°¢ for some hereditary torsionfree class F. (For, note that given such a
class £ of injectives, the class of pure submodules of modules in £ is the class of
absolutely pure modules in F which, by finite type, is definable and hence has
definable inverse image in 7). Therefore we have shown the following.

Theorem 3.6. A subcategory D of a compactly generated triangulated category T
is definable if and only if it has any of the following equivalent forms, where
y: T — Mod-T¥¢ is the restricted Yoneda functor:

e D =y~ F, where F is a finite-type hereditary torsionfree class in Mod-T;

e D = y~'E, where £ is the class of absolutely pure objects in a hereditary
torsionfree class of finite type;

o D=y~ 'E, where £ is a definable class of absolutely pure objects in Mod-T*.

We denote by tp = (Ip, Fp) the finite-type hereditary torsion theory on Mod-7*
corresponding to D.

Corollary 3.7. The definable subcategories D of T are in natural bijection with the
definable (= finite-type) hereditary torsionfree classes in Mod-T° and also with the
definable subcategories of Abs-T°.

Explicitly, to D correspond respectively the closure Fp of (yD) under submod-
ules, and Fp N Abs-TC. In the other direction, we simply apply y~', where y is the
restricted Yoneda functor.

Note the almost complete analogy of this with the bijection (see [Prest 2009,
12.3.2]) between definable subcategories of a module category Mod-R and the finite
type (= definable) hereditary torsionfree classes in (R-mod)-Mod = (R-mod, Ab),
equivalently with the definable classes of absolutely pure objects in (R-mod)-Mod =
(R-mod, Ab). One notable difference is that the image of a definable subcategory
of a triangulated category is “most” of the definable subcategory (yD) € Abs-7° of
modules, whereas in the module case it is all of the corresponding class of modules.
This reflects the lack of directed colimits in triangulated categories, but see [Laking
2020; Laking and Vitéria 2020] for some replacement using Grothendieck derivators
for the triangulated case.

The other notable difference is that the module case uses tensor product to embed
(fully and faithfully) Mod-R in (R-mod, Ab). Here we have somehow avoided that.
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We also record the equivalence at the level of pure-injectives.

Corollary 3.8. If D is a definable subcategory of T and Fp is the corresponding
hereditary torsionfree class in Mod-T¢, then the restricted Yoneda functor y induces
an equivalence

Pinj(D) >~ F N Inj-T¢

between the category Pinj(D) of pure-injective objects of T which lie in D and the
category F N Inj-T° of TC-injective modules which lie in F.

This gives some justification for our saying that the Yoneda image of a definable
subcategory D in Mod-7° constitutes “most of” the flat (= absolutely pure) objects
of the corresponding hereditary torsionfree class of finite type. For, every injective
in the class is in the image and every absolutely pure object in the class is a pure
(even elementary) submodule of an object in the image.

Note that the fact that the objects of D are the pure subobjects of the pure-
injectives in D exactly corresponds to the fact that the absolutely pure modules
in F are the pure submodules of the injective modules in F.

3C. Definable subcategories of Abs-T*. In Section 3A we associated to a defin-
able subcategory D of T three sets of morphisms, Anny<(D), Divy<(D) and D-Reg,
each of which determines D. In this section we identify the corresponding sets of
morphisms in mod-7° and the ways in which they cut out the hereditary finite type
torsion theory tp cogenerated by (yD) in Mod-T°.

We have the following from Section 3B.

Corollary 3.9. If T is a compactly generated triangulated category, then the
following are in natural bijection:
(1) The definable subcategories of T.
(ii) The definable subcategories of Mod-T° which are contained in (so are defin-
able subcategories of ) Abs-T° = Flat-T°.
(iii) The hereditary torsion theories on Mod-T° of finite type.
(iv) The Serre subcategories of mod-T°.

Given a definable subcategory D of T, let
Sp={G emod-T°:(G,yX)=0V X €D}

be the corresponding Serre subcategory of mod-7°. As noted in Section 3B, this
is the Serre subcategory (Ann7<(D))® of mod-7°, it lim-generates the finite type
hereditary torsion class 9p and tp = (9p, Fp) is the torsion theory corresponding
to D under (i)<>(iii) of Corollary 3.9.

If 7 is any hereditary torsion theory then a submodule L of a module M is
t-dense in M if M /L is torsion. Also, the t-closure, clly (L), of a submodule L
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of a module M is the maximal submodule of M in which L is t-dense, also
characterised as the smallest submodule L’ of M which contains L and is such that
ML’ is t-torsionfree. See [Stenstrom 1975] or [Prest 2009, §11.1] for details.

First we see that the annihilation, divisibility and regularity conditions with
respect to D translate directly to Mod-7°.

Proposition 3.10. Suppose that D is a definable subcategory of T and f : A — B
isin T¢. Then

(1) f € Anny<(D) ifand only if yX.yf =0 forall X € D;
(2) f € Divye(D) if and only if, for every X € D, yX is yf-divisible;

(3) f € D-Reg if and only if, for every X € D, if b’ : yB — yX is such that
b.yf =0thenb =0.

Proof. First we note that, in all three cases, it is enough for the direction (<)
to prove that f has the property (annihilation, divisibility, regularity) for X € D
pure-injective. That is because, if X € D, then f satisfies, say, X f = 0 if (indeed
if and only if) H(X) f = 0, where H (X) is the pure-injective hull of X. That is
because X is pure in (indeed is an elementary substructure of) its pure-injective
hull so, if a pp-pair is closed on H (X), then it will be closed on X (and vice versa).

(1) The defining condition for f to be in Anny<(D), namely that X f = 0 for all
X € D, certainly implies yX.yf =0 for all X € D. If, conversely, yX.yf = 0 for
all X € D, then take X € D and suppose we have b: B— X. Then y(bf)=yb.yf =0
so, by Proposition 1.4, bf = 0. Therefore X f =0, as required.

(2) If f € Divy<(D) and we have a’ : yA — yX, then we compose with the
inclusion of yX into its injective hull E(yX) = yH (X) (by Theorem 1.5) to get
a morphism a” : yA — yH (X) which, by Proposition 1.3, has the form ya for
some a : A — H(X). By assumption, and since H(X) € D, a factors through f,
say a = bf with b : B — H(X); therefore a” = yb.yf. Thus Ix,5(a” = xyp.yf)
is true in yH(X). Since yX is a pure submodule of yH(X) we deduce that
Jxyp(a’ = xyp.yf) is true in yX, that is, yX is yf-divisible. This gives (=).

For the converse, suppose that, for every X € D, yX is yf-divisible and take
X €D pure-injective and a : A— X. Then we have ya : yA — y X so, by hypothesis,
thereis b’ : yB — yX with b'.yf = ya. Since X is pure-injective, by Proposition 1.3
there is b : B — X such that b’ = yb, giving y(bf) = ya. By Proposition 1.4 it
follows that bf = a, showing that every pure-injective object in D is f-injective.
By the comments at the beginning of the proof and the fact that the divisibility
condition is expressed by closure of a pp-pair, it follows that every object of D is
f-injective, as required.

(3) The direction (<) follows immediately from Proposition 1.4. For the converse,
if f € D-Reg then take X € D to be pure-injective, and suppose b’ : yB — yX
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is such that ".yf = 0. By Proposition 1.3, " = yb for some b : B — X. That
gives y(bf) = 0 hence, by Proposition 1.4, bf = 0, hence, by assumption, b = 0,
so that " = 0. Thus f is regular on every pure-injective in D and so, since that is
expressed by closure of a pp-pair, f is regular on every X € D, as required. [

Set S, = {G° : G € Sp} to be the image of Sp € mod-7° in Coh(7) under the
antiequivalence 2.6. Note that, by definition of G — G°, S}, consists exactly of the
coherent functors F such that F X = 0 for every X € D, that is (Sp)° = Anny<(D).

Proposition 3.11. Suppose that D is a definable subcategory of T, let Sp be the
corresponding Serre subcategory of mod-TC. Denote by tp the corresponding
hereditary (finite-type) torsion theory in Mod-T*C. Let f : A — B be a morphism
inTC. Then

(1) f € Anny<(D) if and only if im(yf) € Sp,
(2) f € Divre(D) if and only if ker(yf) € Sp if and only if Fy € S},

(3) f € D-Regifand only if G y = coker(yf) € Sp, that is, if and only if im(yf)
is tp-dense in yB.

Proof. We use that X € D if and only if yX is (tp-)torsionfree, that is, if and only
if (Sp, yX) =0.

(1) If the image im(yf') is in Sp then, for every X € D, we have (im(yf), yX) =0
because yX is torsionfree. Therefore yX.yf = 0, for all X € D giving, by
Proposition 3.10, the implication (<). For the other direction, first note that
any morphism from im(yf) to yX extends to a morphism from yB to yX by
absolute purity (= fp-injectivity) of yX. If im(yf) were not torsion, there would
be a nonzero morphism from im(yf) to some torsionfree object which, for instance
replacing the object by its injective hull, we may assume to be of the form y X with
X € D. This would give a morphism a : yB — yX with af # 0, contradicting
Proposition 3.10.

(2) (=) By Proposition 3.10 we have that yX is yf-divisible for every X € D. If
ker(yf) were not torsion (that is, since, by local coherence of Mod-77¢, it is finitely
presented, not in Sp) then it would have a nonzero torsionfree quotient M. The
(torsionfree) injective hull of M would have the form y X for some pure-injective
X €D, yielding a morphism yA — y X which is not zero on the kernel of yf, hence
which cannot factor through yf — a contradiction.

For the converse, assume that ker(yf) € Sp. Then any morphism a’ : yA — yX
with X € D must be zero on ker(yf’), since yX is torsionfree. Therefore a’ factors
through im(yf). But y X is absolutely pure so, since im(yf) is a finitely generated
subobject of y B, that factorisation extends to a morphism 4’ : yB — yX. Thus we
have a factorisation of @’ through yf, and so y X is yf-divisible. By Proposition 3.10
that is enough.
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For the part involving S7,, we have f € Divy<(D) if and only if (f, X): (B, X) —

(A, X) is epi for every X € D if and only if coker(f, X) = 0 for every X € D, that
is, if and only if FyX =0 for every X € D and that, as noted above, is the case if
and only if Fy € Sp,.
(3) If im(yf) is not tp-dense in y B, there will be a nonzero morphism from yB
and with kernel containing im(yf) to a torsionfree object, hence to an object of the
form yX with X € D. Therefore yf is not yD-regular and so, by Proposition 3.10,
f is not D-regular.

For the converse, suppose that im(yf) is tp-dense in yB. Then, if b’ is a
morphism from yB to a torsionfree object and the kernel of b’ contains im(yf)
then, since the image of 4’ is torsion, we have »" = 0. Therefore every object in yD
is yf-torsionfree which, by Proposition 3.10, is as required. U

From this, Theorem 3.5 and the equivalences (4), we have the following, where
we apply the notations Ann, Div and Reg and their definitions to Mod-7° with, of
course, mod-7° replacing 7° as the subcategory of “small” objects. This is mostly
[Wagstaffe 2021, 5.1.4].

Theorem 3.12. Suppose that D is a definable subcategory of T, let Tp be the
corresponding finite-type hereditary torsion theory in Mod-T° and let Sp denote
the Serre subcategory of tp-torsion finitely presented T-modules.

Suppose that

is a distinguished triangle. Then

(1) f € Anny<(D) if and only if yf € Annpog-7<(yD) if and only if im(yf) € Sp;

(i1) g € Divy<(D) if and only if yg € Divyod-7<(yD) if and only if ker(yg) € Sp,
that is, if and only if Fy € Sp;

(iii) ©~'h € D-Reg if and only if the image of y(X~'h) is tp-dense in y(X~'C),
that is, if and only if Gx-1;, € Sp.

Furthermore, the conditions (1), (i1) and (iii) are equivalent.

3D. Model theory in definable subcategories. 1f D is a definable category, meaning
a category equivalent to a definable subcategory of a module category (over a ring
possibly with many objects), then the model theory of D is intrinsic to D, in the
following senses.

First, the notion of pure-exact sequence is intrinsic to D because an exact
sequence is pure-exact if and only if some ultraproduct of it is split-exact; see
[Prest 2009, 4.2.18]. Ultraproducts are obtained as directed colimits of products,
so definable categories have ultraproducts. Definable subcategories of compactly
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generated triangulated categories do not in general have directed colimits, so they
are not (quite) “definable categories” in this sense, though they are quite close; see
Theorem 2.16. Nevertheless, as we have seen, the restricted Yoneda functor asso-
ciates, to a definable subcategory D of a compactly generated triangulated category,
a definable subcategory of a module category which has the same model theory.

Question. Is the model theory of a definable subcategory D of a compactly gener-
ated triangulated category intrinsic, meaning definable just from the structure of D
as a category?

Second, the category [(D)®4" of pp-imaginaries for a definable subcategory D of
a module category Mod- R is equivalent to the Serre localisation [I_;qu /Sp, where Sp
is the Serre subcategory of coherent functors which annihilate D. We have the
same description for a definable subcategory of a compactly generated triangulated
category, via the restricted Yoneda functor. But neither of those descriptions is
intrinsic because both refer to a containing (module, or triangulated) category. In the
module case, there is an intrinsic description of [L(D)®4" as the category (D, A1~
of functors from D to Ab which commute with direct products and directed colimits.
For T itself, there is a similar description in [Krause 2002, 5.1] but we may ask
whether this extends to definable subcategories.

In any case, if D is a definable subcategory of a compactly generated triangulated
category 7T, then the category, L (D)%, of pp-imaginaries for D is the quotient of
L(T)%* by its Serre subcategory consisting of those pp-pairs which are closed on D.
In terms of the other forms of the category of pp-imaginaries given by Corollary 2.7,
L(D)®4" also has the following descriptions.

Proposition 3.13. If D is a definable subcategory of a compactly generated trian-
gulated category T, then the following categories are equivalent:

(i) The category, (D)4, of pp-imaginaries for D.
(i) Coh(T)/Anncon(r) (D).
(iii) mod-7°¢/Sp.

Note that the contravariant action of L(7)%" via (L(7)%")° ~ mod-7° act-
ing by G(X) = (G, yX) for G € mod-T° and X € T localises as the action of
mod-7¢/Sp on (Qp(yD)) = (Qp(yT)), where Op : Mod-T¢ — Mod-T°/Sp, is
the corresponding Gabriel localisation and the action is given by the same formula.
This places both the category of models and the category of imaginaries (the latter
contravariantly) into the same Grothendieck abelian category, just as in the module
case where we can use the tensor embedding; see [Prest 2009, §12.1.1].
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3E. Hom-orthogonal pairs on T and torsion theories on Mod-T°. A hom-ortho-
gonal pair’' on T is a pair (U, V) of subcategories with 2/ =V the torsion class and
V =U" the torsionfree class. Such a pair (4, V) is said to be compactly generated
if there is A € 7° such that V= AL ={Y € T: (A, Y) =0 VA € A}, in which case
U=1UH={ZeT:(Z, A)=0}; we say that A generates the hom-orthogonal
pair. Note that V is in this case definable, being given by the conditions that each
sort (A, —) for A € A is 0, that is, all the pp-pairs x4 =x4/x4 =0 for A € A are
closed on V.

Proposition 3.14. Suppose that (U, V) is a hom-orthogonal pair in T, compactly
generated by A C TC. Let vy = (9, Fy) denote the finite-type hereditary torsion
theory on Mod-T* corresponding (Corollary 3.7) to the definable subcategory V.
Let Ser(y.A) denote the Serre subcategory of mod-T°¢ generated by yA.

Then %y = Ser(y.A) and Fy = (yA)* = {M € Mod-T*: (yA, M) =0 VA € A}.

Proof. This follows from what we have seen already; we give the details. Since
(A, V) =0, it follows by Proposition 1.4 that (y.A, yV) = 0, so Ser(y.A) C H.
Hence Fy = (%)* C (Ser(yA)* = (y.A)* (equality since 7y is of finite type).
If, conversely, M € (yA)*, then so is E(M), which has the form yN for some
pure-injective N € 7. By Proposition 1.3 (or Proposition 1.4), (A, N) =0 and
hence N € V, so E(M), and hence M is in Fy. Thus 7, = (y.A)* and hence also
—_—
P = Ser(yA). O

By Corollary 3.7, every finite-type hereditary torsion theory (7, F) on Mod-T*¢
gives rise to a hom-orthogonal pair in 7, namely (+D, (*D)+) where D = y~' F.
If this hom-orthogonal pair is compactly generated, by A say, so (+D)+ = At is
definable, then it follows from the above that 7 = (y.A)* and hence D =y~ F =
y~1((y A1) = At (by the bijection 3.7) = (- D)*. But in general not every finite-
type hereditary torsion class in Mod-7° arises from a hom-orthogonal pair in 7 in
this way. Indeed, since, for A € T¢, yA is a projective 7°-module, and all of the
finitely generated projectives in Mod-7 ¢ are of this form, we have the following,
where we denote by yy the hereditary (finite type) torsion theory generated by (that
is, with torsion class generated by) yX.

Corollary 3.15. There is a natural injection (U, V) +— vy from the set of compactly
generated hom-orthogonal pairs in T to the set of hereditary torsion theories of
finite type on Mod-T¢.

The image is the set of hereditary torsion theories where the torsion class is
generated by a set of finitely generated projectives.

211y the context of triangulated categories, the term “torsion pair” is used for a stronger concept;
see [Stovitek and Pospisil 2016, §3].
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Thus we have an embedding of the lattice of compactly generated hom-orthogonal
pairs in 7 into the lattice of finite type hereditary torsion theories on Mod-7° (the
ordering in each case being by inclusion of torsion classes), and the latter is isomor-
phic to the lattice of definable subcategories of 7. The definable subcategories, D,
of 7 occurring as V in a compactly generated hom-orthogonal pair (U4, V), are, by
Proposition 3.11(1), those for which the corresponding annihilator ideal Anny<(D)
of T°¢ is generated as such by objects (that is, by identity morphisms of some
compact objects).

Note also that, if D is a definable subcategory of 7 which occurs as V in a com-
pactly generated hom-orthogonal pair (U4, V), and if (.7, F) is the corresponding, in
the sense of Corollary 3.7, torsion theory 7p, then we always have U/ C y~'.7. That
is because .7 = +(F NInj-7°) and because each object of F NInj-7° has the form
yN for some pure-injective N € V and then (U, N) = 0 implies, by Proposition 1.3,
that (yU, yN) =0, so y € .7. For equality, Y € y~'.7 —that is, yy = Tp — we
need, by the argument just given, that 2/ = ~(V N Pinj(7)). That is, equality holds
if and only if the hom-orthogonal pair (U, V) is cogenerated by pure-injectives. For
instance, if (U, V) is a t-structure with V definable, then this will be the case; see
[Angeleri Hiigel and Hrbek 2021, 2.10; Saorin and Stovitek 2023, 8.20] and also
Proposition 3.19 below.

For more about this and TTF-classes in compactly generated triangulated cate-
gories, see [Wagstaffe 2021, Chapter 8].

3F. Spectra. By a definable (additive) category we mean a category which is
equivalent to a definable subcategory of the category of modules over some (possibly
multisorted) ring. Every definable additive category C is determined by its full
subcategory of pure-injective objects (by [Prest 2009, 5.1.4] or, more intrinsically,
by [Prest 2012a, §3.2]). Indeed, every definable category is determined by the
indecomposable pure-injective objects in it (e.g., see [Prest 2009, 5.3.50, 5.3.52]).
The Ziegler spectrum, Zg(C), also written Zg, in the case C = Mod-R, is the set,
pinj(C), of isomorphism classes of indecomposable pure-injectives in C endowed
with the topology which has, for a basis of open sets, the

(¢/¥) ={N €pinj(C) : ¢(N) > ¥ (N)}

as ¢/ ranges over pp-pairs (in any suitable language for C). These are exactly the
compact open sets in Zg(C); see [Prest 2009, 5.1.22].

Every definable subcategory D of a definable category C is determined by the
set pinj(D) = D N pinj(C) of indecomposable pure-injectives in D, hence by the
closed subset Zg(D) =D NZg(C) of Zg(C), and every closed set in Zg(C) is of the
form Zg(D) for some definable subcategory D of C; see [Prest 2009, 5.1.1].
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Krause [2000] showed how this carries over to compactly generated triangulated
categories 7. The Ziegler spectrum, Zg(T), of T is defined to have, for its points,
the (isomorphism classes of) indecomposable pure-injectives. As for definable
subcategories of module categories, there are many equivalent ways of specifying
a basis of (compact) open sets on this set of points, including the following (the
second by Theorem 2.15):

(¢/¥) ={N € pinj(T) : $(N) /¥ (N) # 0} for ¢/ a pp-pair;
{N € pinj(T) : anny (f) # 0} for f a morphism in 7°;
(F)={N epinj(T) : FN # 0} for F € Coh(T).

There are other topologies of interest here. First consider the case where R is
commutative noetherian. Then the subcategory, Inj-R, of injectives in Mod-R is
definable (see [Prest 2009, 3.4.28]) and the corresponding closed subset of Zg, is
just the set, inj g, of indecomposable injective R-modules. For such a ring the set
inj, may be identified [Gabriel 1962], see [Prest 2009, §14.1.1], with Spec(R) via
P+— E(R/P), where P is any prime ideal of R and E(—) denotes injective hull.
However, the Ziegler topology restricted from Zgj to inj, induces, via the above
bijection, not the Zariski topology on Spec(R) but its Hochster dual [Prest 1988b,
pp. 104-105]. Recall that the Hochster dual of a topology has, as a basis (on the same
set of points), the complements of the compact open sets in the original topology.

That fact inspired the general definition [Prest 1993, pp. 200-202] of the dual-
Ziegler (or “rep-Zariski”) topology on pinj(C) for any definable category C, as
the Hochster-dual of the Ziegler topology.?? So this dual topology has the same
underlying set, pinj(C), and has, for a basis of open sets, the complements

[¢/¥]1=2gC)\ (@/¥)

of the compact Ziegler-open sets.

If C is a locally coherent category, in particular if it is Mod-R for a right coherent
ring (possibly with many objects), then®? the absolutely pure objects form a definable
subcategory with corresponding closed subset of Zg(C) again being the set inj(C)
of (isomorphism types of) indecomposable injectives in C. This set carries a
(Gabriel-)Zariski topology which has, for a basis of open sets, those of the form

[A]={E €inj(C) : (A, C) =0}

22These spaces are, however, unlike those in Hochster’s original definition, not spectral, and it
is not always that case that the Ziegler topology is returned as the dual of the dual-Ziegler topology
[Burke and Prest 2002, 3.1]

23For module categories, this goes back to [Eklof and Sabbagh 1971], see [Prest 2009, 3.4.24]; the
general case is proved the same way and also follows from, for example, [Prest 2011a, Chapter 6].
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for A a finitely presented object of C. Thus we extend the domain of applicability
of the category-theoretic reformulation [Gabriel 1962; Roos 1961] of the definition
of the Zariski topology on a commutative coherent ring. For such a category C
the Gabriel-Zariski topology coincides with the dual-Ziegler topology restricted to
inj(C) [Prest 2009, 14.1.6].

We may compare these topologies over a commutative coherent ring R where, in
general, the map P — E(R/P) is only an inclusion of Spec(R) into injp, because
there may be indecomposable injectives not of the form E(R/P), e.g., [Prest 2009,
14.4.1]. The inclusion, nevertheless, is a topological equivalence — an isomorphism
of frames of open subsets: every indecomposable injective is elementarily equivalent
to, hence topologically equivalent to, a module of the form E(R/P) with P a prime;
see [Prest 2009, 14.4.5]. So, for commutative coherent rings, we may consider
these various topologies as topologies on Spec(R) and, so considered, the Ziegler
topology coincides with the Thomason topology, which is defined to be the Hochster-
dual of the Gabriel-Zariski topology [Garkusha and Prest 2008]. That is, the Ziegler
topology has, for its open sets, those of the form | J, (R/I)) with the I, finitely
generated ideals of R, where

(R/L,) = {N € pinjg : (R/I,, N) #0} = (xI;, = 0/x = 0).

In terms of sets of primes, the Ziegler-open sets have the form | J, V (1) with the I,
finitely generated.”* These various topologies are compared in [Prest 2012c, §6].

The discussion above applies to the locally coherent category Mod-7°. As we
have seen in Theorem 1.5, the restricted Yoneda functor y induces an equivalence be-
tween the category, Pinj(7), of pure-injective objects of 7 and the category, Inj-7°,
of injective right 7°-modules. Indeed, this gives a homeomorphism of spectra.

Theorem 3.16. Suppose that T is a compactly generated triangulated category.
Then y : T — Mod-T°¢ induces a bijection between pinj(T) and injT*. This is a
homeomorphism between Zg(T) and Zg(Abs-T° = Flat-T°) (the latter can also
be regarded as inj . with the Thomason topology) and is also a homeomorphism
between the dual-Ziegler spectrum Zar(T) of T and inj- if the latter is equipped
with the Gabriel-Zariski topology which has, for a basis of open sets, the sets
[G]={E €Inj-T°: (G, E) =0} for G € mod-T*.

Since closed subsets of the Ziegler spectrum are in natural correspondence with
definable subcategories, this homeomorphism underlies the bijection (Corollary 3.7)
between definable subcategories of 7 and finite-type hereditary torsionfree classes
in Mod-7°. That also reflects the fact that a finite-type hereditary torsion theory is

2For a general commutative ring, the Ziegler topology on inj is finer, having open sets of a
similar form but with pp-definable ideals replacing finitely generated ideals; in coherent rings the
pp-definable ideals coincide with the finitely generated ideals; see [Prest 2012c, §6].
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determined by (it is the torsionfree class cogenerated by) the set of indecomposable
torsionfree injectives (see [Prest 2009, 11.1.29]). We have already, in Section 3E,
considered the part of this correspondence coming from compactly generated hom-
orthogonal pairs in 7, and we will also, in Section 4A, look at how the Balmer
spectrum fits into this picture in the case that 7 is tensor-triangulated.

3G. Triangulated definable subcategories. In this section we consider the defin-
able subcategories D of 7 which are triangulated, that is, shift-closed (if X € D,
then X € D) and extension-closed, where by extension-closed we mean that, if
X - Y — Z — XX is a distinguished triangle with both X and Z in D, then also
Y € D. First, some remarks on extending definable subcategories to shift-closed
definable subcategories.

If D is a definable subcategory of 7 then each shift £/D is definable (e.g., see
[Wagstaffe 2021, 6.1.1]). We can define the shift-closure of D to be the definable
closure of | J;c; 'D. That this is, in general, larger than Add*({J,c, ='D)
(™ denoting closure under pure submodules) is shown by the following example.

Example 3.17. Consider the derived category Dy = D(Mod-k[€]), of the category
of modules over k[e] = k[x]/(x?). Let D be the subcategory of Dy[e] consisting of
complexes which are 0 in every degree i < 0. Then D is a definable subcategory,
defined by the conditions (k[€][i], —) = O (i < 0), where k[€] here denotes the
complex with k[€] in degree 0 and zeroes elsewhere.

The union of the (left) shifts of D contains only complexes which are bounded
below and so the additive closure of the union | J; Zg(%/D) of the Ziegler-spectra of
these shifts does not contain, for example, the doubly infinite complex which has k[¢€]
in each degree and multiplication by € for each of its maps. But that indecomposable
pure-injective complex belongs to the Ziegler-closure of | J; Zg(X'D), indeed it is
in the Ziegler-closure of the set of complexes obtained from it by replacing k[¢]
by 0 in every degree < i for some i; this is proved in [Han 2013, §3.4] and, in
greater generality, in [Arnesen et al. 2017, §6, §4].

In contrast, if we were to take D to be the image of Mod-k[¢] consisting of
complexes concentrated in degree 0, then the additive closure of the union of the
shifts of D is definable. That follows because every object in the definable category
generated by that union is finite endolength, so the Ziegler closure contains no new
indecomposable pure-injectives (e.g., see [Prest 2009, 4.4.30]).

Thus, if X is a closed subset of the Ziegler spectrum of 7, it may be that |_J; X
is not Ziegler-closed.

It is the case, see [Wagstafte 2021, 6.1.10], that, if points of Zg(7) are identified
with their shifts and the set of equivalence classes is given the quotient topology,
then this is topologically equivalent to the space based on pinj(7) which has, for
its closed sets, those of the form D N pinj(7) where D is a shift-closed definable
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subcategory of 7. The first example in Example 3.17 shows that the projection map
taking a point of the Ziegler spectrum of 7 to its shift equivalence class need not be
closed (the complexes in that example are endofinite, hence Ziegler-closed points).

Further Ziegler-type topologies on pinj(7) are obtained by using positively-
(alternatively, negatively-) shift-closed definable subcategories of T; see [Wagstafte
2021, §6.1]).

A triangulated subcategory B of 7T is smashing if it is the kernel of a Bousfield
localisation ¢ : 7 — T~ for which the left adjoint to ¢, including 7/ = 7 /B into T,
preserves coproducts. Hom-orthogonality gives a bijection between the definable
subcategories which are triangulated and the smashing subcategories of 7.

Theorem 3.18 ([Krause 2005], see [Wagstaffe 2021, 5.2.10]). If D is a triangulated
definable subcategory of the compactly generated triangulated category T, then
B = 1D is a smashing subcategory of T and D = B+, so (B, D) is a torsion pair.
Every smashing subcategory of T arises in this way.

Proposition 3.19 [Krause 2000, 3.9, Theorem C]. Suppose that B is a smashing
subcategory of T and D = B is the corresponding triangulated definable subcate-
gory. Then B =y~ Ip, where Ip = Sp is the torsion class for the torsion theory
yp = Tp generated by yBB, equivalently cogenerated by yD.

Corollary 3.20. If D is a triangulated definable subcategory of T, and Ip is the
corresponding hereditary torsion class in Mod-T¢, then y~' 7p = 1D is a (typical)
smashing subcategory of T.

One says that 7 has the telescope property if, for each smashing subcategory B,
the torsion pair (B, D) is compactly generated, equivalently, Corollary 3.15, if the
Serre subcategory Sp = Zp N mod-7° is generated by projective (= representable)
objects; see [Krause 2000, Introduction].

3H. Elementary duality. If R is any skeletally small preadditive category (=
multisorted ring), then there is a duality — elementary duality, [Prest 1988a; Herzog
1993], see [Prest 2009, §§1.3, 10.3] — between the category of pp-pairs for right
R-modules and the category of pp-pairs for left R-modules. This duality induces
a natural bijection between the definable subcategories of Mod-R and R-Mod,
[Herzog 1993, 6.6] see [Prest 2009, §3.4.2].

In particular this applies with R = 7°¢. Because the model theory of T is
essentially that of Flat-7° = Abs-T° inside Mod-T ¢, it follows that we have a version
of elementary duality between 7 and the definable subcategory 7°-Abs = 7°-Flat
of 7°-Mod. In particular, elementary duality gives a natural bijection between the
definable subcategories of 7 and those of 7°-Flat.

With the module situation in mind, it is natural to ask whether there is a compactly
triangulated category 7; such that 7 >~ (7°)°P and hence an elementary duality
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between the model theory of 7" and the model theory of 7; via Mod-7,° ~ 7°-Mod.
This situation is considered in [Garkusha and Prest 2005, §7]. In particular, if 7 is
the derived category of modules over a ring then this is so, [Garkusha and Prest
2005, 7.5], see also [Angeleri Hiigel and Hrbek 2021]; more generally it is so if 7
is an algebraic triangulated category, [Bird and Williamson 2022].

Question. If 7 is a compactly generated triangulated category, is there a triangulated
category 77 and an elementary duality between 7 and 7;? If such a category T;
exists, is it essentially unique?

By “an elementary duality” we mean at least a natural bijection between definable
subcategories, probably also an antiequivalence between the respective categories
of pp-sorts, perhaps also a duality at the level of pp formulas. See the remarks in
Section 2E about enhancements.

This also raises some further general questions.

Questions. What is a characterisation of the categories which arise as 7° where
T is compactly generated triangulated? Given such a category, does it come from
a unique compactly generated triangulated category 7 ? and, if so, how can 7 be
constructed from it? In particular is (7°)° of the form 7 for some compactly
generated triangulated category 7;?

These seem to be hard questions to answer; they include the, only partly resolved,
Margolis conjecture in the case that 7 is the stable homotopy category of spectra.

If 7 is the derived category Dr = D(Mod-R) of some ring R, we do get a
good elementary duality between Dg and Dger = D(R-Mod). This follows because
the duality (proj-R)°P — proj-R°P between the categories of finitely generated
projectives given by P — (P, R) extends to the respective categories of perfect com-
plexes, that is, to a duality (—)": (D%)°P > Diop, see [Garkusha and Prest 2005, §7;
Angeleri Hiigel and Hrbek 2021, §2.2]. In these papers, R is a 1-sorted ring but
the arguments also apply if R is a skeletally small preadditive category. In [Bird
and Williamson 2022, §3.2] this is extended to algebraic triangulated categories
via dg-enhancements. We will, in Section 4B, describe an internal duality, from
[Wagstaffe 2021, Chapter 7] in the tensor-triangulated case. If R is commutative,
s0 Dg =~ Dgop, the duality in [Angeleri Hiigel and Hrbek 2021] does coincide
([Wagstaffe 2021, 7.3.5]) with the internal duality described in Section 4B.

For details, we refer the reader to those papers; in particular, the generalisation in
[Bird and Williamson 2022] to algebraic triangulated categories uses enhancements
(see Section 2E), which we don’t go into here (also see [Laking and Vitéria 2020]
for related use of enhancements). For an abstract approach to dualities between
triangulated categories, see [Bird and Williamson 2022].
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We continue a little further in the case that 7 is the derived category Dg of a
module category. If D is a definable subcategory of Dg, then we have the corre-
sponding annihilator ideal Annpe (D). Set (Annpe (D))" = {f*: f € Annpe (D)},
where (—)': (D%)P ~ D is the duality from the previous paragraph. Then,
[Angeleri Hiigel and Hrbek 2021, 2.3], (Annpe, (D))! is an annihilator ideal of D'op-
We set D4 = Annp,, ((Annp, (D))" and refer to this as the definable subcategory
of Drov elementary dual to D. The terminology is further justified by the following,
which refers, using the obvious notations, to the other ways of specifying definable
subcategories.

Proposition 3.21 [Angeleri Hiigel and Hrbek 2021, 2.2-2.5]. If D is a definable
subcategory of Dg and DY is its elementary dual definable subcategory of Dgov,
then:

Annpe (DY) = (Annps, (D))", Divpe (DY) = (D-TF)',  D'-TF = (Divps, (D))"

Proof. The first is by definition and [Angeleri Hiigel and Hrbek 2021, 2.3]. For the
others consider f € Annpe (D) and form the extended triangle

B Il sl Eh 4 S g ch vy

then dualise it:
(TA) =z 1At M ot & gt Ly At 20 5 ov 28 5t
Then we use the equivalences (4) from Section 3A, namely:
Xf=0 < g|X < annx(Z"'h)=0.
From that we directly obtain the other two equalities. (|

We also have, just as for definable subcategories of module categories, that the
category of pp-pairs for D¢ is the opposite to that for D. The latter is equivalent to
mod-D% /Sp, where Sp={G : (G, yX) =0 VX € D}. WesetdSp={dG : G € Sp},
where d is the duality of Corollary 2.4.%

Proposition 3.22. If D is a definable subcategory of Dg and D is its elementary
dual definable subcategory of Dgo, then

SDd = dSD
Hence
L9 (DY) = (Do) -mod/Spa == (mod-Dfy /Sp) ™ = (L9 (D))°®.

250ne can set up duality at the level of pp formulas but it’s duality of pp-pairs which we really need.
Also see Section 4B for the issues re well-definedness/independence of enhancements which arise.



MODEL THEORY IN COMPACTLY GENERATED TRIANGULATED CATEGORIES 187

This is a special case of [Garkusha and Prest 2005, 7.4] which deals with the
general case of pairs, 7, 71, of compactly generated triangulated categories with
T >~ (T°)P, also showing that, in this situation, we have a frame isomorphism
between Zg(7T) and Zg(T1).

It is shown in [Angeleri Hiigel and Hrbek 2021] that, for derived categories
of module categories, elementary duality has the same relation to algebraic Hom-
dualities as in the case of definable subcategories of module categories. In [Bird
and Williamson 2022] this is treated in a very general way and a variety of specific
examples, from algebra and topology, are given.

4. Tensor-triangulated categories

Suppose now that the compactly generated triangulated category 7 has a monoidal,
that is a tensor, structure. So we have ® : 7 x 7 — 7, which we assume to
be commutative as well as associative, for which we have a tensor-unit 1 —so
1® X ~ X forevery X € T. We assume @ to be exact in each variable. We drop
explicit mention of associators et cetera; see for instance [Levine 1998, Part II] for
more background.

We suppose that 7 is rigidly-compactly generated. That is, we assume in addition

« that the tensor structure is closed, meaning that there is an internal hom
[—, —]:7 xT — T which is right adjoint to ®: (X ®Y, Z) >~ (X, [, Z]) for
X,Y,Z €T, in particular (Y, Z) >~ (1, [Y, Z]); and,

o writing XV = [X, 1] for the dual of an object X € 7, we assume that every
compact object A is rigid, meaning that the natural map AY ® B — [A, B] is
an isomorphism for every B € T°.

It follows that 7°¢ is a tensor-subcategory of T (i.e., is closed under ®), that
(AV)Y >~ A, that AY @ X >~ [A, X] for X € T and A € T°, and that the duality
functor (—)" is exact (e.g., see [Stevenson 2018, §1, 2.12]).

The monoidal structure on 7°¢ induces, by Day convolution (see [Balmer et al.
2020, Appendix]), a right-exact monoidal structure on mod-7° and hence on
Mod-T°. By definition we have y(A ® B) ~ yA ® yB for A, B € T° and, see
[Balmer et al. 2020, A.14], the restricted Yoneda functor y : 7 — Mod-7°¢ is
monoidal. The duality (Theorem 2.6) between mod-7°P and Coh(7") is monoidal
if the latter is given the natural tensor structure (see [Wagstaffe 2021, §5.1]).

We say that a definable subcategory D of T is tensor-closed if, for every X € D
and Y € T, we have X ® Y € D. It is sufficient, see below, that this be so for every
Y € T¢. The theorem below says that this tensor-closed condition is equivalent to
corresponding requirements on the associated data. We write f ® A for f ®id4
if f is a morphism and A an object.
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Theorem 4.1 [Wagstaffe 2021, 5.1.8]. Suppose that T is a rigidly-compactly gen-
erated tensor-triangulated category. Then the following conditions on a definable
subcategory D are equivalent:

(1) D is tensor-closed.
(ii) X €eDand A € TC implies X ® A € D.
(iii) If f € Anny<(D) and A € TC, then f ® A € Anny<(D).

(iv) The corresponding Serre subcategory Sp of mod-T°C is a tensor-ideal of
mod-7° (it is enough that it be closed under tensoring with representable
functors yA with A € T°).

(v) The corresponding Serre subcategory Anncon)(D) = S3, of Coh(T) is a
tensor-ideal of Coh(T) (it is enough that it be closed under tensoring with
representable functors (A, —) with A € T°).

A stronger condition on a definable subcategory D of T is that it be a tensor-ideal
of 7, meaning that it is tensor-closed and triangulated. The corresponding, in the
sense of Theorem 4.1, annihilator ideals and Serre subcategories are characterised in
[Wagstaffe 2021, 5.2.14]. The additional condition on Anny<(D) is that it be exact
and the additional condition on Sp is that it be perfect; these conditions come from
[Krause 2005]; see [Wagstaffe 2021, §5.2] for the detailed statements. Furthermore,
the tensor version of Theorem 3.18 is true: the triangulated tensor-closed definable
subcategories of 7 are in bijection, via torsion pairs, with the smashing tensor-ideals
of 7 [Wagstaffe 2021, 5.2.14].

Wagstaffe [2021, Chapter 6] defined and investigated various coarsenings of
the Ziegler topology on pinj(7), in particular, the tensor-closed Ziegler spectrum,
Zg®(T), which is obtained by taking the closed subsets to be those of the form
D Npinj(T), where D is a tensor-closed definable subcategory of 7.

4A. Spectra in tensor-triangulated categories. A prime of the tensor-triangulated
category 7 is a (thick) tensor-ideal P of 7°¢ such thatif A, Be T°and A® B € P,
then A or B is in P. The Balmer spectrum [2005], Spc(T°) or just Spc(7T), consists
of these primes, with the topology which has, for a basis of open sets, those of the
form

U(A) ={P eSpc(T) : A € P}

for A € T¢. This is a spectral space and we may also consider, as in Section 3F,
the Hochster-dual, or Thomason, topology on the same set, which is defined by
declaring that the U (A) generate, under finite union and arbitrary intersection, the
closed sets. Both these topologies are natural and have their uses in various contexts;
see, for instance, [Balmer 2020a].
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There are various routes by which Spc(7") and inj-7°¢, and also the homological
spectrum, Spc”(7), from [Balmer 2020b], with their various topologies, may be
connected; see in particular [Bird and Williamson 2023] and references therein. We
also have the following.

To a point P of Spc(7) we can associate the finite type hereditary torsion theory
yp = (S;:, (yP)1) on Mod-T (see Section 3E) whose torsion class is generated as
such by yP, that is, the torsion class is the lim-closure of the Serre subcategory Syp
generated by yP.

By [Balmer 2020b, 3.9] this gives an injection of the lattice of Balmer primes into
the lattice of finite-type hereditary torsion theories, the latter ordered by inclusion
of torsion classes. For, if P C Q is a proper inclusion of Balmer primes, then,
by Balmer’s result, there is a maximal Serre tensor-ideal B of mod-7° such that
P = y~!B. Certainly Syp C B so, if we had Syp = Syg, then we would have
yQ C B and hence a contradiction.

Further, each finite type hereditary torsionfree class F is determined by its
intersection with inj, see [Prest 2009, 11.1.29], and the resulting sets 7 N inj<
are the closed sets in the Ziegler topology on inj,. (see [Prest 2009, §14.1.3]). So,
to a Balmer prime P, we also have the associated Ziegler-closed set (yP)* N inj.
Note that this association is inclusion-reversing.

If A € T° then we have

PeUA) < AcP < yAecS,y, < (P C(A™

The second equivalence is by the argument just made. Note that (yA)* N inj
is the complement of the basic Ziegler-open subset of inj;,. that is defined by
(yA, —) # 0, hence it is basic open in the dual-Ziegler topology.

For instance, if R is commutative noetherian, then the above essentially gives the
embedding (see [Balmer 2005; Garkusha and Prest 2008]) of Spc(DII);’ﬁ) with the
Thomason topology into the frame of Ziegler-open subsets of Spec(R), the latter
being isomorphic, as a lattice, to the opposite of the lattice of finite type hereditary
torsionfree classes of R-modules.

4B. Internal duality in tensor-triangulated categories. In [Wagstaffe 2021, Chap-
ter 7] an internal duality for rigidly-compactly generated tensor-triangulated cate-
gories 7 is defined. In this respect it is somewhat similar to elementary duality in
the case that R is a commutative ring, since then the categories of right and left
R-modules are naturally identified and so, in that particular context, elementary
duality is an internal duality on Mod-R. Indeed, for a commutative ring R and the
derived-tensor structure on the derived category Dg, this internal duality coincides
with elementary duality, [Wagstaffe 2021, 7.3.5].
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The internal duality for rigidly-compactly generated tensor-triangulated 7 comes
from the second author’s thesis [Wagstaffe 2021] and it was also discovered
independently by Bird and Williamson [2022]. In [Wagstaffe 2021] it is defined in
terms of cohomological ideals, Serre subcategories and definable subcategories; here
we note that it can also be defined at the level of formulas and pp-pairs. We continue
to assume that 7 is a rigidly-compactly generated tensor-triangulated category.

Just as for the “external” duality, we can define the duality using a hom functor
to an object but, in this case, we use the internal hom functor: for A € 7°, consider
A—[A, 1]~ AV ® 1>~ AY. Similarly, internal duahty (=) =[—, 1] applied to a
morphism A L BinTe gives the morphism B L5 AV in T©. Since T is rigidly-
compactly generated, we have that (—)" is an antiequivalence (7°)°° >~ 7° with
(—)V" naturally equivalent to the identity functor on 7° (see [Stevenson 2018, 1.4]).
We also apply these notations to arbitrary objects and morphisms of 7.

Given a definable subcategory D of 7, with associated annihilator ideal Anny< (D),
we define its internal dual definable subcategory of 7 to be DY =Anns(Anny<(D)"),
where we set AV ={f": f € A} for A a collection of morphisms in 7.

Proposition 4.2 (mostly [Wagstaffe 2021, §7.1]). Suppose that T is a rigidly-
compactly generated tensor-triangulated category, let D be a definable subcategory
and consider its elementary dual definable subcategory DY. Then (Annr<(D))" is
an annihilator ideal, (DV)Y =D and

Ann7<(DY) = (Ann<(D)"), Divye(DY)=(D-TF)", DY-TF= Divy(D))".

Proof. The proof is very similar to that of Proposition 3.21, using [Garkusha and
Prest 2005, §7] to get the first statements. For the last two, consider f € Anny<(D)
and form the extended triangle

Y B Z wlc Zh 4 L, s ol ona

then dualise it:

(TAY = 1AV I ov &, gy L 4v B s ov 287 5 gv,
Then apply equation (4) from Section 3A. (]

This internal duality can also be given by a duality operation on pp formulas and
pp-pairs. This is defined exactly as one would expect from the abelian/modules
case. Namely, if ¢(xp), being Ixp (xpf = xp f'), is a typical pp formula, where
f:A— Band f': A— B arein T¢, then we define the dual pp formula, ¢" (xpv)
tobe Iyav (yav ¥ =xpv A yav [V =0p). In particular, the dual of the pp formula
xpf =0,where f: A— B,is f"|xgv and the dual of f'|xp is xgv f"V =0.

The dual of a pp-pair ¢/ is then defined to be ¥V /¢ V.
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Note that what we have defined here is an internal duality on pp formulas in
the language for (right) 7°-modules. There is a subtlety, which is pointed out
in [Wagstaffe 2021]. Namely, two pp formulas might be equivalent on 7 — that
is, have the same solution set on every object of 7 — yet their duals might not be
equivalent. Indeed, we might have pp formulas ¢, ¢ with ¢ (X) = ¢1(X) for every
X €T, yet with ¢V (X) # ¢,'(X) perhaps even for every X € 7T since these might
be definable subgroups of distinct sorts — see [Wagstaffe 2021, Example 7.1.4].
Nevertheless ¢V and ¢1V will define isomorphic coherent functors, meaning that
the pairs ¢ (x)/(x = 0) and qblv (x1)/(x; = 0) will be isomorphic in the category
L(T)%* of pp-imaginaries for 7. More generally, if ¢/v is a pp-pair with ¢;
equivalent to ¢ and V| equivalent to ¥, then the pp-pairs ¥ /¢ and v/," /¢p,” might
be distinct but they will be isomorphic; in particular for every X € T, we will have
¥V (X)/¢"(X)=0if and only if " (X) /¢, (X) = 0. That follows from [Garkusha
and Prest 2005, 7.4], cf. Proposition 3.22, indeed it follows that there is an induced
anti-isomorphism of the category L(7)%" with itself.

We give some more detail; see also [Wagstaffe 2021, Chapter 7]. Since we have
a duality (—)Y : (T9)°P — T°¢ we have, by [Garkusha and Prest 2005, 7.4], an
equivalence mod-7° — 7 °-mod which is given by taking

G =coker((—, f): (=, A) — (=, B)),
where f: A — B, to
Fpv =coker((f”, =) : (A", =) = (B, -)).

We also have the duality 7°-mod(~~ Coh(7)) — (mod-7°)°? which takes F ;v to
(FfV)<> CH— (FfV, (Cc,-)) for C € T.

Composing these, we have a duality mod-7° — mod-7° which takes G ¢ to
(F¢v)°. In view of the exact sequence (3)

0— (Fp)° = (=, BY) =L (—, AY) = Gpv — 0

we can formulate this as follows.

Proposition 4.3. Suppose T is a rigidly-compactly generated tensor-triangulated
category. Then there is a duality on mod-T° which is given on objects by G y
ker(—, fY), where (—)" is the duality on T*.

The next result follows directly from [Bird and Williamson 2022, 6.12] (also
[Angeleri Hiigel and Hrbek 2021, 2.3] in the case 7 = Dg, R commutative).

Proposition 4.4. Suppose T is a rigidly-compactly generated tensor-triangulated
category and let D be a definable subcategory. Then the definable subcategory of T
generated by the collection of objects {X" : X € D} is exactly the dual definable
subcategory D"
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There is potential ambiguity in the notation DY — we have defined it to be the
dual definable subcategory but it would also be a natural notation for {X" : X € D}
but the latter, a subclass of DV, is not in general all of the definable category D" (it
might not be closed under pure subobjects).

Tensor-closed definable subcategories are self-dual.

Theorem 4.5 [Wagstaffe 2021, 7.2.2]. If D is a tensor-closed definable subcategory
of a rigidly-compactly generated tensor-triangulated category, then D is self-dual:
DY =1D.

4C. Internal Hom interpretation. We finish by pointing out some more ideals
of T° associated to a definable category D in the rigidly-compactly generated
tensor-triangulated context. They appear (along with their rather provisional names)
in the statement of the next result.

Proposition 4.6. Suppose T is a rigidly-compactly generated tensor-triangulated
category and let X C T. We define the tensor-annihilator of X':

Q-ann X ={f:a—>beT : fRX=0:a® X >bRX VX € X},
the internal-hom-annihilator of X
[ann]X ={f:a—>beT :[f, X]=0:[b, X]— [a, X] VX € X},
the tensor phantomiser of X
®-phany X ={f:a>beT : f®X:a®X — b® X is phantom VX € X},
and the internal-hom-phantomiser of X
[phan]7 X ={f:a—>be T :[f, X]:[b, X] — [a, X] is phantom VX € X}.

All these are ideals of T and the tensor-annihilator and internal-hom-annihilator
are dual ideals:

(®-anny<X)" = [ann] X
Moreover, the tensor phantomiser and internal-hom-phantomiser coincide (we

could call this the phantomiser) and are equal to the annihilator ideal of the

smallest tensor-closed definable subcategory (X)® containing X

®-phany.X = [phan]r<X = Annye (X)%.
Thus this is also the annihilator ideal generated by each of @-annye X and [ann]y<X

Proof. Forevery X e T, A@ X £2% B® X is (isomorphic to) AVY @ X L BV ® X
and henceis[AY, X] 5> /7. X] ~—=5[BY, X]. Thus, the condition f®X=0:AQX - BRX
is equivalent to the condition [f¥, X] =0 :[AY, X] — [BY, X] and we have
®-anny<X = ([ann]7X)".
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For the other parts, we have f € ®-phan, X if and only if for every c € T we
have (¢, f ® X) =0, thatis (f", ¢V ® X) = 0 which, since every compact object is
a dual, is equivalent to fV € ®-anny< (X)®. By Theorem 4.5, fV € ®-annye (X)®
if and only if f € ®-anny< (X)®. Therefore ®-phan . X = ®-annye (X )®,

Also, f € [phan]7<X if and only if for every ¢ € T¢ we have (c, [ f, X]) =0,
equivalently (f,c¢¥ ® X) = 0 which, since every compact object is a dual, is
equivalent to f € annye (X')®. Therefore [phan]7<X = annye (X)® = ®-phan X,
as claimed. ([l

Note that the condition f € [ann];X is expressed by the condition “XfY = 0"
with BVf—V>AV. This looks like an annihilator sentence but it is for internal hom,
rather than actual hom, groups. This suggests an alternative, internal-hom, interpre-
tation of the model-theoretic language (Remark 2.1) when 7 is a rigidly-compactly
generated tensor-triangulated category. In this interpretation the value of X € T
atsort A € T¢is [A, X], rather than (A, X), and the interpretation of AL B¢ T
in X is [ f, X]: [B, X] — [A, X] rather than (f, X) : (B, X) — (A, X). In this
interpretation of the language the values of sorts at objects of 7 are again objects
of T, not abelian groups.

This also constitutes an alternative “internal restricted Yoneda” functor from 7~
to the 7 -valued-module category” Mody-T7° = ((T°)°P, T), which takes X € T to
the functor [—, X]: (7€) - T and takes f : X — Y to[—, f]:[—, X]—>[-, Y]
In this internal-hom interpretation, the language for 7 stays the same but the
interpretation has changed: instead of (—, X) we use [—, X].

Similarly, the tensor-annihilator that we defined above belongs to a third (in this
case, covariant) interpretation of the same language, based on — ® X, rather than
(—, X)or[—, X].

In both these new interpretations the sorts belong to 7 rather than to Ab, so
we cannot immediately make sense of “elements” of a sort. But, using the idea
of an “element” being an arrow from the tensor-unit 1, we can move back to the
category of 7°-modules. If we do that, we recover the usual interpretation (from the
internal-hom interpretation) and an “internal dual” interpretation (from the tensor
interpretation). That is, we have:

y:T — Mod-T¢ givenby X > (—, X);
1: T — (T, T) givenby X [—, X];
e:T—=(T5T givenby X (—Q® X).
The latter two can then be composed with (1, —):

@ Ol=y:T— (TH®, T) = Mod-T*
givenby Xt [—, X]— (1,[—, X]) = (—, X);
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and

1, -)e:T— (T, T) > T*-Mod
givenby X+ (—®X)—~ (1, -®X) >~ (1, [(—)", X]) ~(—)", X)

Also, essentially following [Bird and Williamson 2023, 4.13], note thatif A € T°
and X € T, then [A, X] =0 if and only if, for all C € T°, we have (C, [A, X]) =0
if and only if, for all C € T, we have (C ® A, X) = 0. In particular

(N eZg(T): [A,N]zO}:Cﬂr {NeZg(T): (C®A,N)=0}
T

is an intersection of Ziegler-closed sets, hence is itself Ziegler-closed.

Furthermore, continuing the above computation, we have [A, X] = 0 if and only
if, for all C € T, we have (A ® C, X) =0 if and only if, for all C € T°, we have
(A, [C, X]) =0if and only if, for all C € T°, we have (A, CY® X) =0, if and only
if, for all C € T, we have (A, C ® X) = 0. So if D is the definable subcategory
of 7 cut out by the condition (A, —) = 0, then the condition [A, —] = 0 cuts out
the smallest tensor-closed definable subcategory of 7 containing D.
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