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Introduction

This volume comprises a mix of new research, retrospective reviews, and informal
histories, all concerning or inspired by the contributions to model theory of our
friend and ex-supervisor Boris Zilber, and dedicated to him in celebration of his 75th
birthday. The varied subjects of the articles reflect aspects of Boris’s mathematical
focus at different stages of his career, which we can conveniently group around
a number of influential conjectures. Boris’s long-sighted vision is made nowhere
clearer than in his formulation of conjectures which summarise our ignorance
and point a way out of it. Each has inspired massive efforts, but none can yet be
considered fully resolved.

A persistent theme of Boris’s work has been the study of categorical structures.
In the 1970s he developed a fine structure theory for uncountably and totally
categorical structures. Along with such key results as the weak trichotomy theo-
rem and the ladder theorem, this resulted in a pair of conjectures which are key
to the first two themes of this volume. The trichotomy conjecture attempted a
classification of the combinatorial geometries of strongly minimal sets, requiring
a field structure to be responsible for any failure of (local) modularity. Although
false, this conjecture remains fruitful. The articles of Castle and Hasson and of
Chatzidakis and Hrushovski in this volume are directly concerned with situations in
which the conjecture holds, and Moosa’s article introduces a new theory in which
it is strongly expected to hold. Kennedy’s article is a philosophical take on the
inspiration around the conjecture and Zilber’s mathematics more generally. Related
aspects of combinatorial geometries are discussed in Cameron’s article. In recent
decades, model theorists have become increasingly comfortable with extending
ideas gestated in the categorical or ω-stable context to wider classes of theories,
and this is on show in the articles of Ammer and Tent on strictly stable theories of
open generalised polygons, of Hrushovski on approximate equivalence relations
and their stabilisers, and of Malliaris and Shelah on new simple theories obtained
from hypergraphs.

Groups interpretable in uncountably categorical structures, which are necessarily
of finite Morley rank, play an important role in Zilber’s structure theory. He obtained
some of the foundational results on such groups, and formulated a form of what
has become known as the algebraicity conjecture, or the Cherlin–Zilber conjecture.
Poizat’s article in this volume discusses its origins in detail, starting with Zilber’s
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1977 article on categorical groups and rings, and leading to its commonly accepted
modern formulation that any simple group of finite Morley rank is an algebraic group
over an algebraically closed field. This has been the impetus for a substantial body
of work. Along with Poizat’s history of the problem, Cherlin’s article is devoted to
the case of odd type, where much is known, while Borovik’s and Deloro’s articles
concern related results on linearisation of group actions in finite Morley rank.

Later, Boris returned to categoricity in a setting where it is hard to imagine
anyone else daring to look for it: the complex exponential field. He developed his
quasiminimality conjecture that every definable subset is countable or cocountable,
and his pseudoexponentiation conjecture, which would extend this to a clear account
of the coarse geometry of the structure. These, along with the related conjecture on
intersections with tori, now known in generalised form as the Zilber–Pink conjecture,
formed the main focus of Boris and his research group in Oxford for many years.
The articles of Aslanyan and of Baldwin and Villaveces review various aspects of
this programme and its offshoots. Meanwhile, Pila’s article proves Zilber–Pink for
raising to the power i , Kowalski’s examines positive characteristic analogues of
the Ax–Schanuel theorem, and Wilkie’s article sets out his strategy for an analytic
proof of the quasiminimality conjecture.

The above account skips over much of Boris’s work. In particular, his thoughts
in recent decades have increasingly turned towards applying model-theoretic meth-
ods to elucidate some difficulties in mathematical physics. This started with the
noncommutative algebras arising in Zariski geometries, and continues through
various incarnations of pseudofiniteness and notions of approximation. This work
is proving to be a challenge for the model-theoretic community to absorb, perhaps
reflected in the fact that, unfortunately, none of the contributions published in this
volume ended up being on this subject.

Breaking up these scientific texts, we have included some more historical articles
by Hodges, Makowsky, and Yomdin, relating their personal connections to Boris,
and their view of the influence of his mathematics. In a similar vein, anecdotes
from many people are collected in a piece on Logic Tea in Oxford. Apart from
these articles of a biographical or anecdotal character, all articles were refereed to
the journal’s high standards.

A word on how this volume came to be. When we began thinking how to mark
Boris’s 75th birthday, the world had closed in response to the Covid-19 pandemic
and bore no promise of reopening any time soon. With no clear prospect of an
international conference being feasible in 2024, we settled for a “festlose Schrift”,
a Festschrift without the Fest. As it transpired, we have subsequently been able to
arrange a conference, so at the time of writing we are looking forward to presenting
the completed volume to Boris in Oxford in September 2024.
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Meeting Boris Zilber

Wilfrid Hodges

1. Model theory before Boris

To provide a context, let me say something about the state of model theory when
Boris Zilber came into the field in the early 1970s.

An essay of C. C. Chang [1974] entitled “Model theory 1945–1971” should, at
least from its title, be ideally suited to telling us what model theory was before
Boris Zilber. Alfred Tarski [1954] had proposed the name “model theory” in 1954,
on the basis of developments that had started to come together in the decade or so
before; Chang’s choice of 1945 makes a very reasonable start date. At the other
end, Chang mentions some twenty papers dated 1972. This is still too early to
include Boris; his earliest publication seems to be in 1974, though he himself cites
unpublished papers of his from 1972 and 1973.

Chang divides up model theory into a few dozen “nodes”, nearly all of which are
either theorems or definitions. He draws a diagram to indicate which nodes were
influenced by earlier nodes within model theory. Thus he has four “root” nodes
which influence other nodes but are not themselves influenced by other nodes; for
example the node “Löwenheim–Skolem–Tarski theorems”. A fifth node “Omitting
and realizing types (over a set A)” could have been counted as a root, but Chang
sees it as influenced by several other nodes in complicated ways. This node is listed
as influencing the following node among others:

(1) The notions of stability, rank, degree, finite cover property, etc.; categoricity
theorems [Morley 1965; 1967; Baldwin and Lachlan 1971; Shelah 1971].

Chang doesn’t reckon that this node (1) influenced any others. Probably if Chang
had continued the diagram to include Boris, Boris would have been either in (1) or
in a new node “influenced by” (1).

One major influence on Boris from this period is mentioned only indirectly by
Chang; this is the collection of questions in circulation about theories categorical in
some power. These questions include:

(2) If a countable first-order theory is λ-categorical for some uncountable λ, then
must it be λ-categorical for every uncountable λ? (Łoś [1954] stated this as an

MSC2020: primary 03C45; secondary 03-03.
Keywords: history.
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upward question plus a downward question. Morley [1965] proved it in both
directions.)

(3) Is there a theory in a countable first-order language which is λ-categorical for
every uncountable cardinal λ, but not ω-categorical, and is finitely axiomatis-
able? (Stated in the last section of [Morley 1965], but Morley says it is not his
question. Mikhail Peretyat’kin proved an affirmative answer by methods very
different from Boris’s.)

(4) Is there a theory in a countable first-order language which is λ-categorical for
every transfinite cardinal λ and is finitely axiomatisable? (I don’t know who
first stated this question, but it is a natural counterpart to (3).)

These and other questions of the time shared an important feature. The relevant
first-order theories include those of some well-studied classical structures such as
algebraically closed fields or vector spaces over finite fields. So it is natural to
ask whether we can generalise from the classical structures to a class of structures
defined by first-order theories. When Boris came into model theory, Morley had
proved an affirmative answer to the question (2) by generalising transcendence rank
to Morley rank, and Boris himself would later do something similar to prove a
negative answer to (4). But Chang has no node that naturally covers arguments of
this kind or the questions that generate them. For example he “exclude[s] from our
consideration . . . model theory applied to algebra, analysis, and set theory” (p. 173).
With hindsight I think we have to say that this marked a blind spot in Chang’s
picture of model theory. But he was not alone in this.

In a recent online interview Boris puts a related point in his own words:

(5) The essence of model theory is an attempt — speaking in more general or
philosophical terms — to interpret mathematics as a whole, analysing the
language and the logic of it. . . . You approach every mathematical area or
problem, in number theory, in real or complex analysis, even in physics, and
ask what is the adequate language and accordingly adequate formalism for this
specific area. It might be that a specific problem requires a specific formalism.
Then when you identify this formalism, you can approach it as a study of
general patterns of formal theories. [Yeh 2018]

We will come back to this below.

Excuse me if I say a word about how I came into model theory. For my university
education I signed up for a Hastings Rashdall scholarship at New College Oxford.
This scholarship was intended to train future theologians by teaching them Latin,
Greek, Greek and Roman history and some modern philosophy. The scholarship
converted me to atheism, which didn’t fit my proposed career. On the advice of
the philosopher Gilbert Ryle (advice which I later learned had been crafted by my
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philosophy tutor David Wiggins — let me thank them both for this) I applied to
work for a doctorate in Literae Humaniores at Oxford, naming logic and with the
intention of getting as far into maths as I could manage self-taught. There was some
basis for this: for example, Richard Rado (who was a family friend) gave me some
offprints on partition calculus. I joined John Crossley’s recently formed research
group in mathematical logic, and at an early meeting I met Saunders Mac Lane,
who encouraged me to learn about vector spaces. The excellent lectures of two
fellow students (John Bell and Alan Slomson) ensured I would call myself a model
theorist, and I spent the rest of my career racing — with intermittent success — to
catch up with the required mathematics.

2. Boris appears

I believe the first time I was aware of Boris was in March 1975. Paul Henrard
had organised a week of model theory at Louvain-la-Neuve. Shelah was the main
speaker, and he gave several lectures on “The lazy model-theoretician’s guide to
stability”. They were written up by Greg Cherlin, Janos Makowsky, Alex Wilkie
and me, and published as [Shelah 1977] in the volume [Henrard 1977]. On page 17,
Shelah writes:

There exist papers of Zilberg [sic] on ℵ1-categoricity of rings, partially
overlapping Cherlin and Reineke. . . . [Added in Proof June 76: Zilberg
[sic] also proved independently that ℵ1-categorical division rings are
fields.]

This was the first time I became aware of logicians in Russia who were working
in categoricity theory. (Oxford in 1976 hosted some Russian logicians at a meeting
on word problems in algebra [Adian et al. 1980], and several model theorists were
present including Shelah and Yuri Gurevich. Boris was not and I don’t recall that
he was mentioned.)

Soon after Henrard’s conference the British Broadcasting Corporation announced
a series of lessons in Russian, and my wife Helen and I signed up to learn. This was
partly in the expectation that I would soon meet “Zilberg” or at least some of his
papers. (The first Russian sentence that the BBC taught us was kran ne rabotayet
(“The tap or faucet doesn’t work”); several Russian friends assured me that the
sentence was absolutely true.) As soon as I could start to read Russian, I looked up
the Russian mathematical journals available in the library at Queen Mary University
of London, and found several issues of Matematicheskiye Zametki with papers by
Boris or his colleague Oleg Belegradek. Queen Mary also had Algebra i Logika
with papers by Palyutin, Erimbetov and others, though these papers were available
in translation at other London libraries,
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Quite soon manuscripts from Boris did arrive in the West. Apparently Boris
heard of a grant that would allow him to visit Wrocław in Poland in 1979–80, and
he took it up in order to finalise his work on the third question (4) above. His fullest
account at that date [Zilber 1980] appeared in the Proceedings of a conference in
Karpacz. Soon afterwards a Polish model theorist came through Boulder, where I
happened to be visiting. (I am fairly sure this was Leszek Pacholski, who was the
editor of the Karpacz Proceedings. My apologies if this is wrong.) He and I made
copies of Boris’s paper and sent them to a few dozen model theorists. Unfortunately
in writing up Boris had missed a required condition on a polynomial, with the result
that he had written a paper in which he allowed division by zero. Very soon both
Cherlin and some people in Paris pointed out the gap. Alerted to this, Boris went
back to what he had learned in Poland, and on that basis he wrote a short note [Zilber
1981] correcting the error. Meanwhile Cherlin and C. Mills had independently seen
how to plug the gap by using the classification of finite simple groups, a point
noticed later in the 1980s by several group theorists. Boris’s corrected proof made
no use of this classification.

The next paper of Boris that I saw was an essay that he had archived with the large
Russian database VINITI in Kemerovo in 1977. This essay contained preparatory
material for the paper [Zilber 1980] mentioned above. Cherlin had the essay and
at the Logic Year in Jerusalem in 1981 he gave copies to some Russian-reading
participants. I took a copy back to London, and for the next term I met my student
Simon Thomas for coffee each Friday morning to dictate a translation of the essay
to him. Simon took thorough notes and made an edited version of them. We sent a
copy to Boris in Kemerovo. Later we learned that Boris sent it on to Sasha Borovik
in Omsk with a note that by reading it Sasha could simultaneously find out what
Boris was working on and learn some English. Unfortunately the top sheet naming
Boris went missing, and thus it happened that the first published notice in Russian of
Boris’s work on groups with finite Morley rank was a summary by Sasha attributing
the work to Simon Thomas. Another copy of Simon’s writeup found its way to
Ali Nesin and influenced his work on simple ω-stable groups. Meanwhile Simon
himself rapidly completed an elegant doctoral thesis on classification of simple
locally finite groups [Thomas 1983]. The thesis was strictly algebra and not model
theory — it came to light that Gary Shute at Michigan State had independently
reached the same results within algebra. But I think it is fair to cite Simon’s thesis
as an example of a convergence of interests between model theorists (as Boris) and
specialists in algebraic groups (as Sasha).

Another of Boris’s early papers that we in England translated into English was
his [Zilber 1991], from a Russian original. David Evans was one of the translators,
and it’s worth a comment that David knew no Russian (at least at that date — he may
have learned some since). But he had a good knowledge of the algebraic background
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that Boris was assuming. This allowed him to reconstruct Boris’s argument from my
patchy English translation, and in several places to correct the translation to fit the
mathematics. This impressed me as an example of mathematicians communicating
through the mathematics itself rather than through a Russian or English text.

3. Meeting Boris in person

During the 1980s the iron curtain still divided Europe. East German logicians were
increasingly frustrated at not being allowed any contact with their colleagues in
the West. Then Ingo Dahn and Helmut Wolter in East Berlin, specialists in the
model theory of fields with exponentiation, discovered a way in which East German
logicians could host conferences to which non-German logicians were invited. Thus
the Easter Conferences on Model Theory came into being; the first was in 1983
and the last in 1991. The German Democratic Republic (“East Germany” for short)
ceased to exist on 3 October 1990, and henceforth there was just one Germany.
Easter Conferences before 1991 were sometimes held in the conference centres
of East German trade unions. But 1991 was different: we used a STASI training
centre, where some of the STASI staff had been allowed to stay on as managers
of the training centre, provided that they retrained as staff for the new uses of the
building. Nothing to do with logic, but it was an extraordinary experience being
served in the restaurant by scrupulously polite ex-STASI staff.

From 1983 onwards, the Easter Conferences had started to bring together logi-
cians from both the Eastern and the Western blocs in Europe — excluding only the
West Germans. The Russians were slow to join, but in 1986 Sergei Goncharov came
from Siberia. In 1987 Boris came, with his colleague Oleg Belegradek. We met in
those eerie halls below Friedrichstrasse Station, where travellers passed between
East and West Germany under close inspection by the East German guards and
their dogs. The conference went well and was the first of two Easter Conferences
that Boris attended.

In the mid 1980s the group theorist Otto Kegel proposed to me that we should
organise a Durham Symposium in Model Theory and Groups. Since Otto was based
in Germany, Peter Neumann joined us as a second British organiser. The symposium
took place on 18–28 July 1988 with seventy-five participants. Boris was the central
speaker and he gave four lectures on “Finite homogeneous geometries 1–4”. Another
memorable lecture connected with Boris’s work was the announcement by Ehud
Hrushovski of his counterexamples to Boris’s trichotomy conjecture, using a highly
ingenious adaptation of Fraïssé’s limit construction. From the discussion at the
end of Ehud’s lecture, and remarks of Boris elsewhere, I came away with the
impression that Boris didn’t really have a precise trichotomy conjecture. Rather his
view was that some form of trichotomy was to be expected as a classical property,
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and that on general principle it should follow that some natural abstract (in Boris’s
words, “logically perfect”) conditions could be found under which trichotomy was
provable. Ehud’s result showed that the categoricity conditions that Boris had
used so far were not sufficient. A few years later Ehud and Boris published their
joint paper [Hrushovski and Zilber 1993] proving the trichotomy conjecture for
“Zariski structures”, which added an axiomatisation of a Zariski topology as a further
condition. Other sufficient conditions have been found. Meanwhile Ehud’s new
construction has turned out to be extraordinarily versatile for generating interesting
structures.

4. Boris in Kemerovo

In the 1990s Boris and his wife Tamara kindly invited me to their apartment in
Kemerovo in Siberia. One of the first items to be explained here was Boris’s
telephone and its role in Russian history. When Boris Yeltsin was planning his
coup, it was important that he could rely on the support of various groups, among
them the coal miners in the Kuzbas coal fields, which formed the main industry
supporting the town of Kemerovo. In order not to leak his plans to his political
rivals, Yeltsin had to use contacts via private telephones. Tamara was a journalist
with links to the Kuzbas miners, and so it happened that when Yeltsin was ready to
move, Boris’s telephone carried the message that Yeltsin could rely on the miners
of Kuzbas.

One of the few facts about Kemerovo that did reach the British press was that a
man in Kemerovo had killed several people and made them into meat pies which
he sold at the Kemerovo railway station. Tamara confirmed to me that there was
such a man, and told me that she had visited this man in prison in hopes of learning
what had driven him to these actions. But she was too discreet to tell me what if
anything she had learned from him.

Boris told me of one morning when his five-year-old son opened their front
door and found a dead body on the stairs outside. Kemerovo was at times quite
a disorderly town. Anti-Jewish attitudes were not uncommon in Kemerovo — or
indeed in other places in Russia. Tamara told me of an occasion when she and
Boris had been sitting several rows apart in a crowded bus. The woman sitting next
to her launched into a fierce attack on Jews, and Tamara could see that the woman
was staring at Boris as she spoke.

In the West we were broadly aware of this situation, and we tended to assume
that Boris would want to come to the West as soon as he could. But at first it
didn’t happen. Boris explained that his father knew no Western languages at all;
it would be unconscionable to abandon his father in Siberia, and cruel to bring
him to a Western country where he couldn’t communicate with anybody. But
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then in 1999 Oxford University invited Boris to apply for the Professorship in
Mathematical Logic in succession to Dana Scott and Angus Macintyre. I was told
this professorship was first proposed by the Oxford philosophers, who wanted the
teaching of logic in Oxford to be under the guidance of a professor who was expert
in mathematical logic but also aware of the needs of philosophers in that area. The
philosophy faculty was housed in Merton College, and accordingly Merton College
had pride of place on the electoral board for the professorship. When Boris was
elected, the warden of Merton College was the sinologist Dame Jessica Rawson; she
conscientiously took her duties to include helping to bring over and settle Boris’s
father. No doubt there were other factors, but this was certainly one of them.

5. How mathematicians communicate?

Some events took place that I heard about partly from Oleg Belegradek and partly
from Boris himself. The two accounts are compatible but interestingly different.
Oleg told me that Russian universities have a set of necessary and sufficient condi-
tions for a lecturer to be raised to the rank of professor. One of these was that the
person concerned must have published a book in the relevant discipline. This was
the only condition that Boris failed to satisfy. So Oleg said to Boris “Let me write
up for publication the notes of the course that you teach” (naming a course), “and
we can arrange to get them published”.

The next part I heard from Boris sometime later. Boris told me that he had
accepted Oleg’s offer and Oleg had given him the write-up for him to check. But in
Boris’s view, Oleg’s teaching style was too formalistic and included an unhelpful
amount of detail. So Boris went through Oleg’s volume and struck out with a red
pen maybe a third of the text, adding nothing.

I heard the next step from Oleg. Boris had returned the write-up to Oleg with
extensive deletions marked in red pen. After looking over the deletions Oleg had
decided to ignore them, and he sent to the printer a copy of the volume as it was
before Boris’s deletions. All went well and Boris became professor.

There is a point in telling this story. It’s agreed that different mathematicians
can have widely different strategies for constructing proofs. For example some
mathematicians are happiest if they can construct the proof like a logical deduction,
adding line by line to what has already been deduced, until the required theorem
emerges as the last line. Others prefer to construct the whole proof in a vague or
intuitive form and then fill in the details. (If I understood him correctly, Saharon
Shelah once told me that in his experience the first sort of mathematician is unlikely
to make mistakes, but the first sort is also more likely to meet questions which he or
she will never be able to answer.) Obviously there are other dichotomies between
different styles of mathematical thinking.
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Boris once told me that there was a first time when he knew that another logician
understood what he (Boris) was trying to do. This was when Ehud Hrushovski sent
him a preprint in which Ehud cited Bézout’s theorem in a context not obviously
within algebraic geometry. Boris had allowed Bézout’s theorem to guide his thinking
in a similar context, but he didn’t suppose other logicians would understand this
and so he hid Bézout’s theorem behind an argument with Morley rank.

How does this relate to Boris’s remark quoted at (5) above? Both Boris and
Ehud were opening up a new area of research which borrowed a picture (though
not apparently formal details) from Bézout’s theorem. Were they both asking, from
their own points of view, what is “the adequate language and accordingly adequate
formalism for this specific area”? I leave this as a question, for fear of fabricating
what Boris and Ehud were thinking.

But in any case I came to realise that my gappy mathematical education would
never equip me to keep up with recent developments in model theory. So as
retirement came into view I chose to move across to the history of logic in Arabic
in the middle ages, particularly the logic of Ibn Sı̄nā (Avicenna); this was connected
more directly to my undergraduate training. After working for a couple of decades
in this historical field, it strikes me as uncanny how many Boris-like features Ibn
Sı̄nā’s logical thinking had. One was the constant pressure to identify and codify
features of logical thinking that had not previously been noticed. Another was Ibn
Sı̄nā’s decision, apparently in his late teens, to abandon large parts of Aristotle’s
modal logic and replace them by a new logic based on an “adequate language and
accordingly adequate formalism for this specific area”. Incidentally both Boris and
Ibn Sı̄nā were born in Uzbekistan (Boris in Tashkent, Ibn Sı̄nā near Bukhara).

Time rolls on and I travel less. I might not see Boris again. But Helen and I
were hugely pleased to meet Boris and Tamara again at the conference Logical
Perspectives 2018 in St Petersburg. Boris is one of those valuable individuals who
enrich not only the lives of the people they meet, but also in a more abstract way
the world itself and its culture.
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Inspired by very ampleness of Zariski geometries, we introduce and study the
notion of a very ample family of plane curves in any strongly minimal set and the
corresponding notion of a very ample strongly minimal set (characterized by the
definability of such a family). We show various basic properties; for example, any
strongly minimal set internal to an expansion of an algebraically closed field is
very ample, and any very ample strongly minimal set nonorthogonal to a strongly
minimal set Y is internal to Y . We then use very ampleness to characterize the
full relics of an algebraically closed field K — those structures M = (M, . . . )

interpreted in K which recover all constructible subsets of powers of M . Next we
show that very ample strongly minimal sets admit very ample families of plane
curves of all dimensions, and we use this to characterize very ampleness in terms
of definable pseudoplanes. Finally, we show that nonlocally modular expansions
of divisible strongly minimal groups are very ample, and we deduce — answering
an old question of Martin (1988) — that in a pure algebraically closed field K
there are no reducts between (K , +, · ) and (K , · ).
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1. Introduction

Many ideas in stability theory (such as Zilber’s classification of totally categorical
structures, see, e.g., [Zilber 1993]) build heavily on or are inspired by Zilber’s
weak trichotomy theorem, stating that any strongly minimal set is either locally
modular or defines a rank 2 pseudoplane (recall that a pseudoplane is an abstract
incidence relation I ⊂ P × L between “points” and “lines” such that each point lies
on infinitely many lines, each line contains infinitely many points, any two lines
have finite intersection, and any two points lie on only finitely many common lines).
Indeed, Zilber’s (strong) trichotomy conjecture, in one of its many variants, asserted
that every uncountably categorical pseudoplane should be mutually interpretable
with an algebraically closed field.

While Zilber’s conjecture is false [Hrushovski 1993], it has been shown to hold in
many instances. For example, Castle [2023] has recently shown that the conjecture
holds assuming the pseudoplane is itself interpreted in an algebraically closed field
of characteristic zero, and Hasson and Sustretov [2017] have shown the same for
rank preserving interpretations in all characteristics.

Contexts where Zilber’s trichotomy is known to hold are of a geometric nature,
and the geometry plays a major part in many proofs of restricted versions of the
trichotomy. Most such proofs, given a nonlocally modular strongly minimal set S,
make use of almost faithful families of plane curves (families of one-dimensional
subsets of S2 with few infinite intersections), rather than pseudoplanes. The reason
is that, although such objects are combinatorially harder to work with than definable
pseudoplanes, the good geometric properties of S can be exploited to study and
control them. And while S does always interpret a pseudoplane, the set of “points”
of the pseudoplane might be imaginary, making it much harder (if at all possible)
to use the geometric properties of S to construct a field.

However — in the above notation — the existence of a definable pseudoplane
in S2 could simplify the construction of the field in many instances. For example, it
seems that Rabinovich’s work [1993] would be much simpler if one assumes the set
of points of the given pseudoplane to be the affine plane1. The lack of a pseudoplane
on S2 is also at the technical heart of [Castle 2023], and moreover explains a key
reason that strongly minimal expansions of groups are historically easier to handle —
since in the case of groups, one can always find such a pseudoplane (potentially
after quotienting by a finite subgroup).

A crucial difference between a definable pseudoplane in S2 and a 2-dimensional
family of plane curves is that the latter allows the existence of semi-indistinguishable
points. These are certain exceptional pairs of points incident to infinitely many

1See the discussion on p. 2–3 of [Rabinovich 1993]. Unfortunately, the manuscript [9] that is
referred to in that text does not seem to be available.



VERY AMPLENESS IN STRONGLY MINIMAL SETS 215

common curves, which underlay many combinatorial intricacies of trichotomy
proofs. Semi-indistinguishable points tend to prohibit the “full” recovery of the
underlying geometry. Indeed, already in [Martin 1988], it was pointed out (in an
example attributed to Hrushovski, see Example 3.6) that a reduct of an algebraically
closed field need not be constructible (i.e., quantifier free definable in the language
of rings) in any copy of the field it interprets (or even M-definably isomorphic to
such a constructible set).

In their seminal work, Hrushovski and Zilber [1996] identified a condition they
call very ampleness, assuring that a Zariski Geometry, Z , is algebraic in the above
sense, i.e., that not only does it interpret a field, K , but it is definably isomorphic
(as a Zariski geometry) to a smooth K -algebraic curve. Very ampleness (as defined
by Hrushovksi and Zilber) does not go so far as to require a pseudoplane on the
set Z2, but it is a related notion — namely, it asserts the existence of a family of
plane curves that separates points in Z2 in an obvious sense.

In the present paper, we introduce a similar notion of very ampleness2 for arbitrary
strongly minimal sets, characterized by the presence of families of plane curves with
no semi-indistinguishable pairs (Corollary 3.21). In fact, we show that the presence
of one such family implies the existence of such families of arbitrary dimension
(Corollary 6.5); using this, we conclude that a strongly minimal set D is very ample if
and only if there is a definable pseudoplane whose points are (a generic subset of) D2

(Proposition 6.7). Moreover, we show that in the context of Zariski geometries, our
version of very ampleness is a necessary and sufficient condition for a Zariski geom-
etry to be algebraic, and is thus equivalent to the original notion (Proposition 4.8).

We apply very ampleness to the study of structures interpretable in algebraically
closed fields. We show that every algebraic curve over such a field is very ample
(Corollary 3.29). We then show that a very ample strongly minimal set is internal to
every strongly minimal set it interprets, a phenomenon allowing for the identification
of very ample ACF-interpreted structures with algebraic curves (Proposition 4.1).
In particular (noting the known instances of the Zilber trichotomy in the relevant
structures, see [Castle 2023; Hasson and Sustretov 2017]), we conclude with an
analogue of the main theorem on Zariski geometries (see Theorem 4.14):

Theorem 1. Let K be an algebraically closed field, M be constructible over K , and
M = (M, . . . ) be a strongly minimal reduct of the full K -induced structure on M.
Assume M satisfies the Zilber trichotomy3. Then the following are equivalent:

(1) M is very ample.

2In [Hrushovski and Zilber 1996] the weaker notion of ampleness, equivalent to nonlocal modular-
ity, is used. We do not use this term here.

3By “[A structure] M satisfies Zilber’s trichotomy” we mean that every nonlocally modular
strongly minimal set definable in M interprets an algebraically closed field. For ACF-relics, this
assumption is redundant, since Zilber’s trichotomy is true for those. But as a complete proof has not,
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(2) M is isomorphic, outside of a finite set, to the full K -induced structure on
some irreducible algebraic curve over K .

(3) Every constructible subset of every power of M is definable in M.

For arbitrary ACF-interpreted structures, we get the next result (see Theorem 4.16).

Theorem 2. Let K be an algebraically closed field, and assume the Zilber tri-
chotomy holds for strongly minimal structures interpreted in K . Let M be con-
structible over K , and let M = (M, . . . ) be an arbitrary reduct of the K -induced
structure on M. Then the following are equivalent:

(1) M is almost strongly minimal, and every strongly minimal set in M is very
ample.

(2) Every constructible subset of every power of M is definable in M.

We then apply Theorem 1 in the case of groups, recovering, in particular, the
following (see Theorem 7.8):

Theorem 3. Let K be an algebraically closed field, and let (G, · ) be a one-
dimensional divisible algebraic group over K . Let GZar be the full K -induced
structure on G, and let Glin be the structure endowing G with the group operation
and all K -definable endomorphisms of G. Then there are no intermediate structures
between Glin and GZar.

This expands the main result in [Marker and Pillay 1990] and can be seen as
an algebraically closed field analogue of a recent similar result of Abu Saleh and
Peterzil [2023] for real closed fields.

For strongly minimal groups, divisibility is equivalent to unbounded exponent. In
the case of finite exponent, the statement of Theorem 3 fails: in positive character-
istic, Marker and Pillay [1990] give an expansion of (K , +)lin that interprets a field
but does not define multiplication (see the discussion after Corollary 1.8 loc. cit.).

Along the way, we prove several technical results that may be of interest on their
own right. We single out the following (Theorem 7.3):

Theorem 4. If G is a strongly minimal expansion of a group, then G is not locally
modular if and only if there exists a definable X ⊆ G2 that is not a finite boolean
combination of cosets of definable subgroups of G.

This result, while well known among experts, does not seem to exist in writing in
full generality, and since we needed it in the present work we took the opportunity
to give the details.

The paper is written with an eye toward the proofs of Theorems 1–4 above, but
also as a possible reference for future work around Zilber’s trichotomy and other

at the time of the writing of this paper, appeared in print, so we chose a formulation of the results
whose correctness is independent of Zilber’s restricted Trichotomy
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questions related to the fine structure of strongly minimal sets and the structures they
interpret. For that reason, some of the proofs are stated and proved in somewhat
greater generality than is actually needed. Thus, for example, the existence of
arbitrarily large very ample families of plane curves (Proposition 6.3) is not explicitly
used in the text, but significant parts of its proof (e.g., very ampleness of algebraic
curves, see Corollary 3.29) are essential for our arguments.

2. Notation and preliminaries

Throughout, we work in a saturated enough model of a stable theory. Except for the
general definition of very ample types (invoked only in Corollary 6.12) the work
could be carried out in any structure where all definable strongly minimal sets are sta-
bly embedded. Since stable embeddedness is equivalent to uniform stable embedded-
ness, given a strongly minimal set X there is no harm in assuming that all definable
families of subsets of Xn we are considering are parameterized by X -definable sets.

We are using standard model theoretic terminology. For basic concepts such as
Morley rank, strong minimality, local modularity, one-based theories, etc., we refer
the reader to any textbook covering the first chapters of geometric stability theory
such as [Marker 2002], [Pillay 1996], or [Tent and Ziegler 2012].

After fixing a structure M, unless otherwise stated, the word definable refers to
definability in Meq with parameters. All parameter sets are smaller than the level
of saturation of M, and are usually denoted, A, B. We use the standard model
theoretic abuse of notation and write a ∈ M instead of a ∈ M |a|, allowing a to also
be an element of an imaginary sort.

If X is a strongly minimal definable set, the notation X eq refers to the union
of all sorts formed by quotienting definable subsets of powers of X by definable
equivalence relations. A definable set in X eq is stationary if it has Morley degree
one — equivalently, if it has a unique generic type over any set of parameters
defining it. It follows by uniform stable embeddedness that every stationary set S
in X eq has a canonical base in X eq (i.e., the canonical base of its generic type),
which we denote Cb(S). We use dim and dimension to denote Morley rank of
definable sets in X eq. If Y ⊆ Z are definable sets in X eq, we say that S is large in Z
if dim(Z \Y ) < dim(Z) and Y is small in Z if dim(Y ) < dim(Z). A generic subset
of Z is a definable subset of Z that is not small. Thus, if Y ⊂ Z and Z is stationary,
Y is generic in Z if and only if it is large in Z .

We will use implicitly the definability of Morley rank in X eq for strongly min-
imal X ; see [Baldwin 1973]. We will also use the resulting fact that, given a
small parameter set A, a definable set C in X eq is always a generic member of an
A-definable family of M-definable subsets of the same Morley rank.

By a curve (in X eq) we mean a one-dimensional definable set, and by a plane
curve in X , we mean a curve in X2. Note that we do not require curves to be strongly
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minimal. A plane curve C is trivial if one of its projections has an infinite fiber. If C
and D are nontrivial plane curves, then their composition D◦C is — in analogy with
the composition of functions — the curve {(x, z) : (∃y)((x, y) ∈ C ∧ (y, z)) ∈ D}.

A definable family of plane curves C := {Ct : t ∈ T } is faithful if t ̸= t ′ implies
dim(Ct △ C ′

t) = 0. In greater generality, a definable family of definable sets
in X eq is faithful if the symmetric difference of any two members of the family
is small in both. The total space (or the graph) of the family C is denoted C :=

{(x, t) ∈ X2
× T : x ∈ Ct }.

A definable set C is almost contained in a definable set C ′ if dim(C\C)<dim(C).
The set C is almost equal to C ′ if C is almost contained in C ′ and C ′ is almost
contained in C (equivalently, if dim(C △ C ′) < dim(C) = dim(C ′)). This is a
definable equivalence relation (on families of definable sets). It is now a standard
and easy exercise to show that if C is any stationary set in X eq with c := Cb(X),
then, up to a set of dimension smaller than dim(C), the set C is a member of the
∅-definable family ϕ(x, y) ∧ θ(y) (parameterized by θ(y)), where θ(y) ∈ tp(c/∅)

isolates the type (in its rank and degree) and ϕ(x, c) isolates the generic type of C
over c in its rank and degree.

A strongly minimal set X is locally modular, if any definable faithful family of
plane curves in X2 is (at most) one-dimensional. By this we mean that if such a
family is parameterized by a set T then dim(T ), the dimension of the family, is at
most one. We will systematically use (without further reference) the equivalence of
local modularity and one-basedness, which — in turn — is equivalent to the fact that
dim(Cb(S)) ≤ 1 for any strongly minimal S ⊆ X2 [Pillay 1996, §II Proposition 2.6].

3. Very ampleness: first properties

3A. Definition and first examples. We start with a general definition, that we later
specialize almost exclusively to the strongly minimal setting:

Definition 3.1. Let p be a stationary type, with canonical base c, and let A be
a set of parameters. We say that p is very ample over A if for any two distinct
realizations x, y |H p, x and c fork over Ay.

Definition 3.2. Let X be a strongly minimal set, definable over a set A. A strongly
minimal C ⊂ X2 is very ample in X over A if the generic type of C is very ample
over A.

Definition 3.3. Let X be a strongly minimal set. We say that X is very ample if,
for some set A such that X is A-definable, there is a very ample strongly minimal
plane curve in X over A.

Definition 3.4. Let M be a strongly minimal structure. We say that M is very
ample if its universe is very ample as a strongly minimal set.
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Example 3.5. Let (K , +, · ) be an algebraically closed field, and let (a, b) ∈ K 2

be generic. We claim that the line L(a,b) defined by y = ax + b is very ample in K
over ∅, and thus K is very ample. To see this, first note that the canonical base of the
generic type of L(a,b) is just (a, b). Now let z1 = (x1, y2) and z2 = (x2, y2) ∈ L(a,b)

be distinct generics over (a, b). One then easily computes that dim(ab/z2) = 1,
essentially because the family of lines through a point in the plane is one-dimensional.
On the other hand, because any two distinct points determine exactly one line, we
have dim(ab/z1z2) = 0, which gives the desired dependence.

Example 3.6. Suppose (K , +, · ) is an algebraically closed field, and consider
the reduct M of K obtained by endowing K with the relations x2

+ y2
= z2

and x2 y2
= z2. Then M is nonlocally modular, but is not very ample. Indeed,

suppose C ⊂ K 2 is a strongly minimal plane curve which is very ample over A, and
let c =Cb(C). Let (x, y)∈C be generic over Ac. Without loss of generality, assume
x is generic in K over Ac (otherwise y is). Note that any function σ : K → K
with the property that σ(x) ∈ {x, −x} for all x is an automorphism of M. In
particular, there is an automorphism fixing Ac pointwise but sending x to −x , and y
to some z = ±y. It follows that tp(−x, z/Ac) = tp(x, y/Ac), so (−x, z) is generic
in C over Ac. Then, by very ampleness, (−x, z) should fork with c over Axy; but
this is impossible because (−x, z) is algebraic over (x, y).

Remark 3.7. We note that there is a significant difference between a strongly
minimal set, X , being very ample (meaning that it admits a very ample plane curve)
and the generic type of X being very ample. As we will see in the sequel, the
existence of a (strongly minimal) very ample complete type is equivalent to the
structure being non one-based. The former condition is stronger and is equivalent
to the existence of a definable pseudoplane whose set of points is generic in X2.
Except for Corollary 6.12 the latter property is reserved for plane curves in X (and
we will say that C is very ample in X ), so hopefully no confusion will arise.

3B. Very ampleness and nonlocal modularity. It follows directly from the defini-
tion that a very ample strongly minimal set is not locally modular.

Lemma 3.8. Let X be strongly minimal and definable over A, let C be a strongly
minimal plane curve in X , and let c = Cb(C). If C is very ample in X over A, then
dim(c/A) ≥ 2. In particular, if X is very ample, then X is not locally modular.

Proof. Let x and y be independent generics in C over Ac. By very ampleness,
c forks with x over Ay, which implies in particular that dim(c/Ay) ≥ 1.

Claim 3.8.1. dim(y/A) = 2.

Proof. Otherwise, y would belong to a one-dimensional set over A, which must
have C as a strongly minimal component. But this would force c ∈ acl(A), contra-
dicting dim(c/Ay) ≥ 1. □
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Now by the claim, and since dim(y/Ac) = 1 by definition, it follows that y forks
with c over A. By symmetry this implies

dim(c/A) > dim(c/Ay) ≥ 1,

i.e., dim(c/A) ≥ 2. □

We will see later on, Corollary 6.12, that the weaker condition of X eq containing
a very ample type is equivalent to nonlocal modularity.
Remark 3.9. It also follows from this lemma that if a strongly minimal plane curve
C is very ample in X over some set, then C is nontrivial, i.e., both projections
C → X are finite-to-one. Indeed, otherwise C would agree up to finitely many
points with {c} × X or X × {c} for some c ∈ X , implying that c = Cb(X) has
dimension at most 1 over A.

Note that if X, Y are strongly minimal sets such that Y △ X is finite, then for
any nontrivial strongly minimal plane curve C ⊆ X2 the set C \ Y 2 is finite, so
C ∩ Y 2 and C have the same generic type. In particular, if C is very ample in X
then C ∩ Y 2 is very ample in Y . Thus X is very ample if and only if Y is.

Before moving on we mention the following useful and related observation,
which may help to further clarify the definition. Roughly, it shows that the non-very
ampleness of a nonlocally modular strongly minimal set always arises from an
interalgebraicity relation on the plane.
Lemma 3.10. Let X be strongly minimal and A-definable. Let C be a plane curve
in X , definable over B ⊃ A. Assume that for every strongly minimal component
S of C we have dim(Cb(S)/A) ≥ 2. Let x, y ∈ C be any two distinct generics
over a parameter set B ⊇ A. Then either x forks with B over Ay, or x and y are
interalgebraic over A.
Proof. Throughout we assume A =∅. Let S ⊂ C be a strongly minimal component
containing x and let s = Cb(S). Note that s ∈ acl(B) and dim(x/s) = 1 (since x
is generic in C). Now, by assumption, dim(s) ≥ 2; in particular, s /∈ acl(∅). So
tp(x/s) must fork over ∅, and thus dim(x) = 2. We now argue in two cases:

Case 1: Suppose x ∈ acl(y). Since dim(x) = 2, this implies dim(y) = 2. Thus,
x and y are interalgebraic, proving the lemma in this case.

Case 2: Suppose x /∈ acl(y); we show that x forks with B over y. By assumption, we
have dim(x/y)≥ 1. Note also that dim(x/By)≤ 1 (as x ∈ Ct ). Now suppose toward
a contradiction that x |⌣ y B. Then clearly we have dim(x/y) = dim(x/By) = 1.
Since s ∈ acl(B), also dim(x/Bsy) = 1. In particular, tp(x/Bsy) (i.e., the generic
type of S over Bsy) does not fork over y; so since s = Cb(S), we get that s ∈ acl(y).
Since y ∈ X2, this gives dim(s)≤ 2. Combined with the assumption that dim(s)≤ 2,
we therefore have dim(s) = 2, which implies that s and y are interalgebraic. But
then dim(y/s) = dim(y/Bs) = 0, and since s ∈ acl(B) this implies dim(y/B) = 0,
contradicting that y is generic in C over B. □
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3C. Extending the definition. In many applications, it is more convenient to work
with families of plane curves that are not necessarily generically strongly minimal.
We extend our definition of very ampleness to such (families of) curves. To do this,
we observe that the choice of defining parameter for a plane curve, C , does not
affect Definition 3.2 in any significant way.

Lemma 3.11. Let X be a strongly minimal and A-definable set, and let C be an
At-definable plane curve in X for some tuple t . The following are equivalent:

(1) For any two distinct x, y ∈ C each generic over At , x forks with t over Ay.

(2) For any two distinct x, y ∈C each generic over At , dim(t/Axy)≤dim(t/A)−2.

(3) For every strongly minimal set S ⊂ C , dim(Cb(S)/A) ≥ 2, and for any two
distinct x, y ∈ C each generic over At , x and y are not interalgebraic over A.

Proof. Throughout, we assume A =∅. By our standing assumption that X is stably
embedded, we may assume that t is a tuple in X .

(1) =⇒ (2): Assume (1), and let x and y be distinct generics of Ct over t .

Claim 3.11.1. dim(y) = 2.

Proof. Let y′ be an independent realization of tp(y/t) over t y. Then by (1), y forks
with t over y′. Since dim(y/t) = 1 by assumption, we obtain dim(y/y′) = 2, which
implies the claim. □

Now since dim(y) = 2 and dim(y/t) = 1, it follows that dim(t/y) = dim(t)− 1.
By (1) again, t forks with x over y, which gives dim(t/xy) ≤ dim(t)−2, as desired.

(2) =⇒ (3): Assume (2). First let S be a strongly minimal component of C ,
with canonical base s. Let x and y be independent generics in S over st . Then
dim(t xy) = dim(t)+2, and by (2) dim(t/xy) ≤ dim(t)−2, which combined gives
dim(xy) = 4. On the other hand dim(sxy) = dim(s)+ 2, so since dim(xy) = 4 we
get dim(s/xy) = dim(s) − 2. In particular, dim(s) − 2 ≥ 0, so dim(s) ≥ 2.

Now to complete the proof of (3), suppose x and y are any two distinct generics
of C over t . Then dim(t xy) ≥ dim(t x) = dim(t) + 1, while by (2) dim(t/xy) ≤

dim(t) − 2. It follows that dim(xy) ≥ 3, while if x and y were interalgebraic we
would have dim(xy) ≤ 2. Thus, we have shown (3).

(3) =⇒ (1): Assume (3). Let x and y be a counterexample to (1). By (3), the
hypotheses of Lemma 3.10 are satisfied, and applying the lemma gives that x and y
are interalgebraic over A, contradicting (3). □

Corollary 3.12. Let X be strongly minimal and A-definable. For i = 1, 2 let Ci be
an Ati -definable plane curve in X for some tuple ti . Assume that C1 and C2 have
finite symmetric difference. Then the equivalent conditions of Lemma 3.11 hold
for C1 over At1 if and only if they hold for C2 over At2.
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Proof. We use (3) of the lemma. Since the Ci have finite symmetric difference, the
canonical bases of their strongly minimal components coincide. So, by symmetry,
it suffices to show that the failure of the second clause of (3) for C1 and t1 implies
the failure of the same clause for C2 and t2. To that end, let x and y be distinct
generics in C1 over At1, and assume they are interalgebraic over A. Let (x ′, y′) be
an independent realization of tp(xy/At1) over At1t2. Then x ′ and y′ are independent
generics over C2 over At2, and are also interalgebraic over A, as desired. □

The following is now well defined:

Definition 3.13. Let X be strongly minimal and A-definable. Let C be a plane
curve in X . Then C is very ample in X over A if any of the equivalent conditions
of Lemma 3.11 hold for C over At , for some (equivalently, any) tuple t such that
C is At-definable.

It is immediate from the last corollary that Definitions 3.2 and 3.13 coincide for
strongly minimal plane curves, since up to a finite set any such curve is definable
over its canonical base. Let us also point out the following:

Corollary 3.14. Let X be strongly minimal and definable over A. Let C be a plane
curve in X. If C is very ample in X over A, then so is every strongly minimal
component of C.

Proof. Assume C , and all of its strongly minimal components, are definable over At
for some tuple t , and let S ⊂ C be any such component. Let x ̸= y be generics in S
over At . Then x and y are also generics of C over At ; so by the very ampleness of C
over A, x forks with t over Ay, which shows that S is also very ample over A. □

The converse of the last corollary is not true: there can be non-very ample plane
curves every component of which is very ample, as in the following example:

Example 3.15. Let G = (G, +, . . . ) be a strongly minimal expansion of a group,
and let S ⊂ G2 be a ∅-definable strongly minimal plane curve whose generic type
has trivial stabilizer (for example G could be the additive group of the complex field,
and S could be the graph of y = x2). Now let a ∈ G2 be generic, let Sa := S + a,
and let C = Sa ∪ −Sa . It is easy to see that for s ∈ Sa generic over a, the pair
s, −s ∈ C contradicts the very ampleness of C (by (3) of Lemma 3.11). However,
each of Sa and −Sa is very ample; see Example 3.18 below.

3D. Very ampleness in families. The reader may find our definition of very am-
pleness foreign in light of the analogous notion in [Hrushovski and Zilber 1996]
(a precise statement on the relation of our notion of very ampleness and the original
term in the context of Zariski geometries requires additional preparation, and can
be found in Section 4B). We hope that the present subsection will help to explain
for now why our definition captures the original idea of the term. To that end, we
now define a notion of very ampleness for families of plane curves.
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Notation. If S is definable and X := {X t : t ∈ T } is a definable family of subsets
of S, then for s ∈ S we denote the set {t ∈ T : s ∈ X t } by X s .

Definition 3.16. Let X be strongly minimal and A-definable, and let C ={Ct : t ∈ T }

be an A-definable family of plane curves in X .

(1) C is very ample if for any x ̸= y ∈ M2, we have dim(C x
∩ C y) ≤ dim T − 2.

(2) C is generically very ample if for any generic t ∈ T over A and any distinct
x, y ∈ Ct generic over At , we have dim(t/Axy) ≤ dim T − 2.

Observe that, in particular, a generically very ample family of plane curves is at
least two-dimensional.

Example 3.17. Let (K , +, · ) be an algebraically closed field. Then, similarly to
Example 3.5, one shows easily that the family of lines y = ax + b is very ample,
because any two distinct points determine exactly one line.

The following example is well known and easy:

Example 3.18. Let (G, +) be a strongly minimal expansion of a group, and let
C ⊂ G2 be a strongly minimal plane curve. Then the family of translates of C ,
{C + t : t ∈ G2

}, is very ample if and only if the generic type of C has trivial
stabilizer. Indeed, t1 + C is almost equal to t2 + C if and only if t1 − t2 ∈ Stab(p)

for p the generic type of C .

Proposition 3.19 below, in addition to the ensuing two useful corollaries, shows
the relationship between the notions of very ampleness we have defined so far (of a
plane curve, of a strongly minimal set, and of a family of plane curves).

Proposition 3.19. Let X be strongly minimal and A-definable, let C = {Ct : t ∈ T }

be an A-definable family of plane curves in X , and let C ⊂ X2
× T be the graph

of C. Then the following are equivalent:

(1) C is generically very ample.

(2) There is a nongeneric A-definable set Z ⊂ C such that C − Z is the graph of a
very ample family of plane curves in X.

(3) For any generic t ∈ T over A, Ct is very ample in X over A.

Proof. The equivalence of (1) and (3) is Lemma 3.11.

(1) =⇒ (2): Let p(x, y, z) be a partial type over A asserting that x ̸= y ∈ X2 and
that (x, z) and (y, z) are both generics in C over A. It is a restatement of (1) that
for (x, y, z) |H p, we have dim(z/Axy) ≤ dim(T ) − 2. By compactness, this is
witnessed by a finite part of p. We thus obtain a nongeneric Z ⊂ C such that
for x ̸= y, we have dim((C − Z)x

∩(C − Z)y) ≤ dim T −2. This almost implies (2).
Technically, though, one should add to Z all Ct having only finitely many points
surviving in C − Z (so that C − Z is a family of plane curves); one should then
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verify that Z is still nongeneric in C , and that set of “surviving” t ∈ T in C − Z is
generic in T . Both of these are easy to do.

(2) =⇒ (1): Let Z be as in (2), and let p(x, y, z) be the same type considered in
the case above. We show that for (x, y, z) |H p we have dim(z/Axy) ≤ dim T − 2,
which as above is equivalent to (1). So take such (x, y, z). We may assume that
(x, y, z) |⌣ A B where Z is B-definable; thus (x, y, z) is generic in C over AB, so
(x, y, z) ∈ C − Z . Then by very ampleness, dim(z/ABxy) ≤ dim(T )−2, and again
since (x, y, z) |⌣ A B this implies dim(z/Axy) ≤ 2, as desired. □

To sum up, we show that a plane curve is very ample precisely when it coincides,
up to a finite set, with a generic member of a very ample family.

Corollary 3.20. Let X be strongly minimal and A-definable. Let C be a plane
curve in X. Then the following are equivalent:

(1) C is very ample in X over A.

(2) C has finite symmetric difference with an A-generic member of an A-definable
very ample family of plane curves in X.

(3) Whenever T is a stationary definable set, C ={Ct : t ∈ T } is an acl(A)-definable
family of plane curves in X , and t ∈ T is a generic element over acl(A) such
that C and Ct have finite symmetric difference, the family C is generically
very ample.

Proof. Throughout, we assume A = ∅. It is immediate from Proposition 3.19 that
(2) implies (1) and (1) implies (3). To see that (3) implies (1), simply note that
every plane curve in X is a generic member of some ∅-definable family of plane
curves, and the parameter space for such a family can be made stationary after
passing to acl(∅). So it is enough to show that (1) implies (2).

Now suppose (1) holds. As above, we can realize C as a generic member of a
∅-definable family of plane curves, say Ct0 ∈ C = {Ct : t ∈ T }. By compactness and
the definability of dimension, we may assume that for each t ∈ T , for any distinct
generics x, y ∈ Ct , we have dim(t/xy) ≤ dim T − 2 – that is, that {Ct : t ∈ T } is
generically very ample. By Proposition 3.19, C becomes very ample after removing
a nongeneric ∅-definable subset of its graph. More precisely, apply Proposition 3.19
to the restriction of the family T to an acl(∅)-definable stationary generic subset
T0 ⊆ T containing t0, then use the fact that the conjugates of T0 over ∅ are also
very ample, and therefore, so is their union, T . Since t0 ∈ T is generic, only finitely
many points of Ct0 are removed, which is enough to prove (2). □

We conclude this section with a geometric characterization of very ampleness.

Corollary 3.21. Let X be strongly minimal. Then X is very ample if and only if
there is a very ample definable family of plane curves in X.
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Proof. If X is very ample, by definition there is a plane curve in X which is very
ample over some set. Then, by the previous corollary, there is a very ample family
of plane curves in X .

If on the other hand there is a very ample family, then by the proposition there
is a very ample plane curve over some set. Then by Corollary 3.14 every strongly
minimal component of that plane curve is very ample over the same set, so that by
definition X is very ample. □

3E. Preservation properties. In this section, we develop three basic preservation
properties of very ampleness; we then pose a fourth (stronger) property as a question,
and answer this question in the context of expansions of fields. To begin we point out,
generalizing the preservation under naming parameters (Lemma 3.11), that very
ampleness is preserved under arbitrary expansions.

Lemma 3.22. Any strongly minimal expansion of a very ample strongly minimal
structure is very ample.

Proof. Immediate by Corollary 3.21, since a very ample family is still definable
in any expansion (technically we use here that the dimension of a definable set is
unchanged in strongly minimal expansions, which is easy to check). □

Next we show that very ample plane curves are closed under “independent
compositions,” in an appropriate sense. This will be used later on to show that very
ample strongly minimal structures admit very ample families of plane curves of
arbitrarily large dimension.

Lemma 3.23. Let X be strongly minimal and A-definable. Let C and D be plane
curves in X , definable over As and At , respectively. Assume that s and t are
independent over A. If C and D are each very ample over A, then so is D ◦ C.

Proof. Without loss of generality, assume A = ∅. Let (x1, z1), (x2, z2) be distinct
generics in D ◦ C over st . It will suffice to show that

dim(st/x1z1x2z2) ≤ dim(st) − 2.

Without loss of generality, assume x1 ̸= x2. By definition of D◦C there are y1, y2

such that each (xi , yi ) ∈ C and each (yi , zi ) ∈ D. Then each (xi , yi ) is generic in
C over st (so also over s), which by the very ampleness of C gives that

dim(s/x1 y1x2 y2) ≤ dim(s) − 2.

Next, note that yi and zi are interalgebraic over t (for i =1, 2), by the nontriviality
of D; see Remark 3.9. Thus,

dim(st/x1z1x2z2)=dim(sty1y2/x1z1x2z2)

=dim(t/x1z1x2z2)+dim(y1y2/t x1z1x2z2)+dim(s/t x1y1z1x2 y2z2).
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In this last expression, note that the first term is at most dim(t), the second term
is 0, and the third term is at most dim(s) − 2 as we have seen above. Thus,

dim(st/x1z1x2z2) ≤ dim(s) + dim(t) − 2,

which, by the independence of s and t , is equivalent to the desired statement. □

Finally, we point out that very ampleness is preserved under finite-to-one func-
tions.

Lemma 3.24. Suppose X and Y are strongly minimal sets, and f : X → Y is a
definable finite-to-one function. If X is very ample, then so is Y .

Proof. Without loss of generality, assume X , Y , and f are ∅-definable. Let C be a
strongly minimal plane curve in X which is very ample over some set A. Without
loss of generality, we assume also that A =∅. Let c = Cb(C). After editing finitely
many points, we may assume C is definable over c.

Now let D be the image of C in Y 2 (applying f to each coordinate). So D is
definable over c. Since f is finite-to-one, D is moreover strongly minimal. We claim
that D is very ample in Y . To that end, suppose z, w are distinct generics in D over c.
It will suffice to show that z forks with c over w. Now by assumption there are
x, y ∈ C with f (x)= z and f (y)=w. Since f is finite-to-one, each of the pairs x, z
and y, w are interalgebraic. So by dimension considerations, x and y are generics
in C . Moreover, since z ̸=w, it follows that x ̸= y. Thus, by the very ampleness of C ,
x forks with c over y. Then, by interalgebraicity, z forks with c over w, as desired. □

Recall that two strongly minimal sets are nonorthogonal if there is a definable
(possibly over additional parameters) finite-to-finite correspondence between them.
Lemma 3.24 does not extend to the preservation of very ampleness under nonorthog-
onality, as can be seen from Example 3.6. Indeed, the (non-very ample) structure M
from Example 3.6 is nonorthogonal to the strongly minimal set K/∼ , where ∼ is
the relation x2

= y2 on K ; but the induced structure on K/∼ is a pure algebraically
closed field, so very ample by Example 3.5.

As we will see later, the main reason very ampleness does not pass from K/∼

to M in Example 3.6 is that K is not internal to K/∼ (in the sense of the reduct, M).
We may thus ask the following:

Question 3.25. Is very ampleness preserved under internality? That is, if X is very
ample, and Y is strongly minimal and internal to X , must Y be very ample?

To conclude this subsection, we now answer Question 3.25 whenever X has a
definable field structure. We will later improve on this result in Corollary 4.2 and
in the proof of Proposition 6.3. In order to smoothly recall the setting in this later
proposition, we present the result here as a corollary of two general statements,
Lemma 3.27 and Proposition 3.28.

Before proceeding, let us clarify:
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Remark 3.26. By expansion below, we are assuming the field structure is part of
the signature of (K , +, · , . . . ). In general, for a strongly minimal structure, M,
admitting a definable field structure (with universe M), elimination of imaginaries
will hold after naming any set of parameters defining a field structure on M .

Lemma 3.27. Every strongly minimal expansion of an algebraically closed field
eliminates imaginaries.

Proof. Let (K , +, · , . . . ) be an expansion of an algebraically closed field. Because
of the field structure, it is automatic that acl(∅) is infinite. So by weak elimination
of imaginaries in strongly minimal structures, it suffices to code finite sets: that
is, any such expansion (K , +, · , . . . ) has elimination of imaginaries if and only
if there are ∅-definable injections K (n)

→ K m for all n (and some m depending
on n), where K (n) denotes the n-th symmetric power of K . But such functions
already exist in the pure field (K , +, · ), so we are done. □

Proposition 3.28. Let (K , +, · , . . . ) be a strongly minimal expansion of an alge-
braically closed field, and let X ⊂ K n be a ∅-definable set of dimension r ≥ 1. Let
H = {Ht : t ∈ T } be the family of hyperplanes in K n , and let t ∈ T be generic. Then
dim(Ht ∩ X) = r − 1, and if x, y ∈ Ht ∩ X are distinct generic over t , then x and t
fork over y.

Proof. Throughout this proof, we freely use the fact that the strongly minimal
expansion (K , +, · , . . . ) preserves the dimensions of (K , +, · )-definable sets,
which is well known and easy to check. We also use that T can be identified by
a large subset of Pn(K ) (the set of projective hyperplanes intersecting K n); in
particular, it follows that T is stationary of dimension n. As is well known, for
any x ∈ K n the set H x (the hyperplanes through x) then has dimension n − 1, and
for x ̸= y the set H x

∩ H y has dimension n − 2.
Now we prove the proposition in two claims.

Claim 3.28.1. dim(Ht ∩ X) = r − 1.

Proof. Let x ∈ X be generic and s ∈ H x be generic over x . Then dim(xs)= r +n−1.
Since dim(s) ≤ n, this forces dim(x/s) ≥ r −1. In particular, dim(Hs ∩ X) ≥ r −1.

Let us verify that dim(Hs ∩ X) = r − 1. Suppose not. Then there is y ∈ Hs ∩ X
with dim(y/xs) = r . Thus dim(xys) = 2r + n − 1. But dim(xy) ≤ 2r , so
dim(s/xy) ≥ n − 1. As observed above, this is only possible if x = y; but clearly
x ̸= y, since dim(y/xs) = r ≥ 1.

So dim(Hs ∩ X) = r − 1, and thus dim(x/s) ≤ r − 1. Recalling that dim(xs) =

r + n − 1, we conclude that dim(s) = n and dim(x/s) = r − 1. In particular, s is
generic in T . Since T is stationary, tp(s) = tp(t), so also dim(Ht ∩ X) = r − 1. □

Claim 3.28.2. Let x ̸= y be generics in Ht ∩ X over t. Then x forks with t over y.
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Proof. By assumption dim(t) = n, and by the previous claim, dim(y/t) = r − 1.
So dim(yt) = n + r − 1. But dim(t) ≤ r since y ∈ X ; and since t ∈ H y , we get
dim(t/y) ≤ n − 1. So we must have dim(y) = r and dim(t/y) = n − 1. But since
t ∈ H x

∩ H x , we also have dim(t/xy) ≤ n − 2, which proves the claim. □

Thus we have proved Proposition 3.28. □

Corollary 3.29. Let K be a strongly minimal expansion of a field, and let X be a
strongly minimal set internal to K . Then X is very ample.

Proof. Adding parameters if necessary, we may assume X is ∅-definable. By
Lemma 3.27, we may assume X ⊂ K n for some n. Then by Proposition 3.28
(applied to X2

⊂ K 2n), there is a very ample plane curve in X . So X is very
ample. □

3F. When very ampleness can be guaranteed. As we have seen, our first example
of a non-very ample structure (Example 3.6) still admits a very ample sort — that is,
it becomes very ample after dividing by a definable equivalence relation. We thus
think of K of that example as very ample “up to a finite cover,” which is precisely
the situation of Theorem B in [Hrushovski and Zilber 1996]. We do not know
whether this is true of all strongly minimal nonlocally modular structures.

Question 3.30. Suppose X is strongly minimal and not locally modular.

(1) Can one always find a very ample strongly minimal set Y internal to X?

(2) More specifically, can one always find a definable equivalence relation ∼ on X
so that X/ ∼ is strongly minimal and very ample?

Later in this paper, we will see that for strongly minimal expansions of groups G,
the answer to Question 3.30 (2) is positive. To show that, we pick a well-chosen
two-dimensional family of plane curves {Ct : t ∈ T } and show that the rela-
tion I (x, y) ⊂ G2, given by I (x, y) if and only if for some z and w we have
|C (x,z)

∩ C (y,w)
| = ∞, is contained in the graph of an equivalence relation ∼ on G

with finite classes, (in fact, the equivalence classes are cosets of a finite subgroup).
Then we show that in the quotient G/ ∼ the image of {Ct : t ∈ T } is very ample. For
a general strongly minimal structure, this strategy seems to work once we can find
a definable two-dimensional family of plane curves where the analogous relation
I is contained in an equivalence relation with finite classes. It can also be shown
that we can always find families of plane curves where I (x, y) is one-dimensional.
However, we do not know how to extend I to an equivalence relation in general.

Proposition 3.32 shows that, as one might expect from the above discussion,
nonlocally modular strongly minimal structures with elimination of imaginaries are
very ample.
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Definition 3.31. Let X be strongly minimal and A-definable. We say that X elimi-
nates imaginaries over A if for any elements a1, . . . , an ∈ X and any c ∈ dcleq(Aā),
there is a finite sequence b1, . . . , bm ∈ X with dcleq(Ab̄) = dcleq(Ac).

Proposition 3.32. Let X be strongly minimal, A-definable, and not locally modular.
If X eliminates imaginaries over A, then X is very ample.

Proof. By nonlocal modularity, there are a set B ⊃ A and a strongly minimal
plane curve C ⊂ X2, such that dim(c/B) = 2, where c = Cb(C). By stable
embeddedness of X , there are a1, . . . , an ∈ X with c ∈ dcl(Aā). So by elimination
of imaginaries, there are b1, . . . , bm ∈ X with dcl(Ab̄) = dcl(Ac), and in particular,
dcl(Bb̄) = dcl(Bc). So dim(b̄/B) = 2, and we may extract a two element basis
for b̄ over B. Without loss of generality, let us assume dim(b1b2/B) = 2. So
b1b2 ∈ dcl(Bc) and c ∈ acl(Bb1b2).

Now let x ∈ X2 be generic in C over Bc. So dim(cx/B) = 3. Since c /∈ acl(B),
x forks with c over B, which implies that dim(x/B) = 2, and thus dim(c/Bx) = 1.
By interalgebraicity, dim(b1b2/Bx) = 1. Let p = stp(b1b2/Bx); so p is a minimal
type in X2. Let S be a strongly minimal plane curve whose generic type is p.
So (b1, b2) is generic in S over acl(Bx).

Claim 3.32.1. S is very ample in X over B.

Proof. Let (b′

1, b′

2) be another generic of S over acl(Bx). So (b′

1, b′

2) |H p. Then
there is some c′ with tp(b1b2cx/B) = tp(b′

1b′

2c′x/B). Since b1b2 ∈ dcl(Bc) and
(b′

1, b′

2) ̸= (b1, b2), it follows that c ̸= c′. Because tp(cx) = tp(c′x) there is an
automorphism mapping cx to c′x and mapping tp(x/c) to tp(x/c′). Since c ̸= c′,
c = Cb(x/c), and c′

= Cb(x/c′), the (stationary) types tp(x/c) and tp(x/c′) have
no common nonforking extension (essentially, by the definition of canonical bases),
implying that x forks with c′ over c. □

We have shown that X admits a very ample strongly minimal plane curve, so X
is very ample. □

Remark 3.33. The formulation of the above proof using types is convenient, but
may obscure the geometric idea. Let us now explain the proof in more geometric
terms: we first use nonlocal modularity to find a faithful two-dimensional family of
plane curves; we then use elimination of imaginaries to reparametrize this family
by a definable set T ⊂ Xn , and by taking a projection Xn

→ X2, we further
reparametrize (up to losing generic strong minimality of the curves) by X2. We
then “dualize” the resulting family (interchanging points and curves), and observe
that the “dual” notion of faithfulness is precisely very ampleness.

Remark 3.34. The converse of Proposition 3.32 is false: Let M = (M, . . . ) be the
full C-induced structure on a smooth irreducible curve M over C of genus g > 0.
Then M is very ample by Corollary 3.29, but does not eliminate the imaginary C
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over any set of parameters. Let us elaborate: First, by the Zilber trichotomy
([Hasson and Sustretov 2017] or [Castle 2023]), M interprets a set isomorphic
to C, and thus interprets a smooth curve X of genus 0. If X were embeddable into
some Mn , then by composing with a projection one could obtain a nonconstant
rational map X → M , which (by completing, normalizing, and then comparing the
genus of each curve) is easily seen to contradict the Riemann–Hurwitz formula.

4. Applications of very ampleness

We now turn toward applications of very ampleness, with an eye toward improved
versions of the Zilber trichotomy for structures interpreted in algebraically closed
fields. Unless explicitly stated otherwise, we work in a uncountable saturated stable
structure M. Throughout this section and Section 7 statements will often include
the disclaimer “assuming Zilber’s trichotomy” (for structures interpretable in alge-
braically closed fields) or the weaker “an algebraically closed field is interpretable”.
At the time of writing of this paper, the status of Zilber’s trichotomy for such
structures is as follows:

(1) Hasson and Sustretov [2017] have a proof of the trichotomy in the one-
dimensional case.

(2) Castle [2023] has a proof of the trichotomy in characteristic 0 (for all dimen-
sions). This result is independent of [Hasson and Sustretov 2017].

(3) These results are yet to be published.

(4) Castle, Hasson, and Ye [Castle et al. 2024] have a proof of the trichotomy in
positive characteristic.

4A. Very ampleness and internality. The following proposition summarizes the
effect of very ampleness in comparing strongly minimal sets. In fact, almost every
application we make of very ampleness will, ultimately, follow from this result:

Proposition 4.1. Let X and Y be strongly minimal sets, and assume X is very
ample. If X is nonorthogonal to Y , then X is internal to Y .

Proof. By nonorthogonality, there is a strongly minimal set C ⊂ X × Y such that
both projections C → X and C → Y are finite-to-one. Without loss of generality
(by adding finitely many points to C), assume that C → X is surjective. We then
view C as a multivalued function X → Y , mapping each x ∈ X to the finite set
{y ∈ Y : (x, y) ∈ C}. In particular, it follows that one can find a sort S in Y eq, and a
finite-to-one definable map f : X → S. Absorbing parameters into the language,
we may assume that f is ∅-definable.

Now by assumption there is a plane curve C ⊆ X2 which is very ample over some
set A. Applying f coordinatewise, we obtain a finite-to-one function f̃ : C → S2.
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Note that since f is ∅-definable, if f̃ (x1, x2) = f̃ (y1, y2) then (x1, x2), (y1, y2)

are interalgebraic over ∅. So by condition (3) of Lemma 3.11, there are no distinct
generics (x1, x2), (y1, y2) ∈ C over A such that f̃ (x1, x2) = f̃ (y1, y2). In other
words, f̃ is generically injective. Letting T = im( f̃ ) (potentially minus a finite set)
and inverting f̃ , we can then extract a definable function g : T → C with cofi-
nite image. Then composing with a coordinate projection π , the resulting map
π ◦ g : T → X has cofinite image in X . This shows that X is internal to T , and
since T ⊂ S2, T is internal to Y . Thus, X is internal to Y . □

Before moving on we give two quick applications. First, the following is imme-
diate from Proposition 4.1, Lemma 3.27, and Corollary 3.29:

Corollary 4.2. Let K be a strongly minimal expansion of an algebraically closed
field, and let X be a strongly minimal set nonorthogonal to K . Then the following
are equivalent:

(1) X is very ample.

(2) X is internal to K .

(3) There is a definable embedding of X into some K n .

It follows from this last corollary, that if X is very ample and interprets an
algebraically closed field, K , then any strongly minimal set Y interpretable in X
is very ample. Indeed, by the corollary X is internal to K , and since Y is internal
to X , Y too is internal to K , so by the corollary, again, Y is very ample. Thus, in
particular, a counterexample to Question 3.25 must be a counterexample to Zilber’s
trichotomy.

Next, we give a partial answer to Question 3.30 for strongly minimal sets
nonorthogonal to very ample sets.

Corollary 4.3. Let X and Y be strongly minimal and nonorthogonal, and assume
Y is very ample. Then:

(1) There is a very ample strongly minimal set internal to X.

(2) If, moreover, Y eliminates imaginaries (over some parameter set), then there
is a definable equivalence relation ∼ on X with finite classes such that X/ ∼

is very ample.

Proof. (1) is immediate, because by Proposition 4.1, Y is internal to X . So we need
only prove (2). For that, assume that Y eliminates imaginaries over some set. By
nonorthogonality, one can find a finite-to-one map f : X → S, where S is a sort
in Y eq. By elimination of imaginaries we may assume S ⊂ Y n for some n, so we
have f : X → Y n . Then composing with an appropriate projection Y n

→ Y , we
obtain a finite-to-one map X → Y , which shows that (up to editing finitely many
points) Y is a quotient of X . □
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Remark 4.4. In particular, it follows from Corollary 4.3 that every nonlocally
modular strongly minimal structure satisfying the Zilber trichotomy admits a positive
answer to both parts of Question 3.30.

4B. Very ample Zariski geometries. In the present section, we show that our
definition of very ampleness is equivalent, in the context of Zariski geometries, to
the original definition of Hrushovski and Zilber. The results of this section are not
needed in the sequel, and the reader only interested in the application may safely
skip to the next section.

Recall that a strongly minimal Zariski geometry4 is a structure Z , in a language
equipping it with a compatible system of Noetherian topologies on Zn (all n),
such that Z has quantifier elimination and satisfies the dimension theorem; see
[Hrushovski and Zilber 1996] for the details. The Zariski geometry Z is ample if it is
not locally modular; it is then shown [Hrushovski and Zilber 1996, Theorem B] that
any ample Zariski geometry interprets an algebraically closed field K . To further
identify Z with a smooth curve over K , the notion of very ampleness is introduced.
We now give the definition (paraphrased) as it appears in [Hrushovski and Zilber
1996]. For the sake of clarity, we will refer to this version as Z-very ample.

Definition 4.5. Let Z be a Zariski geometry with universe Z . Then Z is Z-very
ample if there are an irreducible closed set E ⊂ Zn for some n, and an irreducible
closed set C ⊂ E × Z2, such that the following hold:
(1) For generic e ∈ E , the set C(e) is irreducible and one-dimensional.

(2) For any distinct a, b ∈ Z2 there is some e ∈ E such that C(e) contains exactly
one of a, b.

The main theorem in [Hrushovski and Zilber 1996], equivalently stated, then as-
serts that every Z-very ample Zariski geometry is isomorphic (as a Zariski geometry)
to a smooth curve over an algebraically closed field.

It is not directly mentioned in [Hrushovski and Zilber 1996] that the converse
holds — namely, that every smooth curve is very ample. We thank Hrushovski for
outlining the following proof:

Lemma 4.6. Let Z be a smooth algebraic curve over an algebraically closed field.
Then Z is Z-very ample.

Proof. Since C is a curve it is quasiprojective; so we may assume C ⊂ Pn(K )

for some n. Our goal is to find a family C ⊂ E × Z2 consisting of all hyperplane
intersections in Z2 (that is, sets Ht ∩ Z2 where Ht is a hyperplane in Pn(K )).
In this case, (1) follows by Bertini’s theorem, and (2) follows since any two points
in projective space can be separated by a hyperplane.

4We are referring to the term as appearing in [Hrushovski and Zilber 1996] and not to the more
general one of Zilber [2010].
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The only difficulty here is finding such a family which is irreducible, closed, and
parametrized by a closed irreducible set in a power of Z (rather than the natural
parametrization by Pn(K )). For this, it will suffice to find a surjective morphism
Zn

→ Pn(K ), since then we can lift the natural parametrization from Pn(K ) to Zn .
To find such a morphism, we note that by composing with a surjection (P1)n

→Pn

(which exists because the former is a projective variety of dimension n), it will
moreover suffice to find a surjection C → P1(K ).

Finally, let us build a surjection C → P1(K ). First choose any (dominant) mor-
phism f :C →P1(K ), and suppose f (C) misses m points of P1(K ), say x1, . . . , xm .
Then the map g ◦ f : C → P1(K ) is surjective, where g : P1(K ) → P1(K ) is any
ramified cover with generically (m + 1)-sized fibers that does not ramify at any
of x1, . . . , xm . □

It follows by [Hrushovski and Zilber 1996] and Lemma 4.6 that a Zariski geom-
etry Z is Z-very ample if and only if it is isomorphic to a smooth curve over an
algebraically closed field. Our goal now is to show that the same statement holds
using our notion of very ampleness in place of Z-very ampleness. To do this, we
first need to inspect the proof in [Hrushovski and Zilber 1996], in order to extract
the precise use of Z-very ampleness and replace it with a use of very ampleness. In
fact, the proof in [Hrushovski and Zilber 1996] is achieved by separately proving
the following three facts:

Fact 4.7. Let Z be a Zariski geometry with universe Z .

(1) If Z is not locally modular, then Z interprets an algebraically closed field
(p. 47, first paragraph of the proof of Theorem A).

(2) If Z interprets the algebraically closed field K , and Z is Z-very ample, then Z
is internal to K (from (1) to the end of the paragraph splitting p. 47–48).

(3) If Z interprets the algebraically closed field K , and Z is internal to K , then
Z is isomorphic to a smooth curve over K (p. 48, the rest of the proof of
Theorem A).

We now show:

Proposition 4.8. Let Z be a Zariski geometry. Then the following are equivalent:

(1) Z is very ample.

(2) Z is Z-very ample.

(3) Z is isomorphic to a smooth curve over an algebraically closed field.

Proof. As stated above, the equivalence of (2) and (3) is [Hrushovski and Zilber
1996, Theorem A] and Lemma 4.6. Moreover, the implication (3) =⇒ (1) follows
from Corollary 3.29. So it will suffice to show (1) =⇒ (3).
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Assume (1). Then by Lemma 3.8, Z is not locally modular. So by Fact 4.7 (1),
Z interprets an algebraically closed field K . Then by Proposition 4.1, Z is internal
to K . So by Fact 4.7 (3), Z is isomorphic to a smooth curve over K . Thus (3) holds,
and we are done. □

4C. Very ample strongly minimal ACF-relics. We now turn toward applications of
very ampleness to structures interpretable in algebraically closed fields. In [Loveys
2004, Theorem 7.1] Loveys gives a complete list (up to definable finite covers)
of all locally modular nontrivial reducts of the algebraically closed field C. If we
are interested in the classification of nonlocally modular reducts of C only up to
finite covers, then Rabinovich’s theorem [1993] is the final word. But one could
hope for a more precise classification of such reducts. One natural question is the
identification of reducts that are not proper. To state this problem in somewhat
greater generality, it is convenient to have:

Definition 4.9. Let N be any structure.

(1) An N -relic is a reduct, M, of the structure induced on some N -definable
set M .

(2) If M is an N -relic, and X is M-definable, then X is N/M-full if every
N -definable subset of every Xn is M-definable.

(3) If M = (M, . . . ) is an N -relic, then M is full in M if the universe M is
N/M-full.

In a recent unpublished work, Castle and M. Tran give a concrete characterization
of fullness for reducts of C whose atomic sets are polynomial functions, though a
similarly concrete identification of all full reducts of C is not available. In the next
two subsections, we show, roughly, that the fullness of an ACF-relic is equivalent
to very ampleness. In fact, in the main results of the current subsection, we show
an equivalence between several properties of a strongly minimal ACF-relic, notably
very ampleness, fullness, and bi-interpretability with the field.

We begin with a couple of straightforward and well-known facts about relics.

Lemma 4.10. Let M be an N -relic, and let X be M-definable and N/M-full.
If Y is M-definable and internal to X (in the sense of M), then Y is also N/M-full.

Proof. Let Z ⊂ Y n be N -definable. By internality, there are an M-definable
set W ⊂ Xm , for some m, and an M-definable surjective function f : W → Y n .
By the fullness of X , f −1(Z) ⊂ Xm is M-definable. Then since f is surjective,
Z = f ( f −1(Z)) is also M-definable. Thus Y is N/M-full. □

Lemma 4.11. Let (K , +, · ) be an algebraically closed field, let M = (M, . . . ) be
a K -relic, and F an infinite M-definable field. Then F is a pure field as seen from
both K and M. In particular, F is K/M-full.
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Proof. Since M defines fewer sets than K , and M defines the field operations on F ,
it suffices to show that every K -definable subset of every Fn is definable from only
the field operations on F . So let X ⊂ Fn be K -definable. By [Poizat 1988], there
is a K -definable field isomorphism f : K → F . Then f −1(X) ⊂ K n is definable
from the field operations on K , and since f is an isomorphism, X is definable from
the field operations on F . □

Using the previous two lemmas, we now give several equivalent characterizations
of fullness for ACF-relics. These are likely well known.

Proposition 4.12. Let K be an algebraically closed field, and let M = (M, . . . ) be
a K -relic. Then the following are equivalent:

(1) M is full in K .

(2) M is bi-interpretable with K over parameters.

(3) There is an infinite field F definable in M, such that M is internal to F (in the
sense of M).

(4) M defines an infinite field, and for every infinite M-definable field F , M is
internal to F (in the sense of M).

Proof. (1) =⇒ (2): Assume M is full. First, we point out that M interprets an
infinite field. Indeed, let X be any strongly minimal set in M. By fullness, X is
also strongly minimal in K . Thus, by quantifier elimination in K , after potentially
deleting finitely many points we may assume X is a smooth irreducible curve, and we
conclude by the main theorem on Zariski geometries [Hrushovski and Zilber 1996].

Now let F be an infinite M-definable field. By [Poizat 1988], there is a K -
definable isomorphism f : K → F . Let Y = (Y, . . . ) be the image of M under f
(equivalently, the relic of F defined using the same formulas defining M in K ).

We claim that the given interpretations of M in K , and of F in M, provide a bi-
interpretation of K and M over parameters. Indeed, we already know that K and F
are definably isomorphic in K , as witnessed by f . So it remains to show that Y is M-
definably isomorphic to M. But f gives a K -definable isomorphism M→Y , and Y
resides entirely in Meq. So by the fullness of M, this isomorphism is M-definable.

(2) =⇒ (3): The statement of (3) is part of the definition of a bi-interpretation.

(3) =⇒ (4): Assuming (3), let F1 be an infinite M-definable field such that M is
internal to F1 in the sense of M. To prove (4), it remains to show that if M defines
another infinite field, say F2, then M is internal to F2.

By assumption, F2 is internal to F1, and thus nonorthogonal to F1. But by
Lemma 4.11, each Fi is very ample and strongly minimal. So by Proposition 4.1,
F1 is internal to F2, and thus so is M .
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(4) =⇒ (1): Assume (4). Let F be an infinite M-definable field. By assumption,
M is internal to F in the sense of M. By Lemma 4.11, F is K/M-full. So by
Lemma 4.10, M is K/M-full, i.e., M is full in K . □

Remark 4.13. Given a K -relic M, fullness of M may, a priori. depend on the
interpretation of M in K . However, as the other five conditions appearing in the
statement do not depend on the interpretation, it follows that fullness is a property
only of the abstract structure M. In other words, if M is interpretable in an
algebraically closed field, then either all possible interpretations are full or none are.

We now use Proposition 4.12 and the Zilber trichotomy to show that very am-
pleness characterizes fullness for strongly minimal relics. This can be seen as an
analogue of the main theorem on Zariski geometries.
Theorem 4.14. Let K be an algebraically closed field, and let M = (M, . . . ) be a
strongly minimal K -relic which satisfies Zilber’s trichotomy. Then the following are
equivalent:
(1) M is very ample.

(2) M is full in K .

(3) Up to deleting a finite set, M is isomorphic to an irreducible algebraic curve
over K , with its induced structure from K .

Proof. (1) =⇒ (2): Assume M is very ample. By Lemma 3.8, M is not locally
modular, so by the Zilber trichotomy, M interprets an infinite field, say F . Then
M and F are nonorthogonal, and by Lemma 4.11, F is strongly minimal. So by
Proposition 4.1, M is internal to F . Then, by Proposition 4.12, M is full.

(2) =⇒ (3): Assuming M is full, the universe M is also strongly minimal in K .
So by quantifier elimination in K , M agrees up to finitely many points with an
irreducible curve. This makes (3) clear.

(3) =⇒ (1): Follows by Corollary 3.29. □

4D. More on full ACF-relics. It follows from Theorem 4.14 that strongly minimal
relics of algebraically closed fields are full precisely when they are very ample. In
this section, we give a similar characterization of fullness for a general (nonstrongly
minimal) relic. In this case, the argument will be a little more delicate. In particular,
we need to first develop general conditions under which fullness of a relic can be
checked at the level of strongly minimal sets.
Proposition 4.15. Let M be an N -relic, where M and N are almost strongly
minimal. Assume there is a strongly minimal set in M which is N/M-full. Then
the following are equivalent:
(1) M is full in N .

(2) Every strongly minimal set in M is N/M-full.
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(3) Every strongly minimal set in M is also strongly minimal in N .

(4) Every stationary definable set in M is also stationary in N .

Proof. Throughout, we use the following:

Claim 4.15.1. Let X be any M-definable set. Then dimM(X) = dimN (X).

Proof. Let F be an N/M-full strongly minimal set. By almost strong minimality,
there is an M-definable set Y internal to F (in the sense of M) which is in M-
definable finite correspondence with X . Since finite correspondences preserve
dimension, we may assume X = Y , i.e., that X is internal to F . But then by
Lemma 4.10, X is N/M-full, which makes the lemma obvious. □

Notation. In light of Claim 4.15.1, for the rest of the proof we will drop all
subscripts when denoting dimensions of definable sets.

We now prove the proposition.

(1) =⇒ (2): Clear.

(2) =⇒ (3): Clear.

(3) =⇒ (4): Assume (3), and let X be stationary in the sense of M. If dim(X) = 0,
everything is clear, so assume dim(X) = d ≥ 1. Using coordinatization in almost
strongly minimal structures, one can M-definably write X =

⋃
t∈T X t , where T is

strongly minimal in M, for any t ∈ T we have dim(X t)= d −1, and X t is stationary
in M for generic t ∈ T . Specifically, after possibly adding a finite set of parameters,
there is a strongly minimal set T0 such that M = acl(T0) so given a generic x ∈ X
there is t0 ∈ T0 such that x forks over t0. Take c := Cb(stp(x/t0)), T strongly
minimal in stp(c), and ϕ(x, t) a formula isolating stp(x/t0) in its dimension and
degree, X t its set of realizations. Now, by (3), T is also strongly minimal in N .
Moreover, arguing by induction, we may assume that X t is stationary in N for
generic t ∈ T . Then, as the union of a stationary family of (generically) stationary
sets, it follows easily that X is stationary in N .

(4) =⇒ (1): Assume (4), and let X ⊂ Mn be M-definable. We argue by induction
on d = dim(X). Let F be an N/M-full strongly minimal set. By almost strong
minimality, there are a sort S in Feq and a finite-to-one M-definable function
f : Mn

→ S. Let Y = f −1( f (X)). Note that f (X) is M-definable, by the fullness
of F ; thus Y is also M-definable. Moreover, X ⊂ Y , and since f is finite-to-one,
we have dim(X) = dim(Y ) = d .

In the structure M, write Y = Y1 ∪ · · · ∪ Ym as a union of stationary sets of
dimension d . By (4), each Yi is stationary in N , so each Yi is either almost contained
in X or almost disjoint from X . Since X ⊂ Y and dim(X) = dim(Y ), X is almost
equal to the union (say Z ) of those Yi that are almost contained in X . But Z is
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M-definable, and X is a Boolean combination of Z , X −Z , and Z −X , the latter two
having dimension less than d . It then follows by induction that X is M-definable. □

We are now ready for the main theorem of this subsection.

Theorem 4.16. Let K be an algebraically closed field, and assume the Zilber
trichotomy holds for strongly minimal K -relics. Let M = (M, . . . ) be a K -relic.
Then the following are equivalent:

(1) M is full.

(2) There is a very ample strongly minimal set X in M such that M is internal
to X (in the sense of M).

(3) M is almost strongly minimal, and every strongly minimal set in M is very
ample.

Proof. (1) =⇒ (2): By Proposition 4.12, M is internal to an M-definable infinite
field, say F . By Lemma 4.11, F is strongly minimal and very ample.

(2) =⇒ (3): Let X be as in (2). Internality to X is a strengthening of almost strong
minimality, so to show (3), it suffices to show that strongly minimal sets in M are
very ample. So, let Y be strongly minimal in M. By assumption, Y is internal to X
in the sense of M. So by Lemma 4.10, Y is K/M-full. Then by Theorem 4.14
(applied to Y with its induced structure from M), Y is very ample.

(3) =⇒ (1): Assume (3). We show fullness using Proposition 4.15. Since M and K
are almost strongly minimal by assumption, it suffices to show that every strongly
minimal set in M is K/M-full. But this is automatic: if X is strongly minimal
in M, then by (3) X is very ample, so by Theorem 4.14, X is K/M-full. □

Remark 4.17. The reader may be tempted to replace “almost strongly minimal”
with “uncountably categorical” in the statement of Theorem 4.16. Let us point out,
then, that almost strong minimality and unidimensionality are not equivalent for
ACF-relics. Indeed, for any algebraically closed field, K , consider the two sorted
relic M defined as follows: we define the two sorts to be M := K 2 and U := K .
We then equip M with the binary relation V on M interpreted as

{((x, y), (x, z)) : x, y, z ∈ K },

the map
f ((x, y), (x, z)) = y − z

from V to U , and the full field structure on U . (Essentially, we have defined a
K -indexed family of copies of K , each of which has “forgotten where 0 is” but
remembers an isomorphism with K after fixing any element to be 0.) Clearly, M
is a K -relic. We leave it as an exercise to the interested reader to verify that M is
uncountably categorical, but not almost strongly minimal.
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5. Technical results on strongly minimal structures

Here we prove some useful facts about general strongly minimal structures, without
assuming very ampleness or Zilber’s trichotomy. Though these are technical results
needed for the sequel, we hope they will be seen as interesting in their own right.
Throughout this section M is assumed to be a strongly minimal structure.

We will use the following well-known notions.

Definition 5.1. Let p and q be stationary types over A and B, respectively.

(1) The Morley product of p and q, denoted p ⊗ q, is tp(ab/AB), where a |H p,
b |H q , a |⌣ A B, and b |⌣ B Aa.

(2) Given a positive integer k, the k-th Morley power of p, denoted pk , is the
k-fold Morley product of p with itself.

(3) The stationary types p and q are interalgebraic if A = B and for a |H p, there
is b |H q with a and b interalgebraic over A.

5A. Sweeping extensions. Suppose that we are given a 3-dimensional stationary
set X , and a high-dimensional family C of curves in X covering X generically.
A subfamily C′ of C (over additional parameters) could have high dimension, but
concentrate on a forking subset of X . In the present section, we develop a notion
of largeness of subfamilies aimed at avoiding precisely such situations.

The following notion appeared in an equivalent form in the first author’s Ph.D.
thesis, and later appeared implicitly in [Castle 2023]. Below, if p and q are complete
types, by p ⊂ q we mean that q is an extension of p.

Definition 5.2. Let p ⊂ q be stationary types. We say that q is a k-sweeping
extension of p if pk

⊂ qk .

Definition 5.3. Let A ⊂ B and let p be a stationary type over B. We say that p
k-sweeps over A if p is a k-sweeping extension of its restriction to acl(A).

Definition 5.4. If A ⊂ B and a is a tuple, we say that a k-sweeps from B to A if
stp(a/B) k-sweeps over A.

Note that if p is a stationary type over A, and q is a k-sweeping extension of p,
then for any Morley sequence ā = a1, . . . , ak in p, there is an A-automorphism
conjugate q ′ of q such that ā is a Morley sequence in q ′. We, thus, think of the
conjugates of q as “filling out” p “to order k”. In particular, k-sweeping extensions
provide a workable measure of “largeness” for families of extensions of a type. Now,
given a stationary set X and a family C of (generically stationary) subsets of X , we
can ask whether the generic type of a generic member of the family is a k-sweeping
extension of the generic type of X . This gives a stronger, and geometrically more
accurate, notion of largeness for families of definable subsets of X , than just the
dimension of the family.
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The following facts are easily verified:

Fact 5.5. Let p, q, r, s be stationary types, A and B be parameter sets, a and b be
tuples, and k be a positive integer.

(1) If q ⊃ p is nonforking, then q ⊃ p is k-sweeping.

(2) If r ⊃ q and q ⊃ p are k-sweeping, then r ⊃ p is k-sweeping.

(3) If q ⊃ p is k-sweeping, q and s are interalgebraic, p and r are interalgebraic,
and s ⊃ r , then s ⊃ r is k-sweeping.

(4) If ab k-sweeps from B to A, then a k-sweeps from B to A.

(5) If a k-sweeps from B to A, and b |⌣ Aa B, then b k-sweeps from B to A.

We also give the following two lemmas, which essentially appeared in Castle’s
Ph.D. thesis:

Lemma 5.6. Suppose that a k-sweeps from B to A. Then for any b such that
dim(b/A) < k, a |⌣ B b implies a |⌣ A b.

Proof. Assume a |⌣ B b. Let ā = a1, . . . , ak be a Morley sequence in stp(a/Bb).
Since a |⌣ B b, ā is also a Morley sequence in stp(a/B), and since a k-sweeps from B
to A, ā is also a Morley sequence in stp(a/A). Hence dim(āb/A) ≥ k · dim(a/A).
Since dim(b/A) < k, this implies dim(ā/Ab) > k · (dim(a/A)−1). Hence, there is
some i with dim(ai/Ab)=dim(a/A). But tp(a/Ab)= tp(ai/Ab), so dim(a/Ab)=

dim(a/A). □

Lemma 5.7. Let p ⊂ q be stationary types over A and B respectively. If dim(q) =

dim(p) − 1, then q is a k-sweeping extension of p, where k = dim(Cb(q)/A).

Proof. Let c = Cb(q). Let d = dim(p). Let ā = (a1, . . . , ak) be a Morley sequence
in q . So dim(cā/A) = kd , counting from left to right. Now if the lemma fails, then
dim(ā/A)<kd , so dim(c/Aā)>0. Let c′ be an independent realization of tp(c/Aā)

over c. Then by assumption we get (1) dim(cc′ā/A) > kd , and (2) dim(c′/Ac) > 0.
By (2) c′

̸= c, so each ai forks with Acc′ over Ac, and thus dim(ā/Acc′) ≤ k(d −2).
So by (1), dim(cc′/A) > 2k, contradicting that dim(c/A) = dim(c′/A) = k. □

We conclude this subsection with an existence result for sweeping extensions. It is
well known that nonlocal modularity is characterized by the presence of arbitrarily
large families of one-dimensional subsets of M2; see also Conditions (A), (B)
and (C) on pp. 85–87 of [Hrushovski 1989]. By Lemma 5.7, this is equivalent to the
generic type of M2 having k-sweeping one-dimensional extensions for arbitrarily
large k. Proposition 5.8 says that there is nothing special about one-dimensional
subsets of M2: namely, adopting sweeping as a notion of largeness, every definable
set X admits arbitrarily large definable families of m-dimensional subsets, for any
0 < m ≤ dim X .
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Proposition 5.8. Assume M is not locally modular. Let 0 < m ≤ n and k be positive
integers, and let p be a stationary type over A with dim(p) = n. Then there is a
k-sweeping extension q ⊃ p with dim(q) = m.

Proof. We start with some reductions. If m = n, then p is a k-sweeping extension
of itself. Now assume m < n. By Fact 5.5 (2), it suffices to assume m = n −1. Now
by weak elimination of imaginaries, there is a nonforking extension p′

⊃ p, say
over A′

⊃ A, such that p is interalgebraic with the generic type p′′ of Mn over A′.
By nonlocal modularity, there is a strongly minimal plane curve C ⊂ M2, with

canonical base c, such that dim(c/A′) ≥ k. Let r be the generic type of C over A′c,
and let q ′

= r ⊗s, where s is the generic type of Mn−2 over A′c. So dim(q ′)= n−1,
and clearly Cb(q ′) is also c. Then by Lemma 5.7, and since dim(c/A′) ≥ k, the
extension q ′

⊃ p′′ is k-sweeping. Let a |H q ′. So a |H p′′. By interalgebraicity,
there is b |H p′ with a and b interalgebraic over A′. Now let q = stp(a/A′c). By
interalgebraicity, dim(q) = n − 1, and by Fact 5.5 (3), q ⊃ p′ is k-sweeping. But
by Fact 5.5 (1), p′

⊃ p is also k-sweeping, thus by Fact 5.5 (2), so is q ⊃ p. □

Note that nonlocal modularity is crucial in the above proposition. Indeed, in any
stable one-based theory, if q ⊃ p are stationary types with q2

⊃ p2, then q is a
nonforking extension of p. To see this, suppose p is over A, let c = Cb(q), and let
(a, b) |H q2. By one-basedness, c ∈ acl(a) ∩ acl(b). But since a |⌣ A b, this gives
c ∈ acl(A), implying that q does not fork over A.

5B. Sets transverse to any family. The result of this subsection was inspired by the
following question: given a definable family {X t : t ∈ T } of codimension r subsets
of a definable set Z , can one always find an r-dimensional definable set Y ⊂ Z
having finite intersection with each X t ? This type of question arises, for example,
when trying to extract a 2-dimensional very ample family of plane curves from a
higher dimensional such family (see Proposition 6.1).

In order to answer the question above, it is convenient to study a more general
question. Namely, for type-definable sets X, Y ⊂ Z , say that X and Y are transverse
in Z if dim(X ∩Y )≤ dim X +dim Y −dim Z . We wish to investigate whether, given
a type-definable family {X t : t ∈ T } of subsets of a definable set Z , one can find a
definable Y ⊂ Z of any prescribed dimension which is transverse to each X t in Z .

As stated, it is not always possible to find such Y : indeed, if the prescribed
dimension of Y is small enough (but still at least 0), transversality could require
Y to be disjoint from each X t , which is clearly impossible if the X t cover Z . So
at the least, we must allow Y to be nonempty. Conversely, Proposition 5.9 and
Corollary 5.10 show that this is, essentially, the only obstacle.

Proposition 5.9. Assume M is not locally modular. Fix nonnegative integers
i, j, m, k with i, j ≤ m. Let p be a stationary type over A of dimension m. Let
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{X t : t ∈ T } be a type-definable family of sets over A, with each dim(X t) ≤ i . Then
there are a set B ⊃ A and a stationary type q ⊃ p over B satisfying:

(1) dim(q) = j .

(2) If j ≥ 1, then q ⊃ p is a k-sweeping extension.

(3) If a |H q and a ∈ X t for some t , then dim(a/Bt) ≤ max{0, i + j − m}.

Proof. For ease of notation, we assume throughout that A = ∅. Note that it is
harmless to increase the value of k, so we may assume k > dim T .

We proceed by induction on j . If j = 0 then conditions (2) and (3) are automatic,
and one can simply take q = tp(a/a) where a |H p.

Now assume j ≥ 1, and let r ⊃ p satisfy the proposition with j replaced by j −1.
Suppose r is over C . Let c = Cb(r). Since j − 1 < j ≤ m, r is a forking extension
of p, thus dim(c) ≥ 1. Then, by Proposition 5.8, there is a set B such that tp(c/B)

is minimal and k-sweeps over ∅. Without loss of generality, B is algebraically
closed. Finally, let r ′ be the nonforking extension of r over BC , and let q be the
restriction of r to B. Since B is algebraically closed, q is stationary. We show in
the ensuing four claims that q satisfies the requirements of the proposition.

Claim 5.9.1. dim(q) = j.

Proof. Let a |H r ′. We want to show that dim(a/B) = j . Now since r ′ is a
nonforking extension of r , we have

dim(a/Bc) = dim(r ′) = dim(r) = j − 1.

Since dim(c/B)=1, this implies j−1≤dim(a/B)≤ j . So assume dim(a/B)= j−1.
Then r ′ does not fork over B, and since c = Cb(r) = Cb(r ′), this implies c ∈ acl(B),
contradicting that dim(c/B) = 1. □

Claim 5.9.2. The stationary type q is a k-sweeping extension of p.

Proof. Let a |H r ′. It is enough to show that a k-sweeps from B to ∅. Now by
assumption, c k-sweeps from B to ∅. Moreover, since r ′

⊃ r is nonforking, a
and B are independent over c. So, by Fact 5.5 (5), a k-sweeps from B to ∅. □

Item (3) in the proposition will be the most difficult to establish. The key
observation is:

Claim 5.9.3. Let a |H r ′ and a ∈ X t for some t. Then either c ∈ acl(Bt) or
i + ( j − 1) − m ≥ 0.

Proof. By various instances of additivity, we have

dim(c/t) ≤ dim(ac/t) = dim(a/t) + dim(c/at)

≤ dim(a/t) + dim(c/a) = dim(a/t) + dim(c) + dim(a/c) − dim(a)

≤ i + dim(c) + ( j − 1) − m.
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Rearranging,
dim(c/t) − dim(c) ≤ i + ( j − 1) − m.

Now dim(c/B) = 1 by assumption, so if c /∈ acl(Bt), then c |⌣ B t . But by construc-
tion, c k-sweeps from B to ∅, and k > dim(T ) ≥ dim(t). So by Lemma 5.6, we
get c |⌣∅ t , and the above simplifies to 0 ≤ i + ( j − 1) − m. □

Finally, we complete the proof of Proposition 5.9 by showing (3):

Claim 5.9.4. Let a |Hq and a ∈ X t for some t. Then dim(a/Bt)≤max{0, i+ j−m}.

Proof. After applying an automorphism fixing B, we may assume a |H r ′. Let
a′t ′

|H tp(at/c) with a′t ′
|⌣c C . So a′

|H r and a′
∈ X t ′ . Combined with the inductive

hypothesis, we get

dim(a/ct) = dim(a′/ct ′) = dim(a′/Ct ′) ≤ max{0, i + ( j − 1) − m}.

We now proceed in two cases, according to the previous claim.

Case 1: Assume c ∈ acl(Bt). Then

dim(a/Bt) ≤ dim(a/ct) ≤ max{0, i + ( j − 1) − m} ≤ max{0, i + j − m}.

Case 2: Assume i +( j −1)−m ≥ 0. Then max{0, i +( j −1)−m}= i +( j −1)−m,
so dim(a/ct) ≤ i + ( j − 1) − m. But since dim(c/B) = 1, we then have

dim(a/Bt) ≤ dim(a/ct) + 1 = i + j − m,

as claimed. □

This finishes the proof of the proposition. □

Combining Proposition 5.9 with compactness, we obtain:

Corollary 5.10. Let i, j, m be integers with 0 ≤ i, j ≤ m. Let Z be a definable set
of dimension m, and let {X t : t ∈ T } be a definable family of subsets of Z , with
each dim(X t) ≤ i . Then there is a definable set Y ⊂ Z of dimension j such that for
each t ∈ T , we have dim(X t ∩ Y ) ≤ max{0, i + j − m}.

6. Very ample families of a prescribed dimension

As we have seen, very ampleness in strongly minimal structures is equivalent to the
existence of very ample families of plane curves (Corollary 3.21). In applications,
it may be convenient to have access to such families of a prescribed dimension
(as is the case with nonlocal modularity, where for any k > 1 the existence of
any k-dimensional family of plane curves implies the existence of families of all
dimensions). In the present section, we show that this can always be achieved.
Namely, we first use Proposition 5.9 to show that, given a k-dimensional very ample
family of plane curves, we can extract an l-dimensional very ample subfamily for any
2 ≤ l ≤ k. We then adapt the usual proof from the nonlocally modular setting (using
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composition and a field configuration) to construct very ample families of arbitrarily
large dimension. While the general proof structure is the same as in the nonlocally
modular case, the need to preserve very ampleness will make each stage of the
argument more delicate. In particular, once a field (say K ) is interpreted in our set
(say X ), some care is needed to examine the precise relationship between X and K .

Once we have achieved the result described above, we end the section with
a short application, in which (as mentioned in the introduction to the paper) we
characterize very ampleness in terms of definable pseudoplanes.

6A. Going down. Here we prove that very ample families of plane curves admit
very ample subfamilies of any prescribed dimension. The proof amounts to an
application of Proposition 5.9.

Proposition 6.1. Let X be strongly minimal and A-definable. Let C be a strongly
minimal plane curve in X , let c = Cb(C), and let m = dim(c/A). Assume that
C is very ample over A. Then for all 2 ≤ j < m, there is a set B ⊃ A such that
dim(c/B) = j and C is very ample over B.

Proof. Without loss of generality, assume A is algebraically closed, as this does
not affect any of the relevant computations. Let p = tp(c/A). So p is stationary
of dimension m. Let a be generic in C over Ac, and let T = X2

× X2
\1, where

1 is the diagonal (v, v) ∈ X2
× X2. Let {X t : t ∈ T } be the A-type-definable

family (in the variables v, v′, z) defined as follows: for t = (v, v′), set z ∈ X t if
tp(vz/A) = tp(v′z/A) = tp(ac/A). Then X t is the set of A-automorphic images
of C , passing generically through v and v′. It follows from the very ampleness of C
over A that dim(X t) ≤ m − 2 for all t ∈ T (see Lemma 3.11).

Now let i =m−2 and k =1, and let B ⊃ A and q be as provided by Proposition 5.9
(for j as given in the statement of the current proposition). After applying an
automorphism, we may assume that c |H q. So dim(c/B) = j . We will show that
C is very ample over B, proving the proposition.

To show very ampleness, let v, v′ be distinct generics of C over c. By Lemma 3.11,
it is enough to show that dim(c/Bvv′) ≤ j − 2. But by definition we have c |H q
and c ∈ X(v,v′), so dim(c/Bvv′) ≤ max{0, i + j − m}. But i = m − 2, so i + j −

m = j − 2. Thus dim(c/Bvv′) ≤ max{0, j − 2}, and since j ≥ 2, this implies
dim(c/Bvv′) ≤ j − 2. □

6B. Going up. Our next goal is to show that if X is a very ample strongly minimal
set, then X has arbitrarily large very ample families of plane curves. Before
proceeding, we need the following well-known lemma5:

5The argument goes back to the proof that nonlocal modularity implies the existence of faithful
families of plane curves or arbitrarily large dimension. Similar arguments can be found in [Hasson
and Sustretov 2017, Lemma 4.18] and [Eleftheriou et al. 2021, §3]
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Lemma 6.2. Let X be an A-definable strongly minimal set, and let C , D, and
E ⊂ D ◦C be strongly minimal plane curves in X , with canonical bases c, d , and e,
respectively. Assume that c |⌣ A d and dim(e/A) ≤ dim(c/A) = dim(d/A) = k for
some k ≥ 2. Then k ∈ {2, 3}, and there is a definable strongly minimal expansion of
an algebraically closed field which is internal to X.

Proof. Take (x, z) ∈ E generic and y such that (x, y) ∈ C and (y, z) ∈ D. The
assumption implies that {c, d, e, x, y, z} is a group configuration; see [Eleftheriou
et al. 2021, Lemma 3.18, Lemma 3.20] for the details. By a result of Hrushovski
(see [Poizat 2001, Theorem 3.27]) this implies that k ≤ 3, and if dim(k) ≥ 2 (which
holds by assumption), a strongly minimal field is definable in X eq. □

We now give the main result of this subsection.

Proposition 6.3. Suppose X is strongly minimal, A-definable, and very ample.
Then for any k ≥ 2 one can find a set B ⊃ A, and a strongly minimal plane curve C
in X , such that dim(Cb(C)/B) ≥ k and C is very ample in X over B.

Proof. For simplicity of notation, we assume that A = ∅. Assume the proposition
fails. By very ampleness, there is a strongly minimal plane curve C in X (with
canonical base c, say) which is very ample in X over some set B. Fix such (C, c, B)

so that the value k := dim(c/B) is maximal (that this is possible follows by the
assumed failure of the proposition). We may assume moving forward that B = ∅.
Note also that k ≥ 2 by Lemma 3.8.

Let d |H tp(c/B), with c |⌣ d . So dim(d) = k, and d = Cb(D) for some strongly
minimal plane curve D in X which is also very ample in X over ∅. Let E ⊂ D ◦C
be strongly minimal. Then, by Lemma 3.23 and Corollary 3.14, E is also very
ample over ∅. So by the choice of k, letting e = Cb(E), we have dim(e) ≤ k. Thus,
by Lemma 6.2, k ∈ {2, 3} and there is a strongly minimal expansion (K , +, · , . . . )

of an algebraically closed field internal to X .
Since K is internal to X , clearly X and K are nonorthogonal. So by Corollary 4.2,

there is a definable embedding of X into some K n . Let us choose, among all
definable embeddings of cofinite subsets of X into any K n , one which minimizes
the value n. So, replacing X with a cofinite subset if necessary, we assume that
X ⊂ K n and no cofinite subset of X embeds into any smaller power of K . Without
loss of generality, we will assume that K and X are ∅-definable.

In what follows, it will be convenient to introduce the following notation: if
S ⊆ K m is definable, we let Saff be the intersection of all affine linear subspaces
of K n which contain a large subset of S. It is easy to see that Saff is itself affine
linear and contains a large subset of S, and moreover that Saff is definable over any
set of parameters defining S. Note also that by the choice of n, we have X aff

= K n

(since any proper affine linear subspace of K n is in definable bijection with a lower
power of K ).
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Let H = {Ht : t ∈ T } be the family of hyperplanes in K 2n . So dim(T ) = 2n. We
note the following basic observation, for future reference:

Claim 6.3.1. If D ⊆ K 2n is a d-dimensional affine linear subspace, then we have
dim({t ∈ T : D ⊆ Ht }) = 2n − d − 1.

Now let t ∈ T be generic. Then, by Proposition 3.28, Ht ∩ X2 is a very ample
(over ∅) plane curve in X . Let S ⊂ Ht ∩ X2 be strongly minimal. Then, by
Corollary 3.14, S is also very ample in X over ∅. So by the choice of k, letting
s = Cb(S), we have dim(s) ≤ k ≤ 3, and thus dim(s) ≤ 3.

Since S is a strongly minimal component of Ht ∩ X2, clearly s ∈ acl(t). So
dim(ts) = dim(t) = 2n, and thus dim(t/s) ≥ 2n − 3. On the other hand, by
definition Ht contains S, so since Ht is affine linear it must also contain Saff. Let
d := dim(Saff); then by Claim 6.3.1, we have dim(t/s) ≤ 2n−d −1. So, combining
with dim(t/s) ≥ 2n − 3, we get 2n − 3 ≤ 2n − d − 1, and thus d ≤ 2. Note also
that if equality holds (i.e., d = 2), we have 2n − 3 ≤ dim(t/s) ≤ 2n − 3, so that
dim(t/s) = 2n − 3, and thus dim(s) = 3.

Now, the main point of the proof is the following:

Lemma 6.4. There is a definable strongly minimal algebraically closed field
(F, +F , ·F ), whose underlying set F almost coincides with X.

Proof. First note that if dim(X aff) = 1, then X almost coincides with X aff, and X aff

is in definable bijection with K ; in particular, this is enough to prove the lemma
(setting F = X aff with the field structure inherited from K ). So we may assume
that n = dim(X aff) ≥ 2, and thus (as above) dim(s) = 3. Our goal is to construct a
definable transitive group action of a 3-dimensional group on a set almost equal to X ,
and apply Hrushovski’s classification [Poizat 2001, Theorem 3.27] of such actions.
We first proceed with the following two claims, which give us the group we will use:

Claim 6.4.1. Let π : K 2n
→ K n be either the leftmost or rightmost projection. Then

the restriction of π to Saff is surjective.

Proof. By Remark 3.9, π is finite-to-one on S, and thus π(S) contains a cofinite
subset of X . By definition, Saff contains a cofinite subset of S, so clearly π(Saff) con-
tains a cofinite subset of π(S). In particular, π(Saff) also contains a cofinite subset
of X , and thus contains X aff

= K n (because projections of affine sets are affine). □

We next use Claim 6.4.1 to show the following:

Claim 6.4.2. The intersection Saff is the graph of an invertible affine linear map
L : K 2

→ K 2.

Proof. By Claim 6.4.1 we have d ≥ n ≥ 2; so since we already had d ≤ 2, we get
d = n = 2. Then by Claim 6.4.1 again, each of the two projections Saff

→ K 2 is
a surjective linear map between two-dimensional affine linear spaces; thus each of
these projections is a linear bijection, which implies the claim. □
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Let L : K 2
→ K 2 be as in Claim 6.4.2. Since S projects almost onto X in both

directions, and by the strong minimality of X , it follows that L(X) almost coincides
with X . By the strong minimality of S, it moreover follows that S almost coincides
with the graph of the restriction of L to X . In particular, it follows easily that s is
interdefinable with the canonical parameter of L .

Now let G be the generic stabilizer of X in AGL2(K ) — that is, the set of all
invertible affine linear maps g : K 2

→ K 2 such that g(X) almost coincides with X .
Clearly, G is a ∅-definable subgroup of AGL2(K ). By the above remarks (since
s is definable from L), we have dim(G) ≥ dim(s) = 3. Let G0 be the connected
component of G; so dim(G0) ≥ 3 and G0 is ∅-definable.

We now have the group for our action; our next goal is to find an appropriate
set which is acted on transitively. Now G0 comes equipped with both an action
on K 2, and a generic action on X : so if g ∈ G0 and x ∈ X then g(x) ∈ K 2 is always
defined, while if g and x are independent generics then g(x) is also a generic of X .
Fix x0 ∈ X generic and independent of s, and let G0(x0) be the orbit of x0 under all
of G0. Note, then, that G0(x0) is definable over x0. Our aim is to show that G0(x0)

almost coincides with X , and subsequently build a field structure on G0(x0). We
will do this via a sequence of claims. To start, we show:

Claim 6.4.3. The orbit G0(x0) almost contains X.

Proof. Since x0 is generic over s, there is y0 ∈ X such that (x0, y0) is generic
in S. So y0 = L(x0). Now, by genericity, we have dim(x0 y0/s) = 1; Note then that
dim(x0 y0/∅) cannot also be 1, because then we would have s ∈acl(∅), contradicting
dim(s) = 3. So dim(x0 y0) = 2. In particular, y0 is generic in X over x0. Since
y0 = L(x0), we see that y0 ∈ G0(x0), and the claim follows. □

Using Claim 6.4.3, we now show:

Claim 6.4.4. The orbit G0(x0) is one-dimensional, and X is (up to a finite set) one
of its strongly minimal components.

Proof. Let D be the set of g ∈ G0 with g(x0) ∈ X . Then D is definable over x0 and
contains all generics of G0 over x0, which implies that D is generic in G0. So there
are g1, . . . , gm ∈G0 such that the translates gi D cover G0. Then G0(x0) is contained
in the union of the gi D(x0), which by definition is contained in the union of the
gi (X). Now each gi (X) is strongly minimal, which implies that G0(x0) is contained
in a one-dimensional definable set. The claim then follows by Claim 6.4.3. □

Finally, we show:

Claim 6.4.5. The orbit G0(x0) is strongly minimal, and thus almost coincides
with X.

Proof. As a transitive G0-set, G0(x0) is isomorphic to a coset space G/H , where
H is the stabilizer of x0. It is easy to see that this identification is definable (that is,
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the usual identification from basic algebra is clearly definable). In this case, the
strong minimality of G0/H follows easily from the fact that G0 is connected:
indeed, given a partition of G0/H into disjoint definable infinite sets Z1 and Z2, the
preimages of the Zi in G0 would partition G0 into two generic subsets, contradicting
connectedness. □

Now by Claim 6.4.5, there is a definable (transitive by definition) action of G0

on the strongly minimal set G0(x0), and dim(G0) ≥ 3. So by the classification of
such actions [Poizat 2001, Theorem 3.27], dim(G0) = 3 and G0(x0) is in definable
bijection with P1(F) for some definable, strongly minimal, algebraically closed
field F . Deleting a point, we then recover A1(F) = F ; then by Claim 6.4.5 again,
X is (up to a definable bijection) almost equal to F , proving Lemma 6.4. □

Now by Lemma 6.4, we may assume after changing finitely many points that
there is a definable field structure on the set X . It is then an easy exercise to find
arbitrarily large very ample families of plane curves (for example, the family of
degree d polynomial maps X → X is very ample for each d). In particular, there are
very ample (over ∅) strongly minimal plane curves C ⊂ X2 with dim(Cb(C)) > k,
contradicting our initial assumption and thus proving Proposition 6.3. □

The main part of the proof is showing that the conclusion of Proposition 6.1 is true
for strongly minimal sets definable in strongly minimal expansions of algebraically
closed fields. It may be interesting to know whether a simpler proof of this fact
exists in the case of pure algebraically closed fields.

Finally, we now deduce:

Corollary 6.5. Let X be a very ample strongly minimal set. Then for every
k ≥ 2, there is a faithful, very ample family {Ct : t ∈ T } of plane curves in X
where dim(T ) = k.

Proof. Assume X is A-definable. Applying Proposition 6.3 and then Proposition 6.1,
we can find a set B ⊃ A and a strongly minimal plane curve C ⊂ X2 which is very
ample in X over A and satisfies dim(Cb(C)/B) = k. After editing finitely many
points of C and applying compactness, there is then a B-definable faithful family
of plane curves in X whose generic members are the conjugates of C over B. The
result then follows by applying Proposition 3.19 to this family. □

6C. Very ampleness and pseudoplanes. We now show, as described in the intro-
duction, that a strongly minimal set X is very ample (i.e., admits a very ample
plane curve) if and only if there is a definable pseudoplane on (a large subset of) X2.
Let us begin by formally recalling the definition.

Definition 6.6. A pseudoplane consists of sets P and L , and an incidence relation
I ⊂ P × L , satisfying the following:

(1) For each l ∈ L , there are infinitely many p ∈ P with (p, l) ∈ I .
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(2) For each p ∈ P , there are infinitely many l ∈ L with (p, l) ∈ I .

(3) For each l ̸= l ′ ∈ L , there are only finitely many p ∈ P with (p, l), (p, l ′) ∈ I .

(4) For each p ̸= p′
∈ P , there are only finitely many l ∈ L with (p, l), (p′, l) ∈ I .

One thinks of P as the set of “points” of a plane, and L as the set of “lines”. As
mentioned above, already Zilber in his thesis proved the “weak trichotomy theorem”,
asserting that a strongly minimal structure is not locally modular if and only if it
defines a pseudoplane. However, if one wishes to make the natural identification
P := M2 (or a large subset thereof), one can only guarantee conditions (1)–(3)
in the definition. We now point out that the missing data in order to identify P
(generically) with M2 is precisely very ampleness.

Proposition 6.7. Let X be strongly minimal. Then the following are equivalent:

(1) X is very ample.

(2) There is a definable pseudoplane (P, L , I ), where P is a generic subset of X2.

Proof. First, assume X is very ample. Then by Proposition 6.1, there is a definable
faithful very ample family of plane curves C = {Ct : t ∈ T } in X , where dim(T ) = 2.
Let C ⊂ X2

× T be the graph of C. Let P be the set of x ∈ X2 such that the set
C x

⊂ T has dimension 1. Let L be the set of t ∈ T such that Ct ∩ P is infinite. Let
I = C ∩ (P × L). It is easy to check that P is generic in M2 and L is cofinite in T .
It then follows easily that axioms (1) and (2) of Definition 6.6 hold for (P, L , I )
(these computations are essentially carried out in Section 2 of [Castle 2023]). To
conclude, we note that (3) is a restatement of the faithfulness of C, and (4) is a
restatement of the very ampleness of C.

Now assume (P, L , I ) is a definable pseudoplane, where P is generic in X2. We
will show that {Il : l ∈ L} is a two-dimensional very ample family of plane curves.
By (3) and (4) in the definition, it will suffice to show that dim(L) = 2 and each
dim(Il) = 1. These follows from the ensuing three claims. Throughout, we will
assume (P, L , I ) (and X ) are ∅-definable.

Claim 6.7.1. For all l ∈ L , we have dim(Il) = 1.

Proof. By assumption Il ⊂ X2 and Il is infinite, so we need only rule out the case
that dim(Il) = 2. But in this case Il is generic in X2, so dim(X2

− Il) = 1. By
the finiteness of Morley degree, it follows easily (using (3)) that there can be only
finitely many distinct Il ′ other than Il . In other words, we get that L is finite, which
clearly contradicts (2). □

Claim 6.7.2. dim(L) ≤ 2.

Proof. Let l ∈ L be generic, and let p, p′ be independent generics in Il over l.
By (4), dim(l/pp′) = 0, so dim(ppl ′) = dim(pp′) ≤ 4. But by the previous claim
dim(pp′/ l) = 2, so it follows that dim(l) ≤ 2, and thus dim(L) ≤ 2. □
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Claim 6.7.3. dim(L) ≥ 2.

Proof. Let p ∈ P be generic, and let l ∈ I p be generic over p. By (2), we have
dim(l/p) ≥ 1. Now if dim(L) < 2, we are forced to conclude that dim(l/p) =

dim(l) = 1. Thus, l and p are independent. By assumption dim(p) = 2, so also
dim(p/ l) = 2. But then dim(Il) ≥ 2, contradicting Claim 6.7.1. □

This completes the proof of the proposition. □

Remark 6.8. The above proof would be fairly straightforward, and included much
sooner in the paper, if we knew right away that very ampleness gave us a two-
dimensional very ample family of plane curves. The reason we had to wait until
now to present the result is that we needed Proposition 6.1 to get such a family.

Before moving on, we point out one more fact that is relevant to pseudoplanes.
As we have seen, very ampleness implies nonlocal modularity of strongly minimal
structures. In Corollary 6.12, we show, conversely, that nonlocal modularity (in
fact, non-one-basedness) implies the existence of a very ample stationary type.
This is true for stable theories, and the proof goes through complete type-definable
pseudoplanes. Recall the following (see [Pillay 1996, §4, Definition 1.6]):

Definition 6.9. A complete-type-definable pseudoplane consists of a complete type
of a pair of (potentially imaginary) tuples p = tp(b, c) such that

(1) b /∈ acl(c).

(2) c /∈ acl(b).

(3) If c′
̸= c and tp(bc) = tp(bc′), then b ∈ acl(cc′).

(4) If b′
̸= b and tp(bc) = tp(b′c), then c ∈ acl(bb′).

The following is proved in [Pillay 1996, §4, Lemma 1.7]:

Fact 6.10. A stable theory is one-based if and only if it does not admit a complete-
type-definable pseudoplane.

Remark 6.11. Fact 6.10 need not be true if we do not insist that a type-definable
pseudoplane is concentrated on a complete type. Indeed, the existence of a (type)
definable pseudoplane does not imply the existence of a complete type definable
pseudoplane, and consequently the existence of a (type) definable pseudoplane in
itself does not contradict one-basedness. Let X be an infinite set equipped with a
definable surjection, f : X → X with all fibers infinite. Construct a pseudoplane
(P, L , I ) by setting X = P = L and I (p, l) if f (p) = l or f (l) = p. Clearly, there
is no complete type-definable pseudoplane contained in (P, L , I ). We leave it as
an exercise to the interested reader to find stable one-based structures where such
definable pseudoplanes can be constructed.

We now show:
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Corollary 6.12. A stable theory admits a very ample nonalgebraic stationary type
if and only if it is not one-based.

Proof. Let T be a stable theory. First suppose T is one-based. We show that no
nonalgebraic stationary type is very ample. To see this, let p = tp(a/c) be stationary,
where c = Cb(p). Since p is not algebraic, there is b |H p with b ̸= a. Now by one-
basedness, c ∈ acl(a), so automatically c |⌣a b, which shows that p is not very ample.

Now suppose T is not one-based. By Fact 6.10, there is a complete-type-definable
pseudoplane tp(bc). Let d = Cb(stp(b/c)). Clearly, d ∈ acl(c). On the other hand,
by Definition 6.9, any c-conjugate of tp(b/c) is not parallel to tp(b/c). Thus
c ∈ dcl(d), so in particular, c is interalgebraic with d.

We now claim that tp(b/d) is very ample. To see this, let b′ be any realization
which is distinct from b′. We want to show that b′ forks with d over b; by inter-
algebraicity, it is enough to show that b′ forks with c over b. By symmetry, it is
equivalent to show that r = tp(c/bb′) is a forking extension of q = tp(c/b). But
this is clear, since r is algebraic and q is not. □

7. Very ampleness in strongly minimal groups

In this final section, we give some results related to very ampleness in strongly
minimal groups. We first prove that nonlocally modular strongly minimal groups
admit nonaffine plane curves (a result that has been long assumed but does not exist
in writing). We then use this result to show that Question 3.30 has a positive answer
for groups, and that nonlocally modular expansions of divisible groups are already
very ample; finally, we apply the very ampleness of divisible groups to characterize
fullness of strongly minimal ACF-relics with definable divisible group structures,
answering, in particular, an old question on expansions of the multiplicative group.

7A. Existence of nonaffine plane curves. Hrushovski and Pillay [1987] show
that a stable group G is one-based if and only if every definable subset of Gn

(any n) is affine, i.e., a boolean combination of cosets of definable subgroups of Gn .
Restricted to strongly minimal (expansions of) groups, it has been well known
among experts that non-one-basedness (equivalently, nonlocal modularity) even
implies the existence of a nonaffine plane curve. While this result is often used
in practice, there does not seem to exist a full treatment anywhere in writing6. It
can, however, be deduced by a particular application of Proposition 5.8. Thus, we
dedicate the present section to proving this result as a service to the community.

Throughout this subsection, we fix G, a strongly minimal expansion of a group.
We will say that a definable set X ⊆ Gn is affine if it is a (finite) boolean combination

6The result is claimed in [Kowalski and Randriambololona 2016, Proposition 4.2], but there is a
mistake in the proof that we do not see how to bridge.
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of cosets of definable subgroups of Gn; and almost affine if it is almost equal to
an affine set. Note that an affine stationary set is, up to a small correction, a coset
of a definable group. This suggests the following definition: a stationary type
in some Gn is affine if it is the generic type of a stationary affine definable set
(equivalently, the generic type of a coset of a connected group). Note that affine
sets are almost affine, and the converse holds for one-dimensional sets (since finite
sets are affine); more generally, note that arbitrary finite Boolean combinations of
affine sets are affine.

Notation 7.1. For any nonempty definable set X ⊂ Gn , we let Stab(X) denote the
set of g ∈ Gn such that g + X almost coincides with X ; so Stab(X) is a subgroup
of Gn which is definable over any set of parameters defining X .

We will need the following, which is well known and is left as an easy exercise
to the reader (see [Eleftheriou et al. 2021, Lemma 3.10] and Example 3.18 and,
for (2), see also the proof of Lemma 7.4 and Lemma 7.6 below):

Lemma 7.2. Let G = (G, +, . . . ) be a strongly minimal expansion of a group, and
let C ⊂ G2 be a strongly minimal plane curve.

(1) The following are equivalent:
(a) The family of translates {C + t : t ∈ T 2

} is faithful.
(b) The family of translates {C + t : t ∈ T 2

} is very ample.
(c) The group Stab (C) is trivial.

(2) The following are also equivalent:
(a) C is affine.
(b) Stab(C) is infinite.

We will show:

Theorem 7.3. Let G = (G, +, . . . ) be a strongly minimal expansion of a group.
Then the following are equivalent:

(1) G is locally modular.

(2) Every definable plane curve in G is affine.

(3) Every definable one-dimensional set X ⊂ Gn , for any n, is affine.

(4) Every stationary type in Gn , for every n, is affine.

(5) Every definable subset of each Gn is almost affine.

(6) Every definable subset of each Gn is affine.

We will be brief, as many parts of the above proof are standard, and follow
from either well known arguments or the main result in [Hrushovski and Pillay
1987]. Our contribution will be the quick proof of the implication (3) =⇒ (4) using
sweeping extensions of stationary types. In fact there is also a rather easy direct
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proof of the result of Hrushovski and Pillay [1987] restricted to the strongly minimal
case (using only the equivalence of local modularity and one-basedness). So, for
completeness, we now give this proof (so that our proof of Theorem 7.3 does not
depend on [Hrushovski and Pillay 1987]).

Lemma 7.4. The following are equivalent:

(1) G is locally modular.

(2) If {X t : t ∈ T } is a nonempty faithful family of definable subsets of a definable
set Y , each of dimension k, then dim(T ) ≤ dim(Y ) − k.

(3) Every definable set X ⊂ Gn ( for all n) is affine.

Moreover, if (1)–(3) hold, then every definable subgroup H ⊂ Gn ( for all n) is
acl(∅)-definable.

Proof. (1) =⇒ (2): Assume G is locally modular, and let {X t : t ∈ T }, Y , and k
be as in (2). Without loss of generality {X t } and Y are ∅-definable. Let t ∈ T
be generic and x ∈ X t generic over t . Then dim(xt) = dim(T ) + k, and by one-
basedness (equivalently local modularity) t ∈ acl(x), so dim(x) = dim(T )+ k, thus
dim(Y ) ≥ dim(T ) + k, which is equivalent to (2).

(2) =⇒ (3): Let X ⊂ Gn be stationary of dimension k, without loss of generality
∅-definable. Applying (2) shows that the family of translates of X is at most
(n − k)-dimensional (i.e., a generic translate of X has canonical base of dimension
at most n − k). It follows that dim(Stab(X)) ≥ k, which easily implies that X is
almost equal to a coset of Stab(X). By induction on Morley rank and degree, the
conclusion follows for all X .

(3) =⇒ (1): Let S be any strongly minimal plane curve; we show that dim(Cb(S))≤1,
implying local modularity. Now we can write S =Ct0 for some generic t0 ∈ T , where
C={Ct : t ∈ T } is a ∅-definable (not necessarily faithful) family of plane curves, and
T ⊂ Gn for some n. Absorbing more constants to the language, if needed, we may
assume T is stationary. It follows that the total space C = {(x, t) : x ∈ Ct } of C is
stationary, so (by (3)) almost coincides with a coset H of some connected definable
subgroup of Gn+2. Note that (since H is a coset) there is some (necessarily ∅-
definable) subgroup K ≤ G2 such that each nonempty fiber Ht ⊂ G2 is a coset of K .
In particular, since t0 ∈ T is generic, it follows that S = Ct0 almost coincides with a
coset of K . Thus Cb(S) is definable over a single element of the one-dimensional
group G2/K , which gives dim(Cb(S)) ≤ 1, as desired.

So we have shown that (1)–(3) are equivalent. Now suppose G is locally modular.
If there is a connected definable subgroup H ⊂ Gn for some n (say of dimension k)
which is not acl(∅)-definable, then there is a ∅-definable infinite faithful family
{Ht : t ∈ T } of k-dimensional subgroups of Gn , whose generic members are
connected. Passing to a subfamily and adding parameters if necessary, we may
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assume that dim(T ) = 1. Then the family {Xs : s ∈ S} of all cosets of all Ht is a
∅-definable faithful (n −k +1)-dimensional family of k-dimensional subsets of Gn ,
which contradicts (2). □

Before proceeding, let us also isolate the following two well-known and easy facts:

Lemma 7.5. Let H be a group of Morley rank 1 definable in an ω-stable structure.
Then any definable subset of H is affine.

Proof. Let S ⊆ H be any definable set, and let H1, . . . , Hk be the cosets of H 0

(the definable connected component of H ). Then each Hi is strongly minimal, so
S ∩ Hi is either finite or cofinite for all i . Thus S has finite symmetric difference
with ∪{Hi : RM(S ∩ Hi ) = 1}. Since the right-hand side is an affine set and the
symmetric difference is finite (therefore also affine), the lemma follows. □

Lemma 7.6. Let p be a stationary type in Gn for some n. Then the following are
equivalent:

(1) The stationary type p is affine.

(2) If (x, y, z) |H p3, then x + y − z |H p.

Proof. It is clear that (1) implies (2), by writing p as the generic type of a coset.
Now assume (2) holds, and write p as the generic type of a stationary definable
set S. Fix z ∈ S generic over the parameters defining S. Then (2), equivalently
stated, gives that S−z is almost contained in Stab(S) (since given x, y, z as in (2) it
is clear that (x − z) ∈ Stab(S)). Thus, S is almost contained in Stab(S)+ z. On the
other hand, since z is generic in S it follows by definition that Stab(S)+ z is almost
contained in S, so that in fact S ∼ Stab(S) + z. So p is equivalently the generic
type of Stab(S) + s, and thus (1) holds. □

Let us now proceed with the proof of Theorem 7.3:

Proof. The implications (1) =⇒ (2) and (6) =⇒ (1) are contained in Lemma 7.4.
The implication (4) =⇒ (5) is clear, and (5) =⇒ (6) is immediate by induction on
Morley rank. We show (2) =⇒ (3) and (3) =⇒ (4).

(2) =⇒ (3): We have to prove that if every definable plane curve is affine, then so
is every definable one-dimensional set. Let C ⊂ Gn be definable of dimension 1.
Since a finite union of affine sets is affine, we may assume C is strongly minimal.
Since C is infinite, there is a projection π : Gn

→ G with cofinite image in G.
Without loss of generality π = π1 (the leftmost projection). Now for i = 2, . . . , n,
let Ci = π1i (C) ⊂ M2 (the image of C in the first and i-th coordinates). Then Ci is
a strongly minimal plane curve, so by (2) almost coincides with a strongly minimal
coset Hi . Deleting finitely many points from C if necessary, we may assume
Ci ⊂ Hi for all i .
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Using that Hi is a coset and π1(C) is cofinite in G, it follows that π1(Hi ) = G.
So for each i , there is an element ci ∈ G with (0, ci ) ∈ Hi . Then replacing C with
C −(0, c2, . . . , cn) if necessary, we may assume each Hi is in fact a subgroup of G2.

Now let H = {(x1, . . . , xn) : (x1, xi ) ∈ Hi for i = 2, . . . , n}. Then C ⊂ H , and
it is easy to verify that H is a one-dimensional definable subgroup of Gn . So by
Lemma 7.5, C is affine.

(3)=⇒(4): We have to show that if every definable one-dimensional set is affine,
then every stationary type is affine. If G is locally modular this is immediate by
Lemma 7.4. So assume G is not locally modular. The result now follows readily
from the existence of 3-sweeping extensions: Let p be a stationary type in Gn for
some n, say over A. If dim(p) = 0, p is clearly affine, so assume dim(p) ≥ 1. Then
by Proposition 5.8, p has a 3-sweeping stationary extension q ⊃ p with dim(q) = 1.
It follows from (3) that q is affine. Now let (x, y, z) |H q3, so by Lemma 7.6,
x + y − z |H q . Since q ⊃ p is 3-sweeping, we get (x, y, z) |H p3 and x + y − z |H p.
Then by Lemma 7.6 again, p is affine. □

7B. Very ampleness in groups. We now apply Theorem 7.3 to show that a nonlo-
cally modular strongly minimal expansion of a group G admits a finite subgroup H
such that the quotient G/H is very ample. We conclude that nonlocally modular
expansions of divisible groups are already very ample.

Theorem 7.7. Let G = (G, +, . . . ) be a nonlocally modular strongly minimal
expansion of a group. Then:

(1) There is a finite subgroup H ≤ G such that G/H is very ample. In particular,
G admits a very ample sort.

(2) If G is divisible, then G itself is very ample.

Proof. First we prove (1). By Theorem 7.3, there is a strongly minimal plane
curve C ⊂ G2 which is not affine. Then by Lemma 7.2, the group Stab (C) ≤ G2

is finite. Let H ≤ G be a finite subgroup such that Stab(C) ≤ H 2 (for example,
H could be the group generated by all coordinates of elements of Stab(C)). Let
C/H be the image of C in (G/H)2, by applying the projection G → G/H to
both coordinates. It follows easily that, in the strongly minimal group (G/H), the
set C/H is a strongly minimal plane curve with trivial stabilizer. So by Lemma 7.2
again, G/H is very ample.

Now assume further that G is divisible; we prove (2). Let H be as in (1), and let
h = |H |. Then the map x H 7→ h · x is a well-defined map from G/H to G, and is
clearly definable. Moreover, by divisibility this map is surjective with finite fibers.
Thus, we are in the situation of Lemma 3.24 with X = G/H and Y = G. So since
G/H is very ample, the lemma implies that so is G. □
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7C. Expansions of algebraic groups. In the final subsection, we apply Theorem 7.7
to characterize ACF-definable expansions of one-dimensional divisible algebraic
groups. Our motivation is as follows. Suppose (K , +, ×) is an algebraically closed
field, and let K lin denote the structure (K , +, {λa : a ∈ K }), where λa is the map
x 7→ ax . Martin [1987] makes the following two conjectures:

(1) There are no intermediate structures between (K , ×) and (K , +, ×).

(2) If char(K ) = 0 then there are no intermediate structures between K lin and
(K , +, ×).

Conjecture (2) was proved by Marker and Pillay [1990]; however, it seems that
(1) has not since been addressed. Our result in this subsection will in fact be a more
general statement implying both (1) and (2). Namely, we show:

Theorem 7.8. Let K be an algebraically closed field, and let (G, · ) be the group
of K -points of a one-dimensional divisible algebraic group over K . Let G lin denote
the structure endowing G with the group operation and all of its endomorphisms (as
an algebraic group), and let GZar denote the full K -induced structure on G. Then
there are no intermediate structures between G lin and GZar.

Before proceeding with the proof, let us note:

Remark 7.9. Since every endomorphism of the additive group is a scaling, and
every endomorphism of the multiplicative group is a power map (thus definable
from the group operation alone), we obtain (1) and (2) above. Moreover, note that
Theorem 7.8 also applies to elliptic curves over K .

Proof. Let G = (G, · , . . . ) be a reduct of GZar which properly expands G lin.

Claim 7.9.1. There is a nonaffine G-definable set X ⊂ Gn for some n.

Proof. It suffices to show that every connected definable subgroup of Gn is definable
in G lin. So, let H ≤ Gn be a connected definable subgroup, say of dimension d . So
H is stationary, which implies there is an almost finite-to-one projection H → Gd .
Since H is a subgroup, this implies that H → Gd is everywhere finite-to-one, and the
fibers of H → Gd are cosets of a finite group, say K ≤ H . Let k = |K |, and let k H
be the image of H under scaling by k. Then the projection k H → Gd is the graph of
a definable function f : Gd

→ Gn−d . Since k H is a subgroup, f is a homomorphism.
In particular, each coordinate component of f (i.e., Gd

→ Gn−d
→ G) is a definable

homomorphism from Gd to G, and each of those is built of d G lin-definable G-
endomorphisms, so is itself G lin-definable. Thus f is G lin-definable, and therefore
so is k H .

Finally, let H ′ be the preimage of k H under scaling by K ; so H ≤ H ′. Note that by
divisibility, scaling by k is finite-to-one on Gn; thus dim(H)= dim(k H)= dim(H ′).
Then, since H is connected, it must be the connected component (H ′)0. In particular,
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H is the image of H ′ under scaling by l for some l. Now to complete the proof,
recall that k H is G lin-definable; thus so is H ′ by definition, and thus (scaling by l)
so is H . □

Now by the claim and the main result in [Hrushovski and Pillay 1987] (or
Lemma 7.4 if desired), it follows that G is not locally modular. Then, by divisibility
and Theorem 7.7, G is very ample. Finally, by [Hasson and Sustretov 2017] G
satisfies the Zilber trichotomy; so by Theorem 4.14, G is full in K . In other words,
G is interdefinable with GZar, as desired. □
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A model theory for meromorphic vector fields

Rahim Moosa

Dedicated to Boris Zilber on the occasion of his 75th birthday.

Motivated by the study of meromorphic vector fields, a model theory of “compact
complex manifolds equipped with a generic derivation” is here proposed. This
is made precise by the notion of a differential CCM-structure. A first-order
axiomatisation of existentially closed differential CCM-structures is given. The
resulting theory, DCCM, is a common expansion of the theories of differentially
closed fields and compact complex manifolds. A study of the basic model theory
of DCCM is initiated, including proofs of completeness, quantifier elimination,
elimination of imaginaries, and total transcendentality. The finite-dimensional
types in DCCM are shown to be precisely the generic types of meromorphic
vector fields.

1. Introduction

The model-theoretic approach to systems of (ordinary) algebraic differential equa-
tions is via the first-order theory of differentially closed fields in characteristic
zero (DCF0). Such systems of equations, at least in the autonomous case when the
equations have constant parameters, can be presented geometrically as algebraic
vector fields; namely, a projective algebraic variety X equipped with a rational
section v : X → TX to the tangent space. In fact, the finite-dimensional fragment
of DCF0 essentially coincides with the birational geometry of algebraic vector
fields. (See, for example, [Moosa 2022] for an exposition of DCF0 from this point
of view.) Here, I am interested in generalising this model-theoretic framework
to meromorphic vector fields; namely, when X is a compact complex-analytic
space that is not necessarily algebraic and v is a meromorphic section to the
holomorphic tangent bundle. While DCF0 is built on the theory of algebraically
closed fields (ACF0), the new theory I am seeking should be built on a first-order
theory of compact complex manifolds.
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About thirty years ago, as part of the development of the notion of “Zariski-type
structure”, Zilber [1993] proposed a model theory for compact complex manifolds.
Unlike ACF0 and DCF0, the first-order theory proposed by Zilber for compact
complex manifolds was not given by an explicit axiomatisation, nor as the model
companion of a natural class of algebraic structures, but rather as theories of
particular structures: a compact complex manifold M is viewed as a first-order
structure in the language where there is a predicate for each closed complex-analytic
subset of each finite cartesian power of M . Zilber showed that the theory of any
such structure shares many properties with its algebraic predecessors: in particular,
they admit quantifier elimination and are of finite Morley rank (bounded by the
dimension of M). Later, in [Hrushovski 1998; Pillay 2000], for example, it became
common to consider all compact complex manifolds — indeed all (reduced) compact
complex-analytic spaces — at once, in a multisorted structure whose theory now
goes by the name CCM. Like differentially closed fields, CCM is a proper expansion
of ACF0. Also like DCF0, much of the richness of geometric stability theory absent
in ACF0 is present in CCM. For example, all cases of the Zilber trichotomy appear.

In this paper, I present a common expansion of CCM and DCF0, which I
call DCCM. It turns out (in Section 8, below) that the finite-dimensional fragment
of DCCM captures, precisely, the bimeromorphic geometry of meromorphic vector
fields. As such, it achieves the goal set out in this introduction.

The theory DCCM arises by considering differential CCM-structures, essentially
by adding a “derivation” to the definable closure of a generic point of a sort, say X ,
in CCM. This makes sense because the elements of the definable closure of a
generic point of X can be viewed as meromorphic maps from X to other sorts, and
hence can be differentiated. See Sections 2 and 3 for a detailed explanation.

The specific goals of this paper are:

(1) to show that the (universal) theory of differential CCM-structures admits a
model companion, which is DCCM, by giving a geometric first-order axioma-
tisation of the existentially closed models (Theorem 5.5);

(2) to show that DCCM is complete, admits quantifier elimination (Proposition 6.3)
and elimination of imaginaries (Theorem 7.6), and to give a geometric charac-
terisation of definable and algebraic closure (Proposition 6.5);

(3) to show that DCCM is totally transcendental (Theorem 7.5), and to give
geometric characterisations of nonforking independence (Corollary 7.4); and,

(4) to establish the correspondence between finite-dimensional types (over the
empty set) in DCCM and meromorphic vector fields (Theorem 8.3).

The proofs proceed largely by finding geometric analogues for the algebraic argu-
ments already familiar from DCF0.
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The next step in the study of DCCM, not attempted here, would be to establish
the canonical base property for finite-dimensional types following the strategy
of [Pillay and Ziegler 2003] in the case of DCF0. This would involve developing a
theory of jet spaces in DCCM; see for example [Bays et al. 2017], where this was
done for compact complex manifolds with a generic automorphism (CCMA). In
any case, once the canonical base property is established, a concrete manifestation
of the Zilber dichotomy for finite-dimensional minimal types in DCCM will follow.
It would then be reasonable to expect that many of the recent applications of model
theory to algebraic vector fields, as carried out in [Freitag et al. 2022; Jaoui and
Moosa 2022] for example, would extend to meromorphic vector fields.

The process of adding an automorphism to any given first-order theory of interest,
and then seeking a model companion, is well-studied (see [Chatzidakis and Pillay
1998]). Here we have “added a derivation” instead. Clearly, this does not make
sense for an arbitrary theory. But following the ideas presented here, it may be
worth investigating a robust general setting where adding a derivation does make
sense. A likely candidate might be that of Zariski-type structures in Zilber’s sense;
one that expands ACF0 and admits a functor that extends to all sorts the tangent
space construction on algebraic varieties.

2. Meromorphic varieties and their tangent spaces

In this section I want to slightly loosen the usual formalism for doing the model
theory of compact complex-analytic spaces, so as to work directly in the “compact-
ifiable” rather than compact setting.

For the fundamental notions from complex-analytic geometry we suggest [Fischer
1976]. Given a reduced compact complex-analytic space X , by the Zariski topology
on X we mean the (noetherian) topology of closed complex-analytic subsets of X .
This does not conflict with the usual meaning of the Zariski topology in the case
that X is a projective complex-algebraic variety, because in that case the complex-
analytic and complex-algebraic sets agree (Chow’s theorem).

Definition 2.1. By a meromorphic variety we mean a pair (X, X) where X is a
Zariski dense and open subset of a reduced compact complex-analytic space X .
Note that X inherits from X the structure of a reduced complex-analytic space in
its own right, which may admit other compactifications.1 We usually abbreviate
our notation by referring to X as the meromorphic variety, but it is important to
keep in mind that we view X as embedded in a fixed given compactification X .

Cartesian products of meromorphic varieties X × Y are viewed as meromorphic
varieties with the compactification X × Y = X × Y .

1Thanks to the anonymous referee for pointing out that different compactifications of X need not
be bimeromorphically equivalent.
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By the Zariski topology on X we mean the topology induced by the Zariski
topology on X . Note that this is a coarser topology than that of the closed complex-
analytic subsets of X ; such a set is Zariski closed in X if and only if its (euclidean)
closure in X is Zariski closed.

By a definable holomorphic map f : X → Y of meromorphic varieties we mean
a holomorphic map that extends to a meromorphic map f̄ : X → Y . Equivalently,
the graph of f is Zariski closed in X ×Y . More generally, a definable meromorphic
map f : X → Y is a meromorphic map that extends to a meromorphic map from X
to Y . Such a map is dominant if its image is Zariski dense in Y .

Meromorphic varieties, as I have defined them here, are intended to extend
the notion of quasiprojective variety from the complex-algebraic to the complex-
analytic setting. Indeed, the quasiprojective varieties are precisely the meromorphic
varieties X where X is projective algebraic. Note that while every regular or
rational function on a quasiprojective variety X extends to a rational function on
the projective closure X , the same is not true of holomorphic and meromorphic
functions on meromorphic varieties, and this is why we restrict our attention to
definable holomorphic and meromorphic maps, namely, the ones that do so extend.

Remark 2.2. When X = X is compact, every holomorphic (respectively, mero-
morphic) map to a meromorphic variety, f : X → Y , is definable holomorphic
(respectively, definable meromorphic). This is because, by the proper mapping
theorem, the image of f in Y is Zariski closed, and hence we can take f̄ to be f
itself, viewed as a map from X to Y .

The usual model-theoretic set-up is to consider the first-order theory of the
multisorted structure A where there is a sort for each reduced and irreducible
compact complex-analytic space, and a predicate for each Zariski closed subset
of each finite cartesian product of sorts. See, for example, the surveys [Moosa
2005a; Moosa and Pillay 2008]. Every meromorphic variety, in the above sense,
is 0-definable in A, as is every Zariski closed subset of every finite cartesian
product of meromorphic varieties. It therefore does no harm to work instead with
the expansion of A to the multisorted structure M where there is a sort for each
irreducible meromorphic variety, and a predicate for each Zariski closed subset
of each finite cartesian product of sorts. So we have added some sorts and some
predicates, but they were all already 0-definable in the original structure. I denote
by L the language of M, and by CCM the first-order L-theory of M. It admits
quantifier elimination and elimination of imaginaries, and, sort by sort, is of finite
Morley rank.

Every quasiprojective complex-algebraic variety V , given with an embedding
in a projective compactification V , is a meromorphic variety, and the algebraic
and analytic Zariski topologies on V agree. In particular, definable holomorphic
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maps in this case are just regular morphisms, and definable meromorphic maps are
rational. In this way, algebraic geometry lives as a pure reduct of CCM.

Our main use of the flexibility that M affords is that the collection of sorts is
closed under taking tangent spaces. Recall that the tangent space of a complex-
analytic space X is the linear fibre space π : TX → X associated to the sheaf of
differentials �1

X on X . So TX is a complex-analytic space and π : TX → X is a
surjective holomorphic map whose fibres are uniformly equipped with the structure
of a complex vector space, in the sense that there are holomorphic maps for addition
+ : TX ×X TX → TX, scalar multiplication λ : C × TX → TX, and zero section
z : X → TX, all over X , satisfying the vector space axioms. For any point p ∈ X , the
tangent space to X at p is the fibre of π : TX → X above p, denoted by Tp X , and
it is canonically isomorphic as a complex vector space to HomC(mX,p/m

2
X,p, C),

where mX,p is the maximal ideal of the local ring of X at p.
We claim that when X is a meromorphic variety so is TX, and that π, +, λ, z

are all definable holomorphic maps. Let us first consider the case when X = X is
already compact. We are looking for a natural compactification of TX. In fact, there
is a canonical way to do this for any linear fibre space L(F) → X associated to a
coherent analytic sheaf F on X ; it is just the relativisation of the usual embedding
of Cn in the projectivisation of Cn+1. One considers the coherent analytic sheaf
F × OX of rank one greater than F , and then the associated projective linear
space P(F ×OX ) → X . See [Fischer 1976, Section 1.9] for details. Then L(F)

embeds in P(F ×OX ) over X as a Zariski open set in such a way that the linear
structure (namely, π, +, λ, z) extends meromorphically to the projective linear
space. Applying this to F = �1

X gives TX → X the meromorphic structure we are
looking for, namely

TX := P(�1
X ×OX ).

Now, if we consider a general meromorphic variety X embedded in X , then the linear
space TX → X is just the restriction to X of TX → X , and hence TX serves as
a compactification for TX, to which the linear structure extends meromorphically.

Remark 2.3. While we have not been assuming here that X is smooth, the tangent
space is better behaved and more familiar under that assumption. As we are only
interested in the bimeromorphic structure, we can achieve smoothness by replacing
X with its nonsingular locus. Note that the set of nonsingular points of X is of the
form X ∩ U , where U is the (Zariski dense and open) set of nonsingular points
of the compactification X . It follows that the nonsingular locus of X is again a
meromorphic variety given with the same compactification X .

Recall that the tangent space construction is functorial: for each meromorphic
(respectively, holomorphic) map g : X → Y between complex-analytic spaces there
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is a meromorphic (respectively, holomorphic) map dg : TX → T Y such that

TX
dg
//

πX
��

T Y

πY
��

X
g
// Y

commutes, and we have the functoriality property d(g ◦ h) = (dg) ◦ (dh). If X and
Y are meromorphic varieties, and g : X → Y is definable meromorphic (respectively,
holomorphic), then so is dg : TX → T Y . That is, if g extends to a meromorphic
map X → Y then dg extends to a meromorphic map TX → T Y .

3. The differential structure

By a CCM-structure I mean a definably closed subset of a model of CCM. In
other words, a model of CCM∀. The goal of this section is to describe what we
might consider a “derivation” on a CCM-structure. But first, let us recall what
CCM-structures themselves look like.

Since we are in a relational language in which all elements of M are named, a
model of CCM∀ is simply a subset A of an elementary extension N of M such
that M ⊆ A. As we are in a multisorted setting, this is meant relative to every
sort, so S(M) ⊆ S(A) for all sorts S of L . But we are mostly interested in finitely
generated definably closed substructures, so where A = dcl(a) for some a ∈ X (N )

and some irreducible meromorphic variety X . Replacing X by the locus of a, we
may assume that a is a generic point of X in the sense that it is not contained in
Y (N ) for any proper Zariski closed subset Y ⊊ X . In that case we can identify A
with the set of all definable meromorphic maps g : X → S as S ranges over all other
sorts. Indeed the identification is given by g 7→ g(a) ∈ S(A), noting that every
point of S(A) arises this way as A = dcl(a), and that if two definable meromorphic
maps agree on a then they agree on X by genericity.

It is worth comparing to the algebraic case, so when X happens to be a quasi-
projective complex-algebraic variety. In that case one only needs to consider the
single target sort S = P, the projective line. Indeed, in that case, dcl(a) = C(X)

is just the field of rational functions. For nonalgebraic meromorphic varieties, if
we only considered S = P we would obtain the meromorphic function field of X ,
and not necessarily the full definable closure of a generic point. Indeed, on some
compact complex-analytic spaces, namely those of algebraic dimension 0, there
are no nonconstant meromorphic functions, but many nonconstant meromorphic
maps to other sorts.

The differential structure I want to consider is motivated by the study of the
following natural objects in bimeromorphic geometry:
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Definition 3.1. By a meromorphic vector field we mean an irreducible meromorphic
variety X equipped with a definable meromorphic section v : X → TX to the tangent
space of X .

Remark 3.2. When X = X is compact, “definable” is redundant and a meromorphic
vector field is simply a meromorphic section to the tangent space — see Remark 2.2.
So this notion does generalise what I called a meromorphic vector field in the
introduction. However, as we are only interested in the bimeromorphic geometry, it
is not much of a generalisation: we can always pass from (X, v) to (X , v̄).

Of course, every meromorphic variety equipped with its zero section is a mero-
morphic vector field, which we call the trivial vector field.

Every (rational) algebraic vector field, by which we mean an irreducible quasi-
projective complex-algebraic variety equipped with a rational section to the tangent
space, is a meromorphic vector field. Indeed, these are the only meromorphic vector
fields on algebraic varieties. In particular, as all compact complex-analytic spaces
of dimension 1 are projective algebraic curves, every 1-dimensional meromorphic
vector field is algebraic.

We already get nonalgebraic examples in dimension 2. As is pointed out
in [Rebelo 2004, Example 2], for instance, all elliptic surfaces admit interesting
meromorphic vector fields. Since there are nonalgebraic elliptic surfaces (every
compact complex surface of algebraic dimension 1 is such), this is a class of
nontrivial meromorphic vector fields that are not algebraic. These examples also
show that meromorphic vector fields can be ubiquitous in situations where no
holomorphic ones exist.

But there are also nonalgebraic holomorphic vector fields. Suppose X = X is
compact and G = Aut0(X) is the connected component of the automorphism group
of X . Then G is a complex Lie group whose Lie algebra consists precisely of the
holomorphic vector fields on X ; see [Kobayashi 1972, Section III.1]. It follows
that if X = X is nonalgebraic and Aut0(X) is positive-dimensional, then X admits
many nontrivial and nonalgebraic holomorphic (and hence meromorphic) vector
fields. So, for example, if X is any complex torus, then X = Aut0(X) acting by
translation, and hence each point of the Lie algebra of X gives rise to an (invariant)
holomorphic vector field on X .

Finally, it is worth noting, and was pointed out to me by the anonymous referee,
that, unlike in the algebraic case, there are compact complex manifolds that admit
no nontrivial meromorphic vector fields. For example, suppose X is a generic K3
surface. If X did admit a meromorphic vector field, v, then, as X has no proper
infinite closed analytic subsets, the indeterminacy locus of v would be finite, and
so, by Hartogs’ theorem, v would extend to a holomorphic vector field on X . But
K3 surfaces do not admit any nontrivial global holomorphic vector fields.
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Suppose (X, v) is a meromorphic vector field, N ⪰M is an elementary extension,
and a ∈ X (N ) is a generic point of X . What structure does v induce on A := dcl(a)?
Well, for any definable meromorphic g : X → S, we have the definable meromorphic
map ∇v(g) := dg ◦ v : X → TS. Viewing g ∈ S(A) we have defined a function
∇v : S(A) → TS(A), for all sorts S. Here are two salient properties of this function
that are easily verified using the functoriality of the tangent space construction:

• π ◦ ∇v(g) = g, where π : TS → S is the projection.

• d f ◦ ∇v(g) = ∇v( f ◦ g) for any definable meromorphic f : S → T .

We are thus lead to consider the following notion:

Definition 3.3. Let L∇ = L ∪ {∇}, where ∇ = (∇S : S sort of L) and ∇S is a
function symbol from the sort S to the sort TS. Let CCM∀,∇ denote the universal
L∇-theory which is obtained by adding to CCM∀ the following axioms:

Axiom (1) For each sort S, ∇S : S → TS is a section to π : TS → S.

Axiom (2) For each definable meromorphic map f : S1 → S2 between sorts, the
diagram

TS1
d f
// TS2

S1

∇S1

OO

f
// S2

∇S2

OO

commutes. Remembering that f and d f are not function symbols in
the language but rather their graphs are predicates, what we mean by
this is the axiom

∀xy
(
(x, y) ∈ 0( f ) =⇒ (∇S1 x, ∇S2 y) ∈ 0(d f )

)
.

We usually drop the subscript and write ∇ for ∇S whenever it is clear from
context which sort we are working in.

One consequence of Axiom (2) that gets used often without mention is that
∇(a1, a2) = (∇a1, ∇a2) under the identification T (S1 × S2) = TS1 × TS2.

We can always extend uniquely to the definable closure:

Proposition 3.4. Suppose A ⊆ N |H CCM and (A, ∇) |H CCM∀,∇ . Then there is a
unique extension of ∇ to dcl(A) making it a model of CCM∀,∇ .

Proof. Let B := dcl(A). Given a sort S we need to define ∇ on S(B). Fix b ∈ S(B)

and let X := loc(b) ⊆ S so that b ∈ X (B) is generic. Since b ∈ dcl(A), there exists
some other irreducible meromorphic variety Y admitting a dominant definable
meromorphic map f : Y → X , and a generic point a ∈ Y (A), such that b = f (a).
Now, d f : T Y → TX and ∇(a) ∈ T Y (A). Define ∇(b) := d f (∇a). Indeed, this
is forced upon us by Axiom (2) of Definition 3.3, and hence takes care of the
uniqueness part of the statement.
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We have to check that it is well-defined. Suppose we have another f ′
: Y ′

→ X
and a′

∈ Y ′(A) generic such that b = f ′(a′) as well. Let Z = loc(a, a′)⊆ Y ×Y ′ and
consider f̄ := ( f, f ′) : Z → X2. Since f̄ takes a generic point of Z to the diagonal
D ⊆ X2 we have that f̄ (Z) ⊆ D. Hence d f̄ : TZ → T (X2) lands in TD, which
is the diagonal in T (X2) = (TX)2. Since d f̄ (∇(a, a′)) = (d f (∇a), d f ′(∇a′)) by
functoriality, this means that d f (∇a) = d f ′(∇a′), as desired.

Next, observe that ∇ so defined is a function from S(B) to TS(B), and is a
section to π : TS → S. That is, (B, ∇) does satisfy Axiom (1) of Definition 3.3.
Taking f = id in the above construction, we see also that (A, ∇) ⊆ (B, ∇).

It remains to verify Axiom (2). That is, given g : S1 → S2 a definable meromorphic
map between sorts, and bi ∈ Si (B) with g(b1)=b2, we need to show dg(∇b1)=∇b2.
Note that by concatenating — namely, working in cartesian products — we can
arrange things so that b1 and b2 are defined over the same tuple from A. That
is, there is a sort S with a ∈ S(A) such that b1 = f1(a) and b2 = f2(a), where
fi : S → Si are definable meromorphic maps. Taking Zariski loci we may assume
that a is generic in S and that each bi is generic in Si . Hence

dg(∇b1) = dg(d f1(∇a)) by how ∇ is defined on B

= d(g f1)(∇a) by functoriality

= d f2(∇a) as g f1 = f2, as that is the case on the generic a

= ∇b2 by how ∇ is defined on B,
as desired. □

Definition 3.5. A differential CCM-structure is a model (A, ∇) |H CCM∀,∇ such
that A = dcl(A).

As a consequence of Proposition 3.4, when working with models of CCM∀,∇

there is little loss of generality in assuming that we have a differential CCM-structure,
namely that the underlying set is definably closed in CCM.

It is worth observing that standard points are always constant:

Lemma 3.6. Suppose (A, ∇) is a differential CCM-structure and S is a sort. If
p ∈ S(M) then ∇(p) = 0 ∈ Tp X.

Proof. Note that X := {p} is itself an irreducible meromorphic variety, and we
can consider the containment as a definable holomorphic map f : X → S. Now
TX = {(p, 0)}, and hence ∇X = 0. But, by Axiom (2) of Definition 3.3, this forces

∇S(p) = d f (∇X (p)) = 0

as d f p : Tp X → T f (p)S is a linear map. □

In the finitely dcl-generated case we recover precisely the meromorphic vector
fields that motivated Definition 3.3:
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Proposition 3.7. Suppose X is an irreducible meromorphic variety, a is a generic
point of X in some elementary extension, and A = dcl(a). Then the differen-
tial CCM-structures on A are precisely the ∇v induced by meromorphic vector
fields v : X → TX.

Proof. We have already seen that (A, ∇v) |H CCM∀,∇ if (X, v) is a meromorphic
vector field. For the converse, suppose (A, ∇) |H CCM∀,∇ . Note that a ∈ X (A)

and ∇(a) ∈ TX(A). As definable meromorphic maps, a ∈ X (A) is the identity map
on X and ∇(a) ∈ TX(A) is some v : X → TX. Axiom (1) ensures that v is a section
to π : TX → X , and hence a meromorphic vector field on X . It remains to verify
that ∇ = ∇v. Let g(a) ∈ S(A), where g : X → S is a definable meromorphic map
and S is a sort. Then

∇v(g(a)) = dg ◦ v(a) = dg ◦ ∇(a) = ∇(g(a)),

where the final equality is by Axiom (2). □

Note that Proposition 3.7 extends to meromorphic varieties the (well-known)
correspondence, in the case when X is quasiprojective algebraic, between C-linear
derivations on C(X) and rational vector fields on X .

So the study of meromorphic vector fields amounts to the study of (finitely
generated) differential CCM-structures. In the usual model-theoretic way, we will
eventually look for a model companion: a theory that axiomatises the existentially
closed differential CCM-structures.

We conclude this section by extending the notion of differential CCM-structure
to a setting where ∇ is allowed to take values in an extension. This will be useful
in what follows.

Definition 3.8. Suppose N |H CCM and A ⊆ N is a definably closed set. By an
N -valued differential CCM-structure on A we mean a map ∇ : S(A) → TS(N ), for
every sort S, such that ∇ is a section to π :TS→ S, and such that d f (∇a)=∇( f (a))

for all a ∈ S(A) and all definable meromorphic maps f .

4. Prolongations

In this section we construct a version of the tangent space that is twisted by a
differential structure. Since differential structure only has content in proper elemen-
tary extensions of M, this will necessarily be about “meromorphic varieties over
parameters” in arbitrary models of CCM, which we begin by reviewing.

Fix a model N |H CCM. Given an irreducible meromorphic variety X , we view
it as a sort of L and consider its N -points X (N ). Let us recall the Zariski topology
on X (N ) with parameters from N , sometimes referred to as the nonstandard
Zariski topology to emphasise that we are not necessarily in the prime model M.
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See [Moosa 2004, Section 2] for a more detailed discussion. Every Zariski closed
subset Y ⊆ X (M) is named as a predicate in L and so we can consider Y (N ).
These are the 0-definable Zariski closed subsets of X (N ). More generally, given a
set of parameters A ⊆ N , a Zariski closed subset Y ⊆ X (N ) over A is a subset of
the form Y = Za where a ∈ S(A) is a generic point of another sort S and Z ⊆ S × X
is a (0-definable) Zariski closed subset that projects dominantly on S. In diagrams:

Z �
�

//

ρ
��

S × X

S

That is, Y = Za arises as the generic member of a 0-definable family of Zariski closed
subsets of X . This forms a noetherian topology on X (N ). If Y is A-irreducible
then we can take Z to be irreducible, and if Y is absolutely irreducible then we can
take Z so that ρ : Z → S is a fibre space, meaning its general fibres in the standard
model are irreducible.

The general standard fibres of ρ : Z → S are of constant dimension when Z
is irreducible, giving rise to a notion of dimension for irreducible Zariski closed
subsets of X (N ), which we denote by dim Y .

The tangent space construction extends to nonstandard Zariski closed sets. Fix
Y = Za as above. Then the tangent spaces of the fibres of ρ in the standard model
vary uniformly: Consider the diagram

S × X Z? _oo

ρ
��

TZoo

dρ
��

� � // TS × TX

S TSoo

and let z : S → TS be the zero section. For any p ∈ S(M), the fibre (TZ)z(p) ⊆ TX
of dρ above z(p) is nothing other than T (Z p), the tangent space of Z p ⊆ X . Hence
we define the tangent space of Y = Za in N , denoted T Y , to be (TZ)z(a).

Suppose, now, that A = dcl(A) and we have an N -valued differential CCM-
structure ∇ on A. Then, instead of considering the zero section, we can consider
the differential section ∇. That is, since ∇(a) ∈ TS(N ), we can consider the fibre
(TZ)∇(a) ⊆ TX(N ) of dρ over ∇(a). We define this to be the prolongation space
of Y = Za , and denote it by τY . That is, τY := (TZ)∇(a).

Lemma 4.1. The above definition of τY depends only on Y and not on the presen-
tation of Y as Za .

Proof. Suppose Y also appears as Z ′

b for some 0-definable Zariski closed Z ′
⊆ S′

×X
with b ∈ S′(A) generic. Replacing b with (a, b), we may assume that there is a dom-
inant definable meromorphic map f : S′

→ S with f (b) = a, and that Z ′
⊆ Z ×S S′.
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Hence f ′
:= ( f, idX )↾Z ′ : Z ′

→ Z restricts to the identity on Z ′

b =Y = Za . Moreover,
we have

Z
ρ
��

Z ′
f ′

oo

ρ′

��

S S′
f

oo

which yields
TZ

dρ
��

TZ′
d f ′

oo

dρ′

��

TS TS′
d f
oo

Since (A, ∇) is a differential CCM-structure, d f (∇b) = ∇(a), so that

d f ′

∇(b) : (TZ′)∇(b) → (TZ)∇(a).

Since d f ′
= (d f, idTX)↾TZ′ , this shows that (TZ′)∇(b) = (TZ)∇(a), as desired. □

Remark 4.2. Given two such nonstandard Zariski closed sets Y1, Y2, there is a
natural identification of T (Y1×Y2) with T (Y1)×T (Y2) induced by the corresponding
identification for (standard) meromorphic varieties. Moreover, if (A, ∇) is an (N -
valued) differential CCM-structure over which Y1, Y2 are defined, then we also have
an identification of τ(Y1 × Y2) with τ(Y1) × τ(Y2).

We denote the restriction of π : TX → X to τY also as π : τY → Y , and it is
canonically attached to the prolongation space. For any b ∈ Y , we denote the fibre
by τbY , and call it the prolongation space to Y at b. Note that if Y is an a-definable
Zariski closed subset of X then τY is a ∇(a)-definable Zariski closed subset of TX
and τbY is a ∇(a)b-definable Zariski closed subset of Tb X .

Lemma 4.3. Suppose that (B, ∇) is an N -valued differential CCM-structure ex-
tending (A, ∇), and b ∈ Y (B). Then ∇(b) ∈ τbY .

Proof. Since b ∈ X (B) we must have ∇(b)∈ Tb X . So it remains to verify ∇(b)∈ τY .
Write Y = Za as above. Then (∇(a), ∇(b)) = ∇(a, b) ∈ TZ(N ). In particular,
∇(b) ∈ (TZ)∇(a), which is τY by construction. □

Lemma 4.4. If Y is A-irreducible and b ∈Y is generic over A then τbY is absolutely
irreducible and dim(τbY ) = dim Y .

Proof. Let a from A be such that Y = Za with Z = loc(a, b) ⊆ S × X as above.
Because ρ : Z → S is dominant, dρ restricts to a surjective C-linear map between
the tangent spaces at standard general points. Hence, at the generic point in N ,
we have that dρ(a,b) : T(a,b)Z → Ta S is a surjective C(N )-linear map, where C(N )

is the interpretation in N of the complex field, itself an algebraically closed field
extending C. By definition, the tangent space TbY is the kernel of dρ(a,b) while
the prolongation space τbY is dρ−1

(a,b)(∇a). So τbY is a coset of TbY in T(a,b)Z .
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Absolute irreducibility of τbY follows, and dim(τbY ) = dim(TbY ). Finally, note
that dim(TbY ) = dim Y because for standard general (p, q) ∈ Z(M), the tangent
space to Z p at q is of dimension dim(Z p). □

Finally, it is worth thinking about the case when Y is 0-definable, that is, using
the above notation, when a ∈ M. In that case, by Lemma 3.6, ∇ agrees with the
zero section at a, and hence τY = TZ is just the tangent space of Y . That is, for
0-definable Zariski closed sets, the prolongation and tangent spaces agree.

5. Differentially closed CCM-structures

We aim to prove that CCM∀,∇ admits a model companion. We begin by exploring
some properties of the existentially closed (e.c.) models. This amounts to proving
extension lemmas. For example, Proposition 3.4, which says that every model
of CCM∀,∇ extends to the definable closure of the underlying model of CCM∀,
implies that if (A, ∇) is an e.c. model of CCM∀,∇ then it is a differential CCM-
structure. Moreover, the e.c. models of CCM∀,∇ are precisely the existentially
closed differential CCM-structures. This justifies:

Definition 5.1. A differentially closed CCM-structure is an e.c. model of CCM∀,∇ .

Here is the main extension lemma:

Proposition 5.2. Suppose N |H CCM and (A, ∇) is an N -valued differential CCM-
structure. Suppose X is an irreducible meromorphic variety, b ∈ X (N ), and
Y := loc(b/A) is the smallest A-definable Zariski closed subset of X (N ). For any
c ∈ τbY there is an extension of ∇ to an N -valued differential CCM-structure on
dcl(Ab) such that ∇(b) = c.

Proof. Let D := dcl(Ab). We follow the approach of Proposition 3.4. That is, given
an element of D, say d = f (a, b), where a is from A and f : loc(a, b) → loc(d)

is a definable meromorphic map, we set ∇(d) := d f (∇a, c). We have to verify
that (∇a, c) ∈ T(a,b) loc(a, b) for this to even make sense, that is, to be able to
apply d f to (∇a, c). Note, first of all, that since Y = loc(b/A) ⊆ loc(b) we do
have that c ∈ τbY ⊆ Tb loc(b). So (∇a, c) ∈ Ta loc(a)× Tb loc(b), that is, (∇a, c)
lies above (a, b), and it only remains to check that (∇a, c) ∈ T loc(a, b). Since
Y = loc(b/A) ⊆ loc(b/a), and the latter is the fibre of the coordinate projection
loc(a, b) → loc(a) over a, we have that τY ⊆ τ loc(b/a), and the latter is by
definition the fibre of T loc(a, b) → T loc(a) over ∇(a). Since c ∈ τY , this tells
us that (∇a, c) ∈ T loc(a, b), as desired.

Considering the case when d = a and f : loc(a, b) → loc(a) is the coordinate
projection, we see that this definition of ∇ on D extends the given ∇ on A. Consid-
ering the case when d = b (so that a is the empty tuple and f = id), we see that
∇(b) = c, as desired.
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While the proof of Proposition 3.4 was carried out in the context of models
of CCM∀,∇ , it works equally well in the setting of N -valued differential CCM-
structures, showing that the way we have defined ∇ on D above yields, for any
sort S, a well-defined map ∇ : S(D) → TS(N ) that is a section to TS → S, and such
that dg(∇d) = ∇(g(d)) for any definable meromorphic map g and tuple d ∈ S(D).
So (D, ∇) is again an N -valued differential CCM-structure. □

Corollary 5.3. If (A, ∇) is a differentially closed CCM-structure then A |H CCM.

Proof. We have that A ⊆ N for some N |H CCM. Let (B, ∇) be a maximal
N -valued differential CCM-structure extending (A, ∇). This exists as N -valued
differential CCM-structures are preserved under unions of chains, as can be easily
verified from the definition.

We claim that B = N . Given b ∈ X (N ) for some sort X , let Y = loc(b/B) and
choose c ∈ τbY . By Proposition 5.2 we can extend ∇ to an N -valued differential
CCM-structure on dcl(Bb). By maximality, it follows that b ∈ X (B) to start with.
As X and b were arbitrary, this shows that B = N .

We have that (A, ∇) ⊆ (N , ∇) is an extension of differential CCM-structures.
By quantifier elimination, CCM has a universal-existential axiomatisation. Since
(A, ∇) is existentially closed, the truth of such axioms in (N , ∇) implies their truth
in (A, ∇). That is, A |H CCM, as desired. □

This is, of course, not enough. That is, not every differential CCM-structure on a
model of CCM is differentially closed. For example, the standard model M admits
the trivial differential structure ∇ = 0, but is not existentially closed as we can use
Proposition 5.2 to produce nontrivial differential CCM-structure extensions.

The following property of differentially closed CCM-structures, which we refer
to as the geometric axiom, can be read as saying that ∇ is a “generic” section to the
tangent space:

Proposition 5.4. If (N , ∇) is a differentially closed CCM-structure then it satisfies
the following condition:

(GA) Suppose S is a sort, X ⊆ S is an N -definable irreducible Zariski closed
subset, Y ⊆ τ X is an N -definable irreducible Zariski closed subset that
projects dominantly onto X, and Y0 ⊊ Y is a proper N -definable Zariski
closed subset. Then there exists a ∈ X (N ) such that ∇(a) ∈ Y \ Y0.

Proof. We already know, by Corollary 5.3, that N |H CCM. Let U ⪰ N be a
sufficiently saturated elementary extension, and let c ∈ Y (U) be generic in Y
over N . In particular, c ∈ Y \ Y0. By dominance, b := π(c) ∈ X (U) is generic
over N . In particular, loc(b/N )= X and c ∈τb X (U). So, by Proposition 5.2, we can
extend ∇ to a U-valued differential CCM-structure on dcl(Nb) such that ∇(b) = c.
Then, as in the proof of Corollary 5.3, we can extend ∇ further to all of U so that
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(U, ∇) |H CCM∀,∇ . Now, b witnesses that in (U, ∇) there is a point of X that is sent
by ∇ into Y \ Y0. By existential closedness of (N , ∇), there must exist a ∈ X (N )

such that ∇(a) ∈ Y \ Y0. □

As the terminology already indicates, the geometric axiom characterises differ-
entially closed CCM-structures:

Theorem 5.5. A model (N , ∇) |H CCM∀,∇ is existentially closed if and only if
N |H CCM and condition (GA) of Proposition 5.4 holds.

Proof. Corollary 5.3 and Proposition 5.4 gave the left-to-right direction. We
therefore assume that N |H CCM and (N , ∇) satisfies (GA), and show that (N , ∇)

is existentially closed. Let S be a sort, x a variable belonging to S, and φ(x) a (finite)
conjunction of L∇-literals over N that is realised by c ∈ S(A) in some extension
(A, ∇) |H CCM∀,∇ of (N , ∇). We need to show that φ(x) has a realisation already
in (N , ∇). As in the proof of Corollary 5.3, we can extend (A, ∇) further to
(U, ∇) |H CCM∀,∇ , where U |H CCM.

Let d be the order of φ(x), that is, the largest positive integer such that ∇
d(x),

namely ∇ iterated d-times and applied to x , appears in φ(x). We leave it to the
reader to verify that φ(x) can then be rewritten as (∇d(x) ∈ U ) ∧ (∇d(x) /∈ V ),
where U and V are N -definable Zariski closed subsets of T d(S), the d-th iterated
tangent space of S.

Let Y := loc(∇dc/N ) ⊆ T d(S)(U). Since c realises φ(x), we must have that
∇

d(c) ∈ U \ V and so Y ⊆ U and Y ̸⊆ V . In particular, Y0 := Y ∩ V is a proper
N -definable Zariski closed subset of Y . We aim to find a ∈ S(N ) such that
∇

d(a) ∈ Y \ Y0; this suffices as such an a would be a realisation of φ(x) in (N , ∇).
Let c̄ :=∇

d−1(c) and X := loc(c̄/N ). Then ∇
d(c)=∇(c̄), so that Y is contained

in τ X and projects dominantly onto X . Hence, by (GA), there is an ā ∈ X (N ) such
that ∇(ā) ∈ Y \ Y0. Consider the first coordinate projection π : T d−1(S) → S, and
set a := π(ā) ∈ S(N ). It suffices to show, therefore, that ∇

d−1(a) = ā.
For each ℓ ≥ 0, let us denote by πℓ : T ℓ+1S → T ℓS the canonical projection.

Moreover, for each ℓ = 0, . . . , d − 1, let āℓ be the image of ā in T ℓS. So, in
particular, ā0 = a and ād−1 = ā. We claim that it suffices to show that

āℓ+1 = ∇(āℓ) (5-1)

for all ℓ = 0, . . . , d − 2. Indeed, this would imply that

ā = ād−1 = ∇(ād−2) = ∇
2(ād−3) = · · · = ∇

d−1(a),

as desired. So let us fix ℓ=0, . . . , d−2 and show (5-1). The idea is to construe (5-1)
as a Zariski closed condition on ∇(ā). First of all, noting that πℓ+1(∇āℓ+1) = āℓ+1

and dπℓ(∇āℓ+1) = ∇(πℓāℓ+1) = ∇(āℓ), we see that (5-1) is equivalent to

πℓ+1(∇āℓ+1) = dπℓ(∇āℓ+1). (5-2)
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Next, letting ρ : T d−1S → T ℓ+1S be the projection, we have that ρ(ā) = āℓ+1, and
hence ∇(āℓ+1) = ∇(ρā) = dρ(∇(ā)). So (5-2) is equivalent to

πℓ+1dρ(∇ā) = d(πℓρ)(∇ā). (5-3)

This is a Zariski closed condition on ∇ā, and as ∇ā is in Y = loc(∇ c̄/N ), it suffices
to verify that the identity holds of ∇ c̄. But this follows from the fact that ∇ c̄ = ∇

dc,

πℓ+1dρ(∇ c̄) = πℓ+1dρ(∇dc)

= πℓ+1∇(ρ(∇d−1c))

= ρ(∇d−1c)

= ∇
ℓ+1c

= ∇(∇ℓc)

= ∇(πℓρ(∇d−1c))

= d(πℓρ)(∇dc)

= d(πℓρ)(∇ c̄).

Hence (5-3) holds, as desired. □

That condition (GA) of Proposition 5.4 is first-order expressible follows from the
fact that as X varies in an L-definable family, τ X varies in an L∇-definable family
by construction (see Section 4), and that in CCM irreducibility and domination
are definable in parameters (see [Moosa 2004, Section 2]). Theorem 5.5 thus
gives us a model companion to CCM∀,∇ , namely the theory of differentially closed
CCM-structures, which we denote DCCM.

6. Basic model theory of DCCM

From general model theory, we have that DCCM is model-complete. In this section
we prove that CCM∀,∇ has the amalgamation property, from which we can deduce
that DCCM is complete and admits quantifier elimination. As a consequence we
obtain a geometric description of algebraic and definable closure.

But first we need an extension lemma for algebraic closure, whereas we have
only dealt with definable closure (in Proposition 3.4) so far.

Lemma 6.1. Suppose (A, ∇) is a differential CCM-structure with A ⊆ N |H CCM,
and b ∈ acl(A). Then there is a unique N -valued differential CCM-structure on
dcl(Ab) extending ∇. Moreover, this extension is in fact dcl(Ab)-valued.

Proof. Let Y = loc(b/A) and c ∈ τbY . By Proposition 5.2 we can extend ∇ from A to
an N -valued differential CCM-structure on dcl(Ab) by sending ∇(b) := c. We show
that τbY = {c} is a singleton and hence c ∈ dcl(Ab), so that the above extension is in
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fact dcl(Ab)-valued, and so (dcl(Ab), ∇) |H CCM∀,∇ . This also shows uniqueness
as any extension of ∇ to dcl(Ab) would have to take b into τbY ={c}, by Lemma 4.3,
and hence would agree with the one we just constructed.

Let X := loc(b) and write Y = Za , where Z = loc(a, b) ⊆ S × X is a 0-definable
irreducible Zariski closed set and S is a sort with a ∈ S(A) generic. The fact that
b ∈ acl(A) means that Y is finite, and hence the coordinate projection ρ : Z → S is
generically finite-to-one. It follows that dpρ : Tp Z → Tρ(p)S is an isomorphism
for general p ∈ Z(M). Hence d(a,b)ρ : T(a,b)Z → Ta S is a bijection. If c, c′

∈ τbY
then we know, by the proof of Proposition 5.2, that (∇a, c), (∇a, c′) ∈ T(a,b)Z .
But as dρ takes both (∇a, c) and (∇a, c′) to ∇(a) ∈ Ta S we must have c = c′. So
τbY = {c}, as desired. □

Next we prove independent amalgamation. We use |⌣
CCM to mean nonforking

independence in CCM.

Lemma 6.2. Suppose A, B1, B2 are definably closed subsets of N |H CCM, with
A ⊆ B1 ∩ B2 and B1 |⌣

CCM
A B2. Suppose ∇i is a differential CCM-structure on Bi ,

for i = 1, 2, such that ∇1 and ∇2 agree on A. Then there is a common extension ∇

of ∇1 and ∇2 to B := dcl(B1 B2) such that (B, ∇) |H CCM∀,∇ .

Proof. Using Lemma 6.1 we can extend the differential CCM-structure on A, B1, B2

uniquely to their algebraic closures in N . In particular, ∇1 and ∇2 agree on acl(A).
So we may as well assume that A = acl(A), and Bi = acl(Bi ) for i = 1, 2. One
consequence of A being algebraically closed is that Zariski loci over A are absolutely
irreducible, and hence independence over A has the following Zariski-topological
characterisation:

b1
CCM

|⌣
A

b2 if and only if loc(b1, b2/A) = loc(b1/A) × loc(b2/A).

See [Moosa 2004, Section 2] for details.
Every tuple from B is of the form b = f (b1, b2), where each bi is from Bi , and

f : loc(b1, b2) → loc(b) is a definable meromorphic map. Our only choice is to
define

∇(b) := d f (∇1b1, ∇2b2).

But we need (∇1b1, ∇2b2) ∈ T(b1,b2) loc(b1, b2) for this to make sense. This is what
we now check.

Let a be a tuple from A such that loc(b1, b2/A) = loc(b1, b2/a). Let us denote
by ∇ the common restriction of ∇1 and ∇2 to A. Taking prolongations with respect
to the differential CCM-structure (A, ∇), and using the fact that for i = 1, 2 we
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have (A, ∇) ⊆ (Bi , ∇i ), we see that ∇i (bi ) ∈ τbi loc(bi/a). Hence,

(∇1b1, ∇2b2) ∈ τb1 loc(b1/a) × τb2 loc(b2/a)

= τ(b1,b2)(loc(b1/a) × loc(b2/a))

= τ(b1,b2) loc(b1, b2/a) as b1
CCM

|⌣
a

b2

⊆ T(b1,b2) loc(b1, b2)

as desired.
So it does make sense to set ∇(b) := d f (∇1b1, ∇2b2) for b = f (b1, b2). The next

step is to make sure this is well-defined. What if we also have b = f ′(b′

1, b′

2)? This
is dealt with exactly as in Proposition 3.4. Namely, let Z := loc(b1, b2, b′

1, b′

2) and
consider f̄ := ( f, f ′) : Z → loc(b)2. Since f̄ takes a generic point of Z to the diag-
onal we have that d f̄ : TZ → T (loc(b)2) = (T loc(b))2 lands in the diagonal. Now,
the argument in the previous paragraph, applied to bi b′

i , shows, in particular, that
(∇1(b1b′

1), ∇2(b2b′

2)) ∈ T loc(b1b′

1, b2b′

2). Hence, (∇1b1, ∇2b2, ∇1b′

1, ∇2b′

2) ∈ TZ
and we get that d f (∇1b1, ∇2b2) = d f ′(∇1b′

1, ∇2b′

2).
We have defined ∇ on B in such a way that it is a section to TS → S for any sort S.

It remains to check Axiom (2) of Definition 3.3. That is, suppose g : S → S′ is a
definable meromorphic map between sorts, and b ∈ S(B), b′

∈ S′(B) with g(b) = b′.
We need to show that dg(∇b) = ∇b′. We may assume that there are b1, b2 from
B1, B2, respectively, and definable meromorphic maps f, f ′ such that b = f (b1, b2)

and b′
= f ′(b1, b2). It follows that g f = f ′ on loc(b1, b2), and so we compute

dg(∇b) = dg(d f (∇1b1, ∇2b2)) by definition of ∇(b)

= d(g f )(∇1b1, ∇2b2) by functoriality

= d f ′(∇1b1, ∇2b2) as g f = f ′

= ∇b′ by definition of ∇(b′).

This completes the proof that (B, ∇) |H CCM∀,∇ . □

Proposition 6.3. CCM∀,∇ has the amalgamation property. In particular, DCCM
admits quantifier elimination and is complete.

Proof. Suppose (Bi , ∇) |HCCM∀,∇ , for i =1, 2, with a common substructure (A, ∇).
We seek a model (B, ∇) |H CCM∀,∇ into which (B1, ∇) and (B2, ∇) both embed
over A. Let U ⊇ B1 be a sufficiently saturated model of CCM. By universality, there
is an embedding of B2 into U over A. Moreover, after taking nonforking extensions
in CCM, we can find such an embedding such that the image of B2 is independent
from B1 over A. We may as well assume, therefore, that B2 ⊆ U already, and that
B1 |⌣

CCM
A B2. Applying Lemma 6.2, we have a differential CCM-structure ∇ on

B := dcl(B1 B2) that extends ∇ on both B1 and B2.
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Quantifier elimination now follows for DCCM, as a general consequence for a
model companion of a universal theory with amalgamation.

Completeness also follows as we have a prime substructure: all differentially
closed CCM-structures extend the standard model M |H CCM equipped with the
trivial differential structure (Lemma 3.6). □

Remark 6.4. In the case of DCF0 quantifier elimination implies that every definable
set is a finite boolean combination of the closed sets of a certain noetherian topology,
namely the Kolchin topology. There is a natural analogue of the Kolchin topology
here, a meromorphic Kolchin topology on each sort, which one expects to also be
noetherian. I leave this to the interested reader to pursue.

Next, we wish to characterise definable and algebraic closure in DCCM. First
of all, given (N , ∇) |H DCCM and A ⊆ N , let us denote by ⟨A⟩ the L∇-structure
generated by A. If A is already an L∇-substructure and a is a tuple then we denote
by A⟨a⟩ the L∇-structure generated by A ∪ {a}. Note that

A⟨a⟩ = A ∪ {a, ∇(a), ∇2(a), . . . }.

Quantifier elimination tells us that tp(a/A) = tp(a′/A) if and only if there is an
L-isomorphism α : A⟨a⟩ → A⟨a′

⟩ that fixes A pointwise and sends ∇
n(a) to ∇

n(a′)

for all n ≥ 0.
We have been using acl and dcl for algebraic and definable closure in the L-

theory CCM. We continue to do so, using acl∇ and dcl∇ for algebraic and definable
closure in the L∇-theory DCCM.

Proposition 6.5. Suppose (N , ∇) is a differentially closed CCM-structure and
A ⊆ N . Then dcl∇(A) = dcl(⟨A⟩) and acl∇(A) = acl(⟨A⟩).

Proof. By Proposition 3.4, dcl(⟨A⟩) is a differential CCM-substructure of (N , ∇).
Replacing A by dcl(⟨A⟩), we may as well assume that A is a differential CCM-
substructure to start with, and show that dcl∇(A) = A and acl∇(A) = acl(A). The
right-to-left containments are clear.

For the converses, let us first suppose that b /∈acl(A)=: B. By Lemma 6.1, (B, ∇)

is a differential CCM-substructure of (N , ∇). We can find, in some elementary
extension U of N , a copy of N over B, say N ′, such that N |⌣

CCM
B N ′. Let

α :N →N ′ be an L-isomorphism over B witnessing this, and consider b′
:= α(b′).

The fact that b |⌣
CCM
B b′ and that b /∈ B forces b ̸= b′. On the other hand, setting

∇
′
:= α∇α−1 we have that (N ′, ∇ ′) |H DCCM and that α : (N , ∇) → (N ′, ∇ ′) is

an L∇-isomorphism over B. Now, we can find a common extension of ∇ and ∇
′ to

dcl(NN ′) in N by Lemma 6.2 and then further to a model (K, ∇) |H DCCM. So,
in (K, ∇) we have produced at least two distinct realisations, b and b′, of tp(b/B).
Repeating the process we can show that tp(b/B) has arbitrarily many realisations.
That is, b /∈ acl∇(B) = acl∇(A), as desired.
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Finally, suppose, toward a contradiction, that b ∈ dcl∇(A) \ A. This time
we produce two distinct realisations of tp(b/A) for our contradiction. Since
dcl∇(A) ⊆ acl∇(A) = acl(A), we have that b ∈ acl(A) \ A. Hence tpL(b/A)

has a second realisation, b′
∈ acl(A) with b′

̸= b. We thus have an L-isomorphism
α : dcl(Ab)→ dcl(Ab′) that fixes A pointwise and sends b to b′. But, by Lemma 6.1,
dcl(Ab) and dcl(Ab′) are differential CCM-substructures of (N , ∇), and, as they
each admit unique differential structures extending ∇ on A, we must have that α is
an L∇-isomorphism. By quantifier elimination, this means tp(b/A) = tp(b′/A). □

7. Stability and elimination of imaginaries

We work now in a fixed sufficiently saturated model (U, ∇) |H DCCM and adopt
the usual convention that all parameter sets are assumed to be of cardinality less
than that of the saturation.

In order to prove that DCCM is a stable theory, and to capture the meaning of
nonforking independence therein, we follow an axiomatic approach. That is, we
first introduce a natural notion of independence and then show that it has all the
properties that characterise nonforking independence in stable theories.

Definition 7.1. Given sets A, B, C , we say that A is independent of B over C ,
denoted by A |⌣C B, to mean that dcl∇(A) |⌣

CCM
dcl∇ (C) dcl∇(B).

Note that we do not yet know that |⌣ is nonforking independence, but we allow
ourselves the notation as we will soon see that it is.

Let us first verify that |⌣ is a notion of independence, in the sense introduced
in [Kim and Pillay 1997]. First of all, it is clearly invariant under the action
of automorphisms of (U, ∇). Local character, finite character, symmetry, and
transitivity all follow easily from the corresponding properties for |⌣

CCM.

Lemma 7.2 (extension). Given a, C ⊆ B there is a′
|H tp(a/C) such that a′ |⌣C B.

Proof. We may assume that C = dcl∇(C) and B = dcl∇(B). By extension in CCM
there is a sequence (a′

n : n ≥ 0) |⌣
CCM
C B and an L-isomorphism

α : C⟨a⟩ → C ∪ {a′

n : n ≥ 0}

that fixes C pointwise and takes ∇
n(a) to a′

n for all n ≥ 0. Extend α to an L-
isomorphism

α : A := dcl(C⟨a⟩) → A′
:= dcl(C ∪ {a′

n : n ≥ 0}).

Set ∇
′
:= α∇α−1 on A′ so that (A′, ∇ ′) is a differential CCM-structure isomorphic

to (A, ∇). On the other hand, since A′ |⌣
CCM
C B, Lemma 6.2 gives us a common

extension of (A′, ∇ ′) and (B, ∇) to a model (N , ∇ ′) |H DCCM. By universality we
have an embedding ι : (N , ∇ ′) → (U, ∇) over B. Then β := ι ◦α : A → U is an L-
isomorphism with its image that fixes C pointwise and takes ∇

n(a) to ∇
n(β(a)) for
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all n ≥0. Hence, by quantifier elimination, a′
:=β(a) |H tp(a/C). Now A′ |⌣

CCM
C B

implies that ι(A′) |⌣
CCM
C B as ι is over B. But ι(A′) = β(A) = dcl(C⟨a′

⟩). So
a′ |⌣C B, as desired. □

Lemma 7.3 (stationarity over algebraically closed sets). Suppose C = acl∇(C)⊆ B,
and a, a′ are tuples. If tp(a/C) = tp(a′/C), and both a and a′ are independent of
B over C , then tp(a/B) = tp(a′/B).

Proof. We may assume, without loss of generality, that B = dcl∇(B). Since
tp(a/C) = tp(a′/C), there is an L-isomorphism α : C⟨a⟩ → C⟨a′

⟩ that fixes C
pointwise and takes ∇

n(a) to ∇
n(a′) for all n ≥ 0. Since C is algebraically closed,

and the sequences (∇na : n ≥ 0) and (∇na′
: n ≥ 0) are both CCM-independent

from B over C , stationarity over algebraically closed sets in CCM implies that there
is an L-isomorphism β : B⟨a⟩ → B⟨a′

⟩ that fixes B pointwise and takes ∇
n(a) to

∇
n(a′) for all n ≥ 0. By quantifier elimination, tp(a/B) = tp(a′/B). □

Corollary 7.4. DCCM is a stable theory and |⌣ is nonforking independence.

Proof. This follows from the above observations by the characterisation of non-
forking independence in simple (and hence stable) theories as in [Kim and Pillay
1997]. □

We can also deduce stability by counting types. In fact, we get total transcenden-
tality:

Theorem 7.5. DCCM is λ-stable for every cardinal λ ≥ 2ℵ0 .

Proof. We count types. Fix λ ≥ 2ℵ0 and a subset A ⊆ U of cardinality at most λ.
We show that there are at most λ-many complete types over A. We may assume
that A = dcl∇(A) is a differential CCM-substructure.

Suppose X is a sort, a ∈ X (U), and consider tp(a/A). By quantifier elimination,
it is determined by the sequence of types (tpL(∇na/A) : n ≥ 0) in CCM. Let

Zn := loc(∇na/A∇
n−1a).

I claim that there is some N ≥ 0 such that Zn+1 = τ∇na(Zn), for all n ≥ N . This
suffices, since then tp(a/A) is determined by the pair (N , tpL(∇N a/A)), of which
there are at most λ-many possibilities by the λ-stability of CCM.

Note that ∇
n+1(a) ∈ τ∇na(Zn), and so Zn+1 ⊆ τ∇na(Zn). But dim(τ∇na(Zn)) =

dim(Zn) by Lemma 4.4. So dim(Zn+1) is a nonincreasing function of n that must
eventually stabilise. By irreducibility of τ∇na(Zn), this forces Zn+1 = τ∇na(Zn) for
large enough n, as desired. □

Theorem 7.6. DCCM admits elimination of imaginaries.

Proof. A general criterion for elimination of imaginaries in a stable theory is that
finite sets have codes and global types have canonical bases in the home sorts; see,
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for example, [Johnson 2020, Section 3]. That finite sets in DCCM have codes in
the home sort follows from elimination of imaginaries in CCM; see [Pillay 2000;
Moosa 2005b, Appendix].

So, we fix a saturated N ⪯ U and a complete type p = tp(a/N ), and show that p
has a canonical base in N . Let N be as in the proof of Theorem 7.5; that is,

loc(∇n+1a/N∇
na) = τ∇na(loc(∇na/N∇

n−1a)),

for all n ≥ N . By elimination of imaginaries for CCM, there is a code c for
loc(∇N a/N ) in N . We claim that c is a canonical base for p.

Fix an L∇-automorphism σ of N . We need to show that pσ
= p if and only

if σ(c) = c. One direction is clear: if pσ
= p then tpL(∇N a/N )σ = tpL(∇N a/N )

and hence loc(∇N a/N )σ = loc(∇N a/N ), so that σ(c) = c.
For the converse, suppose σ(c) = c. Extend σ to an L∇-automorphism σ̂ of U ,

and let â := σ̂ (a). We have that

tpL(∇N â/N ) = tpL(∇N a/N ) since σ(c) = c,

loc(∇N+1a/N∇
N a) = τ∇N a(loc(∇N a/N∇

N−1a)) by choice of N , and

loc(∇N+1â/N∇
N â) = τ∇N â(loc(∇N â/N∇

N−1â)) by applying σ̂ .

These imply that tpL(∇N+1â/N ) = tpL(∇N+1a/N ). We can iterate to prove that
tpL(∇n â/N ) = tpL(∇na/N ) for all n ≥ 0. By quantifier elimination,

pσ
= tp(â/N ) = tp(a/N ) = p,

as desired. □

8. Meromorphic vector fields and finite-dimensional types

We return in this final section to the motivating objects of interest: meromorphic
vector fields. Our goal is to show that they are captured, up to bimeromorphic
equivalence, in DCCM by the “finite-dimensional” types.

We continue to work in a fixed sufficiently saturated model (U, ∇) |H DCCM.

Definition 8.1. Suppose A is an L∇-substructure and p = tp(b/A) is a complete
type. By the dimension of p, denoted by dim∇(p) or dim∇(b/A), we mean the
sequence of nonnegative nondecreasing integers

(
dim(loc(∇nb/A)) : n ≥ 0

)
ordered

lexicographically. If dim∇(p) is eventually constant then we say that p is finite-
dimensional and we (re)use dim∇(p) to denote that eventual finite number.

Note that the dimension depends only on the type p and not on the choice of
realisation b. On the other hand, this dimension is not invariant under definable
bijection — for example, b and ∇(b) are interdefinable over the empty set but
the dimension sequences are not always the same (one is a shift of the other).
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Nevertheless, whether or not a type is finite-dimensional, and the value of that finite
dimension in the case that it is, is invariant under definable bijection.

Dimension witnesses forking:

Proposition 8.2. Suppose a is a tuple and C ⊆ B are L∇-substructures. Then
a |⌣C B if and only if dim∇(a/B) = dim∇(a/C).

Proof. We may assume that B = dcl∇(B) and C = dcl∇(C). By Proposition 6.5, we
have that dcl∇(Ca) = dcl(C⟨a⟩). Hence a |⌣C B is equivalent to ∇

n(a) |⌣
CCM
C B

for all n ≥ 0. But, as dimension witnesses forking in CCM, this is equivalent to
dim(loc(∇na/B)) = dim(loc(∇na/C)) for all n ≥ 0. □

It follows that if p is finite-dimensional then it is of finite U -rank, and in fact
that U (p) ≤ dim∇(p). One can ask whether the same holds of Morley rank: is it
the case that Morley rank is bounded by dimension? It is also natural to ask about
the converse: if p is of finite rank (U -rank or Morley rank, it is the same thing)
must it be of finite dimension? One expects affirmative answers to these questions,
as is the case for DCF0, but I do not pursue them here.

A natural source of finite-dimensional types over the empty set are meromorphic
vector fields in the sense of Definition 3.1. Suppose (X, v) is such. Consider the
type p(x), over the empty set, which says that x ∈ X is generic and that ∇(x)= v(x).
This is consistent by the geometric axiom of Proposition 5.4. Indeed, given any
proper Zariski closed X0 ⊆ X , apply (GA) to Y the Zariski closure of the image
of v in TX = τ X and Y0 the restriction of Y to X0, yielding a U-point a ∈ X \ X0

with ∇(a) = v(a). Moreover, by quantifier elimination, this type is complete: the
L-type of x is determined by x being generic in X , and ∇(x) = v(x) implies
∇

n(x) = vn(x) for appropriate definable meromorphic vn : X → T n X , for all n.
We call p the generic type of (X, v). Note that p is finite-dimensional; in fact,
dim∇(p) = dim X . Indeed, for all n ≥ 0, we have that ∇

n(b) = vn(b) and vn is a
definable meromorphic section to T n X → X , and hence, as b is generic in X , we
get dim(loc(∇nb/A)) = dim X .

It turns out that all finite-dimensional types arise this way:

Theorem 8.3. Every finite-dimensional type over the empty set in DCCM is, up to
interdefinability, the generic type of a meromorphic vector field.

Proof. Suppose p = tp(b) is finite-dimensional. Let d ≥ 0 be such that

dim(loc(∇d+1b)) = dim(loc(∇db)).

Since the projection loc(∇d+1b)→ loc(∇db) is dominant, this means that it must be
generically finite-to-one. Hence, setting c := ∇

d+1(b), we have that c ∈ acl(∇d(b)).
As in the proof of Lemma 6.1, it follows that if Y = loc(c/∇d(b)) then τcY is a
singleton. Since Y is defined over ∇

d(b), the prolongation space τY is defined
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over ∇
d+1(b)= c, and hence also τcY is defined over c. By Lemma 4.3, ∇(c)∈ τcY .

So ∇(c) ∈ dcl(c). By quantifier elimination in CCM we can write ∇(c) = v(c)
for some definable meromorphic map v. Then, setting X := loc(c), we have that
v : X → TX is a section to the tangent space of X . That is, (X, v) is a meromorphic
vector field and q = tp(c) is its generic type. Finally, observe that b and c =∇

d+1(b)

are interdefinable over the empty set, so that p and q are interdefinable types. □

The upshot is that the finite-dimensional fragment of DCCM, over the empty set,
captures precisely the bimeromorphic geometry of meromorphic vector fields.

Remark 8.4. We have restricted our attention in this discussion to the empty set
for brevity; we could have worked more generally over arbitrary parameters A.
The result would be that the finite-dimensional types over A are precisely, up to
interdefinability, the generic types of meromorphic D-varieties over A. We leave it
to the reader to both articulate precisely, and verify, this claim.
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Revisiting virtual difference ideals

Zoé Chatzidakis and Ehud Hrushovski

In difference algebra, basic definable sets correspond to prime ideals that are in-
variant under a structural endomorphism. The main idea of an article with Peterzil
(Proc. London Math. Soc. 85:2 (2002), 257–311) was that periodic prime ideals en-
joy better geometric properties than invariant ideals, and to understand a definable
set, it is helpful to enlarge it by relaxing invariance to periodicity, obtaining better
geometric properties at the limit. The limit in question was an intriguing but some-
what ephemeral setting called virtual ideals. However, a serious technical error
was discovered by Tom Scanlon’s UCB seminar. In this text, we correct the prob-
lem via two different routes. We replace the faulty lemma by a weaker one that still
allows recovering all results of the aforementioned paper for all virtual ideals. In
addition, we introduce a family of difference equations (“cumulative” equations)
that we expect to be useful more generally. Previous work implies that cumulative
equations suffice to coordinatize all difference equations. For cumulative equa-
tions, we show that virtual ideals reduce to globally periodic ideals, thus providing
a proof of Zilber’s trichotomy for difference equations using periodic ideals alone.

Introduction

Boris Zilber developed a geometric description of ℵ1-categorical theories, having a
trichotomy at its heart. It is based on the dimension theory of Morley (shown to
take finite values by Baldwin), but gives information of a radically new kind than
an abstract dimension theory. Intuitively, a model of the theory is coordinatized by
geometries that have either a graph-theoretic nature, or derive from linear algebra,
or belong to algebraic geometry. Though it is only the minimal definable sets that
are described in this way, Zilber (and later others) demonstrated an overwhelming
effect on the structure globally.

Zilber conjectured that there is no fourth option. This turned out to be in-
correct at the precise level of generality of ℵ1-categorical structures. But it was
established with additional hypotheses of a topological nature [11], and moreover
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proved to be meaningful and indeed to capture the nature of structures far beyond
strong minimality. Appropriate versions hold for compact complex manifolds,
for differentially closed and separably closed fields, for strongly minimal sets
interpretable in algebraically closed fields of characteristic zero [1]; the latter
closes in characteristic zero a line opened more than thirty years ago by Eugenia
Rabinovich, in her Kemerovo PhD with Zilber. The trichotomy is also meaningful
for unstable theories: see [12] for the o-minimal case. Many applications depend on
the trichotomy, including Zilber’s gem [15]. For difference equations, applications
to diophantine geometry include [3; 4; 10; 13].

Thanks to Zilber’s philosophy, when we made our first steps in the structure
of difference equations in [2], we knew in advance what it is that we should aim
to prove. The methods were informed by finite-rank stability and the nascent
generalization to simplicity. But they also relied strongly on ramification divisors,
and thus applied only in characteristic zero. Our approach in [7] to the positive
characteristic case thus had to be different.

The trichotomy results of [11] are valid for stable structures with a finite di-
mension assigned to definable sets, satisfying a “dimension theorem” controlling
dimensions of intersections. Now the model companion ACFA of the theory of
difference fields is not stable, nor does the geometry of finite-dimensional sets satisfy
the dimension theorem: the intersection of two such sets may have unexpectedly low
dimension. For instance, the naive intersection of two surfaces in 3-space over the
fixed field of the automorphism σ could be two lines interchanged by σ ; within the
fixed field their intersection point would be the only solution. Both of these patholo-
gies are ameliorated as one relaxes σ to σm (going from the equation σ(x)= F(x)
to σm(x)= F (m)(x)). At the limit, one has a virtual structure, defined and studied
in [7]; under appropriate conditions, this structure is stable and the dimension
theorem is valid. Proving this uses basic ideas from topological dynamics to obtain
recurrent points that may not be periodic; see Lemma 2.8 for example. Using a
generalization of the Zariski geometries of [11], one can then deduce the trichotomy
theorem. The concrete form it takes here allows analyzing any difference equation
via a tower of equations over fixed fields and equations of locally modular type.

In 2015, however, Tom Scanlon’s Berkeley seminar recognized a problem with a
key technical lemma, Lemma 3.7. We show below how to prove a somewhat weaker
version of this lemma: where the wrong Lemma 3.7 asserted a unique component
through a point, the corrected version, Lemma 2.16, implies that the number of
such components is finite, indeed at most the degree of the normalization of the
relevant variety in the base. All the main results of the paper remain valid with
the same set of ideas, but considerable reorganization is required. One role of the
present paper is to provide a lengthy erratum, explaining in detail how this may
be done. Parts of this paper are thus technical and need to be read in conjunction
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with [7]. However, Section 2, which contains the main correction and in particular
the key dimension theorem, is self-contained in the sense of quoting some results
from [7] but not requiring entering into their proofs.

At the same time, we take the opportunity to present a setting (“cumulative equa-
tions”) in which the limit structure is equivalent to an ordinary structure, in the sense
that the associated algebraic object is an ordinary ring with its periodic ideals, rather
than an abstract limit of such rings as in the virtual case. Results of [5] imply that
this setting, while not fully general, suffices to coordinatize all difference equations.
It may be of interest for other applications, in particular the study of limit structures
for more equations that are not necessarily algebraic over equations of SU-rank one.

We expect that a trichotomy theorem can be proved for Zariski geometries based
on Robinson structures. This has so far been worked out only in special cases; the
most general treatment is contained in the unpublished PhD thesis of Elsner [9].
Consequently, the trichotomy follows from the basic cumulative case alone, though
this is not the case for some of the other results: for finer statements such as a
description of the fields definable in the limit structures, both in [7] and here, we
use additional features of the specific structure.

Let S be a difference ring, generated by a finitely generated ring R. The main
idea of [7] was that as n becomes more and more divisible, more σ n-ideals ap-
pear, and their structures become progressively smoother. However there is also
a countercurrent at work: the difference subring Rσ n of (S, σ n) generated by R
may become smaller. This double movement leads to technical complexity. If,
however, σ(R) is contained in the ring generated by R and σ n(R) for any n, this
problem does not arise. It is this behavior (slightly generalized to fraction fields)
that we refer to as cumulative. It turns out that cumulative difference equations still
represent all isogeny classes, and allow for considerable simplification.

We are very grateful to Tom Scanlon, his Berkeley group, and especially Alex
Kruckman for identifying the error; and to the anonymous referee for the careful
reading and suggestions that have considerably improved the text.

Plan of the paper. In Section 1 we mainly recall definitions and notation from [7].
Section 2 contains the proof of Proposition 2.6 of [7], as well as some useful
auxiliary results and remarks. The cumulative case is done in the first half, the
general case in the second half. Sections 3 and 4 are devoted to rereading [7] and
making the necessary changes and adaptations: Section 3 deals with Sections 2 to
4 of [7], and Section 4 with the remainder of the paper.

1. Setting, notation, basic definitions

1.1. Setting and notation. In what follows, K is a sufficiently saturated existentially
closed difference field, containing an algebraically closed difference subfield k0, and
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� a |K |+-saturated existentially closed difference field containing K . We always
work inside �.

If L is a field, then Ls and Lalg denote the separable and algebraic closure of the
field L .

Conventions. Unless otherwise stated, all difference fields and rings will be in-
versive, i.e., the endomorphism σ is an automorphism; in other words, we take a
difference ring to be a commutative ring with a Z-action. Similarly, all difference
ideals will be reflexive, i.e., if (R, σ ) is a difference ring, a σ -ideal of R is an ideal
I such that σ(I )= σ−1(I )= I .

If k is a difference field, X = (X1, . . . , Xn), then k[X ]σ denotes the inversive
difference domain k[σ i (X j ) | i ∈ Z, 1 ≤ j ≤ n] and k(X)σ its field of fractions.
Similarly, if a is a tuple in�, k[a]σ and k(a)σ denote the inversive difference subring
and subfield of � generated by a over k. Similar notation is used for difference
rings. If a is an n-tuple, then Iσ (a/k)= { f ∈ k[X1, . . . , Xn]σ | f (a)= 0}. If k(a)σ
has finite transcendence degree over k, the limit degree of a over k, denoted ld(a/k)
or ldσ (a/k), is limn→∞[k(a, . . . , σ n+1(a)) : k(a, . . . , σ n(a))].

If A is a subset of a difference ring S, then (A)σm denotes the (reflexive) σm-ideal
of S generated by A. If A ⊂ �, then clσ (A) denotes the perfect closure of the
difference subfield of � generated by A, aclσ (A) the (field-theoretic) algebraic
closure of clσ (A), and dclσ (A) the model-theoretic definable closure of A. If A is
a subring of a difference ring S, then Aσ denotes the (inversive) difference subring
of S generated by A.

Recall that aclσ (A) coincides with the model-theoretic algebraic closure acl(A),
and that independence (in the sense of the difference field �) of A and B over
a subset C coincides with the independence (in the sense of ACF) of acl(A) and
acl(B) over acl(C).

If m ≥ 1, then �[m] denotes the σm-difference field (�, σm). The languages
L and L[m] are the languages {+,−, · , 0, 1, σ } and {+,−, · , 0, 1, σm

}. We view
L[m] as a sublanguage of L, and �[m] as a reduct of �. Recall that �[m] is also an
existentially closed saturated difference field, by Corollary 1.12 of [2]. If a is a tuple
of � and k a difference subfield of �, then qftp(a/k) denotes the quantifier-free
type of a over k in the difference field �, and if m ≥ 1, then qftp(a/k)[m] denotes
the quantifier-free type of a over k in the difference field �[m]. Similarly, if q is
a quantifier-free type over k, then q[m] denotes the set of L(k)[m] quantifier-free
formulas implied by q.

Basic and semibasic types.

Definitions 1.2. We consider quantifier-free types p, q, . . . over the algebraically
closed difference field k0, and integers m, n ≥ 1.
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(1) q satisfies (ALGm) if whenever a realizes q , then σm(a) ∈ k0(a)alg.

(2) The eventual SU-rank of q , evSU(q), is limm→∞ SU(q[m!]), where SU(q[m!])
(the SU-rank of q[m!]) is computed in the σm!-difference field�[m!]. For more
details, see Section 1 in [7], starting with 1.10. Write SU(a/k0)[n] :=SU(q[n]),
computed in the σ n-difference field �[n] (n ≥ 1, a realizing q). If D is a
countable union of k-definable subsets of some cartesian power of �, then
evSU(D)= sup{evSU(a/k) | a ∈ D}.

(3) p ∼ q if and only if for some m ≥ 1, p[m] = q[m]. The ∼-equivalence class
of p is denoted by [p] and is called a virtual type.

(4) Xp(K ) denotes the set of tuples in K which realize p[m] for some m ≥ 1, and
similarly for Xp(�). We denote by X p the underlying affine variety, i.e., the
Zariski closure of Xp(�) in affine space.

(5) A basic type is a quantifier-free type p over k0, with evSU-rank 1, which
satisfies (ALGm) for some m. Note that if p is basic, so is p[n] for every n.

(6) A semibasic type is a quantifier-free type q such that if a realizes q, then
there are tuples a1, . . . , an ∈ k0(a)alg which realize basic types over k0, are
algebraically independent over k0, and are such that a ∈ k0(a1, . . . , an)

alg.

(7) The quantifier-free type q is cumulative if for some (any) realization a of q and
every m≥1, σ(a)∈ k0(a, σm(a)). Note that this implies that k0(a)σ = k0(a)σm

for any m ≥ 1, and that (ALGm) is equivalent to (ALG1).

Remarks 1.3. Let k be an inversive difference field.

(1) We will often use the following equivalences, for a tuple a:

(i) [k(a, σ (a)) : k(a)] = ld(a/k).
(ii) The fields k(σ (a) | i ≤0) and k(σ i (a) | i ≥0) are linearly disjoint over k(a).

(iii) Iσ (a/k) is the unique prime σ -ideal of k[X ]σ extending the prime ideal
{ f (X, σ (X)) ∈ k[X, σ (X)] | f (a, σ (a))= 0} of k[X, σ (X)] (|X | = |a|).

Note that these equivalent conditions on the tuple a in the difference field �
also imply the analogous conditions for the tuple a in the difference field �[m]
for m ≥ 1 (use (ii)).

(2) Let P be a prime ideal of k[X, σ (X)] (X a tuple of variables) and assume that
σ(P ∩ k[X ]) = P ∩ k[σ(X)]. Then P extends to a prime σ -ideal of k[X ]σ .
We will usually use it with the prime ideal σ−1(P) of k[σ−1(X), X)].

Proof. All these are straightforward remarks; see also Section 1.3 of [5] for the
equivalence of (i) and (ii), and Sections 5.6 and 5.2 of [8] for the remaining items. □

1.4. Coordinate rings associated to quantifier-free types. (See also (3.5) and (3.6)
in [7]). Let q be a quantifier-free type over k0, in the tuple x of variables, fix
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a realization a of q. The pair (Rq , Rq,σ ) of coordinate rings associated to q is
defined as follows: Let k0(x)σ be the fraction field of k0[X ]σ/Iσ (a/k0), k0(x) its
subfield generated by x over k0. Then we define the ring Rq := k0(x)⊗k0 K and
the σm-difference ring Rq,σm := k0(x)σm ⊗k0 K for m ≥ 1. We often denote Rq and
Rq,σm by K {x} and K {x}σm , and define in an analogous way the coordinate rings
k1{x} and k1{x}σm if k1 is a difference field containing k0.

Given semibasic types q1(x1), . . . , qn(xn), we take the tensor product over K of
their coordinate rings, and call them the coordinate rings associated to (q1, . . . , qn).
So, we have

R(q1,...,qn) = K {x1}⊗K · · · ⊗K K {xn},

R(q1,...,qn),σm = K {x1}σm ⊗K · · · ⊗K K {xn}σm .

To a semibasic type q, we associate three new pairs of coordinate rings as fol-
lows. Say q is realized by a tuple a, and a1, . . . , an are as in the definition of
semibasic given above. We let pi = qftp(ai/k0), r = qftp(a1, . . . , an/k0), and
s = qftp(a, a1, . . . , an/k0). Then we define

R1
q = Rp1 ⊗K · · · ⊗K Rpn , R2

q = Rr , R3
q = Rs,

R1
q,σm = Rp1,σm ⊗K · · · ⊗K Rpn,σm , R2

q,σm = Rr,σm , R3
q,σm = Rs,σm .

These rings depend on the choice of the tuples a1, . . . , an , but we may fix once and
for all these tuples. Note that then R1

q⊆ R2
q⊆ R3

q⊇ Rq , that R2
q is a localization of R1

q ,
and that R3

q is integral algebraic over R2
q and over Rq . Similar statements hold for

the associated difference rings. If q is basic, we define Ri
q = Rq and Ri

q,σm = Rq,σm .
We extend the notation to the more general coordinate rings R(q1,...,qn).

We say that a coordinate ring Rσ satisfies (ALGm) or is cumulative, if the semiba-
sic types involved in the definition of Rσ all satisfy (ALGm) or are cumulative.

1.5. Convention. From now on, all quantifier-free types will satisfy (ALGm) for
some m ≥ 1, so that all coordinate rings will satisfy (ALGm).

Definitions 1.6. Let (R, Rσ ) be a pair of coordinate rings, as defined above, and S
a ring.

(1) Let P be a prime ideal of a ring S. The dimension of P , denoted by dim(P),
is the Krull dimension of the ring S/P . If I is an ideal of S, the dimension
of I , dim(I ), is sup{dim(P) | P ⊇ I, P ∈ Spec(S)}. If S = R, then dim(P)
coincides with tr.degK Frac(R/P).

(2) Let P be a prime ideal of a coordinate ring Rσ . The virtual dimension
of P , denoted vdim(P), is dim(P ∩ R). If Rσ satisfies (ALGm), it coincides
with dim(P∩Rσm ). Similarly, if I is an ideal of Rσ , then vdim(I )=dim(I∩R).
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(3) A virtual [perfect], [prime] ideal of Rσ is a [perfect1], [prime] (reflexive) σm-
ideal of Rσm for some m ≥ 1.

(4) A [perfect], [prime] periodic ideal of Rσ is a [perfect], [prime] σm-ideal I of
Rσ for some m ≥ 1. A priori, not all virtual ideals extend to periodic ideals.

(5) Let I be an ideal of R. We say that I is pure of dimension d if all minimal
primes over I have dimension d. Let I be an ideal of Rσ . We say that I is
virtually pure of dimension d if I ∩ R is pure of dimension d.

(6) Let I be a virtual ideal of Rσ = K {x}σ . Then V (I ) is the subset of K |x | defined
by a ∈ V (I ) if and only if for some m ≥ 1, for each h ∈ I ∩ Rσm , viewed as a
σm-polynomial, we have h(a, σm(a), . . .)= 0. Thus V (I ) stands in bijection
with

⋃
m Homσm (Rσm/I, K ), where Homσm refers to ring homomorphisms

commuting with σm .
Note that if Rσ = Rq for some quantifier-free type q, then V (0) is pre-

cisely Xq(K ). We call vdim(0) (i.e., the Krull dimension of R) the (virtual)
dimension of q.

2. Existence theorems for periodic ideals

The aim of this section is to give proofs of the results of [7] needed towards the proof
of the trichotomy in positive characteristic, and in particular the very important
Proposition 2.6 of [7]. We try to follow the plan of [7], and will occasionally
refer to it. While the results of Chapter 2 are indeed correct, the problem is that
our coordinate rings do not satisfy the required hypotheses. The mistake appears
in Lemma 3.7.

Assumptions. The coordinate rings we consider are those associated to tensor
products of coordinate rings of semibasic types whose corresponding basic types
have virtual dimension e, for some fixed integer e ≥ 1. A typical pair of coordinate
rings is denoted (R, Rσ ), without reference to the types involved in the construction.

As for types, we declare two virtual prime ideals P,Q equivalent, and write P∼Q,
if for some m ≥ 1, P ∩ Rσm = Q ∩ Rσm . We retain, however, Definition 1.2(3) of
virtual prime ideals; the equivalence classes are called virtual prime ideal classes.

Proposition 2.1 (addendum to Proposition 2.4 of [7]). Let (R, Rσ ) be a pair of
coordinate rings.

(1) Let P and Q be virtual prime ideals. If V (P)= V (Q), then P ∼ Q.

(2) Let P be a prime σm-ideal of Rσm . Then for some ℓ > 0, P extends to a prime
σ ℓ-ideal Q of Rσ . In particular, since V (Q) = V (P), this shows that every
set defined by a virtual prime ideal is also defined by a periodic prime ideal

1A σ -ideal I of a difference ring R is perfect if whenever anσ(a) ∈ I , then a ∈ I .
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of Rσ ; i.e., every prime periodic ideal of Rσm is equivalent to a prime periodic
ideal of Rσ .

Proof. (1) We may assume that P and Q are prime σ -ideals and that R satisfies
(ALG1). Choose a (small) subfield k1 of K such that for any m ≥ 1, P ∩ Rσm

and Q ∩ Rσm are generated by their intersection with k1{x}σm (x the variables
of R). By saturation of K , it contains a point a which is a generic point of
V (P) over k1, i.e., with tr.deg(k1(a)/k1) = dim(P). Then a is in V (Q), whence
dim(Q) ≥ dim(P), and the symmetric argument tells us that these dimensions
are equal, and that a is a generic of V (Q) over k1. Let ℓ be divisible by m and
such that P ∩ Rσ ℓ and Q ∩ Rσ ℓ are prime σ ℓ-ideals contained in (x − a)σ ℓ . Then
Iσ ℓ(a/k1)= P ∩ k1{x}σ ℓ = Q ∩ k1{x}σ ℓ , which shows that P ∼ Q.

(2) Let ϕ : Rσm →� be a K-homomorphism of σm-difference rings with kernel P .
If p1(x1), . . . , pn(xn) are the semibasic types associated to Rσ , then

Rσ = k0(x1)σ ⊗k0 · · · ⊗k0 k0(xn)σ ⊗k0 K ,

and Rσm corresponds to the subring k0(x1)σm⊗k0 · · ·⊗k0 k0(xn)σm⊗k0 K . Our map ϕ
is entirely determined by its restrictions to each of the factors of the tensor product,
and for i=1, . . . , n, we let ϕi denote the restriction of ϕ to k0(xi )σm . Since k0(x)σ is
finitely generated over k0(x)σm , Proposition 1.12(3) of [7] gives that for some ℓ > 0
divisible by m, the σ ℓ-embeddings ϕi : k0(xi )σm → � extend to σ ℓ-embeddings
ψi : k0(x)σ →� for i = 1, . . . , n. Then define ψ =ψ1⊗ψ2⊗· · ·⊗ψn⊗ idK , and
take Q = kerψ . □

Lemma 2.2. Let Rσ be a coordinate ring, and Sσ = R[c]σ a difference ring, with
S = R[c] integral algebraic (and finitely generated) over R. If P is a prime σ -ideal
of Rσ , then for some ℓ≥ 1, P ∩ Rσ ℓ extends to a prime σ ℓ-ideal of Sσ ℓ .

Proof. Replacing σ by σm for some m, we may assume that Rσ satisfies (ALG1).

Claim. There is m ≥ 1 such that for any ℓ≥ 1, if R′ = R[σ(R), . . . , σm(R)], then
P ∩ R′

σ ℓ
is the unique prime σ ℓ-ideal of R′

σ ℓ
which extends P ∩ R′[σ ℓ(R′)].

Proof of claim. Indeed, take a ∈� such that Frac(Rσ/P)≃ K (a)σ and m such that
[K (a, . . . , σm+1(a)) : K (a, . . . , σm(a))] = ld(a/K ). Then if b = (a, . . . , σm(a)),
we have ld(b/K )= ld(a/K ) and for ℓ≥ 1, ldσ ℓ(b/k0)= [K (b, σ ℓ(b)) : K (b)].

The claim now follows by the equivalences given in Remarks 1.3(1). □

For n ≥ 0, let R(n) and S(n) denote the subrings of Rσ and Sσ generated
respectively by σ i (R) and σ i (S), −n ≤ i ≤ n. Then each S(n) is Noetherian,
integral algebraic over R(n), Sσ =

⋃
n∈N S(n), and we have a natural map

Spec(Sσ )→
∏
n∈N

Spec(S(n)).
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For each n ∈N, the set Xn of prime ideals of S(n) which extend P ∩ R(n) is finite
and nonempty, and the natural map Spec(S(n + 1))→ Spec(S(n)) sends Xn+1

to Xn . Hence X := lim
←−−

Xn is a closed, compact, nonempty subset of
∏

n∈N Xn , and
is the set of prime ideals of Sσ which extend P . As each Xn is finite, and the set X
is stable under the (continuous) action of σ on Spec(Sσ ), X contains a recurrent
point Q. Let m be given by the claim, and consider S(m). Then for some ℓ ≥ 1,
we have σ ℓ(Q)∩ S(m)= Q ∩ S(m), and therefore, using Remarks 1.3(2), there is
a prime σ ℓ-ideal Q′ of S(m)σ ℓ such that

Q′ ∩ S(m)[σ−ℓ(S(m))] = Q ∩ S(m)[σ−ℓ(S(m))].

As Q contains P ∩ R′[σ−ℓ(R′)] and has the same dimension, by the claim Q′ must
extend P ∩ R′

σ ℓ
, and therefore also P ∩ Rσ ℓ . □

Remark 2.3. A consequence of our hypothesis on the dimension of the basic
types is as follows: Let P be a virtual prime ideal of Rσ . Then dim(P ∩ R) is
divisible by e. Indeed, choose m such that P ∩ Rσm is a prime σm-ideal of Rσm

and Rσ satisfies (ALGm). We may assume that m = 1. We use the notation and
definition of Section 1.4, and recall that R3 is finite integral algebraic over R.
Thus, by Lemma 2.2, P ∩ Rσ extends to a periodic prime ideal of R3

σ . This
means that Frac(Rσ/P ∩ Rσ ) is equi-algebraic over K to a difference field which
is generated over K by realizations of basic types of dimension e. Since basic
types have evSU-rank 1, these realizations may be taken independent, and therefore
tr.degK (Frac(Rσ/P ∩ Rσ )) is a multiple of e, so that dim(P ∩ Rσ ) is a multiple
of e. As Rσ is integral algebraic over R, dim(P ∩ R) is a multiple of e.

The basic cumulative case. We now prove some results in the particular case when
our coordinate rings are tensor products of coordinate rings of basic cumulative
types; this assumption holds until Proposition 2.10. The proof in the general case
follows the same lines, but is slightly more involved.

Note that the assumptions imply that all coordinate rings satisfy (ALG1), that all
virtual ideals are periodic, and that ∼ coincides with equality.

Lemma 2.4. Let I be an ideal of R of dimension d. Then there are only finitely
many periodic prime ideals of Rσ which contain I and are of dimension d.

Proof. A prime ideal of Rσ which contains I and is of dimension d must extend
a prime ideal P of R of dimension d containing I . As R is Noetherian, there are
only finitely many such prime ideals, and we may therefore assume that I = P is
prime, and extends to a periodic prime ideal of Rσ .

Then Proposition 3.10 of [7], together with Proposition 2.1, gives the result. □

Corollary 2.5. Let I be an ideal of Rσ of dimension d. Then there are only finitely
many periodic prime ideals of Rσ which contain I and are of dimension d.
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Proof. Such an ideal contains in particular I ∩ R. The result then follows from
Lemma 2.4. □

Corollary 2.6. Let I be an ideal of Rσ of dimension d. Then there are periodic
prime ideals P1, . . . , Ps of Rσ of dimension d , and a finite subset F of I , such that
if P is a periodic prime ideal of Rσ which contains F and is of dimension d, then
V (P)= V (Pi ) for some i .

Proof. By Lemma 2.4, if F is a finite subset of Rσ which generates an ideal of
dimension d and per(F) denotes the set of prime periodic ideals of Rσ containing
F and of dimension d , then per(F) is finite. Take a sufficiently large finite F such
that per(F)= per(I ). □

Lemma 2.7. Let I be a periodic ideal of Rσ of dimension d. Then I is contained in
a periodic prime ideal of Rσ of dimension d.

Proof. We may assume that I = σ(I ). Let F ⊂ I and P1, . . . , Ps be given by
Corollary 2.6. Let X be the set of prime ideals of Rσ of dimension d containing I ,
and for n ∈N, let R(n) be the subring of Rσ generated by σ i (R), −n ≤ i ≤ n, and
Xn be the set of prime ideals of R(n) containing I ∩ R(n) and of dimension d.
Each Xn is finite and nonempty, and we have natural maps Xn+1→ Xn . Hence,
X = lim

←−−
Xn is nonempty and compact. The automorphism σ acts continuously on X ,

and therefore has a recurrent point Q. Let n be such that R(n) contains F . Then for
some m>0, we have Q∩R(n)=σm(Q)∩R(n). By Remarks 1.3(2), there is a prime
σm-ideal Q′ of R(n)σm which extends Q ∩ R(n)[σ−m(R(n))]. But R(n)σm = Rσ ,
and because Q′ contains F and has dimension d , it must contain I . □

Lemma 2.8. Let I be a periodic ideal of Rσ , with I ∩ R pure of dimension d.
Then there are periodic prime ideals P1, . . . , Ps of virtual dimension d such that
V (I )= V (P1)∪ · · · ∪ V (Ps).

Proof. We already know by Lemma 2.4 (and Proposition 2.1) that V (I ) has only
finitely many irreducible components of dimension d, say V (P1), . . . , V (Ps). It
therefore suffices to show that every point of V (I ) is in one of these components.

Assume this is not the case. Let a ∈ V (I ), and m ≥ 1 such that I is a σm-ideal
and Q = (x − a)σm ⊇ I . Without loss of generality, m = 1. For n ∈ N, let R(n) be
the subring of Rσ generated by the rings σ i (R), −n ≤ i ≤ n. Then for each n ∈ N,
the ideal I ∩ R(n) is pure of dimension d , and therefore, the set Xn of prime ideals
P of R(n) of dimension d containing I ∩ R(n) and contained in Q is finite and
nonempty. Moreover, if P ∈ Xn+1, then P ∩ R(n) ∈ Xn . Hence, the compact
subset X = lim

←−−
Xn of Spec(Rσ ) is nonempty. It is the set of prime ideals of Rσ of

dimension d, containing I and contained in Q. Let F be given by Corollary 2.6,
and n such that F ⊂ R(n) and Q does not contain any of the Pi ∩ R(n). As σ
acts continuously on the compact set X , X has a recurrent point, say P . Then for
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some m ≥ 1, P ∩ R(n)= σm(P)∩ R(n). As in the proof of Lemma 2.7, there is a
prime σm-ideal P ′ of Rσ which extends P ∩ R(n)[σ−m(R(n))], and therefore has
dimension d , contains I and is not in the finite set {P1, . . . , Ps}. This gives us the
desired contradiction. □

We define a topology on V , taking the closed sets to be the sets V (I ). (It is easy to
see that the sets V (I ) are closed under intersections and under finite unions.) Then
when s is taken minimal in Lemma 2.8, the V (Pi ) are the irreducible components
of V (I ).

Lemma 2.9. Write Rσ = K {x1}⊗K · · · ⊗K K {xm}, with m ≥ 2. Let P be a prime
σ -ideal of Rσ , and let Q be the ideal Q = (x1− x2)σ corresponding to the diagonal
on Spec K {x1}×Spec K {x2}, i.e., generated by the x1, j − x2, j . Then either Q ⊆ P ,
or every irreducible component of V (P)∩ V (Q) has dimension dim(P)− e.

Proof. Assume Q ̸⊆ P , and consider the σ -ideal I = P + Q. Note that since Q is
generated by elements of R, at least one of them is not in P . Thus I ∩ R is strictly
bigger than P ∩ R, so each component of I ∩ R has dimension < dim(P).

Let R(n) be the subring of Rσ generated by σ i (R), −n ≤ i ≤ n, for n ∈N. Then
each R(n) is a localization of the affine coordinate ring of a smooth variety. (In our
construction, all proper subvarieties defined over k0, including the singular locus,
were localized away. See the discussion in (5.18) of [7].)

Hence the dimension theorem holds: since Q ∩ R(n) has codimension e, all
minimal prime ideals over P ∩ R(n)+ Q ∩ R(n) have dimension ≥ dim(P)− e.

Since R is Noetherian, I ∩ R is finitely generated. Any finite set of elements of
I∩R must already belong to P∩R(n)+Q∩R(n) for some n. Since R(n) is integral
over R, and the components of P∩R(n)+Q∩R(n) have dimension ≥ dim(P)−e,
it follows that every minimal prime of I ∩ R has dimension ≥ dim(P)− e. (The
image of an irreducible variety under a morphism with finite fibers is an irreducible
variety of the same dimension.)

In particular, I has dimension δ≥dim(P)−e. By Lemma 2.7 some periodic prime
ideal P ′ containing I has dimension δ; by Remark 2.3, δ as well as dim(P) must be
a multiple of e. We saw that δ<dim(P), so the only choice is δ= dim(P)−e. Thus
I ∩ R is pure of dimension dim(P)− e. Hence Lemma 2.8 applies, and shows that
the components V (P1), . . . , V (Pn) of V (I ) all have dimension exactly d − e. □

Proposition 2.10. Let P and Q be periodic prime ideals of Rσ . Then every irre-
ducible component of V (P)∩ V (Q) has dimension ≥ dim(P)+ dim(Q)− dim(0);
it is determined by a periodic prime ideal of Rσ intersecting R in minimal prime
ideals over (P ∩ R)+ (Q ∩ R).

Proof. This can be deduced from Lemma 2.9 by reduction to an intersection with
the diagonal 1 (identifying V (P)∩ V (Q) with P × Q ∩1). □
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The general case. The results in the cumulative case extend easily to the general
case, in most cases simply replacing equality of ideals by the equivalence relation∼.
The fact that we consider also coordinate rings of semibasic types makes things a
little more complicated, but Lemma 2.2 is of use. Also, Proposition 2.1 allows us
to juggle between periodic and virtual ideals. Recall our assumptions:

(R, Rσ ) is a tensor product of coordinate rings of semibasic types, and
all associated basic types have virtual dimension e.

Lemma 2.11. Let I be an ideal of R, of dimension d. Then, up to ∼, there are
only finitely many virtual prime ideals of Rσ which contain I and are of virtual
dimension d.

Proof. We may assume that Rσ satisfies (ALG1). Then a prime ideal of Rσ which
contains I and is of virtual dimension d must extend a prime ideal P of R of
dimension d containing I . As R is Noetherian, there are only finitely many such
prime ideals, and we may therefore assume that I = P is prime, and extends to a
virtual prime ideal of Rσ .

Let us first assume that the semibasic types involved in Rσ are all basic. Then
Proposition 3.10 of [7], together with Proposition 2.1, gives us the result.

Let us now do the general case. We consider the rings Ri introduced in Section 1.4.
Recall that R1

⊆ R2
⊆ R3

⊇ R. As R3
σ is integral algebraic over Rσ , and satisfies

(ALG1), Lemma 2.2 tells us that any virtual prime ideal of Rσ extends to a virtual
prime ideal of R3

σ . On the other hand, there are only finitely many prime ideals of
R3 which extend P , so we may assume that R = R3, Rσ = R3

σ .
The first case gives us that P ∩ R1 extends to finitely many prime virtual ideals

of R1
σ , up to ∼, and by Proposition 2.1, we may assume they are periodic. As R2

and R2
σ are localizations of R1 and R1

σ , respectively, a periodic prime ideal of R1
σ

extends to at most one (periodic) prime ideal of R2
σ . Say Q is a prime σ ℓ-ideal

of R2
σ ℓ

which extends P ∩ R2. Then there are only finitely many prime ideals of
R2
σ ℓ
[R3
] which extend Q, and by Lemma 3.9 of [7], to each of these corresponds

at most one (up to ∼) virtual ideal of R3
σ . Hence, up to ∼, there are only finitely

many virtual ideals of R3
σ extending P . □

Corollary 2.12. Let I be an ideal of Rσ of virtual dimension d. Then, up to ∼,
there are only finitely many virtual prime ideals of Rσ of virtual dimension d and
which contain I ∩ Rσm for some m > 0.

Proof. Such an ideal contains in particular I ∩ R. The result follows from
Lemma 2.11. □

Corollary 2.13. Let I be an ideal of Rσ of virtual dimension d. Then there are
periodic prime ideals P1, . . . , Ps of Rσ of virtual dimension d , and a finite subset
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F of I , such that if P is a periodic prime ideal which contains F and is of virtual
dimension d, then V (P)= V (Pi ) for some i .

Proof. By Lemma 2.11, if F is a finite subset of Rσ which generates an ideal of
dimension d and per(F) denotes the set of prime periodic ideals of Rσ containing
F and of dimension d, then per(F)/∼ is finite. Take a sufficiently large finite F
such that per(F)/∼= per(I )/∼. □

2.14. Warning. This set F is not necessarily contained in R, nor in
⋂

m Rσm , unless
Rσ is cumulative.

We will need a version of Lemma 2.8 without the purity assumption. We claim
a weaker conclusion, namely that V (I ) is contained in some V (Pi ) of maximal
dimension.

Lemma 2.15. Let I be a virtual ideal of Rσ of virtual dimension d. Then there are
m ≥ 1 and a prime σm-ideal of Rσm of dimension d which contains I ∩ Rσm .

Proof. We may assume that I = σ(I ), and that Rσ satisfies (ALG1). Let F ⊂ I
be given by Corollary 2.13. Let X be the set of prime ideals of Rσ of dimension
d containing I , and for n ∈ N, let R(n) be the subring of Rσ generated by σ i (R),
−n ≤ i ≤ n, and Xn be the set of prime ideals of R(n) containing I ∩ R(n) and of
dimension d . Each Xn is finite, nonempty, and we have natural maps X→

∏
n∈N Xn

and Xn+1→ Xn . The automorphism σ acts continuously on the compact set X ,
and therefore has a recurrent point Q. Let n be such that R(n) contains F . Then
for some m > 0, we have Q ∩ R(n)= σm(Q)∩ R(n). By Remarks 1.3(2), there is
a prime σm-ideal Q′ of R(n)σm which extends Q ∩ R(n)[σ−m(R(n))]. Applying
Proposition 2.1 to R(n)σm , we obtain a prime σ ℓ-ideal Q′′ of Rσ which extends Q′;
then Q′′ contains F and has dimension d . □

Lemma 2.16 (correct version of Lemma 3.7 in [7]). Let R be a domain which
is integrally closed, k a subfield of R, and k1 an algebraic extension of k. Let
S = k1⊗k R. Let Q be a prime ideal of S.

(1) There is a unique prime ideal of S which intersect R in (0) and is contained
in Q.

(2) If P ′ is a prime ideal of S which intersects R in (0) and if k1 is separably
algebraic over k, then S/P ′ is integrally closed.

Proof. For both (1) and (2), we may assume that S is finitely generated over R,
i.e., that k1 is a finite extension of k. Furthermore, observe that if b ∈ S, then bpn

belongs to the subring (k1 ∩ ks)⊗k R of S for some n, and that a prime ideal P of
S contains b if and only if its intersection with (k1∩ ks)⊗k R contains bpn

, i.e., the
restriction map Spec(S)→ Spec((k1 ∩ ks)⊗k R) is a bijection. We may therefore
assume that k1 is separably algebraic over k of the form k[a] for some a ∈ k1.
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Let f (T ) be the minimal monic polynomial of a over k and consider its factor-
ization

∏m
i=1 gi (T ) over Frac(R) into monic irreducible polynomials. Because R is

integrally closed, all gi (T ) are in R[T ] (see, e.g., Theorem 4, Chapter V, §3 in [14]).
Moreover, since f is separable, their coefficients are actually in the subfield R ∩ ks

of R, and if i ̸= j , then (gi (T ), g j (T )) = (1). Thus any prime ideal of S, and in
particular Q, contains one and only one of the elements gi (a), and the ideal of
S generated by gi (a) is prime. (For this last assertion, use the fact that gi (T ) is
irreducible over Frac(R), and that S ≃ R[T ]/ f (T )). This shows (1).

For (2), viewing R as the coordinate ring of an affine variety V over k, we know
that V is normal. A minimal prime ideal of S corresponds therefore to an irreducible
component of the (nonirreducible) variety Vk1 , and as the property of normality is
a local property, each component of Vk1 is normal, i.e., with P ′ as above, S/P ′ is
integrally closed. Here we are using the fact that k1/k is separable, so that the map
Spec(k1)→ Spec(k) is étale and if k1/k is finite, then S is a product of domains.

The fact that R is not necessarily finitely generated over K is not important: it is
a union of finitely generated K-algebras which are integrally closed. □

Proposition 2.17. Let (R, Rσ ) be a pair of coordinate rings associated to semibasic
types satisfying (ALG1). Then (R, Rσ ) satisfies the following: if Q is a prime ideal
of Rσ and if P is a prime ideal of R which is contained in Q ∩ R, then there are
only finitely many prime ideals of Rσ which extend P and are contained in Q.

Proof. Let Q ⊂ Rσ = S be a prime ideal, and let P be a prime ideal of R such
that P ⊆ Q∩ R. Let us first assume that R/P is integrally closed. Let (x1, . . . , xn)

be the coordinates corresponding to R, i.e., R = K {x1} ⊗K · · · ⊗K K {xn} and
K {xi } = k0(xi )⊗k0 K . Then

S =
(
· · · ((R⊗K {x1} K {x1}σ )⊗K {x2} K {x2}σ ) · · · ⊗K {xn} K {xn}σ

)
.

We know that each K {xi }σ is integral algebraic over K {xi } (by (ALG1)). However,
it may not be separably integral algebraic. So, we consider instead the ring

S′ =
(
· · · (R⊗K {x1} (K {x1}σ ∩ K {x1}

s))⊗K {x2} · · · ⊗K {xn} (K {xn}σ ∩ K {xn}
s)

)
.

If b ∈ S, some pm-th power of b lies in S′, so that any prime ideal of S′ extends
uniquely to a prime ideal of S. It therefore suffices to prove the result for S′.

Applying Lemma 2.16 to k = K {x1} and S1 = R⊗K {x1} (K {x1}σ ∩ K {x1}
s), we

obtain that there is a unique prime ideal P1 of S1 which extends P and is contained
in Q ∩ S1. Furthermore, S1/P1 is integrally closed. Iterate the reasoning to obtain
that there is a unique prime ideal Pn of S′ which extends P and is contained in Q
(and furthermore, S′/Pn is integrally closed).
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In the general case, let A be the integral closure of R/P . Because R/P is a
localization of a finitely generated K-algebra, it follows that A is a finite R/P-
module (see Theorem 9, Chapter V, §4 of [14]; observe also that a localization of an
integrally closed domain is integrally closed), and is integral algebraic over R/P .
So the map Spec(A)→Spec(R/P) is finite, with fibers of size at most g for some g.
Hence, the prime ideal Q/P S of S/P S has exactly s extensions Q1, . . . , Qs to
S̃ = (S/P S) ⊗R/P A, for some s with 1 ≤ s ≤ g. Let P ′ be a prime ideal of
S extending P and contained in Q; then P ′ contains P S, and therefore P ′/P S
extends to a prime ideal Q′ of S̃. This Q′ must be contained in one of the Qi . By
the first case, this determines Q′ uniquely, and therefore also P ′. Hence P has at
most s extensions to prime ideals of Rσ which are contained in Q. □

Lemma 2.18. Let I be a virtual perfect ideal of Rσ , with I ∩ R pure of dimension d.
Then there are periodic prime ideals P1, . . . , Ps of virtual dimension d such that
V (I )= V (P1)∪ · · · ∪ V (Ps).

Proof. We already know, by Lemma 2.11, that V (I ) has only finitely many irre-
ducible components of dimension d. It therefore suffices to show that every point
of V (I ) is in one of these components. Let a ∈ V (I ), and m ≥ 1 such that Rσ
satisfies (ALGm), I ∩ Rσm is a perfect σm-ideal and Q = (x − a)σm ⊇ I ∩ Rσm .
We work in Rσm , so without loss of generality, m = 1. For n ∈N, let R(n) be the
subring of Rσ generated by the rings σ i (R), −n ≤ i ≤ n. Then for each n ∈N, the
ideal I ∩ R(n) is pure of dimension d, and therefore, the set Xn of prime ideals
P of R(n) of dimension d containing I ∩ R(n) and contained in Q is finite and
nonempty. Moreover, if P ∈ Xn+1, then P ∩ R(n) ∈ Xn . Hence, the compact
subset X = lim

←−−
Xn of Spec(Rσ ) is nonempty. It is the set of prime ideals of Rσ

of dimension d, containing I and contained in Q. If P ∈ X , then P ∩ R belongs
to the finite set X0; hence, by Lemma 2.16, X is finite. On the other hand, X is
stable under the (continuous) action of σ , because I and Q are σ -ideals. Hence,
for some ℓ, σ ℓ is the identity on X , i.e., all ideals in X are prime σ ℓ-ideals. □

Proposition 2.19 (Proposition 2.6 in [7]). Let (R, Rσ ) ∈R be a pair of coordinate
rings, and let P1, P2 be two virtual prime ideals of Rσ . Then V (P1)∩V (P2)= V (I )
for some virtual perfect ideal I . The irreducible components of V (P1) ∩ V (P2)

correspond to virtual prime ideals Qi with Qi ∩ R minimal prime containing
P1 ∩ R+ P2 ∩ R.

Proof. We may assume that Rσ satisfies (ALG1), and that P1 and P2 are prime
σ -ideals. (In fact, at every stage of the proof, we allow ourselves to replace Rσ
by Rσm so that our ideals remain σ -ideals, and without explicitly saying so). For
the first assertion, it suffices to show that V (P1)∩ V (P2) has only finitely many
irreducible components: if these are of the form V (Qi ), i = 1, . . . , s, for Qi a
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prime σm-ideal of Rσm , then one takes I =
⋂s

i=1 Qi , a perfect σm-ideal of Rσm

(which contains P1 ∩ Rσm + P2 ∩ Rσm ).
If V (P1) ∩ V (P2) = ∅ then there is nothing to prove, so we assume it is

nonempty. The elements of V (P1)∩V (P2) are in correspondence with the elements
of (V (P1) × V (P2)) ∩ 1, where the corresponding pair of coordinate rings is
(Rσ ⊗K Rσ , R ⊗K R), and 1 denotes the diagonal of the underlying ambient
set V (0)× V (0). The same observation holds at the level of the Zariski closures.
We therefore replace P1 by the ideal P of Rσ ⊗K Rσ generated by P1⊗1+1⊗ P2,
and P2 by the ideal corresponding to 1, i.e., the ideal I (1) of Rσ ⊗K Rσ generated
by all a ⊗ 1− 1⊗ a, for a ∈ Rσ . Write Rσ as the tensor product over K of the
rings K {xi }σ , i = 1, . . . , n, with K {xi } associated to the semibasic type qi . Then
1=

⋂
1i , where 1i ⊂ V (0)× V (0) is defined by xi = x ′i inside

Sσ = (K {x1}σ ⊗K · · · ⊗K K {xn}σ )⊗K (K {x ′1}σ ⊗K · · · ⊗K K {x ′n}σ ).

It then suffices to show the result for P + I (11), then for each P ′+ I (12) where
P ′ is a prime periodic ideal minimal containing P + I (11), etc.

Let us first assume that qi is basic and that P does not contain I (1i ). The proof
is very similar to the proof of Lemma 2.9, with small changes. Let S = R⊗K R,
Sσ = Rσ ⊗K Rσ , and S(n) ⊂ Sσ the subring generated by σ i (S), −n ≤ i ≤ n,
for n ∈ N. Reasoning as in the proof of Lemma 2.9, all minimal prime ideals
over P + I (1i ) have dimension ≥ dim(P)− e. By Lemma 2.15, P + I (1i ) is
contained in a prime periodic ideal P ′ of dimension dim(P+I (1i )). By Remark 2.3,
dim(P+ I (1i )) must be a multiple of e, and this implies it must equal dim(P)−e.
Hence all irreducible components of V (P + I (1i )) have dimension dim(P)− e.

Note that the minimal virtual prime ideals containing P+ I (1i ) do indeed extend
minimal prime ideals over P ∩ S+ I (1i )∩ S, since they have the same dimension.

We now do the general case. As R3
σ is integral algebraic over Rσ , we may

assume that Rqi = R3
qi

, Rqi ,σ = R3
qi ,σ

, by Lemma 2.2. Write the variables of qi

as (y, y1, . . . , yr ). Then I (1i ) is the intersection of the r σ -ideals

(y1− y′1)σ , (y2− y′2)σ , . . . , (yr − y′r , y− y′)σ .

The first r − 1 of these ideals have dimension tr.degK (S)− e in Sσ ; for the last
one, work inside Sσ/(y1 − y′1, y2 − y′2, . . . , yr−1 − y′r−1)σ . Then the minimal
prime σ -ideals over I (1i )/(y1 − y′1, y2 − y′2, . . . , yr−1 − y′r−1)σ all have dimen-
sion tr.degK (Rσ ). Apply the first case to these ideals to conclude. □

Corollary 2.20 (the dimension theorem [7, (4.16)]). Let P1 and P2 be virtual prime
ideals of Rσ , and let n be the evSU-rank of V (0) (i.e., there are exactly n basic
types which are associated to Rσ ). Then all nonempty irreducible components of
V (P1)∩ V (P2) have evSU-rank ≥ (dim(P1)+ dim(P2))/e− n.



REVISITING VIRTUAL DIFFERENCE IDEALS 301

3. Going through Sections 2, 3 and 4 of [7]

We describe which of the results of these three sections remain true without changes,
which ones are false or unnecessary, and which ones need to be repaired. Note that
while our coordinate rings are not “friendly” (because they do not satisfy (∗1)), the
assumption we make on the semibasic types considered are usually slightly stronger
than those made in the paper. Unless preceded by “the present”, references are to
results in [7].

Section 2. We gave up on the idea of finding a general setting (a modified version
of friendliness satisfied by our coordinate rings) in which one would be able to
prove the dichotomy theorem, and so in all the results, the hypotheses of friendliness
should be replaced by our hypotheses on semibasic types: the associated basic types
all have dimension e.

Notation and definitions are given in more details in (2.1) and (2.2), as well as
some examples. Proposition 2.4 states the basic results on the duality between sets
V (I ) and virtual ideals.

Proposition 2.6 is the present Proposition 2.19. The proof of Proposition 2.8
goes through verbatim.

Section 3. Paragraphs (3.1) to (3.6) are definitions and notation.
Lemma 3.7 is false. The correct version is given by the present Lemma 2.16(1),

but it is not enough to prove (∗1) for our coordinate rings. Thus Proposition 3.8 is
false as well.

However, the proofs of Lemma 3.9 and Proposition 3.10 go through without
change (except for a typo on line 4 of the proof of 3.10: it should be the inverse
image of Q ∩ K [x1, . . . , xr ]σ ).

Theorem 3.11 is implied by the present Corollary 2.12.
Proposition 3.12 goes through verbatim (note that the claim is the present

Remark 2.3). Note also that once more, Proposition 2.6 (the present Proposition 2.19)
is instrumental.

Section 4. Paragraph (4.1) consists of definitions and notation.
Proposition 4.2 remains true, but the proof needs to be slightly modified (as it

appeals to the false Lemma 3.7) towards the end. The modification is as follows:
we are in the situation of Rσ satisfying (ALG1), have chosen a1, . . . , an, a ∈ V (P)
such that the field of definition of the ideal P ∩ R is contained in k0(a1, . . . , an),
and a is generic over k0(a1, . . . , an). By (ALG1) and the way our coordinate
rings are defined, we know that the ideal I of Rσ generated by P ∩ R is pure of
dimension dim(P). As V (I ) has finitely many irreducible components and by
genericity of a, a is in only one irreducible component of V (I ), and that component
must be V (P). Hence, for any ℓ, P ∩ Rσ ℓ is defined over clσ ℓ(k0, a, a1, . . . , an).
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Corollary 4.2 and Propositions 4.3, 4.4 and 4.5 go through without change, except
in the proof of 4.3, (∗1) should be replaced by the present Proposition 2.17.

In (4.6), we slightly strengthen the requirements and only consider 0-closed sets
defined by virtual perfect ideals. This is to ensure that they have only finitely many
irreducible components.

Proposition 4.7 remains true, with a slight change at the end of the proof, similar
to the one given for 4.3.

Proposition 4.9 and Lemma 4.10 go through without change. Note the following
consequences of Lemma 4.10 of [7], which while not needed for the main theorems,
are quite useful in applications. We assume the hypotheses of 4.10.

Corollaries (of Lemma 4.10 of [7]). (1) Let d1 and d2 be tuples of realizations
of basic types among {p1, . . . , pn}. Then acl(d1)∩ acl(d2) = acl(e), where e
consists of realizations of types in {p1, . . . , pn}.

(2) Let b realize a tuple of semibasic types, and a ∈ acl(b) be such that qftp(a/k0)

satisfies (ALGm) for some m. Then qftp(a/k0) is semibasic.

Proof. Choosing c in 4.10 to be the empty sequence, (1) follows from the conclusion.

(2) Indeed, without loss of generality b consists of realizations of basic types; take
b′ realizing qftp(b/a) and independent from b over a. Then a = acl(b)∩ acl(b′)
and we may apply (1). □

Let us now discuss Theorem 4.11. The set Y needs to be modified in the following
manner:

• Condition (i) stays the same: for any semibasic type q, Xq(K ) ⊂ Y(K ) or
Xq(K )∩Y(K )=∅;

• Condition (ii) becomes: if b ∈ Y(K )n for some n, and a ∈ acl(k0b) is such
that q = qftp(a/k0) satisfies (ALGm) for some m, then Xq(K )⊂ Y(K ).

(The set Y was in fact incorrectly defined in [7], and the current definition is the
one which was used in the proof.) In the cumulative case, we furthermore impose
that all our semibasic types are cumulative.

Once this change is done, the proof goes through, although one needs to pay
attention to a clash of notation: the tuple d which appears on line 13 of page 283 has
nothing to do with the one discussed earlier in the proof; it consists of realizations
of basic types, and is independent from c over k0.

Proposition 4.12 of [7] goes through verbatim, as well as Remark 4.14, Proposi-
tion 4.15 and the verification of the axioms for Zariski geometries given in (4.16),
for the set Yb(K )=

⋃
p basic of dimension e Xp(K ). Note that the present Corollary 2.20

gives us Corollary 4.16 of [7] for semibasic types.
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4. Using the Zariski geometry to get the trichotomy

The first paragraphs of Chapter 5 of [7] introduce Robinson theories and universal
domains. The real work starts with Lemma 5.10 of [7], which out of a group
configuration produces a quantifier-free definable subgroup of an algebraic group,
in some reduct �[m]. Note that in the cumulative case, the subgroup G1 can be
chosen so that its generic type is cumulative, by Proposition 1.15 of [5]. Then all
results of [7] up to Proposition 5.14 go through without change.

Paragraph (5.15) is the statement of the trichotomy theorem:

Theorem 5.15. Let p be a basic type, and assume that Xp(K ) is not modular. Then
Xp(K ) interprets an algebraically closed field of rank 1.

The proof given in [7] goes through, as it is just an adaptation of the proof of
[11] to our particular case.

We now come to the main result of the paper, given at the beginning of Section 6:

Theorem. Let K |H ACFA, let E = aclσ (E) ⊆ K , and let p be a type over E
with SU(p) = 1. Then p is not modular if and only if p is nonorthogonal to the
formula σm(x)= x pn

for some relatively prime m, n ∈ Z with m ̸= 0.

Proof. The proof goes through verbatim, to show that for some m > 0 (passing
maybe to a larger E), if a realizes p, then there is some a′ ∈ aclσ (Ea) such
that evSU(a′/E)= SU(a′/E)[m] = 1, and qftp(a′/E)[m] is nonorthogonal to the
formula (σm)r (x)= Frobn(x) for some integers r ̸= 0 and n, with (n, r)= 1 (and
in fact, r = 1). The proof is now routine, using Lemma 1.12 of [2]: let b, c be tuples
such that, in �[m], c is independent from aclσ (Ea)= aclσ (Ea′) over E , b satisfies
(σm)r (x)= Frobn(x) and belongs to E0 = aclσm (Ea′c). The proof of Lemma 1.12
of [2] then gives us an aclσ (Ea)-σm-embedding ϕ of F0 = aclσ (Ea)E0 into �[m],
such that the fields σ iϕ(F0), i = 0, . . . ,m− 1, are linearly disjoint over aclσ (Ea).
It then follows that ϕ(c) is independent from a over E (in �), and therefore p is
nonorthogonal to σmr (x)= Frobn(x). □

The proofs of the results of Section 7 are also unchanged.
We have proved one part of the trichotomy, namely the dichotomy between

modularity and a field structure. The second leg is proved in all characteristics
in (5.12) of [2]: if p is modular but has nontrivial algebraic closure geometry, then
p is nonorthogonal to an SU-rank one definable subgroup of an algebraic group,
indeed of the additive or multiplicative group, or a simple abelian variety.

Additional information concerning the nonorthogonality is available in [3; 4]. The
internal structure of modular subgroups of semiabelian varieties is fully understood;
see [6]. In the additive case, a bilinear map is definable in some cases; describing
the full induced structure remains open.
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Boris Zilber and the model-theoretic sublime

Juliette Kennedy

We examine some of Zilber’s early theorems through the lens of the “model-
theoretic sublime”.

1. Introduction

A recent email exchange between myself and Boris Zilber, stimulated by a lecture he
gave in Helsinki a few years prior, began by discussing his various moves to gener-
alize the syntax/semantics distinction.1 Boris’s repurposing of the syntax/semantics
distinction — a distinction taken more or less for granted in foundational practice —
has always been interesting; but in our exchange Boris also broke out philosophi-
cally:

BZ: These are, I guess, two ways of how we perceive the world: the intellectual,
words-based way, and the intuitive, sensory way. In mathematics, the first way
requires you to write down a full proof of the fact (the ultimate explanation).
The second, semantical way, is to see a picture, mental or graphical, that talks
to your experience of the world. It is also what is responsible [for the] division
of mathematics into Algebra and Geometry. Michael Atiyah (in his millennium
lecture?) says that Geometry-Algebra is like Space-Time pairing: In geometry
you see the whole at once, no time needed. In algebra you need time to read it
letter-by-letter, but not space.

The words-based way and the semantical way, to wit: the mathematician is
tethered to the sign, to formal correctness and to the “letter-by-letter” of proof;
while on the other hand there is insight and experience, meaning and seeing the
whole picture. Two poles pulling away from each other, and the mathematician
caught somewhere in between.

I would like to thank the Academy of Finland for their support, grant no. 322488. This project has also
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement no. 101020762). I am also grateful to
Jonathan Kirby and to two anonymous referees for their helpful comments.
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Keywords: sublime, Kant, trichotomy, surveyability, Zilber, Pallasmaa.

1The email exchange took place in May of 2023.
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In this note I would like to think about the way Boris pulls the curtain back
on this binary practice of the mathematician, in his rich remark to me, so full of
philosophical moves. One is struck by the phrase “seeing the whole at once, no time
needed” — a move toward the sublime, I suggest, an aesthetic category important
in 18th century British philosophy and of renewed interest today in the form of, for
example, the environmental sublime.2

Thinking through Boris’s beautiful remark in the context of the sublime helps
us to place his remark, and beyond that his mathematical work, philosophically.
Generally speaking, the philosophical content of a foundational attitude often has
to do with its (so-called) existential or metaphysical commitments — or its lack
thereof: how entangled with set theory it is, its putative second-order content, the
theory’s constructive content, and so on. I would like to think about Boris’s work,
though, by drawing on ideas coming from somewhat outside the foundations of
mathematics culture. One is, of course, not against foundations of mathematics; for,
to paraphrase Emily Apter [2013, p. 2], if one is against foundations, as a logician,
what could one possibly be for? It is just that the interest here is in developing
novel interpretive strategies.

2. The sublime

Boris’s phrase “seeing the whole at once, no time needed” reminded me of the
remark of the 18th century aesthetic theorist Alexander Gerard, that sublimity is
the state in which “the mind . . . imagines itself present in every part of the scene it
contemplates” [Gerard 1759, p. 14].3

More commonly4 the sublime is thought of in the terms Kant laid out for it,
namely in terms of a physical immensity, usually in nature — think of standing
at the precipice of an enormous crevasse — that pitches the subject into a kind of
vertigo; “doing violence to the imagination”, as Kant put it; leaving the subject’s
cognitive apparatus undone. As Emily Brady writes, on the Kantian sublime:

The sources of the sublime response are linked to the physical properties
of magnitude or power in nature but importantly also to the failure of
imagination, without which it could not occur. Imagination’s activity in
the sublime, in contrast to the beautiful, is “serious”, where some object
is “contrapurposive for our power of judgment, unsuitable for our faculty

2See, e.g., [Brady 2013]. Kant discusses the sublime mainly in the so-called third critique, the
Critique of the power of judgment [Kant 2000, Sections 25–28].

3Gerard continues: “. . . and from the sense of this immensity, feels a noble pride, and entertains a
lofty conception of its own capacity.”

4More commonly in the philosophical aesthetics literature at least. As a referee has helpfully
pointed out, the everyday meaning of the term “sublime”, evoking properties such as “calmness” or
“beauty”, differs markedly from its meaning in philosophy.
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of presentation, and as it were doing violence to our imagination, but is
nevertheless judged all the more sublime for that.”5

This “astonishment bordering on terror”, as Kant rather hyperbolically called it,
involves anxiety, then, bordering on fear, but also, somehow, pleasure: the pleasure
of being in the vicinity of danger, while at the same time being out of it; the pleasure
of being in awe of something. Negative pleasure was Kant’s term for this, while
positive pleasure is pleasure in the beautiful, which “brings with it a promotion
of life” [Kant 2000, p. 128].6 Interestingly enough, because pleasure is involved,
sublimity is theorized by philosophers an aesthetic category. The sublime response,
in other words, is an aesthetic response.

Kant distinguishes the dynamic sublime, in which the subject is undone, so to
speak, by a natural scene, from the mathematical sublime, in which the subject
experiences a failure of the imagination, not in the face of a natural immensity but
in the face of an infinite number sequence. In the encounter with the mathematical
sublime the subject is thrown into confusion once again, for not having a grip on
the contours of the thing at hand; but also being inexorably compelled. One might
call this mixture of attraction and unease the mathematician’s negative pleasure.

Kant’s observation was that although the senses fail to deliver a conceptual unity
on their own, the sequence can nevertheless “be completely comprehended under
one concept”, and this is due to a faculty of “suprasensible” reason:

And what is most important is that to be able only to think it [the infi-
nite: JK] as a whole indicates a faculty of mind which surpasses every
standard of sense . . . . Nevertheless, the bare capability of thinking this
infinite without contradiction requires in the human mind a faculty itself
suprasensible.7

In other words, Kant gives us what the (classical) mathematician would say is the
correct outcome. Reason meets the imagination at its point of collapse, delivering
the infinite object as a conceptual unity — just as reason delivers a phenomenal
unity in the case of overwhelming natural phenomena. The important point here is
that this faculty of reason is suprasensible, so going beyond (sense) experience.

Sublimity, then, is not an experience of defeat, or not wholly; one is able to move
out of it with the help of the mind’s ability to synthesize the atomized scene, to
structure chaos as nonchaos8 — by means of a conception.

5See [Brady 2013, p. 57]. The interior quote is from Kant’s Critique of the power of judgment
[Kant 2000, p. 129].

6See also [Brady 2013, p. 57].
7[Kant 2000, Section 26, p. 94]. See also [Ginsborg 2005].
8The expression is due to the artist Eva Hesse [Bourdon 1970].
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As an aside, the sublime has a moral dimension, putting us in touch, as Brady
[Brady 2013, p. 59] writes, with our moral capacities. The sublime tutors us in
“[loving] something, even nature, without interest . . . even contrary to our (sensible)
interest” [Kant 2000, p. 151]. Witnessing the failure of the imagination, the failure
of her imagination to comprehend the scene, the subject remains “undemeaned”,
as Kant put it, even so, and even has a feeling of superiority over nature, or in
our case, the mathematical field, while at the same time “the human being must
submit to that dominion” [Kant 2000, pp. 261–262]. A century later Leo Marx
would coin the term “the technological sublime” to describe the conflict arising
from holding the romantic (sublime) conception of the American landscape of the
late 19th century, seeing that terrain as a kind of virginal paradise, while employing
the rhetoric of industrial progress [Marx 1964, p. 7]. And just a few years after that
Hilbert would lace his oft-cited 1930 “ignorabimus” address with the language of
human supremacy, expressed in terms of the technological optimism typical of the
period.

Sublimity, in other words, is always connected to power. In the wake of the
various emergencies, climatic and otherwise, besetting human beings in the 21st
century, it is not surprising that there is a renewed philosophical interest in the
sublime!

Later, post-Kantian and post-Gerardian passes at the sublime by writers such
as F. R. Ankersmit would untether sublimity from awe and the idealization of
nature that was characteristic of the earlier theories, so that the sublime could now
be deployed in other domains, such as history, or psychoanalysis.9 Ankersmit in
particular took a melancholic view of sublimity, emphasizing the static quality of

9From [Ankersmit 2005, p. 335]:

The traumatic experience is too terrible to be admitted to consciousness: The experience
exceeds, so to speak, our capacities to make sense of experience. Whereas normally the
powers of association enable us to integrate experience into the story of our lives, the
traumatic experience remains dissociated from our life’s narrative since these powers
of association are helpless and characteristically insufficient in the case of trauma. And
there is one more resemblance between trauma and the sublime that is of relevance in
the present context. Characteristic of trauma is the incapacity to actually suffer from the
traumatic experience itself . . . . The subject of a traumatic experience is peculiarly numbed
by it; he is, so to speak, put at a distance from what caused it. The traumatic experience is
dissociated from one’s “normal” experience of the world . . . . Now, much the same can be
observed for the sublime. When Burke speaks about this “tranquility tinged with terror,”
this tranquility is possible (as Burke emphasizes) thanks to our awareness that we are not
really in danger. Hence, we have distanced ourselves from a situation of real danger —
and in this way, we have dissociated ourselves from the object of experience. The sublime
thus provokes a movement of derealization by which reality is robbed of its threatening
potentialities. As such Burke’s description of the sublime is less the pleasant thrill that is
often associated, with it than a preemptive strike against the terrible.
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the sublime response, the idea that the subject is locked into a back-and-forth cycle
of attraction and repulsion. Sublimity, in other words, is a site of conflict:

Now, aesthetics provides us with the category of the sublime for conceptu-
alizing such a conflict of schemes without reconciliation or transcendence.
Thus the Kantian sublime is not a transcendence of reason and under-
standing and the entry to a new and higher order reality, but can only be
defined in terms of the inadequacy of both reason and understanding . . . .
Similarly, it is only by way of the positive numbers that we can get access
to the realm of negative numbers; and gaining this access does not in the
least imply the abolition or transcendence of the realm of the positive
numbers, but a continuous awareness of their existence as well.10

Kant’s account of the role of intuition and reason in delivering conceptual
coherence within sublimity is embedded in a complex theory of the mind, one
drawing on specific conceptualizations of the faculties of imagination and reason.
Kant’s theory of the mathematical sublime is about our mathematical capacities
überhaupt, and as such it slots easily into the contemporary conversation in the
foundations of mathematics, the debates about the nature of finitary intuition, or
what constitutes a genuinely constructive proof.

What rather holds my interest in thinking through Boris’s beautiful remark though,
are not the foundational issues per se, but the way his remark reveals that logic too
is a site of conflict: a conflict that gets read into the syntax/semantics distinction, a
conflict that renders logic so alive philosophically. It is astonishing that logic can
even take the exact mathematical measure of that conflict, that is to say drawing
out deep theorems from it, limitative results such as the incompleteness theorems
due to Gödel, or the undefinability of truth due to Tarski.

In Ankersmit’s writings the mathematical sublime is domesticated, as it were, so
that mathematical sublimity now signifies anything in the way of a mathematical
unknown:

Think of the equation f (x) =
1
3 x3

+
1
2 x2

− 12x . Differential calculus
shows that this function will have a local maximum for x = −4 and a
local minimum for x = 3. In this way differential calculus can be said
to perform what, analogously, could not possibly be performed for the
relationship between narrative and experience. So one might say that
historical writing is in much the same situation as mathematics was before
the discovery of differential calculus by Newton and Leibniz. Before this
discovery there was something “sublime” about the question of where
the equation f (x) =

1
3 x3

+
1
2 x2

−12x would attain its local optimum and
minimum: One could only hit on it experimentally (that is, by simply

10[Ankersmit 2002, p. 207].
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trying out different values for x), but no adequate explanation could be
given for this. It has been Newton’s and Leibniz’s feat of genius to reduce
what was “sublime” to what could be figured out, or to reduce what was
incommensurable to what could be made commensurable thanks to the
magic of differential calculus.11

Ankersmit is thinking about sublime historical experience in this passage, but we
can draw the moral from it that Kant’s notion of the mathematical sublime (which
applied only to extended objects) was too narrow. It is not just that the imagination
cannot take in infinite totalities; the mathematical field is full of concepts and ideas
that cause the mathematician to lose his footing. There is the concept of a model
class, for example — or how to get a foothold there? In logic one has the space of
all first-order theories — how to find a way through that morass? Set theory also,
with its large cardinal hierarchy, is threaded with sublimity through and through.

3. Categoricity and classification

Let us now turn to Boris’s work, in particular its synthetic aspect within what one
might call the model-theoretic sublime. Let us take “synthesis” to refer to an act
of (mathematical) reason that structures some heretofore unstructured part of the
mathematical field — unstructured in the sense of being untheorized, or unclassified,
or simply formless.

The suggestion here is that both categoricity and classification can be viewed
as devices imposing structure on the mathematical field, albeit in different ways:
categoricity, a notion occupying a central place in Boris’s mathematical work, by
collapsing the space of all possible models (of a fixed cardinality) of an uncountably
categorical theory to a single point (up to isomorphism);12 classifiability in virtue
of being an organizing principle, a kind of scaffolding structure for the space of
first-order theories.13

Categorical theories are “logically perfect”, in Boris’s terminology, where logical
perfection means the following: “. . . a mathematical object of a certain ‘size’ is
logically perfect if in a certain formal language it allows a ‘concise’ description
fully determining the object” [Cruz Morales et al. 2021, p. 2]. Precisely:

The amazing conclusion derived from the research is that among the huge
diversity of mathematical structures there are very few which satisfy the
(slightly narrower) definition of categoricity, and those can be classified.

11[Ankersmit 2005, p. 175]. Ankersmit’s reading of the historical details with regard to commen-
surability may be regarded by some as contentious.

12A theory T is said to be “categorical” if T has a unique model, up to isomorphism. T is said to
be “categorical in power” if for all cardinals κ , T has a unique model of size κ , up to isomorphism.

13For an example of classifiability, see the below discussion of the main gap theorem.
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These certainly seem to corresponding to an ideal of logical perfection,
in the following sense: categorical structures M determine a first-order
theory Th(M) (the set of all sentences that are true in M) and then comes
the reason why we call them “logically perfect”: all other structures
that satisfy the theory Th(M) and are of the same cardinality as M are
isomorphic to M . In other words, uncountably categorical structures are
inextricably linked to their logical description; the description T = Th(M)

completely determines the structure M .14

The search for categorical axiomatisations of canonical mathematical theories is a
philosophical project, fundamentally, albeit one pursued entirely within mathematics
(or, precisely, within mathematical logic). If our canonical mathematical theories
have a unique interpretation, referential indiscernibility is eliminated — which is
just simply to say that in mathematics, or at the very least in the case at hand, we
really do “mean what we say”. For that reason, perhaps, categoricity represents, for
Boris, the apotheosis of logical perfection. He has even conjectured, boldly, that
“Categoricity is bound to play the role that analyticity played for number theory,
but for physics” (see [Villaveces 2022]).

Andrés Villaveces writes eloquently about the epistemological aspect of cat-
egoricity, its evidentiary force, in a remark that seems, somehow, to gesture at
sublimity:

Al enfrentarnos a ciertas descripciones o afirmaciones nuestra reacción
natural de incredulidad puede ser vista como una de las raíces de la
búsqueda de atrapar, aprehender, mediante el lenguaje, la descripción
de un fenómeno, de un objeto matemático o de un evento. Al vernos
enfrentados a una afirmación (matemática o no), la primera reacción
natural en muchas circunstancias suele ser de incredulidad. Ante la
duda, intentamos buscar confirmación a como dé lugar. Dejando de lado
búsquedas de verificación por autoridad, podemos señalar dos grandes
tipos de confirmación: por verificación directa, por una buena descripción
de la teoría que sustenta la afirmación en cuestión.15

14[Cruz Morales et al. 2021, p. 6].
15[Villaveces 2022]. In translation:

When faced with certain descriptions or statements, our natural reaction of disbelief can
be seen as one of the roots of the search to capture, apprehend, through language, the
description of a phenomenon, of a mathematical object. or an event. When faced with a
statement (mathematical or not), the first natural reaction in many circumstances is usually
disbelief. When in doubt, we try to seek confirmation no matter wherefrom. Leaving
aside verification by authority, we can point out two main types of confirmation: by direct
verification, or by a good [i.e., categorical: JK] description of the theory that supports the
statement in question.
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Categorical theories are “logically perfect”, in Boris’s terminology, not only
because they provide a compact description of a seemingly intractable field of
concepts, but for enabling the possibility of regarding space as a coherent way of
pasting localized versions of itself — a perfection realized, for Boris and coauthors
in [Cruz Morales et al. 2021], by the notion of an affine scheme due to Grothendieck.

Synthesis emerges in model theory also through classification. Instead of a
heterogeneous collection of theories (so theories this time, instead of models),
and the mathematician having to creep from one theory to the next, to paraphrase
Gerard,16 Boris offered up the trichotomy conjecture,17 which turned out to hold of
the (very ample) Zariski structures:

Conjecture. If X is a strongly minimal set, then exactly one of the following is
true about X .

(1) X is trivial in the sense that algebraic closure (on a saturated model of the
theory of X ) defines a degenerate pregeometry (for any set A ⊆ X one has
acl(A) =

⋃
{acl({a}) | a ∈ A}).

(2) X is essentially a vector space. That is, possibly after adding some constant
symbols to the language of X , there is an infinite group space G bi-interpretable
with X for which every definable subset of any Cartesian power of G is a finite
Boolean combination of cosets of definable subgroups.

(3) X is bi-interpretable with an algebraically closed field.18

Classification theorems in mathematics, then, serve as a move toward synthesis:
resisting or dissolving sublimity, structuring the heretofore unstructured mathemati-
cal field as nonchaos, providing a scaffolding.

Together with Boris’s work on trichotomy one should mention Shelah’s main gap
theorem [Shelah 1990], which is another masterpiece in the genre of classification
theorems. The theorem states that the class of all first-order theories falls into two
categories: the tame or classifiable, and the nonclassifiable. The former have “few”
models and admit a dimension-like set of geometric invariants; the latter have the

16Gerard [1759] remarks:

Objects cannot possess that largeness, which is necessary for inspiring a sensation of the
sublime, without simplicity. Where this is wanting, the mind contemplates, not one large,
but many small objects: it is pained with the labour requisite to creep from one to another;
and is disgusted with the imperfection of the idea, with which, even after all this toil,
it must remain contented. But we take in, with ease, one entire conception of a simple
object, however large: in consequence of this facility, we naturally account it one . . . the
view of any single part suggests the whole, and enables fancy to extend and enlarge it to
infinity, that it may fill the capacity of the mind.

17See [Zilber 1984]. For Hrushovski’s counterexample, see [Hrushovski 1993]. For the trichotomy
theorem, see [Hrushovski and Zilber 1993].

18For a survey of recent work in the area see [Baldwin and Villaveces 2024] in this volume.
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maximum number of models possible, and are entangled with each other in a way
that makes it difficult to tell some of them apart.19 The main gap theorem almost
seems to be written in the language of the sublime!

4. Geometry as place

Returning to Boris’s philosophical remark, if “in geometry you see the whole at
once, no time needed”, one may ask, what is this “whole” that Boris sees at once,
no time needed? I would like to touch down here, albeit lightly, in the notion of
place. Perhaps what geometry allows one to see is a kind of place — not in any
literal sense but in the sense that the architectural theorist Juhani Pallasmaa means
in his writings about placeness: a site of experiential cohesion, one resonating “with
the inner qualities of placeness in our minds . . . a constitutive condition for anything
to exist in human consciousness” [Pallasmaa 2023]. Pallasmaa states:

The experience of placeness can . . . arise from countless characteristics and
features, but fundamentally it is a consequence of experiential cohesion,
spatial or formal singularity, communal agreement, or meaningfulness of
a distinct entity in the physical world . . . . Through constructions, both
material and mental, useful and poetic, practical and metaphysical, we
create places, existential footholds in the otherwise meaningless world.

The thought here is that through geometry and its suggestion of place, through
thinking of geometry as creating the conditions for the notion of place, the mathe-
matician is led toward the possibility of concretizing, structuring, contextualizing
and internalizing mathematical ideas. Note that we take places in at once, no time
needed. As Pallasmaa puts it, “We ‘understand’ qualities of places unconsciously
before we have had any chance for intellectual evaluation or understanding.”

If architecture, for Pallasmaa, is engaged with the lived meaning of space,
“[projecting] predictable order and meaning into human existence”, “[mediating]
between the threatening immensity of the world, the infinity and anonymity of
space, as well as the endlessness of time”, here geometry stands in for, in the sense
of functioning as, architecture, in grounding the mathematician in the mathematical
field, in enabling the possibility of lived mathematical experience.

19More precisely, Shelah’s main gap theorem divides all countable, complete first-order theories
into two categories: in the classifiable case, there is a bound on the number of models (up to
isomorphism), and they can be characterized by a tree of geometric invariants, like the dimension of a
vector space, while at the same time in the nonclassifiable case, there is a precise sense in which no
notion of dimension can be extracted, and the case is chaotic in the sense that the structures are hard
to tell apart.
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There is also the ontological question: is anything real in mathematics, that is
not related to geometry? “Nothing is that is not placed”, as Plato has reportedly
said.20

5. Conclusion

Amid the debates in philosophical aesthetics, such as whether aesthetic properties
reside in the subject or in the object, or whether aesthetic experience involves
cognition or not, the sublime persists as a central irritant. In the hands of contempo-
rary philosophers the sublime has been extended well beyond the categories Kant
envisaged, as we saw, so that we now have the romantic sublime, the technological
sublime, the environmental sublime that Emily Brady writes about so eloquently, the
historical sublime, the moral sublime, and so on. There is a substantial philosophical
literature, by now, on the sublime; let us add to it the category of the model-theoretic
sublime.

In this brief note I have strayed into philosophical territory; but in fact the corre-
spondence between Boris and I ended with Boris going to ground philosophically:

JK: In your own work though, how is it helpful to think of the syntax/semantics
distinction in the way you do?

BZ: . . . here is one of my talks on the topic, attached. It is what resulted from
my attempts to understand what “non-commutative geometry” is and how it
originated in Heisenberg’s physics. In more detail, you can download a couple
of papers from my web-page, like “The geometric semantics of algebraic
quantum mechanics”.

Boris’s mathematical work stages a beautiful encounter with the mathematical
sublime. It is essential that we recognize it as a logician’s encounter with the
mathematical sublime, that is to say, one occurring within logic. This is because the
display of power here originates exactly in the logician’s gift, unique to him among
all mathematicians, namely his sensitivity to language — utilizing and directing
that power, as Boris does, onto mathematics and physics.

In writing model theory in the language of geometry, a hallmark of Boris’s
mathematical practice, the conflicted aspect of sublimity, the idea of stasis and
being locked into a cycle, is set aside, and the conditions for a rapprochement
between the words-based way and the semantical way are laid out, because of
geometry. It is a road that opens out into freedom for the logician; it is a road
that delivers the logician into the mathematical arena. And while coming to grips
with Boris’s work involves a great deal of negative pleasure — because of the toil

20Jeff Malpas in his lecture at the Understanding and Designing Place Symposium at the Tampere
University on 3 April, 2017.
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involved but also being, as we are, in awe of what he has done — then if positive
pleasure is pleasure in the beautiful, simply and for itself, Boris’s work gives us
that too — straight to the heart.

References

[Ankersmit 2002] F. R. Ankersmit, Historical representation, Stanford Univ. Press, 2002.

[Ankersmit 2005] F. R. Ankersmit, Sublime historical experience, Stanford Univ. Press, 2005.

[Apter 2013] E. Apter, Against world literature: on the politics of untranslatability, Verso, Brooklyn,
NY, 2013.

[Baldwin and Villaveces 2024] J. T. Baldwin and A. Villaveces, “Zilber’s notion of logically perfect
structure: universal covers”, Model Theory 3:2 (2024), 647–683.

[Bourdon 1970] D. Bourdon, “Fling, dribble and drip”, Life 68:7 (1970), 62–67.

[Brady 2013] E. Brady, The sublime in modern philosophy: aesthetics, ethics, and nature, Cambridge
Univ. Press, 2013.

[Cruz Morales et al. 2021] J. A. Cruz Morales, A. Villaveces, and B. Zilber, “Around logical
perfection”, Theoria 87:4 (2021), 971–985. MR Zbl

[Gerard 1759] A. Gerard, An essay on taste, London, 1759.

[Ginsborg 2005] H. Ginsborg, “Kant’s aesthetics and teleology”, in The Stanford encyclopedia of
philosophy, edited by E. N. Zalta, 2005.

[Hrushovski 1993] E. Hrushovski, “A new strongly minimal set”, Ann. Pure Appl. Logic 62:2 (1993),
147–166. MR Zbl

[Hrushovski and Zilber 1993] E. Hrushovski and B. Zilber, “Zariski geometries”, Bull. Amer. Math.
Soc. (N.S.) 28:2 (1993), 315–323. MR Zbl

[Kant 2000] I. Kant, Critique of the power of judgment, Cambridge Univ. Press, 2000.

[Marx 1964] L. Marx, The machine in the garden: technology and the pastoral ideal in America,
Oxford Univ. Press, 1964.

[Pallasmaa 2023] J. Pallasmaa, “From space to place — existential meaning in architecture”, Tangible
Territory 1:5 (2023).

[Shelah 1990] S. Shelah, Classification theory and the number of nonisomorphic models, 2nd ed.,
Studies in Logic and the Foundations of Mathematics 92, North-Holland Publishing Co., Amsterdam,
1990. MR Zbl

[Villaveces 2022] A. Villaveces, “Atrapar suavemente y dejar ir: categoricidad y lugar”, pp. 83–98 in
Rastrear indicios, Textos: Documentos de Historia y Teoría 29, Editorial Universidad Nacional de
Colombia, 2022.

[Zilber 1984] B. I. Zilber, “Strongly minimal countably categorical theories, II”, Sibirsk. Mat. Zh.
25:3 (1984), 71–88. In Russian; translated in Sib. Math. J. 25 (1984), 396–412. MR Zbl

Received 20 Sep 2023. Revised 24 Nov 2023.

JULIETTE KENNEDY:

juliette.kennedy@helsinki.fi
Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

msp

https://doi.org/10.2140/mt.2024.3.647
https://doi.org/10.2140/mt.2024.3.647
https://doi.org/10.1017/CBO9781139018098
https://doi.org/10.1111/theo.12274
https://doi.org/10.1111/theo.12274
http://msp.org/idx/mr/4329561
http://msp.org/idx/zbl/1301.08011
https://plato.stanford.edu/entries/kant-aesthetics/
https://doi.org/10.1016/0168-0072(93)90171-9
http://msp.org/idx/mr/1226304
http://msp.org/idx/zbl/0804.03020
https://doi.org/10.1090/S0273-0979-1993-00380-X
http://msp.org/idx/mr/1183999
http://msp.org/idx/zbl/0781.03023
https://doi.org/10.1017/CBO9780511804656
https://tangibleterritory.art/journal/issue-5-content/from-space-to-place-existential-meaning-in-architecture/
http://msp.org/idx/mr/1083551
http://msp.org/idx/zbl/0713.03013
http://msp.org/idx/mr/746943
http://msp.org/idx/zbl/0581.03022
mailto:juliette.kennedy@helsinki.fi
http://msp.org




msp
Model Theory
Vol. 3, No. 2, 2024

https://doi.org/10.2140/mt.2024.3.317

Approximate equivalence relations

Ehud Hrushovski

This paper is dedicated to Boris Zilber, who found the path for us.

Generalizing results for approximate subgroups, we study approximate equiva-
lence relations up to commensurability, in the presence of a definable measure.

As a basic framework, we give a presentation of probability logic based on
continuous logic. Hoover’s normal form is valid here; if one begins with a discrete
logic structure, it reduces arbitrary formulas of probability logic to correlations
between quantifier-free formulas. We completely classify binary correlations
in terms of the Kim–Pillay space, leading to strong results on the interpretative
power of pure probability logic over a binary language. Assuming higher amalga-
mation of independent types, we prove a higher stationarity statement for such
correlations.

We also give a short model-theoretic proof of a categoricity theorem for
continuous logic structures with a measure of full support, generalizing theorems
of Gromov–Vershik and Keisler, and often providing a canonical model for a
complete pure probability logic theory. These results also apply to local probabil-
ity logic, providing in particular a canonical model for a local pure probability
logic theory with a unique 1-type and geodesic metric.

For sequences of approximate equivalence relations with an “approximately
unique” probability logic 1-type, we obtain a structure theorem generalizing the
“Lie model” theorem for approximate subgroups (Theorem 5.5). The models here
are Riemannian homogeneous spaces, fibered over a locally finite graph.

Specializing to definable graphs over finite fields, we show that after a finite
partition, a definable binary relation converges in finitely many self-compositions
to an equivalence relation of geometric origin. This generalizes the main lemma
for strong approximation of groups.

For NIP theories, pursuing a question of Pillay’s, we prove an archimedean
finite-dimensionality statement for the automorphism groups of definable mea-
sures, acting on a given type of definable sets. This can be seen as an archimedean
analogue of results of Macpherson and Tent on NIP profinite groups.
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1. Introduction

Let G be a group, with a translation-invariant, finitely additive measure on some
Boolean algebra of subsets of G. For instance G may be an ultraproduct of finite
groups with their counting measures. A symmetric subset X of a group G is
called a near-subgroup1 if both X and the triple product set XXX are measurable
and of finite, nonzero volume. These are very closely connected to amenable
approximate subgroups, and arise in many branches of mathematics; see, e.g., [17]
for an introduction.

If X is a Lie group, such as GLn(R), a compact neighborhood of the identity is
a near-subgroup; all such neighborhoods are commensurable, i.e., each is covered
by finitely many translates of the other. Conversely it was shown in [43] that
a near-subgroup determines canonically a connected Lie group L , so that X is
commensurable with a pullback of a compact neighborhood of the identity in G.

This was used in particular to give a proof of (a strengthening of) Gromov’s poly-
nomial growth theorem, based on measure-theoretic rather than metric properties
of such a group.

Gromov was at that time writing [35]. He wrote:2

I think there are many “almost structures” which are far from “actual
structures” and these may play an essential role in how the brain generates
math (. . . ) the “dictionary structure” contains algebraic pattern, e.g.,
of “categories”, “multicategories” and also of “2-categories” but these
patterns are “not perfect”, e.g., some compositions may be “undefined/not
implemented” and some may be nonassociative.

This comment precipitated the current work. The simplest kind of category
is a groupoid, and the simplest groupoids, other than groups, are equivalence
relations. Transposing the result on statistical recognition of approximate subgroups
to approximate equivalence relations thus appears as a natural first step. An equiv-
alence relation is a symmetric relation R satisfying R ◦ R = R; an approximate
equivalence relation is one where R ◦ R is “commensurable” to R, i.e., all the
R◦ R-neighbors of any point a are R-neighbors of some finite number of points; see
Definition 4.1. In case X is an approximate subgroup of a group G, one can define
R(x, y) := x−1 y ∈ X ; then it is easy to see that R is an approximate equivalence
relation. It will turn out in fact that using this construction, the results we will
obtain on approximate equivalence relations imply the ones on approximate groups;
the latter appears as the special case of approximate equivalence relations with a
transitive automorphism group.

1The definition of near-subgroup in [43] is a little more general.
2Personal communications to the author, 15 and 17 September 2010.
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The language of the paper is that of probability logic; we will give details of that
separately below.

Stabilizer theorem. The dimension-theoretic stabilizer was first introduced to model
theory by Boris Zilber, in the setting of groups of finite Morley rank. It was transfor-
mative to the subject, enabling for instance the proof of Zilber’s indecomposability
theorem, that seemed previously to belong to geometry rather than model theory. The
construction was generalized to stable theories; the uniqueness of independent pairs,
given their individual types, was key. Later (see [40; 24; 55]) it was realized that a
good theory of the stabilizer exists without this uniqueness, under the weaker condi-
tion of the independence theorem. This statement asserts the existence, under suit-
able conditions, of a 3-type with three prescribed restrictions to independent 2-types.

Still later, it was possible to transpose these ideas to groups defined in any theory,
carrying a suitable measure. This was the basis of a connection between near
subgroups and the locally compact world: for near subgroups X , the stabilizer is
a

∧
-definable group S contained in X4, such that X/S is compact. Equivalently,

one can find definable sets Y commensurable to X allowing a prescribed number
of multiplications staying within X4.

In Section 4 we will prove a generalization of the stabilizer theorem to near
equivalence relations. Theorem 4.3 provides a canonical

∧
-definable equivalence

relation S contained in R◦4, such that each neighbor set of R is compact modulo S.

Riemannian homogeneous spaces. In the case of groups, one can go further and
describe approximate subgroups up to commensurability as approximations to
finite-dimensional Lie groups. In Section 5 we obtain a similar theorem under an
assumption of approximate homogeneity. The model spaces are now Riemannian
homogeneous spaces, with a “mesoscopic” graph relation connecting two points
at distance at most 1. These are fibered over locally finite graphs; we obtain only
a partial description of the total space, but a full description of each connected
component. See Theorem 5.5.

Pseudofinite fields. Section 6, “From groups to graphs”, concerns approximate
equivalence relations definable in pseudofinite fields.

In [44], a model-theoretic proof was given of the “strong approximation” theorem
of Gabber, Matthews–Vaserstein–Weisfeiler, Gabber and Nori (see [66; 67]) on
subgroups of algebraic groups over the p-element field Fp for large p. The main
model-theoretic ingredient was the study of generation of groups by definable
sets. This is generalized in Section 6 to the generation of equivalence relations by
definable relations. An arbitrary definable relation is decomposed, in each piece
of a partition, into relations that generate an equivalence relation in finitely many
steps, and relations of finite valency. For pseudofinite fields this decomposition has
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an explicit algebraic form; but the general result is proved in the setting of simple
theories with a well-behaved finite dimension theory.

The measure stabilizer in NIP theories. In Section 7 we take an alternate route
to finite-dimensionality, under an assumption of NIP. The passage from locally
compact spaces to finite-dimensional Riemannian manifolds in Section 5 involved
factoring out a large compact normal subgroup; commensurability is preserved, but
little control over this compact kernel is available. In particular for a near-subgroup
X of a compact group G, i.e., a definable subset of positive measure, this procedure
loses all information. In Section 7 we factor out only the measure-theoretic stabilizer
of X , and prove, assuming NIP, that up to possible profinite parts, the result is a
finite-dimensional Lie group.

More generally, let µ be a definable measure on X , let q(u) be a type and let
φ(x, u) be a NIP formula. The formula φ establishes a relation between the space
X of weakly random global types on X and the space of Kim–Pillay strong types
extending q. We obtain corresponding quotients Xφ,q of X, and a canonical space
Uµ,φ of strong types compatible with q . The automorphism group of any saturated
model induces a compact group Gµ,φ,q acting faithfully on both Xφ,q and Uµ,φ .
We prove that G = Gµ,φ,q has finite archimedean rank. This means that G has a
minimal normal subgroup G00 with G/G00 profinite, a maximal (up to finite index)
profinite normal subgroup G00, and G00/G00 is a finite-dimensional Lie group.

This result can be transposed from automorphism groups to definable groups. Let
G now be a definable group in a NIP theory, and µ a translation invariant definable
measure on G. G has a minimal

∧
-definable subgroup G00, and K = G/G00 is com-

pact in the logic topology. These compact groups were the subject of Pillay’s conjec-
tures in the o-minimal case (see [68; 47]) showing that K is a Lie group of the same
dimension as G. In the general NIP case, beyond compactness, the constraints on K
are unclear. However one can define a canonical quotient K P of K associated with a
given definable subset P of G, at least when G carries a definable measureµ; namely,
identify two weakly random types of G if they include the same set of translates of P .
(If P = Pb is defined only with a parameter b, identify p with p′ if for any b′

|H tp(b)
and any g, g′

∈ G, g′ Pb′ ∈ p iff g Pb ∈ G.) It was also Pillay who had the intuition
that K P may be finite-dimensional. We show indeed that K P has finite archimedean
rank (Theorem 7.15). In fact this is what motivated the more general Theorem 7.12.

In view of results of Macpherson and Tent, it seems possible that a similar finite-
dimensionality phenomenon is valid for the totally disconnected part of G, and in fact
G is of adelic origin; in the most optimistic scenario, G is interpretable in the model-
theoretic sum of finitely many p-adic and real fields. A generalization to the setting
of approximate groups (viewed as piecewise-definable groups), using Gleason–
Yamabe theory in place of Peter–Weyl, would also be interesting. See Section 7.18.
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Probability logic. In probability logic, existential and universal quantifiers are
augmented by probability quantifiers. If as in [53] they are entirely replaced by
such quantifiers, we refer to pure probability logic. Events are taken to be definable
subsets of a sort X , declared to be a stochastic sort. Exφ(x, y) is a formula with
free variables y, giving at y = b the probability of the event eφ,b = {x : φ(x, b)}.

Since Exφ(x, y) takes real values, it is natural to allow all formulas to take
bounded real values and employ continuous logic. When φ takes values other than
0 and 1, Exφ(b)is understood as the expectation of φ(x, b).

The axioms, going back to Kolmogorov, S. Bernstein, R. von Mises, Hilbert
and Bohlmann, are just finite additivity and positivity. Countable additivity is not
assumed but is automatically obtained for the induced measure on the type spaces
over a model.

By iterating the expectation quantifiers, we obtain measures on type spaces in sev-
eral variables too. The action of the symmetric group Sym(n) on the space of n types
is not assumed to preserve the measure; when it does, we say that Fubini holds. Note
that Fubini’s theorem relates to the algebra generated by rectangles; the Fubini prop-
erty goes beyond this to arbitrary binary relations. We do not assume Fubini at the
level of the definition, but many results have stronger versions if Fubini is assumed.

We give a simple model-theoretic proof of a uniqueness theorem for models
where every open set has positive measure. This generalizes a theorem of Keisler’s
on uniqueness of hyperfinite models, and theorems of Gromov and Vershik on
invariants for measured metric spaces. When it exists the full-support model
provides a canonical, homogeneous model for pure probability logic theories,
replacing for some purposes the use of saturated models for first-order theories;
this will be used in Section 5.

An elementary submodel M0 is a kind of pool where everything not impossible
has already happened. Finite measure, like compactness, constrains the breadth
of possible phenomena from above, and together they lead to a well-understood
theory over M0 (higher de Finetti theorems, higher-dimensional Szemerédi lemma).
We present a model-theoretic version in Appendix B, either over an elementary
submodel (following Towsner) or assuming qualitative higher amalgamation of
types. But we also pose the question of finding the essential structures governing
higher independence and hidden within M0. In this we try to emulate Shelah’s
definability theorems for stable theories; definability of types over a model is
easier, but it was really the recognition of acleq(0) and the proof of definability over
that that enabled a useful theory of independence. We obtain a satisfactory result
for n = 3, using auxiliary stable structures piecewise interpreted in the theory, so
that an expectation statement can be referred to the stable structure, in this case
Hilbert spaces.
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These results will actually be required in the somewhat more general setting of
local logic, where a large-scale metric is given and only balls of finite radius are
assumed to have finite measure.

Appendix A develops basic stability theory for invariant relations, i.e., disjunc-
tions of

∧
-definable relations; the specialization to

∧
-definable relations is used in

Sections 2 and 3. Appendix C illustrates the use of probability logic in the setting
of mixing results on groups over pseudofinite fields.

Many open problems are described throughout the text.

Related work. While I thought at first that this was new territory, I soon learned that
approximate equivalence relations, by other names, are already very well studied.
I talked about Theorem 5.5 in Aner Shalev’s meeting on Groups and Words, in
June 2012. Immediately afterwards, Nati Linial pointed out to me the relation of
Theorem 4.3 with the work of Lovász and Szegedy [59; 60] on graphons. Indeed
while the language is different and the assumptions are slightly different, I believe
that basic methods of graphons yield an alternative proof of Theorem 4.3.

The “pure” probability logic we use, and the notion of ultraproduct that we obtain
from it, are also closely related to Razborov’s flag algebras [69].

Many variations on probability logic appear in the model-theoretic literature,
implicitly and explicitly. The main results of [53] are formulated within infinitary
logic Lω1,ω, whereas for us the use of compactness is essential. Our semantics is
in fact identical to that of definable Keisler measures [45] (named after a different
work of Keisler’s). One of the variations reported on in [53], due to Hoover, is
finitary, as well as the treatment in [33]; they adjoin {0, 1}-valued predicates

P>αx φ(x, y),

intended to indicate that the event defined by φ(x, b) has probability greater than
or possibly equal to α. However in such a setting compactness would dictate
the existence of an event with probability > 0 but < 1/n for each n; this is an
intermediate state between emptiness and probability zero. Such ghost predicates
are difficult to control, and frequently lead to undecidability due to measure-zero
phenomena that are not really intrinsic to the probabilistic viewpoint. The use
of continuous logic is thus natural, being compatible with compactness and the
standard interpretation of real-valued probability at the same time.

The papers [51; 64; 63; 49]. (in the setting of ℵ0-categoricity) are closely related
to our independence theorem for probability logic, Theorem 3.16. In particular,
[51, Theorem 1.1 or 3.4] can be seen as special cases of Theorem 3.16(1); the
measure-preserving action on X assumed there can be viewed as data for definability
of a measure on a new stochastic sort X . In [65; 50; 16], the very interesting
examples of 2-graphs and kay-graphs are analyzed, showing in particular that
a naive generalization of measure independence to higher amalgamation cannot
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hold, and on the other hand (see [65, 7.2.1, 7.2.3]) that it does hold in certain
circumstances, related to Theorem B.8.

Ibarlucía in [49] employs a method of using auxiliary piecewise-definable stable
structure, developed independently but very similar to ours; see also [28].

In the asymptotically finite setting, a statement equivalent to the stabilizer theorem
for groups was independently proved in [70], using a beautiful combinatorial
argument. (See also [18].) It is not clear if this method applies to finite approximate
equivalence relations too.

As far as I know, the nearest result to Theorem 5.5 on approximately homoge-
neous approximate equivalence relations is the paper [12] of Benjamini, Finucane
and Tessera. Their main focus is on finite approximate equivalence relations that are
exactly homogeneous for a group action; for these, they obtain results of the same
strength as [18], in particular showing that the phenomenon exists essentially for
nilpotent groups and their homogeneous spaces. But in the one-dimensional case,
they also consider approximately homogenous relations, again with technically
somewhat different definitions than we use here.

A recent remarkable work of Gowers and Long [34] offers a wider interpretation
of “almost structure”.

2. Preliminaries

2.1. Real valued continuous logic. Continuous model theory dates back to the
book [21]; other roots lie in Robinson’s nonstandard analysis of the same period, and
their development (notably Henson’s study of nonstandard hulls of Banach spaces)
in the 1970s. Krivine studied a real-valued logic, and stability was introduced to
the area in [57]. A modern version, with a full-fledged stability theory as well as
simplicity and NIP, was introduced by Ben Yaacov and coworkers in [8; 5] and
other articles; see especially [9].

In continuous logic, terms are defined in the same way as in first-order logic, but
formulas φ are taken to take truth values in some compact Hausdorff space Xφ . Any
continuous map on c : Xφ× Xψ to a compact space Y can be viewed as a connective,
thus creating a new formula c(φ, ψ) taking values in Y . Any continuous map q
from the (Hausdorff) space of nonempty closed subsets of X to a compact space Y
induces a quantifier, taking formulas φ(x, y) with range X to formulas (qx)φ(x, y)
with free variables y and range Y . The interpretation of (qx)φ(x, b) in a structure
A is q(cl{φ(a, b) : a ∈ A}) (Chang and Keisler, 1966).

Specifically in continuous real-valued logic, the spaces Xφ will be closed intervals
in R, or occasionally in R∪{∞}. The connectives can be restricted to + , · , 1 (Stone–
Weierstrass). The quantifiers can be restricted to min and sup, though it is not always
best to follow this religiously. We view two languages as having the same expressive
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power if a formula of one can be uniformly approximated by a formula of the other,
and vice versa. (We do not seek formula-to-formula equality.)

A complete theory is a specified value for each sentence (formula with no free
variables). Similarly, if M is a structure, a type p(x) over M is a specified value
for each formula φ(x) with parameters from M .

Let A be a substructure of M . Formulas with parameters from A, and variable x ,
define functions on the set Sx(A) of types p(x) over A; we topologize Sx(A)
minimally so that they are all continuous, in other words as a closed subset of the
product topology. Then Sx(A) is compact, and any continuous function on Sx(A) is
uniformly approximated by formulas. If Z is a closed (respectively open) subset of
Sx(A), we call {m ∈ M : tp(m/A) ∈ Z} a

∧
-definable (respectively

∨
-definable)

subset of M ; these notions should be used only in sufficiently saturated models, say
ones where every type over A is realized.

If u is an ultrafilter on a set I and (ai : i ∈ I ) is an I -indexed family of elements
of a compact Hausdorff space X , there is always a unique x ∈ X such that any
neighborhood of x contains almost all ai (according to u). This is denoted limi→u ai .

An ultraproduct along u of structures Ai for a real-valued language L is defined
in the usual way, except that the value of a (basic) relation is the limit along u of
the values on the coordinates.

2.2. Metrics. There is often a distinguished binary formula ρ whose interpretation
is a metric ρ : A2

→ R and such that every term and every basic formula are
uniformly continuous, by a prescribed modulus of continuity. In this case, one
modifies the definition of the ultraproduct by identifying elements at distance zero.
This is analogous to the situation with equality in 2-valued logic.

2.3. Localities. Note that the rules of continuous logic would force ρ to have
bounded image; indeed for the discussion so far, there is no harm in replacing ρ
by min(ρ, 1). Ben Yaacov [4] defines an unbounded version, where a fixed unary
function (the gauge) controls locality; it is similar to many-sorted logic where
quantifiers are restricted to finitely many sorts; but in place of a discrete set of
sorts one has a continuous family. We will however be interested in homogeneous
structures, with a single 1-type, and they are not compatible with unary functions.
We will thus use a binary function ρ∗, satisfying the laws of a metric; it could be
the same as the metric ρ, or distinct from it; in any case we are mostly interested
in ρ near 0 (to determine a topology) and in ρ∗ near ∞ (to determine a coarse
structure or, for us, the notion of locality, i.e., a family of sets where model-theoretic
compactness will hold).

We allow relations R to take unbounded values; but we assume that any basic
relation comes not only with a modulus of continuity (with respect to ρ) but also
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with a bound b(R) on the support of R, so that

R(x1, . . . , xn)≤ b(max
i, j

ρ∗(xi , x j )).

Here b is a continuous function R → R with compact support. Similarly basic
functions are assumed to take values at a bounded distance from their arguments.
We redefine saturation by restricting to types at bounded distance.

When we take an ultraproduct, we have to make an additional choice, beyond
that of the ultrafilter. Let M0 be the naive ultraproduct; then ρ∗(x, y) can be infinite.
The relation ρ∗(x, y) <∞ is an equivalence relation. We make a choice of one
class. Thus, in an ultraproduct, ρ∗(x, y) is finite by definition. We refer to this as a
local ultraproduct with locality relation ρ∗.

We note that this logical structure depends on ρ∗ only up to coarse equivalence;
replacing ρ∗ by j ◦ ρ∗, where j : R+

→ R+ is an order-preserving bijection, will
make no difference.

See Section A.1 for more detail.

Example 2.4. The language of Hilbert spaces is taken to have sorts Sr for any
real r ≥ 0, denoting the ball of radius ≤ r . It has function symbols 0,+ , · α for
any α ∈ C, so + : Sr × Sr ′ → Sr+r ′ and ·α : Sr → St whenever r |α| ≤ t . There is
one additional basic relation for the inner product, ( , ) : Sr × Sr ′ → [−rr ′, rr ′

],
and the obvious axioms. The metric is taken to be |x − y|, where |x | =

√
(x, x).

The division into sorts adds somewhat artificial structure; a better approach is
developed in [4]. For the actual use of Hilbert spaces in this paper this will not be
essential, we can take either one.

Suppose however we wish to consider H as an affine space, without a distin-
guished 0. In this case it will not do to add sorts, whether discretely or continuously.
Instead we use the locality function ρ∗(x, y)= ∥x − y∥; in this case it happens to
coincide with the metric. The effect is again to limit quantifiers to bounded balls,
but the balls can be anywhere on H .

2.5. Cobounded equivalence relations and the logic topology. Let X be a
∧

-
definable set. A

∧
-definable relation 3 is called a cobounded equivalence relation

if in any model M , 3 defines an equivalence relation on X (M), and X (M)/3 has
cardinality bounded independently of M .

We have 3=
∧

i 3i with 3i definable, such that all antichains of 3i are finite,
of size bounded by some βi ∈ N. If M |H T and N ≻ M , we can pick in M a
maximal antichain c1, . . . , cβi for 3i . If a, b ∈ X (N ) have the same type over M ,
or even just the same 3i -type over M for each i , then (a, ci ) ∈3i iff (b, ci ) ∈3i .
By maximality of the antichain, we do have (a, ci ) ∈3i for at least one i ≤ βi , and
hence (a, b) ∈3i ◦3i .
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If M |H T and N ≻ M , and a, b ∈ X (N ) have the same type over M , then a3b.
Hence we have a natural map SX (M) → X/3. The image set is the same as
X (N )/3 for sufficiently saturated N , and we denote it simply by X/3. The
surjective map SX (M)→ X/3 induces a topology on X/3— the logic topology —
which is compact and Hausdorff. It does not depend on the choice of M . Further,
for any reduct M ′ of M such that 3 is still

∧
-definable in M ′, since the compact

M-induced topology refines the M ′-induced Hausdorff topology, they coincide;
expansions do not change the space X/3.

For the same reason, we have a well-defined map S3X (M)→ X/3 (where S3X
is the space of 3-types, meaning 3i -types for each i), and it induces the same
topology on X/3. Hence, if Y is a closed subset of X/3, then the pullback of Y
to X is a

∧
-qf-definable set with parameters in M .

Let T be a complete theory, X a sort. There exists a unique finest cobounded∧
-definable equivalence relation 3 of T . For this choice of 3, the space X/3 is

called the space of compact Lascar types of T in the sort X , or the Kim–Pillay
space KPT (X) ([39]). Similarly for the qf KP-space.

The classes of 3 are called the compact Lascar types, or Kim–Pillay types.

Remark 2.6. Let E be any cobounded
∧

-definable equivalence relation; assume
it is defined using formulas from a family 8, e.g., x Ey ⇐⇒ φ(x, y)= 0 for each
φ ∈ 8. Then X/E is a quotient of KPT (X), and we can compare the quotient
topology to the topology defined as above using the space of 8-types alone. As
the former is stronger and both are compact and Hausdorff, they must be equal.
In other words, the image in X/E of any

∧
-definable subset of X is already the

image of a 8-
∧

-definable set.

2.7. Stability.

Definition 2.8 ([57]). A formula φ(x, y) is stable if for any model M and any
elements ai , bi (i ∈ N) of M , if limi→∞ lim j→∞ φ(ai , b j ) exists and equals α and
lim j→∞ limi→∞ φ(ai , b j )= β, then α = β.

The class of stable formulas φ(x, y) is easily seen to be closed under continuous
connectives.

Lemma 2.9. Let H be a Hilbert space,with elements ai , bi (i ∈ N) of the unit disk.
If limi→∞ lim j→∞(ai , b j ) exists then so does lim j→∞ limi→∞(ai , b j ), and they
are equal.

This lemma means that ( , ) is a stable formula. Using quantifier elimination
for Hilbert spaces, this easily implies that every formula is stable; but we will need
this particular one. The significance of this was realized in [57] but also in [36];
see [6]. In the context of expectation quantifiers Et that will soon be introduced, it
implies that Et( f (x, t)g(x, t)) is always a stable formula.
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The following is a continuous logic version of Shelah’s finite equivalence theorem
(uniqueness of nonforking extensions over algebraically closed sets); see [8]. The
continuity in each variable is the open mapping theorem, or the definability of types.
Joint continuity does not hold in general.

Statement (1) below asserts that any value of φ(x, b) other than α causes forking,
while (2) is a strong converse asserting that the value α can be taken simultaneously
for any family of b’s.

As usual we write p to denote the solution set of p, and α(a, b) for α(a/E, b/E ′).

Theorem 2.10 ([8]). Let φ(x, y) be a stable formula on P × Q. Then there exist
cocompact

∧
-definable equivalence relations E on P and E ′ on Q, and a Borel

function α : P/E × Q/E ′
→ R, continuous in each variable and automorphism

invariant, such that in any sufficiently saturated model M :

(1) In any prescribed E ′-class there exists a sequence (b j : j ∈ N), such that for
all a ∈ P , lim j→∞ φ(a, b j )− α(a, b j ) = 0. Equivalently, for any ϵ > 0, for
some k ∈ N, for any J ⊂ N with |J | ≥ k, and any a |H p, for some j ∈ J ,
|φ(a, b j )−α(a, b j )|< ϵ.

(2) For any finite set {b j : j ∈ J } ⊂ Q and any ϵ > 0, there exists a ∈ P in any
prescribed E-class with |φ(a, b j )−α(tp(a), tp(b j )|< ϵ for each j .

(3) Let M0 ≺ M ; assume φ is quantifier-free. Then α(a, b) depends only on
qftp(a/M0) and qftp(b/M0).

Thus α(p, q) gives the generic or expected value for φ(a, b) when a |H p, b |H q ,
and any deviation from this value will cause dividing. A more general statement
will be proved in Appendix A (see Theorem A.27).

For each complete type p ⊂ P , α is continuous as a function of two variables
on p × Q. But in general it is not continuous on P × Q, even for the theory of pure
equality augmented with infinitely many constants. To see how this may arise in a
probabilistic setting, consider the random graph, with infinitely many distinguished
constants, and with a measure giving independent probability 1

2 to an edge. Then
for two types p(x), q(y), and for φ(x, y) the probability that z is a neighbor of both
x and y, we have α(p, q) =

1
4 unless p ⊢ x = cn and q ⊢ y = cn for the same n;

this is not bicontinuous.

2.11. Topologies. We discuss here some elementary topology that will be needed
later.

By a pseudometric on X we mean a function d : X2
→ R with d(x, y) =

d(y, x)≥ 0, d(x, x)= 0, and d(x, z)≤ d(x, y)+d(y, z). There is a canonical map
j : X → X into a complete metric space, preserving d , with dense image; we refer
to X as the completion of (X, d). Typically j is not injective.
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Let f : Xn
→ R be a function, uniformly continuous with respect to d; i.e., for

all ϵ > 0 there exists δ > 0 such that | f (x)− f (y)|< ϵ whenever x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Xn and d(xi , yi ) < δ. Then f induces a function f̄ : Xn

→ R.
Hence if X carries an L-structure for some continuous logic language L , an L-
structure on X is canonically induced. All continuous logic formulas are preserved,
i.e., φ( j x1, . . . , j xn)

X
= φ(x1, . . . , xn)

X . In particular, the axioms for expectation
quantifiers (Section 3(1–4)) are preserved. Hence if X is a stochastic sort, then X
becomes one too.

Assume X is a stochastic sort, with expectation quantifiers E . Write 3(x, y) if
j (x)= j (y); then 3 is a

∧
-definable. Assume further as in Section 2.5 that 3 is

cobounded, so that X is compact. Then the expectation quantifiers on X induce
a Borel measure on X , equivalently a positive linear functional

∫
on the Banach

space of real-valued continuous functions on X . Simply define
∫

f = E( f ◦ j). We
use here the fact that f ◦ j is a (uniform limit of) parametrically definable functions;
this in turn can be seen using Stone–Weierstrass, as the definable functions into R

form an algebra and separate points on X .

2.12. Let d be a pseudometric given by a formula of bounded real-valued continuous
logic. Assume the equivalence relation E defined by d(x, y) = 0 is cobounded.
Then d induces a metric on X/E , interpreted in any sufficiently saturated model.
The metric is by definition continuous with respect to the logic topology on X/E .
The latter being compact, it follows that d induces the logic topology; moreover,
X/E is complete and hence coincides, as a metric space, with the completion X .

This is valid locally in local continuous logic, with a metric ρ, when d is definable
and hence subordinate to ρ. Namely, for any fixed a ∈ X , let B be a ball of some
finite radius r around X . Then as above, the logic topology on B/E coincides
with the topology induced by d. It follows that globally, the logic topology on
X/E is locally compact, and induced by d . Returning to B, by the same argument,
the metric topology on B/E induced by d also coincides with the logic topology
obtained by considering only subsets of B defined with parameters in B. We will
use this remark later on.

2.13. Isometry groups. Let Y be a locally compact metric space. The isometry
group G = Aut(Y, d) is topologized by the compact-open topology, or uniform
convergence on compacts. On Y , the topology agrees with the topology of point-
wise convergence. This is because a compact C admits a finite set Dϵ that is
ϵ-dense in C ; so if f, g are isometries and d( f (x), g(x)) < ϵ on for x ∈ Dϵ , then
d( f (x), g(x)) < 3ϵ for all x ∈ C .

It is clear that left and right translations are continuous. Thus to check continuity
of inversion and multiplication, it suffices to verify it at the identity element. If
gi → IdY , then for any a we have gi (a)→ a, i.e., d(gi (a), a)→ 0; since gi is an
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isometry, d(a, g−1
i (a))→ 0 so inversion is continuous. If also hi → 1, then for any

a we have hi (a)→ a; by local compactness we may take all hi (a) in some compact
neighborhood C of a; since gi approaches Id uniformly on C , for any ϵ > 0, for
large enough i we have d(gi (y)), y) < ϵ for all y ∈ C (for large enough i); in
particular d(gi hi (a), hi (a)) < ϵ, so d(gi hi (a), a) < 2ϵ for large i . It follows that
G is a topological group.

The action G ×Y → Y is also easily seen to be continuous. Moreover, for x0 ∈ Y ,
the map G → Y , g 7→ gx0 is closed, since it suffices to check this after restricting
to a closed bounded subset Y ′ of Y , and the preimage of Y ′ is compact. It follows
that the stabilizer Gx0 = {g : gx0 = x0} is a closed subgroup, Gx0 is closed in Y ,
and G/Gx0 is homeomorphic to Gx0

2.14. Graphs and metrics. A binary relation R on X , viewed as a graph, is con-
nected if for any x, y ∈ X there exist n ≥ 1 and x1, . . . , xn ∈ X with x = x1, xn = y,
and such that R(xi , xi+1) or R(xi+1, xi ) hold for i < n. In this case, for the least
such n, we define dR(x, y)= n − 1; dR will be referred to as the metric associated
to R.

In the lemma below two metrics appear, but all topological terms refer to (X, d).

Lemma 2.15. Let (X, d) be a locally compact metric space. Let R ⊂ X2 be a
closed binary relation, with (X,R) connected, and let dR be the associated metric
on X. Assume some d-ball is contained in a dR-ball, and every dR-ball has compact
closure. Let G = Aut(X, d,R) be the group of isometries of (X, d) preserving R.
Then G is a locally compact topological group. For any x ∈ X and any compact
U ⊂ X , {g ∈ G : g(x) ∈ U } is compact.

Proof. We saw above that G is a topological group, and that the topology given
above agrees with pointwise convergence; we will use the latter description in order
to reduce to compactness of product spaces.

To show that G is locally compact, it suffices to show that 1G has a compact
neighborhood. Let b0 be an open d-ball around a0 contained in a dR ball. Let
Dn be the dR-ball around a0 of radius n; then b0 ⊂ Dn0 for some n0. Let U0 =

{g ∈ G : g(a0) ∈ b0}. Then U0 is an open neighborhood of 1 in G. If g ∈ U0, then
g(Dn) ⊂ Dn+n0 ; indeed g(a0) ∈ b0 so dR(a0, g(a0)) ≤ n0. If dR(x, a0) ≤ n, then
dR(g(x), g(a0)) ≤ n (it is here that we use the assumption that R, hence dR, are
preserved by G). So dR(a0, g(x))≤ n +n0. Hence U0 ⊂ U1, where U1 is the set of
isometries of X satisfying g(Dn)⊂ Dn+n0 for every n. Now U1 is compact since
it embeds homeomorphically into a closed subset of the product space

∏
n DDn

n+n0
,

mapping g → (g|Dn)n . And G is clearly a closed subgroup of the isometry group;
so G ∩ U1 is compact too. □
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2.16. NIP. Let R(x, y) be a formula, and let Sx(A) = SR
x (A) be the space of

quantifier-free R-types in the variable x over a set A. For R(x, y) taking values
in {0, 1}, R has NIP (does not have the independence property) if |Sx(A)| grows
at most polynomially in |A|, i.e., |Sx(A)| ≤ C · |A|

k for some C, k and for all A.
By a theorem of Sauer, Shelah, and Vapnik–Chervonenkis, this is equivalent to
|Sx(A)| < 2|A| for |A| > m; the minimal such m is the Vapnik–Chervonenkis
dimension, and we have |SR

x (A)| ≤ 2|A|
m .

For an R-valued formula R(x, y), one says that R has NIP if for any fixed
ϵ > 0, SR

x (A) grows at most polynomially in |A| up to ϵ-resolution; in other words
SR

x (A) can be covered by polynomially many ϵ-balls, or equivalently admits at
most polynomially many (in |A|) pairwise disjoint ϵ-balls. See [5]. This notion
generalizes to general continuous logic (with values in compact spaces).

On the other hand, we will say that R has pNIP (of degree d) if for |A|, |n| ≥ d ,
SR

x (A) can be covered by at most (|A|n)d 1/n-balls. Thus the growth is polynomial
not only in the base size but also in the resolution. pNIP relations are closed under
connectives corresponding to Lipschitz functions Rk

→ R.

Remark 2.17. If the relation φ(x; yz) = R(x, y) ≤ z has NIP, then R has pNIP.
Indeed the R(x; y) types, up to 1/m-resolution, over a set b1, . . . , bn can be viewed
as φ-types over b1, . . . , bn, 0, 1/m, . . . , 1 so their number is polynomial in mn.

We will later need an effective version of the uniform law of large numbers of
Vapnik–Chervonenkis. What is essential for us, to obtain finite packing dimension,
is that N in Proposition 2.18 should grow at most polynomially with n. This already
follows from [74, Theorem 2]. (In the notation there, set ϵ0 = 1/(2n); one looks
for a lower bound on l that ensures that the right hand side is < 1; this ensures
not only existence but a nonzero percentage of N -tuples c1, . . . , cN such that for
each b there are at least 1/(2n) values of i with R(ci , b).) However we quote more
precise bounds.

Proposition 2.18 ([38]). Let (U, µ) be a probability space, and R(u, b) be a rela-
tion with Vapnik–Chervonenkis dimension d (i.e., the family of events {u : R(u, b)}
has Vapnik–Chervonenkis dimension d). Then for any n there exist c1, . . . , cN ,
N = 8dn log(8dn)≤ 24(dn)2, such that for any b with µR(u, b)≥ 1/n, for some i
we have R(ci , b).

Proof. This follows from Corollary 3.8 of [38], with δ =
1
2 . In [38] the result is

stated for µ a normalized counting measure on a large finite set, but as the bound
does not mention the size of this set, the result immediately extends to all probability
spaces by a standard approximation argument; see [48] around 2.7. □

Remark 2.19. Let µ be a measure on φ-types, not necessarily generically stable. It
is shown in [45, Lemma 4.8(i)] that for any n and any model M there exist c1, . . . , cN
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in an elementary extension M∗ of M , such that for any b with µR(u, b) ≥ 1/n,
for some i we have R(ci , b). The proof yields a polynomial bound N ≤ O(nδ) for
some δ.

2.20. Weakly random types. Let M be an ℵ1-saturated model, and let µ be a
finitely additive measure on formulas over M , or just on Boolean combinations of
formulas φ(x, b). A φ-type p over M is called weakly random if any formula ψ in
p has µ(ψ) > 0. Let X be the compact Hausdorff space of weakly random global
φ-types; µ induces a Borel probability measure on X. In any theory, a formula
dividing (or forking) over ∅ has measure zero for any 0-definable measure. Thus a
weakly random φ-type cannot fork over ∅. In particular if we fix a model M0, it
cannot fork over M0. In a NIP theory, if a type p over a saturated model M ≻ M0

does not fork over M0, then for any θ there exists a set of types over M0 I (θ) such
that θ(x, c)∈ p iff tp(c/M0)∈ I (θ). (See, e.g., [45, 2.11].) Hence the set of weakly
random types has cardinality at most ℶ2(|M0| + |L|). In fact X is separable (see
[25, 2.9 and 2.10]) but I am not sure if it is in general metrizable. It is so in the
case of a smooth measure, or a generically stable type.

3. Probability logic

Many versions of probability logic were investigated by Keisler and Hoover (see
[53]) following work of Carnap, Gaifman, Scott and Krauss; most of these were
based on Lω1,ω. We will use here a first-order, real-valued version based on contin-
uous logic. This enables the use of compactness, and in particular studying families
of finite structures via their probability logic limits.

While it is possible to mix inf, sup quantifiers with probability quantifiers, we
will be mostly interested in pure probability logic, where only probability quantifiers
are used.

The flavor of this logic is determined by Hoover’s quantifier-elimination (see
Theorem 3.6) and, over a model, the independence theorem Theorem B.11. Roughly
speaking the first result gives a quantifier-elimination to one block of quantifiers;
the latter says that unexpected interaction among events can occur finitely many
times, but is no longer unexpected once seen often enough. In the case of binary
interactions, a much more precise description is available; see Theorem 3.16. What
can be interpreted is a compact structure, the “core”, with an action of a compact
group on it. It can be viewed as the space of Lascar types of singletons. Each
binary relation gives rise to a binary function on this core, making it into a compact
structure, and the probability quantifiers induce a measure on it. Given this core,
along with the natural map of the universe into it, all values of all formulas obtained
using probability quantifiers are completely determined. See Corollary 3.21.
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For binary languages, these results indicate that probability logic (at least over
binary languages) has substantial descriptive value but limited interpretative strength.
Interesting unary and “almost unary” relations can be interpreted using probability
quantifiers (the almost unary ones are just unary if the Galois group of the theory
is trivial). However no new binary or higher relations can be defined, beyond
combinations of almost unary ones and the originally given quantifier-free formulas.
This is a severe restriction on the interpretative power of pure probability logic. It
stands in contrast to the limitless interpretative abilities of first-order logic.

We will extend this to local probability logic, involving a locally compact core
and a locally compact group acting on it.

By a probability quantifier in x we mean a syntactical operation from formulas
φ(x, y) (with y a sequence of variables distinct from x) to formulas Exφ in the
variables y3 satisfying:

(1) Ex(1) = 1 for the constant function 1 (viewed as a function of any set of
variables).

(2) Ex(φ+φ′)= Ex(φ)+ Ex(φ
′), and Ex(ψ ·φ)= ψ · Ex(φ) when x is not free

in ψ .

(3) Ex(|φ|)≥ 0.

Note that (1–3) are universal, first-order axioms.
If quantifiers are used, (3) (applied to (supx φ−φ)) becomes equivalent to

(4) Ex(φ)≤ supx φ.

However we will be interested especially in formulas of pure probability logic φ
that do not involve quantifiers, so that it is preferable to have (4) explicitly.

Remark 3.1. If axioms (1)–(3) hold for pure probability logic formulas, (4) will
hold in existentially closed models for this sublanguage. To see this let Lpr denote
the formulas obtained from basic ones using expectation quantifiers alone; view
all formulas of Lpr as basic. Let M be an existentially closed model for an Lpr-
universal theory Tpr including axioms (1–3). If (4) fails, then for some ϵ > 0,
with ρ(y) = Ex(φ(x, y))− ϵ, φ(x, y) ≤ ρ(y) must follow from some θ(y, y′),
where θ(b, b′) holds for some b, b′ from M . But then Exφ(x, y) ≤ Exρ(y) =

ρ(y) = Ex(φ(x, y))− ϵ, a contradiction. Thus (1)–(3) suffice to axiomatize the
pure probability logic validities, i.e., the universal sentences applied to formulas
using Ex but no other x-quantifiers.

The name probability quantifier arises from the situation where φ takes values
in {0, 1}; in general one might also call it an expectation quantifier.

3We assume at the syntactical level that if x ′ is another variable of the same sort as x , and φ′ is
obtained from φ by using x ′ in place of x , then Exφ = Ex ′φ′.
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3.2. Semantics. If M is any model of axioms (1)–(4), and Sx(M) is the type space
over M in variable x , we obtain a positive linear functional on a dense subset of
C(Sx(M)), namely the interpretations of formulas φ(x) with free variable x and
parameters in M ; it follows from the last axiom that if φ(x, b) defines the same
function as φ′(x, b′), then Exφ(x, b)= Exφ

′(x, b′).
By the Riesz representation theorem, there exists a unique regular Borel measure

µx on Sx(M) with
∫
φ(x) dµ(x) = (Exφ). This is the intended semantics, and

constitutes the completeness theorem for expectation logic.
For pure probability logic, we take Sx(M) to be the quantifier-free type space.
For example, the volume of an r-ball B around b is determined by the pure

probability logic type of b. This is evident from the semantics as the Borel measure
on the type space over M includes this information; B is a

∧
-definable set, and

corresponds to a closed subset of Sx(M). One can also see this directly, but more
computationally, by expressing vol(B) as the limit of Exθ(d(x, b)), where θ is a
continuous function into [0, 1] supported on [0, r ], approximating the characteristic
function of [0, r ] in the uniform norm.

By a stochastic sort, we mean a sort endowed with such an operation φ 7→ Exφ.
We will not necessarily assume that every sort is stochastic.

3.3. Fubini. If X and Y are stochastic sorts, with corresponding probability quan-
tifiers Ex and Ey , we obtain two measures on the variables (x, y), arising from
Ex Ey and Ey Ex . They agree on formulas obtained by connectives from formulas
in x and formulas in y. On compact sorts, this suffices to force the two measures to
commute. In general they may not, even if X = Y , since a function defined by φ
on Sx,y may not be measurable for the product measure. We will say that Ex , Ey

commute if Ex Eyφ = Ey Exφ for all φ; see [48]. We say that Fubini holds if any
two stochastic sorts commute.

On the other hand, in the foundations of NIP theories notably, one encounters
Keisler measures that do not commute. Thus we do not include Fubini in the list of
axioms, but invoke the assumption when needed.

3.4. Pseudofinite semantics. The above treatment of probability logic takes as a
starting point a family of formulas, closed under an expectation operator, as well as
continuous connectives. This is analogous to a view of logic as a family of formulas,
closed under quantifiers and connectives. In another approach, one forms the family
of formulas formally by closing the basic relations under continuous connectives,
the infx operator and the (Ez) operator for stochastic sorts. Each basic formula R
comes with a real interval IR (so that R takes values in IR) and a uniform continuity
modulus µR , so that |R(x1, . . . , xn)− R(y1, . . . , yn)| ≤ µR(max d(xi , yi )). These
are propagated to general formulas φ in the natural way; in particular the interval
and uniform continuity modulus of (Ez)φ and of supz φ are defined to be those
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of φ. Let us explain, given a finite structure or an ultraproduct M of finite structures,
how to evaluate each formula φ. This is done by induction on the complexity of
formulas. The value (Ez)φ(z,m) is defined to be the mean value of φ(z,m) (with
respect to the counting measure on the relevant sort of M). The values of infx φ and
C(φ1, . . . , φk) (where C : Rk

→ R is continuous) are also defined in the obvious
way.

Note that in a saturated model, where every type avoiding measure-zero formulas
is realized, it may be impossible to avoid nonempty parametrically definable measure
zero sets. In this case, the pure probability logic type of an element in this theory
need not determine the isomorphism type.

3.5. Hoover’s normal form. We return to the general setting of probability logic.
Here is Hoover’s theorem on reducing expectation quantifiers to a single block; it
is valid in general in our setting with several stochastic sorts. See [53] (in a slightly
different setting).

Theorem 3.6 (Hoover). Any formula ψ(y) built using connectives and expectation
quantifiers can be approximated by ones of the form Exφ, where φ(x, y) has no
(probability) quantifiers, and x is a sequence of variables.

Proof. Let 9 be the class of formulas that can be so approximated. Clearly 9
contains the quantifier-free formulas, and is closed under probability quantifiers;
we have to show in addition that 9 is closed under connectives corresponding to
continuous functions c. We give two proofs of this.

The first works directly for any c. Let ȳ be a sequence of a large number N of
copies of y. By the law of large numbers, Eyφ is approximated by 1

N

∑
j φ(y j ),

uniformly in the remaining free variables of φ. (φ takes values in a bounded interval,
say [0, 1]; so |φ− Eφ| ≤ 1 and thus (φ− Eφ)2 has expectation at most 1. A weak
version of the law of large numbers now states that

∣∣ 1
N

∑
j φ(y j )− E(φ)

∣∣ ≤ λ

with probability at least 1 − 1/(Nλ2). Taking λ = N−1/4 will do.) So c(Eyφ) is
approximated by E ȳc

( 1
N

∑
j φ(y j )

)
, uniformly in the other variables.

The second proof was explained to me by Itaï Ben Yaacov. It does not require
Fubini. Using the Stone–Weierstrass theorem we may take c to be a polynomial.
This decreed, no further approximations are needed; the normal form becomes valid
purely algebraically. We have to consider the sum or product of two expressions
Exφ, Eyψ where we may assume the quantified variables x, y are disjoint from
each other and the free variables. In this case the sum is Ex Ey(φ +ψ) and the
product is Ex Eyφ ·ψ . □

3.7. Stability of binary correlations. Ben Yaacov proved the stability of the the-
ory of measure algebras in [3]. Taking the viewpoint of piecewise interpretable
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structures — in this case measure algebras — this immediately implies the sta-
bility of Exφ(x, y) ∧ ψ(x, z) in any theory with a real-valued expectation op-
erator. The implication was not immediately noticed, however, and stability of
Exφ(x, y)∧ψ(x, z)= 0 was reproved directly in [24] in a restricted environment,
in order to prove the independence theorem there. This was then transposed to the
forking ideal in place of the measure 0 ideal in [40] (in finite S1-rank) and [54]
for general simple theories, yielding the independence theorem for simple theories.
Here we return to measure correlation and give the simple proof from [3].

Proposition 3.8. For any φ(x, y) and ψ(x, z) valued in {0, 1}, the formula θ(y, z)
defined by Exφ(x, y)∧ψ(x, z) is stable.

More generally, for any φ(x, y) andψ(x, z), the formula Ex(φ(x, y)·ψ(x, z)) is
stable. In fact, for any formulas φ(x, y) and ψ(x, z) valued in a compact subset C
of R, and any continuous function c : C2

→ R, the formula Ex(c(φ(x, y), ψ(x, z)))
is stable.

Proof. We prove the second statement first. Let M be a model, and let bi , c j ∈ M . Let
S be the type space over M in the variable x . The expectation quantifiers induce a
measureµ on S such that

∫
φ(x) dµ(x)= (Exφ) for any formula φ(x) over M . Now

φ(x, bi ) defines a continuous, bounded real-valued function fi on S, while ψ(x, c j )

defines g j . So fi , g j ∈ L2(X, µ), and Ex(φ(x, bi ) ·ψ(x, c j ))=
∫

fi g j = ( fi , g j ).
Thus stability follows from Lemma 2.9.

The first statement is a special case, since ∧ = · on {0, 1}.
As for the third statement, we can approximate c uniformly by a polynomial;

so we may take c to be a polynomial. Since Ex is additive, we may take c to be
a monomial pm(u)pn(v), where pn denotes the n-th power map. Replacing φ by
pm ◦φ and ψ by pn ◦ψ , the statement now follows again from the first paragraph. □

Let Y be the sort of the variables y, and let Ŷ denote the associated strong type
spaces, i.e., Ŷ = Y/E with E the smallest

∧
-definable cocompact equivalence

relation. Let b̂ denote the image of b in Ŷ ; similar notation for z, Z .
By Theorem 2.10, it follows that there exists a function α : Ŷ × Ẑ →R, continuous

in each variable, such that for any b ∈ Y, c ∈ Z with c |⌣ z we have

Ex(φ(x, b)∧ψ(x, c))= α(b̂, ĉ).

3.9. The independence theorem and statistical independence. Proposition 3.8
and Theorem 2.10 combine to yield a basic principle of probability logic, the
independence theorem. A qualitative version is true in greater generality for ideals
with a certain saturation property, (S1), enjoyed by the measure-zero ideals of
measures. As noted in [43], when we actually have a measure it is possible not
only to assert that the value of µ(R(a, z)∩ R′(b, z)) is uniquely determined, but to
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give an explicit formula for it. We include a proof here, though the independence
theorem will only be used in qualitative form later on.

Towsner [73] noted the relation to combinatorial results and gave a proof of a
related statement of “triangle-removal” type for n-amalgamation over a model, by
L2-methods.

The proof given below reconciles these two approaches. The structure interprets
(piecewise) a Hilbert space, where stability reigns in the qf part; this can be viewed
as the true source of the stability of the formula in question. The parametrizing sorts
are not required to carry a measure, and the exceptional set is recognized explicitly.

We assume Z is a sort with expectation operators, X, X ′ are two other sorts,
R ⊂ X × Z and R′

⊂ X ′
× Z are two relations. For some purposes we will assume

that X, X ′ also carry expectation operators, and that Fubini holds; this will be stated
explicitly.

Let us say that two functions f, f ′ on a measure space (X, µ) are independent if
for any Borel B, B ′

⊂R, f −1(B) and ( f ′)−1(B ′) are statistically independent events.
Equivalently, for any two bounded Borel functions e, e′ on R, E((e◦ f ) ·(e′

◦ f ′))=

E(e ◦ f )E(e′
◦ f ′). If f and f ′ are characteristic functions of two events, this is

the usual notion of statistical independence.
We say that f, f ′ are independent over a σ -subalgebra B of the measure algebra

if for each such e, e′, the conditional probabilities relative to B satisfy

E((e ◦ f ) · (e′
◦ f ′) : B)= E(e ◦ f : B)E(e′

◦ f ′
: B).

A suggestive case occurs topologically when π : X → Y is a continuous map
of Polish spaces, µy is a Borel family of measures on the fibers, ν = π∗µ, B
is the measure algebra of ν, and µ =

∫
y µy; this means that for any continuous

function φ on X we have
∫
φ dµ(x)=

∫ (∫
φ(x) dνy(x)

)
dν(y). In this case f, f ′

are independent iff for almost all y ∈ Y , f, f ′ are independent with respect to µy .
We will also say in this case that f, f ′ are statistically independent over Y .

Definition 3.10. Write A |⌣C B if for any stable continuous logic formula φ(x, y)
over C , and tuples a from A ∪ C , b from B ∪ C , tp(a/b) does not φ-divide over C .
In other words, if φ(a, b)= α, then for any indiscernible sequence (b, b1, b2, . . . )

over C and any ϵ > 0 and n, there exists a′ with |φ(a′, bi )− α| < ϵ for i ≤ n. If
C = ∅, we write A |⌣ B.

If we restrict to stable formulas φ(x, y) with φ defined over ∅, write A |⌣0;C B.

We use continuous logic formulas in this definition even if T is a first-order theory.
Let R(x, y)=

∧
i Ri (x, y), where the family {Ri : i ∈ I } can be taken to be closed

under finite conjunctions. Assume R(x, b) divides, i.e., there exists an indiscernible
sequence (b, b1, b2, . . . ) such that

⋂
j R(x, b j ) is inconsistent. Let µ be a definable

measure, or more generally an invariant measure (i.e., µ(φ(x, c)) depends only on
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φ and on tp(c)). Then µ(R(x, b))= 0, in the strong sense that µ(Ri (x, b))= 0 for
some i ∈ I . See [43, 2.9]. Thus if ψ(x) is a definable set of positive measure, then
for any B, in some elementary extension, there exists a with ψ(a) and such that no
R(a, b) holds, with b ∈ B, if R is a

∧
-definable relation such that R(x, b) divides.

This can be applied to any specific value α (or any closed range of values) of a
continuous logic formula φ(x, y), letting R(a, b) hold if φ(a, b)= α.

Let cl(A) denote the bounded closure, or continuous-logic algebraic closure in
the sense of [8]. Thus a type over cl(A) is the same as a Kim–Pillay strong type
over A.

Lemma 3.11. Stable independence has the properties of

• symmetry: A |⌣C B implies B |⌣C A.

• trivial monotonicity: A |⌣C B implies A |⌣C B ′ if C ⊆ B ′
⊆ B. Also, A |⌣0;C B

implies A |⌣0;C ′ B if C ⊆ C ′
⊆ B.

• finite character.

• small bases: For any A, B there exists C ⊆ B, |C | ≤ |A| + |L| with A |⌣C B.

• existence and stable stationarity: For any b and any Kim–Pillay type Q
(over C), there exists a ∈ Q with a, b stably independent over C. Moreover
for any stable formula φ(x, y) over C , the truth value of φ(a, b) is the same
for all such a.

• transitivity: If a, b are stably independent over A and a, c are stably indepen-
dent over cl(A ∪ {b}), then a is stably independent over A from (b, c).

Proof. All but transitivity follows directly from [8]. (Transitivity is proved there
under the assumption of global stability; we check it here under our more local
assumptions.)

So, let us prove transitivity. Work over A. Let φ(x; y, z) be stable. Note that any
instance φ(x; b, z) is stable (there are no sequences (ai , bi , ci ) with φ(ai ; b j , c j )

iff i < j ; in particular no such sequences with all b j = b). Let p = tpKP(a), and let
ψ(y, z) be the p-definition of φ. Then ψb = ψ(b, z) is the tp(a/ cl(b))-definition
of φb(x, z) = φ(x; b, z). This is because there exists a (“Morley”) sequence ai

such that for any (b′, c′), limi φ(ai , b′, c′) = ψ(b′, c′); in particular this holds
for b′

= b. On the other hand the existence of such an indiscernible sequence
implies that for any β ̸= ψ(b, c′), φ(a, b, y)= β divides for y |H tp(c′/b); so the
tp(a/ cl(b))-definition of φb(x, z) must be ψ(z).

Now assume a, b are stably independent over A and a, c are independent
over cl(Ab). Then φ(a; b, c) holds iff ψb(c) iff ψ(b, c). This shows the stable
independence of a and (b, c). □
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3.12. Analytic structures viewed as interpretable. Let µ be a definable measure
(in variable x) for a theory T , for instance obtained using expectation quantifiers.
We will view the Hilbert space L2(µ) as piecewise-interpretable in T . For any
model M |H T , we have L2(µ)(M)= L2(Sx(M), µ).

Then the Hilbert space formulas provide us with stable formulas of T , in the
sense of continuous logic; and the results on stable independence apply.

For our purposes, we could use the theory of probability algebras in place
of the theory of Hilbert spaces; the probability algebra B(µ) can be identified
with the elements of L2(µ) represented by {0, 1}-valued Borel functions, but we
have not only the induced norm from L2(µ) but also multiplication as part of
the structure. Stability of B(µ) can in any case be deduced from that of L2(µ).
For other applications, the Banach lattice L1(µ) will be needed. The Hilbert
space picture is appealing in particular in connection with the Peter–Weyl theorem,
and the representation of the automorphism group of the algebraic (bounded)
hyperimaginaries. For definiteness we will talk about Hilbert spaces below, but the
discussion would be the same for the others.

Let U be a large saturated model of T . Let H be the Hilbert space H = L2(SX (U)).
For any small substructure A, possibly including (hyper)imaginaries, we define HA

to be the subspace of H fixed by Aut(U/A).

Remark 3.13. There is a canonical embedding of L2(SX A) into H , falling into
HA (namely, f 7→ f ◦ r , where r is the restriction SX (U)→ SX (A)). This will be
surjective assuming a certain “strong germ” property; without such an assumption,
there may exist a family (Dc : c ∈ Q) of definable sets such that µ(Dc△Dc′)= 0
for all c, c′

∈ Q, but no A-definable set is equivalent to any Dc. We will not make
this assumption, so the image of L2(SX A) in H may be smaller than HA.

The elements of H can be viewed as hyperimaginaries of U; in fact H is piecewise
interpretable in U, in a sense that we now explain. An element ξ of L2(SX (U)) can
be approximated by continuous functions, given as the value of a formula φ(x, a)
of real-valued continuous logic. Thus

ξ = lim
n
φn(x, an)

with the limit taken in the L2-norm. Let κ =∥ξ∥2 and φn(x, an) of L2-norm ≤ k+1.
Moreover we can choose the sequence with ∥φn(x, an)− ξ∥2 ≤ 2−(n+1), so that

∥φn(x, an)−φn(x, an+1)∥2 ≤ 2−n, ∥φn(x, an)∥2 ≤ κ + 1.

Let ā be the sequence (an), and φ the sequence φn , and write Lφ for the set of
sequences ā satisfying the displayed formula. The number of possibilities for φ is
bounded (by |L|

ℵ0); the sets Lφ are easily seen to be directed, under inclusion (by
using disjunctions, and using parameters to choose the appropriate disjunct). For
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each such φ, Lφ is a
∧

-definable set. In this sense,
⋃
φ Lφ is piecewise

∧
-definable.

The equivalence relation limφn(x, an) = limφn(x, bn) is also
∧

-definable; it is
equivalent to ∧

n

Ex
(
(φn(x, an)−φn(x, bn))

2)
≤ 2−(n−2),

where Ex is the expectation. Moreover, within Lφ , the relations a + b = c, αa = a′

(for α ∈ R) are
∧

-definable, and so is the formula giving the inner product; it
is approximated by Exφn(x, an)φn(x, bn), uniformly in (a, b) for a, b such that
∥a∥2, ∥b∥2 is bounded.

Let L H be the language of H , i.e., in our case the Hilbert space language.

Lemma 3.14. Assume A ≤ B ∩ C , A = cl(A) and B,C are stably independent
over A. Let H be a stable structure, piecewise interpretable in the sense considered
above. Assume HA is closed in H , i.e., every H-hyperimaginary element that
is bounded over HA lies in HA. Then HB and HC are L H -independent over
H ′

A := H eq
∩ A.

Proof. Let b ∈ HB , c ∈ HC and let φ(x, y) be a (stable) L H -formula. We view b, c
as hyperimaginary elements of M . Then tp(b/A) is consistent with an A-definable
φ-type p(x). Note that the canonical base of p, in the sense of L H , is then defined
over A and lies in H eq, so p is defined over H ′

A. By the stable independence of
B,C over A, φ(b, c) holds iff φ(x, c) ∈ p|C . As this is true for every L H -formula
φ, b, c are L H -independent over H ′

A. □

In the case of Hilbert spaces, it is known [7] that for any imaginary h, we have
cl(h) = cl(e) with e coding a finite-dimensional subspace E of H . (Note that
the lemma refers to hyperimaginaries of H itself, not to the induced structure
from the piecewise-interpretation.) Moreover, E ⊆ cl(h). (It suffices to show that
E1 := {a ∈ E : ∥a∥2 = 1} ⊂ cl(e). But E1 is compact, and e-definable, so by
definition of “closed” for continuous logic, E1 ⊆ cl(e).) Thus we obtain a simpler
form, Lemma 3.15.

Lemma 3.15. Assume A ≤ B ∩ C , A = cl(A) and B,C are stably independent
over A. Then HB and HC are independent as Hilbert spaces over HA.

Let Z be a stochastic sort. We have a regular Borel measure µ on SZ (U) induced
by the Z -expectation operators. Let H be the associated piecewise-hyperdefinable
Hilbert space, and B the associated probability algebra. Let H0̃, B0̃ be the subspace
(respectively subalgebra) of H, B consisting of elements with bounded orbit over
∅ (almost invariant). We will also write simply 0̃ for B0̃; so H0̃ can be identified
with L2(B0̃).

B0̃ consists of a bounded number of elements, each of which lives in some
hyperdefinable piece of B and hence can be identified with a hyperdefinable element.
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Hence two elements with the same Kim–Pillay type have the same type over B0̃;
the equivalence relation tp(x/B0̃)= tp(y/B0̃) is

∧
-definable, and with boundedly

many classes.
Let X̂ denote the set of Kim–Pillay strong types of elements of X ; so X̂ = X/E

for a certain cobounded
∧

-definable equivalence relation on X . For a ∈ X (U), let
â denote the image of a in X̂ .

Since B0̃ consists of boundedly many hyperimaginaries, â determines tp(a/B0̃).
Let 4= Ẑ be the maximal bounded quotient of Z by a

∧
-definable equivalence

relation. 4 carries a Borel probability measure, the pushforward µ0 of µ on SZ (U)

(or any SZ (M)).
Recall that we write a |⌣ b if tp(a/b) does not divide over ∅ with respect to any

stable formula.

Theorem 3.16 (independence theorem for probability logic). Let (Z , µ) be a sto-
chastic sort.

(1) Let a ∈ X (M), b ∈ Y (M), with a |⌣ b. Then R(a, z), R′(b, z) are statistically
independent over 0̃.

(2) Assume X carries a definable measure ν, and ν, µ commute (i.e., Fubini holds).
Then there exist a

∧
-definable set X∗

⊂ X of full measure, such that if a ∈ X∗,
b ∈ Y (M), and a |⌣ b, then R(a, z), R′(b, z) are statistically independent
over 4.

In the proof below, we will use the measure space (X, 0̃, µ|0̃); we write an
integral of a measurable function f with respect to this space simply as

∫
0̃ f . We

will also use the compact space X̂ ; as a measure space, it is always understood to
carry the measure derived by pushforward from ν (and also denoted ν). 4 always
carries the pushforward measure from SZ (U). We denote conditional expectation
with respect to a subalgebra A by E( f |A); when A is the measure algebra of a
space S, e.g., of S = X̂ ×4, we will also write E( f |S) for E( f |A).

Proof of Theorem 3.16(1). For a ∈ X (M), define a function â : S → R, q 7→ R(a, c),
where c |H q; similarly b̂. Let e, e′ be bounded Borel functions on R, and write
ae for e ◦ â. Let Er (φ) = E(φ|0̃) denote the conditional expectation to 0̃. We
have to show that as 0̃-measurable functions, we have Er (ae

· be′

)= Er (ae)Er (be′

).
Equivalently, for any bounded φ ∈ B0̃, integrating with respect to (0̃, µ|0̃) we have∫

φ(r)Er (ae
· be′

)=

∫
φ(r)Er ae Er be′

.

We can restrict to the characteristic functions of clopen sets, and view φ as a
{0, 1}-valued, almost invariant Borel function Sz(M).

Let a0 be the orthogonal projection to H0̃ of φae, b0̃ the orthogonal projection to
H0̃ of be′

. For any element g ∈ H0̃, we have
∫

g(r)φ(r)Er ae
=

∫
g ◦π(r)(φ◦π)ae

=
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(g, φae)H = (g, a0)H0̃
. So a0(r)= Er (φ(r)ae). Similarly, with the natural notation,

b0(r)= Er (be′

). Thus what we have to show is∫
φ(r)ae

· be′

=

∫
a0(r)b0(r),

or in Hilbert space notation,

(φae, be′

)E = (a0, b0)H0̃
.

Now φae
− a0 ⊥ H0̃, and be′

− b0 ⊥ H0̃. In particular,

(φae
− a0, b0)= (a0, be′

− b0)= 0.

Thus what we need is that φae
−a0 and be′

−b0 are orthogonal vectors. This follows
from Hilbert space independence of ae, be′

, which we have by Lemma 3.15. □

The proof of Theorem 3.16(2) involves three steps:

(a) Define a subset X∗ of X , consisting of the elements whose R-interaction with
0̃ factors through 4, and show it is

∧
-definable.

(b) Show ν(X∗) = 1. It will be useful to prove this under a weaker assumption
than stated, namely that ν is X̂ -definable rather than 0-definable.

(c) For a ∈ X∗ and any b ∈ Y with a |⌣ b, R(a, z), R(b, z) are statistically
independent over 4.

Towards (a), let βa be the orthogonal projection of R(a, z) to H0̃.
We noted earlier, using the fact that the elements of B0̃ are hyperdefinable,

that B0̃ ⊂ dcl(4). Hence βa depends only on q = tp(a/4), and thus only on â. We
may also write βq̂ .

Let αâ be the orthogonal projection of R(a, z) (or equivalently of βa) to L2(4).
Define

X∗
:= {a ∈ X : βa ∈ L2(4)}.

Equivalently, a ∈ X∗ if αâ = βâ .

Lemma 3.17. X∗ is
∧

-definable. In fact it given by a conjunction of pure probabil-
ity logic formulas with parameters.

Proof. Let (ci ) be a basis for the orthogonal complement of L2(4) in H0̃. We
have a ∈ X∗ iff (R(x, a), ci )= 0 for each i . By piecewise

∧
interpretability of the

Hilbert space structure, each map a 7→ (R(x, a), ci ) is (a uniform limit of) definable
relations on X . So X∗ is

∧
-definable.

To see that the relevant formulas use only expectation quantifiers, we may assume
∥R(a, z)∥2 ≤ 1. Approximate ci by continuous functions ci, j ∈ C(SZ (U)), so that
∥ci − ci, j∥L2(4) < 2− j . Then the condition (R(x, a), ci )= 0 can be written as the
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conjunction of (R(x, a), ci, j ) ≤ 2− j . Now (R(x, a), ci, j ) = Ez R(x, z)ci, j (z) is
visibly obtained by an expectation quantifier. □

(Is X∗
∧

-definable by pure probability logic formulas without parameters?)
Next we prove (b). This concerns only (X, Z , R), so Y, R′ are not involved, and

in the proof of Lemma 3.18 we will use the letter y for a second variable ranging
over X .

Using the two projections from Sxz(U), we can view both measure algebra of
X̂ and 0̃ as subalgebras of the measure algebra Bxz(U). Let 0̃[X̂ ] denote the σ -
subalgebra of Bxz(U) they generate; this is just the measure algebra of the product
measure space of (Z , 0̃)× (X̂ , ν).

Lemma 3.18. ν(X∗)= 1.

Proof. We let x, y range over (X, ν), while z ranges over (Z , µ). Since µ, ν
commute, we have, as our principal use of Fubini,

Ex Ey Ez(R(x, z)∧ R(y, z))= Ez Ex Ey(R(x, z)∧ R(y, z)).

Now Ex Ey(R(x, z)∧ R(y, z))= Ex R(x, z)Ey R(y, z)= (Ex R(x, z))2 by property
(2) of probability quantifiers, so

Ex Ey Ez(R(x, z)∧ R(y, z))= Ez((Ex R(x, z))2). (1)

Let β= E(R(x, z)|0̃[X̂ ]) be the conditional expectation of R(x, z) (as an element
of L2(Sx,z(U))) to an element of L2(0̃[X̂ ]).

We will express each side of (1) in terms of β. First, using Theorem 3.16(1), for
any a, b ∈ X ,

E(R(a, z)∧ R(b, z)|0̃)= E(R(a, z) : 0̃)E(R(b, z)|0̃)= βaβb

so

Ez(R(a, z)∧ R(b, z))=

∫
0̃
(E(R(a, z) : 0̃)E(R(b, z)|0̃)=

∫
0̃
βaβb =

∫
0̃
βâβb̂,

where
∫

0̃ denotes the integral of a 0̃-measurable function (note all our functions
are bounded and so integrable). The last step expresses the fact that â determines
tp(a/0̃), and in particular βa = βâ depends only on â.

Note that
∫

â∈X̂

∫
b̂∈X̂ βâβb̂ =

(∫
â∈X̂ βâ

)2. But
∫

â∈X̂ βâ = E(β|0̃). Thus

Ex Ey Ez(R(x, z)∧ R(y, z))=

∫
â∈X̂

∫
b̂∈X̂

∫
0̃
βâβb̂

=

∫
0̃

E(β|0̃)2 = ∥E(β|0̃)∥2
2, (2)
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where the norm is taken in H0̃. Here we used ordinary Fubini, allowed since the
integrand is measurable for the product measure.

On the other hand, for c ∈ Z , Ex R(x, c), as the value at c of a pure probability
formula with respect to ν, depends only on the pure probability type of c over ν,
and hence only on ĉ, the image of c in 4, which determines tp(c/X̂). (Here we use
definability of ν over X̂ -parameters.) By factoring E(β|4) through E(β|X̂ ×4]),
we see that for almost all ĉ, Ex R(x, ĉ)= E(β|4)(ĉ).

Thus, squaring this equality and integrating now over ĉ ∈4,

Ez((Ex R(x, z))2)= ∥E(β|4)∥2
2, (3)

where now the norm is taken in L2(4). By (1)–(3) we have

∥E(β|0̃)∥L2(0̃) = ∥E(β|4)∥L2(4).

Now E(β|4) is the orthogonal projection to L2(4) of E(β|0̃) ∈ H0̃. Since they
have the same norm, we must have E(β|0̃) ∈ L2(4).

Let ψ be any continuous “test function” on X̂ . Then ψν is another measure
on X ; it may not be 0-definable but it is X̂ -definable, so that the above result applies.
We obtain E(ψβ|0̃)∈ L2(4). By factoring first through the product algebra BX̂ × 0̃,
it follows that for almost all q ∈ X̂ , E(βq) ∈ L2(4), concluding the proof. □

Proof of Theorem 3.16(2). It remains to prove (c). Let a ∈ X∗. Recall βa ∈ L2(0̃)
is the conditional expectation of R(a, z) relative to 0̃, equivalently the orthogonal
projection of R(a, z) ∈ L2(SM(Z)) to L2(0̃); while αa is the orthogonal projection
of R(a, z) to L2(4); αa depends only on tp(a/4) and hence on q = â. Similarly
define β ′

b, α
′

b for R′. Then by Theorem 3.16(1),

Ez(R(a, z)∧ R′(b, z))=

∫
r∈S(0̃)

βaβ
′

b = (βa, β
′

b).

The last term is the inner product in L2(0̃). By definition of X∗, we have βa =αa , so

(βa, β
′

b)= (αa, β
′

b)= (αa, α
′

b).

(The last equality is by the characteristic property of orthogonal projections to
closed subspaces of Hilbert space, (P(u), v)= (P(u), P(v)).) Thus

Ez(R(a, z)∧ R′(b, z))= (αa, α
′

b),

where now the inner product is computed in L2(4), and hence proves independence
over 4. □

Remark 3.19. Assume L is countable.
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(1) Aside from the sharper conclusion, Theorem 3.16 has a considerably wider
domain of applicability than a purely L2-based statement such as Theorem B.11,
which applies only to a random 2-type. For example Theorem 3.16 applies when
tp(a/4)= tp(b/4), frequently an important situation, though tp(a, b) is certainly
not random in this case. An example of this is given in Appendix C.

(2) Note X∗ is defined in terms of (X, Z , µ, R) alone. It is shown to have full
ν-measure for any commuting ν. And if a ∈ X∗, statistical independence over 4 is
proved for any (Y, R′

⊂ Y × Z).

(3) A variation: Let (Z,µ) be a stochastic sort. Let a∈ X(M), b∈Y(M), with a |⌣ b.
Assume X has a 4-definable measure ν commuting with µ, and concentrating
on tp(a). Then R(a, z), R′(b, z) are statistically independent over 4. It suffices for
ν to be Borel-definable, in the sense of [45]. We do not use self-commutation of ν!
This is proved in the same way as Theorem 3.16(2), but more easily; in Lemma 3.18
integration over X̂ becomes unnecessary, since only one strong type is involved.

(4) Let (Z1, µ1) and (Z2, µ2) be stochastic sorts. For a measure one set of types q2

on Z2, if (a, b) |H q2 then a |⌣ b. Here “types” can be taken to be 8-types, where
8 is the family of all stable probability logic formulas.

(5) Let (Z , µ) be a self-commuting stochastic sort, and Ri ⊂ Z2 a definable binary
relation. Then for almost all types q on Zn , if (a1, . . . , an) |H q then the events
Ri (ai , z) (i = 1, . . . , n) are independent over 0̃, and over 4 in case µ is self-
commuting. This follows inductively from (4) and Theorem 3.16, taking at first
X = Xn−1, Y = Z = X to obtain that

∧
i≤n−1 R(ai , z) is statistically independent

from R(an, z) over 4.

(6) We used here the full Kim–Pillay space, without restricting the level of defin-
ability of the implied

∧
-definable equivalence relations. This is inevitable due to

the starting data; our notion of independence uses the complete type of a and of b;
in particular if a is 0-definable or lies in the bounded closure of 0, via a formula
involving quantifiers, then a |⌣ a holds. On the other hand the deduction of (2) from
(1) uses probability quantifiers only. Since the Hilbert space is PPL interpretable,
it should be possible to formulate a version of (1) and hence of the full theorem
with definability in terms of probability quantifiers, given a stronger assumption of
independence at the quantifier-free level.

3.20. Interpretative power of probability logic in a binary relational language.
Let M be an L-structure with all sorts stochastic with commuting expectation
quantifiers; for simplicity take a single sort X , and assume the measure on X is
self-commuting.

Recall X̂ is the biggest bounded quotient of X . If f : X̂ → R is a continuous
function, then α(x) = f (x̂) is an M-definable function. Let MX̂ be the result of
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adding to the language all such functions α, or equivalently, a countable subset that
separates points. MX̂ is the expansion by all parametrically definable relations that
are definable in MA for any elementary submodel A of M , MA being the expansion
of M by constants for A. Moving to MX̂ is known as working over the algebraic
closure of the empty set, here in the sense of continuous logic.

Assume that L consists of unary and binary relations, and possibly unary function
symbols. Let Lqf denote the set of quantifier-free formulas, and Lprob the result of
closing Lqf under continuous connectives and expectation quantifiers.

Corollary 3.21. Assume L is binary, and countable. Away from a measure zero
set of n-types, the Lprob type of a tuple (a1, . . . , an) of M is determined by the
quantifier-free type of (a1, . . . , an) along with the values of unary X̂ -definable
formulas α(ai ).

Equivalently, for each φ ∈ Lprob there exist formulas α1, α2, . . . of L X̂ , each
taking a single variable from among x1, . . . , xn , Lqf-formulas βk(xi , x j ), each
taking two variables from among the xi , and a Borel function 9, such that

E(|φ−9(α1, α2, . . . , β1, β2, . . .)|)= 0.

In other words, for almost all x1, . . . , xn , φ =9(α1, α2, . . . , β1, β2, . . .).

Proof. Let us first see that the second statement follows from the first. Let Zn

be the space of Lprob-types on Xn , Z = Zn ×(Z1)n X̂n , W the space of 1-types
where 1 consists of all qf formulas along with X̂ -definable unary formulas. We
have a natural restriction map r : Z → W . By the first statement, there exists a
measure-one set Z ′

⊆ Z such that r is injective on Z ′. We may take Z ′ to be an Fσ
set, i.e., Z ′

=
⋃

n Zn is a countable union of compacts (seeing that Z is compact).
Let Wn = r(Zn). Then Wn is a closed subset of W , and r−1 is continuous on Wn .
It follows that r−1 is Borel on

⋃
n Wn; and any continuous function φ on Z can be

expressed as 9(r(z)), where 9 =
⋃

n(r
−1

|Wn).
Next let us prove that the Lprob type is indeed determined by the given data.

The unary relations α arising from continuous functions on X̂ can be recombined
to give the map x 7→ X̂ . So it suffices to show that for φ ∈ Lprob, the value
φ(a1, . . . , an) is determined a.e. by the quantifier-free type of (a1, . . . , an) along
with the elements âi ∈ X̂ . Using Hoover’s Theorem 3.6, we may take φ to have
the form Ewψ(w, a1, . . . , an), where w may be a tuple, and ψ is quantifier-free.
As usual in quantifier-elimination, working inductively, we may assume w is a
single variable. By Stone–Weierstrass we can take ψ to be a polynomial in basic
formulas R(w, x j ). Since Ew is additive, it suffices to determine the value of each
monomial, i.e., of products of such basic relations. In the presence of function
symbols, we view a relation R′( fw, gx j ) simply as another relation R′′(w, x j ). We
may collect together all relations belonging to a given variable x j to obtain a single
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relation R j (w, x j ). The value EwR j (w, a j ) is determined by â j . Finally the value
of Ew

∏
j R j (w, x j ) is just the product of these last, by Remark 3.19(5). □

Remark 3.22. (1) Here X̂ should be viewed as a topological structure. The
relations are these: for each stable qf formula φ(x, y), we have a map on X̂2 giving
the generic value of φ at (p, q) ∈ X̂2.

(2) It would be interesting to determine when 9 can be taken to be continuous
and not just Borel. If one is content with quantifier-elimination up to 99%, rather
than almost everywhere, 9 can be taken to be a continuous function of finitely
many variables: for each φ = φ(x1, . . . , xn) ∈ Lprob, there exists a quantifier-free
L X̂ formula φ′ such that E(|φ−φ′

|)≤ 0.001.

(3) A (real-valued) U-definable formulaψ is a matrix coefficient if the set of Aut(U)-
conjugates of ψ spans a finite-dimensional space; equivalently, ψ factors through
a definable map from X to a

∧
-interpretable finite-dimensional Hilbert space. In

place of working over the algebraic closure, one can make similar statements in
terms of matrix coefficients maps or in terms of definable maps into

∧
-interpretable

finite-dimensional Hilbert spaces.

(4) We did not restrict the definability level of the unary maps αi in Corollary 3.21.
In case we are working over an elementary submodel, it suffices to take qf-definable
ones. If the Galois group of X̂ is trivial, one can take qf-definable maps over a
saturated model M , with the property that they are invariant under Aut(M/X̂). In
general it should be possible to describe the quotient of X̂ we require using proba-
bility logic definable functions; we do not take it up here, but see Remark 3.19(6).

This can be read as saying that with pure probability logic, over a binary lan-
guage,4 interesting finite or finite-dimensional structures are interpretable along
with a map from M into them; and given these, nothing else can be interpreted that
is not visible at the level of basic relation symbols.

The fundamental problem here is to extend the theory Theorem 3.16 to 4-
amalgamation and higher. The following weak version would already be useful.
Recall that in the presence of a notion of independence of two substructures over
a third, an independent system of substructures is a family (Au : u ∈ S), where
S is a simplicial complex, such that Au is independent from

⋃
{Av : ¬u ≤ v}

over
⋃

{Aw : w < u}.

Problem 3.23. Assume µ is a strictly definable measure on X . Does there ex-
ist a canonical piecewise-interpretable independent system of measure algebras
(Sũ : u ⊂[n]) containing the measure algebras F(u) of formulas in variables from u?

4I.e., the signature has only binary relation and unary function symbols.
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Part of the above statement is existence of such an independent system. This
should be possible essentially using the result over a model M (Theorem B.11), but
replacing M by a probability space of possible interactions with the variables; this
only provides a highly “almost everywhere” result.

By Theorem B.8, at least a measure stationarity is obtained assuming higher
amalgamation. For stable theories, the expansion required to obtain higher amalga-
mation is understood, see [42]. Could this be combined with stability of the measure
algebras so as to give a more precise construction bringing out the geometry?

3.24. Stability and NIP. The following proposition — for stability and NIP — is
a very special case of a powerful general theory of randomization, due to Ben
Yaacov and Keisler. The proof we give for all three is a simple application of the
Vapnik–Chervonenkis uniform law of large numbers.

Proposition 3.25. Stability, NIP and pNIP are preserved by probability quantifiers:
assume ψ(u, x; y) is stable (resp. NIP, pNIP). Then (Eu)ψ(u, x, y) is stable (resp.
NIP, pNIP).

Proof. Suppose (Eu)ψ(u, x, y) is unstable. Then there exist α < β ∈ R and (ai , bi )

(i ∈ N) such that (Eu)ψ(u, ai , b j ) < α when i < j while (Eu)ψ(u, ai , b j ) > β

when i > j . By [74], for some N there exist c1, . . . , cN such that for any a, b,∣∣∣∣(Eu)ψ(u, a, b)− 1
N

N∑
k=1

ψ(ck, a, b)
∣∣∣∣< 1

3
(β −α).

Let α′
= α+

1
3(β −α) and β ′

= β −
1
3(β −α). By refining the sequence we may

assume lim j→∞ limi→∞ ψ(ck, ai , b j )=γk and limi→∞ lim j→∞ ψ(ck, ai , b j )=γ
′

k
both exist. Now for i < j we have 1

N

∑N
k=1 ψ(ck, ai , b j ) < α

′ while for i > j rather
1
N

∑N
k=1 ψ(ck, ai , b j ) > β

′. Thus

1
N

N∑
k=1

γ ′

k <
1
N

N∑
k=1

γk .

But by stability of ψ(ck, x, y) we have γk = γ ′

k ; a contradiction.
A similar proof works for NIP, once we know that the value of the sample size N

in the Vapnik–Chervonenkis theorem can be bounded polynomially; in the case of
pNIP, we need the bound to depend polynomially on both the desired approximation
and on the pNIP degree (equivalently, on the Vapnik–Chervonenkis dimension).

To simplify notation take the special case of a {0, 1}-valued relation ψ(u, x, y).
Let d ′ be the Vapnik–Chervonenkis dimension ofψ(u; x, y)∧ψ(u; x ′, y′) viewed as
a relation between u and x, y, x ′, y′. Let d be the Vapnik–Chervonenkis dimension
of ψ(u, x, y) viewed as a relation between x and u, y.
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Let n,m ∈ N; let B be a set of size m (in the y-sort), and let a1, . . . , ar have
distinct (Eu)ψ(u; x, y) types over A, at resolution 1/n; in other words if i ̸= j then
for some b ∈ B, |(Eu)ψ(u; ai , b)−(Eu)ψ(u; a j , b)|> 1/n. In particular (possibly
after interchanging i, j) we have µ({u : ψ(u; ai , b)∧ ¬ψ(u; a j , b)}) > 1/2n. We
have to bound r polynomially in m, n.

By Proposition 2.18, there exist a set C of size ≤ (16d ′n)2 such that for any
i ̸= j , for some b ∈ B and some c ∈ C we have ψ(c; ai , b)∧¬ψ(c; a j , b) (or vice
versa). Thus the elements ai have distinct ψ-types over B ∪ C . By assumption, if
|B| ≥ d we have r ≤ (|B| + |C |)d ; this gives the required polynomial bound. □

From the above (either using Hoover’s normal form, or induction on complexity
of the formula) we obtain:

Corollary 3.26. Let L be a language, possibly of continuous logic. Let M be an
L-structure. Assume each basic formula is stable under Th(M), with respect to any
partition of the variables into two nonempty sets. Then every pure probability logic
formula is stable.

A metric space is said to have finite packing dimension if for some C, α > 0, for
all sufficiently large n, any set of disjoint balls of radius 1/n has size at most Cnα .
The following is Theorem 4.1(c) of [60].

Proposition 3.27 (Lovász–Szegedy). Let φ(x, y) be a {0, 1}-valued NIP formula
on X × Y .

Assume given an invariant, generically stable measure µ(y), with associated
expectation operator Ey . Define a premetric d on X by

d(a, b)= Ey(|φ(a, y)−φ(b, y)|)= µ(φ(a, y)△φ(b, y)).

Let M be a model, and M the completion of X (M). Then M has finite packing
dimension, depending only on the Vapnik–Chervonenkis dimension of φ.

The same is true for the L2-distance d2(a, b)= µ(φ(a, y)△φ(b, y))1/2.

Proof. Let δ be the Vapnik–Chervonenkis dimension of φ. By the Sauer–Shelah
lemma, the number of φ-types over an N -element set is bounded by O(N δ). Assume
the 1/n-balls around a1, . . . , ak are disjoint. We have to bound k polynomially in n.
For i ̸= j we have d(ai , a j )≥ 1/n, so the measure of either φ(x, ai )∧ ¬φ(x, a j )

or the dual set is ≥ 1/2n. Let N = 16δn log(16δn) and let c1, . . . , cN be as in
Proposition 2.18. Then for each i ̸= j for some ν≤ N we have φ(ai , cν)∧¬φ(a j , cν)
or vice versa. Thus the ai have distinct φ-types over c1, . . . , cN . The number of
such types is at most O(N δ). So k ≤ O(N δ)≤ O((n log(n))δ).

If we use d2 then d2(ai , a j )≥1/n implies d(ai , a j )≥1/n2, so the same argument
gives k ≤ O((n2)2δ)= O(n4δ). □
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Remark 3.28. The proof of Proposition 3.27 is valid for any definable measure
µ on φ-types, using Remark 2.19. Since the measure is definable, it suffices to
consider a1, . . . , ak in a model M ; while c1, . . . , cN may be taken in an elementary
extension M∗.

3.29. A categoricity theorem, following Gromov, Vershik, Keisler. We now for-
mulate a uniqueness theorem for probability logic structures carrying a metric
and a definable measure of full support. For compact measure spaces, this is a
theorem of Gromov’s; Vershik [75] gave a simpler proof. All compact structures
have categorical continuous logic theories; the point here is that only expectation
quantifiers are used.

The result also bears a close relation with the uniqueness theorems for pseu-
dofinite structures of Keisler [52, p. 34; 53, 3.2.9]; but note the strong property
B4 assumed there, and not necessarily valid in our setting, e.g., for the random
graph. (It is valid however when the measure is on the model itself, as is the case
in Gromov’s theorem.)

In our application to approximately homogeneous approximate equivalence
relations, the theory itself ensures full support, i.e., when the volume of a ball of a
given radius r > 0 is bounded above 0.

We prove the theorem without uniform full support, compactness or σ -additivity
assumptions. In this case the result may be thought of as a probability logic
analogue to uniqueness theorems for prime models, rather than a categoricity
theorem. Note that it gives in particular a “soft” proof of the Gromov–Vershik
theorem, different from Vershik’s, using a basic model-theoretic “preservation
theorem”: if the universal theory of M contains that of N , then M embeds into an
elementary extension of N .

Let L be a continuous logic language; it has in particular a formula d(x, y) for
a metric, and various additional real-valued relations, uniformly continuous with
respect to the metric. Adjoin expectation operators, and let T be a pure probability
logic theory of L; thus we have a class C of formulas φ including all quantifier-free
formulas, and closed under expectation operators. We say T is ppl-complete if for
every φ(x) ∈ C , T determines (Ex)φ.

Let M |H T . Recall that the expectation quantifiers induce a measure on the type
space Sx(M), so that any

∧
-definable set over M is assigned a measure. M is said

to have full support if the measure of any ball is positive. M is complete if it is
complete as a metric space.

Theorem 3.30. Let T be a complete theory of pure probability logic. If M, N are
two complete models of T with full support, then M ∼= N. Moreover, any two tuples
in M with the same pure probability logic type are conjugate by an automorphism
of M.
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Proof. Let us view every formula using connectives and expectation quantifiers (the
class C above) as basic. Write M ≤ N to mean that any basic formula θ satisfies
θ N (a)= θM(a) whenever a ∈ Mn .

Claim 1. Let M1,M2 be two complete models of T with full support. Then the
universal theories of M1,M2 are equal.

Proof. Let φ(x) be a basic formula of L , where x = x1, . . . , xn . It suffices to show
that if φ(a)M1 ≥ 0 for all a ∈ M1

n , then φ(b)M2 ≥ 0 for all b ∈ M2
n . Suppose for

contradiction that φ(b)M2 < 0. By (uniform) continuity, for some ϵ > 0, for any
b′

∈
∏n

i=1 Bϵ(bi ), we have φ(b′) < 0. By the full support assumption the measure
of each of the balls Bϵ(bi ) is nonzero; thus the same is true of their product. Let
ψ = min(0, φ). Then Exψ

M2 < 0. But clearly Exψ
M1 ≥ 0, contradicting the

assumption that the pure probability theories are the same. □

Claim 2. Let M ≤ N with M complete, and c ∈ N ∖ M. Then for some ϵ > 0, the
ball Bϵ(c) is disjoint from M.

Proof. If there were no such ϵ, we could find a sequence of elements of M
approaching c; but M is complete, so c ∈ M would follow. □

Claim 3. Let M ≤ N. Let B = Bϵ(c) be a ball in N with no points in M.
Then µ(B)= 0.

Proof. Let ϵ′
=µ(B). Find in M elements a1, . . . , ak such that β :=µ

(⋃k
i=1 Bϵ(ai )

)
is as large as possible, to within ϵ′, so that the union of k+1 ϵ-balls of M has volume
< ϵ′

+β. By Claim 1, the same is true in N . However, µ
(⋃k

i=1 Bϵ(ai )∪ Bϵ(c)
)
=

β + ϵ′, a contradiction. □

Let us now prove the theorem. By Claim 1, M, N have the same universal theory;
so N embeds into an elementary extension M∗ of M ; we view it as so embedded.
Let c ∈ N . By Claim 2, if c /∈ M then some ball Bϵ(c) is disjoint from M , and
by Claim 3, µ(Bϵ(c))= 0. But this contradicts the full support assumption on N .
Thus N ⊆ M . Similarly, M ⊆ N , so M = N and in particular M ∼= N .

For the “moreover”, if a′, a′′ have the same type, enrich M by additional real-
valued relations φ(x, a′) (respectively φ(x, a′′)), for φ a probability logic formula,
to obtain structures M ′,M ′′ with the same pure probability logic theory, and with
full support. By the main part of the theorem, there exists an isomorphism M ′

→ M ′′,
hence an automorphism of M with a′

7→ a′′. □

Remark 3.31. The statement and proof of Theorem 3.30 remain valid for many-
sorted theories. Each sort is assumed to be endowed with a metric, and with
expectation quantifiers; M and N are assumed to be complete and of full support
in each sort separately.
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3.32. Local probability logic. We require a slight variant, local probability logic.
We work with local continuous real-valued logic as in Section 2.3. Recall that

a local relation φ(x1, . . . , xn) has bounded support, determined by ρ∗ and some
compactly supported continuous function b = bφ : R → R; we guarantee that

|φ(x1, . . . , xn)| ≤ bφ(max
i, j

ρ∗(xi , x j )).

Our description will depend in addition on a choice of positive reals C1 ≤C2 ≤· · · ;
Ck should be thought of as a bound for the measure of a ρ∗-ball of radius 2k.

Given a formula φ(x, y1, . . . , yn) with n + 1 variables, n ≥ 1, we allow an
expectation quantifier, so that we can form (Ex)φ(x, y1, . . . , yn).

By a probability or expectation quantifier in x we mean a syntactical operation
from formulas φ(x, y) (with y a nonempty sequence of variables distinct from x) to
formulas Exφ in the variables y, satisfying (2–4) of Section 3, and this generalization
of (1):

(1loc,k) For any continuous β : R → [0, 1] supported on [−k, k],

Exβ(ρ
∗(x, y))≤ Ck .

The numbers Ck are also used in the inductive definition of the syntactic bound
for the modulus of continuity of a formula; namely the modulus of Exφ(x, y) is
Cbφ+1 times the modulus of continuity of φ(x, y).

In practice, we concentrate on the case where the locality relation is induced
by a two-valued relation R; namely ρ∗

= dR . Theorem 4.3 will be formulated in
this setting (though it could be generalized). The idea is that quantification and
expectation can only be taken within dR-balls of some bounded radius.

3.33. Semantics. A model M for local probability logic is a model M for the
underlying local continuous logic theory, along with a definable measure on the type
space Sx(M), such that for any local formula φ(x, y), we have

∫
φ(x, b)=(Exφ)(b).

In particular, the measure of a dR-ball of radius k is at most Ck .
In locally pseudofinite semantics, we begin with a family of locally finite

graphs Gi , letting ρ∗ be the graph distance, and using a multiple µ = ciµcount

of the counting measure; such that the volume of a ball of radius 1 is at most C1.
By pure (local) probability logic we mean the local formulas obtained from

the basic ones using local connectives (Section A.1) and expectation quantifiers
Ez alone. Due to the locality stipulation in the formation of formulas, there may
be no pure probability logic formulas without free variables. We define the pure
probability logic theory of a structure M by allowing universal quantifiers on the
left. Thus to give this theory is equivalent to determining the closure of φ(M) for
any tuple φ of formulas. Of course once a constant is added sentences do appear; in
the proposition below, where a constant is assumed, the theory can be taken to be
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the set of values of sentences. By Claim 1 of Theorem 3.30, the additional universal
quantifiers do not add information here, when M has full support.

Proposition 3.34. Let (X, a) be a complete pointed model of a local probability
logic theory, such that any ball has finite, nonzero measure. Then the isomorphism
type of (X, a) is uniquely determined by the probability logic theory of (X, a). In
other words if (Y, b) is another structure with the same properties, and the type of a
in X equals the type of b in Y , then (X, a)∼= (Y, b).

Similarly for k-pointed structures.

Proof. Note that Theorem 3.30 applies to each closed neighborhood of the distin-
guished point. The proof is the same as of Theorem 3.30, but to begin with choose
a type q in variables xi, j , i, j ∈ N, such that xk, j lies at distance ≤ k from a; with
q random in the product space of the balls of radii 1, 2, 3, . . . around a. Use also
the additional relations allowed there of the form φ(a, x), for φ a probability logic
formula.

The k-pointed case follows from the 1-pointed case, as the language may include
constants. Compactness of a metric space implies separability and completeness
and so only strengthens the hypothesis. □

Remark 3.35. We will obtain X as the completion of a (locally) saturated proba-
bility logic structure M , with respect to a definable pseudometric d . This includes
a quotient with respect to the equivalence relation d(x, y)= 0, which is assumed
(locally) cobounded (this is equivalent to the (local) compactness assumption on
X ). Let P be a 1-type of M with respect to pure probability logic, and let P be the
image of P in X . Then Proposition 3.34 assures us that the (isometric) isomorphism
group G of X is transitive on P . This does not, in itself , mean that Aut(M) is
transitive on P , since the induced map Aut(M)→ Aut(X) may not be surjective;
the pure probability logic type may not generate a complete type.

If we use full continuous logic, including the expectation quantifiers, we can
enrich X by predicates for all the images on X of 0-definable relations on M . They
are all closed in the logic topology, and hence in the metric topology. Also take
M is |L|

+-saturated and homogeneous. In this case, the natural map G → Aut(X)
is surjective. To see this, let ā be a random sequence from X as in the proof of
Theorem 3.30, and b̄ = g(a). Lift ā to a ∈ M . Then b̄ lifts to b ∈ M satisfying
the same type. By saturation there exists an automorphism of M taking a to b.
Proposition 3.34 is similar.

Definition 3.36. A sequence of finite graphs (�n, Rn) is approximately homoge-
neous if for any pure probability formula in one variable φ(x), the value of φ
becomes constant as n → ∞:

lim
n,n′→∞

sup
x∈�n,x ′∈�n′

|φ(x)−φ(y)| = 0.
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A similar definition applies in local probability logic
The sequence is approximately homogeneous a.e. if any pure probability formula

in one variable φ(x), for some v = v(φ), for any ϵ > 0, for all sufficiently large n
we have

µ({x ∈�n : |v−φ(x)|> ϵ}) < ϵ.

In local probability logic, the sequence �n is approximately homogeneous a.e.
if for any local pure probability formula in one variable φ(x), for some v = v(φ),
for any ϵ > 0 and m, for all sufficiently large n and any ball B of �n of radius m,

µ({x ∈ B : |v−φ(x)|> ϵ}) < ϵ.

Equivalently, for any continuous β : R → [0, 1] with compact support, for all
sufficiently large n we have

(Exβ(ρ
∗(x, t))|v−φ(x)|)�n < ϵ.

Remark 3.37. Let us formulate the notion of a sequence of graphs approaching
a 1-homogeneous graph in probability logic, in terms used in combinatorics ([69;
60]; compare also [11]).

In particular the measure of the set of neighbors R(a)={b : (a, b)∈ R} approaches
some real number ϖ . Let N be the set of connected graphs on m + 1 vertices.
Given a ∈�, and γ ∈ N , let C(γ, a) be the set of graph embeddings γ →� with
0 7→ a. Define the local statistics function LSm :�→ [0, 1]

N by

LSm(a)(γ )= µm(C(γ, a))= |C(γ, a)|/ϖm .

Say (�, R) is (m, ϵ)-homogeneous if the range of LSm is concentrated in an
ϵ-ball (for sup metric on RN ). If (�, R) and (�′, R′) are both (m, ϵ)-homogeneous,
we say that they are (m, ϵ)-close if the respective ranges intersect.

4. Stabilizer theorem for approximate equivalence relations

Two metrics d, d ′ are commensurable at scale α if an α-ball of d ′ is contained
in finitely many α-balls of d, and vice versa; k-commensurable at scale α if the
number of balls needed is ≤ k.

A metric space is k-doubling at scale α if d, 1
2 d are k-commensurable at scale α.

Definition 4.1. Let 0 = (�, R), where R is a symmetric, reflexive binary relation.
R is a k-approximate equivalence relation if condition (1) holds. It is a near
equivalence relation if for some finitely additive measure µ on �, (2,3) hold. R is
an amenable approximate equivalence relation if (1–3) hold.

(1) (Main axiom; “doubling”) For all a, a 2-ball R2(a) is a union of at most k
1-balls R(b).
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(2) For some ϖ > 0 and κ > 0, for all a ∈ �, (1/ϖ) ≤ µ(R(a)) ≤ ϖ ; and
µ(R3(a))≤ κ .

(3) (Weak Fubini) For some ϑ > 0, for all a, µ({b : µ(R(a)∩ R(b))≥ ϑ}) > ϑ .

Given (2), weak Fubini follows from Fubini applied to {(x, y) : R(a, x)∧R(x, y)},
a subset of R(a)× R2(a) of measure at least equal to 1/ϖ 2. We note in the lemma
below that it automatically holds (assuming 2) if R is replaced by the distance-two
relation R2; or given (1,2), for (0, R) with transitive automorphism group.

Lemma 4.2. (1) If (�, R) satisfies (2) then (�, R2) is an amenable approximate
equivalence relation.

(2) If (�, R) satisfies (1,2) and has a transitive automorphism group, then (�, R)
is an amenable approximate equivalence relation.

Proof. (1) We use the graph analogue of “Rusza’s trick”. Namely, a maximal
disjoint set of balls R(ai ) contained in R3(a) must have size at most κϖ <∞. By
maximality, for any b ∈ R3(a) we have R(b)∩ R(ai ) ̸=∅ for some i , so b ∈ R2(ai );
thus R3(a) ⊂

⋃
i R2(ai ), i.e., R3(a) is a union of at most κϖ two-balls. From

this, inductively, R2+m(a) is the union of (κϖ)m two-balls. In particular taking
m = 2, we obtain Definition 4.1(1) for R2. For (2) we use the same measure; since
every two-ball contains a one-ball we have the lower bound upon R2(a); and since
every three-ball of R2 is contained in at most (κϖ)4 two-balls, we have the upper
bound on 3-balls of R2. Finally to check (3), if b ∈ R(a) then R(a) ⊂ R2(b) so
µ(R2(a)∩ R2(b)) ≥ µ(R(a)) ≥ (1/ϖ). This shows that (�, R2) is an amenable
approximate equivalence relation.

(2) Note that (1,2) imply that (3) holds for some a: if R2(a)=
⋃k

i=1 R(ai ), then
(3) must hold for some ai , since for any b ∈ R(a) we have µ(R(b)∩ R2(a)) > 0.
Hence (3) holds for all a if we have homogeneity. □

Note that subspaces of Euclidean space are doubling at every scale. Let � be
an ϵ-sphere packing of Rn , i.e., a maximal set (of “centers”) such that any two are
at distance at least ϵ. So any 2ϵ-ball contains at least one point of �. It follows
that (�, R) is a k-approximate equivalence relation, for appropriate k on the order
of 2n; where R is the “distance at most 1” relation.

If (�, R) is given to us but not Rn , can we recover the relations corresponding
to radius one half balls, or smaller balls? Theorem 4.3 gives an affirmative result
in this direction. We begin with dR which makes sense for distances ≥ 1, deduce
ρ which is meaningful in distances between 0 and 1, and show that we still have
some doubling, and ρ, dR more or less fit together at the scale 1.

By definition, a set Z has measure zero iff B ∩ Z has measure 0, for all (finite
measure) balls B ⊂�.
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Let R be an amenable k-approximate equivalence relation on �. We obtain
a countably additive measure on the type space, or on a sufficiently saturated
elementary extension of (�, R). Let 80 be the set of pairs φ(x), (α, β) where φ is
a formula of pure probability logic in one variable, and (α, β) is a rational interval
in R (i.e., α < β ∈ Q) such that S(φ, α, β) := {x : α < φ < β} has measure 0;
equivalently, in terms of expectations, ExC(φ(x))= 0 for any continuous function
C supported on (α, β). Let �0 be the union of all S(φ, α, β), with (φ, (α, β))∈80.
This is a countable union, so �0 has measure 0. Note that allowing φ′(x), (α, β),
where φ′ is a uniform limit of formulas, would not change this union. Let �∗ be
the complement of �0. Then �∗ is a partial type of pure probability logic, has full
measure, and is the smallest such.

Theorem 4.3. Let R be an amenable k-approximate equivalence relation on �.
Assume the graph (�, R) is connected. Then there exists a formula d(x, y) of local
probability logic, without parameters, such that:

(1) d defines a pseudometric. d and dR are k ′-commensurable at scale 1, where k ′

depends only on k. d is k ′′-doubling at any scale s ≤
1
2 , where k ′′ depends only

on k and s.

(2) In the completion of (�, d) (modulo d(x, y) = 0), all closed balls of radius
≤ 1 are compact. The images in the completion of all dR-balls any radius are
thus compact.

(3) For any m ∈ N, let Sm be the distance ≤ 1/m-graph of d. Then Sm
m ⊂ R4, and

(4) for some C = Cm > 0, for all a ∈�∗ we have µSm(a)≥ CµR(a).5

Proof. (1) Define d0(x, y) by the expression

Ez(|Et(R(t, x)∧ R(t, z))− Et(R(t, y)∧ R(t, z))|).

The expectation quantifiers Et are clearly local. The quantities Et(R(t, x)∧R(t, z))
and Et(R(t, y)∧ R(t, z))| both vanish unless dR(x, z) ≤ 2 or dR(y, z) ≤ 2; thus
the Ez is also a legitimate local probability logic quantifier.

It is clear that d0 defines a pseudometric.
By Proposition 3.8, ψ(x, z)= Et(R(t, y)∧ R(t, z)) is a stable formula; we will

use this below. We remark that by the same argument, d(x, y) is stable.
Let ϑ ′ be as in the weak Fubini axiom Definition 4.1(3), and choose 0< ϑ < ϑ ′.

Define d = d0/ϑ .

Claim 1. d(x, y)≤ 1 implies dR(x, y)≤ 4.

5Without assuming weak Fubini, one obtains the same theorem but with Sm
m ⊂ R8 at worse; it

suffices to replace R by R2, in Claim 1, using Lemma 4.2.
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Proof. Pick z with Et(R(t, x)∧ R(t, z))≥ ϑ ′. If dR(x, y) > 4, we have

Et(R(t, y)∧ R(t, z))= 0,

so Ez(|Et(R(t, x) ∧ R(t, z)) − Et(R(t, y) ∧ R(t, z))|) ≥ ϑ ′. This shows that
d0(x, y) < ϑ ′ implies dR(x, y) ≤ 4. Since ϑ was slightly decreased from ϑ ′,
we obtain the stated version with the weak inequality. □

So a 1-ball of d is contained in a 4-ball of dR , and hence also in finitely many
1-balls of dR .

Claim 2. For any s > 0, a 1-ball of R is covered by a bounded number of s-balls
of d. Moreover the bound depends only on s and k.

Proof. Otherwise, in an ultraproduct, we have a 1-ball of R containing an infinite
s/2-discrete subset for d; in particular there exist b, c with d(b, c)≥ s/2 and with
the same Kim–Pillay type.

In the same ultraproduct, consider an element a avoiding any given countable
set of b, c-definable measure zero formulas; in particular it does not divide over b
or c. By Theorem 2.10 for such b, c, for any such random a we have

Et(R(t, a)∧ R(t, b))= Et(R(t, a)∧ R(t, c)).

So d(b, c)= 0, a contradiction. □

Putting together Claims 1 and 2, we see that d, dR are commensurable at scale 1.
Moreover, a 1-ball of d is contained in a 4-ball of dR and hence in k3 1-balls of dR;
each of these is contained in a bounded number of s-balls of d, by Claim 2; so
certainly a 2s-ball of d is contained in a bounded number of s-balls of d , if s ≤

1
2 .

This proves (1).

(2) Follows from the total boundedness of the balls of d (Claim 2), and complete-
ness.

(3) Clear.

(4) Recall �∗ from just above the theorem.

Claim 3. For any m > 1 and any c ∈�∗, µSm(c) > 0.

Proof. We may replace (�, R) by an extension saturated for local formulas. Let
c ∈�∗, and suppose for contradiction that µSm(c)= 0. Let P = {c′

:µSm(c′)= 0}.
Since c ∈ �∗, for some R-ball B = Rl(a), Rl(a) ∩ P is not contained in a

∨
-

definable set of measure zero. Let A = {ai : i ∈ I } be a maximal subset of P ∩ Rl(a)
such that the S2m+2(ai ) are disjoint, ai ∈ A. Then the d-balls Sm+1(ai ) cover
P ∩ Rl(a). A cannot be infinite; otherwise, by Claim 2, infinitely many elements ai

of A are contained in a single 1/(2m + 2)-ball of d , say around x0; but then x0 lies
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in each of the S2m+2(ai ), contradicting their disjointness. Thus A = {a1, . . . , aν} is
a finite set, and the d-balls Sm+1(ai ) cover P ∩ Rl(a).

By saturation, for some ϵ > 0, for all c′
∈ Rl(a), µSm(c′) < ϵ implies that

c ∈ Sm(ai ) for some i ≤ ν. Since µSm(c′) < ϵ is a
∨

-definable set, it cannot have
measure 0 in Rl(a); so some Sm(ai ) has measure > 0. This contradicts ai ∈ P . □

We have shown that µSm(c) > 0 for c ∈�∗. By compactness, µSm(c) must be
bounded strictly above 0, uniformly for all c ∈�∗. □

Remark 4.4. Fix ϵ > 0, and define an ϵ-slice to be a
∨

-definable set Z such that
for any ball R(a) we have µ(Z ∩ R(a)) < ϵµ(R(a)).

Then for some C = Cm,ϵ , for all a away from an ϵ-slice, µSm(a)≥ Cµ(R(a)).
Moreover, Cm,ϵ depends on m, ϵ, k alone. This follows from Theorem 4.3(4) by a
compactness argument.

Question 4.5. While d is definable from R, almost contained in the distance-two
relation R2 and intuitively much finer, it is not clear under what conditions the
image of R2 in the completion of d has the same probability logic theory as (M, R2).
When does the image of R2, and similar definable sets, have boundary of measure
zero?

Remark 4.6. Initially, the stability-theoretic proof produced an
∧

-definable equiv-
alence relation S =

⋂
m Sm corresponding to d(x, y)= 0, implying the existence of

the relations d(x, y)≤ 2−m with explicitly exhibiting them. However, an analysis of
the proof (in the case of ideals arising from a measure) shows that (x, y) ∈ S iff for
almost every z, µ(R(x)∩ R(z))= µ(R(y)∩ R(z)). Thus we can take S =

⋂
n Sn

with

x Sn y ⇐⇒ µ{z : |µ(R(x)∩ R(z))−µ(R(y)∩ R(z))| ≥ 2−n
} ≤ 2−n.

Putting this into real-valued based probability logic naturally leads to the smoother
form used above. Note that a bounded L1 function f on a finite probability space
has small L1-norm iff it is small in the sense of convergence in measure, i.e., for a
small ϵ it takes value > ϵ only on a set of measure ϵ.

Example 4.7. Let G be a group, and X an approximate subgroup. Define R(x, y)
iff x−1 y ∈ X . Then R is an approximate equivalence relation. G acts on (G, R)
on the left, by automorphisms. Since d(x, y) of Theorem 4.3 is definable without
parameters, G also preserves d(x, y); it follows that d(x, y)= 0 ⇐⇒ x−1 y ∈ S for
some S. This recovers the stabilizer theorem of [43].

4.8. Comparison to Lovász–Szegedy. After talking about this material in the
Groups and Words meeting in Jerusalem in 2012, Nati Linial pointed out the
relation to [60]. indeed, their definition of a graphon uses precisely the definition
of d in Theorem 4.3. (Strictly speaking, they work in the case of a finite measure,
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or doubling constant one, whereas ours is only locally finite.) Moreover a more
recent paper [61] concerns automorphisms of graphons so the overlap must be
very considerable. From a model-theoretic viewpoint, the graphon is isomorphic
to a quotient of the space of compact Lascar types of a theory of graphs, namely
the canonical quotient topologized by formulas φ(x, b) where φ is the graph edge
relation. In the presence of probability quantifiers, the KP space, and hence this
quotient, carry a canonical measure.

Model-theoretically, one constructs first a saturated model, then a type space, the
Lascar compact quotient, and (in the presence of probability quantifiers) measure
on it. The graphon approach, by contrast, begins with the measure theory; but it is
still able to construct parallels of the above objects. The proof that these objects are
in fact the same, insofar as pure probability logic goes, requires the independence
theorem Theorem 3.16.

5. Approximately symmetric approximate equivalence relations,
and Riemannian models

Definition 5.1. (1) A Riemannian homogeneous space is a connected Riemannian
manifold with transitive isometry group.

(2) A metric space X is locally finite if for each point x ∈ X , and any r > 0, the
r -ball around x contains only finitely many points. A graph (X, R) is locally finite if
the associated metric is; equivalently R(a) is finite for all a ∈ X . It is homogeneous
if the isometry group is transitive.

We say that a metric space is (1-)proper if each ball (of radius 1) is compact.
A 1-proper metric space is automatically complete. A connected Riemannian
homogeneous space, or a connected (in the graph sense) locally finite metric space,
are proper and hence complete and separable.

Riemannian homogeneous spaces carry a canonical measure (where balls have
finite measure). Namely, given f : U → � where U is an open ball in Rn , we
have µ( f (U ))=

∫
U |J ( f )| dx , where

∫
U dx is the usual integral, and J ( f ) is the

Jacobian of f , i.e., det(∂i f/∂ j xi ), computed in any orthonormal basis. Likewise,
homogeneous locally finite metric spaces carry a canonical measure: the counting
measure, normalized so that a unit ball has measure 1.

Let X be a Riemannian homogeneous space. The isometry group of X is then
a Lie group L; and the stabilizer of a point is a compact subgroup of L . See [56,
Theorem 1.2].

Conversely, let L be a Lie group and assume given a transitive action of L on a
manifold X , with compact point stabilizer K . Then X can be given a Riemannian
structure, such that L acts by isometries. (Weyl trick: pick a point p; the stabilizer
K of p is compact. Pick any inner product on the tangent space Tp X , and average
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over K so that we obtain a K-invariant inner product. For any other point q , there
exists a unique inner product structure on q such that for any g ∈ L with g(p)= q ,
g induces an isometry of tangent spaces Tp X → Tq X .) The invariant Riemannian
structure is not unique but there is a finite-dimensional space of choices, namely
a choice of a K-invariant inner product on the tangent space Tp. The tangent
space splits as a direct sum of finitely many invariant subspaces, and the invariant
Riemannian structure is determined up to a scalar renormalization on each of them.
In any case all these metrics are commensurable, and all commensurable to any
L-invariant metric on X .

Like Lie groups, Riemannian homogeneous spaces are rather special creatures:
they tend to have no deformations, except for some freedom in constructing nilpotent
ones. Two canonical Riemannian homogeneous spaces are associated with each Lie
group L: the Lie group itself, and the quotient L/K where K is a maximal compact
subgroup (which is unique up to conjugacy). In case the stabilizer of a point acts
irreducibly on the tangent space, they were fully classified by Cartan and Wolf.

This leads to examples of homogeneous approximate equivalence relations.

Examples 5.2. (1) Assume (�, R) has bounded valency, i.e., 1 ≤ |R(a)| ≤ k. Then
|R2(a)| ≤ k2 so (�, R) is a k ′-approximate equivalence relation, k ′

≤ k2.

(2) Assume |�| ≤ k∗
|R(a)| for any a. Then (�, R) is a near equivalence relation,

and (�, R2) is a k ′-approximate equivalence relation. Conversely, a k-approximate
equivalence relation of bounded radius r is of this type, |�| ≤ k∗(|R(a)|) with
k∗

= kr . This is because, inductively, the l-ball Rl(a)=
⋃

c∈Rl−1(a) R(c) is a union
of ≤ kl−1 1 balls. When k∗ is large compared to k (say k∗ > 10k), this is still an
interesting source of examples for us; for instance if R(a) = [a − 1, a + 1], it is
hard to see locally whether �= R or �= R/k∗ for some very large k∗.

(3) Let (�, d) be a Riemannian homogeneous space. Then balls are not finite
but they have finite measure with respect to the canonical measure induced by the
Riemannian structure. The metric is k-doubling at scale 1 (and all other scales) for
an appropriate k, and all 1-balls have the same measure. We view this as a model
for k-approximate equivalence relations.

(4) (See Definition 3.36.) Let (�, d) be a Riemannian homogeneous space, and
R ={(x, y) : d(x, y)≤ 1}. Let (X i , Ri ) be a sequence of symmetric binary relations
whose pure probability theory approaches that of (�, d). Then using Lemma 4.2,
noting that condition (2) of Definition 4.1 holds by approximate homogeneity, we
see that (X i , R2

i ) is an a.e. approximately homogeneous sequence of k ′-approximate
equivalence relations. We explain below how to obtain such approximations that
are locally finite (we present this in case � = L has the form G(R), with G a
semisimple algebraic group over R).
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5.3. Sprinkling. Let us see how to obtain sequences of locally finite approximations
in Examples 5.2(4), by choosing them at random (similar procedures are known as
“sprinkling” in some physics literature).

Let L be a Lie group. A lattice is a discrete subgroup 3 of L of finite covolume,
i.e., L/3 admits a translation invariant finite measure. Assume that for any compact
K ⊂ L (with 1 ∈ K ) there exists a lattice 3K with 3K ∩ K = (1). This is the case
for simple Lie groups L; for L = G(R) an algebraic group over R, where G has
no Gm-quotients, one can take the arithmetic lattice G(Z) or a congruence lattice
therein (Borel–Harish-Chandra).

Any formula φ of local probability logic can quantify only to a bounded distance,
i.e., at x1, . . . , xk expectation quantifiers are applied only on

⋃
i K xi . In this case,

if 3 is a sufficiently small lattice (i.e., KK ∩3= (1)), the value of φ in L and in
L/3 is the same. Thus it suffices to show how to find finite approximations L/3;
the pullback to L will be an equally good locally finite approximation to L .

This reduces the problem to the finite volume case. Here a random choice of n
points, for large n, provides a good approximation. This is Keisler’s relational law of
large numbers: in a probability model M (with the measure on M itself, as is the case
for L/3), the initial sections Mn of a random sequence with the normalized counting
measure approach M in the sense that for any sentence φ of probability logic,
φM

−φMn approaches 0. See [52, 6.13; 53, 3.1.3]. In case M has a unique probability
logic 1-type, it follows that the sequence Mn is a.e. approximately homogeneous.

Another approach gives a stronger result, at least in the case of an arithmetic
lattice, or a cocompact lattice. In the cocompact case, L/3 along with the metric is
easily seen to be interpretable in Ran. In the arithmetic case, [2] prove the existence
of an open, semialgebraic Siegel set A for L . Within A one can find a fundamental
set F for L/3, and any element of A can be translated to an element of F via a
finite subset of 3. If C is a compact semialgebraic neighborhood of the identity
in L , then C A is contained in finitely many translates of A; this implies that the
action of C on L/3 is also definable semialgebraically. The image in L/3 of the
closed unit ball for the metric may not be semialgebraic, but it is definable in Ran.
Thus our structure is interpretable in an o-minimal one, and in particular it is NIP.

Now for a NIP structure M , with a measure µ, a fundamental theorem of Vapnik–
Chervonenkis (see [74; 5] and Proposition 2.18) shows that if n points of are chosen
at random to give a subset Mn , the law of large numbers holds not just for a given
event but uniformly for all definable events. Thus up to ϵ-resolution, the Mn look
like M not only to an observer outside both, but also to an internal one at point
p who takes into account relative positions to p, or several such points p. The
relational version of this follows inductively (much more readily than in [53, 3.1.3],
where more careful estimates are needed). It is also easy to see here that when M
is homogeneous, the Mn will be approximately homogeneous (not only a.e.).



APPROXIMATE EQUIVALENCE RELATIONS 361

Remark 5.4. It is natural to ask for a purely probabilistic construction, replacing
the use of lattices above. With our present definition of an amenable approximate
equivalence relation, sprinkling points on � using a Poisson process will not work;
while in some sense rare, there would be infinitely many.

Theorem 5.5. Let (�, R) be a local ultraproduct of a sequence of approximately
homogeneous, amenable, k-approximate equivalence relations. Then there exists a
metric space (X, dX ), and a surjective α :�→ X , both canonically defined, such
that, letting RX = {(x, y) ∈ X2

: dX (x, y)≤ 1}, we have:

(1) The distance between connected components is bounded strictly above 0; each
connected component is clopen, and the space 4 of connected components is
discrete. The graph induced by RX on 4 is locally finite.

(2) Each connected component C of X is a Riemannian homogeneous space; dX

is an invariant metric on C.

(3) R is commensurable with α∗ RX = {(x, x ′) : RX (α(x), α(x ′))}.

(4) For 0 ≤ r ≤ 1, the relation dX (α(x), α(y))≤ r is
∧

-definable on �. So is the
relation asserting

dX (α(x), α(y))≤ r ∧α(x), α(y) lie in the same connected component.

If we assume only a.e. approximate homogeneity, the same result holds but the
domain of α is a full measure

∧
-definable set �∗.

A few comments, preliminary to the proof.

(1) The local ultraproduct is taken with respect to the locality relation dR (see
Section 2.3). Thus (�, R) is a connected graph by construction. In case only
a.e. homogeneity is assumed, we choose a component from �∗. Thus the pure
probability logic theory does not depend on this choice.

(2) The theorem describes the situation in scales close to 1, and refers to dX only
at such scales. To further study the large-scale structure, one needs to combine the
geodesic metric on the Riemannian manifold with the graph metric of RX .

(3) The proof will begin with the metric ρ of Theorem 4.3, and the completion Y
with respect to this metric. We would like to find a locally compact group acting
on Y , and connect to the theory of locally compact groups. The proof would be
simpler if we assumed full first-order homogeneity, i.e., a unique 1-type, or even a
unique 1-type of nonzero measure. Then we could make use of the automorphism
group of the saturated model � and the induced action on Y . But this would
give a result of quite a different nature, applicable only to finite approximations
whose full first-order theory approaches a given limit. Full first-order approximate
homogeneity is not really a graph-theoretic condition; it concerns not so much
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the given graphs, but all graphs interpretable within them. We prefer therefore to
assume only convergence in the sense of probability logic. We must then accept that
even though all elements have the same probability logic type, their full types may
differ, and the automorphism group of the ultraproduct �∗ may act trivially on the
completion. This obligates us to work with automorphisms of the completion that
are not necessarily induced by automorphisms of �∗. We will use Theorem 3.30 to
obtain automorphisms of a full measure subset Y of Y .

In the proof of Theorem 5.5, we will pass from the given approximate equivalence
relation (�, R) to the completion with respect to a metric ρ, and obtain an induced
measure. For uniformly continuous functions on the completion, expectation quan-
tifiers can be computed either on the completion or on the original structure, giving
the same result. This need no longer be the case for discontinuous functions, such
as the characteristic function of R-balls. We thus prepare a smoother version of
this function.

Lemma 5.6. There exists R∗ definable from R in pure probability logic, such that

(1) R∗ is uniformly continuous with respect to the metric ρ.

(2) For some β2 > 0, if R(a, b) holds, then R∗(a, b)≥ β2.

(3) If R∗(a, b) > 0, then R17(a, b).

Proof. Let α0 : R → R≥0 be the continuous function with value 1 on
(
−∞, 1

4

]
,

value 0 on
[ 1

2 ,∞
)
, and linear on

[1
4 ,

1
2

]
. Let β > 0 be a lower bound on the volume

of a ρ-ball of radius 1
4 .

Define

R∗(x, y) := Eu,v
(
α0(ρ(x, u)) · R9(u, v) ·α0(ρ(y, u))

)
.

So R∗ is definable from R in pure probability logic.

(1) Uniform continuity is clear since α0 is uniformly continuous, and ρ is a metric;
so if ρ(x, x ′)≤ ϵ then |ρ(x, u)− ρ(x ′, u)| ≤ ϵ, and similarly for ρ(y, v).

(2) Assume R(a, b) holds. Whenever ρ(a, u) ≤ 1 and ρ(b, v) ≤ 1, we have
R4(a, u) and R4(b, v) by Theorem 4.3(3), so R9(y, v). When ρ(a, u), ρ(b, v)≤ 1

4
we have α0(ρ(x, u))= α0(ρ(y, v))= 1 so the expectation in the definition of R∗

is at least the volume of the product of the balls ρ(a, x)≤
1
4 , ρ(b, y)≤

1
4 .

(3) If R∗(a, b) > 0, then for some u, v we have R9(u, v) and α0(ρ(a, u)) > 0,
α0(ρ(b, v)) > 0, so ρ(a, u) < 1

2 , ρ(b, v) < 1
2 ; thus again R4(a, u) and R4(b, v)

so R17(a, b). □

Proof of Theorem 5.5. By definition of the local ultraproduct, (�, R) is connected
as a graph. Let ρ be the metric of Theorem 4.3 and let (Y , ρ̄) be the completion.



APPROXIMATE EQUIVALENCE RELATIONS 363

By Theorem 4.3(2), Y is 1-proper. We have a surjective map h :�→ Y , such
that the pullback of a closed bounded subset of Y

n
is a bounded

∧
-definable subset

of �n , in pure probability logic, with parameters. Indeed ρ is definable in pure
probability logic; if we view ρ as quantifier-free, then for closed Z ⊂ Y n , the
pullback h−1(Z) is quantifier-free definable with parameters in (�, ρ) alone (see
Section 2.5).

Let R∗ be as in Lemma 5.6. We consider the structure (�, ρ, R∗); it is a reduct
(generally a proper reduct) of (�, R). For this reduct, ρ can serve as a metric, since
both ρ and R∗ are uniformly continuous with respect to ρ. By the discussion in
Section 2.11, a structure (Y , ρ̄, R∗) is induced; and further we have local expectation
quantifiers on this structure, and can speak of the expectation of a pure probability
logic definable set (so that a measure on the local type spaces is induced).

Claim 0. There exists a smallest pure probability logic
∧

-definable subset �∗ of
� of full measure; it determines a unique 1-type of pure probability logic.

Proof. The language is countable, and has countably many formulas φ in one
variable. (We can take φ to be in Hoover normal form.) Let v= v(φ) be the generic
value in the sense of Definition 3.36. Then φ(x) = v(φ) has full measure by the
a.e. almost homogeneity assumption. Let �∗ be the intersection of φ(x) = v(φ)

over all φ. Then �∗ has full measure; and the value of any pure probability logic
formula is determined on �∗. □

Let Y be the image of �∗ in Y . Then Y is closed (this can be checked within a
given small closed ball, and the topology there is the logic topology), and Y \ Y
has measure 0.

Now ρ is definable from R in local probability logic, so any two elements of
�∗ have the same pure local probability logic type in the language including ρ.
It follows that the same is true for their images in Y , in a language including ρ̄
and R∗, using the fact that the pullback of ρ̄ is ρ, that expectations computed in
Y and in Y are the same (as Y \ Y has measure 0), and that the expectation of a
function on Y equals the expectation of the pullback on �, by definition of the
measure on � (see Section 2.11).

In case the sequence is approximately homogeneous, we have �=�∗ and so
Y = Y , since there is only one pure local probability logic type in �.

Let R be the image of R in Y , and let R1 be the image of R ∩ (�∗)2 in Y . Form
the metrics dR1 on Y and dR on Y . The pullback of a finite dR-ball Br (ā) to �∗ is
contained in B5r (a) using Theorem 4.3(3), which controls the thickening caused
by taking the ρ-completion and pulling back. Thus all dR-balls in Y have finite
measure.

Claim 1. Y is locally compact; all R-balls have compact closure.
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Proof. Local compactness of Y follows from Theorem 4.3(1). Since Y is a closed
subset of Y , it is locally compact too. Now it suffices to show that a R-ball b is
totally bounded with respect to ρ̄; i.e., that for any ϵ > 0, b may be covered by
finitely many ϵ-balls for ρ̄. For this it suffices to see that a maximal set of ϵ/2-ρ̄-
balls is finite. This in turn follows from the finiteness of µ(b), and Theorem 4.3(4)
(along with the fact that µ(�∗

\�)= 0). □

By local compactness the local n-type spaces can be identified with Y n itself.
Hence we obtain an induced measure on Y .

Let G = Aut(Y, ρ̄, R∗) be the group of isometries of (Y, ρ̄) that preserve R∗. G
is transitive on Y , by Proposition 3.34. Define a topology on G as in Section 2.11.

Claim 2. G is locally compact. for a ∈ Y , the point stabilizer Ga = {g : ga = a} is
compact; for a ∈ Y , the natural map G/Ga → Y is a homeomorphism.

Proof. By Lemma 2.15, taking the relation R there to be {(x, y) : R∗(a, b)≥β2
}, and

d = ρ. (The assumptions of Lemma 2.15 hold by Claim 1 and Lemma 5.6(2,3).) □

According to Gleason–Yamabe [76], G has an open subgroup H , and a compact
normal subgroup N of H (contained in any desired neighborhood of 1), such that
H/N is a finite-dimensional Lie group.

Dually to [43], let β0 be the set of pairs (H, N ) with H an open subgroup of G,
and N a compact normal subgroup of H . Let β be the set of pairs (H, N )∈ β0 such
that if (H ′, N ′)∈β0 and N ≤ N ′

≤ H ′
≤ H then H = H ′ and N = N ′. Equivalently,

(H, N ) ∈ β iff the locally compact group H/N is connected, with no nontrivial
compact normal subgroups. (Hence by Yamabe, is a Lie group.) Nonemptiness of β
follows from a chain condition on closed subgroups shown in the second paragraph
of [43, §4.1]. It is also shown there that if (H, N ) and (H ′, N ′) ∈ β then H ∩ H ′

has finite index in H and in H ′, and (H ∩ H ′, H ∩ N ′) ∈ β. And H determines N
uniquely, i.e., for any H , there is at most one N with (H, N ) ∈ β.

Fix a ∈ Y . Since Ga is compact while H is open, Ga ∩ H has finite index
in Ga; in particular there are only finitely many Ga-conjugates of H . Taking their
intersection, we see that there exists (Ha, Na) ∈ β normalized by Ga .

Let (Hb, Nb)= (gHag−1, gNag−1) for any g with g(a)= b. Define an equiva-
lence relation E on Y by bEb′ iff Hb = Hb′ and Hbb = Hb′b′. Then E is G-invariant.
If aEa′, then a′

= ha for some h ∈ Ha . Conversely if a′
= ha with h ∈ Ha , then

Ha′ = h Hah−1
= Ha; and Haa = Haa′

= Ha′a′. Thus the E-class of a is just Haa;
it is the image of Ha under the natural map G → Y , g 7→ ga. We saw in Claim 2
that this map induces a homeomorphism G/Ga → Y . Thus the E-class of a is
open; by transitivity each E-class is open, and hence each E -class is clopen.

Give Y/E a graph structure via R1.

Claim 3. Y/E has finite valency. The topology on Y/E induced from Y is discrete.
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Proof. Since a dR-ball b is compact while each E-class is open, b meets only finitely
many E-classes. □

Since the E-classes are open, there exists r0 > 0 such that the r0-ball around a
is contained in the E-class of a; by transitivity of G, the same holds for all points.
Thus two points in distinct E-classes are at ρ-distance ≥ r0. We may choose r0 ≤

1
2 ,

so that the pullback to � of a ρ̄ of radius r0 is contained in finitely many dR-balls
of radius 1 (Theorem 4.3(1)).

Define a finer equivalence relation e on Y by beb′ iff bEb′ and Nbb = Nb′b′.
(Note that bEb′ implies Hb = Hb′ and hence Nb = Nb′ .) Then for each E-class
Y ′

⊂ Y , Y ′/e is connected, since a conjugate of the connected group Ha/Na acts
transitively.

Let X = Y/e, and α :�∗
→ X the composition �∗

→ Y → X . Define

dX (x, y) := inf{min(r0, ρ̄(a, b)) : a, b ∈ Y, α(a)= x, α(b)= y}.

Since the classes of e are compact, the infimum in this definition is attained, and
thus dX (x, y)=0 implies x = y. It is clear that dX (x, x)=0 and that dX is symmetric.
Let us consider the triangle inequality d(x, z)≤ d(x, y)+ d(y, z). If d(x, y)≥ r0

or d(y, z) ≥ r0 the inequality is clear; so we may assume d(x, y), d(y, z) < r0.
Let (a, b) attain the minimum in the definition of dX (x, y), and likewise b′, c
for y, z. Then ρ̄(a, b) < r0 so aEb, and likewise b′Ec. We also have beb′ since
α(b)= y =α(b′). Thus b′

= nb for some n ∈ Nb = Na = Nc. So ρ̄(b′, c)= ρ̄(b, c′),
where nc′

= c. It follows that

dX (x, z)≤ ρ̄(a, c′)≤ ρ̄(a, b)+ ρ̄(b, c′)= dX (x, y)+ dX (y, z).

Hence dX is a metric on X . It induces the same topology on X as the quotient
topology inherited from Y via X = Y/e.

The pullback of an r0/2-ball a of X to Y is the union over a e-class b of the
r0/2-ρ-balls around elements of b. Since b is compact, finitely many of these r0/2-
balls cover b, so that the union is contained in a finite union of r0-ρ-balls. Hence R
is commensurable with α∗ RX , where RX = {(x, x ′) ∈ X2

: dX (x, x ′) ≤ r0/2}. As
all the clauses of Theorem 5.5 except for (3) are invariant under rescaling, we may
replace dX by 2dX/r0, so as to obtain (3).

The connected components of X are the images of the classes of E , and are at
distance at least r0 from each other. On each connected component, we have a
transitive action of a Lie group L ∼= Ha/Na , respecting the metric. The induced
metric on the space of connected components is locally finite by Claim 3.

Let us now address the definability issues (4). Recall the map h :�→ Y from
the first lines of the proof. The equivalence relation h(x)= h(y) is

∧
-definable, by

the pure probability formula ρ(x, y)= 0, and more generally ρ̄(hx, hy)= ρ(x, y).
Thus (Y , Y, ρ̄) can be viewed as interpretable in (�, R).
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Let P ⊂ Y k be an automorphism-invariant closed relation on Y . Pick a ∈ Y , and
consider a bounded ρ̄-ball B around a, say of radius r1 ≤ 1. Then B is compact; so
the restriction P|B = P∩Bk is a-definable; say via a formulaψP(x, a) of continuous
logic. Since G acts transitively on Y , ψP(x, y) defines P on Y , provided P is
local, i.e., P(x1, . . . , xk) implies ρ(xi , x j ) ≤ r1. In particular this is the case for
P = e, since the classes of e are compact, and for the relations in the statement
of (4). Pulling back to �∗ we see that P is

∧
-definable (though not necessarily by

a formula of pure probability logic). □

Example 5.7. Let An be the interval [−n, n], with Lebesgue measure, and let
R(x, y) be the relation |x − y| ≤ 1. This sequence of 2-approximate equivalence
relations is not strictly approximately homogeneous; the measure of {x : R(a, x)}
is 2 towards the middle, but approaches 1 near the endpoints. However, even in full
continuous logic with probability quantifiers, it is a.e. approximately homogeneous;
a formula whose quantifiers look out to distance d will take the same value on all
points except for the intervals [−n, d − n] and [n − d, n], whose measure 2k/n
approaches 0 with n.

5.8. Definability and asymptotic structure. The definability statements (4) in
Theorem 5.5 are crucial for deducing asymptotic consequences from the structure
of the limit. We plan to return to this in the future, and for now only sketch a
basic statement by way of illustration. Let (An, Rn) be a sequence of increasingly
homogeneous locally finite graphs. Fix r > 0 and let Bn be a ball of radius r
in An , and B∞ a ball of radius r in an ultraproduct A. By assumption the Bn look
increasingly similar as n → ∞.

Let E be the formula defining the “same connected component” equivalence
relation on B∞. Then E has a finite number f of classes on B∞. For almost
all n, the same formula E defines a partition of Bn into f classes. One can further
find a modified graph structure R′

n on Bn , uniformly commensurable to Rn . Let
Cn be one of the f classes of Bn . After refinement of the indices n, (Cn, R′

n)

converge to a bounded region on a Riemannian homogeneous space Hr , with graph
structure “distance ≤ 1” relative to the Riemannian metric dRiemann. One can also
find asymptotic versions of the metric dRiemann on the Cn .

5.9. Homogeneity. Consider an approximate equivalence relation (�, R) with
transitive automorphism group G. Let H be the stabilizer of a point a ∈ �. Let
X = {g ∈ G : (a, ga) ∈ R}. It is easy to see that X = X−1 is an approximate
subgroup of G, and H X = X .

Conversely, a triple (G, X, H) with X an approximate subgroup of G, H a
subgroup with H X = X gives an approximate equivalence relation RG,X,H on
G/H with transitive automorphism group. Namely, (g1 H, g2 H) ∈ RG,X,H iff
g−1

1 g2 ∈ X . When H = 1 we write RG,X or just RX .
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Problem 5.10 (rigidity). Let G be a semisimple Lie group G, with a maximal
compact subgroup K . Let R(x, y) be the relation: y−1x ∈ K . Show that the pure
probability logic theory of (G, R) determines G uniquely. Further, does there exist
a single sentence σ of probability logic such that any increasingly homogeneous
sequence of approximate equivalence relations X i whose σ(X i ) converges to σ(G)
must in fact converge to G? This would say that a resident of X i (for large enough i)
can reasonably guess the limit G that the sequence is tending to.

Assume the ultraproduct M of Theorem 5.5 has an associated Riemannian
symmetric space whose Lie group L is simple, with a finitely presented lattice 3,
with generators λ1, . . . , λk . Describe the element λi of L as a limit of “rough”
symmetries of the approximating graphs, and how to recognize the relations on the
λi from rough relations among these. When this can be done and 3 is simple, it
should becomes possible to recognize it by looking at a single sufficiently good
approximation.

Problem 5.11. Theorem 5.5 describes completely the connected case, and the
locally finite case. But the mixed case is not fully described. What are the possible
homogeneous extensions (�, R) of a homogeneous Riemannian space X by a
homogeneous, locally finite graph 4?

We have copies Xa of X , for a ∈4. Say G = Aut(X) is a centerless semisimple
Lie group. In this case, for two points a, b of 4 connected by an edge, there exists
a unique isometry Xa → Xb at finite dR-distance. This gives a homomorphism
π1(X, a) → Aut(Xa). Does this fully describe the structure of (�, R), up to
commensurability?

Problem 5.12. Theorem 5.16 of [41] describes the structure of approximate sub-
groups without an amenability assumption. Generalize this and Theorem 5.5 to
homogeneous approximate equivalence relations; see Section 5.9. Definability may
be challenging as the definability statement in [41, Theorem 5.16] is weaker than
in the amenable case; and it refers a priori to the group G, a second-order object
from the point of view of (�, R).

Problem 5.13. In the model-theoretic limit, the pieces of a (well-chosen) parti-
tion of any structure into n pieces tends to a union of homogeneous structures.
Given an arbitrary approximate equivalence relation, can one partition into pieces
that resemble various Riemannian homogeneous spaces? Here is a more precise
formulation:

Let (Mi )i∈N be any family of locally finite, k-approximate equivalence relations;
we make no homogeneity assumption. Let M be a (sufficiently saturated) ultraprod-
uct; so Aut(M) acts transitively on each complete type P . The restriction to P is
then a homogeneous k-approximate equivalence relation, and a structure theorem
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should apply (either using an answer to Problem 5.12, or disintegrating the measure
over almost all P). What does this imply for the given Mi ?

One might expect a statement of the following type: take any function α : N → N

growing to ∞, as slowly as you like. Then one can find a subsequence I of N, and
for i ∈ I a partition of Mi into α(i) definable sets (Di,k : k < α(i)), refining the
partitions Di ′,k′ for i ′< i ; such that each branch resembles, more and more closely, a
k-approximate equivalence relation commensurable to a Riemannian homogeneous
space. By a branch we mean a choice of a definable set Di,k(i) for each i , so that
Di,k(i) implies Di ′,k(i ′) if i ′ < i ∈ I ; it gives a sequence of graphs Di,k(i)(Mi ).

See [10] for the 1-dimensional case.

6. Strong approximation: from groups to graphs

This section again addresses the structure of approximate equivalence relations; but
here we assume definability over finite fields, or more generally the existence of a
dimension theory similar to the one available for pseudofinite fields. We will see
that approximate equivalence relations in this setting are close to actual equivalence
relations.

We first recall a key statement of [44] in the case of groups, Theorem 6.1 below,
that forms the model of the graph-theoretic generalization we aim for. This was
the main ingredient in model-theoretic proofs of strong approximation over prime
fields, for instance of the fact that if H is a Zariski dense subgroup of SLn(Z) then
H maps surjectively to almost every SLn(Fp).

Theorem 6.1 (strong approximation lemma: groups). Let F = Fp, p nonstandard.
Let G be a definable group over F , and let (X i : i ∈ I ) be a family6 of definable
subsets of G.

(A) There exists a definable H such that

(1) H is a subgroup of G.
(2) H ⊂

〈⋃
X i

〉
.

(3) X i/H is finite.

If read for standard primes p, each X i should be definable uniformly in p;
and in (3), each X i/H has finite cardinality independent of p. Moreover, if G
is an algebraic group:

(B) There exists a homomorphism h : H̃ → G of algebraic groups, with finite
kernel such that H = h(H̃(F)).

6.2. Here is how strong approximation follows from Theorem 6.1. Let G be a linear
algebraic group. Applied to the family of one-dimensional unipotent subgroups X i

6Not necessarily uniformly definable.
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of an arbitrary subgroup 0 of G, Theorem 6.1 shows that 0 contains a definable
normal subgroup H (generated by the unipotent elements of 0) such that 0/H
has no unipotent elements. By Jordan’s theorem it follows that 0/H is abelian-
by-bounded. In particular, the image of a Zariski dense subgroup of SLn(Z) in
SLn(Fp) has bounded index, and admits the description of in Theorem 6.1(B). See
[44, Proposition 4.3 and 7.3]. These results were previously proved by other means
by Weisfeiler, Nori, and Gabber.

6.3. Generalization to graphs. The graph version applies to definable graphs
over F . For instance, the graph may be (V, X) with V a variety and X a subvariety
of V 2, or more generally the projection of the rational points of a variety W mapping
onto V 2. We try to study them up to graphs of bounded valency. Essentially we
show that after a partition of the vertices into a (bounded) finite number of pieces,
and after fibering each piece over a graph of bounded valency in each piece, X
generates an equivalence relation on each piece in a bounded number of steps.
Between any two distinct pieces, the induced graph has finite valency in at least
one direction, following an interesting partial ordering of the set of pieces.

Although Theorem 6.6(B) is formulated for pseudofinite fields, part (A) and
Proposition 6.4 are valid for structures with a finite, definable S1-rank in the sense
of [40]. We refer to such structures and their theories as S1-structures and theories.

The reader who wishes can read both parts for pseudofinite fields.
For a graph (G, X), X ⊂ G2, we let ∼G be the equivalence relation of connect-

edness, i.e., ∼G is the smallest equivalence relation on G containing X .

Proposition 6.4. Let (G, X) be a definable graph in an S1-theory. On each type
P of G there exists a canonical

∧
-definable equivalence relation EP such that

EP ⊂ ∼G , in fact EP ⊂ X [m] for some m, and such that the induced graph on
P/EP is locally finite.

The definition of EP depends only on P and on ∼G .

Remark 6.5. Proposition 6.4 is valid more generally if X =
⋃

i X i is only
∨

-
definable; i.e., the edges X are given as a countable union of definable sets in a
countably saturated model. In this case local finiteness means that any finite union
X ′

=
⋃

i∈F X i , and any ā ∈ P/EP , there are only finitely many b̄ ∈ P/EP with
(ā, b̄) ∈ X ′/EP .

Here is a more detailed version, that allows passage to the finite.

Theorem 6.6 (strong approximation lemma: graphs).

(A) Let (G, X) be an S1-structure with X ⊂ G2 symmetric, reflexive. Then there
exists a definable partition G = D1 ∪ · · · ∪ Dn a definable function f on G,
and m ∈ N such that:
(1) If f (a)= f (b) then dX (a, b)≤ m.



370 EHUD HRUSHOVSKI

(2) For a ∈ G, f (X (a)) is finite.
(3) For i ≤ j ≤n, let X i, j ={( fi (x), f j (y)) : x ∈ Di , y ∈ D j , (x, y)∈ X}. Then

for any b̄ ∈ f (D j ) there are only finitely many ā ∈ f (Di ) with (ā, b̄)∈ X i j .

(B) Let F be an ultraproduct of finite fields. Let (G, X) be an F-definable graph:
G is a definable subset of V (F), V an F-variety, and X ⊂ G2 is definable.
Then (A) holds with an algebraic f and Di : we can find a quasifinite morphism
of F-varieties ρ : G̃ → V with ρ(G̃(F))= G(F), and regular functions φ on
G̃, such that for u ∈ G̃,

f (ρ(u))= φ(u).

Preliminaries to proof. We work in a sufficiently saturated and homogeneous
model. Two elements with the same type are then conjugate by some automorphism.
We write d(b/a) for the dimension of the smallest a-definable Zariski closed set
including b. More generally in the setting of finite S1-rank, d(b/a) is the least
S1-rank of a formula φ(x, a) true of b. We write a |⌣c b if d(a/b, c)= d(a/c). In
the case of pseudofinite fields, dependence and independence are determined by the
quantifier-free type; we have a |⌣c b iff the algebraic locus of a/ acl(b, c) (namely
the variety V of smallest dimension defined over acl(b, c) with a ∈ V ) is already
defined over b.

Canonical bases. Given tuples b, c there exists a unique smallest algebraically
closed c̄ ⊂ acl(c) with b |⌣c̄ c. We write c̄ = CB(b/c). If acl(c) ⊂ acl(c′) and
b |⌣c c′ then CB(b/c′)= CB(b/c). In the case of pseudofinite fields, CB(b/c) is
the field of definition of the locus of b over c.

In simple theories of finite SU-rank, one can instead use canonical bases in the
sense of simple theories [37].

As a consequence of the existence of canonical bases, we see that if b |⌣d c and
b |⌣d ′ c, where d, d ′

⊂ acl(c), and acl(d ′′)= acl(d)∩ acl(d ′), then b |⌣d ′′ c.

Elimination of imaginaries. F has a unique extension Fn of degree n; it is Galois with
Galois group Z/nZ, and when F is finite, Aut(Fn/F) has a canonical element φn .
We view this as part of the structure of each finite field F . Correspondingly, we
obtain an element φn of Aut(Fn/F), that we view as definable. This amounts to
naming a certain algebraic imaginary element en coding φn , for each n, on top of
the field structure. With this understood, Th(F) admits elimination of imaginaries;
see [22].

Proof of Proposition 6.4. For u, v ∈ G, write u ∼ v if u, v lie in the same connected
component of the graph (G, X). This is a countable union of definable relations,∨

j∈N

dX (u, v)≤ j.
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Fix for a moment an element b ∈ G, with type P . Let W = Wb be the connected
component of b within the graph (G, X). Choose a ∈ W with d(b/a) as large as
possible; let m P = d(b/a). Let δP = dX (a, b) (for definiteness, choose a so that
δP is minimal, subject to d(b/a)= m P ). Let e = CB(b/a).

Claim 1. For any c ∈ W , e ∈ acl(c). In particular, e ∈ acl(b).

We first prove the claim under the assumption that c |⌣a b. We have d(b/c)≥

d(b/ac) = d(b/a). By maximality of d(b/a), d(b/c) = d(b/a) = d(b/ac). So
b |⌣c a. Hence e = CB(b/a)= CB(b/ac) ∈ acl(c).

Now for a general c, take c′ with tp(c/ acl(a)) = tp(c′/ acl(a)) and c′ |⌣a b.
Since a ∼ c we have also a ∼ c′, so c′

∈ W . By the special case just proved, we
have e ∈ acl(c′). Since e ∈ acl(a), we have tp(c/e)= tp(c′/e). Thus e ∈ acl(c).

Claim 2. If tp(b′/ acl(e)) = tp(b/ acl(e)) and b |⌣e b′ then b′
∈ W ; in fact,

dX (b, b′)≤ 2δP .

Recall e = CB(b/a) so b |⌣e a. Using the independence theorem over acl(e)
(computed in Meq), we can find a′ with tp(a′, b/ acl(e)) = tp(a′, b′/ acl(e)) =

tp(a, b/ acl(e)). By the definition of δP and the choice of a we have dX (b′, a)=

dX (b, a) = δP . Since tp(a′, b) = tp(a′, b′) = tp(a, b) we also have dX (a′, b′) =

dX (a′, b)= dX (a, b)= δP . So dX (b, b′)≤ 2δP .

Claim 3. If tp(b′/ acl(e))= tp(b/ acl(e)) then b′
∈ W ; in fact, dX (b, b′)≤ 4δP .

Indeed let tp(b′′/ acl(e))= tp(b/ acl(e)) with b′′ |⌣e b, b′. By Claim 2 we have
dX (b, b′′)≤ 2δP and dX (b′, b′′)≤ 2δP ; so dX (b, b′)≤ 4δP .

Claim 4. acl(e)=
⋂

c∈W acl(c).

We already saw one direction in Claim 1. Conversely in Claim 2 we saw that
if tp(b′/ acl(e))= tp(b/ acl(e)) and b |⌣e b′ then b′

∈ W ; if d ∈
⋂

c∈W acl(c), then
d ∈ acl(b)∩ acl(b′) so d ∈ acl(e).

Claim 5. Let tp(e′/b)= tp(e/b); then acl(e′)=acl(e). More generally if Aut(M/b′)

leaves W invariant, and tp(e′/b′)= tp(e/b′), then acl(e′)= acl(e).

Indeed let σ be an automorphism fixing b′ and with σ(e)= e′; then σ(W )= W ,
and by Claim 4 we have

acl(e′)= σ(acl(e))=

⋂
c∈σ(W )

acl(c)=

⋂
c∈W

acl(c)= acl(e).

Claim 6. There exists a definable function fP such that acl(e)= acl( fP(b)).

Let e be a code for the finite set E of conjugates of e/b. Then e ∈ dcl(b). So
e = fP(b) for some definable function fP . By Claim 5, each element of E is
equialgebraic with e; so we have also acl(e)= acl(e).
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Thus far, the element e played a role only via acl(e); so we may replace e by e
with no loss.

Define an equivalence relation EP on P , setting x EP y iff fP(x)= fP(y) and
tp(x/ acl( fP(x))) = tp(y/ acl( fP(x))). It is easy to see that EP is

∧
-definable.

Both equations together can be written as

tp(x/ acl( fP(x)))= tp(y/ acl( fP(x))).

(Since this implies fP(x)= fP(y).) As this equation refers only to acl( fP(x))=⋂
u∼x acl(u), it does not depend on the specific choice of the 0-definable func-

tion fP .

Claim 7. If c, d ∈ P and c ∼ d then fP(c) ∈ acl( fP(d)).

Proof. Let d ′ be independent from c, d over fP(c), with tp(d ′/ acl( fP(d))) =

tp(d/ acl( fP(d))). In particular d ′
∈ P , fP(d ′)= fP(d), and d ′EPd. By Claim 3,

d ′
∈ Wd . So c ∼ d ′. By Claim 1, fP(c) ∈ acl(d ′). Since c |⌣ fP (d) d ′, we have

fP(c) ∈ acl( fP(d)). □

Local finiteness follows from Claim 7 and compactness. In particular each
∼-class on P is a countable union of EP -classes.

This ends the proof of Proposition 6.4. □

Proof of Theorem 6.6. We continue with the proof of Theorem 6.6.
The equivalence relation EP is an intersection of 0-definable equivalence rela-

tions; so for one of these equivalence relations E0, for some 0-definable set D with
b ∈ D, we have that for all b′, b′′

∈ D, with δ = δP ,

b′E0b′′ implies dX (b′, b′′)≤ 4δ. (∗)

Let f (b) = b/E0. A conjugate of f (b) has the form f (b′); a conjugate over
acl( fP(b)) has the form f (b′) where tp(b/ acl( fP(b)))= tp(b′/ acl( fP(b))); and
so since E0 refines this equivalence relation, we have bE0b′, so f (b)= f (b′). Thus
f (b) ∈ acl( fP(b)).

On the other hand, we saw that if c, b are connected then e ∈ acl(c) and so
e ∈ acl(c). In particular, if dX (b, c)≤ 5δP then e ∈ acl(c). Thus we can also choose
D so that for all b′

∈ D, c′
∈ G, with δ = δP we have

if dX (b′, c′)≤ 5δ then f (b′) ∈ acl(c′) (∗∗)

(here, f (b′)∈acl(c′) can be replaced by a single formula, obtainable by compactness,
that guarantees it).

Let F be the set of all triples (D, f, δ) with the above two properties. We saw
that any b lies in D for some (D, f, δ) ∈ F . By compactness there exists finitely
many such pairs (Di , fi , δi ) such that

⋃
i Di = G. We may refine them so as to be

disjoint, and then take the union to obtain a single function f defined on G, into
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the disjoint union of the ranges of fi ; so a fiber of f is a fiber of some fi on Di ,
and thus (∗) holds with δ = δi and (∗∗) holds with D = G, δ = δi .

If b, b′
∈ Di , f (b)= f (bi ), then dX (b′, b′′)≤ 4δi . (∗i )

If b′
∈ Di , c′

∈ G, dX (b′, c′)≤ 5δi , then f (b′) ∈ acl(c′). (∗∗i )

Define H = {(x, y) ∈ G : f (x) = f (y)}. By (∗i ), since f (x) = f (y) implies
x, y lie in the same Di , (1) holds with m = max δi . Similarly (2) follows from the
(∗∗i ) and compactness (using 1 ≤ δi for each i).

Towards (3), reorder the Di so that δi ≥ δ j for i ≤ j . Fix i ≤ j , and let b′
∈ Di ,

c′
∈ D j . If dX (b′, c′)≤ 1 then f (b′) ∈ acl(c′′) for any c′′

∈ D j with f (c′′)= f (c′);
the reason is that dX (c′, c′′) ≤ 4δ j by (∗) j , so dX (b′, c′′) ≤ 4δ j + 1 and by (∗∗i ),
since 4δ j + 1 ≤ 5δi , we have f (b′) ∈ acl(c′′). Thus f (b′) ∈ acl( f (c′)). Item (3)
follows.

Let us now prove part (B). We work over a subfield F0 so that F has elimination of
imaginaries, and model completeness in the form: every definable set is a projection
of the set of rational points of a variety under a finite morphism. See Remarks 6.7(8)
for a better statement with control of F0.

Thus the equivalence relation (x, y) ∈ H can be written as f (x) = f (y) for
some definable function f into Fk . For each complete type P of G, one can find a
variety G P , a morphism h′

P : G P → Ak with finite fibers, and regular functions φ′

P
on G P such that for any a ∈ P , for some b we have h′

P(b)= a and f (a)= φ′

P(b).
This is a form of the algebraic boundedness of pseudofinite fields ([31]). It follows
from Ax’s theorem applied to the graph of f . (This is a finite projection of the
rational points of a quantifier-free type of ACF, which can be enlarged to be a
locally closed subset of some variety; but this is then itself a variety.)

By Ax’s theorem, any definable subset of G P has the form g(G̃ P) for some
variety G̃ P and morphism g with finite fibers. In particular this is true for {y ∈ G P :

φ′

P(y) = f (h′

P(y))}. Define φP on G̃ P by φP = φ′

P ◦ g, and ρP = h′

P ◦ g. Then
f (ρP(x)) is given by regular functions, and P ⊆ ρP(G̃ P). By compactness, we can
find a finite number of ρi : G̃i → Ak such that f (ρi (x)) is given by regular functions
on each G̃i , and

⋃
i ρi (G̃i )= G. Let (G̃, ρ) be the disjoint union of (G̃i , ρi ). Then

ρ : G̃ → Ak has finite fibers and image G, and there exists a tuple of regular
functions φ on G̃, such that φ(x)= f (ρ(x)) for x ∈ G̃; the “moreover” follows. □

Remarks 6.7. (1) The “moreover” is made explicit as follows: say G ⊂ Fk . Then
there exists a morphism of varieties h : G̃ → Ak with finite fibers, and a tuple of
regular functions φ on G̃, such that φ(x)= φ(x ′) if h(x)= h(x ′), and

H = {(h(x), h(y)) : x, y ∈ G̃(F), φ(x)= φ(y)}.

In particular, each H -class has the form h(φ−1(c)∩ G̃(F)) for some c.
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(2) One can add that piecewise on G (i.e., on each of finitely many definable
pieces Gν), the rational invariants suffice to determine a class of H up to finitely
many possibilities. In other words there are rational functions ψ on Gν , such that
the equivalence relation H ′ defined by ψ(x) = ψ(y) contains H |Gν , and each
H ′-class is a finite (bounded) union of H -classes. The ψ(x) will list the coefficients
of the minimal polynomials satisfied by the φ(y) for h(y)= x .

(3) The theorem can be stated for the family of finite fields, in place of a single
pseudofinite field. Then one adds uniformity to the definability assumption and to
the conclusion. In particular m is bounded, that the valencies in (2) are uniformly
bounded, and the complexity of h, G̃, φ is bounded independently of p.

(4) Note in particular that for each i ≤ n, X ∩ D2
i induces a finite valency graph

on f (Di ). Globally on f (G), there is a multilayered structure with layers f (Di );
the graph has finite valency in the downwards direction, regarding arrows going
from f (D j ) to f (D≤ j ), but not necessarily upwards. This kind of tree-like structure
is intrinsic and cannot be avoided; see Example 6.13.

(5) Part (A) of Theorem 6.1 admits an analogue for stable or even simple theories,
near a given regular type p, using semiregular p-weight in place of dimension. Is
there a similar generalization of Theorem 6.6? (It seems likely.)

(6) For simple Robinson theories, even of SU -rank one, it was shown in [39] that
E/EP may be a connected compact space. But pseudofiniteness was not considered
there, and it would be interesting to see what happens when this hypothesis is added.

(7) Part (B) of Theorem 6.6 is valid for structures interpretable in PF, not necessarily
with the full induced structure. (Thus the transitivity assumption is easy to attain,
given a group action.)

(8) In part (B), we needed to adjoin constants so as to have model completeness
as in Ax. If in the statement we replace V (F) by V (Fn), where F is a (periodic)
difference variety and Fn is the degree n extension of F , or alternatively Artin
symbols, this becomes unnecessary; see [40]. In this formulation the theorem is valid
over Falg

0 where F0 is the field of 0-definable elements of F . The reason for going
to Falg

0 rather than F0 is the need to name the algebraic imaginary parameters φn ,
coding a generating automorphism of the Galois group of the degree n extension
of F , in order to have elimination of imaginaries; these are definable over Falg

0 .

(9) Part (A) of Theorem 6.1 can easily be recovered from part (A) of Theorem 6.6.
Part (B) of Theorem 6.6 partially generalizes part (B) of Theorem 6.1, but to obtain
a group structure on the covering variety appears to require additional argument.

6.8. Definability of connected components. We showed in general that connect-
edness over Fp of a definable graph can be definably reduced to a locally finite
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graph. Here we impose stronger assumptions that allow ruling out the locally finite
graph, and thus showing definability of the connected components. This will be the
graph analogue of Section 6.2. In particular under these assumptions, if the graph
generated by X on Fn

p fails to be connected for infinitely many p, then this is so for
an algebraic reason.

Recall that a definable group is connected if it has no proper definable subgroups
of finite index. If F is a pseudofinite field and G is a simply connected algebraic
group, then G(F) is connected ([44]).

Let T be an S1-theory. Let G be an ind-definable group with a transitive action
on a definable set (V, X). Let I be an index set, and for i ∈ I , let (Ji (v) : v ∈ V )
be a definable family of definable subgroups of G. Assume conjugation invariance:
Ji (gx)= g Ji (x)g−1. Let ∼V (a) denote the connected component of a ∈ V .

Corollary 6.9. Assume that in any model of T , whenever a ∈ V , Ji (a) is a connected
definable group, Ji (a) · a ⊆ ∼V (a), and if (a, b) ∈ X then j · a = b for some i ∈ I
and some j ∈ Ji (a), or dually. Then ∼V is definable.

Proof. By assumption, G acts on (V, X) by automorphisms; so as a graph, (V, X)
has a unique type P . Let E = EP be the equivalence relation of Theorem 6.6. Then
the G-action preserves E ; and V/E is a locally finite graph. Now for a ∈ V , and
i ∈ I , by assumption Ji (a) · a ⊆∼V (a); by compactness, Ji (a) · a is within a finite
radius X/E-ball B around a; now B is finite by local finiteness; so a finite index
definable subgroup of Ji (a) fixes it pointwise. But Ji (a) is connected, so Ji (a) acts
trivially on B; in particular Ji (a) fixes the E-class of a. Let X ′ be the directed graph
obtained by drawing a directed edge from a to j · a, for any j ∈ Ji (a). We have
just shown that the forward neighbors of a are in the same E-class as a. Applying
this to other elements, we see that the backwards-neighbors of a are also in the
same E-class. But by assumption, any edge of X is in X ′ or the reverse graph; so
all X -neighbors of a are in the same E-class. Conversely we have E ⊂ ∼V , so the
E-classes coincide with the ∼V classes. Hence both are definable. □

For example we may take G to be the ind-definable group of polynomial auto-
morphisms of V = An . By a transvection (not necessarily linear) we mean a map
(x, y) 7→ (x, y + f (x)), where (x, y) is a partition of the coordinates of An , and
f is a polynomial. Note that any transvection t forms part of a unipotent group
(tα : α ∈ F), where tα(x, y)= (x, y +α f (x)); in the theory T of pseudofinite fields
of characteristic zero, this group is connected.

Corollary 6.10. Let j1, j2 be definable, conjugation invariant maps from V to G,
so that ji (a) is a transvection; draw an edge from a to ji (a) · a. Let 0 denote the
associated graph (of valency at most 4). Then the connected component ∼V (a) in
the finite field Fp is definable uniformly in a and in p. □
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This is a special case of Corollary 6.9. The proof shows also that the graph
(V, X ′) obtained by connecting a to each j t

i (a), i ∈ I , t ∈ F , has the same connected
components as (V, X), and each connected component has finite X ′-diameter.

Example 6.11. Fix a linear algebraic group G (say over Z). Consider the action
of G by conjugation on Gn . Define a graph structure 0 on Gn , of valency at
most n, by letting a be adjacent to a−1

i aai , where ai is one of the n components of
a = (a1, . . . , an) and k ∈ Z. Let p be a prime, let a1, . . . , an ∈ G(Fp) be unipotent,
a = (a1, . . . , an), and let C(p; a) be the component of a in 0(Fp). Then C(p; a)
is definable in Fp uniformly in a and p.

If one “speeds up” the graph by declaring a−k
i aak

i to be adjacent to a, then
there exists a bound β such that for all primes p and all a as above, C(p; a) has
diameter ≤ β.

Each component of 0 is contained in a conjugacy classes of n-tuples of unipotent
elements, in the subgroup of G that they generate. The subgroup G(a) generated
by an n-tuple a is itself a definable function; this is a consequence of Theorem 6.1.
From Theorem 6.6 we learn that the component of a is a definable subset of the
G(a)-conjugacy class of a. In particular when G = SLr and a is a generating
n-tuple of SLr (Fp), I do not know if the conjugacy class of a is connected in 0; if
it is not, the theorem shows that it is due to an algebraic invariant. In particular if
the conjugacy class in G(Fp)

n is connected away from a density zero set of primes,
then it is connected for all but finitely many primes.

See [15; 14; 1; 19] and references there for deep work on more specific instances
or classes of definable graphs.

6.12. Example of unbounded first expansion radius. We conclude with a simple
example showing that the “layered” or “tree-like” structure in the statement of
Theorem 6.6 is unavoidable.

Let (G, X) be a (symmetric, reflexive) graph, definable in a structure of finite
S1-rank d(G). For a ∈ G, let ξ(a) be the smallest n such that for all n′ > n we
have d(Bn′(a))= d(Bn(a)), where Bn(a) is the n-ball of (G, dX ).

Here is an example where ξ is unbounded. It can be understood in ACF or in PF,
and shows that the finite partition in Theorem 6.6 is unavoidable.

Example 6.13. Let G = A2, and let f : G → G be an endomorphism of infinite
order. Let C be an irreducible curve on G, also of infinite order under f , i.e.,
not f -preperiodic. Let X be the union of the graph of f and C × C . Then ξ is
unbounded. Hence, there is no definable equivalence relation H on G such that:

(1) For some m, if (a, b) ∈ H then dX (a, b)≤ m.

(2) X/H has finite valency.
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Indeed, ξ(g)= n if g ∈ f −n(C)∖
⋃

k<n f −k(C). Thus ξ is unbounded. Suppose
an H with (1,2) exists. Let a ∈ G be generic; it suffices that a /∈

⋃
n∈Z f nC . Since

all dX -balls around a are finite, and by (1), the H -class of a is finite. Hence all
H -classes must be finite except possibly on some finite union of curves f −n(C).
On the other hand, the curve C itself meets only finitely many H -classes, since the
complete graph on C has finite valency modulo H . Let n be the greatest integer
such that f −n(C)/H is finite. Then f −n−1(C)/H is infinite, yet f induces a finite
valency graph on the product f −n−1(C)/H × f −n(C)/H , which is impossible.

6.14. Larsen–Pink. One may ask about a graph-theoretic version of the Larsen–
Pink inequalities. We obtain such an analogue in a basic case, leaving the more
general case as a question.

Consider an enrichment of the theory of fields, with a reasonable dimension
function δ, as in [46]. For any partial type S, write d(S) for the dimension of
the Zariski closure of S, also d(c) = d(S) if S = tp(c/M). Write δ(S) = α if
α = inf δ(S′) as S′ varies over definable sets containing S.

Let P, Q and R ⊂ P × Q be complete types over some base field M , such that
δ(P), δ(Q), δ(R) exist. Assume

for (a, b) ∈ R we have M(a)alg
∩ M(b)alg

= M . (⋄)

Lemma 6.15. Assume d(P)= d(Q) and d(R)= d(P)+ 1. Then

d(P)δ(R)≤ δ(P)d(R).

Proof. Let Rt
={(b, a) : (a, b)∈ R}. Consider (a0, . . . , ak) with (ai , ai+1)∈ R∪ Rt

such that a0 |⌣M(ai )
ai+1. Then d(a0ai+1) ≤ d(a0ai ai+1) = d(a0ai ) + 1. Thus

d(a0ai ) ≤ d(P)+ i . Once d(a0ai ) = d(a0ai+1) we have a0 |⌣M(ai+1)
ai and so

by considering the canonical base we have a0 |⌣M(ai )alg∩M(ai+1)alg M(ai )
alg, i.e., by

assumption, a0 |⌣M ai ; so d(a0ai )= 2d(P). Thus equality holds only at i = d(P),
and for i < d(P) we have ai ∈ M(a0ai+1)

alg.
So far we used only algebraic independence. But now choose (a0, . . . , ak)

with (ai , ai+1) ∈ R ∪ Rt such that a0 |⌣M(ai )
ai+1 holds in the sense of δ (and a

fortiori algebraically). Using ai ∈ M(a0ai+1)
alg, we have δ(ai/M(a0ai+1)) = 0,

and it follows that for i ≤ d(P) we have δ(a0ai ) ≥ δ(a0ai−1) + δ(Rb), where
Rb ={x : (x, b)∈ R}. So 2δ(a0)≥ δ(a0ai )≥ δ(a0)+iδ(Rb). For i =d(P)we obtain
δ(a0) ≥ d(P)δ(Rb). Thus δ(Rb) ≤ δ(P)/d(P) and also δ(R) = δ(P)+ δ(Rb) ≤

δ(P)(1 + 1/d(P)) so δ(R)d(P)≤ δ(P)d(R). □

Question 6.16. What can be said without the condition d(R)= d(P)+ 1?

Let us now see what (⋄) amounts to for graphs arising from a definable subset X
of a definable group G. First we analyze the condition M(a)alg

∩ M(b)alg
= M in



378 EHUD HRUSHOVSKI

this case, showing that it means in essence that X generates G. The argument of
this paragraph is valid in theories of finite Morley rank, in particular the case that
concerns us, ACF. Let G be a connected definable group, X ⊂ G a complete type
over M . Let (b, c) be generic in G × X , and let a = bc.

Claim. We have acl(M(a)) ∩ acl(M(b)) = M iff X is not contained in an M-
definable coset of a proper subgroup of G.

Indeed if X ⊂ Hm then aHm = bHm ∈ acl(M(a))∩acl(M(b)) but by genericity
of b in G, bHm /∈ acl(M). Conversely, assume acl(M(a))∩ acl(M(b)) ̸= M . Let
tp(b′/ acl(M(a))= tp(b/ acl(M(a)), with b′, b independent over M(a). Since b =

ac−1, there exists d−1 with (b, c, d) generic in G × X × X , and b′
= ad−1

= bcd−1.
If e ∈ acl(M(a))∩ acl(M(b))∖ M , we still have e ∈ acl(M(b′)). Continuing this
way, for arbitrarily large n we can find (b, c1, . . . , c2n) generic in G × X2n , with
acl(M(bc1c−1

2 · · · c2n−1c−1
2n ))∩acl(b) ̸= M . For large enough n, c1c−1

2 · · · c2n−1c−1
2n

is a generic of element of a definable group H ≤ G; now H = G is impossible since
for generic c ∈ G, we do have acl(Mbc)∩ acl(Mb)= M . Thus c1c−1

2 · · · c2n−1c2n

is the generic of a proper definable subgroup, and the result follows.

Remark 6.17. Let G be a definable group and X a definable subset. Let P = Q = G
and let R = {(x, y) ∈ G2

: xy−1
∈ X}. Then the inequality

d(P)δ(R)≤ δ(P)d(R)

implies the Larsen–Pink inequality

δ(X)d(G)≤ δ(G)d(X).

To see this, renormalize δ so that δ(G)= d(G). Then the first inequality becomes
δ(R) ≤ d(R); equivalently δ(G) + δ(X) ≤ d(G) + d(X). Using δ(G) = d(G)
additively now, we obtain δ(X)≤ d(X) and hence δ(X)d(G)≤ δ(G)d(X).

7. The Galois group of a NIP measure

Let µ(x) be a definable measure in a NIP theory, let φ(x, u) be a formula, and q(y)
a type (over 0).

Define an equivalence relation on q as follows: bEµ,φb′ iff for µ-almost all x ,
φ(x, b)= φ(x, b′). This is then a

∧
-definable equivalence relation on q . In a NIP

theory, ([45]), it is cobounded and thus the quotient q/E is compact in the logic
topology. The group G of automorphisms of q/E is likewise a compact group.
Since q is a complete type, G acts transitively on q/E . In this section we will study
this group G = Gµ,φ,q .

We could also consider finitely many formulas φ1(x, u1), . . . , φk(x, un), each
with a type qi (ui ); but by standard tricks one can find a single type q =q(u1, . . . , un)
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projecting to qi at the i-th position, and a formula φ, such that each φi (x, ci ) (ci |Hqi )
is equal to some φ(x, c) (with c |H q). Thus the sets of such formulas φ(x, c) with
c |H q forms a directed system, and the projective limit of the groups G = Gµ,φ,q

can be viewed as the Galois group of the space of weakly random types. The
individual groups Gµ,φ,q are the fundamental building blocks.

It turns out that a totally disconnected part may appear both as a quotient (G/G0)
and as a normal subgroup K/G00 of G0/G00. We show in Theorem 7.12 that the
“archimedean core” G0/K is a finite-dimensional real Lie group.

As a corollary we obtain Theorem 7.15, addressing a basic question of Anand
Pillay regarding local finite-dimensionality of groups of connected components
G/G00 for a definable group G in a NIP theory. We define the local connected
component G00

φ,q attributable to φ(x, u) ranging over a given type q(u), and show
again that it is a finite-dimensional Lie group, up to profinite group extensions
above and below.

We first present some basic material characterizing the target, profinite-by-Lie-
by-profinite groups. In this section, by “Lie group” we will mean finite-dimensional
Lie group, with finitely many connected components. Only compact Lie groups
will be considered. All topological groups are taken to be Hausdorff.

7.1. Profinite extensions of compact Lie groups. Let L be a connected, finite-
dimensional Lie group, with identity element 1, and let π1(L) :=π1(L , 1). Then the
universal cover L̃ admits a group structure, induced for instance by multiplication
of paths; there is an exact sequence 1 → π1(L)→ L̃ → L → 1. The connected
group L̃ acts trivially by conjugation on the finitely generated group π1(L), so
this is a central extension. Any subgroup N of π1(L) of finite index is normal
in L̃ , and we can form the quotient L̃/N . Taking the inverse limit over all N we
obtain a group L̂; by construction it is an extension of the Lie group L by the
finitely generated profinite group π̂1(L), profinite completion of π1(L). L̂ admits
a surjective continuous map onto any connected, pointed, finite covering group
of L (unique with 1 7→ 1), and at the limit, a surjective continuous map onto any
connected central extension E of L by a profinite group. We call L̂ the universal
profinite covering group of L .

7.2. Groups of finite archimedean rank.

Definition 7.3. A connected compact topological group K is profinite-by-Lie, if it
has a closed normal profinite subgroup K0 such that K/K0 is a Lie group.

We will say that compact topological group G is profinite-by-Lie-by-profinite, or
has finite archimedean rank, if the connected component G0 of G is profinite-by-Lie.

We will see that G is actually profinite-by-Lie-by-finite in this case, though
G/G0 need not be finite.
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Remarks 7.4. (1) If K is a compact group, then K/K 0 is profinite.

(2) Let G be a topological group with a profinite normal subgroup K , such that G/K
is a Lie group with finitely many connected components. Then K is determined up
to finite index by these conditions. Indeed if L is another such group, then K L/K
is a normal profinite subgroup of G/K ; as Lie groups do not contain infinite normal
profinite groups, K L/K must be finite, and by symmetry K , L are commensurable.

(3) If K0 is profinite and normal in a connected group G0 then it is central in G0.
Indeed the connected group G0 acts by conjugation on K0, so each orbit is connected,
but the totally disconnected group K0 has no connected subsets other than points.

(4) Let A be a compact abelian group; we have A ∼= Hom( Â,U1), where U1 is the
unit circle in C, and Â is the character group. Then A has finite archimedean rank
iff Â does as a discrete group, i.e., Q⊗ Â is a finite-dimensional Q-vector space.

(5) A compact group G has finite archimedean rank iff the center Z of G has finite
archimedean rank, and G/Z has a finite-index subgroup isomorphic to the product
of a profinite group with a compact real Lie group. (See Proposition 7.6(3).)

Example 7.5. Take a finite-dimensional Lie group L , a central extension L of L
by a profinite group A, another profinite group P , and a central extension P of P
by A; and form G = P ×

A L , the quotient of P × L by the antidiagonal subgroup
of A2. Then G is profinite-by-Lie-by-profinite, and compact if L is.

In fact G is also profinite-by-Lie in this case, as shown by the image of P×A in G.
Along with Proposition 7.6(3), this explains the remark in brackets in Definition 7.3.

Proposition 7.6. Let G be a compact topological group.

(1) If G is connected profinite-by-Lie, then G is a quotient of the universal profinite
cover of a compact connected Lie group.

(2) If G is Lie-by-profinite, then some subgroup G ′ of finite index in G splits as a
direct product of a connected Lie group with a profinite group, both normal
in G.

(3) If G is of finite archimedean rank, then G has an open finite index subgroup
isomorphic to P ×

A L , with P, A, L as in Example 7.5. Hence G is profinite-
by-Lie-by-finite.

(4) G has finite archimedean rank iff there exists a bound r and a family (Ni : i ∈ I )
of closed normal subgroups of G, closed under finite intersections, such that⋂

i∈I Ni = (1) and each G/Ni is a Lie group of dimension ≤ r .

(5) Let H be a closed subgroup of G. If G has finite archimedean rank, then so
does H.

Proof. (1) This follows from the discussion in Section 7.1 above.
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(2) We have an exact sequence

1 → L → G → P → 1

with L a Lie group, P profinite. As L has no small subgroups, G has an open
neighborhood O containing no nontrivial subgroup of L . By Peter–Weyl there
exists a continuous homomorphism r : G → Un ≤ GLn(C) with kernel R contained
in O and hence meeting L trivially. (See, e.g., [72, 1.4.14] for this consequence
of Peter–Weyl.) On the other hand G/RL ∼= P/ Im(RL) is a profinite group, that
embeds in a subquotient of GLn(C); so it finite. Thus RL has finite index in G, and
splits as a semidirect product of R with L . Conjugation induces a homomorphism

R → Aut(L)→ Aut(Lie(L))⊂ GLn(C),

where Lie(L) is the Lie algebra of L . The composition R → GLn(C) has finite
image as R is profinite; so some open subgroup R′ of R acts trivially on Lie(L),
hence on the connected component L0; so a finite index normal subgroup R′′ of R
acts trivially on L . We may take R′′ normal in G. Thus R′′L is a direct product
as stated. Note that R ∼= RL/L is isomorphic to a subgroup of P , and hence is
profinite.

(3) We have two exact sequences:

1 → G0
→ G → P → 1,

1 → Q → G0
→ L → 1,

with P , Q profinite, L Lie, G0 connected. Q is contained in the center of G0 (since
a connected compact group has abelian π1, and acts trivially by conjugation on it).

Since L has no small subgroups, there exists a neighborhood U of 1 in G such
that any subgroup of G contained in U ∩ G0 is contained in Q. By Peter–Weyl
there exists a homomorphism r : G → GLn(C) with kernel R ⊂ U . So R ∩G0 ≤ Q.
G/(RG0) is a quotient of the profinite group G/G0 and also of the group G/R that
has finitely many connected components; so G/(RG0) is finite, i.e., RG0 has finite
index in G. We may thus assume RG0

= G, and likewise replace Q by R ∩ G0,
and L by the new G0/Q; now Q is normalized by R.

Since the closed subgroup R∩G0 is commensurable with Q, it is profinite. Since
R/G0 is also profinite, R is profinite.

Since G0 is connected, it acts trivially on the totally disconnected group R; i.e.,
G0, R commute. Thus R acts trivially on G0. (Thanks to the referee for this short
argument.) In particular Q is central in RG0

= G. So G = R ×Q G0.

(4) Assume such a bound exists. Then dim(G/Ni ) is bounded independently
of i . It follows that for some N0, for all Ni ≤ N0, dim(G/N0) = dim(G/Ni ); so
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[N0 : Ni ] < ∞. Since
⋂

{Ni : Ni ≤ N0} = 1, N0 is profinite; while G/N0 is a
compact Lie group.

Conversely, assume G has finite archimedean rank. By (3), G is profinite-by-Lie-
by-finite, so it has an open profinite-by-Lie normal subgroup G1 of finite index; and
clearly G1 has a family (N ′

i : i ∈ I ), with dim(G1/N ′

i )≤ r ′ and
⋂

i N ′

i = 1. Let Ni

be the intersection of the conjugates of N ′

i . Each N ′

i has at most [G : G1] conjugates,
and thus G/Ni is a Lie group of dimension ≤ r ′

[G : G1]; clearly
⋂

i Ni = (1).
(Thus G is profinite-by-(not necessarily connected Lie).)

(5) This follows from (4), since a closed subgroup of a Lie group is a Lie group of
lower (or equal) dimension. □

We actually need the following lemma only when L is compact, but state it more
generally with a view to a later generalization (see Section 7.18(2)).

Lemma 7.7. Let L be a Lie group acting transitively and faithfully on a connected
manifold Y , with compact stabilizer S of a point y ∈ Y . Then dim(L)≤ dim(Y )2.

Proof. Since S is compact, fixing y ∈ Y one can find an S-invariant inner product b
on the tangent space Ty , and this propagates to an L-invariant Riemannian metric
on Y . Using the exponential map one sees that the pointwise stabilizer S′ of the
tangent space Ty fixes a neighborhood of y. The set of points y′ such that y′ and
each vector in Ty′ is fixed by S′ is closed and open, hence equals Y . So S′

= 1, hence
the homomorphism L → End Ty is injective. Thus dim(S)≤ Aut(Ty, b)=

(dim Y
2

)
,

and hence

dim(L)≤ dim(Y )+
(dim Y

2

)
=

1
2
(dim(Y )2 + dim(Y ))≤ dim(Y )2. □

Let Y be a compact C1 differentiable manifold. Let dY be a metric on Y . We
say that dY is compatible with the manifold structure if for any chart c : W → Y ,
where W is an open subset of Rn and dW is the metric induced from Rn , the map
c : (W, dW )→ (Y, dY ) is bi-Lipschitz. Any two compatible metrics on Y are bi-
Lipschitz equivalent, and hence the packing dimension is well-defined and does not
depend on the choice of a compatible metric. In fact the packing dimension equals
the dimension of Y as a manifold, as can be seen by going to charts and using the
standard Euclidean metric.

Lemma 7.8. Let G be a compact Lie group, H a finite-dimensional Euclidean
space, ρ : G → Aut(H) a faithful unitary representation. Let X = Gv be an orbit
of G, with metric dX induced from H. Then X is a smooth submanifold of H , and
dX is Lipschitz-compatible with the manifold structure on X.

Proof. Let F be the graph of ρ : G → Aut(H). Then F is a closed subgroup of
G ×Aut(H) which is analytic by the closed subgroup theorem (von Neumann 1929,
Cartan 1930). Since the projection F → G is analytic, and an isomorphism, the
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inverse map G → F is too; composing with the projection F → Aut(H) we see that
ρ is a real-analytic, and in particular C1, isomorphism between G and an analytic
subgroup A of Aut(H).

Gv = {g ∈ G : gv = v}. We give G/Gv the quotient manifold structure [13,
5.9.5]. Likewise let Av = {a ∈ A : av = v}, and give A/Av the quotient manifold
structure. We obtain induced analytic isomorphisms G/Gv → A/Av.

Consider the map α : A → X , a 7→ a(v), and the derivative α′ of α at 1, from the
Lie algebra of A into TvH = H . The kernel is precisely the Lie algebra T1 Av of Av .
Hence the induced map A/Av → H induces an injective linear map on tangent
spaces, and so is an immersion by [13, 5.7.1]. Since A/Av ∼= G/Gv is compact and
A/Av → H is injective, it follows that the image X is a differentiable submanifold
of H , and G/Gv

∼= A/Av → X is an isomorphism of C1-manifolds.
For the final point, it is easy to see more generally that if Y is a smooth submani-

fold of Rn , the metric induced by a Euclidean structure on Rn is compatible with
the manifold structure on Y . For instance near a point a ∈ Y , let H ′ be the tangent
space to Y at a embedded as a linear subspace of H , and consider the orthogonal
projection π : Y → H ′; at an ϵ-neighborhood of a the distance to H is O(ϵ2), and
so π is bi-Lipschitz. □

Lemma 7.9. If f : Y → X is a Lipschitz map between metric spaces, then the
packing dimension of Y is at least equal to the packing dimension of X.

Proof. In fact let γX (ϵ) be the maximal number of disjoint ϵ-balls in X , like-
wise γY (ϵ), and let l be the Lipschitz constant of f ; then γY (ϵ) ≥ γX (lϵ). If
a1, . . . , ak are points of X such that the lϵ-balls around the ai are pairwise disjoint,
let bi ∈ X be such that f (bi )=ai . Then the ϵ-balls around the bi are pairwise disjoint:
if c ∈Y and dY (bi −c), dY (b j −c)<ϵ, and d = f (c), then dX (ai , d), dX (a j , d)< lϵ,
a contradiction to the disjointness of the lϵ-balls around ai , a j . □

Lemma 7.10. Let G be a compact, connected Lie group, H a Hilbert space,
ρ : G → Aut(H) a unitary representation. Let X be an orbit of G, and assume G
acts faithfully on X. Let δ be the packing dimension of X as a metric space with the
metric induced from H. Then dim(G)≤ δ2.

Proof. By Peter–Weyl, there exist finite-dimensional G-invariant subspaces H ′

i
(i ∈ N) whose direct sum is dense in H . Let Hn =

⊕
i≤n H ′

i , and πn : H → Hn the
orthogonal projection. Since πn is Lipschitz (in fact with constant 1), πn(X) still
has packing dimension ≤ δ. Also, if g ∈ G fixes πn(x) for each n and each point
x ∈ X , then g fixes X and hence H , so g = 1. Let Kn = {g ∈ G : g|πn(X) = Id}.
Then

⋂
Kn = (1). By the descending chain condition on closed subgroups of G we

see that Kn = 1 for some n, so the action of G on πn(X) is faithful. Replacing H
by the subspace of Hn generated by πn(X), and using Lemma 7.9, we are reduced
to the case that H is finite-dimensional.
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In this case, by Lemma 7.8, δ equals the dimension dim(X) of X as a manifold.
By Lemma 7.7, dim(G)≤ dim(X)2 ≤ δ2. □

7.11. Interaction of NIP formulas with definable measures. We consider a sort
X carrying a definable measure, and a NIP formula φ(x, u) relating another sort U
to X . More generally we allow U to be a

∧
-definable set (without parameters); and

the measure µ may just be defined on the algebra B(φ) of subsets of X generated
by the sets φ(x, b), b ∈ U .

We will find a compact Hausdorff quotient U of U through which the interaction
is mediated. We are interested in the fibers of the natural map from U to the
space of types over ∅. These are principal homogeneous spaces for a compact
group G. We show here that G is made up of totally disconnected groups and a
single finite-dimensional Lie group.

We begin by recalling a number of basic objects associated with (X,U, φ, µ): a
compact space X with a probability measure, a compact metric space U, a compact
topological group G acting on X and U.

Let M = (X,U, φ, µ)M be an ℵ1-saturated model. We assume Aut(M) acts
transitively on U (M) (i.e., we consider one type of U at a time).

We can define a pseudometric on U :

d(a, a′)= µ(φ(a, x)△φ(a′, x)),

with associated equivalence relation

aEφ,µa′
⇐⇒ µ(φ(a, x)△φ(a′, x))= 0.

So the quotient U = Uφ,µ = U/Eφ,µ becomes a metric space.
E = Eφ,µ is a

∧
-definable equivalence relation. Clearly aEφ,µa′ iff for all

weakly random p over M , φ(a, x) ∈ p ⇐⇒ φ(a′, x) ∈ p. Since φ is NIP, the
number of weakly random φ types has cardinality bounded independently of M
(see Section 2.20). Hence E is cobounded. Thus we also have a logic topology
on U. The identity map is continuous from the (compact) logic topology to the
(Hausdorff) topology induced by the metric, so they coincide.

By compactness, for any ϵ > 0 there is a finite bound on the size of a set
A ⊂ U (M) such that µ(φ(a, x)△φ(a′, x))≥ ϵ for all a ̸= a′

∈ A. A maximal finite
set of this kind can be found in U (M0) for any countable elementary submodel M0

of M . It follows that U is separable, and does not depend on M . Being a compact
metric space, U is second countable.

Let X be the space of weakly random φ-types.
We have a map i :U → L2(X), mapping a to the characteristic function of φ(a, x).

We have ∥i(a)− i(b)∥2
2 = d(a, b). The definable measure µ induces a regular Borel

measure on X, and i extends to an embedding i : U → L2(X).
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Let G be the group of permutations of U induced by automorphisms of M . These
are the permutations preserving all images in U of

∧
-definable subsets of U n . In

particular d is preserved, so G consists of isometries of U. We give G the topology
of pointwise convergence (equivalently here, the uniform topology). It follows that
G too is second countable. Since G is closed in the group of all isometries of U, it is
compact. We will refer to G =: Gµ,φ as the compact symmetry group of µ relative
to φ,U .

The action of G extends canonically to an action by automorphism on X. As
G preserves the relations giving the measure of any finite Boolean combination
of φ(a, x), this action is measure-preserving. It thus induces a unitary action of
G on L2(X). Note also that g 7→ (gu, v) is continuous. If an automorphism of M
fixes U, it fixes X too, since it fixes the image of the relation φ on U×X.

Conversely if g fixes X, it is clear from the definition of E that g fixes U.

Theorem 7.12. Let φ⊂ X×U be a NIP formula, and assume U is a complete Shelah
strong type, i.e., a

∧
-definable set carrying no nontrivial definable equivalence

relations with finitely many classes. Let µ a definable Keisler measure on X.
Then Gµ,φ has finite archimedean rank.

Proof. Let G = Gµ,φ , and let G0 be the connected component of G. By the
completeness assumption on U , G0 acts transitively on U.

By Peter–Weyl there is a cofinal system N of closed normal subgroups N of
G0 such that G0/N is a connected Lie group. By “cofinal” we mean that any
neighborhood of the identity element of G0 contains some N ∈ N; equivalently, we
have

⋂
N = (1). Since G is second-countable, we may take N to be countable.

For N ∈N, factoring out (U,X, i, µ) by the action of N yields (U/N ,X/N , i, µN ),
where µN is the pushforward measure on X/N . We will also use the orthogonal pro-
jection πN : L2(X)→ L2(X)N , where L2(X)N is the subspace of L2(X) consisting of
N -invariant functions. We have a canonical identification of L2(X)N with L2(X/N ).
By computing

∫
f g for g ∈ L2(X/N ), it is easy to see that πN ( f ) is the integral of

f with respect to Haar measure on N , i.e., πN ( f )(x)=
∫

f (n(x)) dN (n). Hence,
for continuous f on X, we have f = limN πN ( f ), i.e., for any ϵ > 0, for some open
neighborhood W of 1 in G, whenever N ⊂ W , we have ∥πN ( f )− f ∥∞ < ϵ.

The action of G/N on L2(X/N ) is faithful: if g ∈ G ∖ N , then by Urysohn’s
lemma there exists a continuous function f on G/N vanishing at 1G/N but not
on g; clearly g f ̸= f .

Define iN = πN ◦ i : U → L2(X/N ).
By Proposition 3.27, the image i(U) of U in L2(X) has finite packing dimension.

By Lemma 7.9, the packing dimension of iN (U) is at most δ, for each N ∈ N.
Since G0 acts transitively on U , the image of U in L2(X/N ) forms a single orbit
of G0/N -orbit. By Lemma 7.10, dim(G0/N ) ≤ δ2. So dim(G0/N ) is bounded,
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independently of N ∈ N. By Proposition 7.6(4), G0 has finite archimedean rank,
hence (by definition) so does G. □

Remark 7.13. The theorem is valid more generally for continuous logic; the
measure µ is better interpreted as an expectation operator in this case, but by Riesz,
induces a measure µ on X; we still have an embedding of U into L1(X, µ) mapping
a to the real-valued function φ(a, x); we use the induced norm from L1.

7.14. The local connected component of a NIP group. In this paragraph we
address Pillay’s question, discussed in the introduction.

Let G be a definable group. Let φ(x, u) be a NIP formula, with x ranging over
G and u over a definable set U .

Assume G carries a definable, left translation invariant measure, at least on the
Boolean algebra of subsets generated by left translates of formulas φ(x, b).

Recall the definition of a weakly random type, Section 2.20. Let G00
φ be the

intersection of all the stabilizers of weakly random φ-types. Equivalently,

g ∈ G00
φ ⇐⇒ µ(φ(gx, b) △φ(x, b))= 0 for all b.

More generally, if q(u) is a partial type, let

G00
φ,q = {g ∈ G : µ(φ(gx, b)△φ(x, b))= 0 for all b |H q}.

Thus G00
φ is a

∧
-definable subgroup of G of bounded index, with compact

quotient K . When φ(x, y) := (xy−1
∈ P), P being a definable subset of G, we

also write G00
P .

We can view G/G00
φ as the maximal quotient of G/G00 attributable to φ, and

G/G00
φ,q as the maximal compact quotient of G attributable to instances φ(x, b)

with b |H q.

Theorem 7.15. Let P be a definable subset of G. The compact group G/G00
P has

finite archimedean rank. More generally, if q is a complete Shelah strong type, then
G/G00

φ,q has finite archimedean rank.

Proof. This reduces to Theorem 7.12 by a standard transposition from definable
groups to semidirect factors of automorphism groups. Namely introduce a new
sort X , with a regular action of G on X “on the right”, and no additional structure
beyond the original structure on the original sorts. We can view X as another copy
of G; the new language includes the old and the map X2

→ G, (x, y) 7→ x−1 y.
Define φ on X2: φ(x, y)⇐⇒ P(x−1 y). The left-invariant definable Keisler measure
µ induces a definable measure µX on X .

Let Ĝ be the compact symmetry group of µX relative to φ, as defined in
Section 7.11. Now G acts by automorphisms on X : (g, x) 7→ gx , fixing the old
sorts including G itself. Indeed this identifies G with the automorphism group of the
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new structure over the old. It is easy to check that under this identification, G/G00
P

becomes a closed subgroup of Ĝ. Hence by Theorem 7.12 and Proposition 7.6(5),
G/G00

P has finite archimedean rank.
The more general statement is deduced in the same way from Theorem 7.12,

letting U = X × q , and φ′(x, x ′, u)= φ(x−1 y, u). Note that G acting on the right
is transitive on X while fixing q pointwise, while for homogenous M |H T , Aut(M)
is transitive on q, so altogether the automorphism group of the new structure is
transitive on U . □

Example 7.16. Take G to be a saturated elementary extension of (Zp,+, D), where
D = {x ∈ Zp : vp(x) ∈ 2Z}. Then G0

= G00. The measure-theoretic stabilizer of
D is G0, and G/G0 ∼= Zp.

Example 7.17. Here we show that the Lie group can interact with the totally
disconnected group in Theorem 7.15, so that G0/G00 is not a product of a totally
disconnected group with a Lie group. Note that Z(1, 1) is a discrete subgroup
of the topological group Zp × R; it intersects Zp × (−1, 1) trivially. Let G =

(Zp × R)/Z(1, 1). The pathwise connected component of the identity in G is a
dense subgroup, the image of R, and so G is connected. The image of Zp is a
compact normal subgroup of G, with G/Zp ∼= T := R/Z, so G is profinite-by-Lie.

It is easy to see that the subgroup generated by (1, 1) is relatively p-divisible
in (Zp × R), and G has no nonzero p-torsion elements. Thus the exact sequence
0 → Zp → G → R/Z → 0 does not split; even as a pure group, G does not contain
a copy of T = R/Z, and this will not be fixed by moving to a subgroup of finite
index, or a finite quotient.

As a set, G can be identified with Zp × [0, 1). The group law is then defined by

(z, t)+ (z′, t ′)= (z + z′
+ c(t, t ′),m(t, t ′)),

where c(t, t ′) ∈ {0, 1}, and 0 ≤ m(t, t ′) < 1 in R. Thus the group G is definable in
the ring Qp × R (equivalently, in the model-theoretic disjoint union of the valued
field Qp and the ordered field R). The theory of this structure is NIP.

The product measure of the two Haar measures on Zp and on [0, 1) (identified
with R/Z) is invariant for this multiplication too. So it gives a generically stable
measure. Let D =

{
(x, y) : v(x) ∈ 2Z, y ∈

[
0, 1

2

)}
, say: a definable set of positive

measure.
Let M∗ be a saturated elementary extension. Let S be the µ-stabilizer of D. It’s

a
∧

-definable subgroup of bounded index, and G(M∗)/S ∼= G. G is connected and
profinite-by-Lie, but cannot be split as a product.

7.18. Open questions.
(1) Is the transitivity assumption on U necessary in Theorem 7.12? The original
question was for all φ(x, b).
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The question reduces to U comprising finitely many types U1, . . . ,Uk , provided
the bound on dim(G) does not depend on k. The issue is that the action on each Ui

may have a kernel Ni . For definable Ni , the Baldwin–Saxl lemma would imply that
the intersection of k0 of the Ni is already trivial, where k0 is bounded in terms of
the VC-dimension. Since Ni is only

∧
-definable, Baldwin–Saxl does not directly

apply and some substitute is needed. In any case we obtain that the compact group
G embeds into a product of Lie groups of bounded dimension; in case µ takes only
finitely many values, the µ-stabilizer of each formula φ(x, b) is definable, and so
the usual Baldwin–Saxl applies and shows transitivity is not needed.

(2) A local logic version, allowing for noncompact definable groups over R and Qp,
would be very interesting.

(3) In [62], Macpherson and Tent study profinite definable groups G in a NIP
structure M , along with a formula φ(x, u) such that any open subgroup has the form
φ(x, b) for some b.7 In this situation the Haar measure yields a natural definable
measure on φ-types, and the “fullness” assumption implies that G00

= G00
φ and

profiniteness of G(M) implies that G/G00 ∼= G(M). They show that G(M) is a
finite product of finite-dimensional p-adic analytic groups.

This can be seen as a profinite/adelic analogue of Pillay’s conjecture on the
archimedean part of G00

φ , though under a much stronger hypothesis.
It would be very interesting to put these results on a common footing. In particular,

does Theorem 7.12 have an adelic analogue? If G is a pro-p-group, is it p-adic
analytic? Is G in general interpretable in the adeles, or rather in the disjoint union
of finitely many p-minimal p-adic fields Qp and the o-minimal field R (all possibly
enriched analytically)?

Appendix A. Stability for invariant relations

We develop the basic results of stability, presented here in Theorems A.14 and A.27.
We view them as a reduction, modulo a certain ideal, of binary relations to unary
ones; thus a kind of measurability result for binary relations for the product measure.
The theory is primarily due to Shelah, and for the most part we follow standard
presentations. Shelah understood the significance of having the theorem over an
arbitrary base structure and not just over an elementary submodel, and introduced
imaginary elements and the algebraic closure as the precise obstructions to this.
In [71], the theory was extended beyond the first-order setting. In [54], the main
theorem was proved for arbitrary invariant stable relations over a model. A little later,

7Actually their formulation is the slightly stronger condition that the φ(x, b) for b from M define
exactly the set of open subgroups. However it is probably sufficient for the main theorem of [62] to
assume that the family contains all the open subgroups, as well as other groups that may have infinite
index.
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for simple theories, the “bounded closure” with its compact automorphism group
was recognized by these authors as the obstacle to existence of 3-amalgamation.
This was the first use of Lascar’s compact Lascar group; in the case of finite S1-
rank, 3-amalgamation was known to hold with ordinary algebraic closure and the
associated profinite group (in [40]).

See [20] for a good presentation of the compact and general Lascar types; we
will use it below. In [8], the theory was beautifully developed for continuous real-
valued relations; Theorem A.27 is a (less elegant) generalization for more general∧

-definable stable relations.
Here we treat arbitrary automorphism-invariant stable relations, over any base

set. We show that the fundamental theorems of stability theory hold, with strong
Lascar types as the natural obstacles to both uniqueness and existence.

For
∧

-definable relations, generalizing slightly the continuous real-valued case,
we show that compact Lascar types or Kim–Pillay types suffice.

We begin with describing a local setting, allowing notably to discuss stable inde-
pendence over an “imaginary” element of the form a/E , where E is a

∨
-definable

equivalence relation. We will need it in order to treat approximate equivalence
relations canonically, in particular preserving any group actions on them. This
generalizes the usual setting if one takes the metric d to be bounded.

We will sometimes assume the language is countable; the generalization to the
general case (by considering countable sublanguages) is routine. A will denote a
countable base set; we will sometimes use a countable elementary submodel M
containing A. The unqualified words definable,

∨
-definable,

∧
-definable always

mean: without parameters.
When R ⊂ X ×Y , and a ∈ X , we let R(a)= {b : (a, b)∈ R}. Define Rt

⊂ Y × X ,
Rt

= {(b, a) : (a, b) ∈ R}. When the context leaves no room for doubt, for b ∈ Y
we will write R(b) for Rt(b).

A.1. Local structures. Let U be a structure with a metric d : U2
→ N, such that

for any n, {(x, y) : d(x, y) ≤ n} is
∨

-definable. Recall that a definable subset of
Un is the interpretation of a formula (without parameters); a

∨
-definable set is a

union of definable sets.8 A typical way to obtain such a structure is to begin with
an arbitrary binary relation R0 on another structure U0. Let Ẽ be the equivalence
relation generated by R0. Then any Ẽ-class is naturally a local structure; the metric
distance d(x, y) is the length of a shortest chain x = x0, . . . , xn = y with R(xi , xi+1)

or R(xi+1, xi ) for each i . Here the small distance relations are 0-definable; if one
takes a family of relations instead, it is only

∨
-definable.

8If many sorts are allowed, we still assume the domain of d is the set of all pairs, belonging to the
union of all sorts. There are natural generalizations to bigger semigroups than N, both in the direction
of continuous metrics and of uncountable languages, but we restrict here to the main case.



390 EHUD HRUSHOVSKI

A graph is a set � with a symmetric binary relation R. Let R(a) := {b : R(a, b)}.
We define the associated metric

dR(x, y)= min{n : (∃x = x0, . . . , xn = y)R(xi , xi+1) for each i < n}.

The graph is connected if dR(x, y) is always defined. Note R(a)∪ {a} is the dR

1-ball around a. We define Rk(a) to be the dR k-ball around a, i.e., Rk is the
composition of R with itself k times.

A relation R(x1, . . . , xn) is local if for each i, j ≤ n, for some m, R(x1, . . . , xn)

implies d(xi , x j ) < m. (For unary relations, this poses no constraint.) We will be
concerned only with local relations. We will say, when only local relations are
allowed, that the structure is local. (This is closely related to the Gaifman graph,
used in finite model theory, and to Gaifman’s theorem on this subject.)

Note that one cannot freely introduce dummy variables; if we wish to involve an
additional variable y, it must be added along with a formula that ensures d(xi , y)<m
for some m. Geometrically this means we allow bounded products of the form
X ×δ Y = {(x, y) : x ∈ X, y ∈ Y, ψ(x, y)} where ψ implies d(x, y) < δ for some δ.
Formulas are formed by such controlled addition of dummy variables, conjunction,
disjunction or difference of formulas with the same set of variables, projections
distance-bounded universal quantifiers, of the form (∀x)(d(x, y)≤ l → φ(x, y)).

If E is a
∨

-definable equivalence relation in a saturated structure, then each E-
class can be presented as a local structure; the local structures setting will enable us
to speak about independence over an E-class (viewed as a (generalized) imaginary
element of the base). We can present E as having the form d(x, y) <∞, where
d is a metric such that d(x, y)≤ n is definable, for each n. Then we can take the
basic relations to be the d-bounded ones (this does not depend on the choice of d).

Any relation R has local traces R|l , the intersection of R with distance ≤ l
between any pair of variables. Note that R can be recovered from the R|l , in the
specific structure at hand; so that the automorphism group of the local structure
obtained in this way is identical to the original one.

If a local structure U has a constant symbol, or more generally a nonempty
bounded definable set D, then it can be viewed as a

∨
-definable structure; it is the

union of the definable sets of points at distance ≤ n from D, each of these being
0-definable. In general however, the automorphism group here need not respect any
specific inductive presentation.

The metric can be extended to imaginary sorts: first to Un via

d((x1, . . . , xn), (y1, . . . , ym))= max(max
i

min
j

d(xi , y j ),max
j

min
i

d(xi , y j )),

then to a quotient by a bounded equivalence relation with quotient map π :Un
→Un/E

with distance defined by d(u, v)= inf{d(x, y) : π(x)= u, π(y)= v}.
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We assume U is saturated as a local structure, i.e., any d-ball is saturated; equiv-
alently any small family of definable sets has nonempty intersection, provided the
family includes a bounded set, and that any finite subset has nonempty intersection.
Local saturation can be achieved by taking an ultrapower using bounded functions
only.

A remark on ultraproducts: if (Ni , di ) are a family of local structures for the same
language, and (N , d) is an ultraproduct in the usual sense, one has an equivalence
relation defined by: d(x, y) ≤ n for some standard n. Each equivalence class is
a local structure, and Łos’s theorem holds. Thus an ultraproduct here requires a
choice of an ultrafilter along with a component, rather than just an ultrafilter.

A.2. Locally compact Lascar types. An
∧

-definable relation E =
⋂

i Ei is a
cobounded equivalence relation if in any elementary extension N of the given
structure,

⋂
i Ei (N ) is an equivalence relation E(N ), and N/E(N ) has cardinality

bounded independently of N .
Call a sort S separated if it carries an

∧
-definable cobounded local equivalence

relation. If S is separated, let ≡
S
lc be the intersection of all

∧
-definable cobounded

local equivalence relations on S. Then ≡
S
lc is the unique smallest such relation. It

may change if we add parameters to the language. If the identity of S is clear we
write simply ≡lc.

Let π = π lc
S : S → S/≡lc be the quotient map. On S/≡lc we define a topology:

Y is closed iff π−1Y is locally
∧

-definable.

Lemma A.3. The quotient by ≡lc is a locally compact space (and σ -compact)
space.

Proof. (See [39; 20] for the bounded case, of Kim–Pillay spaces.) Let a ∈ S, and
let Bn be the ball of radius n around a, in S. Then π(Bn) is compact (so S/ ≡lc

is σ -compact). Since ≡lc is local, say d(x, y) < m for (x, y) ∈ S2 with x ≡lc y.
Then π(a) /∈ π(S ∖ Bm). But π(Bm)∪π(S ∖ Bm)= π(S). Thus the compact set
π(Bm) contains a neighborhood of π(a), namely the complement of π(S ∖ Bm).
The proof of the Hausdorff property is similar. □

Remark A.4. The local algebraic closure acl(∅) in a given sort S can be defined
as the union of the locally finite definable sets. The automorphism group of U has
a quotient group acting faithfully on acl(∅), referred to as locally profinite Galois
group of S. It is a totally disconnected locally compact group. The stabilizer of a
nonempty subset of acl(∅) is a compact group (fixing one point implies leaving
invariant balls of various radii).

One can similarly define the local compact closure to be the union of S/ ≡lc,
over all sorts S such that ≡lc is defined.
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Now consider the more general setting of Aut(U)-invariant equivalence relations
(we will simply say: invariant to mean Aut(U)-invariant). Assume S has an Aut(U)-
invariant cobounded local equivalence relation. Then it has a smallest one; it
is denoted ≡Las. This equivalence relation is generated by

⋃
m θm(a, b), where

θm(a, b) holds iff a, b begin an indiscernible sequence, and d(a, b)≤ m. When d
has the property that any two elements are connected by a chain of elements of
distance 1, as is the case in the main examples, ≡Las is generated by θ2. At any
rate, ≡Las is an Fσ relation (a countable union of

∧
-definable relations).

A.5. Assume

for some m0, for all n, any n-ball is a finite union of m0-balls. (♣)

Remark. The assumption (♣) is true in the setting of a measure, finite on balls.
More precisely assume µ is a definable measure, each ball of radius 1 has nonzero
measure, and each ball of radius ≤ 3 has finite measure. Then by Rusza’s trick, any
ball of radius 3 is a union of finitely many balls of radius 2 (consider a maximal
disjoint set of radius 1-balls in the radius 3 ball; then enlarging them to radius 2
would cover the larger ball). Assume in addition that the metric space is “geodesic”
in the sense that any two points of length n are joined by a path of length n, where
the successive distance is 1 (as is the case for Gaifman graphs). Then it follows
inductively that any ball of radius n is a union of finitely many balls of radius 2.

Remark. We are interested only in types of elements at finite distance from elements
of U. In the presence of (♣), any such type has bounded distance ≤ m0 from some
element of U. It follows that if X is an Aut(U)-invariant closed set of types over U,
then X contains a compact subset X with Aut(U)X = X (namely the types of
distance ≤ m0 from a given point).

A.6. Ideals of definable sets. We will work with saturated (local) structures U.
Invariance refers to the action of Aut(U), or Aut(U/A) for a small substructure A.
A set divides if for some l it has an arbitrarily large set of l-wise disjoint conjugates
(i.e., any l have empty intersection).

We will consider ideals of U-definable sets (of some sort S). Say I is definably
generated if it is generated by a definable family of definable sets. Say I is

∨
-

definable if it is generated by some bounded family of definably generated ideals.
Equivalently, for any formula definable D ⊂ S × S′, {b ∈ S′

: S(b) ∈ I } is
∨

-
definable. If I is Aut(U/A)-invariant, then {b ∈ S′

: S(b)∈ I } is in fact
∨

-definable
over A.

Dually, I determines a partial type over U, generated by the complements of the
definable sets in I . Any extension of this partial type is called I -wide. We say a/A
is I -wide if a does not lie in any A-definable set lying in I . Note that tp(a/A) will
then extend to an I -wide complete type over U.
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If f : S → S′ is a 0-definable surjective map, and I is a
∨

-definable ideal, let
f∗ I = {D : f −1 D ∈ I }. This is a

∨
-definable ideal on S′, proper if I is proper. If

c/A is I ′-wide, then c = f (b) for some I -wide b/A.
If I, I ′ are two ideals (on S, S′), we can define an ideal I⊗I ′ on S×S′, generated

by the sets D ⊂ S × S′ such that for some D1 ∈ I , for all a ∈ S∖ D1, D(a) ∈ I ′. So
if a/A is I -wide and b/A(a) is I ′-wide, then (a, b)/A is I⊗I ′-wide. Conversely,
if (a, b)/A is I⊗I ′-wide, then a/A is I -wide, and — assuming I ′ is

∨
-definable —

b/A(a) is I ′-wide: to see the last statement, if b ∈ D(a) ∈ I ′, then since I ′ is∨
-definable, there exists θ(x) true of a such that D(a′) ∈ I ′ for all a′

∈ θ ; let
D′

= {(a′, b′) : b′
∈ D(a′), a′

∈ θ}; then D′
∈ I⊗I ′; and (a, b) ∈ D′.

Inductively, we define I ⊗n , I ⊗(n+1)
= I ⊗n

⊗I . We will say b = (b1, . . . , bn) is
I -wide if it is I ⊗n-wide.

Example A.7. Let us mention here some canonical ideals, relative to a given
complete type p. There is Shelah’s forking ideal Ish, generated by the set Div(p)
of formulas that divide (over ∅). Given any invariant measure µ (such that p is
wide), we have the ideal Iµ of all formulas of µ-measure zero. If µ is definable,
then Iµ is

∧
-definable. We have Div(p)⊆ Ish ⊆ Iµ, for any invariant measure µ.

If I is an ideal on S′, let SDiv(I ) be the family of generically I -dividing subsets
of S; i.e., the family of sets Q(b), b ∈ S′, Q an A-definable subset of S × S′,
such that for some n, for any I ⊗n-wide (b1, . . . , bn) with tp(b/A) = tp(bi/A),⋂n

i=1 Q(bi )= ∅. Note that if I ⊂ J then I ⊗n
⊂ J⊗n , so SDiv(I )⊂ SDiv(J ).

Let Î be the ideal generated by SDiv(I ). We have SDiv(I )⊆ Div and so Î ⊆ Ish.
If I is

∨
-definable over A, so are SDiv(I ) and Î .

Definition A.8. Let R ⊂ P × P ′ be an invariant relation over A, and let I be a∨
-definable ideal on P . Say R holds I -almost always if for any c ∈ P ′, for any

b ∈ P with b/A(c) I -wide, we have R(b, c). Say R holds I -almost always in the
strong sense on P × P ′ if the transpose Rt

= {(y, x) : (x, y) ∈ R} holds Î -almost
always.

Explicitly, R holds I -almost always in the strong sense on P × P ′ if whenever
(b, c) ∈ P × P ′ ∖ R, there exists an A-definable local Q ⊂ P × P ′ and n ∈ N such
that (b, c) ∈ Q, and for any I ⊗n-wide n-tuple (b1, . . . , bn), P ∩

⋂n
i=1 Q(bi )= ∅.

If R ⊂ S × S′ is an invariant relation, I a
∨

-definable ideal on S, and P ⊆ S,
P ′

⊆ S′ invariant sets, we will also say that R holds I -almost always in the strong
sense on P × P ′ if R ∩ (P × P ′) does.

Lemma A.9. Assume R holds I -almost always in the strong sense on S × S′.

(1) R holds I -almost always.

(2) If tp(c/A(b)) does not divide over A, and tp(b/A) is I -wide, then R(b, c).
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Proof. (1) Suppose not; let Q, n be as in Definition A.8. Let b1 = b. Inductively
find bk such that Q(bk, c) and bk is wide over A(c, b1, . . . , bk−1); this is possible
since Q(c) is wide. But then c ∈

⋂n
i=1 R(bi ), a contradiction.

(2) Suppose ¬R(b, c). Let Q be a definable set as in Definition A.8, so that for
any I -wide (b1, . . . , bn) ∈ Sn ,

⋂n
i=1 Q(bi ) = ∅. As tp(b/A) is I -wide, one can

find bi |H tp(b/A) for i ∈ N, such that tp(bn/A(b1, . . . , bn−1)) is wide. Then any
subsequence of length n of this infinite sequence is I ⊗n-wide, so the intersection
of Q(bi ) over any such subsequence is empty. It follows that tp(c/A(b)) divides
over A. □

A.10. Stable invariant local relations.
Definition A.11. Two definable relations P(x, y), Q(x, y) are stably separated
if there is no sequence of pairs (ai , bi ), i ∈ N, with P(ai , b j ) and Q(a j , bi ) for
i < j ∈ N.

Let R ⊂ S × S′ be an Aut(U/A)-invariant relation.

Definition A.12. R is stable if whenever (a, b) ∈ R and (c, d) ∈ (S × S′)∖ R, then
there exist A-definable sets Q, Q′ such that Q(a, b), Q′(c, d) and Q, Q′ are stably
separated.

Remark A.13. R is stable iff there is no indiscernible sequence (xi , yi ) such that
for i ̸= j , R(xi , y j ) iff i < j .

Proof. If no such indiscernible sequence exists, then whenever (a, b) ∈ R and
(c, d)∈ (S×S′)∖R, tp(a, b) and tp(c, d)must be stably separated; by compactness,
for some definable P approximating tp(a, b) and Q approximating tp(c, d), P, Q
are stably separated. Conversely, if (ai , bi ) is an indiscernible sequence as in the
remark, then tp(a1, b2) is not stably separated from tp(a2, b1) though R(a2, b1)

and ¬R(a1, b2). □

Theorem A.14. Let U be a local structure, with (♣). Let f be a family of invariant
stable local relations on S×S′. Let Ef be the intersection of all cobounded invariant
local equivalence relations on S, such that each class is a Boolean combination of
a bounded number of sets R(b) ⊂ S, R ∈ f. Then for each complete type P in S,
there exists a proper,

∨
-definable ideal I (P) on S, satisfying:

If R ∈ f, P ⊂ P is an Ef-class, and Q is an Eft -class on S′, then either R
holds almost always in the strong sense for I (P) on P × Q, or ¬R does.

(∗)

Also, symmetry holds: if for P, Q as above, if Q is a complete type with Q ⊂ Q,
then on P×Q, R holds almost always for I (P) iff Rt holds almost always for I t(Q).

Remark A.15. Ef has a distinguished class S− such that for any R ∈ f, ¬R holds
almost always on S−

× S′ in the strong sense for IS . Away from this class, Ef is a
local relation. (See the proof above Lemma A.20.)
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We remark that there also exists a canonical proper
∨

-definable ideal IS , such
that the dichotomy (∗) and symmetry hold IS-almost always. However it may
trivialize certain types on S.

Though the proofs go through for any f, we will assume below that f = {R} to
simplify notation. (In fact the theorem reduces easily to the case that f is finite; and
then — replacing S by S×f, and considering the relation R̂((x, R), y)⇐⇒ R(x, y)—
to the case that f has a single element R.)

We will use the space SD(U) of all bounded global types on a sort D, i.e., types
containing a formula implying d(x, a)≤ n for some a, n. If x is a variable of sort D,
we will also write Sx(U). Let (dpx)R = {b : R(x, b) ∈ p}. If (dpx)R = (dp′ x)R,
we say p, p′ define the same R-type. We do not define a topology on the set of
global R-types.

Lemma A.16. Let M be a countable model. Let R′(x, y), R(x, y) be definable
relations (of which at least one is local). Assume R′(x, y) and R(x, y) are stably
separated. Then for any type p over M there exists a finite Boolean combination Y
of sets R(x, ci ) with ci ∈ M , such that dp y R′

=⇒ Y while Y, dp y R are disjoint.

Proof. Let c |H p|M . Define an, bn, cn ∈ M recursively. Given c1, . . . , cn , the equiv-
alence relation:

∧
i≤n R(x, ci )⇐⇒ R(x ′, ci ) has at most 22n classes; if none of these

classes meets both dp y R and dp y R′, then some union Y of these classes contains
dp y R and is disjoint from dp y R′, and the lemma is proved. Otherwise, choose
an, bn such that dp y R(an), dp y R′(bn), while an , bn lie in the same sets R(x, ci ),
i ≤ n. Then, find cn+1 such that R′(d, cn+1)⇐⇒ R′(d, c), where d ∈ {ai , bi : i ≤ n}.

For n < k we have R′(bn, ck). Applying Ramsey with respect to the question R
and refining the sequence (an, bn, cn), we may assume that R(bn, ck) for all n > k
or for no n > k; but the former is impossible since R′, R are stably separated. So
¬R(bn, ck) for all n > k.

Since an, bn have the same R-type over the smaller ci , it follows that ¬R(an, ck)

for n > k. But for n < k we have R′(an, ck); so the sequence (an, cn) contradicts
the stable separation of R′, R. □

Corollary A.17. Assume L is countable. Let R′, R be stably separated local
definable relations on S × S′. There does not exist an uncountable set W ⊂ Sx(M)
such that for p ̸= p′

∈ W , for some b ∈ M , R′(x, b) ∈ p while R(x, b) ∈ p′.

Proof. Let Yp be an M-definable set such that dp R′
→ Yp → ¬dp R (Lemma A.16).

There are only countably many choices for Yp, so there will be p, p′
∈ W with

Yp = Yp′ . Now if R′(x, b) ∈ p then b ∈ Yp = Yp′ so ¬R(x, b) ∈ p′. □

It follows that there is no map f from the full binary tree 2<ω into S′, such that
for each branch η ∈ 2ω,∧

R′(x, f (η|n + 1) : η(n)= 0)∧
∧

R(x, f (η|n + 1) : η(n)= 1)
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is consistent. By compactness, for some finite n, no such map exists for the height-n
tree 2n . We define the rank of a partial type W to be the maximum m such that
there exists f : 2m

→ S′, with

W ∧

∧
R′(x, f (η|n + 1) : η(n)= 0)∧

∧
R(x, f (η|n + 1) : η(n)= 1)

consistent for each η ∈ 2m .
Let R be a stable invariant relation on S × S′.

Lemma A.18. Let p, q be types over U. Assume that for any stably separated local
definable φ,ψ , for some e = eφ,ψ we have e ⊂ p, q and rkφ,ψ(p) = rkφ,ψ(e) =

rkφ,ψ(q). Then p|R = q|R.

Proof. Let c |H p and d |H q. Suppose p|R ̸= q|R. Then for some b ∈ U, tp(b, c)
implies R but tp(b, d) implies ¬R. As R is stable, tp(b, c) and tp(b, d) are stably
separated; hence by compactness, some φ(x, y)∈ tp(b, c) andψ(x, y)∈ tp(b, d) are
stably separated. Let e = eφ,ψ , l = rkφ,ψ(e). Let [φ(x, b)] be the set of types extend-
ing φ(x, b). It follows that either rkφ,ψ(e∩[φ(b, x)])< l or rkφ,ψ(e∩[ψ(b, x)])< l.
But rkφ,ψ(p)= rkφ,ψ(q)= l, a contradiction. □

Remark (uniqueness of finitely satisfiable extensions). Thus if e is a partial type,
e ⊆ p, q , and rkφ,ψ(p)= rkφ,ψ(e)= rkφ,ψ(q) for all stably separated (φ, ψ), then
for all stable invariant relations R we have p|R = q|R. This hypothesis holds if e
is a type over a model M , and p, q extend e and are finitely satisfiable in M .

Remark (determination by Ind-definable part). We can also deduce that for any
global p, p′, if p′ contains all schemes

{ψ(x, b) : θ(b)}

that are contained in p, then for any stable invariant relations R, we have p|R = p′
|R.

For this, for each stably separated pair (φ, ψ), we look at the deepest (φ, ψ)-binary
tree contained in p (rather than consistent with p).

For any partial type Q, we let Q̂ denote the set of types over U extending Q.

Proposition A.19. Let R be a stable local invariant relation on S × S′. Assume (♣).
Let X be a nonempty closed invariant subset of Ŝ. Let X |R = {(dpx)R : p ∈ X}.

Then 1 ⇒ 2 ⇒ 3:

(1) X is minimal.

(2) for any stably separated φ,ψ defined over A, rkφ,ψ(p) is constant (does not
depend on p ∈ X ).

(3) X |R has cardinality bounded independently of U; in fact |X |R| ≤ ℵ
|L|

0 .

Moreover, a minimal nonempty closed invariant subset of X exists.
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Proof. (1) implies (2) since the set of elements of X of (φ, ψ)-rank ≥ n is a closed,
invariant subset of X .

Now assume (2). Fix φ,ψ stably separated, and say rkφ,ψ(p) = m for p ∈ X .
For each ball B of the metric d, the intersection of B, X and the complement of
all definable sets of (φ, ψ)-rank ≤ m is empty; by (local) compactness, B ∩ X is
covered by finitely many definable sets of (φ, ψ)-rank ≤ m. Thus X is covered by
countably many such definable sets, say e(φ, ψ, l), l ∈ N. Each p now determines a
function χp : (φ, ψ) 7→ l, where l is least such that p ∈ e(φ, ψ, l). But in turn p|R
is determined by this function. For if p, p′

∈ X and χp = χp′ , then by Lemma A.18,
p|R = p′

|R. This proves (3).
For the moreover, given a complete type P , let P̂ be the set of types over U

compatible with P . Then X meets some P̂ nontrivially, so letting Z = X ∩ P̂
it suffices to show that any nonempty closed invariant subset Z of P̂ contains a
minimal nonempty closed invariant subset. Fix b ∈ P , and let B be the ball defined
by d(x, b)≤ 2m0. By (♣), any type p over U meets some m0-ball; by saturation of
U, this m0-ball contains a P(U)-point a; so d(x, a) ≤ 2m0 is compatible with p.
By invariance, d(x, b) ≤ 2m0 is compatible with some p′

∈ Z . Thus B̂ ∩ Z ̸= ∅
(where B̂ is the set of all types over U of elements of B). So if Zi is a descending
chain of nonempty closed invariant subsets of S P

R (U), then Zi ∩ B̂ is nonempty, and
as B̂ is compact,

⋂
Zi ∩ B̂ is nonempty, and in particular

⋂
Zi is nonempty. Thus

by Zorn’s lemma a minimal element exists. □

Let S, S′ be sorts, and R ⊂ S×S′ be invariant, stable. Let GenR be the set of all re-
strictions p|R, where p is a global type of S and p|R has a small orbit under Aut(U).
(The total number of orbits is small, say by Lemma A.18, so GenR is small.) When
relativizing to a small set A, so R is Aut(U/A)-invariant, we write GenR

A.
Any type P on S extends to some element of GenR , by Proposition A.19. It

follows that for any ≡Las-class X on S there exists an element qX of GenR such
that for any small N , qX |N is realized in X . Indeed some ≡Las-class of P has this
property; since all ≡Las-classes in P are conjugate, all have it.

Similarly define RGen = GenRt
on S′.

Define an equivalence relation Ef on S by: (a, b) ∈ Ef iff for all p ∈
RGen

and R ∈ f, (dp y)R(a, y) ⇐⇒ (dp y)(Rb, y); and dually define ERt on S′. Ef is
cobounded since RGen is bounded. Ef is local since R is local: if aEfb then for
some c, R(a, c) and R(b, c), so d(a, b)≤ d(a, c)+ d(b, c).

We say that q|R is consistent with an invariant set Z if any small subset q0 of
q|R is realized by some element of Z .

Lemma A.20 (symmetry and uniqueness). Any Ef-class on S is consistent with a
unique q ∈ GenR . If q ∈ GenR, q ′

∈
RGen, a ∈ S, a′

∈ S′, and q is consistent with
Ef(a), and q ′ with Eft (a′), then dq ′ y R(a, y)⇐⇒ dq x R(x, b).
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Proof. We prove the symmetry statement first, following the standard route. Suppose
for contradiction that it fails for q, q ′, a, a′. Say dq ′ y R(a, y) holds but dqx R(x, b)
fails. Construct an, a′

n so that an |H q|A(a′

i : i < n), an Efa, and a′
n |H q ′

|A(ai : i < n),
a′

n ERt a′. Then since an Efa, dq ′ y R(an, y) holds, and similarly dq x R(x, a′
n) fails.

Thus if i > n then R(an, a′

i ) holds but R(ai , a′
n) fails. This contradicts the stability

of R.
We have already shown that there exists q ′

∈
RGen consistent with the Lascar type

Eft (a′). Now if q1, q2 ∈ GenR are both consistent with Ef(a), then by symmetry
we have dq1 x R(x, b)⇐⇒ dq ′ y R(a, y)⇐⇒ dq2 x R(x, b). Thus q1 = q2. □

Because of this lemma, if χ is an Ef-class and q is the unique element of GenR

consistent with it, we can write (dχ x)R(x, y) for (dq x)R(x, y).
Let χ be an Ef-class, consistent with q. Let M be a substructure such that

for any two elements q1 ̸= q2 ∈ GenR , there exists b ∈ M with R(x, b) ∈ q1 but
R(x, b) /∈ q2, or vice versa. Let E f

M be the equivalence relation: aE f
M b iff for any

R ∈ f and b ∈ M , R(a, b)⇐⇒ R(a, b′). Then χ is a cobounded equivalence relation,
each class is a bounded Boolean combination of sets Rt(b), and E f

M refines Ef.
Indeed by construction a unique element q ∈ GenR will be consistent with a given
E f

M -class χ . So for any q ′
∈

RGen, let d be such that tp(d/M) is consistent with q ′;
then for a ∈ χ , R(a, y) ∈ q ′ iff R(x, d) ∈ q.

Since all Ef classes of a complete type P over A are Aut(U/A)-conjugate,
it follows from uniqueness that all elements q of GenR consistent with P are
Aut(U/A)-conjugate.

We choose a minimal nonempty closed Aut(U/A)-invariant set X = X P of
global types extending P , as in Proposition A.19. By this lemma, for any φ,ψ ,
βp(φ, ψ)= rkφ,ψ(p) does not depend on the choice of p ∈ X . Let I (P)= I (X P)

be the ideal generated by all definable sets D such that for some φ,ψ we have
rkφ,ψ(D) < βp(φ, ψ).

Lemma A.21 (dividing). Let q ′ be a global type of elements of S′. Assume that
q ′

|Rt
∈

RGen, P is an Ef-class, and R(a, y) ∈ q ′ for a ∈ P(U). For i ∈ ω1, let
bi |H q ′

|A(b j : j < i). Then for any a ∈ P(U), for cofinally many α ∈ ω1 we
have R(a, bα).

Proof. Redefine bi (without changing the type of the sequence) as follows: let
Mi ≺ U be a small model containing a j for j < i , and let bi |H q ′

|Mi . Let
M =

⋃
i<ω1

Mi . For any pair (φ, ψ), for some i <ω1, we have rkφ,ψ(tp(a/Mi ))=

rkφ,ψ(tp(a/M)). Sinceω1 has uncountable cofinality, for some α<ω1, for any φ,ψ ,
rkφ,ψ(tp(a/Mα)) = rkφ,ψ(tp(a/M)). Since Mα ≺ U, there exists a global type q
extending tp(a/Mα) such that rkφ,ψ(tp(a/Mα))= rkφ,ψ(q). By Lemma A.18, q|R
is uniquely determined. On the other hand since q ′

|Rt
∈ GenR

A(S
′), it is clear that

q ′
|Rt

∈ GenR
M(S

′). Since R(a, y) ∈ q ′, by Lemma A.20, R(x, b) ∈ q if tp(b/Mα)
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is consistent with q ′. Hence R(x, bi ) ∈ q for i ≥ α. But we can also construct a
global type q+ extending tp(a/Mα+1) with rkφ,ψ(tp(a/Mα+1)) = rkφ,ψ(q+). As
rkφ,ψ(tp(a/Mα+1)) = rkφ,ψ(tp(a/Mα)), it follows that q = q+; as R(x, bα) ∈ q
we have R(x, bα) ∈ q+, i.e., R(a, bα). □

It follows from Lemma A.21 (as well as from Lemma A.20, as we saw before)
that (dp y)R(x, y) is a bounded (but infinitary) Boolean combination of instances
of R(x, b); namely (dp y)R(a, y) iff R(a, b j ) holds for cofinally many j , where
(b j ) is a sufficiently long sequence as in the lemma.

Proof of Theorem A.14. We will use the equivalence relation Ef and the ideals I (P)
defined above Lemma A.21. We have to show:

If R ∈ f, P ⊂ P is an Ef-class, and Q is an Eft -class on S′, then either R
holds almost always in the strong sense for I (P) on P × Q, or ¬R does.

(∗)

Pick p ∈ X (P), and p′
∈ X (Q) (with respect to t R). By definition of Ef, for

any a ∈ P , p′(y) implies R(a, y), or else for any a ∈ P , p′(y) implies R(a, y).
Without loss of generality the latter holds. Now suppose ¬R(c, b) holds with
c ∈ P, b ∈ Q. As p′(y) implies R(a, y) and Eft (a, c), p′(y) also implies R(c, y).
Let r = tp(c, b/A). We have to show that the condition in Definition A.8 holds, i.e.,
that for some n, and some D ∈ r ,

⋃
D(x, y j )∪ ¬I ⊗n

ft (y1, . . . , yn) is inconsistent.
Otherwise, there exists a sequence c, b1, b2, . . . with bk/A(b1, . . . , bk−1) wide for
Ift for each k, and r(c, bi ) holds for each i . Let σ be an automorphism taking (c, b)
to (c, b1). Then q ′

= σ(p′) is a global type, q ′
|Rt

∈ Gen, consistent with Eft -class
of σ(b1), and q ′(y) implies R(c, y) (since σ(c) = c). By Lemma A.21, R(c, bi )

holds for some i . But r is a complete type, and cannot be consistent with both
¬R(c, b) and R(c, bi ). This shows that

⋃
D(x, y j )∪ ¬I ⊗n

ft (y1, . . . , yn) is indeed
inconsistent.

We saw that (dp y)R(x, y) is a bounded Boolean combination of instances
of R(x, b); hence any Ef-class can be expressed as Boolean combination of a
bounded number of sets R(b)⊂ S, R ∈ f. Given this, the finest cobounded equiva-
lence relation with this property refines Ef, and so also satisfies (∗). □

Remark A.22. Let p(x, y) be a partial type. Then there exists a unique smallest
stable invariant relation P containing p. (I.e., p implies P .) P is Fσ . Likewise for
“equational” in place of stable.

Proof. We prove the stable case; the equational case is the same, with a0 = a, b0 = b
below. For any invariant relation P(x, y), let P ′(a, b) hold iff there exists an
indiscernible sequence of pairs (ai , bi ) with a1 = a, b0 = b, and P(a0, b1). Clearly
P ′ is

∧
-definable if P is; and P is stable iff P = P ′. Also if P =

∨
j Pj then

P ′
=

∨
j P ′

j ; and the operation P 7→ P ′ is monotone. So let P0 = p, Pn+1 = P ′
n
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and P =
⋃

n∈N Pn . Then P is Fσ and stable, and contained in any stable invariant
relation containing p. □

Presumably P is usually not
∧

-definable (for instance when p implies ≡Las and
≡Las is not

∧
-definable). Note that ≡Las is itself a stable invariant relation.

A.23.
∧

-definable stable relations. We will discuss a stable,
∧

-definable rela-
tion R(x, y); the results go through in the same way for a set f of such relations.
We assume for simplicity that the language L and base set A are countable, so
R =

⋂
n Rn for some sequence Rn of definable relations, with R1 ⊃ R2 ⊃ · · · ; the

general case reduces immediately to this. We work with a universal domain U.
First we note that the p-definition of R is

∧
-definable, for any type p.

Lemma A.24 (definability). Let p ∈ Sx(M). Let R =
⋂

n Rn , with Rn definable.

(1) dp R is
∧

-definable over M ; it is an intersection of Boolean combinations of
sets Rn(c) with c ∈ M.

(2) In fact for any m ∈ N there exists n = n(m) and a finite Boolean combination
Y of sets Rn(x, ci ), ci ∈ M , such that dp R → Y → dp Rm .

Proof. It suffices to prove (2). By stability, there is no sequence dn, ek with
¬Rm(dn, ek) for k > n and R(dn, ek) for k < n. By compactness, for some n0,
there is no sequence with ¬Rm(dn, ek) for k > n and Rn0(dn, ek) for k < n < n0.
Thus ¬Rm, Rn0 are stably separated. By Lemma A.16, there exists a finite Boolean
combination Y of sets Rn0(x, ci ), ci ∈ M , such that dp Rn0 → Y → dp Rm . □

Lemma A.25. Any Ef-class of elements of P is
∧

-definable with parameters, on
any complete type P. It is cut out by certain sets of the form (dq y)R(x, y).

Proof. Let P be a complete type of S.
We can find a ∈ P such that Q(a)= {q ∈

RGen : a ∈ (dq y)R(x, y)} is maximal,
i.e., not properly contained in any Q(a′) (with a′

∈ P). This uses Zorn’s lemma,
and the fact that (dq y)R(x, y) is

∧
-definable, so if (dq y)R(ai , y) and tp(ai/M)

approaches tp(a/M) in the space of types over M , then (dq y)R(a, y).
Let Q = Q(a). Now aEfb iff for each q ∈ Q, (dq y)R(b, y). So the Ef-class of

a is
∧

-definable.
Since all Ef-classes in P are conjugate, all Ef-classes in P are

∧
-definable. As

P was arbitrary, the lemma follows. □

Corollary A.26. If a ≡lc b then (a, b) ∈ Ef.

Proof. In any case a ≡lc b implies that a, b have the same complete type; so it
suffices to show this for a, b ∈ P , where P is a complete type.

Define aEb iff tp(a/c) = tp(b/c) for any Ef-class c (i.e., there exists an auto-
morphism fixing c and taking a to b). Clearly E ⊂ Ef. Let {Ci : i ∈ I } list all the
classes. Then aEb iff for each i , (∃c)(∃d)(c, d ∈ Ci ∧ ac ≡ bd). Since each Ci
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is
∧

-definable by Lemma A.25, E is
∧

-definable. Since the number of classes
Ci is bounded, and elements with the same type over some representative ci ∈ Ci

also have the same type over Ci , it is clear that E is cobounded. Hence ≡lc⊂ E ,
so ≡lc⊂ Ef. □

From this and Theorem A.14 we obtain:

Theorem A.27 (locally compact equivalence relation theorem). Let f be a nonempty
family of

∧
-definable stable local relations on S × S′. Assume S′ is a complete

type. There exists a proper
∨

-definable ideal I ′ of definable subsets of S′, such
that if R ∈ f, and P, Q are classes of ≡lc on S, S′ respectively, then R holds almost
always on P × Q in the strong sense for I ′, or ¬R does. Symmetry holds as in
Theorem A.14. Also, the analogue of Remark A.15 is valid.

In particular, fix a and assume tp(a/A) forms a single ≡lc-class; then for b
such that tp(a/Ab) or tp(b/Aa) does not divide over A, the truth value of R(a, b)
depends only on tp(b).

Note that in the case of a definable measure, the measure 0 ideal is
∧

-definable
and so in general properly contains the ideal I ′ we found here; they coincide only
when both are definable.

Corollary A.28. Let R =
⋂

n Rn be a
∧

-definable stable local relations on S × S′.
Assume S′ is a complete type. Let P, Q be classes of ≡lc on S, S′, and assume R
holds almost always on P × Q, as in Theorem A.27. Then for each n there exists a
neighborhood U of (P, Q) such that if (P ′, Q′) ∈ U then Rn holds almost always
on P ′

× Q′.

Appendix B. Over a model

The entire thrust of this paper is to give a lightface account of higher measure
amalgamation, choosing no constants.

Here we record the much better understood situation over a model in a similar
language. The idea is not to study the correlations in detail, but simply to take an
elementary submodel M0 as if it were completely known, and describe the situation
almost everywhere “above M0”, relying on the fact that anything that may happen
with positive probability has already happened in M0.

Theorem B.11 is a model-theoretic version of the hypergraph Szemerédi (or
quasirandomness) lemma. The methods are essentially those of Theorem 5 of Tows-
ner [73], and the results of Tao cited there. The results are valid only over a model,
and in addition, only “almost everywhere”; they are blind to phenomena occurring
on measure zero sets of n-types, and so cannot give a meaningful stationarity lemma
valid for all types (or even for almost all n-tuples of 1-types, as opposed to almost
all n-types).
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We assume here that L is a countable language, T a complete theory, X, Y
definable sets carrying definable measures µX , µY . Form the multiple integral
measures, and assume Fubini holds for the product measures on X ×Y n , for each n.
Let φ(x, y) be a definable relation on X × Y .

Lemma B.1. Let M be a countable model, and φ(x, y) a formula. Let

B(φ)=

{
tp(a/M) : µYφ(a, y) > 0,

∧
m∈M

¬φ(a,m)
}
.

Then B(φ) has measure zero.

Proof. Note that B(φ) is a Borel subset of Sx(M), in fact the intersection of an
open set with a closed set. Fix φ, and let

Bϵ =

{
tp(a/M) : µYφ(a, y)≥ ϵ,

∧
m∈M

¬φ(a,m)
}
.

So as ϵ descends to 0, B(φ) is the increasing union of the sets Bϵ , and it suffices to
show that each closed set Bϵ has measure zero, or just that µX (Bϵ) < ϵ. Fix ϵ > 0,
and let

Xϵ = {tp(a/M) : µYφ(x, y)≥ ϵ}.

Let n = n(ϵ) be large, so that µX (Xϵ)(1 − ϵ)n < ϵ, and set

W =

{
(x, y1, . . . , yn) ∈ X × Y n

:

n∧
i=1

¬φ(x, yi )

}
.

Let µ= µX⊗µY ⊗ · · · ⊗µY . Clearly, µ(W )≤ µX (X)(1 − ϵ)n < ϵ. Let

Yϵ = {y ∈ Y n
: µX {x : (x, y) ∈ W } ≥ ϵ}.

By Fubini, Yϵ cannot have full measure in Y n .
So Y ′

:= Y ∖ Yϵ is not a null set. Since µX is a definable measure and M is a
model, we have Y ′(M) ̸= ∅. Thus for some m1, . . . ,mn ∈ M ,

µX {x : (x,m1, . . . ,mn) ∈ W }< ϵ.

But Bϵ ⊂ {x : (x,m1, . . . ,mn) ∈ W }; so µX (Bϵ) < ϵ. Letting ϵ → 0 we see that
µX (B(φ))= 0. □

Corollary B.2. For almost all types tp(a/M) in X , any weakly random type (in Y )
over Ma is finitely satisfiable in M.

Proof. By Lemma B.1, B :=
⋃
φ B(φ) has measure zero (here φ ranges over

all formulas φ(x, y) over M). Assume tp(a/M) /∈ B. Let tp(b/Ma) be weakly
random. Then for any formula φ(x, y) ∈ tp(a, b/M), we have µYφ(a, y) > 0, by
weak randomness. Hence by definition of B, φ(a,m) holds for some m ∈ M . □
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Remark B.3. An independent family (Ea) of finite equivalence relations may, in
general, be definable; then the effect of Ea cannot be accounted for before one
is aware of the parameter a, and one cannot expect 3-amalgamation to hold over
M ∪ {a}, but only at best over M ∪ bdd(a). Thus 4-amalgamation cannot hold
over M , in general, if we attempt to amalgamate extensions that are not algebraically
closed.

Lemma B.1 shows nevertheless that for almost all types, amalgamation is possible;
for a realizing a random type over M , the finitely many classes of Ea will already
be represented in M .

It will be useful to state a (tautological) measure-theoretic lemma on compatibility
of conditional expectation with random fibers.

Lemma B.4. Let X → Y → Z be Borel maps between standard Borel spaces, and
let µX be a Borel probability on X , with pushforwards µY on Y and µZ on Z.
For z ∈ Z , let Yz be the fiber above z and let Xz be the fiber above the composed
map X → Z. Assume µ “disintegrates” as an integral over Z of a Borel family
of measures µz on the fibers Xz (so µX =

∫
Z µz). Let φ : X → R be a bounded

Borel function, with expectation E(φ) on Y . For an L1-function ψ on Xz , let Ez(ψ)

denote the expectation on Yz with respect to νz . Let µY,z be the pushforward of µz

to Yz . Then µY =
∫

z∈Z µY,z; and for µZ -almost all points z ∈ Z , we have

E(φ)|Yz =Yz-a.e. Ez(φ|Xz).

Proof. When Z = {0, 1}, Y = Y0∪̇Y1, and (if µZ (Y0) > 0, and pulling back Y0 to
X0 ⊂ X ) the statement is that E(φ)|Y0 = E(φ|X0), which is clear. The general
case follows by approximation.9 □

B.5. Let L be a continuous logic language, and T be a stable theory of L. We
assume T eliminates quantifiers and imaginaries.

Assume given further a piecewise, partial interpretation S of T in T , namely a
family F of maps from sorts of L to various sorts of T, such that

(1) If f : X → Y and g : X ′
→ Y ′ are in F then so is f × g : X × X ′

→ Y × Y ′.

(2) If f : X → Y lies in F, and g : Y → Y ′ is a (
∧

)-definable map of T, then g ◦ f
lies in F.

(3) The pullback of any L-
∧

-definable subset of T under any f ∈ F is L-
∧

-
definable.

9Or in Radon-Nikodym style: using separability of L2, or countable generation of the algebra, it
suffices to show for a Borel function ψ on Y that

∫
Yz
ψ(y)E(φ)=

∫
Yz
ψ(y)Ez(φ|Xz), for almost all z.

This in turn is equivalent to showing for any bounded Borel θ on Z that
∫

Z θ(z)
∫

Yz
ψ(y)E(φ) =∫

Z θ(z)
∫

Yz
ψ(y)Ez(φ|Xz). Now E(θ(z)ψ(y)φ) = θ(z)ψ(y)E(φ), so the left-hand side is just∫

X θ(z)ψ(y)φ(x). Similarly Ez(φ|Xz)θ(z)ψ(y) = Ez(φ|Xz)θ(z)ψ(y)), so the right-hand side is∫
z∈Z

∫
Xz
φ|Xz)θ(z)ψ(y)=

∫
X θ(z)ψ(y)φ(x) too.
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By partial we mean that the maps f need not cover between them a full model
of T, but perhaps only a substructure.

When N |H T is sufficiently saturated and homogeneous, and A ⊂ N is countable,
we have dcl(A) = Fix Aut(N/A). We denote by S(A) the definable closure of A
within S:

S(A)= { f (a) : f ∈ F, a ∈ dcl(A)}.

Also write SM(A) := S(M ∪ A).
When given a tuple (a1, . . . , an), write

a[n] := (a1, . . . , an), a[n − i] := (a1, . . . , ai−1, ai+1, . . . , an).

We will use the fact that in a stable theory if a forks with c, then some formula
φ(x, c) ∈ tp(a/c) causes forking, i.e., φ(a, c) takes value > 0, and for any c′,
if φ(a, c′) takes value > 0 then a, c′ are not independent. (The forking is due to
some ψ(x, y); let φ1(x, y, e) (with e a parameter in bdd(0)) be the absolute value of
the difference between ψ(x, y) and the tp(a/ bdd(0))-definition of ψ ; then quantify
out e, taking an appropriate supremum.)

Lemma B.6. Let M⊂ N |HT, (a1, . . . , an, c)∈ N, and assume tp(c/M(a1, . . . , an))

is finitely satisfiable in M. Then SM(a[n]) is independent from
⋃

i SM(a[n − i], c)
over

⋃
i SM(a[n − i]).

Proof. Let b ∈ SM(a[n]), and let φ(y, u) be a formula of L, where u = (u1, . . . , un).
Also let di ∈ SM(a[n − i], c), suppose φ(b, d1, . . . , dn) > 0, and that φ(b, u) > 0
causes forking over

⋃
i SM(a[n − i]). We may write di = fi (a[n − i], c), where fi

is a
∧

-definable function. Since tp(c/M(a1, . . . , an)) is finitely satisfiable in M ,
there exists c′

∈ M with φ(b, ( fi (a[n − i], c′))i ) > 0; let d ′

i = fi (a[n − i], c′)).
Then tpφ(b/d

′

1, . . . , d ′
n) forks over

⋃
i SM(a[n − i]). But this is a contradiction

since d ′

i ∈ SM(a[n − i]). □

Compare [73, Lemma 4]. Note that Fubini is not required here.

Definition B.7. Let Qk be a collection of k-types, closed under restrictions and
permutations of variables, and set Q =

⋃
n Qk . Consider a downward-closed family

S of subsets of {y1, . . . , yN }, all containing some base set s0 and with |s ∖ s0| ≤ k
for s ∈ S.

We say that Q is a (≤ k,∞)-amalgamation family if for any such family S, and
any map j : S → Q compatible with restrictions, such that j (u) ∈ Q|u|, the union⋃

u∈S j (u) is consistent, and in fact extends to an element of QN .
(This is equivalent to l-amalgamation for each l ≤ k + 1, over a base set, in the

sense of [42].)
An n-tuple whose type is in Qn will be called Q-independent.
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Note that for k > 2, the hypothesis is incompatible with the presence of a linear
ordering. However it holds in many simple theories, for instance pseudofinite fields
over a base A such that definable and algebraic closure coincide over A. (Such a
base exists for “most” but not all completions of the theory of pseudofinite fields.)
A more refined version taking algebraic closure of each node in the system is valid
in all pseudofinite fields, but we restrict ourselves to the simpler case.

Theorem B.8 (stationarity). Let µ be a definable measure on a sort X. Let Q
be a (≤ n − 1,∞) -amalgamation family. Let φ j (y1, . . . , yn, x) be formulas with
y j a dummy variable not mentioned in φ j , and let tp(a1, . . . , an) ∈ Qn . Then the
quantity

µ

(∧
j≤n

φ j (a, x)
)

depends only on the n-tuple of n−1-subtypes of tp(a1, . . . , an) and not on the full
n-type.

Proof. Write p =<n p′ to mean that the two n-types agree on any restriction to < n
of the variables.

For the sake of readability we take n = 3 as a representative case, and write
(a, b, c) for (a1, a2, a3). Suppose (a, b, c) and (a′, b′, c′) are Q-independent ele-
ments, and tp(a, b, c)=<3 tp(a′, b′, c′). We have to prove that for formulas φ j as
above, µ

(∧
j φ j (a, b, c, x)

)
= µ

(∧
j φ j (a′, b′, c; x)

)
.

We may assume here that tp(a, b, c, a′, b′, c′) is Q-independent (using amalga-
mation over ∅).

We will construct M = {a1, a2, . . .} such that

(i) tp(a/M, b, c) is finitely satisfiable in M ,

(ii) likewise for tp(a′/Mb′c′), and

(iii) tp(abc/M)=<3 tp(a′b′c′/M).

During the induction, at stage n, we let ā = (a1, . . . , an). We will be concerned
with tp(a, b, c/ā) and tp(a′, b′, c′/ā) (but not especially with the type of a, b, c
over a′, b′, c′).

Assume Mn ={a1, . . . , an} have been found, with tp(abc/Mn)=<3 tp(a′b′c′/Mn).
If n is odd we work towards (i), if even towards (ii). Say n is odd. Then we need to
find d such that d, a, b, c, a′, b′, c′, a1, . . . , an is Q-independent, and

(i) tp(d, b, c, a1, . . . , an)= tp(a, b, c, a1, . . . , an).

(iii) tp(a, b, c, /d, a1 . . . an)=<3 tp(a′, b′, c′/d, a1 . . . an).

To meet (i), we extend tp(a/b, c, ā) to a type p(x, a, b, c, ā) over a, b, c, ā, so
that p ∈ Q; this will be tp(d/a, b, c, ā). Next (moving the elements a′, b′, c′ if
needed, recalling we are concerned only with their type over ā) we determine a
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type tp(d, a′, b′, c′, ā), so that tp(a′, b′, c′/ā, d) =<3 tp(a, b, c/ā, d); then (iii) is
satisfied. This is possible using the induction hypothesis and (2,∞)-amalgamation
(or (2, 3)-amalgamation over ā, d).

Thus M can be constructed satisfying (i)–(iii). Now the result follows from
Lemma B.6. □

Remark B.9. The notion of measure stationarity (the conclusion of Theorem B.8)
arose in early work of Elad Levi on the definable higher Szemerédi lemma. Levi
observed that it would suffice for a definable version of Gowers’ proof of higher-
dimensional Szemerédi. For the case of pseudofinite fields, stationarity was eventu-
ally proved in the stronger quantitative form, see [29].

But for general theories this remains interesting.

Question B.10. If Y also admits a definable measure commuting with µ, and Fubini
is assumed, does stationarity (Theorem B.8) imply a precise formula similar to
Theorem B.11, and valid on a set of full measure? It seems plausible that this can
be proved by double counting and using Cauchy–Schwarz, as in Theorem 3.16(2).

Also, the proof should extend assuming higher amalgamation holds only for
systems of algebraically closed substructures.

Theorem B.11. Let µ be a definable measure, with Fubini. Let M be a model.
Then the measure spaces Sx1,...,xn (M) form an independent system.

Equivalently, the associated measure algebras L x1,...,xn (M), with the standard
embeddings among them, form an independent system in the usual sense of stability.
(See Problem 3.23.)

By a Löwenheim–Skolem argument, we may (and will) assume the language as
well as M are countable.

For readability we will write omit the variable letter x , writing φ(123) for
φ(x1, x2, x3), φ(124) for φ′(x1, x2, x4), L(123) for the measure algebra of formulas
in x1, x2, x3 over M , L(12, 23, 13) for the join of the measure algebras L(i j)
(1 ≤ i, j ≤ 3), S(12, 23, 13) for the corresponding (measured) Stone spaces.

Further we let E(φ; 12, 13, 23) denote the conditional expectation of φ relative
to L(12, 23, 13).

Over larger structures M(b), M(c) and M(bc), we have the measured Boolean
algebras L(1b) of formulas in x1 over M(b), and likewise L(1c), L(1bc), and
L(1b, 1c) generated by L(1b)∪ L(1c); and the Stone spaces S(1b)= Sx1(M(b))
and similarly S(1c) and S(1bc).

We view formulas φ as {0, 1}-valued (so conjunction is the same as multiplica-
tion), or more generally valued in a bounded interval of R (so multiplication is still
defined).

We use an integral symbol to denote expectation when it is absolute and not
conditional; the integral can always be understood to be over the largest space
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around, such S(1234) when the variables are among x1, x2, x3, x4. Sometimes we
will nevertheless indicate the intended space by a subscript, e.g.,

∫
1 for the integral

over S(1).

Proof. The case n = 4 is representative. We want then to prove independence of
L(123) from L(124, 134, 234) over L(12, 13, 14).

It suffices to prove that∫
φ(123)φ′(124)φ′′(134)φ′′′(234)

=

∫
E(φ(123); 12, 13, 23)φ′(124)φ′′(134)φ′′′(234).

This will then extend to all bounded L1-functions on S123(M) in place of φ(123);
having replaced φ(123) by E(φ(123); 12, 13, 23), we can continue and do the same
with φ′, etc. Let φ̂ = E(φ(123); 12, 13, 23).

It suffices to prove that for any random triple b, c, d (i.e., tp(bcd/M) is random),
we have

∫
1 φ(1bc)φ′(1bd)φ′′(1cd)φ′′′(bcd)=

∫
1 φ̂(1bc)φ′(1bd)φ′′(1cd)φ′′′(bcd);

or, taking out the constant factor φ′′′(bcd), that∫
1
φ(1bc)φ′(1bd)φ′′(1cd)=

∫
1
φ̂(1bc)φ′(1bd)φ′′(1cd).

By Lemma B.1 and Corollary B.2, tp(a/Mbcd) is finitely satisfiable in M . Thus
Lemma B.6 applies, and shows that∫

1
φ(1bc)φ′(1bd)φ′′(1cd)=

∫
1

E(φ(1bc); L(1b)L(1c))φ′(1bd)φ′′(1cd).

Thus the equality in the following claim finishes the proof.

Claim. Let φ̂(123)= E(φ(123); 12, 13, 23). Then for random tp(bc/M) we have

φ̂(1bc)= E(φ(1bc); L(1b)L(1c)).

Proof. Note that S(1bc) can be identified with the fiber above tp(bc/M) of
S(123) → S(23), and likewise for S(1b, 1c, bc). Thus the claim follows from
Lemma B.4, applied to the maps S(123)→ S(12, 13, 23)→ S(12) and the fibers
above tp(bc). □

Note that the type partition is canonical, once the model is chosen, and approxi-
mated by partitions into definable sets.

Since the theorem is only valid over a model, it loses sight of possible symmetries.
But if a definable group G acts and is µ-measure preserving, G(M) acts on the
type spaces and we do have equivariance.

One can deduce a version of the Hoover–Kallenberg higher-dimensional de Finetti
theorem in a similar (or actually easier) way:
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Proposition B.12 (Hoover–Kallenberg). Let µ be a definable measure. Let N1 +N2

be the disjoint sum of two copies of N ordered by N1<N2, and let (ai : i ∈ N1 +N2)

be an indiscernible sequence. Let M := {ai : i ∈ N1}. For u ⊂ N = N2 let Su be
the space of types in variable x over M ∪ {ai : i ∈ u}, with measure induced by µ.
Then the Su form an independent system of measure spaces.

Proof. For i ∈ N, tp(ai/M ∪ {a j : j > i}) is finitely satisfiable in M . Hence
Lemma B.6 applies. □

(Is Fubini needed?)

Remark B.13 (NIP). Assume NIP, and work over a model. Then a statement
much stronger than Theorem B.11 holds: Let µ(x) be a definable measure (with no
Fubini self-commutation assumptions). Let Bn be the Boolean algebra of formulas
in variables x1, . . . , xn , and let B(1

n)
be the subalgebra generated by formulas ψ(xi )

in a single xi variable. Then for every formula φ∈ Bn and ϵ >0 there exists φ′
∈ B(1

n)
with µ(φ△φ′) < ϵ. Equivalently, the induced inclusion of σ -additive measure alge-
bras, up to the null ideals, is an isomorphism. For n = 2 this is proved in [48, 1.7(1)],
and under slightly different assumptions (essentially Fubini) as Theorem 4.1(a,b)
of [60]. (It is curious that while the two teams of authors were entirely unaware of
the parallel work in another field, the arXiv submissions are two days apart.) The
case of arbitrary n follows immediately by induction from the case n = 2. Once one
knows that the measure algebra M(X × Y ) is generated by the M(X) and M(Y ), it
follows that the measure algebra M(X ×Y × Z) is generated by M(X ×Y )∪ M(Z)
and hence by M(X)∪ M(Y )∪ M(Z). With Fubini assumed, a strengthening of this,
both quantitative and qualitative, especially for distal theories, is obtained in [26].

All of these sources allow arbitrary parameters. Using definability of the measures,
they thus hold over a model.

Question B.14. Does the above strong stationarity for NIP theories, identifying
Bn with B(1

n)
, hold over bdd(0)? Possibly a statement of this type may follow by

the method of Theorem B.8, noting that only the n = 2 case is needed and that
(2, 3)-amalgamation is obtained in Theorem 3.16.

For an extraordinary generalization to higher-arity NIP, see [27, Corollary 6.10
or Corollary 11.4].

Appendix C. An example from mixing

This appendix to Section 3 is intended to illustrate the use of expectation quantifiers
and the various version of the independence Theorem 3.16.

We look at the convolution of two real-valued functions f, g on a group. This is
well-studied in connection with mixing (see [58; 32]); I learned about this from
a minicourse by Itay Glazer and Emmanuel Breuillard in Oxford in spring 2024.



APPROXIMATE EQUIVALENCE RELATIONS 409

We will give a simple stability-theoretic proof of a special case of [58, Theorem 1],
namely for groups G(Fq) (modulo center) where G is a simply connected algebraic
group. (Using ACFA in place of PF we could also cover Rees and Suzuki group, i.e.,
the bounded rank case of [58].) Corollary C.8 covers, e.g., nilpotent groups, and
was written in response to a question of Glazer’s for vector groups; he independently
proved the vector group case by analytic means.

Here the simplest version of stationarity (Theorem 2.10) will suffice. But
Theorem B.11 would not do; it is valid for almost all pairs of types, but in the proof
of Proposition C.1 it is essential to use the same type twice.

Let G be a group carrying a left-invariant definable measure µ. G may include
additional relations (of discrete or of continuous logic). We will use pure probability
logic quantifiers. Formally, such quantifiers do not directly distinguish the graph
of multiplication from ∅; rather we first define, at the quantifier-free level, binary
relations such as g(t, x)= g(t−1x), and only then apply probability quantifiers to
such relations.

G may for instance be a compact group made discrete — taken with the discrete
metric as a CL structure, and with the Haar measure serving to interpret expectation
quantifiers. Assuming the basic relations are measurable, it follows that all formulas
obtained by continuous connectives and expectation quantifiers are also measurable.
Or G may be an amenable group with a finitely additive invariant measure. But
the main example to have in mind will be an ultraproduct of finite groups with
their normalized counting measure µ. In this case µ is both left and right invariant.
(This will be used in Corollary C.8 to see that the convolution is well-defined and
continuous on L1.)

We begin with the observation that the convolution f ∗ g is definable:

f ∗ g(x)= Et f (t)g(t−1x).

We say two real-valued functions h, h′ are equal a.e. if Ex(|h(x)− h′(x)|)= 0.
Let w be an element of G; define hw(x)= h(wx).

For h a definable function G → R define the stabilizer of h to be Stab(h) :=

{w ∈ G : h =a.e. hw}. Then Stab(h) is an
∧

-definable subgroup of G.

Proposition C.1. Let f, g be definable functions into R, and let h = f ∗ g be
their convolution. Then the stabilizer of h is a

∧
-definable subgroup of G of

bounded index. In particular if G admits no nontrivial definable homomorphisms
into compact groups, then h is constant a.e.

Proof. Let w be an element of G, and h = f ∗ g the convolution. By left invariance,
substituting w−1t for t , we have

hw(x)= Et( f (t)g(t−1wx))= Et( f (w−1t)g(t−1x)).

By Proposition 3.8, this is a (real-valued) stable relation between w and x .
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Let M0 be a countable model (taking the bounded closure of 0 will also work). By
Theorem 2.10, provided tp(a/M0, b) does not divide over M0 via a stable formula,
the value of hb(a) depends only on tp(a/M0) and tp(b/M0).

Suppose tp(b/M0) = tp(c/M0), yet Ex |hb(x) − hc(x)| ≥ ϵ > 0. By the re-
marks following Definition 3.10, there exists a such that |hb(a)− hc(a)| ≥ ϵ and
tp(a/M0(b, c)) does not divide; in particular a |⌣ b, c holds, a contradiction. Hence
Ex |hb(x)− hc(x)| = 0, so

hb(x)=a.e. hc(x).

It follows that b−1c ∈ Stab(h). We have shown that any two elements with the
same type over M0 lie in the same coset of Stab(h); hence Stab(h) has bounded
index. □

Let Gn be a family of groups, endowed with left and right translation invariant
finitely additive measures. We say Gn is a quasirandom family, in the sense of
Gowers, if for each d ∈ N, for all sufficiently large n, Gn has no d-dimensional
representations. It follows from [30, Theorem 1.1] that if G is any nonprincipal
ultraproduct of the Gn , then G admits no nontrivial definable homomorphism into a
compact Lie group, and hence by Peter–Weyl no nontrivial definable homomorphism
into any compact group. We use this below:

Corollary C.2. Let (Gn) be a quasirandom family. Let b > 0 and let

f, g : Gn → [−b, b] ⊂ R

be functions with ∥ f ∥1 = ∥g∥1 = 1. Then ∥ f ∗ g − 1∥1 → 0 as n → ∞.

Proof. Set h = f ∗ g. By Proposition C.1, in any ultraproduct G, the stabilizer of h
is all of G; so h is constant a.e., and since ∥h∥1 = 1 the constant value is 1. □

Remark C.3. In the case of bounded rank families of finite simple groups, a simpler
proof of Corollary C.2 can be given. Let G be a definably simple group in the theory
of pseudofinite fields. It follows from [40, 7.8] that any elementary extension of G
is also simple; hence G cannot have a

∧
-definable subgroup of bounded index in

any expansion to a bigger language. Thus by Proposition C.1, f ∗ g is constant a.e.

Definition C.4. A connected algebraic group G over Qa is called simply connected
if there is no surjective homomorphism G̃ → G of algebraic groups over Qa with
nontrivial finite kernel.

This definition is usually found in the setting of semisimple groups, but we
extend it to all connected algebraic groups. Commutative algebraic groups whose
geometric points form a divisible group are clearly simply connected; in particular
in characteristic zero. vector groups such as Gn

a are simply connected.
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Corollary C.5. Let G be a simply connected algebraic group. Let f, g : G(Fp)→ R

be uniformly definable (and hence uniformly bounded), ∥ f ∥1 = ∥g∥1 = 1. Then
∥ f ∗ g − 1∥1 → 0 as p → ∞. (And similarly for prime powers, and for G(Fp)/Hp,
where Hp is some uniformly definable normal subgroup of G(Fp).)

Proof. Let h = f ∗ g. It suffices to show that F |H Ex(|h − 1|) = 0 for any
ultraproduct F of the finite fields Fp. We have ∥h∥1 = 1 so it suffices to show that
h is G(F)-invariant a.e. This in turn follows from Proposition C.1, once we show
G has no proper

∧
-definable subgroups of bounded index.

Now Theorem 8.5 of [40] shows that G(F) has no definable subgroups of finite
index. Theorem 6.3 there says that any

∧
-definable group H is an intersection of

definable groups Hi . If H has bounded index, then each Hi has bounded index and
hence by compactness, finite index; but then Hi = G for each i so H = G. □

Remark C.6. Unlike Corollary C.2, where arbitrary bounded functions fn, gn are
allowed, in Corollary C.5 it is essential that they be uniformly definable over finite
fields.

For instance on Ga , if f p(x mod p) = 10 for 0 ≤ x < p/10, and f p(u) = 0
for all other u ∈ Fp, we see that the ultraproduct f requires at least 10 self-
convolutions to become uniform, and not 2. This accounts for the additional model-
theoretic ingredient (Theorems 8.5 and 6.3) quoted above; the homomorphism
n mod p 7→ exp(2π i/p) exists, and must be shown not to be uniformly definable.

To connect to convolution of pushforward measures, we will need one simple
geometric lemma:

Lemma C.7. Let f : Y → X be a dominant morphism of irreducible varieties
over an ultrapower F = limu Fq of finite fields Fq . Let d be the generic fiber
dimension, and dX = dim(X). Let F(x) = q−d

| f −1(x)|. Then there exists a
definable (in Th(F)) real-valued function f on X and a proper subvariety X0 of X ,
such that f − F tends to 0 uniformly along u on X ∖ X0. Also ∥F − f ∥1 tends to 0.

Proof. Up to the last sentence, this is the main result of [23]. We may take f to
vanish on X0. The last sentence follows since Y0 := f −1(X0) is a proper subvariety
of Y and hence has dimension < dim(Y ). So

q− dim(X)
∑
x∈X0

F(x)= qdim(Y )
|Y0| = O(q−1/2). □

Corollary C.8. Let G be a simply connected algebraic group defined over Z[m−1
],

and let ηi : Yi → G be a dominant morphism of irreducible varieties (i = 1, 2).
Let νi

p be the normalized counting measure on Yi (Fp) and let µi
p = (ηi )∗ν

i
p be the

pushforward of νi
p to G. Also for a prime p > m let µp be Haar on G p(Fp). Then

∥µp −µ1
p ∗µ2

p∥1 → 0 as p → ∞.
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Proof. We may write µi
p = Fiµp. Let fi be as in Lemma C.7, so ∥µi

p − fiµp∥1 → 0.
Now the statement follows using continuity of convolution on the L1-norm. □

To compare this to [58, Theorem 1], set Yi = Gdi , where wi = wi (x1, . . . , xdi ),
and let fi be the word map; then f1 ∗ f2 is the word map associated to w1w2, since
they have disjoint variables.
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Independence and bases: theme and variations

Peter J. Cameron

To Boris Zilber on the occasion of his 75th birthday.

This paper describes a complex of related ideas, ranging from Urbanik’s v∗-
algebras, through Deza’s geometric groups and Zilber’s homogeneous geometries,
to Sims’ bases for permutation groups and their use in defining “size” parameters
on finite groups, with a brief look at Cherlin’s relational complexity. It is not a
complete survey of any of these topics, but aims to describe the links between
them.

1. Introduction

In the 1980s, there was widespread interest in matroids with a large amount of
symmetry. Michel Deza was studying perfect matroid designs, matroids in which
the cardinality of a flat depends only on its dimension: this class includes uniform
matroids, classical projective and affine spaces, and Steiner systems. One way to
enforce this condition is to assume a large group of automorphisms: for example, it
holds if the stabiliser of any subset is transitive on the set of points not dependent on
that subset. The tool of choice for many was the recently announced classification
of finite simple groups.

In 1988, I attended a Durham Symposium on model theory and groups run by
the London Mathematical Society. To my amazement, Boris Zilber spoke at the
symposium, giving four lectures on his recent result classifying such geometries
with rank at least seven, by geometric methods not using CFSG.

Zilber [1984] had worked on first-order theories which are categorical in all
cardinalities. We knew from Morley’s theorem that this imposes just two conditions
on the theory: countable and uncountable categoricity. The result of Engeler, Ryll-
Nardzewski and Svenonius shows that ℵ0-categoricity is equivalent to the existence
of a large automorphism group, while categoricity in higher powers forces structural
conditions such as the existence of rank functions, which led to the development
of stability theory. These nicely combine if both types of categoricity hold. In
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particular, strictly minimal countably categorical theories carry geometries of infinite
dimension which have analogues of the properties that Deza was interested in.

Zilber’s achievement in his lectures at the symposium (described in [Zilber
1988a]) was to observe that methods from the infinite case could be applied also to
finite structures. The set of elements independent of a finite subset is infinite in the
infinite case, but sufficiently large in the finite case that arguments can be adapted.

Perhaps Zilber’s methods have not been sufficiently integrated into finite combi-
natorics; we still have work to do.

2. Definitions

A family B of finite subsets of a set is said to have the exchange property if, given
B1, B2 ∈ B and y ∈ B2 \ B1, there exists x ∈ B1 \ B2 such that (B1 \ {x})∪ {y} ∈ B.

Clearly all the sets in such a family have the same cardinality. One definition
of a matroid, in terms of its set of bases, is as a collection of subsets of a finite
set having the exchange property. Matroids form an important class of structures,
describing subsets of vector spaces, edge sets of graphs (where the bases are
spanning forests), transversals to families of sets, and several others. Areas of
mathematics in which matroids occur include algebraic and tropical geometry and
homotopy theory [Giansiracusa and Giansiracusa 2018].

The set of bases in a vector space V has two properties, which serve as a
foundation for linear algebra:

(a) it has the exchange property;

(b) any map from a basis into V has a unique extension to an endomorphism of V .

It is natural to look for further examples of this phenomenon.
Let A be an algebra, in the sense of universal algebra; that is, a set carrying a

number of operations of various arities (we interpret 0-ary operations as constants).
Suppose that A is finitely generated, and let B be the set of minimal (under inclusion)
generating sets for A. Then A is an independence algebra if B has the above two
properties. The definition, and the classification of these algebras, are essentially
due to Kazimierz Urbanik [1966] (who called them v∗-algebras), but his work was
not as well known as it deserved to be, and the concept was later rediscovered in
the context of semigroup theory. Section 2 of this paper gives some details about
independence algebras and their classification, and mentions a recent result on
them.

Perhaps unaware of the work of Urbanik, semigroup theorists Fountain and
Lewin [1992] and Gould [1995] realised that earlier structural results of Howie,
Reynolds and Sullivan, and Erdos on the full transformation semigroup and the
semigroup of linear maps on a vector space could be generalised to endomorphism
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semigroups of independence algebras. I learned of the topic from John Fountain, and
set to work with Csaba Szabó to classify at least the finite independence algebras.

The endomorphisms of a structure form a monoid, and the automorphisms form
its group of units. The class of permutation groups arising as automorphism groups
of independence algebras is part of a more general class, named “geometric groups”
by Michel Deza [Cameron and Deza 1979]. These groups, and the underlying
closure systems, were studied by Boris Zilber in the 1980s, in the course of his
important researches on countably categorical and ℵ0-stable first-order structures;
he called these objects quasi-Urbanik structures; see [Zilber 1988b]. Section 3 of
this paper discusses some of their theory.

The concept of a base can be defined for any permutation group, not just the
geometric groups. Permutation group bases do not usually satisfy the exchange
property; those which do, the so-called IBIS groups, introduced by Dima Fon-
Der-Flaass and me [Cameron and Fon-Der-Flaass 1995], form a very interesting
class. Bases were introduced by Charles Sims [1970] for use in computation with
permutation groups, but raise various interesting questions; among other uses, they
form part of László Babai’s work on the graph isomorphism problem [Babai 2015],
and are connected with Cherlin’s notion of relational complexity for studying finite
homogeneous structures [Cherlin 2016; Cherlin et al. 1996]. This area is seeing
renewed activity at present, so I will not give a complete survey, but will highlight
some open questions.

The final section draws connections between various “measures” of a finite group
with parameters defined in terms of bases in all actions of the group. There are a
number of open problems here.

To conclude this section, I give a couple of essential definitions for permutation
group theory. Let G be a permutation group acting on �. The action is transitive
if there is no G-invariant subset except for � and the empty set (equivalently, any
element of � can be mapped to any other by some element of G); it is primitive
if it is transitive and, in addition, there is no G-invariant partition except for the
partition into singletons and the partition with a single part. The stabiliser of an
element α ∈ � is the subgroup of G consisting of all elements mapping α to itself.
The action is semiregular or free if the stabiliser of every point is the identity; it is
regular if it is transitive and semiregular.

3. Independence algebras

An independence algebra is a finitely generated algebra with the properties

(a) the minimal generating sets have the exchange property;

(b) any map from a minimal generating set into the algebra extends uniquely to
an endomorphism of the algebra.
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The definition makes no explicit mention of the operations of the algebra; there
is some freedom about these, as long as the correct subalgebras and endomorphisms
are obtained. (A minimal generating set is a subset minimal with respect to being
contained in no proper subalgebra.) Thus a classification up to isomorphism is not
possible. Urbanik classified the algebras up to clone equivalence, noting that an
algebra clone-equivalent to an independence algebra is an independence algebra.
Szabó and I used a slightly weaker, but arguably more natural, equivalence. We say
that two algebras A and B are SE-equivalent if there is a bijection between them
which preserves subalgebras and endomorphisms. It turns out that there is one case
only where these notions differ (one SE-equivalence class of independence algebras
splits into two clone-equivalence classes). For further discussion see [Araújo et al.
2022; 2011; Araújo and Fountain 2004].

There is another small difference also: Urbanik did not allow constants, but used
constant-valued unary operations instead. We will see that the presence or absence
of constants is crucial to the classification.

First consider the case where A has rank 1. (The rank is the cardinality of a
minimal generating set; the exchange property guarantees its invariance.) If there
are no constants, then any singleton subset of A is a generating set, and any element
can be mapped to any other by a unique automorphism. Thus the automorphism
group G of A acts regularly. For any group G, there is an independence algebra of
this form; we take A = G and, for each g ∈ G, equip A with a unary operation µg

given by µg(x) = gx . Then G acts regularly on A by right multiplication.
Now suppose that there is a set C of constants. Then the bases are the singletons

not contained in C , and any of them can be mapped to any other by a unique
automorphism; so we can identify A \ C with a group G. There is a unique
endomorphism fc mapping the identity element of G to c, for each c ∈ C . There
is a left action of G on C , defined by the rule that the endomorphism g ◦ fc

(composed left-to-right) maps the identity of G to an element which we take to
be g(c). Conversely, given any group G and left action of G on a set C we obtain
an independence algebra on the disjoint union G ∪ C : it has a constant γc for
each c ∈ C (interpreted as c) and a unary operation µg for each g ∈ G given by
µg(h) = gh for h ∈ G, µg(c) = g(c).

The phrase “an independence algebra of rank 1” seems to me a remarkably
concise way of defining a group with an action on a set.

This construction extends as follows. For any set X , and any group G with a
left action on C , define an algebra on the set A = (X × G) ∪ C with C as set of
constants, and unary operations µg defined by

µg((x, h)) = (x, gh), µg(c) = g(c).

This is an independence algebra whose subalgebras are all the sets (Y × G) ∪ C
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for Y ⊆ X , so that the subalgebra lattice is the Boolean algebra B(X) of subsets
of X . Every finitely generated independence algebra whose subalgebra lattice is a
Boolean algebra is of this form; these are the trivial independence algebras. (We
could follow the model theorists and call them disintegrated.)

Next, it is shown that the subalgebra lattice of a nontrivial independence algebra
is a projective or affine space, depending on whether the algebra has constants or
not. The arguments for this are quite general, not assuming finiteness or even finite
rank; an accessible account is in [Cameron and Szabó 2000].

Finally it is shown that the algebras are of three types:

(a) Let V be a vector space over a division ring F . Then there is an independence
algebra whose elements are those of V ; the operations are addition in V and
scalar multiplication by elements of F . The subalgebras are the subspaces
of V , and so the subalgebra lattice is the projective space built on V . If W is a
subspace of V , we obtain an independence algebra by taking the elements of
W to be constants; its subalgebra lattice is the projective space on V/W .

(b) Let V be a vector space over a division ring F . For each c ∈ F with c ̸= 0, 1,
define a binary operation βc(x, y) = cx + (1−c)y. (If |F | = 2, we use instead
the ternary operation τ(x, y, z) = x + y + z.) This defines an independence
algebra whose subalgebras are the affine subspaces. If W is a subspace of V ,
we can add unary operations for translations by elements of W to obtain an
algebra whose subalgebras are the unions of cosets of W corresponding to
affine subspaces of V/W .

(c) Let G be a sharply 2-transitive group on �: this means that any pair of distinct
elements of � can be mapped to any other such pair by a unique element of G.
Let {Oi : i ∈ I } be the set of orbits of G on triples of distinct elements of �.
For each i ∈ I , define a binary operation µi by

µi (a, a) = a, µi (a, b) = c if (a, b, c) ∈ Oi .

This defines an independence algebra; its endomorphisms are the elements of
G together with the constant functions, and its rank is 2.

The sharply 2-transitive groups have been of interest for a long time, partly
because of their connections with projective planes. It was known to Burnside
and Frobenius, and probably earlier, that a finite sharply 2-transitive group has a
regular normal subgroup, and so is the group of 1-dimensional affine maps over a
finite nearfield (this is a structure satisfying the field axioms except possibly the
commutativity of multiplication and one distributive law). The finite nearfields were
all determined by Zassenhaus [1935]: there are infinitely many Dickson nearfields
(obtained from Galois fields by “twisting” the multiplication) and seven exceptional
nearfields.
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For a long time it was not known whether all sharply 2-transitive groups are
given by nearfields. Several authors [Grätzer 1963; Kerby 1974; Tits 1952; Wilke
1972] defined algebraic structures from such groups, which were given various
names and satisfied slightly different sets of axioms. Eventually the question was
resolved in [Rips et al. 2017]: infinite sharply 2-transitive groups do not necessarily
have regular normal subgroups, and so cannot all be defined from nearfields.

The most recent appearance of independence algebras is in the paper [Araújo et al.
2022]. This gives more details about the relation between Urbanik’s v∗-algebras and
independence algebras, the relation between clone equivalence and SE-equivalence,
and the classification theorem, and goes on to develop matrix theory for most types
of independence algebras, though in the case of sharply 2-transitive groups this
works only for those defined over nearfields.

4. Geometric groups

The automorphism group of an independence algebra has some remarkable proper-
ties:

(a) it acts transitively on (ordered) bases for the algebra;

(b) the stabiliser of any tuple of points fixes pointwise the subalgebra they generate
and acts transitively on the points outside this subalgebra.

Forgetting the algebra, the problem of determining the groups with properties
like these arises in a couple of places:

• The automorphism group of a strictly minimal set in a totally categorical
first-order structure has this property, where the role of subalgebras is taken
by definably closed sets; as we saw, Boris Zilber was motivated by this.

• Michel Deza defined an analogue of a matroid in the semilattice of partial
permutations rather than the lattice of subsets; he called it a permutation
geometry (by analogy with the term “combinatorial geometry”, an alternative
name for a matroid, proposed by Gian-Carlo Rota).

I will not describe the motivation further, but go straight to the definition. These
groups were called “geometric groups” by Deza; not an ideal name, since there are
many ways in which a group can be “geometric”, and there is no connection with
the topic of geometric group theory, but I will stick to this term.

A geometric group, then, is a permutation group in which the stabiliser of any
finite tuple acts transitively on the points it does not fix (if any).

We see immediately that, in a geometric group, the analogue of a basis for
independence algebras can be defined as a sequence of points (x1, x2, . . . , xr ) in
which each point is moved by the stabiliser of its predecessors, but the stabiliser
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of the whole sequence is the identity. Then the group acts transitively on ordered
bases. The number r is the rank of the geometric group.

What are the geometric groups? It is clear that a geometric group of rank 1 is an
arbitrary group acting regularly, perhaps with some added fixed points. So we can
assume that the rank is at least 2.

As noted above, Zilber [1984] determined all geometric groups of rank at least 7:
they are stabilisers of sequences of points in the symmetric group, the general
linear group, or the affine group (the last two over a finite field). His proof used
elementary arguments inspired by model theory. To elaborate a little, [Zilber 1984]
analysed the structure of countably categorical ℵ0-stable structures via their strongly
minimal sets, showing as a result that totally categorical structures could not be
finitely axiomatised. Strictly minimal sets in these structures involve locally finite
geometries which are shown to be either disintegrated (all subsets of a set) or
projective or affine spaces over finite fields; it is this result which he was able
to “finitise”, giving the characterisation noted at the start of this paragraph.

At about the same time, Maund [1989] used the recently announced classification
of finite simple groups to determine all geometric groups of rank at least 2. The
bulk of the work is involved in determining those groups of rank 2, since they occur
as building blocks for the groups of larger rank. The list is as follows:

(a) H ≀ S2, where H acts regularly.

(b) M · S3 ≤ H ≀ S3, where H is abelian and regular and

M = {(h1, h2, h3) ∈ H 3
: h1h2h3 = 1}.

(c) Sharply 2-transitive groups.

(d) V 2
· AGL(1, q) or V 2

· GL(2, q), where V is a vector space over GF(q).

(e) C(q−1)/2 × PSL(2, q) with q ≡ 3 (mod 4).

(f) Cq−1 × Sz(q), where q is an odd power of 2.

(g) PGL(3, 2) and PGL(3, 3).

(In case (d), we regard V 2 as V ⊗ W , where dim(W ) = 2, and GL(2, q) or its
subgroup AGL(1, q) acts on W .)

Maund used this list and some geometry to determine all finite geometric groups
of rank at least 2. Unfortunately this work has never been published.

This list was used in [Cameron and Szabó 2000] to give a determination of finite
independence algebras. For each geometric group we have to decide whether or
not it is possible to define maps to play the role of endomorphisms, and operations
preserved by the group to make the domain into an algebra.
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5. Bases for permutation groups

The concept of a base for a permutation group arose in computational group theory.
A base is a sequence of points in the permutation domain whose pointwise stabiliser
is the identity. Thus, for geometric groups, bases in the sense previously defined
are bases here also.

The importance of a base is that two elements of a permutation group G which
agree on a base for G must coincide: for if g and h are the two elements, then gh−1

fixes the base pointwise, so gh−1
= 1. This can lead to a compact representation of

group elements if the base size is small. So it is of interest to find a small base for
a permutation group. Let bm(G) be the size of a smallest base for G.

We can find a base very simply, by choosing points and stabilising them until
we reach the identity. This is potentially rather wasteful. Though it is hard to find
the base of smallest size for a given group, there are two simple methods which
perform rather well, involving choosing base points in order:

• There is no need to include a point which is fixed by the stabiliser of the points
already chosen. We call a base irredundant if no point is fixed by the stabiliser
of its predecessors. We note that bases of geometric groups in the earlier sense
are by definition irredundant.

• Motivated by this, a good heuristic is to choose each new base point from
an orbit of largest size of the stabiliser of its predecessors. This is a “greedy
algorithm”, and a base produced by this algorithm is called a greedy base.
The heuristic is based on the idea that to descend a chain of subgroups to
the identity, we should choose the subgroup of largest possible index in its
predecessor at each stage, and the index of the stabiliser of a point is the size
of the orbit of that point.

Note that bases are ordered sequences, and there is no guarantee that reordering
an irredundant or greedy base will result in another with the same property.

Clearly, for a geometric group, irredundant bases and greedy bases are the same,
and they have a beautiful geometric structure: they are the bases of a matroid.
However, the last condition holds more generally, according to this remarkable
theorem of Cameron and Fon-Der-Flaass [1995].

Theorem 1. For a permutation group G, the following conditions are equivalent:

(a) all irredundant bases have the same size;

(b) the result of reordering an irredundant base is still irredundant;

(c) the irredundant bases are the bases of a matroid.

Proof. Clearly (c) implies (a). Also (a) implies (b), since if reordering a base
created a redundancy then a smaller irredundant base could be obtained by removing
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some elements. Suppose that (b) holds, and let (a1, . . . , ar ) and (b1, . . . , bs) be
irredundant bases. The stabiliser of a1, . . . , ar−1 cannot fix all of b1, . . . , bs ;
suppose that it moves bi . Then (a1, . . . , ar−1, bi , ar ) is a base, which must be
redundant since swapping the last two elements gives a redundant base. But the
only possible redundancy is that ar is fixed by the stabiliser of the earlier points, so
(a1, . . . , ar−1, bi ) is an irredundant base. Thus the exchange property holds. □

Groups satisfying these conclusions are called IBIS groups (an acronym for
“Irredundant Bases of Invariant Size”. Every geometric group is an IBIS group; the
converse is far from true. For a simple example, a Frobenius group (a transitive group
in which the stabiliser of any two points is trivial but the stabiliser of a single point
is not) is an IBIS group of rank 2: the bases are all the 2-element sets. A Frobenius
group is a geometric group if and only if it is sharply 2-transitive, and as we saw,
all sharply 2-transitive groups are automorphism groups of independence algebras.

A large class of (intransitive) examples is given by the following construction.
Let C be a linear code of length n over the finite field F (a subspace of Fn). Let

G be the additive group of C , and let � = {1, . . . , n}× F . Define an action of G
on � by

a : (i, x) 7→ (i, x + ai )

for a = (a1, . . . , an) ∈ C . This is an IBIS group. It acts on n|F | points, and has rank
equal to the dimension of the code; if there is no coordinate in which all codewords
are zero, then it has n orbits each of size |F |.

The classification problem for primitive IBIS groups is likely to be easier, though
even that has not yet been done. In [Cameron and Fon-Der-Flaass 1995], the IBIS
groups whose associated matroid is a uniform matroid are determined; these are
Frobenius and Zassenhaus groups and their analogues, that is, groups which, for
some positive integer t , are t-transitive and have the property that the pointwise
stabiliser of any t + 1 points is trivial. (The uniform matroid of rank r is the one
whose bases are all the sets of size r of the ground set.) All such finite groups
with t > 1 (that is, those which are not Frobenius groups) have been explicitly
determined (without using CFSG), by Zassenhaus, Feit, Ito and Suzuki for t = 2,
and by Gorenstein and Hughes for larger values.

(However, infinite examples are easy to construct and exist in profusion: there is
an action of the free group of countable rank with this property for any value of t .)

It is also not known whether there is a similar geometric characterisation of
groups in which all greedy bases have the same size.

Blaha [1992] showed that irredundant and greedy bases are not too much larger
than the smallest possible:

Theorem 2. Let G be a permutation group of degree n with minimal base size b(G).
Then
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(a) any irredundant base for G has size at most b(G) log n (logarithm to base 2);

(b) any greedy base for G has size at most b(G)(log log n + c).

Blaha proved that these bounds are essentially best possible. But for primitive
groups, stronger results should be possible. It is conjectured, for example, that
if G is primitive, then a greedy base for G has size at most cb(G), where c is a
universal constant. Indeed, the limit superior of the ratio of greedy base size to
base size, as b(G) → ∞, is conjectured to be 9

8 . The extreme examples involve
the symmetric group Sm acting on the set of 2-element subsets of {1, . . . , m}. The
greedy algorithm chooses disjoint 2-sets until almost all elements of {1, . . . , m}

have been covered, and then has to go back and extend two disjoint pairs to a
4-vertex path, giving a base of size roughly 3

4 m; on the other hand, covering most
of {1, . . . , m} by 3-vertex paths gives a base of size roughly 2

3 m.
Recently, Coen Del Valle and Colva Roney-Dougal have given the exact value of

the base size for the symmetric group of degree n acting on r -sets for 2 ≤ r ≤ n/2.
The result is complicated to state, depending on the relative sizes of n and r .

We conclude with two further occurrences of bases.

(a) The first fractional exponential bound for the order of a uniprimitive (primitive
but not 2-transitive) permutation group of degree n was found by Babai [1981].
He showed that such a group has a base whose size is bounded by 4

√
n log n.

It is clear that a group with degree n and a base of size b has order at most nb.
(Soon after Babai’s result appeared, it was observed that much stronger results
could be found using the classification of finite simple groups: a bound nc log n

with “known” exceptions. These exceptions are the so-called large-base groups
which are explained below.)

(b) Graph theorists have considered the metric dimension of a connected graph, the
smallest d for which there is a d-tuple (v1, . . . , vd) of vertices such that any
vertex is uniquely determined by its d-tuple of distances from these vertices.
It is clear that such a d-tuple is a base for the automorphism group of the
graph. The occurrence of similar concepts in very different fields led to a lot
of repetition and rediscovery, which my survey with Robert Bailey [Bailey and
Cameron 2011] sets out to clear up.

These two things are related. Babai’s proof involved constructing from the group a
set of binary relations called a coherent configuration and showing that this config-
uration has relatively small “dimension” (using the relations in the configuration in
place of graph distances).

A large-base group is either a symmetric or alternating group Sn or An in its
action on the set of k-subsets of {1, . . . , n}, or a subgroup of the wreath product
of such a group with the symmetric group of degree l containing the socle Al

n of



INDEPENDENCE AND BASES: THEME AND VARIATIONS 427

this group. Their base sizes are fractional powers of the degree, and so their orders
are roughly nn1/kl

. Often in computational group theory it is necessary to treat the
large-base groups separately.

There has been a lot of very recent activity around permutation group bases. Scott
Harper remarked that the result about IBIS groups gives us powerful information
about permutation groups where all irredundant bases have the same size, but the
groups for which all minimal bases have the same size has at present no comparable
theory. One could ask similar questions about “greedy bases” in Blaha’s sense.

It is also appropriate to mention here the work of Gill, Lodà and Spiga [Gill
et al. 2022] on a parameter they call height, which is the maximum size of an
independent set (where a set is independent if its pointwise stabiliser is properly
contained in the pointwise stabiliser of any subset). They showed that the height of
a primitive permutation group of degree n which is not a large-base group is smaller
than 9 log n. This parameter then gives a bound for the relational complexity of
a permutation group, a parameter introduced by Cherlin [Cherlin 2016; Cherlin
et al. 1996], in connection with the model theory of finite permutation groups: the
relational complexity is at most the height plus one.

To elaborate: the relational complexity of G is the least k for which G is an
automorphism group of a homogeneous relational structure with arity k; more
precisely, it is the least k such that, for any n ≥ k, if (a1, . . . , an) and (b1, . . . , bn)

are two n-tuples of points, they lie in the same G-orbit if and only if all corresponding
sub-k-tuples (ai1, . . . , aik ) and (bi1, . . . , bik ) lie in the same G-orbit.

Gill et al. also proved a similar bound on the maximum size of an irredundant
base for a primitive permutation group.

6. Finite group parameters

In this final section I discuss a few “measures” of a finite group which are related
to base size of permutation actions of the group. As we will see, some of these can
be defined in terms of the subgroup lattice of G, a topic with a long history but still
many open problems: see [Schmidt 1994] for a fairly recent account.

The smallest number d(G) of generators of G is not a good measure of size,
since arbitrarily large finite groups (such as symmetric groups) are 2-generated. We
can avoid this problem as follows. If f is a function from finite groups to natural
numbers, let

f ↑(G) = max{ f (H) : H ≤ G}.

For any f , the function f ↑ is monotonic (in the sense that G ≤ H implies
f ↑(G)≤ f ↑(H)). For example, for the symmetric groups, we have d↑(Sn)=⌊n/2⌋

for n > 3 [McIver and Neumann 1987].
Define two other measures as follows:
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(a) µ(G) is the maximal size of a minimal (under inclusion) generating set for G.
The parameter µ(G) is important in the analysis of a random walk on generating
sets for G; see [Diaconis and Saloff-Coste 1998]. For the symmetric groups
we have µ(Sn) = µ↑(Sn) = n − 1 [Whiston 2000].

(b) l(G) is the length of the largest subgroup chain in G. This is an interest-
ing measure which bounds various other measures, and was considered by
Babai [1986]. It has the nice properties that it is monotonic and, if N is a
normal subgroup of G, then l(G) = l(N )+ l(G/N ); so its value is determined
by the composition factors of G. In 1982, I showed that

l(Sn) =

⌈3n
2

⌉
− b(n) − 1,

where b(n) is the number of 1s in the base 2 representation of n. This appears
in a paper with Solomon and Turull [Cameron et al. 1989]; these authors have
computed l(G) for various simple groups G.

Given a finite group G, we define three numbers b1(G), b2(G), b3(G) as follows.
In each case, the maximum is taken over all permutation representations of G (not
necessarily faithful).

• b1(G) is the maximum, over all representations, of the maximum size of an
irredundant base.

• b2(G) is the maximum, over all representations, of the maximum size of a
minimal base.

• b3(G) is the maximum, over all representations, of the minimum base size.

Clearly we have b3(G) ≤ b2(G) ≤ b1(G). These inequalities can be strict. The
group G = PSL(2, 7) has b1(G) = 5, b2(G) = 4, and b3(G) = 3.

Proposition 1. b1(G) = l(G).

Proof. An irredundant base (x1, . . . , xk) gives a descending chain of subgroups
G = G0 > G1 > · · · > Gk , where Gi is the pointwise stabiliser of {x1, . . . , xi }.
Conversely, given a chain of subgroups, take the union of the coset spaces of these
subgroups, and form a base by choosing the given subgroups in the order given. □

There is a connection between b2 and µ. Let B(n) denote the Boolean lattice of
subsets of an n-set, and L(G) the subgroup lattice of G.

Proposition 2. Let G be a finite group.

(a) The largest n such that B(n) is embeddable as a join-semilattice of L(G)

is µ↑(G).

(b) The largest n such that B(n) is embeddable as a meet-semilattice of L(G) in
such a way that the minimal element is a normal subgroup of G is b2(G).
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(c) B(n) is embeddable as a meet-semilattice in L(G) if and only if it is embed-
dable as a join-semilattice.

Proof. (a) If {g1, . . . , gn} is an independent set in G, then the subgroups generated
by subsets of this set form a join-semilattice isomorphic to B(n). Conversely, given
such a semilattice of the subgroup lattice, choose elements gi contained in all the
maximal subgroups except the i-th.

(b) Given a minimal base of size n, the subgroups stabilising subsets of the base
form a meet-semilattice whose minimal element is the kernel of the group action.
Conversely, suppose we have an embedding of B(n) as meet-semilattice. Then,
reversing order, we have subgroups HI for each I ⊆ N = {1, . . . , n}, with HN

normal in G and Hi ∩ HJ = HI∪J . Consider the permutation representation on the
union of the coset spaces H{i} for i ∈ N . The kernel of this representation is HN ,
and the subgroups H{i} form a minimal base of size n.

(c) Suppose first that B(n) is a join-semilattice of L(G). Let N = {1, . . . , n}. Then,
for every subset I of N , there is a subgroup HI of G, and HI∪J = ⟨HI , HJ ⟩ for
any two subsets I and J . Moreover, all these subgroups are distinct. In particular,
Hi ̸≤ HN\{i} for all i (where Hi is shorthand for H{i}); else

HN = ⟨Hi , HN\{i}⟩ = HN\{i},

contrary to assumption.
Let Ki = HN\{i}, and, for any I ⊆ N , put

K I =

⋂
i∈I

Ki ,

with the convention that K∅ = G. We claim that all the subgroups K I are distinct.
Suppose that two of them are equal, say K I = K J . By interchanging I and J if
necessary, we may assume that there exists i ∈ I \ J . But then Hi ≤ K J while
Hi ̸≤ K I , a contradiction.

Now it is clear that K I ∩ K J = K I∪J , so that we have an embedding of B(n) as
meet-semilattice (where we have reversed the order-isomorphism to simplify the
notation).

The reverse implication is proved by an almost identical argument. □

It is not known whether the extra condition in (b) is really necessary: perhaps
b2(G) = µ↑(G) for any G. (Note that µ↑(G) is the size of the largest independent
set of elements of G.)

Much less is known about b3(G). If G is a nonabelian finite simple group, then
b3(G) can be computed by looking only at the primitive actions of G.

One could ask similar questions about greedy bases. Nothing is known.
Another question: in which of these results can the use of CFSG be avoided?
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On the model theory of open generalized polygons

Anna-Maria Ammer and Katrin Tent

We show that for any n ≥ 3 the theory of open generalized n-gons is complete,
decidable and strictly stable, yielding a new class of examples in the zoo of stable
theories.

1. Introduction

Generalized polygons were introduced by Tits in order to give geometric interpre-
tations of the groups of Lie type in rank 2, in the same way that projective planes
correspond to groups of type A2. In fact, generalized polygons are the rank 2 case
of spherical buildings. A generalized n-gon is a bipartite graph with diameter n
(i.e., any two vertices have distance at most n), girth 2n (i.e., the smallest cycles
have length 2n) and such that all vertices have valency at least 3. Clearly, for n = 2
such a graph is simply a complete bipartite graph and in what follows we always
assume n ≥ 3. Thinking of the bipartition as corresponding to points and lines,
we see that the case n = 3 is simply a different way of phrasing the axioms of a
projective plane, namely, any two points lie on a unique line, any two lines intersect
in a unique point and every line contains at least three points. (It then easily follows
that every point has at least three lines passing through it.) Remarkably, if the graph
is finite, then by a fundamental result of Feit and Higman [1964] the only possible
values for n are 3, 4, 6 and 8. Similar restrictions hold for other well-behaved or
tame categories of generalized polygons, e.g., if one assumes that the underlying sets
of vertices are compact, or algebraic, one obtains the same restrictions. Since we
tend to think of finite Morley rank as a rather strong tameness assumption it might
be remarkable that this restriction does not hold in this setting; see [Tent 2000].

In fact, it is easy to see that infinite generalized n-gons exist for any n ≥3: starting
with a finite bipartite configuration that does not contain any 2k-cycles for k < n,
one can easily complete this by freely adding enough paths in order to make sure
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that the graph has diameter n (see Definition 2.4 below). In fact, such constructions
yield the only known examples of generalized n-gons for n ̸= 3, 4, 6, 8.

Free projective planes were studied by M. Hall [1943], Siebenmann [1965], and
Kopeikina [1945] and their model theory was studied in [Tent 2011; Hyttinen and
Paolini 2021; Tent and Zilber 2015]. The theory of the free projective planes is
strictly stable by [Hyttinen and Paolini 2021] and the notion of independence in the
sense of stability agrees with the one studied in [Tent 2014; Müller and Tent 2019].
In this note we extend the results from [Tent 2011; Hyttinen and Paolini 2021]
to open generalized polygons, using the methods developed in [Tent 2000; 2014;
Müller and Tent 2019]. In particular, it was shown in [Hyttinen and Paolini 2021]
that the theory of open projective planes is complete, strictly stable, does not have
a prime model and has uncountably many nonisomorphic countable models.

2. Generalized polygons

We first recall some graph-theoretic notions. For a and b in A, the distance d(a, b)

between a and b is the smallest number m for which there is a path

a = a0, a1, . . . , am = b

with ai in A, where ai and ai+1 are incident for 0 ≤ i < m. We may write dA(a, b)

to emphasize the dependence on the graph A.
The girth of a graph A is the length of a shortest cycle in A. The diameter

of a graph A is the maximal distance between two elements in A. We say that
a subgraph A of a graph B is isometrically embedded into B if for all a, b ∈ A
we have dA(a, b) = dB(a, b). For a vertex a ∈ A we write D1(a) for the set of
neighbours of a. Then |D1(a)| is called the valency of a in A.

From now on we fix n ≥ 3.

Definition 2.1. A weak generalized n-gon 0 is a bipartite graph with diameter n
and girth 2n. If 0 is thick, i.e., if each vertex has valency at least 3, then 0 is a
generalized n-gon.

A partial n-gon is a connected bipartite graph of girth at least 2n.
A (partial) n-gon 00 is nondegenerate if 00 contains a cycle of length at least

2n + 2 or a path γ = (x0, . . . , xn+3) with d00(x0, xn+3) = n + 3.
A (generalized) n-gon 00 contained as a subgraph in a generalized n-gon 0 is

called a (generalized) sub-n-gon of 0.

Remark 2.2. Note that every thick generalized n-gon is nondegenerate.
The assumption that a partial n-gon is connected is not strictly necessary (and

it is not required in [Hall 1943] for n = 3). Note that for n = 3 any two distinct
points have distance 2 (and similarly for lines). This is not true anymore for n > 3,
so the requirement that the graph is connected prevents ambiguities.
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Definition 2.3. Let (x = x0, . . . , xn−1 = y) be a path in 0. If every xi , 1 ≤ i ≤ n−2,
has valency 2 in 0, then (x1, . . . , xn−2) is called a clean arc in 0 (with endpoints
x, y). A loose end is a vertex of valency at most 1.

A hat-rack of length k ≥ n + 3 is a path (x0, . . . , xk) together with subsets of
D1(xi ) for 1 ≤ i ≤ k − 1.

The following definition is due to Tits [1977], who first introduced free extensions
for generalized polygons, expanding earlier definitions by M. Hall and Siebenmann
[Hall 1943; Siebenmann 1965].

Definition 2.4. Let 00 be a partial n-gon. We define the free completion of 00 by
induction on i < ω as follows:

For i ≥ 0 we obtain 0i+1 from 0i by adding a clean arc between every two
elements of 0i which have distance n + 1 in 0i . Then 0 = F(00) =

⋃
i<ω 0i is

called the free n-completion of 00. We say that 0 is freely generated over 00.

Note that if 00 does not contain vertices at distance ≥ n + 1, then F(00) = 00.
Also note that by adding a clean arc between vertices of distance n + 1 we are
creating a new cycle of length 2n.

Remark 2.5. If two elements in a generalized n-gon 0 have distance less than n,
there is a unique shortest path in 0 connecting them (otherwise we would obtain a
short cycle).

A weak generalized n-gon which contains a 2(n+1)-cycle is a generalized n-gon
(see [van Maldeghem 1998, Section 1.3]). Hence if 00 is a partial, nondegenerate n-
gon, then F(00)=0 contains a 2(n+1)-cycle and in fact, 0 is an infinite generalized
n-gon [van Maldeghem 1998] and every vertex z in F(00) has infinite valency.

We also note the following for future reference:

Remark 2.6. Let 0 be a generalized n-gon and let γ ⊂ 0 be a 2n-cycle. Then
for any x ∈ γ there is a unique x ′

∈ γ with d(x, x ′) = n (x ′ is called the opposite
of x in γ ), and for any y ∈ D1(x) \ γ there is a unique y′

∈ D1(x ′) such that
d(y, y′) = n − 2. Note that the result of adding a clean arc to γ ∪ {y} is the same
as adding a clean arc to γ ∪ {y′

}.

Definition 2.7. Let 0 be a generalized n-gon and A ⊂ 0. Then ⟨A⟩0 denotes the
intersection of all generalized sub-n-gons of 0 containing A. For 00 ⊂ 0 we put
⟨A⟩00 = ⟨A⟩0 ∩ 00.

Remark 2.8. If A ⊆ 00 ⊆ 0, then ⟨A⟩00 is the intersection of all B ⊃ A, B ⊆ 00,
such that A is isometrically contained in B. If A is nondegenerate, then ⟨A⟩0 is
a generalized sub-n-gon of 0, the n-gon (not necessarily freely) generated by A
in 0. Since shortest paths between vertices at distance n − 1 are unique, clearly
⟨A⟩0 ⊆ acl(A)0. If 0 = F(A), then ⟨A⟩0 = 0.
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We note the following useful observations:

Lemma 2.9. Let 00 be a nondegenerate partial n-gon, and let 0 = F(00) =
⋃

0i

be as in Definition 2.4.

(i) If A ⊂ 0k \0i is isometrically embedded into 0k , then ⟨A⟩0 does not intersect
0i and ⟨A⟩0 = F(A).

(ii) If A ⊂ 00 is such that 0k \ A is isometrically embedded into 0k , then ⟨0k \ A⟩0

does not intersect A.

(iii) Any automorphism of 00 extends to an automorphism of 0.

Proof. All parts follow directly from the construction: e.g., for (i) it suffices to
show inductively that 01(A) is isometrically embedded into 0k+1 \ 0i . Then (i)
follows by induction. Let γ ⊂ 0k+1 \ 0i be a clean arc connecting a, b ∈ A with
dA(a, b) = n + 1. Any c ∈ γ has valency 2, so any path from c to an element in A
passes through a or b. Since A is isometrically embedded in 0k , the claim follows.
The proof for part (ii) is similar and part (iii) is clear. □

Now we can state the main definition of this note, extending the definition of
free and open projective planes from [Hall 1943] to generalized n-gons.

Definition 2.10. A (partial) generalized n-gon 0 is open if every finite subgraph
contains a loose end or a clean arc.

We call a generalized n-gon 0 free if it is the free n-completion of a hat-rack of
length at least n + 3. In particular, we let 0k denote the free n-completion of the
path γk = (x0, . . . , xk) for k ≥ n + 3.

Note that 0k is a free generalized n-gon for k ≥ n + 3.

Remark 2.11. Clearly, every free generalized n-gon is open. Beware, however,
that the converse is not true in general (see Proposition 3.16), but holds for finitely
generated generalized n-gons (see Proposition 4.1).

Clearly, as observed by [Hyttinen and Paolini 2021] for the case n = 3 being an
open generalized n-gon is a first-order property. We can therefore define:

Definition 2.12. Let Tn denote the theory of open generalized n-gons in the language
of graphs expanded by predicates for the bipartition.

Note that Tn is ∀∃-axiomatizable. We start with some easy observations:

Remark 2.13. It follows immediately from Remark 2.5 and the definition of an
open generalized n-gon that for M |H Tn and a nondegenerate subgraph A ⊆ M we
have acl(A) |H Tn . In other words, every algebraically closed nondegenerate subset
of a model of Tn is itself a model of Tn . Clearly, acl(A) is prime over A [Tent and
Ziegler 2012, Section 5.3].
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Remark 2.14. Let Tn,γ be the theory Tn expanded by constants for the vertices of
a path γ = (a0, . . . , an+3). Then F(γ ) is the prime model of Tn,γ since F(γ ) is
algebraic over γ , hence countable and atomic, hence prime (see [Tent and Ziegler
2012, Theorem 4.5.2]).

This is similar to the situation in free groups described in Sela’s seminal results,
but obviously much easier to prove in the current setting: both theories are strictly
stable, and only the “natural embeddings” are elementary. Namely, we will see
later that 0k ≼ 0m if and only if k ≤ m and the embedding is the natural one.

Adapting1 Siebenmann’s definition for the case n = 3 [Siebenmann 1965] we
define:

Definition 2.15. If A is a partial n-gon, a hyperfree minimal extension of A is an
extension by a clean arc between two elements a, b ∈ A with dA(a, b) = n + 1 or
by a loose end.

Let 0 and 0′ be partial n-gons. We say that 0 is HF-constructible from 0′ (or
over 0′) if there is an ordinal α and a sequence (0β)β<α of partial n-gons such that

(i) 00 = 0′;

(ii) if β = γ + 1, then 0β is a hyperfree minimal extension of 0γ ;

(iii) if β is a limit ordinal, then 0β =
⋃

γ<β 0γ ;

(iv) 0 =
⋃

β<α 0β .

Clearly, any free completion of a partial n-gon 00 is HF-constructible from 00.
As in [Hyttinen and Paolini 2021] one can show that any open generalized n-gon

has an HF-ordering, but since we will not be using this ordering, we omit the details.

Definition 2.16. Let A, B ⊆ M |H Tn, A ∩ B = ∅. We call B closed over A if B
contains neither a clean arc with endpoints in A ∪ B nor a loose end. We say that
B is open over A if B contains no finite set closed over A and in this case we write
A ≤o A ∪ B. We write ÂM = A ∪

⋃
{B0 ⊂ M | B0 finite and closed over A}.

Remark 2.17. Note that if B1, B2 are closed over A, then so is B1 ∪ B2.

Lemma 2.18. If B is open over A and B \ A is finite, then B is HF-constructible
over A. In particular, if A is a finite open partial n-gon, then A is HF-constructible
from the empty set. Moreover, if A ≤o 0, where 0 is a generalized n-gon, then
F(A) ∼= ⟨A⟩0 ⊆ 0.

Proof. If B \ A is a minimal counterexample, then it cannot contain either a loose
end or a clean arc, contradicting the assumption of B being open over A. □

1Note that Siebenmann also allows adding vertices of valency 0.
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Now consider the class K of finite open partial n-gons (in the language of bipartite
graphs) with strong embeddings given by ≤o. Note that K is contained both in the
class of partial n-gons considered in [Tent 2011] as well as in the class of partial
n-gons considered in [Tent 2000] (see Lemma 3.12).

Definition 2.19. For graphs A ⊆ B, C , let B ⊗A C denote the free amalgam of B
and C over A.

Let A ≤o B, C be open partial n-gons (contained in some generalized n-gon 0)
with ⟨A⟩B =⟨A⟩C = A. Then we call B⊕A C := F(B⊗A C) the canonical amalgam
of B and C over A.

The canonical amalgam was used in [Tent 2011] (and for n = 3 in [Hyttinen and
Paolini 2021]).

Remark 2.20. (i) If A ≤o B, C are open partial n-gons with ⟨A⟩B = ⟨A⟩C = A,
then B, C ≤o B ⊗A C ≤o B ⊕A C . If B ⊗A C is nondegenerate, then B ⊕A C is an
open generalized n-gon.

(ii) If B∩C = A and B∪C ≤o 0 for some generalized n-gon 0, then B∪C ∼= B⊗AC
and ⟨B ∪ C⟩0

∼= B ⊕A C .

The following is as in [Tent 2000; 2011; Hyttinen and Paolini 2021]:

Proposition 2.21. Let K be the class of finite connected open partial n-gons. Then
(K, ≤o) satisfies

(i) amalgamation: if A, B1, B2 ∈K such that ιi : A → Bi and ιi (A)≤o Bi , i =1, 2,
then there exist C ∈K and κi : Bi → C , i = 1, 2 such that κi (Bi ) ≤o C , i = 1, 2,
and κ1(ι1(a)) = κ2(ι2(a)) for all a ∈ A.

(ii) joint embedding: for any two graphs A, B ∈ K there is some C ∈ K such that
A, B can be strongly embedded (in the sense of ≤o) into C.

Hence the limit 0K exists and is an open generalized n-gon.

Proof. Since ∅ ∈ K, it suffices to verify the amalgamation property. Inductively we
may assume that B is a minimal hyperfree extension of A, so either a clean arc or
a loose end. If C does not contain a copy of B over A, then B ⊗A C ∈ K and this
is enough. □

Note that the class (K, ≤o) is unbounded in the sense that for any A ∈ K there
exists some B ∈ K with A ̸= B and A ≤o B.

Definition 2.22. Let M |H Tn . Then we say that M is K-saturated if for all finite
sets A, B ∈ K with A ≤o B and any copy A′ of A strongly embedded into M there
is a strong embedding of B over A′ into M .
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Note that by construction, 0K is K-saturated and that (as in any such Hrushovski
construction) every K-saturated structure is K-homogeneous in the sense that any
partial automorphism between strongly embedded substructures extends to an
automorphism.

Theorem 2.23. For any n ≥ 3, the theory Tn of open generalized n-gons is complete
and hence decidable.

Proof. Let M |H Tn . It suffices to show that M is elementarily equivalent to 0K.
Clearly we may assume that M is ω-saturated and we claim that any ω-saturated M
is K-saturated: Let A ≤o B be from K and assume that A ≤o M (via some strong
embedding). We have to show that we can find an embedding B ′ of B into M such
that there does not exist a finite set closed over B ′ in M . This is clear if B is an
extension of A by a clean arc since such paths are unique. If B is an extension of
A by a loose end b, then the type of b over A expressing that there is no finite set
D closed over A ∪ {b} is realized in 0K, so it is consistent and therefore realized in
M by ω-saturation. Now both M and 0K are K-saturated from which it follows (by
standard back-and-forth) that they are partially isomorphic and hence elementarily
equivalent. □

We say that a set B neighbours a set A if every a ∈ A has a neighbour in B \ A.

Lemma 2.24. Let M |H Tn , A ⊂ M finite. Then M does not contain three disjoint
sets B1, B2, B3 each closed over A and neighbouring A. In particular, if B is closed
over A, then B is algebraic over A.

Proof. Consider C = A ∪ B1 ∪ B2 ∪ B3 ⊂ M . Then every vertex in A has va-
lency at least 3 in C and C contains no clean arc. It follows that C is not open,
contradicting M |H Tn .

Now suppose B is minimally closed over A and not algebraic over A with |B \ A|

minimal. Since B is not algebraic over A, we find disjoint copies B1, B2, B3 of B
over A, contradicting the first part of the lemma. □

Lemma 2.24 directly implies:

Corollary 2.25. If M |H Tn and A ⊆ M , then acl(A)M ≤o M.

Definition 2.26. Let B |H Tn and let A be a subgraph of B. We put

(i) Cl0(A)B = A;

(ii) Cli+1(A)B = ̂⟨Cl(A)i ⟩B (see Definition 2.16);

(iii) ClB(A) =
⋃

i<ω Cli (A)B .

In other words, Cl(A)B is the limit obtained from alternating between adding all
closed finite subsets, and completing the partial n-gons in B.
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Remark 2.27. For any subset A of B |HTn we have ClB(A)≤o B and by Lemma 2.24
ClB(A) ⊆ aclB(A).

Theorem 2.28. Let A, B |H Tn and A ⊆ B. The following are equivalent:

(i) A = aclB(A);

(ii) A = ClB(A);

(iii) A ≤o B;

(iv) A ≼ B.

Proof. (i) implies (ii): This follows from Lemma 2.24.

(ii) implies (iii): This is by Remark 2.27.

(iii) implies (iv): By taking appropriate elementary extensions we may assume
that A, B are ω0-saturated and hence K-saturated by the proof of Theorem 2.23.
We use Tarski’s test: Let B |H ∃x ϕ(x, ā) for some tuple ā ⊂ A and let b ∈ B such
that B |H ϕ(b, ā). We find a countable set A0 containing ā such that A0 ≤o A and
similarly we find a countable set B0 containing A0 ∪ {b} such that A0 ≤o B0 ≤o B.
Thus by K-saturation we can embed B0 over A0 into A.

(iv) implies (i): This is also proved by Tarski’s test. □

Corollary 2.29. For n +3 ≤ k ≤ m ≤ ω we have 0k ≼ 0m , i.e., the free generalized
n-gons 0k form an elementary chain.

The following lemma will be used in the proof of Theorem 2.32:

Lemma 2.30. Let M |H Tn and A, C ⊆ M , A finite and C algebraically closed.
Then there exist a ∈ A and BA = {b1, b2} ⊂ D1(a) such that for any set B closed
over C ∪ A and neighbouring A we have B ∩ BA ̸= ∅.

Proof. Suppose otherwise. Then by Remark 2.17 there is a set B closed over C ∪ A
and neighbouring A such that for all a ∈ A we have |B ∩ D1(a)| ≥ 3. Since C is
algebraically closed, we know that B ∪ A is open over C , so contains a loose end or
a clean arc which is impossible since all a ∈ A have valency at least 3 in B ∪ A. □

Note that BA ⊂ acl(AC) and BA might be a singleton.
Exactly as in [Tent 2014] and [Müller and Tent 2019] we now define the following

notion of independence (see also [Hyttinen and Paolini 2021]).

Definition 2.31. For any subsets A, B, C of the monster model M of Tn , we call
B and C independent over A, written B |⌣

∗

A C , if

acl(ABC) = acl(AB) ⊕acl(A) acl(AC).

Note that B |⌣
∗

A C implies acl(B A) ∪ acl(AC) ∼= acl(B A) ⊗A acl(C A).
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We show that Tn is stable by establishing that |⌣
∗ satisfies the required properties

of forking as in [Tent and Ziegler 2012, Theorem 8.5.10], where in the notation of
that theorem, B |⌣

∗

A C should be read as tp(A/C) ⊑ tp(A/BC).

Theorem 2.32. The theory Tn of open generalized n-gons is stable. In Tn , the
notion |⌣

∗ satisfies the properties of stable forking:

• invariance: |⌣
∗ is invariant under Aut(M).

• local character: For all A ⊆ M finite and C ⊆ M arbitrary, there is some
countable set C0 ⊆ C such that A |⌣

∗

C0
C.

• weak boundedness: For all B ⊆ M finite and A ⊆ M arbitrary, there is some
cardinal µ such that there are at most µ isomorphism types of B ′

⊆ M over C
where B ′ ∼=A B and B ′ |⌣

∗

A C.

• existence: For all B ⊆ M finite and A ⊆ C ⊆ M arbitrary, there is some B ′

such that tp(B/A) = tp(B ′/A) and B ′ |⌣
∗

A C.

• transitivity: If B |⌣
∗

A C and B |⌣
∗

AC D then B |⌣
∗

A CD.

• weak monotonicity: If B |⌣
∗

A CD, then B |⌣
∗

A C.

Proof. Invariance: Clearly |⌣
∗ is invariant under Aut(M).

Local character: Let A ⊂ M be finite and C ⊆ M arbitrary. We construct a
countable set C∞ ⊂ C such that acl(A ∪ C∞) ∪ C ≤o M. Then B = acl(A ∪ C∞)

is countable and by Remark 2.20(ii) we have A |⌣
∗

B C . By Lemma 2.30 there is a
finite set BA which intersects any set B closed over A ∪C and neighbouring A. Let
CA ⊂ C be finite such that BA ⊂ acl(A ∪ CA) and put C0 = CA, B0 = acl(A ∪ C0).
Suppose inductively that Bi , Ci have been defined, where Bi , Ci are countable. For
a finite subset X ⊂ Bi let BX be the finite set intersecting any set D closed over
X ∪ C and neighbouring X , and let CX ⊂ C be finite such that BX ⊂ acl(Ci ∪ CX ).
Put Ci+1 = Ci ∪

⋃
{CX | X ⊂ Bi finite} and Bi+1 = acl(A ∪ Ci+1). Note that

Ci+1, Bi+1 are again countable. Finally put C∞ =
⋃

i<ω Ci .
We now claim that acl(A ∪ C∞)∪ C ≤o M. Suppose otherwise and let D be a

finite set closed over acl(A∪C∞)∪C (in particular, by the definition of being closed,
D ∩ (acl(A ∪C∞)∪C) = ∅). Let Z be the set of neighbours of D in acl(A ∪C∞).
Since any element of D has at most one neighbour in acl(A∪C∞) by Theorem 2.28,
we have |Z | ≤ |D| and hence Z ⊆ Bi for some i < ω. Then by construction D is
closed over Z ∪ C ⊆ acl(A ∪ C∞)∪ C and neighbours Z , so intersects the set BZ

nontrivially. But BZ ⊂ Bi+1 by construction. Since D intersects BZ nontrivially,
this contradicts our assumption D ∩ (acl(A ∪ C∞) ∪ C) = ∅.

Weak boundedness: Let B ⊆M be finite and A⊆C ⊆M be arbitrary. If B ⊂acl(A),
the claim is obvious. So assume A, C are algebraically closed and tp(B1/A) =

tp(B2/A) = tp(B/A), so acl(B1 A) ∼= acl(B2 A) and B1 and B2 are isometric over A.
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Hence from B1, B2 |⌣
∗

A C , we have

acl(B1 AC) ∼= acl(B1 A) ⊕A C ∼= acl(B2 A) ⊕A C ∼= acl(B2 AC).

In particular we have B1C ∼= B1 ⊗A C ∼= B2C ∼= B2 A ⊗A C and so B1 and B2

are isometric over C . This isometry extends to an isometry from acl(B1 AC) to
acl(B2 AC) fixing C and since acl(B1 AC) and acl(B2C) are elementary substruc-
tures, this extends to an automorphism of M. Hence tp(B1/C) = tp(B2/C).

Existence: Let B⊆M be finite, A⊂C⊆M arbitrary and D=acl(BA)⊕acl(A)acl(C).
We may assume that C is nondegenerate and algebraically closed so that C ≼M

and C ≼ D by Theorem 2.28. By saturation and homogeneity we can embed D
over C into M in such a way that the image of D is an elementary substructure
of M. Hence we find B ′ with tp(B/A) = tp(B ′/A) and B ′ |⌣

∗

A C .

Transitivity: Let B |⌣
∗

A C and B |⌣
∗

AC D, so

acl(ABC) = acl(AB) ⊕acl(A) acl(AC)

and
acl(ABCD) ∼= acl(ABC) ⊕acl(AC) acl(ACD)

∼= (acl(AB) ⊕acl(A) acl(AC)) ⊕acl(AC) acl(ACD)

∼= acl(AB) ⊕acl(A) acl(ACD),

so B |⌣
∗

A CD.

Weak monotonicity: Let B |⌣
∗

A CD, so that

0 = acl(ABCD) ∼= acl(AB) ⊕acl(A) acl(ACD).

Now acl(AB)⊗acl(A) acl(AC) embeds isometrically into acl(AB)⊗acl(A) acl(ACD)

and hence by Lemma 2.9 we have

⟨acl(AB) ⊗acl(A) acl(AC)⟩0 = F(acl(AB) ⊗acl(A) acl(AC))

= acl(AB) ⊕acl(A) acl(AC). □

As a corollary of the proof we obtain:

Theorem 2.33. The theory T of open generalized n-gons is not superstable.

Proof. It suffices to give an example of a finite set A and an algebraically closed
set C such that there is no finite set C0 ⊂ C with A |⌣

∗

C0
C . Let

00 = γn+3 = (x0, . . . , xn+3) ≤o M.

Then ⟨00⟩M = 0 =
⋃

0i is the free completion of 00. For each 0 < i < ω let
yi ∈ 0i with d(yi , 0i−1) ≥

n
2 − 1. Let z0 ̸= xn+2 be a neighbour of xn+3 with

z0 |⌣
∗

xn+2
00 and let zi , 0 < i < ω, be a neighbour of yi with zi |⌣

∗

yi
00z0 . . . zi−1.

Finally connect zi and zi−1 by a path λi of length ≥ n −1 (depending on the parity).
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Note that the resulting graph 0̃ = 0 ∪
⋃

i<ω λi is open with 00 ≤o 0̃, and hence
we may assume 0̃ ≤o M.

Now put A = 00 and C = acl({λi : i < ω}). Then by construction there is no
finite subset C0 ⊂ C such that A |⌣

∗

C0
C . □

As in [Hyttinen and Paolini 2021] we can show that independence is not station-
ary:

Proposition 2.34. In Tn we have acl ̸= dcl.

Proof. Let M be an ω-saturated model of Tn .
If n is odd, let A = (x0, . . . , x2n+2 = x0) ≤o M be an ordered (2n+2)-cycle

in M. For i = 0, . . . , n let γi be the clean arc from xi to xi+n+1 and let mi denote
the midpoint of γi . Let C = A ∪

⋃
i=0,...,n γi . By K-homogeneity there is an

automorphism of M taking A to the ordered (2n+2)-cycle

A′
= (xn+1, . . . , x2n+2 = x0, . . . , xn+1).

This leaves the paths γi , 0 ≤ i ≤ n, invariant and hence fixes each mi . This shows
that A ̸⊆ dcl(m0, . . . , mn). On the other hand, C is closed over {mi | i = 0, . . . , n}

and hence A ⊂ acl(m0, . . . , mn−1) by Lemma 2.24.
If n is even, let A = (x0, . . . , x2n = x0) be an ordered 2n-cycle and for i =1, . . . , n

let yi /∈ {xi−1, xi+1} be a neighbour of xi and let zi be the neighbour of xi+n with
d(zi , yi ) = n −2. Let γi be the (unique) path of length n −1 from yi to xi+n and let
mi be its middle vertex. Note that zi ∈ 0i . Let D = A ∪ {y1, . . . , yn} and assume
that D ≤o M. Put C = D∪

⋃
i=1,...,n γi . Then also D′

= A∪{z1, . . . , zn} ≤o M . By
K-homogeneity there is an automorphism of M taking D to D′. This automorphism
clearly leaves A and C invariant and fixes m1, . . . , mn pointwise, but does not fix
any vertex in A. Thus as before we see that A ̸⊆ dcl(m1, . . . , mn). Since C is closed
over {mi | i = 1, . . . , n} we have A ⊆ C ⊆ acl(m1, . . . , mn) by Lemma 2.24. □

3. Elementary substructures

As noted in [Tent 2011, Section 2.2], if 00 is isomorphic to 10, their free n-
completions are also isomorphic. The reverse is obviously not true: in a completion
sequence, 01 and 00 are not isomorphic, but they clearly have the same free n-
completion.

There is nevertheless a necessary criterion for the free n-completions to be
isomorphic. This can be stated in terms of the rank function δn that was introduced
in [Tent 2000] generalizing the rank function for projective planes introduced
in [Hall 1943]. It was used again in [Tent 2011; Müller and Tent 2019].

Definition 3.1. (i) For a finite graph 0 = (V, E) with vertex set V and edge set E ,
define δn(0) = (n − 1) · |V | − (n − 2) · |E |.
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(ii) A (possibly infinite) graph 00 is n-strong in some graph 0, written 00 ≤n 0, if
and only if for all finite subgraphs X of 0 we have

δn(X/X ∩ 00) := δn(X) − δn(X ∩ 00) ≥ 0.

Remark 3.2. Note that δn is submodular, i.e., if A ≤n B and C ⊆ B, then A∩C ≤n C .
Let A and B be finite graphs and let E(A, B) denote the edges between elements
of A and elements of B. Then

δn(A/B) = δn(A \ B) − (n − 2)|E(A, B)|.

Remark 3.3 (cf. [Tent 2000, Lemma 2.4]). Let B be a graph which arises from the
graph A by successively adding clean arcs between elements of distance n+1. Then
A ≤n B, δn(A) = δn(B) and hence if A ⊆ B ⊆ 1 for some graph 1 with A ≤n 1,
then B ≤n 1. In particular, if 00 is a finite partial n-gon and 0 = F(00) =

⋃
0i as

in Definition 2.4, then δn(0i ) = δn(00) for all i < ω. Hence any finite subset A0 of
0 is contained in a finite subset A ⊆ 0 with δn(A) = δn(00).

Lemma 3.4 [Tent 2011, Proposition 2.5]. Let 0 be a generalized n-gon which is
generated by the graph 00. The following are equivalent:

(i) 00 ≤n 0.

(ii) 0 = F(00).

Remark 3.5. Note that for k ≥ n + 3 any finite subset A0 of 0k is contained in a
finite subset A ⊂ 0k such that δn(A) = n − 1 + k = δn(γk) and that n − 1 + k is
minimal with that property. Hence, if A and B are finite partial n-gons such that
0(A) ∼= 0(B), then δn(A) = δn(B). In particular, if 0k ∼= 0m , then k = m.

Definition 3.6. If A ≤n B are finite graphs such that δn(B/A) = 0 and there is
no proper subgraph A ⊂ B ′

⊂ B with A ≤n B ′
≤n B then B is called a minimal

0-extension.

Remark 3.7. Recall that K is the class of finite connected open partial n-gons. If
B ∈ K is a minimal 0-extension of A, then either B is an extension of A by a clean
arc of length n − 2 or B is closed over A in the sense of Definition 2.16.

Lemma 3.8. Let M be a model of Tn and A a finite subset of M. If A ⊆ B ⊆ M
and δn(B/A) ≤ 0, then B is algebraic over A.

Proof. If δn(B/A) < 0, then B is not HF-constructible over A and hence algebraic
over A by Lemma 2.24. Now suppose that δn(B/A) = 0. By submodularity we can
decompose the extension B over A into a finite series A= B0≤n B1≤n · · ·≤n Bk = B,
where each Bi is a minimal 0-extension of Bi−1. Hence it suffices to prove the
claim for minimal 0-extensions and for such extensions the claim follows from
Remark 3.7 and Lemma 2.24. □
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The previous lemma directly implies:

Corollary 3.9. Let 0 be an open generalized n-gon. If A ⊂0 is such that every finite
set B0 ⊃ A is contained in a finite set B such that δn(B) = δn(A), then 0 ⊆ acl(A).
In particular, any elementary embedding of 0k , k ≥ n + 3, into itself is surjective.

Corollary 3.10 (cf. [Hyttinen and Paolini 2021, Corollary 6.3]). For n+3≤k, m ≤ω

we have 0k ≼ 0m if and only if k ≤ m.

Proof. The direction from right to left is contained in Corollary 2.29. For the
direction from left to right suppose 0k embeds elementarily into 0m for m < k
via f , so f (0m) ≼ f (0k) ≼ 0m . By Corollary 3.9 and the direction from right to
left, we have f (0m) = 0m , contradicting the fact that 0m ⊊ 0k . □

To see that Tn has no prime model, we use results from [Tent 2000]. Hence we
recall the definition of the class K considered in [Tent 2000]. We show below that
K ⊆ K and hence the results from [Tent 2000] apply.

Definition 3.11. Let K be the class of finite partial n-gons A such that if A contains
a 2k-cycle for some k > n, then δn(A) ≥ 2n + 2.

The following was shown in [Tent 2000, Lemma 3.12] (unfortunately the state-
ment there contains a typo):

Lemma 3.12. Let A ∈ K with |A| ≥ n + 2. Then δn(A) ≥ 2n. Moreover, we have
in fact δn(A) ≥ 2n + 2, unless |A| = n + 2 or A is an ordinary n-gon with either a
path with n − 1 new elements or a loose end attached.

Proposition 3.13. If A ∈K contains a 2k-cycle for some k > n, then δn(A) ≥ 2n+2.
Hence K ⊆ K.

Proof. Let A be a minimal counterexample, so A contains a 2k-cycle for some k > n
and δn(A) < 2n + 2. By minimality, A cannot contain a loose end, so A = A0 ∪ γ

for some clean arc γ . Then δn(A) = δn(A0) < 2n + 2. By minimality A0 does not
contain any 2k-cycle for k > n and hence A0 ∈ K. By Lemma 3.12 we know that
|A0|= n+2 or A0 is an ordinary n-gon with either a path with n−1 new elements or
a loose end attached. But then A = A0 ∪γ does not contain any 2k-cycle for k > n,
a contradiction. □

Corollary 3.14. If 0 is a generalized n-gon such that every finite set A0 is contained
in a finite set A with δ(A) = 2n + 2, then 0 does not contain any proper elementary
submodels. In particular, 0n+3 is minimal.

Proof. This follows directly from Corollary 3.9 and Proposition 3.13. □

Definition 3.15. Consider 0n+3 and choose copies (0i : i < ω) of 0n+3 such that
0i ⊊ 0i+1. Put 0′

=
⋃

i<ω 0i .
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Note that 0′
|H Tn since Tn is an ∀∃-theory. Also, every finite subset A0 of 0′ is

contained in a finite set A ⊂ 0′ with δn(A) = 2n + 2.

Proposition 3.16. There exist open generalized n-gons which are not free. Specifi-
cally, 0′

=
⋃

0i is not free.

Proof. Clearly 0′ is not finitely generated as any finite subset is contained in some 0i .
So suppose towards a contradiction that 0′ is the free completion of an infinite
hat-rack. Then for any k ≥ 2n + 2 there exists a subset X of 0′ with δn(X) ≥ k
and X ≤n 0′, a contradiction to the observation that every finite subset A0 of 0′

is contained in a finite set A ⊂ 0′ with δn(A) = 2n + 2. Thus 0′ is open and not
free. □

Corollary 3.17. The theory Tn of open generalized n-gons does not have a prime
model.

Proof. By Corollary 3.14, 0n+3 and 0′ (as in Definition 3.15) have no proper
elementary substructures. Since they are not isomorphic, this proves the claim. □

Since we can easily find (nonelementary) embeddings of 0m into 0k for m ≥ k
we also obtain:

Corollary 3.18. The theory of open generalized n-gons is not model complete and
hence does not have quantifier elimination.

Remark 3.19. Free ∞-gons are trees. Therefore the theory of free ∞-gons is in
fact ω-stable as are their higher dimensional generalizations, right-angled buildings
and free pseudospaces; see [Tent 2014].

Theorem 3.20 [Ammer 2022, Theorems 12.1 and 12.7]. The theory Tn has weak
elimination of imaginaries and is 1-ample, but not 2-ample.

Furthermore, [Ammer 2022, Chapter 10] extends the proof from [Hyttinen and
Paolini 2021] to obtain 2ℵ0 many nonisomorphic countable open generalized n-gons
for each n. Since Tn is not superstable, there are 2κ many models of size κ for any
uncountable κ .

4. Open vs. free

While we already saw in Proposition 3.16, that there are open generalized n-gons
which are not free, we show in this final section that for finitely generated generalized
n-gons the notions of open and free coincide. For n = 3 this was proved in [Hall
1943, Theorem 4.8].

Proposition 4.1. Every finitely generated open generalized n-gon is free.

For the proof we introduce the following concept:

Definition 4.2. We call partial n-gons A, B free-equivalent if F(A) ∼= F(B).
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Lemma 4.3. Let 0 = F(A) be a generalized n-gon and suppose A is constructed
from A0 by first attaching a clean arc γ = (x1, . . . , xn−2) and then attaching loose
ends z1, . . . , zk whose respective (unique) neighbours belong to γ . Then there exist
z′

1, . . . , z′

k ∈ 0 \ A with unique neighbours in A0 such that A is free-equivalent
to A0 ∪ {z′

1, . . . , z′

k}.

Proof. Let γ ′
⊂ A be a 2n-cycle containing γ . Note that the opposites x ′

i of xi ,
i = 1, . . . , n −2, in γ belong to A0. By Remark 2.6 we can replace zi ∈ D1(x j ) by
the appropriate neighbour z′

i of the opposite x ′

j of x j and remove γ . □

Lemma 4.4. Let 0 = F(A) be a generalized n-gon and suppose A does not contain
any cycle. Then there is a hat-rack B free-equivalent to A.

Proof. Let γ = (x0, . . . , xk)⊂ A be a simple path (i.e., without repetition of vertices)
such that k ≥ n +3 is maximal. The proof is by induction on the number of vertices
of A not incident with γ . If A is a hat-rack, there is nothing to show. So let a ∈ A
have maximal distance from γ . If there is some xi ∈ γ such that d(a, xi ) = n + 1,
then let a′

∈ 0 \ A be the unique neighbour of xi with d(a′, a) = n − 2. Let A′ be
the graph obtained from A by replacing a by a′. Then F(A′) = F(A).

If there is no such vertex in γ , let γ ′
⊂ 0 be the clean arc connecting x0 and xn+1,

so F(A) = F(A ∪ γ ′). There is some y ∈ γ with d(y, a) = n + 1. Let y′ be the
neighbour of y with d(y′, a)= n−2. Then we replace A by A′

= (A\{a})∪γ ′
∪{y′

}.
Thus F(A) = F(A′) and the claim follows from Lemma 4.3 and induction. □

We can now give the proof of Proposition 4.1:

Proof. Let 0 be an open generalized n-gon finitely generated over the finite partial
n-gon A. We may assume that A is connected. If δn(A) = k, then every finite set
A0 ⊂ 0 is contained in a finite set A with δ(A) ≤ k. Hence we may assume that
A ≤n 0 and so 0 ∼= F(A) by Lemma 3.4. Therefore it suffices to show that there is
a finite hat-rack B free-equivalent to A.

By Lemma 2.18 consider a construction of A over the empty set. Clearly we
may assume that the last construction step is the addition of a loose end. We now
do induction over the number of steps adding a clean arc. If this number is zero,
then A contains no cycles and the claim follows from Lemma 4.4. Now suppose A
is obtained from A0 by adding a clean arc γ and then adding a number of loose
ends z1, . . . , zk (where the loose ends may be attached consecutively at a previous
loose end). If all loose ends are incident with γ , then we finish using Lemma 4.3.
Otherwise, we inductively reduce the distance of the loose ends by replacing them
by a loose end at smaller distance to A: if zi is a loose end, there is some x ∈ A
with d(zi , x) = n + 1 and such that x is not a loose end in A. Now replace zi by
the unique z′

i ∈ D1(x) with d(zi , z′

i ) = n − 2. In this way we reduce to the case in
Lemma 4.3 and finish. □
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Remark 4.5. Using similar arguments one can also show that for finitely generated
0, 0′

|H Tn we have 0 ∼= 0′ if and only if 0 = F(A), 0′
= F(B) for finite A, B

such that δn(A) = δn(B). We leave the proof as an exercise for the interested reader.
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We develop a family of simple rank one theories built over quite arbitrary se-
quences of finite hypergraphs. (This extends an idea from the recent proof that
Keisler’s order has continuum many classes, however, the construction does not
require familiarity with the earlier proof.) We prove a model-completion and
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any arity. We also indicate modifications of the construction involving equivalence
relations rather than trees. Although we have found these theories in the context of
investigating Keisler’s order, indications are that they may be of general interest.
Hence we have taken care to present them in a hopefully easily accessible way.

Meanwhile, an interesting aspect of Keisler’s order on simple unstable theories is
that it seems to be pointing the way towards isolating and analyzing an interesting
family of theories “near” the random graph, which includes the incomparable
theories of [7], and now the more general family developed here. We do not
yet have indications whether this is the family. We do intend to look at whether
the incomparability via ultraproducts can be carried out at the generality of these
theories, and to consider other related questions in a future manuscript.

1. Templates and theories

To define our theories we first need to define a template, which is a growing sequence
of finite hypergraphs, all of the same fixed arity k, satisfying certain mild conditions
on the number of nodes and of edges. Our main case is k > 2, but the construction
also makes sense for k = 2 (graphs) and so generalizes a slight variant1 of the
construction from [7]. The construction a priori makes sense without the conditions
in Definition 1.4, but the model completion and quantifier elimination arguments
use them. Given any such template, we then build a theory in a natural way.

Definition 1.1. Given a hypergraph (H, E), where E is a relation of arity k, say
that k is the arity of the hypergraph.

Definition 1.2. Call a hypergraph (H, E) of arity k a k-full hypergraph if we can
partition E = E∗

∪ E<k such that (H, E∗) is a k-uniform hypergraph, meaning the
edge relation is symmetric and irreflexive and holds only on tuples of k distinct
elements, and E<k holds on all tuples with < k distinct elements.

Informally, k-full hypergraphs are those obtained by starting with a k-uniform
hypergraph, where the edge is symmetric and irreflexive and holds only on tuples
of k distinct elements, and then extending it by setting the edge relation to hold
on all tuples with repetition. (This is a technical help since nonedges in template
hypergraphs indicate inconsistency in the related theory.) Note that it still is well
defined to call k the arity of the hypergraph.

Definition 1.3. Given a hypergraph (H, E) of arity k, a k-full-clique is a set2 A ⊆ H
where every sequence of k elements of A belongs to E , and a k-independent set is

1The reader familiar with the earlier paper will remember that the theories there were built on
bipartite graphs, which had certain advantages for the ultrapower analysis. In order to extend to
hypergraphs, rather than solving the problem of extending the bipartition to a multipartition, the
problem was solved in a more satisfying way by eliminating the bipartition; then the extension to
higher arities is even more natural.
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a set A ⊆ H with ≥ k members such that no sequence of k distinct elements of A
belongs to E .

Definition 1.4. A template of arity k, 2 ≤ k < ω, consists of a sequence H = h̄ =

⟨hn : n < ω⟩ and a function fH : ω→ ω \ {0} such that:

(0) limn→∞ fH(n)= ∞, meaning that for every N < ω there is n < ω such that
m ≥ n =⇒ fH(m)≥ N .

(1) for all n<ω, hn = (Hn, En) is a finite k-full hypergraph, Hn = ∥hn∥ is a finite
cardinal and so we identify the set of vertices Hn with the set {0, . . . , Hn − 1}.

Moreover, for all n < ω:

(2) fH(n)≤ Hn < ℵ0.

(3) (extension) Let t = fH(n). For every i0
0 , . . . , i0

k−2, . . . , i t−1
0 , . . . , i t−1

k−2 from Hn ,
there exists s ∈ Hn such that ⟨s, iℓ0, . . . , iℓk−2⟩ ∈ En for all ℓ < t .

We say H is a template if (H, f ) is for some f .

Remark 1.5. For notational simplicity in Definition 1.4, we fix k. We could also
have defined a parameter kn for each n measuring the fullness.

Definition 1.6. A template is a template of arity k for some k < ω.

For example, the sequence of hypergraphs given by Hn = n + 1 and En =
kHn

is a template of arity k. For a more interesting example, choose the hn to be a
sequence of finite random hypergraphs, with size and edge probability sufficient to
give the extension condition Definition 1.4(3). For a similar sufficient calculation
in the original case of graphs, see [7, §6].

As the next definition suggests, it will be useful to think of trees naturally
associated to paths through the template hypergraphs.

Definition 1.7. Given a template H, and recalling Hn from Definition 1.4, define

XH := {ρ : ρ ∈
ω>ω, 0 ≤ ρ(n) < Hn for all n < lgn(ρ)}

to be, informally, the set of finite sequences of choices of vertices from initial
segments of our hypergraph sequence, naturally forming a tree. Define

leaves(XH)= {ρ ∈
ωω : ηi ↾ n ∈ XH for all n < ω}

to be the “limit points” of this set.

Definition 1.8. We define a theory T0 = T0(H) based on the template H to be the
following universal theory in the following language.

2In the interesting case, a set with ≥ k members, but this hypothesis is not strictly needed as the
sequences can contain repetitions. In the case of the independent set, we need |A| ≥ k and could have
asked |A|> k.
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(1) L = LH contains equality, a k-place relation R, and countably many unary
predicates

{Qη : η ∈ XH}.

(2) T0 contains universal axioms stating that R is a symmetric k-uniform hypergraph,
i.e., R holds only on distinct k-tuples and if it holds on some k-tuple it holds on all
its permutations.3

(3) If η ⊴ ν ∈ XH then T0 contains the axiom

(∀x)(Q⟨ ⟩(x))∧ (∀x)(Qν(x)=⇒ Qη(x))

saying that Q⟨ ⟩ names everything, and Qν refines Qη.

(4) If η ∈ XH, lgn(η)= m and i ̸= j < ∥hm∥ then T0 contains the axiom

(∀x)
(
¬(Qη⌢⟨i⟩(x)∧ Qη⌢⟨ j⟩(x))

)
.

Moreover, T0 contains the axiom (∀x)
(
Qη(x)=⇒

∨
i Qη⌢⟨i⟩(x)

)
, so the predicates

⟨Qη⌢⟨i⟩ : i < ∥hm∥⟩ partition Qη.

(5) For every η0, . . . , ηk−1 from XH and n < min{lgn(η0), . . . , lgn(ηk−1)}, if
⟨η0(n), . . . , ηk−1(n)⟩ /∈ En then T0 contains the axiom

(∀x0, . . . , xk−1)(Pη0(x0)∧ · · · ∧ Pηk−1(xk−1)=⇒ ¬R(x0, . . . , xk−1))

forbidding any edges across these predicates.

Discussion 1.9. Informally, the unary predicates give a model M |H T0 the (hard-
coded) structure of a tree. We have ∀x Q⟨⟩(x). The model is first partitioned into
predicates Q⟨i⟩ for i < ∥h0∥. By induction on m ≥ 1, each predicate Qη (where
lgn(η)=m, i.e., η is a function with domain {0, . . . ,m−1}) is partitioned into ∥hm∥

disjoint pieces, the Qη⌢⟨i⟩. So any a ∈ M will be in some concentric sequence of
predicates ⟨Qρ↾n :ρ ∈ leaves(XH), n<ω⟩. Call ρ the leaf of a (see Definition 1.10).
Note that we have arranged our indexing so that, in this notation, if ρ(n)= i we have

a ∈ Q(ρ↾n)⌢⟨i⟩,

in other words, that its predicate at level n corresponds to the i-th element of Hn .
The final condition on edges amounts to the following. Given a0, . . . , ak−1 in a
model M |H T0, each element ai belongs to some leaf ρi , and an edge R cannot
occur on ⟨a0, . . . , ak−1⟩ unless for every n < ω, ⟨ρi (n) : i < k⟩ is an edge in En .
(Since T0 is a universal theory, of course, it records here just what is forbidden, and
remains agnostic about whether edges do occur if permitted; a model completion,
such as we shall construct soon, would have more information.)

3Note that R, the hypergraph relation in the theory, is symmetric irreflexive, while En , the
hypergraph relations in the templates, need not be irreflexive by the definition of “k-full”.
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Notice the “sparsification” of edges, or rather the accumulation of rules for-
bidding edges, as we go deeper into the “tree”. If η0, . . . , ηk−1 are elements of
XH of length m + 1, and ⟨η0(m), . . . , ηk−1(m)⟩ /∈ Em , then in M we know there
can be no R-edges spanning elements chosen from the predicates Qη0, . . . , Qηk−1

regardless of how these elements sit in subsequent predicates. If on the other hand
⟨η0(ℓ), . . . , ηk−1(ℓ)⟩ ∈ Eℓ for ℓ ≤ m, then a priori there may be edges spanning
some elements from the predicates Qη0, . . . , Qηk−1 , but it may depend a priori on
how those elements sit in subsequent predicates and what the templates say there.

The following auxiliary objects may clarify the picture.

Definition 1.10. Fix a template H of arity k. Let T0 = T0(H) and let M |H T0.

(1) For a ∈ M , define leaf(a) to be the unique ρ ∈ leaves(XH) such that

M |H a ∈ Qρ↾n for all n < ω.

(2) Let h∞ be the k-uniform hypergraph with vertex set H∞ := leaves(XH) and
with edge relation E∞ given by

⟨ρ0, . . . , ρk−1⟩ ∈ E∞ ⇐⇒ ⟨ρ0(n), . . . , ρk−1(n)⟩ ∈ En for all n < ω.

Of course h∞ = h∞(H).

Observation 1.11. Definition 1.8(5) implies that if M |H T0, a0, . . . , ak−1 ∈ M , we
can have M |H R(a0, . . . , ak−1) only if ⟨leaf(a0), . . . , leaf(ak−1)⟩ ∈ E∞.

Example 1.12. Suppose that k = 3, ⟨0, 1, 2⟩ ∈ E0 and ⟨3, 4, 5⟩ ∈ E1. Then R-
edges are not a priori forbidden in T0 between Q⟨03⟩, Q⟨14⟩, Q⟨25⟩, nor between
Q⟨04⟩, Q⟨15⟩, Q⟨23⟩ remembering symmetry of E1, nor between Q⟨01⟩, Q⟨10⟩, Q⟨20⟩

remembering E1 is k-full.

2. Model completion and quantifier elimination

Convention 2.1. For the entirety of this section, fix a template H, fH of arity k ≥ 2,
and thus h∞ and T0 as in Definitions 1.10 and 1.8, respectively.

Claim 2.2. For any ρ ∈ H∞ there are continuum many tuples ρ0, . . . , ρk−2 ∈ H∞

such that ⟨ρ, ρ0, . . . , ρk−2⟩ ∈ E∞, i.e., each leaf in this graph is contained in
continuum many edges.

Proof. By extension (Definition 1.4(3)). □

The next claim is a key use of Definition 1.4(3): in some sense, it shows that
consistency in the template at large enough finite levels can be extended to full
consistency.
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Claim 2.3 (completion to a type). For any 1 ≤ t < ω and any choice of t k-
tuples ρ0

0 , . . . , ρ
0
k−2, . . . , ρ

t−1
0 , . . . , ρt−1

k−2 from H∞, if there exists ν ∈ XH such that
lgn(ν) >min{m : f (n)≥ t for all n ≥ m} and

⟨ν(ℓ), ρi
0(ℓ), . . . , ρ

i
k−2(ℓ)⟩ ∈ Eℓ for all i < m and ℓ < lgn(ν),

then we can choose ν∗ such that ν ⊴ ν∗ ∈ H∞ and

⟨ν∗(ℓ), ρ
i
0(ℓ), . . . , ρ

i
k−2(ℓ)⟩ ∈ E∞ for all i < m and ℓ < ω.

Proof. Let n := lgn(ν). By induction on r <ω let us prove that we can find νr ∈ XH
of length n + r such that ν ⊴ νr and

⟨νr (ℓ), ρ
i
0(ℓ), . . . , ρ

i
k−2(ℓ)⟩ ∈ Eℓ for all i < m and ℓ < n + r .

For ℓ= 0 take νt = ν. For ℓ > 0, apply extension (Definition 1.4(3)) to the tuples

ρ0
0(n + r − 1), . . . , ρ0

k−2(n + r − 1), . . . , ρt−1
0 (n + r − 1), . . . , ρt−1

k−2(n + r − 1)

in the hypergraph hn+r−1 and let b be the appropriate element of Hn+r−1 returned
by that axiom. Then νr := νr−1

⌢
⟨a⟩ fits the bill. □

Definition 2.4. For any m <ω, define T m
0 to be the restriction of T0 to the language

with equality, a k-place relation R, and unary predicates

{Qη : η ∈ XH, lgn(η)≤ m}.

Claim 2.5. For each m < ω, the model completion T m of T m
0 exists.

Proof. Just as in the case of graphs [7, Observation 2.16], each T m
0 is a universal

theory in a finite relational language. The class of its models has the joint embedding
property JEP for any two M1,M2 with |M1| ∩ |M2| = ∅, and the amalgamation
property AP when we have models M1,M2 and M0 with M0 |H T m

0 and M0 ⊆ Mℓ

for ℓ= 1, 2 and |M1| ∩ |M2| = |M0|. To see this in both cases, the model N whose
domain is |M1| ∪ |M2|, such that QN

= QM1 ∪ QM2 for each unary predicate Q
and RN

= RM1 ∪ RM2 for the edge relation R, will be a model of T m
0 . Thus T m

exists. □

Remark 2.6. Regarding the model completion, if M |H T m , then M is infinite, and
indeed for each unary predicate Q ∈ τ(T m), QM is infinite. Moreover,4 for any
η0, . . . , ηk−1 ∈ XH with lgn(ηℓ)= m for ℓ < k:

(a) If (η0(i), . . . , ηk−1(i)) ∈ Ei for all i < m, then RM on QM
η0

× · · · × QM
ηk−1

“is a random hypergraph” in the sense of first-order logic, meaning that if
A ⊆ QM

η1
× · · · × QM

ηk−1
and B ⊆ |M |

k and5 “A ∩ B = ∅” in the strong sense

4We can extend case (a) to {η0, . . . , ηℓ−1} for some larger finite ℓ which form a k-full-clique in
the same strong hereditary sense.

5We could have asked that B ⊆ QM
η1

× · · · × QM
ηk−1

, but the stronger statement is true.
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that no permutation of any (a1, . . . , ak−1) ∈ A belongs to B, then the set of
formulas

p(x)= {R(x, a1, . . . , ak−1) : (a1, . . . , ak−1) ∈ A}

∪ {¬R(a, b1, . . . , bk−1) : (b1, . . . , bk−1) ∈ B}

is a partial type in M , so in particular is realized if A, B are both finite.6

(b) If not, then (QM
η0

× · · · × QM
ηk−1

)∩ RM
= ∅.

Next we upgrade [7, Claim 2.17] to the context of hypergraphs.

Notation 2.7. For an ordered set X , let incℓ(X) be the set of strictly increasing
ℓ-tuples of elements of X .

Definition 2.8. Given T m for some m < ω and M, N |H T m , recall that

(1) a1, . . . , an ∈ |M | and b1, . . . , bn ∈ |N | have the same quantifier-free τ(T m)-
type when they agree on equality, instances of R, and predicates Qη up to
lgn(η)= m.

(2) ϕ(x, y1, . . . , yn) is a complete quantifier-free formula of τ(T m) when

(a) for every unary predicate Q ∈ τ(T m) and variable z ∈ {x, y1, . . . , yn},
either ϕ ⊢ Q(z) or ϕ ⊢ ¬Q(z);

(b) for every z0, z1 from {x, y1, . . . , yn}, either ϕ ⊢ z0 = z1 or ϕ ⊢ z0 ̸= z1;
(c) for every z0, . . . , zk−1 from {x, y1, . . . , yn}, either ϕ ⊢ R(z0, . . . , zk−1) or

ϕ ⊢ ¬R(z0, . . . , zk−1).

Recall that the language is finite so this is well defined.

Our next lemma says that for each m, the truth of sentences of τ(T m
0 ) of length

≤ m soon stabilizes in the sequence of theories T k as k goes to infinity.

Lemma 2.9. For every m < ω, the following holds. Let

m∗ ≥ min{n : n′
≥ n =⇒ fH(n′)≥ m}.

If M |H T m∗ , N |H T m∗+1 and ϕ is a sentence of τ(T m) of length ≤ m, then
M |H ϕ ⇐⇒ N |H ϕ.

Proof. To prove the lemma by induction on complexity of formulas, it suffices to
show the following:

6Note that by our assumption of the template hypergraphs being “k-full”, we are in case (a)
whenever |{η0, . . . , ηk−1}|< k. The hypergraph edge R is a k-uniform hypergraph in M , of course, so
any (a0, . . . , ak−1)∈ RM will be a tuple of distinct elements, but fullness of the template hypergraphs
means some of the elements in such a tuple are a priori allowed to come from the same predicate at
any given level. In particular, for each η ∈ XH with lgn(η)= m, (QM

η , RM ↾ QM
η ) is a random k-ary

hypergraph in the usual sense of first-order logic.
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Suppose ϕ(x, y1, . . . , yn) is a complete quantifier-free formula of
τ(T m) of length ≤ m, so note n < m. Suppose a1, . . . , an ∈ |M |

and b1, . . . , bn ∈ |N | have the same quantifier-free τ(T m)-type. Then
there exists a ∈ |M | such that M |Hϕ(a, a1, . . . , an) if and only if there
exists b ∈ |N | such that N |H ϕ(b, b1, . . . , bn).

(⊕)

Without loss of generality, the sequences a1, . . . , an and b1, . . . , bn are without
repetition.

For left to right, suppose that a ∈ |M | exists and a ∈ {a1, . . . , an}; otherwise it
is trivial. We will need notation to record edges and nonedges made by a. For ῑ any
sequence of elements of {1, . . . , n}, denote by āῑ the sequence ⟨aῑ(ℓ) : ℓ< lgn(ῑ)⟩. Let

C = {ῑ= ⟨i0, . . . , ik−2⟩ : ῑ ∈ inck−1({1, . . . , n}), ⟨a⟩
⌢āῑ ∈ RM

}

represent the set of R-edges made by a to {a1, . . . , an−1}. Note that |C | < nk .
Correspondingly, let

D = inck−1({1, . . . , n}) \ C

represent the set of non-R-edges made by a to {a1, . . . , an−1}. If C = ∅ finding a
corresponding b is immediate, so assume C ̸= ∅.

Each element c of M belongs to a unique predicate Qη with lgn(η)= m∗; call it
“the m∗-leaf of c” and write leafm∗

(c)= η. Let ρ= leafm∗
(a) and let ρi = leafm∗

(ai )

for i = 1, . . . , n. The definition of T m∗

0 and the existence of a tell us that necessarily

for every ι= ⟨i0, . . . , ik−2⟩ ∈ C , for every ℓ < m∗,

⟨ρ(ℓ), ρi0(ℓ), . . . , ρik−2(ℓ)⟩ ∈ Eℓ.

Meanwhile, each element d of N belongs to a unique predicate Qη with lgn(η)=

m∗ + 1; write leafm∗+1(d)= η. So let νi = leafm∗+1(bi ) for i = 1, . . . , n. Note that
leafm∗

and leafm∗+1 a priori depend on the models M and N , but by our assumption
that a1, . . . , an and b1, . . . , bn have the same quantifier-free τ(Tm)-type, necessarily
νi ↾ m∗ = ρi for i = 1, . . . , n. Apply extension (Definition 1.4(3)) to the set of
(k−1)-tuples

{⟨νi0(ℓ), . . . , νik−2(ℓ)⟩ : ῑ= ⟨i0, . . . , ik−2⟩ ∈ C},

recalling our choice of m∗, and let s be the element of Hm∗
returned. Define

ν = η⌢⟨s⟩. Now we have that

for every ι= ⟨i0, . . . , ik−2⟩ ∈ C , for every ℓ < m∗ + 1,

⟨ν(ℓ), νi0(ℓ), . . . , νik−2(ℓ)⟩ ∈ Eℓ.

So by definition of T m∗+1
0 , ϕ(x, b1, . . . , bn) is consistent with N , and b exists

because N is model complete.
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The other direction, right to left, is simpler. Suppose that b ∈ |N | exists and
b /∈ {b1, . . . , bn}. As before, define C to be the set of representatives of edges.
Suppose leafm∗+1(b) = ν and leafm∗+1(bi ) = νi . Then since b exists and N is a
model of T m∗+1

0 , necessarily

for every ι= ⟨i0, . . . , ik−2⟩ ∈ C , for every ℓ < m∗ + 1,

⟨ν(ℓ), νi0(ℓ), . . . , νik−2(ℓ)⟩ ∈ Eℓ.

A fortiori, then,

for every ι= ⟨i0, . . . , ik−2⟩ ∈ C , for every ℓ < m∗,

⟨ν(ℓ), νi0(ℓ), . . . , νik−2(ℓ)⟩ ∈ Eℓ,

so by definition of T m∗

0 , ϕ(x, a1, . . . , an) is consistent with M , and since it is
complete ϕ ⊢ Q(ν↾m∗)(x), and a exists because M is model complete. □

Corollary 2.10. “The limit theory of ⟨T m
: m<ω⟩ is well defined and is a complete,

model complete theory which extends T0.” For every m < ω and every formula ϕ of
τ(T m) in at least one free variable,7 for some quantifier-free formula ψ of τ(T m),
for every n large enough, we have that

(∀x̄)(ϕ(x̄)≡ ψ(x̄)) ∈ T n.

Lemma 2.11. The theory T is simple rank 1.

Proof. Assume for a contradiction that ⟨āi : i < κ⟩, κ = cof(κ)≥ (2ℵ0)+ witnesses
that some formula ϕ(x̄, ȳ) n-divides, in a large κ-saturated model M |H T . Without
loss of generality, possibly adding dummy variables, lgn(x̄)= lgn(ȳ)=: m.

For each i < κ , let b̄i be such that M |H ϕ[b̄i , āi ]. Since κ is large enough (i.e.,
since cof(κ) > 2ℵ0), for some U ∈ [κ]κ , for each ℓ < m there is νℓ ∈ H∞ such
that leaf(b̄i,ℓ) is constantly equal to νℓ, and there is ρℓ ∈ H∞ such that leaf(āi,ℓ) is
constantly equal to ρℓ.

Let ϕ′ be an extension of ϕ which is complete for {=, R} (it will obviously
only contain information about unary predicates up to some finite level) such that
M |H ϕ′

[b̄i , āi ] for i ∈ V ∈ [U]
κ . We may assume ϕ′ is quantifier-free. Without loss

of generality, ϕ′ does not imply any instances of equality among the x’s or between
the x’s and the y’s. In what follows, replace ϕ by ϕ′ and ⟨āi : i < κ⟩ by ⟨āi : i ∈ V⟩.

We would like to show that

6(x̄)= {ϕ(x̄, āi ) : i < κ} is consistent.

It suffices by induction on j < m to choose elements b j so that b j realizes the
set of formulas 6 j (b0, . . . , b j−1, x j ), where 6 j is the restriction of 6 to the

7Since we do not have constants in the language.
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variables x0, . . . , x j . In the case ℓ(x̄)= 1, write ν = leaf(x), and this case follows
from three simple observations:

• ϕ is without loss of generality quantifier-free; we assumed no instances of
equality between the x’s, and our theory has no algebraicity.

• The template hypergraphs contribute no restriction to this set of formulas, since
if R(x, a j0, . . . , a jk−2) is implied by 6 then we know by our construction that
(ν, ρ j0, . . . , ρ jk−2) ∈ E∞.

• The indiscernibility of ⟨āi : i < κ⟩, transitivity of equality, and consistency
of each instance ϕ(x, āi ) together mean that if R(x, a j0, . . . , a jk−2) is implied
by 6 and ¬R(x, aℓ0, . . . , aℓk−2) is implied by 6, then no permutation of
⟨a j0, . . . , a jk−2⟩ is equal to ⟨aℓ0, . . . , aℓk−2⟩ (so the “positive” and “negative”
edges required by 6 cause no explicit contradiction).

Observe that the inductive step, since we will have already chosen the earlier values
bℓ (ℓ < j), will reduce to the case lgn(x̄) = 1 (using lgn(ȳ) = m + j). This is
enough to deduce the consistency of 6, so there is no dividing. □

Conclusion 2.12. Given any template H, the universal theory T0 = T0(H) has a
model completion T = T (H) which is well defined, eliminates quantifiers, is simple
rank 1, and is equal to the limit of ⟨T m

: m < ω⟩.

Discussion 2.13. We could have defined the theory to be “based on” predicates
naming classes of crosscutting finite equivalence relations, rather than levels of
trees, in the natural way. Alternatively, we could make En be a k-place relation
on

∏
ℓ≤n Hℓ.

3. A combinatorial property

In this section we give Definition 3.1, which is supposed to capture what is simple
about the theories of Section 1, not necessarily what is complicated about them. In
Section 4 we shall use this to give a sufficient condition for ultrafilters to saturate
such theories. First let us motivate the property.

Suppose, with no assumptions on T or ϕ, we have a sequence of instances of ϕ

ϕ(x̄, ā0), . . . , ϕ(x̄, ās−1)

forming a partial type, and suppose we replace each āi by a sequence b̄i having the
same type over the empty set. (We don’t ask that āi and ā j have the same type for
i ̸= j , just that āi and b̄i have the same type for each i .) Then a priori,

ϕ(x̄, b̄0), . . . , ϕ(x̄, b̄s−1)

need not remain a partial type. An example is ϕ(x; y0, y1) = y0 < x < y1 in the
theory of dense linear orders: any two pairs of increasing elements have the same
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type over the empty set, but we can choose the ā’s to be a sequence of intervals
which are concentric, and the b̄’s a sequence which are disjoint. Similar examples
arise whenever we have a tuple beginning two indiscernible sequences, one which
witnesses dividing of ϕ and one which does not.

An example of (T, ϕ) where such a substitution does remain a partial type, for
trivial reasons, is the theory T = Trg of the random graph, and ϕ(x, y)= R(x, y),
using only the positive instance. Note that ϕ(x; y, z)= R(x, y)∧¬R(x, z) would
not work, however, since in changing from ā’s to b̄’s we could introduce collisions
among the parameters. A less trivial example is the positive instance of the edge
relation in the theories of Section 1, which in fact satisfy a stronger condition, (as
does the random graph), as we shall now see.

Among the examples of (T, ϕ) where this does work, we can ask just how much
of each type we need to preserve when changing the parameters from āi ’s to b̄i ’s.
Rather than preserving all formulas, perhaps it would be sufficient to enumerate
some formulas of the type of each parameter in some coherent way, and then
preserve some finite initial segment of each of these lists. It is reasonable that the
length of the initial segment needed would depend on s, the number of instances
we are dealing with. This is essentially what the next definition says.8

Definition 3.1. We say that (T, ϕ(x̄, ȳ)) has the pseudo-nfcp when T is countable
and we can assign to each type p ∈ P , where

P := {p : p ∈ Sℓ(ȳ)(∅) and p contains the formula ∃x̄ ϕ(x̄, ȳ)},

a function f p : ω→ ω such that

(1) (continuity) for each m < ω, if f p(m)= r , then for some ψ(ȳ) ∈ p, for any
other q ∈ P , if ψ ∈ q , then fq(m)= r .

(2) For notational convenience, if p = tp(ā) ∈ P , we may write fā for f p.

(3) For every s ≥ 1 there is n < ω such that whenever ā0, . . . , ās−1, b̄0, . . . , b̄s−1

are sequences from CT , hence each realizing types in P , and

fāℓ ↾ n = fb̄ℓ ↾ n for all ℓ < s

and {ϕ(x̄, āℓ) : ℓ < s} is a partial type, then {ϕ(x̄, b̄ℓ) : ℓ < s} is also a partial
type. In the proofs that follow, we will refer to this by saying “(T, ϕ) is
(s, n)-compact.”

Discussion 3.2. (1) So Definition 3.1 is a kind of compactness demand, that is,
given (T, ϕ(x̄, ȳ)), to know if CT |H (∃x̄)

∧
ℓ<s ϕ(x̄, b̄ℓ) we need to know just finite

approximations to the type of each b̄ℓ (not of b̄⌢
0 · · · b̄s−1!) and the size of “finite”,

represented here by n, depends just on s (and on T and ϕ).

8The provisional name is because it captures a key property of theories from [7].
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(2) We could have defined the range of each function f to be finite subsets of ω,
as would be convenient in Claim 3.4, or a more complicated set (of bounded, say
countable, size); or we could have used {0, 1}.

(3) We could extend the definition to uncountable theories with more work.

Remark 3.3. In the context of Definition 3.1, when that definition is satisfied, we
may define two functions F and G as follows.

(a) Define F : ω→ ω by

s 7→ min{n < ω : (T, ϕ) is (s, n)-compact}

which expresses that in order for s instances to remain consistent, their functions f
must be preserved at least up to F(s). This is well defined since we assume the
definition is satisfied. There are two cases:

(1) lims→∞ F(s)→ ∞.

(2) lims→∞ F(s)= N <∞.

(b) Define G : ω→ ω∪ {∞} by n 7→ ∞ if (T, ϕ) is (s, n)-compact for all n < ω,
and otherwise by n 7→ max{s <ω : (T, ϕ) is (s, n)-compact}, which expresses that
if the functions f are preserved up to n then G(n) instances can safely remain
consistent. Here

lim
n→∞

G(n)= ∞, (⋆)

possibly attaining the limit already at some finite n.

Claim 3.4. Let T be one of the theories from Section 1, built from H, fH of arity k.
Let ϕ(x, y0, . . . , yk−2)= R(x; y0, . . . , yk−2). Then (T, ϕ) has the pseudo-nfcp.

Proof. In this context, by quantifier elimination, the set of 1-types over the empty
set are the set of “leaves”, that is, each 1-type is specified by choosing some
η ∈ leaves(XH) and considering {Qη↾n : n < ω}.

If k = 2, this also specifies P . Otherwise, specifying a type p(y0, . . . , yk−2) ∈ P
involves specifying the leaf of each yi , and if two elements share the same leaf,
whether they are equal.

Consider any enumeration ⟨ψi : 1 ≤ i <ω⟩ of the predicates Qη(y) of τ(T ) which
enumerates in nondecreasing order of lgn(η̄). Fix also in advance an enumeration
of the subsets of (k − 2)× (k − 2), and of the subsets of k − 2. For each p ∈ P , let
f (0) code the instances of equality among y0, . . . , yk−2, and for 1 ≤ m < ω, let
f (m) code which subset of {y0, . . . , yk−2} has the m-th predicate as part of their
type. (Alternately, we could have enumerated the predicates with different variables
Q0(y0), Q0(y1), . . . , and let f take values in {0, 1}.)

Now, if we preserve initial segments of f , we clearly hold constant the types of
the parameters up to some level k in our hard-coded tree. Lemma 2.9 tells us that
m exists as a function of s, as desired.
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Unless H is very uncomplicated (for example, cliques all the way up) the theory
will normally be in case (a)(1) of Remark 3.3. For a question relating to the
pseudo-nfcp, see [8, 3.1.5]. □

4. A separation via flexibility

The theories built above are simple rank one (Lemma 2.11 above), and thus they are
low. In this section, we consider flexible ultrafilters, those which Kunen called “OK”,
which are necessary to saturate any nonlow theory in Keisler’s order (see [3]).

Definition 4.1. Recall that the ultrafilter D on I , |I | = λ, is flexible if it has a
regularizing family below any nonstandard integer, that is, for every sequence of
natural numbers ⟨ni : i ∈ I ⟩ such that

∏
i∈I ni/D > ℵ0, there is {Xα : α < λ} ⊆ D

such that for all i ∈ I ,
|{α < λ : i ∈ Xα}| ≤ ni .

Definition 4.2. Recall that a necessary and sufficient condition for a regular ultra-
filter D on I , |I | = λ, to be good for the random graph is that for any infinite M
and any A, B ⊆ M I /D such that |A|+ |B| ≤ λ and A ∩ B = ∅, there is an internal
predicate P such that A ⊆ P , whereas B ∩ P = ∅.

Theorem 4.3. Suppose D is a regular ultrafilter on I , |I | = λ, which is flexible and
good for the random graph. Suppose (T, ϕ) has the pseudo-nfcp and M |H T . Then
M I /D is λ+-saturated for positive ϕ-types.

Proof. Let M |H T and let N = M I /D. Consider a positive ϕ-type p(x), where
ϕ = ϕ(x̄, ȳ). Enumerate the type as ⟨ϕα(x̄, āα) : α < λ⟩. Fix i∗ = ⟨it : t ∈ I ⟩/D a
nonstandard integer (so that “max” will be well defined). For a finite tuple ā from N ,
let fā mean ftp(ā,∅,N ) and given in addition an index t ∈ I , let fā[t] mean ftp(ā[t],∅,M).
For each α < λ and each t ∈ I (i.e., for each formula and each index), define

• n(α, t) to be the largest n ≤ it such that for all ℓ < m, the type of āα[t] aligns
with that of āα up to level n as measured by f , that is,

n(α, t) := max{n ≤ it : fāα[t] ↾ n = fāα ↾ n}.

• s(α, t) := G(n(α, t)), using the notation of Remark 3.3.

The first is well defined since the condition is trivially true for 0. By Łos’ theorem,
since the f ’s reflect formulas for each n < ω and each α < λ,

{t ∈ I : n < n(α, t)} ∈ D.

Hence, for each α < λ, nα :=
∏

t n(α, t)/D is a nonstandard integer. It follows
from Remark 3.3(b)(⋆) that for each α < λ, sα :=

∏
t s(α, t)/D is either “∞” on a

large set, or a nonstandard integer.
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Since D is good for the random graph, lcf(ω,D)≥ λ+, so there is a nonstandard
integer s = ⟨s[t] : t ∈ I ⟩/D such that for each α < λ, s < sα mod D. Since D is
flexible and s is a nonstandard integer, we may choose {Xα :α<λ}⊆D regularizing
D and with the property that for each t ∈ I ,

|{α < λ : t ∈ Xα}| ≤ s[t].

Define a map d : [λ]1
→ D by

{α} 7→ {t ∈ I : s[t]< s(α, t)} ∩ Xα.

That is, we assign α to an index set where we can be sure that the type of each
āα[t] is “correct” up to the level needed to handle s(α, t)= G(n(α, t)) instances,
thus a fortiori s[t] instances. The intersection with Xα ensures, for each t ∈ I , the
set U (t) := {α : t ∈ d({α})} of instances assigned to index t has size ≤ s[t].

Now for each t ∈ I , in the ultrapower N , {ϕ(x̄, āα) : α ∈ Ut } is a set of no more
than s[t] positive instances of ϕ, and by definition is a partial type. Also by our
definition, for each α, and in particular for each α ∈ Ut ,

fāα ↾ n(α, t)= fāα[t] ↾ n(α, t).

It follows that {ϕ(x̄, āα[t]) : α ∈ Ut } remains a partial type in the index model M .
So we can realize the type at each index under this distribution, and thus in the
ultrapower N . □

Corollary 4.4. If T is a theory from Section 1, M |H T , and D is a regular ultrafilter
on I , |I | = λ, which is flexible and good for the random graph, then M I /D is λ+-
saturated.

Proof. We argue almost identically to [7, Definition 4.7, Claim 4.8, Fact 5.2 and
Conclusion 5.7] (changing just the arity of the edge relation, and eliminating the
bipartition from the case of graphs) that in regular ultrapowers which are good
for the theory of the random graph, for λ+-saturation it suffices to consider partial
types of the form

p(x)= {Qν(x)} ∪ {R(x, ā) : ā ∈
k−2 A}

for lgn(ν)<ω. (Briefly, those definitions and claims note that any regular ultrapower
has a certain weak saturation, for instance leaves are large, and instances of equality
in types can be safely ignored. Now use quantifier elimination to get a simple normal
form for types by specifying the leaf of x , a set of tuples it connects to, and a disjoint
set of tuples it does not connect to. Since saturation of ultrapowers reduces to satu-
ration of ϕ-types, it is sufficient to deal with only a finite amount of information on
the leaf of x . Finally, since “goodness for the random graph” allows us to internally
separate sets of size ≤ λ, it suffices to handle the positive part of the type.) □
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Definition 4.5. For the purposes of the next corollaries, call a theory T a pseudo-
nfcp theory if there is a set 6 of formulas of the language such that

(a) (T, ϕ) has the pseudo-nfcp for each ϕ ∈6, and

(b) given any regular ultrafilter D over λ and M |H T , whether Mλ/D is λ+-
saturated depends only on λ+-saturation for positive ϕ-types for ϕ ∈6.

Corollary 4.6. Let T be a pseudo-nfcp theory, and let ⊴ denote Keisler’s order.

(a) Let T∗ be any nonlow simple theory. Then T ⊴ T∗.

(b) T ⊴ Tfeq.

Thus, if T is a pseudo-nfcp theory and T∗ is any nonlow or nonsimple theory, T ⊴ T∗.
In particular, this is true for all the theories of Section 1 above.

Proof. Any regular ultrafilter on λ≥ ℵ0 which is good for some unstable theory is
necessarily good for the random graph, as the random graph is the ⊴-minimum un-
stable theory. Any regular ultrafilter which is good for Tfeq is flexible [3, Lemma 8.8],
and indeed any regular ultrafilter D which is good for some nonlow simple theory
is flexible [3, Lemma 8.7]. The last line of the corollary now follows from the fact
that Tfeq is the Keisler-minimum nonsimple theory [4, Theorem 13.1] (as Tfeq is
minimum among theories with TP2, whereas SOP2 implies maximality). □

Discussion 4.7. The current instances of incomparability in Keisler’s order mostly
use one of two main ideas. The first is to say on one hand, changing the distance
in the alephs between λ and some smaller µ (the size of a maximal antichain in
a certain Boolean algebra used in building the ultrafilter) affects for which values
of k the theories Tk+1,k are saturated, and on the other, the “canonical simple
nonlow theory” (see appendix to [5]) requires the ultrafilter to be flexible; under
large cardinal assumptions, these two indicators can be varied independently; see
[10; 5]. In ZFC, this phenomenon can be scaled down to see an incomparability
between the Tk+1,k’s and a certain theory based on trees, which is low [6]. A second,
much larger scale of incomparability was produced in [7], with continuum many
simple rank one theories, the graph precursors of the hypergraph theories built
here. As this discussion suggests, and as the proofs of this section show, once the
ultrafilter becomes flexible, the noise of any differences in the present theories is
drowned out by the huge power of the regularizing families available. Do there
exist incomparable simple nonlow theories? Is incomparability mainly visible in
the absence of forking?

We also record that, as an interesting immediate consequence of earlier arguments
[10; 5], the theories built in Section 2 are (assuming a large cardinal) distinguishable
in Keisler’s order from the theories Tk+1,k , the higher analogues of the triangle-free
random graph from [1]. That is:
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Conclusion 4.8. Assuming a supercompact cardinal, for arbitrarily large λ and any
ℓ < ω there is a regular ultrafilter D on λ which is flexible and good for the random
graph, thus good for theories of Section 2, but not good for Tk+1,k for any 2 ≤ k <ℓ.

Proof. Claim 10.32 in [5] gives the existence of the needed ultrafilter and in clause
(a) shows it is not good for Tk+1,k for k <ℓ. Claim 10.30 in [5] shows this ultrafilter
is flexible and good for the random graph. So by Theorem 4.3 above it can handle
the theories of Section 2. □
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How I got to like graph polynomials

Johann A. Makowsky

For Boris Zil’ber on his 75th birthday

I trace the roots of my collaboration with Boris Zil’ber, which combines cate-
goricity theory, finite model theory, algorithmics, and combinatorics.

1. Introduction and dedication

Boris Zil’ber played a crucial role in my work on graph polynomials. Some of
my work that he inspired and in which he contributed, is summarized in Kotek et
al. [2011]. A preprint was posted as Makowsky and Zil’ber [2006] and a conference
paper was published as Kotek et al. [2008]. These are our only jointly published
papers. Since then, a general framework for studying graph polynomials has slowly
evolved. It bears witness to the impact of Boris on my own work. In this paper,
I will describe how I got to like graph polynomials. Boris and I both started our
scientific career in model theory. Boris pursued his highly influential work in
various directions of infinite model theory. My path towards graph polynomials
took a detour into the foundations of computer science, only to lead me back to
model theoretic methods in finite combinatorics. I describe here how, step-by-step,
I ended up discussing graph polynomials with Boris. Some of those steps owe a lot
to serendipity, as others were triggered by natural questions arising from previous
steps. These steps are described in Sections 2–6. Sections 7–8 describe some of
the original ideas underlying the model-theoretic approach to graph polynomials.
Section 9 summarizes where this encounter with Boris has led me. Ultimately,
it looks as if Boris’ influence on my path was inevitable, but only in retrospect.
Meeting Boris in Oxford was a chance encounter with unexpected consequences.
I would like to thank Boris for leading me to a fruitful new research area. Happy
birthday, and many years of productive mathematics to come, till 120.

I would like to thank J. Kirby for various suggestions on how to improve the paper.
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2. Morley’s 1965 paper

My first attempt to tackle open problems in model theory was a consequence
of reading Morley’s fundamental paper [1965] on categoricity in power, in the
undergraduate seminar in mathematical logic at ETH Zürich in 1969. The seminar
was held by Specker and Läuchli, and regularly attended by the then still very lucid
octogenarian Bernays.

Building on earlier work by Mostowski, Ehrenfeucht and Vaught, Morley proved
in 1965 a truly deep theorem in model theory:

Theorem 1 (Morley’s theorem). Let T be a first order theory and assume T has no
finite models and is κ-categorical for some uncountable κ . Then T is κ-categorical
for every uncountable κ .

More importantly, even, the paper ended with a list of questions and many
logicians and mathematicians were attracted by these. Among them I remember
Baldwin and Lachlan, Ressaire, Lascar, Makkai, Harnik, Shelah, Zil’ber, Taı̆tslin
and his school (see Taı̆tslin [1970]) and myself. In my MSc thesis from 1971
[Makowsky 1974], I managed to prove the following:

Theorem 2. (i) A first order theory T which is ℵ0-categorical and strongly mini-
mal (hence categorical in all infinite κ) cannot be finitely axiomatizable.

(ii) There is a finitely axiomatizable complete first order theory T without finite
models which is superstable.

(iii) If there is an infinite, finitely presentable group G with only finitely many con-
jugacy classes, there is also a complete finitely axiomatizable ℵ1-categorical
theory TG without finite models.

After I finished my MSc thesis, Specker drew my attention to a Soviet paper by
Mustafin and Taimanov [1970], and as a result of this, I started a correspondence
with Taimanov. Before 1985, there were very few authors citing my work, among
them Ahlbrandt (a PhD-student of Baldwin), Rothmaler, Tuschik (from the German
Democratic Republic), Zil’ber, Peretjat’kin and Slissenko from the Soviet Union.
Boris was one of the first to notice and cite my work on categoricity. I soon
realized that I could not make any further progress on these questions. I had no new
ideas, and competition was overwhelming. Shelah’s sequence of papers inspired
by these open questions led many young researchers to abandon this direction
of research in model theory. The finite axiomatizability questions were finally
solved by Peretjat’kin [1980] and Zil’ber [1981]. Peretjat’kin constructed a finitely
axiomatizable theory categorical in ℵ1 but not in ℵ0. Zil’ber showed that no finitely
axiomatizable totally categorical first order theory exists. An alternative proof of
this was given by Cherlin et al. [1985].
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My first acquaintance with Boris Zil’ber happened via the literature. But our paths
diverged (not in the yellow wood), and we did meet personally, but not very often.

3. From abstract model theory to computer science and graph algorithms

After leaving Morley-type model theory, I first worked in abstract model theory,
and then in theoretical computer science. In computer science I dealt with the
foundations of database theory and logic programming, which led me to finite model
theory. My main tools from model theory were pebble games and the Feferman–
Vaught theorem and its generalizations. Around this time I met Courcelle and
became aware of the Robertson–Seymour theorems and their applications to graph
algorithms described by Fellows [1989]. But it was Courcelle [1992] who first
observed that logical methods would give even more applications, Courcelle’s work
on the monadic second order theory of graphs is summarized in the monumental
monograph from 2012 by Courcelle and Engelfriet [2012].

Let d(G) be a graph parameter and P be a graph property. If deciding whether a
graph G on n vertices with d(G) = t is in P can be done in time c(t) · ns for some
fixed s which does not depend on d(G), nor on the number of vertices of G, we
say that P is Fixed Parameter Tractable (FPT). This concept was introduced by
Downey and Fellows [2013].

Theorem 3 (Courcelle, 1992). Let C be a class of finite graphs of tree-width
at most t , and let P be a graph property definable in monadic second order
logic MSOL. Then checking whether a graph G is in C with n vertices is in P is
in FPT, in fact, it can be solved in linear time c(t)n.

In the mid-1990s, two students were about to change my research dramatically.
My former master’s student, Udi Rotics, returned from his experience in industry.
His MSc thesis dealt with the logical foundation of databases. However, now he
wanted to work on a PhD in graph algorithms but without involving logic. He
proposed to extend the notion of tree-width of a class of graphs as a graph parameter
in order to get a new width parameter which one can use for fixed parameter
tractability. Finally, but still using logic (MSOL), we came up with a notion roughly
equivalent to clique-width, introduced recently by Courcelle and Olariu [2000].
This led to my intensive collaboration with Courcelle and Rotics [Courcelle et al.
1998; 2000; 2001]. In my own paper [Makowsky 2004], I examine the algorithmic
uses of the Feferman–Vaught theorem for fixed parameter tractability. Applications
of my work with Courcelle and Rotics are well summarized in Downey and Fellows
[2013].

In 1996, I started to supervise an immigrant student from the former USSR,
Gregory Kogan, who wanted to work on the complexity of computing the permanent.
He came with impressive letters of recommendation. He had some spectacular
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partial results for computing permanents of matrices over a field of characteristic 3.
He was a virtuoso in combinatorial linear algebra. Unfortunately, he dropped out
before finishing his PhD. Kaminski and I wrote up his results, published under his
name alone as Kogan [1996].

4. Computing permanents

I first came across the problem of computing the permanent at Specker’s 60th
birthday conference in 1980. The permanent of an (n × n)-matrix A = (Ai, j ) is
given as

per(A) =

∑
s:[n]→[n]

∏
i∈[n]

Ai,s(i),

where s ranges over all permutations of [n].
The complexity class ♯P is the polynomial time counting class.
The class of ♯P consists of function problems of the form “compute f (x)”,

where f is the number of accepting paths of a nondeterministic Turing machine
running in polynomial time. Unlike most well-known complexity classes, it is not
a class of decision problems but a class of function problems. The most difficult
representative problems of this class are ♯P-complete. Counting the number of
satisfying assignments for a formula of propositional logic is ♯P-complete. Typical
examples would be described as follows: Let k be a fixed integer. Given an
input graph G on n vertices, compute the number of proper k-colorings of G.
For k = 1, 2, this can be computed in polynomial time, but for k ≥ 3, this is
♯P-complete with respect to P-time reductions. In general, ♯P lies between the
polynomial hierarchy PH and PSpace; see Papadimitriou [1994].

Valiant’s complexity classes VP and VNP are the analogues of P and NP in
Valiant’s model of algebraic computation. Bürgisser’s book [2000] is entirely
dedicated to this model of computation. It is still open whether P = NP, and also
whether VP = VNP.

Valiant presented the complexity classes VP and VNP at Specker’s 60th birthday
conference.

Theorem 4 [Valiant 1979]. Computing the permanent of a {0, 1}-matrix is hard in
the following sense:

(i) It is ♯P-complete in the Turing model of computation, and

(ii) VNP-complete in Valiant’s algebraic model of computation.

Valiant [1982] published in the proceedings of Specker’s 60th birthday conference
in 1980. Bürgisser’s monograph [2000] explores Valiant’s approach to algebraic
complexity further.
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Kogan studied the complexity of computing the permanent over fields of charac-
teristic 3 for matrices M with rank(MM tr

− 1) = a. He showed that for a ≤ 1, this
is easy; and for a ≥ 2, this is hard.

I wanted to use results from Courcelle et al. [2001] to prove something about
permanents Kogan could not prove. I looked at adjacency matrices of graphs of
fixed tree-width t . Barvinok [1996] also studied the complexity of computing
the permanent for special matrices. He looked at matrices of fixed rank r . Our
results were:

Theorem 5 (Barvinok, 1996). Let Mr be the set of real matrices of fixed rank r.
There is a polynomial time algorithm Ar which computes per(A) for every A ∈ Mr

Theorem 6 (JAM, 1996). Let Tw be the set of adjacency matrices of graphs of tree-
width at most w. There is a polynomial time algorithm Aw which computes per(A)

for every A ∈ Tw.

The two theorems are incomparable. There are matrices of tree-width t and
arbitrary large rank, and there are matrices of rank r and arbitrary large tree-width.

However, I realized that the proof of my theorem had nothing to do with per-
manents. It was much more general and really worked quite generally. It only
depended on some logical restrictions for polynomials in indeterminates given by
the entries of the matrix. If the matrix A = AG is the adjacency matrix of a graph G
where the nonzero entries are x , the permanent per(AG) can be viewed as a graph
polynomial in the indeterminate x . Alas, at that time I had no clue how to find
many interesting examples.

5. From knot polynomials to graph polynomials

During a sabbatical at ETH in Zürich I met Turaev, who, among other things, is an
expert in knot theory. I showed him my Theorem 6. He suggested I should try to
prove the same for the Jones polynomial from knot theory. So I studied knot theory
intensively for a few months. While visiting the Fields Institute in 1999, I attended
a lecture by Mighton1 who lectured about the Jones polynomial for series-parallel
knot diagrams; see his PhD thesis [Mighton 2000]. He showed that, in this case,
the Jones polynomials is computable in polynomial time. Series-parallel graphs are
exactly the graphs of tree-width 2. It seemed reasonable that the same would hold
for graphs of tree-width k. Indeed, after quite an effort I proved the following in
[Makowsky 2001; 2005]:

Theorem 7. Assume K is a knot with knot diagram Dk of tree-width k. Then
evaluating the Jones polynomial J (Dk; a, b) for fixed complex numbers a, b ∈ C

and Dk with n vertices is in FPT with parameter k.

1John Mighton is a Canadian mathematician, author and playwright.
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Jaeger et al. [1990] showed that, without the assumption on tree-width, eval-
uating the Jones polynomial is ♯P-complete for almost all a, b ∈ C. Lotz and
Makowsky [2004] analyze the complexity of the Jones polynomial in Valiant’s
model of computation.

However, again the proof seemed to work for other graph polynomials as well,
among them the Tutte polynomial, chromatic polynomial, characteristic polynomial,
matching polynomial. Univariate graph polynomials are graph invariants which take
values in a polynomial ring, usually Z[X ], R[X ] or C[X ]. The univariate chromatic
polynomial χ(G; k) of a graph counts the number of proper colorings of a graph
with at most k colors. It was introduced by Birkhoff in 1912 in an unsuccessful
attempt to prove the four color conjecture. The characteristic polynomial of a graph
is the characteristic polynomial (in the sense of linear algebra) of the adjacency
matrix AG of the graph G; see the monographs by Chung [1997] and by Brouwer
and Haemers [2012]. The coefficients of X k of the matching polynomial count the
number of k-matchings of a graph G; see Lovász and Plummer [2009]. Both, the
characteristic and the matching polynomial, have found applications in theoretical
chemistry as described by Trinajstić [1992]. There are also multivariate graph
polynomials. The Tutte polynomial is a bivariate generalization of the chromatic
polynomial. Both of them are widely studied; see Dong et al. [2005] and the
handbook of the Tutte polynomial edited by Ellis-Monaghan and Moffatt [2022].
Other widely studied graph polynomials are listed in Makowsky [2008]. However,
I had no idea, how to find infinitely many natural and interesting examples?

6. Boris, deus ex machina

In 2005, while attending CSL, the European Conference in Computer Science Logic
in Oxford, I paid a visit to Boris Zil’ber, whom I knew and had met before due
to our work on Morley’s problem on finite axiomatizability of totally categorical
theories. After a few friendly exchanges the following dialogue evolved:

Boris: What do you work on nowadays?

Me: Graph polynomials.

Boris: What polynomials?

It seemed Boris had never heard of graph polynomials. I gave him the standard
examples (Tutte, chromatic, matching). He immediately saw them as examples
which are interpretable in some totally categorical theory. I could not believe it.

We spent the next days together, verifying that all the known graph polyno-
mials fit into Zil’ber’s framework. It was indeed the case. We also produced
generalizations of chromatic polynomials, some of which I later called Harary poly-
nomials [Herscovici et al. 2021; 2020]. They are generalizations of the chromatic
polynomial based on conditional colorings introduced in Harary [1985] in 1985.
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Conditional colorings are defined using a graph property P . A P-coloring f of G
with at most k colors is a function f : V → [k] such that for every color j ∈ [k], the
set f −1( j) induces a graph in P . Conditional colorings are studied in the literature,
e.g., by Brown and Corneil [1987], mostly in the context of extremal graph theory.
However, nobody wrote about the fact that counting the number of such colorings
with at most k colors defines a polynomial in k. The so called Harary polynomial
χP(G; k) counts the number of P-colorings of G with at most k colors.

7. Why is the chromatic polynomial of a graph a polynomial?

Let G = (V, E) be a graph. A proper coloring of G with at most k colors is a
function f : V →[k] such f (v)= f (v′) implies that ¬E(v, v′). We think of [k] as a
set of colors. In other words, if two vertices have the same color they are not adjacent.
We denote by χ(G; k) the number of proper colorings of G with at most k colors.
Birkhoff’s proof that χ(G; k) is a polynomial in Z[k] uses deletion and contraction
of edges. Let e = (u, v) be an edge of G. G−e is the graph G−e = (V, E −{(u, v)})

where e is deleted from E . G/e is the graph G/e = (V/e, E |V/e) where e is contracted
to a single vertex to form V/e and e is omitted from E . f is a proper coloring
of G−e if either it is a proper coloring of G and f (u) ̸= f (v) or it is a proper
coloring of G/e and f (u) = f (v). Furthermore, χ(G; k) is multiplicative, i.e., if
G is the disjoint union of G1 and G2, then

χ(G1 ⊔ G2; k) = χ(G1; k) · χ(G2; k).

Let En be the edgeless graph with n vertices andE =∅. We have χ(En; k)=kn , and

χ(G−e; k) = χ(G; k) + χ(G/e; k).

By showing that one can compute χ(G; k) by successively removing edges, and this
is independent of the order of the edges, one concludes that χ(G; k) is a polynomial
in k. The disadvantage of this elegant proof is, that it does not generalize.

Another way of proving that χ(G; k) is a polynomial in k is by noting that for
graphs on n vertices, we have

χ(G; k) =

n∑
i=1

ci (G)k(i),

where the coefficient ci (G) is the number of proper colorings of G with exactly i
colors and

k(i) = k · (k − 1) · · · (k − i + 1) =

i∏
i=0

(k − i) =

(k
i

)
· i !

the falling factorial. Note that
(k

i

)
= 0 for i > k. As k(i) is a polynomial in k and

χ(G; k) is a sum of n polynomials in k, the result follows. However, this proof
does generalize, and it works for all Harary polynomials.



472 JOHANN A. MAKOWSKY

Later I discussed Zil’ber’s view of graph polynomials with Blass. We noted
that for most of the graph invariants from the literature, proving that they were
polynomial invariants via totally categorical theories was an overkill. This led me
to formulate a considerably simplified approach, which indeed covered all the know
examples of graph polynomials in the literature. This approach is a simplification
of Boris’ proof. It generalizes also to other types of graph polynomials such as
the bivariate Tutte polynomial and the trivariate edge elimination polynomial from
Averbouch et al. [2010]. More intrinsic examples are also discussed in Makowsky
and Zil’ber [2006] and Kotek et al. [2011]. However, the polynomial graph invariants
hidden in totally categorical theories are the most general graph invariants which
are definable in second order logic SOL, and even in higher order logic HOL, over
the graph G; see Makowsky and Zil’ber [2006, Corollary C and Theorem 3.15].
Furthermore, it applies to HOL-definable polynomial invariants over arbitrary finite
first order structures for finite vocabularies, rather than just to graphs.

8. The model-theoretic approach to the chromatic polynomial

The way Boris looked at the chromatic polynomial was even more general. Given a
graph G, Boris had in mind an infinite first order structure M(G) with universe M ,
and a formula φ(x) such that:

(i) The first order theory T (M(G)) of M(G) is totally categorical and strongly
minimal with a strongly minimal infinite set X of indiscernibles.

(ii) The first order theory T (M(G)) has the finite model property, i.e., the algebraic
closure acl(Y ) in M(G) of a finite subset Y ⊂ X is finite.

(iii) M(G) |H φ(x) if and only if x is a proper coloring of G.

Such theories were at the heart of his work [Zil’ber 1993]. From Zil’ber’s analysis
of totally categorical theories, we get in the spirit of [Zil’ber 1993, Theorem 1.5.5].

Theorem 8. Let M(G) and X as above. For every finite set Y ⊂ X of cardinality k
the cardinality of the set

{x ∈ acl(Y ) : M(G) |H φ(x)}

is a polynomial in k.

In the case of the chromatic polynomial this looks as follows:

(i) Let G = (V, E) be a finite graph, with |V | = n.

(ii) Let M(G)= (V, X; E, v̄) be a 2-sorted language with sorts V, X , a binary
relation E on V for the edge relation, and n constant symbols v1, . . . , vn

of sort V .
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(iii) The describing axioms state that (V, E) is exactly the finite graph we
started with, and the vertices are exactly the vi . Then a model of the
axioms is specified up to isomorphism by the cardinality of X .

(iv) If we add axioms stating that X is infinite then the first order theory T (M)

is totally categorical.

(v) We also get finite models Mk , where |X | = k for each natural number k,
and they are algebraically closed subsets of the infinite model M.

(vi) We regard X as a set of colors, and we identify Xn with the colorings
of vertices, that is, the set of functions V → X , by identifying f =

(x1, . . . , xn) ∈ Xn with the function f (vi ) = xi .

(vii) The map f is a proper vertex coloring if any two adjacent vertices have
different colors. So the set of proper vertex colorings is defined as a subset
of Xn by the formula φ(x̄) given by

φ(x̄) :

∧
{(i, j):E(vi ,v j )}

xi ̸= x j .

(viii) The chromatic polynomial for the graph G is χ(G; k) = |φ(Mk)|.

Boris also showed me at our first encounter how the bivariate matching polyno-
mial and the Tutte polynomial can be cast in this framework. For the characteristic
polynomial p(G; x) the situation is a bit more complicated, because its original
definition uses the characteristic polynomial of the adjacency matrix A(G) of G.
However, there exists a purely graph theoretic description of the coefficients of
p(G; x) by Godsil [1993], which allows to cast p(G; x) into this framework. We
note that it may be unexpectedly tricky to put a graph invariant into Boris’ framework,
even if one already knows that it is a polynomial invariant.

The most general version of this can be found in Kotek et al. [2011, Section 8].
Using this method, any multivariate polynomial graph invariant deinable in HOL can
be captured in this way. In the last ten years, Nešetřil and his various collaborators
(Goodall, Garijo and Ossona de Mendez) were exploring various ways to define
such graph invariants. However, they did not reach the same generality; see [Garijo
et al. 2011; 2016; 2016]. The potential of the general approach as described in
[Kotek et al. 2011, Section 8] still has not been explored in depth. It seems that its
abstract generality makes it difficult for the combinatorics community to see through
this construction. On the other side, model theorists seemingly are not interested
in combinatorial applications of model theory. Exceptions may be in extremal
combinatorics, as initiated by Razborov [2007; 2013] and surveyed by Coregliano
and Razborov [2020]. Another direction is counting the number SP(n) of graphs on
n vertices in a hereditary graph property P , initiated by Scheinerman and Zito [1994]
and further pursued by Balogh et al. [2000] and Laskowski and Terry [2022].
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9. Towards a general theory of graph polynomials

For the last 20 years, I have been studying graph polynomials [Makowsky 2006;
2008], aiming to understand what they have in common. I discovered that:

• Graph polynomials can be studied to obtain information on graphs. As an
example: Evaluations of the Tutte polynomial encodes many graph invariants.

• Graph polynomials can be studied as polynomials indexed by graphs. As an
example: The acyclic matching polynomial of paths, cycles, complete graphs,
and complete bipartite graphs are the Chebyshev polynomials of the second
and first kinds, Hermite polynomials, and Laguerre polynomials, respectively.

• Two graph polynomials have the same distinctive power if they do not distin-
guish between the same two graphs.

• General theorems about graph polynomials often can be formulated as meta-
theorems; see [Makowsky 2024].

With my various collaborators I managed to create a new field in graph theory
with two Dagstuhl Seminars (16241, 19401), two MATRIX Institute programs, two
special sessions at AMS meetings and one SIAM mini-symposium.

Without Boris Zil’ber’s eye opener I would not have pursued this line of research
as far as I did. Thank you, Boris!
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La conjecture d’algébricité, dans une perspective
historique, et surtout modèle-théorique

Bruno Poizat

V stat~e opisyvaets� vli�nie gipotezy algebraiqnosti Qerlina
i Zil~bera prostyh grupp koneqnogo ranga Morli, naqina� s dvuh
ee ixodnyh formulirovok. V ne� bol~xe vnimani� udel�ets� ih
teoretiko-model~nym aspektam, qem algebraiqeskim. Izlaga�st�
istorii, sv�zannye so svo�stvami additivnosti ranga Morli i
opredeleni�mi grupp koneqkogo ranga Morli po Boroviku. Rasska-
zyvaets� o teoreme o nerazlo�imyh mno�estvah, o harakteristike
�tih grupp generiqeskimi dannymi i o vozmo�nom rasprostrane-
nii ih svo�stv na struktury, bolee slabye, qem gruppy.

This paper describes the influence of the algebraicity conjecture of Cherlin and
Zilber, concerning the simple groups of finite Morley rank, since its two original
formulations. It insists on its model theoretic aspects more than on its algebraic
aspects. It relates the history of the additivity properties of Morley rank and of
the definition à la Borovik of groups of finite Morley rank. It accounts for the
indecomposable sets theorem, the characterisation of these groups by generic data,
and the possible extension of their properties to structures weaker than groups.

Cet article décrit l’influence de la conjecture d’algébricité de Zilber et de Cherlin,
à propos des groupes simples de rang de Morley fini, depuis ses deux formulations
originelles. Il insiste sur ses aspects plutôt modèle-théoriques qu’algébriques. On y
fait l’historique des propriétés d’additivité du rang de Morley et de la définition à la
Borovik des groupes de rang de Morley fini. On parle du théorème des indécompo-
sables, de caractérisation des groupes par des données génériques, et de l’extension
éventuelle de leurs propriétés à des structures plus faibles que des groupes.

Then spoke the king and said in Aramaic language: What! I hear that Zilber–
Cherlin conjecture is open since fifty years! Who are these useless scholars who
make conjectures instead of proving theorems? The thing is gone from me: if next
morrow ye will not make the proof known unto me, ye shall be cut in pieces and
your houses shall be made a dunghill!
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1. Zilber et Cherlin

À la fin de son article aux Fundamenta, Boris Zilber [1977] pose quatre questions,
que je reproduis ici accompagnées d’une traduction aussi littérale que possible,
à l’intention de mes lectrices, et surtout de mes lecteurs, qui auraient du mal à
apprécier les finesses de l’original.

(1) Suwestvu�t li neabelevy sv�znye slabo kategoriqnye gruppy,
neizomorfnye algebraiqeskim gruppam nad algebraiqeski zamknu-
tym polem?

(1) Existe-t-il des groupes non abéliens connexes faiblement catégoriques qui ne soient
isomorphes à un groupe algébrique sur un corps algébriquement clos ?

(2) Suwestvu�t li prostye kategoriqnye gruppy, otliqnye ot al-
gebraiqeskih nad algebraiqeski zamknutym polem?

(2) Existe-t-il des groupes simples catégoriques distincts de ceux qui sont algébriques
sur un corps algébriquement clos ?

(3) Mo�no li gruppu G = Hp + Hq interpretirovat~ v ℵ1-kategoriq-
no� teorii? Zdes~ Hp, Hq —beskoneqnye abeleny gruppy prostyh
pokazatele� p, q sootvetstvenno.

(3) Le groupe G = Hp + Hq peut-il être interprété dans une théorie ℵ1-catégorique ? Ici
Hp, Hq sont des groupes abéliens infinis d’exposant premier p, q respectivement.

(4) Dl� l�byh li dvuh ℵ1-kategoriqnyh teori� T1 i T2 suwestvuet
ℵ1-kategoriqna� teori� T , v kotoro� formuln~o interpretiru�ts�
T1 i T2?

(4) Est-ce que, pour chaque paire de théories T1 et T2 ℵ1-catégoriques, il existe une
théorie ℵ1-catégorique T avec des formules interprétant T1 et T2 ?

Il faut préciser que le cadre dans lequel travaille Zilber est celui d’une structure
dont la théorie est ℵ1-catégorique, et qu’il qualifie de faiblement catégorique ce
qui y est interprétable. Ce contexte lui était familier depuis [Zilber 1974], où il
donne une démonstration de la finitude du rang de Morley, tout en reconnaissant la
priorité à [Baldwin 1973].

On sait maintenant que la réponse à la première question est positive. Par exemple,
la fusion d’Ehud Hrushovski [1992] permet de définir sur un même ensemble
fortement minimal deux corps algébriquement clos K et L de caractéristiques
différentes, et on trouvera un contre-exemple en prenant le produit d’un groupe
algébrique sur K et d’un groupe algébrique sur L ; ou encore en considérant
le produit semi-direct du groupe additif du corps K par un de ses sous-groupes
multiplicatifs M , où (K , M) est un corps vert de rang de Morley deux, dont la
construction doit aussi beaucoup aux idées de Hrushovski [Poizat 2001a; Baudisch
et al. 2009]. Un troisième exemple est constitué des groupes nilpotents d’Andreas
Baudisch [1996], également construits par amalgame de Hrushovski.
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La deuxième question est le premier avatar de la conjecture d’algébricité, qui
reste ouverte aujourd’hui. On remarque un petit changement de vocabulaire : il
est question d’un groupe simple catégorique, et non plus faiblement catégorique ;
cela vient de ce que le théorème principal (teorema 5.2) de l’article déclare qu’un
groupe simple faiblement catégorique est en fait ℵ1-catégorique.

La réponse à la troisième question est également positive, car on peut fusionner
les deux groupes.

Quant à la dernière, elle est bien entamée, mais reste encore du domaine de la
conjecture. En effet, la fusion de Hrushovski permet d’amalgamer deux structures
fortement minimales dénombrables en une troisième sous deux conditions : (i) elles
sont toutes les deux ω-saturées, (ii) le degré de Morley y est définissable. À ma
connaissance, et au grand désespoir de Hrushovski, la nécessité de la deuxième
condition n’a pas été levée.

J’ai déclaré plus haut que le théorème 5.2 était le résultat principal de l’article ;
c’est bien sûr matière à appréciation, influencée par l’évolution ultérieure du sujet.
Il faut remarquer que, dans son introduction en russe, Zilber en donne un énoncé
différent de celui qui figure dans le corps du texte, en le remplaçant par son
corollaire : un groupe algébrique simple infini (sur un corps algébriquement clos)
est une structure ℵ1-catégorique.

Dans cette même introduction, il cite en premier son théorème 6.1, seul mentionné
dans son résumé en anglais, et qui répond à une question d’Angus Macintyre : un
corps gauche (telo) faiblement catégorique est un corps (pole) commutatif. Ce
théorème est aussi démontré de façon indépendante dans [Cherlin 1978]. Une fois
qu’on sait que le corps gauche L a un sous-corps commutatif infini K , sur lequel L
est nécessairement de dimension finie, sa démonstration n’est plus qu’un exercice
d’algèbre linéaire. En effet, depuis [Macintyre 1971], on sait que K , comme tout
corps infini ω1-catégorique, et même totalement transcendant, est algébriquement
clos. On peut spéculer sur ce qui a manqué à Macintyre pour traiter des corps
gauches (finitude du rang, existence d’un sous-corps commutatif infini ?), mais
ce qui est sûr, c’est que sa démonstration n’est pas qu’un objet de curiosité pour
amateurs d’archéologie mathématique : elle est toujours d’actualité, car pour montrer
son théorème on ne connaît aujourd’hui rien d’autre que son appel à la théorie de
Galois, ce qui fait qu’on ne sait toujours pas si un corps minimal (pas fortement
minimal) de caractéristique nulle est algébriquement clos (voir [Wagner 2000a]).

Zilber cite aussi dans l’introduction son théorème 4.2, répondant à une question
de Taitslin, déclarant qu’un groupe de théorie universelle ℵ1-catégorique est abélien.
Pour cela, il suffit de savoir qu’un groupe infini faiblement catégorique contient un
sous-groupe commutatif infini, ce qu’il montre dans son lemme 12, tout en citant
la prépublication [Reineke 1975] ; on peut dire de la démonstration de Reineke la
même chose que de celle de Macintyre.
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On a l’impression que Zilber, mû par un désir de communication, attire l’attention
sur les conséquences de ses résultats qui parlent à ses contemporains ; dans la
section 3, nous verrons un autre exemple où, pour des raisons de réclame, on met en
valeur une conséquence anecdotique en escamotant le résultat profond et novateur,
qu’il est plus difficile de leur faire apprécier.

Dans mon exposé, je vais rappeler quelques questions anciennes, mais aussi en
introduire de plus personnelles, en prenant le risque qu’elles ne soient ni pertinentes,
ni originales. Pour commencer, j’ose surcharger la partition d’un maître en parlant,
à la différence de Zilber, d’interprétation de structures et non de théories :

Question 1. (i) Deux structures ω1-catégoriques dénombrables sont-elles inter-
prétables dans une même troisième?

(ii) En particulier, deux corps algébriquement clos dénombrables de degrés de
transcendance différents sont-ils interprétables dans une même structure
ω1-catégorique?

Cette question n’a de sens que pour des structures dénombrables, car une structure
ω1-catégorique ne peut interpréter deux ensembles infinis de cardinaux distincts.

Observons que le successeur des entiers (Z, x + 1) interprète son double Z + Z

comme sous-ensemble de Z × Z, sur la base (0, Z) ∪ (1, Z) ; en fait, il interprète
(avec paramètres) chacune de ses extensions élémentaires non saturées comme un
sous-ensemble propre de Z × Z, ainsi que son extension dénombrable saturée sur
Z × Z tout entier.

Nous examinons maintenant la deuxième apparition de la conjecture, sous la
plume de Gregory Cherlin, qui conclut ainsi son article [1979] d’un ton plus assuré
que celui de la modeste question (vopros) de Zilber :

Main Conjecture. Every simple ω-stable group is an algebraic group over an
algebraically closed field.

Conjecture principale. Tout groupe simple ω-stable est un groupe algébrique sur un
corps algébriquement clos.

Je crois que si Cherlin n’est pas allé jusqu’à superstable, c’est qu’il n’était pas
encore totalement sûr qu’un corps infini superstable fût algébriquement clos (voir
la page 2 de son article, et [Cherlin et Shelah 1980]). Il ajoute que le cas de rang
de Morley fini lui semble particulièrement important, ainsi que celui des groupes
localement finis, et aussi celui des groupes (définissablement) linéaires.

Alors que l’article de Zilber est consacré à des considérations abstraites sur les
groupes ℵ1-catégoriques, celui de Cherlin est une étude plus terre à terre des pro-
priétés algébriques des groupes de rang de Morley un, deux et trois ; sa contribution
théorique est l’identification des groupes connexes aux groupes de degré de Morley
un, par une méthode qui préfigure les arguments de généricité.
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Cherlin attire l’attention sur l’existence possible de contre-exemples à sa conjec-
ture de rang de Morley trois, qu’il qualifie de « bad groups » ; disons tout de suite
que ces mauvais groupes de rang trois n’ont été éliminés que très récemment par
Olivier Frécon [2018].

Cherlin parle dans son introduction de l’article de Zilber, qu’il n’a découvert
qu’après avoir achevé le sien ; il exprime son admiration pour le corollaire sur les
groupes algébriques simples, qu’il avait obtenu lui-même grâce à une inspection
de la structure algébrique de ces groupes, alors que la démonstration de Zilber
n’est que pure théorie des modèles. Curieusement, il ne le cite pas à propos de la
conjecture.

De nos jours, on a coutume de l’énoncer ainsi, bien qu’aucun de ses deux auteurs
ne l’ait formulée exactement en ces termes :

Conjecture d’algébricité [Zilber 1977; Cherlin 1979]. Un groupe simple de rang
de Morley fini est isomorphe à un groupe algébrique sur un corps algébriquement
clos.

Dès son apparition, cette conjecture s’offre à deux regards : est-elle de nature
algébrique, structurelle, ou bien de nature modèle-théorique ? Nous avons vu que
Cherlin penche vers le premier côté, et Zilber vers le second. Moi-même, dès que
je suis entré dans l’arène, j’ai toujours espéré qu’elle serait résolue non pas par une
laborieuse classification, mais par une sorte de general nonsense modèle-théorique ;
j’étais frustré à l’idée que, pour montrer qu’une famille de groupes est algébrique,
il fallût nécessairement en donner la liste. La suite des évéènements 1 n’a pas tout à
fait répondu à mon attente naïve.

Pour nous exprimer plus clairement, nous faisons la convention suivante. Un
groupe de rang de Morley fini sera une structure de groupe enrichie : la base de
la structure est munie d’une loi de groupe définissable, mais il peut y avoir des
ensembles définissables dans cette structure qui ne le sont pas en termes de la seule
loi de groupe ; c’est cette structure enrichie qui a un rang de Morley fini. Quand
toute la structure est définissable (avec paramètres) à partir de la loi de groupe, nous
parlerons de groupe nu. Bien que la théorie des modèles ne fasse pas de différence
entre les groupes nus et les groupes vêtus, il importe de noter que la conjecture
d’algébricité ne parle que du groupe nu.

Et à ce propos, je dois m’excuser d’avoir attribué à Zilber, dans la préface de
[Poizat 1987], une conjecture trop enthousiaste, à savoir qu’un groupe simple de
rang de Morley fini était un groupe algébrique nu sur un corps algébriquement clos,
c’est-à-dire qu’il était impossible d’enrichir sa structure en conservant la catégoricité
(on sait maintenant que c’est possible grâce à un amalgame de Hrushovski). Cette
dernière hypothèse était issue de nos discussions, lorsque j’étais son hôte pendant

1. Écriture inclusive.
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un mois à Kemerovo en 1986, mais ne correspond à rien de ce qu’il a écrit ou rendu
public.

Cette problématique de nudité renvoie à ce qu’on appelle aujourd’hui la « tri-
chotomie de Zilber », thème d’une autre saga que celle que je chante ici ; voir
[Pillay 2013, p. 177; Poizat 2000]. Je ne parlerai pas d’elle, et en particulier pas
de son sommet, [Hrushovski et Zilber 1996], où la conjecture est montrée dans
un cadre « géométrique » qui reste très abstrait, bien que plus restreint que celui
de la finitude du rang de Morley. Je ne parlerai pas non plus d’autres résultats de
Zilber, de nature plus algébrique, concernant les groupes de rang de Morley fini,
dont plusieurs contributeurs à ce volume rendent compte.

2. Borovik

Un théoricien des groupes étranger à la théorie des modèles, Aleksandr Borovik,
dès qu’il a eu connaissance des travaux de Zilber, a voulu dégager une description
de son cadre directement accessible à un pur algébriste. Dans [Borovik 1984b], il
introduit la liste d’axiomes suivante, définissant ce qu’il appelle les « groupes avec
dimension ». Ces conditions ne font intervenir que le groupe lui-même, et pas ses
extensions élémentaires.

Aksioma A i aksioma B. Définition de la collection W des sous-ensembles
définissables (konstruktivny, constructibles, terme emprunté à la géométrie
algébrique), avec paramètres, des puissances cartésiennes de G. À chaque construc-
tible A est associé un entier positif dim A.

Aksioma V. dim A = 0 ⇐⇒ A — koneqno (A est fini).

Aksioma G. dim(A ∪ B) = max{dim A, dim B}.

Aksioma D (princip sv�znosti). Dl� l�bogo A ∈ W suwestvuet ta-
koe qislo n ∈ N, qto A nel~z� predstavit~ v vide ob�edineni� n + 1
poparno nepereseka�wihs� konstruktivnyh mno�estv A1, . . . , An+1

to� �e razmernosti, qto i A: dim Ai = dim A.
Axiome D (principe de connexité). Pour chaque A ∈ W il existe un certain nombre n ∈ N,
tel que A ne puisse pas se présenter sous l’aspect d’une réunion de n + 1 ensembles
constructibles ne se coupant pas par paire A1, . . . , An+1 de même dimension que A :
dim Ai = dim A.

Aksioma E (princip sloev morfizma). Esli A, B ∈ W , f : A → B —
morfizm, to mno�estva Bn = {x ∈ B | dim f −1

[x] = n} konstruktivny i
dim f −1

[Bn] = n + dim Bn .
Axiome E (principe à propos des morphismes). Si A, B ∈ W , et f : A → B est
un morphisme, alors l’ensemble Bn = {x ∈ B | dim f −1

[x] = n} est constructible
et dim f −1

[Bn] = n + dim Bn .
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Les axiomes B à D forcent la dimension de Borovik à majorer le rang de Cantor,
mais rien n’impose qu’elle soit le rang de Morley : elle peut être par exemple
deux fois le rang de Morley. Ou, plus significativement, si M est interprétable
dans une structure ℵ1-catégorique, elle peut être le rang de Morley au sens de la
structure-mère et non le rang de Morley intrinsèque de M .

L’axiome E décrit en fait deux propriétés de la dimension : sa définissabilité
(pour une famille uniforme de formules avec paramètres) et son additivité. Borovik,
citant [Zilber 1974], affirme qu’un groupe G interprétable dans une théorie ℵ1-
catégorique satisfait à ces axiomes si on prend pour dimension le rang de Morley
au sens de la théorie-mère ; il faut comprendre que G n’est pas muni de sa seule loi
de groupe, mais aussi de toute la structure induite, pour garantir la définissabilité
du rang. On voit que Borovik, qui n’est pas logicien, et a même l’intention explicite
de contourner la théorie des modèles, n’échappe pas à la nécessité d’enrichir les
groupes, et il est remarquable que, en ce qui concerne les groupes simples, le résultat
de Zilber rende cette précaution inutile.

Une faiblesse de sa présentation, c’est que dans les axiomes A et B, il ne parle que
d’images de groupes par des homomorphismes dont les graphes sont constructibles,
et jamais de quotient d’un ensemble constructible par une relation d’équivalence
constructible. À vrai dire, dans la suite de la prépublication, Borovik parle en une
occasion de quotient par un sous-groupe normal fermé (zamknuta�), un lapsus qui
vient de ce qu’il sait qu’un sous-groupe constructible d’un groupe algébrique est
Zariski-clos ; il sait aussi qu’un quotient d’un groupe algébrique par un sous-groupe
algébrique normal est un groupe algébrique. Nous pensons aller au-devant de ses
intentions en qualifiant de groupe avec dimension un groupe G habillé dont les
ensembles interprétables (avec paramètres) dans G, c’est-à-dire définissables dans
la structure Geq obtenue par Shelah en lui ajoutant ses éléments imaginaires, sont
munis d’un rang fini satisfaisant aux conditions de Borovik. Cette convention n’a pas
d’incidence sur celle de Zilber, pour la raison évidente qu’une structure interprétable
dans une théorie ℵ1-catégorique est définissable dans une théorie ℵ1-catégorique
obtenue en ajoutant une seule sorte imaginaire à la précédente.

L’additivité du rang de Morley dans un cadre ℵ1-catégorique est bien connue de
Zilber, mais il ne l’utilise pas dans [1977], car il n’en a pas besoin pour décrire les
propriétés modèle-théoriques des groupes faiblement catégoriques. Cherlin [1979]
ne la connaît pas pour les groupes de rang de Morley fini sous sa forme générale ;
il se débrouille de façon artisanale, puisque 1+1 = 2, 1+2 = 3, et qu’il est inutile
de savoir combien font 2 + 2 car cela sort du cadre de l’étude.

Voici la version borovikienne de la conjecture d’algébricité :

Gipoteza. Prosta� beskoneqna� gruppa s razmernost~� �vl�ets�
line�no� algebraiqesko� gruppo� nad algebraiqeski zamknutym
polem.
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Conjecture. Un groupe simple infini avec dimension se trouve être un groupe linéaire
algébrique sur un corps algébriquement clos.

En vrai théoricien des groupes, Borovik n’oublie pas de mentionner qu’un groupe
algébrique simple est linéaire. Sa conjecture appelle une triple question :

Question 2. (i) La structure de groupe nue d’un « groupe avec dimension » au
sens de Borovik a-t-elle un rang de Morley fini?

(ii) La conjecture de Borovik est-elle équivalente à la conjecture d’algébricité?

(iii) Qu’en est-il en particulier si le groupe contient un sous-groupe infini d’expo-
sant deux ?

Les motivations de ces questions s’éclaireront après la section 4, où nous mon-
trerons qu’un groupe, nu ou habillé, de rang de Morley fini satisfait aux conditions
de Borovik, la dimension étant le rang de Morley. Si la réponse au premier point
est négative, la pertinence du deuxième résidera dans la possibilité de montrer
l’équivalence des deux conjectures sans les résoudre ; une réponse négative au
troisième permettrait d’évaluer la part de théorie des modèles indispensable à
[Altınel et al. 2008] : nous en dirons plus dans la section 6.1.

3. Blum

Les propriétés d’additivité du rang de Morley, dans un cadre général, ont été
traitées bien plus tôt dans la première partie du mémoire de doctorat de Lenore
Blum [1969] ; j’en extrais les inégalités suivantes dans le cas particulier où les
rangs de Morley sont des nombres finis.

(0) Si (a, b) satisfait une formule ϕ(x, y) impliquant RM(y/x) ≤ m, alors

RM(a, b) ≤ RM(a) + RM(b/a) + RM(a) · m.

(1) RM(a, b) ≤ RM(a) + RM(b/a) + RM(a) · RM(b).

(2) RM(A × B) < (1 + RM(A)) · (1 + RM(B)).

(3) Si tous les 1-types sont de rang de Morley fini, alors tous les n-types sont de
rang de Morley fini.

On montre le premier point pour le rang de Cantor par induction sur le rang,
puis pour le rang de Morley en montant à un modèle ω-saturé. On en déduit
immédiatement les trois dernières inégalités ; elles sont optimales, et ne sont pas
valables pour le rang de Cantor, car RC(b) ne majore pas RC(b/a). En fait, on peut
avoir RM(a) = RM(b/a) = 1 et RM(a, b) = RM(b) = RM(M) = ω, ou n’importe
quoi plus grand ou égal à 2 !

La deuxième partie de la thèse est consacrée aux corps différentiellement clos de
caractéristique nulle : c’est là qu’apparaît leur axiomatisation basée sur l’existence
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de solutions aussi génériques que possible des équations différentielles algébriques
en une variable. La question qui gouverne la thèse est celle de la transitivité de la
relation « être de rang de Morley fini sur . . . », qui n’est pas vérifiée en général,
mais qui est valide pour les corps différentiellement clos, où l’ordre de l’équation
différentielle minimale borne le rang de Morley.

La partie différentielle de la thèse a été publiée dans [Sacks 1972], mais la
première partie, profondément novatrice et plus difficilement appréciable aux
contemporains, est restée inédite. C’est la raison pour laquelle [Lachlan 1980]
ne la cite pas quand il retrouve ses résultats. Entretemps, Daniel Lascar [1976] avait
introduit son rang U et ses fameuses inégalités qui, dans le cas fini, deviennent
l’égalité RU(a, b) = RU(a) + RU(b/a).

4. Le petit livre jaune

La préface et le chapitre 2 de [Poizat 1987] apportent au sujet la clarification
suivante, en montrant qu’un groupe enrichi G est de rang de Morley fini si et
seulement si Geq satisfait aux trois conditions suivantes :

(1) Chaque ensemble définissable a un rang de Cantor fini.

(2) Les cardinaux des membres d’une famille uniforme d’ensembles définissables
finis sont bornés (absence de la propriété de recouvrement fini).

(3) Le rang de Cantor est définissable.

Nous insistons sur quelques aspects spécifiques de ces conditions :

(i) Elles ne mentionnent que G lui-même, sans demander de monter à une de
ses extensions élémentaires saturées (de fait, il est rare qu’on doive faire appel à
des arguments de compacité — le pain quotidien du théoricien des modèles — lors
d’études structurelles de groupes de rang de Morley fini).

(ii) L’additivité n’est pas un axiome, c’est une conséquence des axiomes, qui
impliquent que le rang de Cantor est aussi le rang de Morley, ainsi que le rang U de
Lascar. Elle est toutefois considérée comme un axiome par Borovik et Nesin [1994,
p. 57], qui l’utilisent pour montrer des résultats de base, concernant la généricité en
particulier, où elle tient lieu de symétrie de la déviation.

(iii) Il en est de même de la stabilité, rarement utilisée en tant que telle (voir
[Borovik et Nesin 1994, p. 63]), et de ses conséquences comme la condition de
Baldwin–Saxl (que Borovik et Nesin [1994, p. 80] se donnent la peine de montrer
à partir de leurs axiomes).

(iv) Si un groupe enrichi les satisfait, il en est de même de n’importe quel groupe
interprétable dans la structure, et en particulier du groupe nu associé. Ses extensions
élémentaires les satisfont également.
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(v) En l’absence de groupe, (1), (2) et (3) n’impliquent que la superstabilité [Burdges
et Cherlin 2002] ; à l’inverse, ces propriétés ne sont pas valides dans toutes les
structures de rang de Morley fini.

Le petit livre jaune reste jusqu’à ce jour le seul document où est exposée la
démonstration de ce fait, qui pourtant n’est ni très compliquée, ni même très
originale. Elle repose sur une décomposition du groupe considéré en une tour finie
de sous-groupes normaux définissables, chaque quotient étant sous le contrôle d’un
ensemble minimal ; elle a été initiée par Lascar [1985] dans le prolongement du
théorème de [Zilber 1977] sur les groupes simples.

Son ingrédient principal est le « théorème des indécomposables » de Zilber
([1977, Teorema 3.3; Poizat 1987, p. 44–47] ; voir la section 8), affirmant que,
sous certaines circonstances, le sous-groupe engendré par une partie définissable
est lui-même définissable, et connexe ; il généralise un résultat, semble-t-il dû à
Chevalley, à propos des fermés de Zariski irréductibles d’un groupe algébrique.

Pour appliquer cette décomposition à un groupe infini G de rang de Morley fini,
on procède ainsi : on considère, dans une extension élémentaire ω-saturée 0 de G,
une partie définissable A fortement minimale ; on l’émonde d’une partie finie pour
la rendre indécomposable, puis on la translate pour qu’elle contienne l’élément
neutre, et engendre un groupe définissable connexe. Les conjugués de ce groupe
engendrent un groupe définissable connexe normal 01, et on itère le procédé dans
0/01, qui est de rang de Morley inférieur (on n’a pas besoin de l’additivité pour le
montrer !) ; on est arrêté au bout d’un nombre fini de pas, pour constater qu’on a
affaire à une structure fini-dimensionnelle dont chaque dimension est portée par
un ensemble fortement minimal. Dans une telle structure, le rang de Cantor est
égal au rang de Morley, au rang U et au poids, et la condition d’uniformité est
vérifiée, comme c’est le cas pour une structure ℵ1-catégorique, c’est-à-dire dans
le cas unidimensionnel [Baldwin 1973; Belegradek 1973; Poizat 1978] ; dans ces
structures, le degré de Morley d’une famille uniforme d’ensembles définissables
est borné, mais pas nécessairement définissable [Hrushovski 1992]. Cerise sur le
gâteau : il s’agit de propriétés de la théorie de 0, qui est aussi celle de G, si bien
que la décomposition de Lascar peut se conduire dans G lui-même, qu’il est a
posteriori inutile de le remplacer par un modèle saturé.

Réciproquement, si un groupe satisfait aux trois conditions, ses ensembles défi-
nissables infinis minimaux le sont fortement grâce à la condition 2 d’uniformité,
c’est-à-dire qu’ils restent minimaux dans ses extensions élémentaires. On conduit
alors la décomposition de Lascar en s’appuyant sur le rang de Cantor pour montrer
la fini-dimensionnalité.

On voit de même que, si un groupe avec dimension au sens de Borovik satisfait
à la condition 2 d’uniformité, par exemple s’il est ω-saturé, la décomposition de
Lascar (reposant sur la dimension) montre que ce groupe est de rang de Morley fini.
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Dans ce cas, il est clair qu’on obtient une fonction de dimension sur chaque extension
élémentaire de ce groupe G en faisant usage de la définition de la dimension au
sens de G.

Ce qui a été dit plus haut du degré de Morley rend nécessaire de rappeler une
double question qui ne m’appartient pas, liée à l’obstacle qu’a rencontré Hrushovski
dans ses amalgames [1992].

Question 3 [Borovik et Nesin 1994, p. 371]. Dans un groupe de rang de Morley fini :

(i) Le degré de Morley est-il définissable?

(ii) Les composantes connexes d’une famille uniforme de groupes définissables
forment-elles une famille uniforme?

5. Berline et Lascar

Chantal Berline et Daniel Lascar [Berline 1986; Berline et Lascar 1986] montrent
que, dans l’étude d’un groupe superstable G, le développement de Cantor de
son rang, RU(G) = ωαk

· nk + · · · + ω · n1 + n0, joue un rôle essentiel. Tout
d’abord, il y a des types de RU maximal, qui sont les types génériques, si bien que
l’écriture RU(G) a un sens ; ensuite, grâce à une version infinitaire du théorème
des indécomposables, ils obtiennent une décomposition de Lascar de G en une tour
G ⊃ Gk ⊃ · · · ⊃ G1 ⊃ G0 de groupes définissables normaux dont les quotients
consécutifs Gi+1/Gi ont un RU monomial. C’est ainsi qu’un groupe superstable
simple doit avoir un RU monomial, RU(G) = ωα

·n, et doit contenir un sous-groupe
abélien de rang au moins ωα, et qu’un corps gauche superstable est commutatif.
Tout ceci est aussi exposé dans [Poizat 1987, chapitre 6].

Ils reprennent ensuite les résultats de Cherlin pour les groupes de rang ωα, ωα
·2

et ωα
· 3. Maintenant qu’on sait, grâce à Frécon, que les « bad groups » de rang 3

n’existent pas, il est naturel de poser la question de l’extension de son résultat au
cas superstable.

Question 4. Peut-on adapter la démonstration de Frécon aux groupes superstables
de rang ωα

· 3?

Comme préalable à la question, il faudra décider de quel rang on parle. L’unicité
de la racine carrée dans un groupe de rang de Morley fini sans involutions jouant
un tel rôle dans la démonstration de Frécon, il faudra vraisemblablement se placer
dans un contexte ω-stable.

6. Wagner and the ABC murders

6.1. Imiter la classification des groupes simples finis. L’idée-force de ce qu’on
appelle maintenant le « programme de Borovik » est d’attaquer la conjecture en
adaptant les techniques employées lors de la classification des groupes simples
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finis, en s’appuyant principalement sur le comportement des involutions dans un
contexte de rang de Morley fini. Borovik, dès [1984a], entreprend de généraliser des
propriétés bien connues des involutions d’un groupe fini, mais le premier résultat
de quelque ampleur est la conjugaison des 2-sylows, montrée dans [Borovik et
Poizat 1990] ; [Poizat et Wagner 1993] en donne une démonstration plus algébrique.
Comme en 1987 je mettais en doute la possibilité de montrer quelque chose à propos
de sous-groupes non définissables, mon coauteur m’a répondu que ce qui importait
n’était pas qu’ils fussent définissables ou pas, mais que c’étaient les 2-sylows.

Cette approche algébrique a ensuite donné lieu à une somme considérable de
travaux, dus à une multitude d’auteurs, dont je ne rends pas compte ici (pas plus que
de leurs généralisations à des contextes plus larges, comme le cadre o-minimal) ;
une première génération d’entre eux est exposée dans [Borovik et Nesin 1994].

Elle culmine dans [Altınel et al. 2008], où la conjecture est montrée pour les
groupes dont les 2-sylows sont non triviaux et ont un exposant borné. Ce monumental
ouvrage donne aussi des informations sur les groupes contenant des 2-groupes de
Prüfer, mais dit peu de choses sur les possibles groupes simples de rang de Morley
fini sans involutions (incompatibles avec la conjecture), qu’il réussit à contourner.

Ses résultats sont principalement de nature algébrique, structurelle, mais ils sont
conditionnés par un théorème d’essence modèle-théorique, une conséquence très
inattendue des axiomes caractérisant le rang, le théorème de [Wagner 2001] sur les
corps de rang de Morley fini (K algébriquement clos, avec structure supplémentaire),
déclarant que : (i) K élimine les imaginaires ; (ii) son modèle premier est la clôture
algébrique modèle-théorique de ∅ ; (iii) si K a un automorphisme définissable non
trivial, ce modèle premier est porté par la clôture algébrique algébrique de ∅. Il
a pour conséquence qu’en caractéristique p un tore (c’est-à-dire un sous-groupe
définissable de K ∗

× · · · × K ∗) est clôture définissable de sa torsion.

6.2. Utiliser la classification des groupes simples finis. La classification des
groupes simples finis a par elle-même des conséquences sur la conjecture d’algébri-
cité : c’est en s’appuyant sur elle que Simon Thomas [1983] a montré que cette
conjecture est vraie pour les groupes localement finis. Il a ensuite observé qu’elle
était aussi vraie pour les groupes pseudo-localement finis.

Une structure est localement finie si chaque partie finie de sa base engendre une
sous-structure finie, et pseudo-localement finie si c’est un modèle de la théorie des
structures localement finies de même langage.

Cette définition repose sur une convention linguistique, puisque toute structure de
langage purement relationnel est localement finie. Pour l’éviter, nous introduisons
le solide principe de finitude locale, qui, par définition, est satisfait par les structures
dans lesquelles toute structure interprétable (avec paramètres) est pseudo-localement
finie. Voici comment ce principe s’introduit dans notre sujet :
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Fait. Les corps algébriquement clos nus, ainsi que les corps de Wagner (avec
automorphisme) mentionnés ci-dessus, satisfont au principe de finitude locale.

Les ingrédients de la démonstration sont l’élimination des imaginaires, et le fait
que les corps finis sont définissablement clos (si un détail vous échappe, consultez
[Poizat 2001b]).

Après avoir constaté que les groupes définissablement linéaires en caractéristique
positive sont définissables dans un corps de Wagner, [Poizat 2001b] en conclut que :

Corollaire. La conjecture d’algébricité est vraie pour les groupes définissablement
linéaires en caractéristique p.

Cela mène inévitablement à la question suivante, posée aussi dans [Macpherson
et Pillay 1995] :

Question 5. Est-elle vraie pour un groupe définissablement linéaire en caractéris-
tique nulle? (Il faut éliminer un mauvais groupe qui ne contient que des éléments
semi-simples ; ce serait un groupe linéaire simple sans involutions, dont aucun
exemple n’est connu à ce jour.)

Le principe de finitude locale implique le principe de surjectivité, dit aussi
principe d’Ax [1968], déclarant que toute injection définissable d’un ensemble
définissable dans lui-même est surjective. Cela nous rappelle une question ancienne
qui n’a de sens que pour les groupes nus, car on peut enrichir un corps en lui
amalgamant une extension élémentaire du successeur des entiers naturels :

Question 6 [Borovik et Nesin 1994, p. 371]. Un groupe nu de rang de Morley fini
satisfait-il au principe de surjectivité?

Il est bien des contextes où la pseudo-finitude locale permet d’étendre immédia-
tement, ou presque, aux groupes de rang de Morley fini des propriétés des groupes
finis, par exemple celui des groupes de Frobenius [Poizat 2024]. Nous pouvons
rêver que c’est dans cette pseudo-finitude locale que nous trouverons le chaînon
manquant entre ces deux familles de groupes, et croire que postuler la conjecture
d’algébricité revient à dire que tout groupe de rang de Morley fini satisfait au
principe de finitude locale ; cela nous donnerait une formulation de la conjecture qui
s’abstiendrait de privilégier les groupes simples. Avant de planer dans ces hauteurs,
il est prudent de réfléchir à une question plus terre à terre :

Question 7. En caractéristique nulle, les corps verts de rang de Morley fini, et plus
précisément ceux dont l’existence est assurée par [Baudisch et al. 2009], sont-ils
pseudo-localement finis ?

Rappelons qu’on ne sait pas s’il y a des « corps de Wagner » autres que les corps
nus et que, d’après [Wagner 2003], l’existence de corps verts en caractéristique p
aurait des conséquences arithmétiques surprenantes sur les nombres de Mersenne.
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7. Weil et Hrushovski

Le travail de Thomas consiste en définitive, grâce au principe de finitude locale,
à déduire la classification des groupes algébriques simples de celle des groupes
simples finis, ce qui ne manque pas de paradoxe ; il a pour conséquence que la
conjecture n’a pas de contre-exemple parmi les groupes définissables dans un corps
algébriquement clos nu !

C’était sans doute la première chose à vérifier dès qu’elle est apparue, mais
personne n’a songé à le faire à ce moment. De fait, il n’y a pas besoin de mobiliser
la classification des groupes simples finis pour cela, car tout groupe définissable
dans un corps algébriquement clos est définissablement isomorphe à un groupe
algébrique ; ce n’est pas tout à fait évident, et demande l’adaptation par Hrushovski
d’un théorème de [Weil 1955].

En effet, un groupe définissable connexe permet de définir génériquement des
morphismes représentant la restriction de la multiplication et celle de l’inverse. C’est
évident en caractéristique nulle, et demande un petit travail en caractéristique p ;
comme l’a remarqué Laurentius van den Dries, on peut alors faire appel à un
théorème d’André Weil, déclarant qu’un « groupe partiel », un « group chunk »,
correspond à une partie générique d’un groupe algébrique [van den Dries 1982].
On trouvera dans [Poizat 1987, chapitre 4(e)] un exposé du résultat accessible à
un théoricien des modèles, qui doit beaucoup à Hrushovski (voir aussi les notes
historiques aux pages 154–155).

Le chapitre 5(f) de [Poizat 1987] expose ce qu’on peut considérer comme la
version modèle-théorique ultime du théorème de Weil, démontrée par [Hrushovski
1986] dans un contexte stable : une opération binaire qui satisfait associativité
générique et simplificabilité générique (à gauche et à droite) correspond à une partie
générique d’un groupe définissable.

Le chapitre 2(f) décrit une décomposition d’un groupe de rang de Morley fini
en une tour de groupes définissables, basée sur la notion d’internité au sens de
Hrushovski, qui, à la différence de la décomposition de Lascar, se fait à partir
du haut. Sa première étape consiste à choisir un type q régulier, non orthogonal
aux types génériques du groupe G, ce qui permet d’obtenir un sous-groupe G1

définissable et normal dans G tel que le quotient G/G1 soit q-interne.
Le chapitre 4(g) donne une version modèle-théorique du théorème de Borel–Tits

basé sur l’internité : si G est un groupe algébrique simple sur un corps algébrique-
ment clos K , on peut définir dans G un corps K1 tel que G soit K1-interne. À partir
du seul résultat de nature algébrique affirmant que, puisque K1 est définissable dans
le corps nu K , il lui est nécessairement définissablement isomorphe, on en déduit
que tout ensemble de Geq qui est définissable au sens de K est en fait définissable
au sens du groupe nu G.
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C’est peut-être un bon endroit pour rappeler un cas particulier où, à ce qu’il me
semble, la conjecture d’algébricité est toujours ouverte :

Question 8 [Borovik et Nesin 1994, p. 367; Kramer et al. 1999; Mustafin et Poizat
2006]. Soient G(K ) un groupe algébrique sur un corps algébriquement clos K ,
et L un sous-corps infini de K contenant le corps de définition de G( · ). On note
G(L) le groupe des points L-rationnels de G( · ). Si G(L) est simple et de rang de
Morley fini, est-ce que L est algébriquement clos?

L’introduction de [Kramer et al. 1999] explique pourquoi c’est vrai quand le
corps L est localement fini.

8. Génération elliptique et théorème sans indécomposables

Nous dirons qu’une partie A du groupe G engendre elliptiquement le sous-
groupe H s’il existe un entier m tel que chaque point de H soit le produit de m
points de A ∪ {1} ∪ A−1 (cette définition ne suppose pas que H soit tout le groupe
engendré par A).

Le « théorème des indécomposables » de [Zilber 1977] affirme justement que le
sous-groupe engendré par l’ensemble définissable A, indécomposable et contenant
l’élément neutre, l’est de façon elliptique, ce qui le rend définissable (il est de
plus connexe). Il fait intervenir une notion ad hoc d’ensemble indécomposable,
généralisant la notion de fermé de Zariski irréductible en géométrie ; dans bien des
situations concrètes, son usage demande de l’ingéniosité, car on doit utiliser des
propriétés de l’ensemble A pour restreindre la famille des groupes pour lesquels il
suffit de tester l’indécomposabilité. Il est plus pratique de le remplacer par l’énoncé
équivalent suivant, qui est plus flexible justement parce qu’il ne mentionne pas
l’indécomposabilité, ni aucune autre propriété des ensembles définissables (on le
montre facilement à partir du théorème des indécomposables, comme dans [Poizat
2021]. Sa version première apparaît dans [Wagner 2000b, Chapter 4] dans un
contexte plus général).

Théorème sans indécomposables. On considère une famille {Ai } de parties dé-
finissables d’un groupe G de rang de Morley fini ; il existe alors un plus grand
sous-groupe H de G qui soit définissable, connexe, et elliptiquement engendré par
la réunion d’un nombre fini de Ai . De plus, chaque Ai normalise H et se répartit
en un nombre fini de classes modulo H.

Je ne résiste pas au plaisir d’en illustrer la facilité d’emploi par un petit corollaire :

Corollaire. Le groupe engendré par un ensemble A définissable clos par conju-
gaison et par élévation à la puissance me, pour un m > 1, est définissable, car
elliptiquement engendré.
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Démonstration. On montre que tout produit d’éléments de A peut se remplacer par
un produit où chaque point ne se répète que moins de m fois ; on en déduit que A
engendre un groupe fini modulo le groupe H ci-dessus. □

Exemples d’application. Les puissances nes, les solutions de l’équation xn
= 1,

les produits de deux involutions sont clos par prise de carré. Les éléments d’ordre
exactement n sont clos par puissance pe, pour chaque p premier à n. Si S est un
ensemble convexe (c’est-à-dire clos par symétries ; voir la section 9) contenant
l’élément neutre, S · S est clos par conjugaison et prise de carré (voir [Poizat 2018,
proposition 13]). Le groupe dérivé G ′ du groupe G de rang de Morley fini est
elliptiquement engendré par les commutateurs, car G ′

×{1} est l’intersection avec
G ×{1} du sous-groupe de G × G engendré par le « convexe symétrique » formé
des (x, x−1) [Poizat 2018].

La question se pose d’une sorte de réciproque, à savoir : si une partie définissable
engendre un sous-groupe définissable, est-ce-que cette génération est elliptique?
Modulo le théorème sans indécomposables, une question équivalente est :

Question 9 [Deloro 2007; Ould Houcine 2007; Poizat 2021]. Existe-t-il un groupe
infini, de rang de Morley fini, qui soit finiment engendré?

Son étrangeté est de mettre en scène des groupes de rang de Morley fini non
saturés, alors que Borovik comme le petit livre jaune nous ont habitués à vivre sans
le souci des propriétés de saturation du seul modèle que nous avons à l’horizon.

Une réponse positive contredirait la conjecture d’algébricité, car :

• Si G est finiment engendré, G◦ l’est également, puisqu’il est d’indice fini dans G.

• Si on divise G◦ par un groupe normal définissable connexe maximal M , on ne
peut pas obtenir un groupe commutatif : en effet, comme il est finiment engendré,
ce serait le produit d’un nombre fini de groupes cycliques, et comme il est infini il
ne serait divisible par aucun nombre premier, alors qu’il devrait l’être par presque
tous.

• G/M est donc, à un centre fini près, un groupe simple ; mais un groupe simple
infini et finiment engendré ne peut être linéaire, car selon [Maltsev 1940] un groupe
linéaire finiment engendré est résiduellement fini (c’est-à-dire que l’intersection de
ses sous-groupes d’indice fini est réduite à l’élément neutre).

9. D’autres questions désespérées

La conjecture d’algébricité, si elle se confirme, aurait un certain nombre de
conséquences de nature purement algébrique sur la structure nue d’un groupe
quelconque de rang de Morley fini. Pour s’en rendre compte, la règle du jeu est
de considérer un contre-exemple minimal, et de montrer qu’il s’agit d’un groupe
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simple, qui serait linéaire d’après la conjecture, et d’utiliser des propriétés bien
connues en pure théorie des groupes, comme :

— Tout groupe linéaire finiment engendré est résiduellement fini.
— Tout groupe linéaire périodique est localement fini.
— Tout groupe infini, localement fini, et satisfaisant à la condition de chaîne sur

les centralisateurs, contient un sous-groupe abélien infini.
On introduit alors ces propriétés sous forme de questions, auxquelles je prédis

qu’il y a peu d’espoir d’apporter une réponse sans résoudre la conjecture :

Question 10. Un sous-groupe périodique d’un groupe de rang de Morley fini est-il
localement fini?

Question 11. Un sous-groupe infini d’un groupe de rang de Morley fini contient-il
un groupe abélien infini?

Question 12 [Borovik et Nesin 1994, p. 368]. Un groupe de rang de Morley fini
est-il localement résiduellement fini?

10. Zamour

La section finale de cet article élargit la problématique de la conjecture d’algé-
bricité à des structures plus faibles que des groupes. Même si l’on pense que les
résultats dont je vais parler ici ont un côté anecdotique, il est du moins certain qu’ils
éclairent la nature modèle-théorique si particulière des groupes de rang de Morley
fini ; les questions posées seront plus naïves, car, à la différence des précédentes,
ce ne sont pas des problèmes qui ont cassé toutes les têtes depuis cinquante ans.

Dans un groupe G, l’opération binaire s(x, y) = yx−1 y satisfait aux trois équa-
tions suivantes : (i) s(x, x) = x ; (ii) s(s(x, y), y) = x ; (iii) s(s(x, z), s(y, z)) =

s(s(x, y), z). Si on convient d’appeler, une fois y fixé, l’opération unaire sy(x) =

s(x, y) symétrie de centre y, ces équations ont l’interprétation transparente suivante :
(i) chaque symétrie fixe son centre (ou plus exactement fixe chacun de ses centres) ;
(ii) chaque symétrie est une bijection involutive ; (iii) chaque symétrie est un
automorphisme de la structure.

Une loi binaire satisfaisant à ces trois conditions est appelée espace de symétries ;
dans [Poizat 2021], j’ai rebaptisé symétron ceux de ces espaces dans lesquels, pour
tous x et y, il existe un unique z tel que s(x, z) = y ; il est appelé le milieu m(x, y)

de x et de y.
L’espace des symétries du groupe G est un symétron si et seulement si ce

dernier est uniquement 2-divisible, c’est-à-dire si chaque x possède une unique
racine carrée x1/2. C’est le cas de tous les groupes de rang de Morley fini, ou plus
généralement de tous les groupes ω-stables, qui n’ont pas d’involutions (car alors
le centre du centralisateur de x est 2-divisible). Dans le contexte du rang de Morley
fini, ces symétrons sont apparus dans [Poizat 2018] comme un outil exégétique
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pour commenter la démonstration de [Frécon 2018] ; ils interviennent aussi dans
la structure des groupes de Frobenius ayant une involution dans leur complément
[Clausen et Tent 2023; Poizat 2024].

Dans [Poizat 2018], on étudie les sous-symétrons définissables d’un groupe
de rang de Morley fini. Par contre, dans [Poizat 2021], les symétrons de rang de
Morley fini sont considérés comme des structures per se. Il est constaté que bien
des propriétés qu’on montre habituellement pour les groupes se généralisent à ces
symétrons : condition de chaîne (car, pour une partie définissable d’un symétron
ω-stable, il est équivalent d’être clos par symétrie ou d’être clos par prise de milieu),
décomposition en composantes connexes, ainsi que des théorèmes de génération
elliptique. Toute cette théorie repose sur une base fragile (faut-il évoquer le songe
que Daniel a dû interpréter ?), à savoir que, dans un symétron ω-stable, deux
points sont toujours reliés par un sous-symétron isomorphe à celui des symétries
d’un groupe commutatif définissable sans involutions. On en déduit qu’un sous-
symétron définissable est le symétriseur de l’ensemble de ses types génériques (de
même qu’un sous-groupe définissable est le stabilisateur, par translations à droite
comme par translations à gauche, de l’ensemble de ses types génériques ; cette
description des sous-symétrons définissables par des données génériques permet de
court-circuiter les calculs de Frécon).

Mais que se passe-t-il si on considère des lois valables génériquement, c’est-à-
dire deux opérations partielles s(x, y) et m(x, y) qui satisfont génériquement les
équations de symétrons, sans qu’on soit déjà enveloppé à l’intérieur d’un symétron ?
Autrement dit :

Question 13. Existe-t-il un théorème de Weil–Hrushovski pour les symétrons?

L’acuité de la question est renforcée par le fait qu’il existe des structures assez
voisines pour lesquelles le théorème de Weil est faux [Grishkov et Nagy 2011]. La
question suivante lui est probablement liée :

Question 14. En caractéristique autre que 2, un symétron constructible est-il défi-
nissablement isomorphe à un symétron algébrique, basé sur une variété algébrique
pour laquelle symétrie et milieu sont des morphismes?

Ce n’est pas vrai en caractéristique 2, car dans le groupe multiplicatif K ∗ la
racine carrée de x , qui n’est pas un morphisme, est le milieu de 1 et de x .

[Borovik et Nesin 1994, p. 355] demandent si le théorème Z∗ de Glauberman —
un classique de la théorie des groupes finis — s’étend aux groupes de rang de
Morley fini. Cela se traduit par la question suivante, à laquelle le théorème 1 de
[Glauberman 1966] apporte une réponse positive dans le cas des symétrons finis.

Question 15. Dans un symétron de rang de Morley fini, est-ce que le dérivé du
groupe de permutations engendré par les symétries est dépourvu d’involutions?
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Cette question, qui ne concerne que le symétron nu, a un lien étroit avec la
conjecture d’algébricité. En effet, d’après [Poizat 2018; 2021], d’une part, la réponse
est positive pour les symétrons pseudo-localement finis, et d’autre part, quand le
groupe engendré par les symétries est définissable (on parle alors de symétron
borné), ce qui est le cadre de la question de Borovik et Nesin, une réponse négative
contredit la conjecture d’algébricité.

Venons-en finalement à la question que s’est posée Samuel Zamour dans la
première partie de sa thèse, dont je n’ai eu connaissance que quelques jours avant
sa soutenance. Elle est purement théorique, car d’après la proposition 13 de [Poizat
2018], un sous-symétron définissable d’un groupe de rang de Morley fini est inter-
définissable avec un groupe habillé, et il semble peu probable que les symétrons
non bornés interviennent un jour dans la solution de la conjecture d’algébricité
(pour les groupes sans involutions).

Question 16 [Zamour 2022]. Les symétrons rangés, c’est-à-dire satisfaisant aux
conditions 1, 2 et 3 de la section 4, sont-ils les mêmes que les symétrons de rang de
Morley fini?

Zamour reprend la problématique de Zilber à son début, car sa question est très
proche du théorème 5.2 de [Zilber 1974] ; on s’en rend compte si on substitue au
mot gruppa le mot simmetron dans son énoncé :

Teorema 5.2. Pusty G — prosta� slabo kategoriqna� gruppa. Togda
teori� G v gruppovo� signature ℵ1-kategoriqna, t.e. G — kategoriq-
na� gruppa.

Théorème 5.2. Soit G un groupe simple faiblement catégorique. Alors la théorie de G
dans le langage des groupes est ℵ1-catégorique, c’est-à-dire G est un groupe catégorique.

C’est aussi vrai de tout ce qui l’accompagne, comme le théorème 5.1 : un
symétron faiblement catégorique définissablement simple (sans congruence non
triviale définissable ; voir ci-après) est-il simple ?

Zamour cherche à reproduire une décomposition de Lascar pour apporter une
réponse positive, mais il ne réussit que partiellement pour les raisons que nous
allons exposer. Il montre d’abord, pour les symétrons, une version du théorème des
indécomposables sous sa forme classique : il déclare qu’un ensemble définissable
est indécomposable si, chaque fois qu’il est contenu dans une réunion finie de
sous-symétrons définissables deux à deux disjoints, il est inclus dans l’un d’entre
eux ; il montre que le sous-symétron engendré (par symétrie et prise de milieu) par
un ensemble indécomposable est définissable, connexe et elliptiquement engendré.

Cela lui permet de franchir sans peine la première étape de la décomposition,
c’est-à-dire la construction d’un sous-symétron connexe elliptiquement engendré
par un ensemble fortement minimal ; mais il rencontre un obstacle dès qu’il s’agit
de faire un quotient. Appelons congruence de symétrons une relation d’équivalence
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définissable telle que la symétrie passe au quotient : si x ∼ x ′ et y ∼ y′, alors
s(x, y) ∼ s(x ′, y′). Les classes d’équivalence d’une congruence sont des sous-
symétrons qui se correspondent par symétries : chacune d’entre elles détermine la
relation ∼ ; nous les qualifions de sous-symétrons normaux. Comme la conjonction
de deux congruences est une congruence, la condition de chaîne montre que chaque
sous-symétron a une clôture normale définissable, qui est le plus petit sous-symétron
définissable et normal le contenant.

Dans le cas où les applications m(x, a) sont des automorphismes, ce qui se
produit rarement (par exemple dans les systèmes de triplets de Steiner que sont les
symétrons où milieu et symétrie coïncident), Zamour montre que la clôture normale
d’un sous-symétron S définissable et connexe est elliptiquement engendrée par S et
par un nombre fini de paramètres. Cela lui permet de conduire la décomposition de
Lascar comme dans le cas des groupes.

À vrai dire, afin de bénéficier du savoir accumulé par les théoriciens des groupes
dans l’étude des symétries des groupes finis, Zamour travaille avec des Z -boucles
uniquement 2-divisibles, qui sont des structures connues pour être bi-interprétables
avec les symétrons ; par exemple, dans le cas des groupes, la boucle est l’opération
y1/2

· x · y1/2. Ces boucles sont mieux aimées de bien des théoriciens des groupes,
qui chérissent les structures qui ressemblent le plus possible à des groupes, aussi
bizarres soient-elles ; pour ma part, je préfère le langage des symétrons (symétrie
et milieu), qui donne une axiomatique claire, et permet d’exprimer naturellement
les propriétés spécifiques aux symétrons de rang de Morley fini.

En vertu du principe dangereux qu’il est permis de conjecturer ce qu’on ne sait
pas démontrer, on peut poser une dernière question :

Question 17. Si S est un sous-symétron définissable connexe d’un symétron de rang
de Morley fini, est-ce que sa clôture normale est elliptiquement engendrée par S et
par un nombre fini de paramètres?

Afin d’éviter d’attirer sur nos têtes le courroux du Grand Roi, nous allons pru-
demment conclure l’article par trois théorèmes ; le premier est la version symétrique
du théorème sans indécomposables, et le deuxième une élucidation de l’obstacle
qu’a rencontré Zamour dans son étude de la question ci-dessus.

Si A est une partie du symétron S, nous appellerons composantes du sous-
symétron 6 engendré par A les sous-symétrons définissables connexes maximaux
qui sont elliptiquement engendrés par A (en usant du milieu et de la symétrie) ;
dans le cas des groupes, leurs analogues seraient les cossettes modulo le plus grand
sous-groupe définissable connexe elliptiquement engendré par A.

Théorème. Soient S un symétron de rang de Morley fini et A un sous-ensemble
de S définissable. Alors, le sous-symétron engendré par A est réunion de ses
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composantes ; celles-ci sont deux à deux disjointes, se correspondent par symétries,
et A est contenu dans la réunion d’un nombre fini d’entre elles.

Démonstration. C’est évident quand A est vide. Sinon, chaque point de 6 constitue
un symétron définissable connexe elliptiquement engendré par A, et s’étend en un
tel sous-symétron de rang de Morley maximal. Comme, d’après [Poizat 2021], deux
sous-symétrons définissables connexes d’intersection non vide en engendrent un
troisième, et ce de façon elliptique, deux composantes non disjointes sont égales. Si
a est un point de la composante C et a′ un point de la composante C ′, la symétrie
ayant pour centre le milieu m de a et de a′ échange C et C ′. Le dernier point
vient de ce que, d’après [Zamour 2022], A s’écrit comme réunion d’un nombre fini
d’ensembles définissables indécomposables. □

Nous dirons que la relation d’équivalence définissable ∼ est une demi-congruence
si chaque symétrie en est un automorphisme, c’est-à-dire si x ∼ x ′ implique s(x, y)∼

s(x ′, y). Ses classes seront qualifiées de sous-symétrons semi-normaux.

Lemme. (i) Une demi-congruence est une congruence si et seulement si le
milieu passe au quotient, c’est-à-dire si x ∼ x ′ implique que m(x, y) ∼

m(x ′, y).

(ii) Le sous-symétron définissable non vide S est semi-normal si et seulement si,
quels que soient les points a, b et c, sa

(
sb(sc(S))

)
est égal à S ou disjoint

de S.

Démonstration. (i) Dans une demi-congruence, toutes les classes ont même rang
et même degré de Morley. Si c’est aussi une congruence pour le milieu, quel que
soit le point a et la classe C , m(C, a) est inclus dans une classe C ′ ; si b est un
point de C ′, m(C ′′, a) est aussi inclus dans m(C, a), où C ′′ désigne la classe de b :
comme m(x, a) est une bijection, il faut que C = C ′′ ; autrement dit m(x, a) définit
une bijection entre C et C ′. Le même raisonnement vaut pour la bijection inverse
s(a, x).

(ii) La propriété est possédée par un sous-symétron S semi-normal, car alors
sa

(
sb(sc(S))

)
et S sont des classes de la relation d’équivalence ∼ associée.

Réciproquement, on considère deux points a et b, un point x dans S et le milieu m
de x et de sa(sb(x)) ; comme il ne sont pas disjoints, S et sm

(
sa(sb(S))

)
sont égaux,

soit encore sm(S) = sa(sb(S)).
Considérons maintenant un translaté S′

= t (S) de S par un produit de symétries t :
sa(sb(S′)) = sa · sb · t · S = t · t−1sat · t−1sbt · S = t · sc · S = tsct−1(S′), où c est le
milieu de t (a) et de t (b). Autrement dit, si s ′ et s ′′ sont deux symétries, il en existe
une troisième s telle que s(S′) = s ′s ′′(S′).

On en déduit que chaque translaté t (S) est de la forme s(S), et que les translatés
de S ont la même propriété. Or S et s(S) sont égaux si le centre de s est dans S,
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et disjoints s’il n’y est pas, puisque S est clos par prise de milieu. En résumé, les
translatés de S forment bien une partition. □

Théorème. Soient S un sous-symétron définissable et connexe d’un symétron de
rang de Morley fini, et 6 le plus grand sous-symétron définissable et connexe
contenant S qui soit elliptiquement engendré par S et un nombre fini de paramètres.
Alors 6 est semi-normal, et pour tout a et toute classe C de la demi-congruence ∼

associée, il existe une (unique) classe C ′, telles que m(x, a) définisse une bijection
entre une partie générique de C et une partie générique de C ′. De même il existe une
unique classe C ′′ telle que s(a, y) définisse une bijection entre une partie générique
de C et une partie générique de C ′′. Ce résultat est aussi valable pour un symétron
rangé.

Démonstration. Comme deux sous-symétrons connexes d’intersection non vide
s’amalgament de façon elliptique, 6 est bien unique, et contient tout sous-symétron
définissable connexe et elliptiquement engendré par S et un nombre fini de pa-
ramètres qui le coupe ; il satisfait donc au critère du lemme et définit une demi-
congruence ∼.

Considérons la composante 6′ du symétron engendré par m(6, a) qui intersecte
génériquement l’ensemble m(6, a), et le milieu m d’un point de 6′ et de 6 ; 6′

est connexe et elliptiquement engendré par S et un nombre fini de paramètres, si
bien que s(6′, m) est inclus dans 6. Il lui est en fait égal, car son rang majore celui
de 6 ; 6′ est donc une classe de la demi-congruence ∼, et la bijection m(x, a)

échange des parties génériques des deux classes 6′ et 6. Le même raisonnement
vaut pour chaque symétrisé de 6.

Pour le dernier point, il faut vérifier que tout ce qui est utilisé pour la démonstra-
tion du théorème, dans cet article et dans [Poizat 2021], est aussi valable dans le
cas rangé, ce qui n’est qu’affaire de patience. □

Mea culpa, mea culpa, mea maxima culpa ! Je profite de l’occasion qui m’est
offerte (Spasibo, Boris!) pour confesser deux péchés commis dans [Poizat
2021]. Le premier est que j’y affirme gratuitement l’énoncé du théorème suivant :

Théorème. La partition en composantes connexes d’un symétron ω-stable est une
congruence.

Démonstration. Elle est évidemment une demi-congruence. Pour chaque a du
symétron S, la symétrie de centre a permute les composantes du symétron, si bien
qu’à toute permutation π est associé l’ensemble Sπ des points de S qui permute
ses composantes selon π . Les Sπ non vides constituent une partition de S ; si les
symétries sa et sb échangent les ensembles A et B, il en est de même de sbsasb, ce
qui signifie que les points dont la symétrie associée échange A et B constituent un
sous-symétron ; par conséquent les Sπ sont des symétrons définissables. Comme les
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composantes sont closes par prise de milieu, un point a fixe sa propre composante
et seulement celle-là. Par conséquent, si Sπ n’est pas vide, π fixe un point et un
seul ; donc, si Sπ a même rang de Morley que S, il ne contient qu’un seul type
générique, et c’est une composante connexe de S. L’unicité de la décomposition de
S en un nombre fini de sous-symétrons définissables connexes deux à deux disjoints
impose aux Sπ d’être ces composantes connexes. Autrement dit, tous les points
d’une même composante agissent sur les autres de la même façon. □

Le deuxième est que j’ai omis de préciser, à la fin de l’exemple 2, que a devait
être central dans G. On obtient donc un exemple avec un centre non trivial en
prenant pour G un groupe de rang de Morley fini, nilpotent non abélien, et sans
involutions.
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Around the algebraicity problem in odd type

Gregory Cherlin

We discuss the algebraicity conjecture in odd type, with particular attention to
some unfinished business involving work of Jeffrey Burdges.

The notion of strongly minimal set was known to
Vaught. He, and probably others, knew the Steinitz
theorem could be generalized.

Bill Marsh, 1966 [43]

Introduction 505
1. Classification in finite 2-rank 509
2. Uniqueness cases 516
3. Strong embedding 518
4. High Prüfer 2-rank 521
5. Prüfer 2-rank 2, 2-Rank at least 3 524
6. Lately: linearization theorems 525
Appendix A. More on strong embedding 526
Appendix B. Glossary 529
References 536

Introduction

According to my recollection, I first encountered the internal geometry of strongly
minimal sets in Marsh’s 1966 thesis. On looking back at that thesis, I find that
Marsh indulges in very little speculation about that geometry, but at the time it
seemed suggestive. Fortunately, the matter was not left there, and once the dust
had settled and the mists had cleared, we found ourselves with a robust geometrical
stability theory which supports applications. As a result, the distinction between
pure and applied model theory has become less fraught than it once was. As
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Zilber anticipated, this development involves both the internal geometry of strongly
minimal sets and a study of the groups interpretable therein.

Nonetheless, the algebraicity conjecture (or problem) remains unsettled: are the
simple groups of finite Morley rank algebraic? At this point one leans toward the
expectation that counterexamples exist — possibly, as Zilber has suggested, coming
naturally from the general direction of analysis. Leaving all of that aside, I will
address some unfinished business which is connected with a portion of the Borovik
program. This has become a highly developed subject with a great deal of technical
material inspired in part by finite group theory, in part by algebraic group theory,
and occasionally by developments in pure model theory. The various sections of
the glossary in Appendix B should be helpful as we get into the details, and may
merit an early glance as well.

In another direction, there has been considerable progress in the direction of
“linearization”, which we touch on at the end — this is dealt with comprehensively
in the contributions of Borovik and of Deloro to this volume [13; 29].

The Borovik program aims to do what can be done on the positive side of the
problem with existing techniques, notably those modeled on methods of finite group
theory, and to identify specific problematic configurations which resist such an
analysis. This program has undergone three waves of development, as the power of
existing techniques has been refined and their scope enlarged.

In the first instance, an extraneous “tameness” hypothesis1 was liberally em-
ployed, in the manner of “stone soup”. This amounts to listing bad fields as one of
the known problematic configurations. In the second wave, the stone was removed
from the soup and the focus turned to the group theoretic configurations associated
with a hypothetical minimal counterexample. This is the K ∗ theory, described in
detail below. In a third wave, we aim at somewhat more. This is the L∗ theory.

The most striking achievement of the L∗ theory is the proof of the algebraicity
conjecture for simple groups of finite Morley rank having infinite 2-rank (that is,
when there is an infinite elementary abelian 2-group present) [3]. I will be discussing
some classification results in finite 2-rank, and, notably, some unpublished work
of Burdges. Namely, Burdges was actively pursuing some ideas about L∗ theory
in finite 2-rank of a more technical character when he became distracted by other
matters. Eventually I thought I should try to do something about that, so in January
2016, at his wedding breakfast, I ransacked Jeff’s computer and made off with the
relevant files. At this point, it seems high time to document the state of affairs of
this material.

So here we are. The subject could certainly use a more comprehensive and
systematic account of what has been learned on the side of finite 2-rank (which

1I.e., no fields were injured in the production of the group; cf. [11] and see also [46; 6; 51].
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would include the case in which there are no involutions), and the underlying theory
of torsion elements in groups of finite Morley rank; this theory developed relatively
late. But here we confine ourselves to situations where Sylow 2-subgroups are not
too small.2

Some time ago, in [15], reference was made to the possibility of “eventually
. . . emancipating the odd type analysis from the K ∗-hypothesis, a line of development
which remains to be explored.”3 This was followed by the question (“Problem 1”):

Can one show that a simple group of finite Morley rank and degen-
erate type has no nontrivial involutory automorphism?

We do not address this question, but we do take it seriously. We look in fact at how
the theory would proceed in the presence of a positive solution to that problem (or
a fair approximation to one).

We thank Adrien Deloro for very pertinent remarks concerning the contents
of [28; 34].

A few remarks in the margin . . . 4

Without going much further into the history of the subject — which I think is
very interesting, but not my own concern here — I’ll note that I don’t think the
algebraicity conjecture was particularly central to Zilber’s own concerns (and not
precisely my own either, though more so). From his side the trichotomy conjecture5

seems central and the algebraicity conjecture could be taken as one expression of it
with the particular virtue of being accessible to mathematicians generally. On the
other hand, for a time at least — a critical time, perhaps — we were both under the
influence of Macintyre’s striking paper on ω1-categorical fields [42] (I was in fact
obsessed by that paper, myself, for several years), and it certainly points the way.6

In my own case, while working with Macintyre and several others with similar
interests, I came across what to me seemed an intriguing notion of “connectedness”
in Kegel and Wehrfritz’s informative [39, p. 97] while thinking about “totally
categorical” groups, namely:

If X is any subgroup of G, put X0
=

⋂
CX Y , where the intersection

is taken over all subsets Y of G for which the index |X : CX Y |

2Cf. [44, 4th heading].
3Repeated in the notes to §II.6 of [3] in the following terms: “. . . everything we do depends on

[L∗-theory]. A major open problem is to develop a parallel theory in odd type groups, at a comparable
level of generality.”

4As the referee remarks, this section has rather a large number of footnotes. We apologize in
advance.

5Or perhaps more properly, dichotomy; cf. [38].
6Wikipedia as of November 2022: “. . . very influential in the development of geometric stability

theory.[citation needed]”
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is finite. Clearly for every subgroup X of G the index |X : X0
|

is finite since G is an Mc-group. Call the subgroup X connected
(in G) if X = X0. Obviously A, ZG and G are all connected.

Much as in the case of Marsh’s thesis, I suppose, this prompted some reveries that
were perhaps not in the text.

And at some point fairly early on I became aware, one way or another, of Zilber’s
remarkable “ladder theorem”, to the effect that all uncountably categorical structures
are built from a strongly minimal set, the operation of algebraic closure, and some
group actions by definable groups. This result would suggest that the algebraicity
conjecture might be a major ingredient in the classification of the possible structures.
The relatively recent work on permutation groups of finite Morley rank (noted by
Borovik elsewhere in this volume) aims to address this to some extent. Around
1980, I became particularly interested in some possibilities for using the projected
classification of the finite simple groups in model theory, which is really a rather
different subject from the algebraicity conjecture, in terms of its aims and content —
though compatible with the Borovik program. As the first algebra course I took
was given by Walter Feit, and the first Janko group came along while I was an
undergraduate — and as I eventually found myself employed at what was at the
time the world headquarters of that classification program (or its management) —
this was a natural line to fall in with.

Fortunately, the reader looking for a more balanced and informative account of
developments around the algebraicity conjecture may consult the historical survey
by Poizat in this volume [47] for a coherent account of the subject that shows quite
precisely how (though perhaps not why) the subject emerged into print, as far as
both Zilber and I were concerned. This should be supplemented by Hodges’ account
in [37] of how some of us in the “West7” became aware of some important aspects of
Zilber’s thinking. That account enters into some detail concerning what was taking
place either prior to publication or independently of publication.8 From my own
perspective Zilber’s “VINITI” report [53] that Hodges mentions was particularly
central, and I regret that I have not seen it in the last 40 years — at some point, as
I have recently realized, I lost track of my own copy. It would be good, I think,
to locate a copy of that report and put it in the public record. The VINITI report
had a wealth of material,9 some of which I lectured on in the model theory year in

7Including Vancouver.
8In addition the concise historical remarks at the end of the introduction to [3] may become more

illuminating when combined with these two accounts.
9According to my current recollection, for what it is worth, 83 pages (though this is perhaps a

subjective reaction to the fact that it was in Russian).
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Jerusalem in 1980–1981.10 To acquire that document, one had to write directly to
a certain address in Moscow, and in due course one received one’s personal copy.
But I have now drifted entirely away from my present subject, to which I return.11

1. Classification in finite 2-rank:
the K∗ and L∗ theories in a top-down approach

This section lays out our current subject matter with more precision, specifying the
results and problems we will be focusing on here. That is, we describe two flavors
of the Borovik program (K ∗ and L∗) and the “top-down” approach which has been
taken over — greatly simplified — from the practice of finite group theorists. The
reader may find a preliminary quick review of the material of Section B2 helpful at
this point, before entering into the substance of the discussion here.

1A. K∗ and L∗. Following the finite group theorists, we call a group of finite
Morley rank a K-group if all of its definable connected simple sections are algebraic
groups.12 And we call a group a K ∗-group if the same applies to its proper definable
connected simple sections.

A K ∗-group is either a K-group or a minimal counterexample to the algebraicity
conjecture. That conjecture can be phrased in these terms as follows: all K ∗-groups
are K-groups. One particular version of the Borovik program aims at bounding the
2-rank of any exceptions. This can be done, which is satisfying in its own way, but
this does not limit the complexity of an arbitrary counterexample to the conjecture.
It means only that any counterexample to the algebraicity conjecture involves a
counterexample of low complexity as a definable section.

It would be very valuable to have absolute bounds on the complexity of counter-
examples. For that matter, even in the finite case one might well ask for a more
qualitative proof that the number of sporadic finite simple groups is finite, or at least
that their 2-ranks are bounded, without passing through an explicit classification of
the exceptions.

The Borovik program (as such) focused on K ∗-groups, sometimes with additional
constraints. Altınel suggested a broader notion suitable for analyzing simple groups
of finite Morley rank which have infinite 2-rank, essentially by relativizing the
definition of K ∗ to this class.

10For some reason, what was actually on my own mind at the time was the problem of finiteness
of Morley rank in the ℵ0-categorical case, and the ideas of [41]. I had previously spent some effort in
spring 1978 on the construction of an ℵ0-categorical pseudoplane, without much success, a project I
then abandoned.

11And I have managed to say not a word about the Soviet Union.
12This means, concretely, that these sections are Chevalley groups over algebraically closed

fields — possibly with additional structure — and one will think mainly in those terms if one enters
into the details. See Section B5.
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More precisely, one first divides the groups of finite Morley rank of infinite
2-rank further into the following two classes:

(1) even type groups, where there is a bound on the exponents of 2-elements;

(2) mixed type groups, where there is no such bound, and in fact there is also a
nontrivial divisible abelian 2-subgroup.

All algebraic groups of infinite 2-rank are of even type. Groups of mixed type
and finite Morley rank do occur naturally, as products of algebraic groups (over
different fields), but they do not occur as algebraic groups. In fact the finite Morley
rank category is closed under finite direct products.

Definition 1.1 [3, Definition II.6.1]. A group of finite Morley rank and even type
is an L-group if all of its definable simple sections of even type are algebraic.

L∗-groups (of even type) are defined correspondingly.

Here “L” stands for the first letter after “K ”, nothing more. The main theorems
are the following, which we phrase as two independent results. We give references
to [3], where one can also find historical notes and further bibliographic references;
these results build on a large body of work with many contributors (among whom I
feel one should take particular note of Éric Jaligot).

Proposition 1.2 [3, Proposition VIII.6.2]. A simple L∗-group of finite Morley rank
of even type is a Chevalley group.

Proposition 1.3 [3, Mixed Type Theorem, Chapter V]. If all simple groups of finite
Morley rank and even type are algebraic, then there are no simple groups of finite
Morley rank of mixed type.

Putting the two propositions together, one has the following.

Theorem 1.4 [3, Main Theorem, Chapter X]. A simple group of finite Morley rank
and infinite 2-rank is algebraic.

The striking and unexpected point is that Proposition 1.2 can be proved even
though it makes no assumption on the degenerate type sections of the group in
question. One proceeds largely by ignoring such sections — and, in particular, one
does not worry at all about whether or not one might even enrich the structure of
an algebraic group so as to make such a section appear. What makes this kind of
analysis feasible is a sort of orthogonality principle.

Lemma 1.5 (Altınel’s lemma, cf. [3, Proposition I.10.13]). If a connected elemen-
tary abelian 2-group acts definably as a group of automorphisms of a connected
group of finite Morley rank and finite 2-rank, then it acts trivially.

This is the main reason to expect the K ∗ theory to go over in some form to an
L∗ theory. Lemma 1.5 can also be expressed in a structural form, as follows. The
following is a slightly simplified formulation of [3, Proposition II.6.2].
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Lemma 1.6. Let G be an L-group of finite Morley rank and even type. Let U2(G)

be the subgroup of G generated by its definable connected 2-subgroups. Then
U2(G) is a K-group.

Proofs in the L∗ context are often more laborious than those in the K ∗ context,
involving more exotic configurations, but the general approach taken is much the
same under either hypothesis. The K ∗ project was still very much underway in the
even type context when the L∗ project came along, but after retracing its initial steps
at this level of generality — with a more elaborate treatment of some uniqueness
cases (strong embedding, weak embedding) — we switched over to that greater
level of generality and finished the version of the classification project appropriate
to infinite 2-rank in that setting [3]. As one might expect, another feature of that
proof that it shares with the finite case is that it was the product of a community
(including some members of the community that dealt with the finite case, who
pointed out relevant strategic options not always leaping to the eye in the literature).

In view of Theorem 1.4, we may turn our attention to the case of finite 2-rank.

1B. Finite 2-rank: Prüfer and normal 2-ranks. In addition to the ordinary 2-rank,
we have the important notion of Prüfer 2-rank.

Definition 1.7. Let G be a group of finite Morley rank. The 2-rank of a maximal
2-torus13 in G is called its Prüfer 2-rank.

By a conjugacy theorem, this notion is well-defined. The Prüfer 2-rank corre-
sponds to the Lie rank in the relevant groups (where the base field is algebraically
closed and the characteristic is not 2). The Prüfer 2-rank is essential for our purposes.
Groups of finite Morley rank and finite 2-rank are divided into the following types,
again following the lead and terminology of the finite group theorists (though not,
in this instance, their definitions).

• Prüfer 2-rank 0: degenerate type.

• Prüfer 2-rank 1: thin type.

• Prüfer 2-rank 2: quasithin type.

• Prüfer 2-rank at least 3: generic type.

The experience of finite group theorists suggests that the high end of the problem
should be the most amenable to systematic treatment, and that the complexity and
the general weirdness of the analysis will increase as one moves downward from
the top.

Groups of degenerate type have 2-rank 0 (i.e., no involutions at all). In fact, in
a group of finite Morley rank and finite 2-rank, any involution belongs to some
2-torus [20]. The nondegenerate type groups of finite Morley rank and finite 2-rank

13Divisible abelian 2-subgroup; a product of “Prüfer 2-groups,” which are 2-tori of 2-rank 1.
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are said to be of odd type, since the algebraic ones have base fields of characteristic
not two (so even 0 is “odd”, oddly enough). And all nonzero Prüfer 2-ranks (i.e.,
Lie ranks) certainly occur.

There are other ways of organizing this family of groups that do not match
up neatly with the above taxonomy — at least, not a priori. One encounters the
theoretical possibility of minimal connected simple groups regardless of Prüfer
rank, and notably the so-called uniqueness cases which will be of considerable
importance. But we will come back to that later.

Our focus here will be on the quasithin and generic type cases, that is, the Prüfer
2-rank is taken to be at least 2.

There is yet another notion of 2-rank which plays a role similar to that of the
Prüfer 2-rank in the finite case, namely the normal 2-rank. This is defined as follows.

Definition 1.8. The maximal rank of a normal elementary abelian 2-subgroup of a
Sylow 2-subgroup of G is called its normal 2-rank.

Again, by a conjugacy theorem, this is well-defined. In the cases of interest to
us here, this parameter actually agrees with the Prüfer 2-rank. This took some time
to be noticed, and is nontrivial.

Fact 1.9 [28, Lemma 1]. Let G be a connected group of finite Morley rank and
finite 2-rank. Then the Prüfer 2-rank and normal 2-rank of G coincide.

1C. L∗ revisited. What happens if we relativize the notion of K ∗-group to the
class of odd type groups, rather than even type?

Definition 1.10. A group of odd type is called an L-group if all of its definable
connected simple sections of odd type are Chevalley groups. We define L∗-groups
of odd type correspondingly.

There is an immediate obstacle to the development of the theory: the lack of a
known analog for Altınel’s lemma in this context. Such a lemma would control
actions of 2-tori on degenerate sections of groups of odd type. The natural action
of the multiplicative group of a field of characteristic zero on its additive group is
just such an action, so a blanket prohibition on them is out of the question in this
context.

Burdges suggested, nonetheless, pursuing the version of the theory in odd type
that imposes both the L∗ hypothesis and a suitable analog of Altınel’s lemma. We
will adopt the following terminology.

Definition 1.11. A group of odd type is said to be NTA2 if whenever a definable
section H1 acts definably on a definable simple section H2 of degenerate type, then
any 2-torus in H1 acts trivially on H2. In other words, if the action is required to be
faithful then H1 must be of degenerate type.

One may read “NTA2” as “no definable 2-toral actions”.
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When we refer to the L∗ theory in odd type we will generally be taking NTA2

as an assumption as well. Conditions of this kind, and more generally the study
of involutory automorphisms of simple groups of degenerate type, are certainly of
interest, and have been considered in the literature.14

My sense — after working with the concept for a while — is that the combination
of L∗ and NTA2 in odd type does correspond quite neatly to the point of departure
for the L∗ theory in even type, and that to the extent that one can work in that
setting, the results are more informative than the results of the K ∗ theory.

That is, in odd type, the L∗ hypothesis gives us a useful dividing line, separating
issues belonging properly to the study of simple groups of degenerate type from
those bearing directly on odd type. And while the weight of opinion no doubt favors
the existence of degenerate type simple groups, the question of 2-toral actions on
such groups appears to be more delicate.

As a technical remark on the definitions, Burdges noted that in addition to the
critical property NTA2, there could be significant issues with the Glauberman Z∗

theorem.15 But experience to date suggests configurations of this type can be
eliminated by close analysis on an ad hoc basis. We will next review and compare
the status (in the odd type setting) of the K ∗ theory on the one hand, and the L∗

theory with NTA2 on the other.

1D. K∗ theory in odd type: results. As far as published results are concerned, one
has mainly the generic case for K ∗-groups.

Theorem 1.12 [18]. Let G be a simple K ∗-group of finite Morley rank, finite 2-rank,
and of generic type. Then G is algebraic.

The proof follows the template developed in [7] or [8], with some technical
improvements.

This proof forks at a very early stage, with one branch leading to the desired
identification and the other branch leading off in an entirely different direction,
arriving eventually at a contradiction. This point is of central importance, so we
give more detail.

14Cf. [34], [30, §1.3], and (as previously mentioned) [15, Problem 1]. From a different direction,
similar questions arise in connection with questions about actions of finite groups which arise in the
theory of permutation groups of finite Morley rank. In particular a conjecture from [27] concerning
actions of Altn or Symn leads fairly rapidly to consideration of such actions on simple groups of
degenerate type, as discussed in [2]. This direction might also provide some tightly constrained
“extremal configurations” deserving close attention.

15See, for example, https://en.wikipedia.org/w/index.php?title=Z∗_theorem&oldid=1095862232.
The original proof uses character theory. A proof which may well be of more use in the setting of
finite Morley rank is in [52]; I have not looked into that, but it seems well worth looking at. (One
can run into difficulties with arguments of an elementary nature as well; for example, the easy group
theoretic proof that a group of order 2m with m odd has a subgroup of index 2 does not go over very
readily to the finite Morley rank context.)

https://en.wikipedia.org/w/index.php?title=Z*_theorem&oldid=1095862232
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Definition 1.13. Let G be a group of finite Morley rank and S a 2-subgroup. Then
0S,2(G) denotes the smallest definable subgroup of G containing the normalizer of
every elementary abelian subgroup of S of rank 2.

The 2-generated core of G is 0S,2(G) with S a Sylow 2-subgroup, which is
well-defined up to conjugacy.

The case division that concerns us is whether or not the 2-generated core of G is
proper. If it is, we are in a somewhat exceptional situation of the type referred to
generally as a “uniqueness” case or “black hole,” where it is hard to get at the whole
of G using local analysis. In these cases we aim to push the configuration steadily
to more extreme forms, the most extreme such case (short of a contradiction) being
strong embedding: here some proper definable subgroup with an involution contains
the normalizers of all of its nontrivial 2-subgroups.

On the main line of the proof, Theorem 1.12 takes the form that one has either a
proper 2-generated core or one arrives at the desired conclusion.

On the uniqueness branch of the analysis, one has the following.

Theorem 1.14. Let G be a simple K ∗-group of finite Morley rank and odd type
with a proper 2-generated core M = 0S,2(G).

(1) If G has Prüfer 2-rank at least 2, and normal 2-rank at least 3, then M is
strongly embedded and G is a minimal connected simple group.

(2) If G is minimal connected simple, then G has Prüfer 2-rank 1.

These two points are dealt with in [17] and [26], respectively, and jointly eliminate
this branch of the analysis in the generic setting, though the second point is of
continuing interest. Burdges’ involvement here indicates, among other things, that
this is (at least) the second iteration of the Borovik program, and that once again
there are major precursors to these results, under less general conditions.

Turning to the case of Prüfer rank 2, we have three types of algebraic groups to
identify, of 2-rank at most 4, as shown in Table 1.

Burdges’ work on this problem is unpublished even in the K ∗ setting, and is
thoroughly entangled with the development of the L∗ theory, so we will discuss it
in that context. His treatment of 2-rank at least 4 was complete (pending further
review of the details) and we will say more about that below. The treatment of
2-rank 3 led to an interesting exotic configuration similar to G2 in characteristic 3
and known to the finite group theorists as worthy of separate consideration. In the
finite case, they eliminated this exotic configuration via character theory (at first

type A2 (PSL3) G2 B2 (PSp4)

2-rank 2 3 4

Table 1. Algebraic groups of Lie rank 2.
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using modular character theory, and later by ordinary character theory). There is
also prior work in 2-rank 2 by Altseimer and there were hopes of returning to that,
but we are still dealing with the more accessible cases of higher 2-rank.

1E. L∗ theory in odd type: results. Recall that here we will always be assuming
the condition NTA2. We turn to mostly unpublished results. There are some useful
partial results that did make it into print at this level of generality, and some hints
of the general program can be seen.16 Here I give my views of what is currently
known.

One result that is in print concerns the case of strong embedding (Theorem 2.2
below). A simplified version of that is the following.

Fact 1.15. Let G be a simple L∗-group of finite Morley rank and finite 2-rank, with
a strongly embedded subgroup, and Prüfer 2-rank at least 2. Then the 2-rank of G
is its Prüfer 2-rank.

This result (and the full version given later) is less satisfactory than what we
have in the K ∗ case, where the Prüfer rank is reduced to 1, and the situation merits
further exploration. Thus the uniqueness branch of the L∗ theory remains open in
general, and our statements of classification results reflect that.

In particular, for the generic case, the classification result reads as follows.

Theorem 1.16 (Burdges, cf. [21]). A simple NTA2 L∗-group of finite Morley rank
and Prüfer 2-rank at least 3 is either a Chevalley group or has a strongly embedded
subgroup (so in the latter case, it has 2-rank equal to its Prüfer rank).

Coming to the case of Prüfer rank 2, the results currently focus on the cases with
2-rank at least 3. Here the uniqueness case does not pose difficulties (if one uses
the full force of Theorem 2.2). But other problems arise in the case of 2-rank 3.

Theorem 1.17 [22; 23]. A simple NTA2 L∗-group of finite Morley rank, Prüfer
2-rank 2, and 2-rank at least 4 is PSp4.

For the case of 2-rank 3 the result claimed is as follows.

Theorem 1.18 [22; 23; 24]. A simple NTA2 L∗-group G of finite Morley rank,
Prüfer 2-rank 2, and 2-rank 3 satisfies one of the following conditions.

(1) G ≃ G2 over an algebraically closed field.

(2) All involutions of G are conjugate; for i an involution of G, C(i) has the form
SL3 ∗ SL3 (possibly over different fields); the characteristics of both base fields
are 3, and their ranks are equal; and if X is the product of two root groups,
one from each factor, then

N ◦

G(X) ≤ C(i). (∗)
16In [19, §0.5] one can find some thoughts about an L∗ theory (with no mention of NTA2). Some

results on L∗ groups in the same vein as the K ∗ results are given there.
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Condition (∗) is the exotic condition. This seems to be the most elaborate con-
figuration currently known which may possibly occur in a minimal counterexample
to the algebraicity conjecture.

The preprints [21; 22; 23; 24] can be found (in some form) at my website and
should become available at arXiv after some additional review and editing. As
Burdges has become occupied with other matters it may take some time for that to
advance.17

In principle one could try to push the analysis further to the level of Prüfer
2-rank 2 and 2-rank 2, but one loses the signalizer functor theory, and with it, the
last general method of component analysis in centralizers of involutions. There is
some prior unpublished work by Altseimer in the K ∗ setting. Beyond this point,
one approaches the theories of minimal simple groups and groups of degenerate
type. At that point, while one is not necessarily limited to the K ∗ setting, the L∗

theory does not provide a useful point of view.
We spend the rest of the present article filling out our discussion of the results

mentioned, with one further note at the end. Accordingly, our usual notation and
hypotheses will be as follows.

Hypothesis 1.19. G is a connected simple group of finite Morley rank and finite
2-rank. It is an L∗ group and satisfies condition NTA2.

Of course, before dealing with the L∗ case one also develops some theory for
L-groups with NTA2, mainly in the connected case.

2. Uniqueness cases

In this section and the next we return to a discussion of the first main branch in the
various analyses under discussion, namely splitting off the so-called uniqueness
cases. The reader who prefers to follow the other branch can pass on to Section 4
with no loss of continuity.

The starting point for the uniqueness case is Theorem 2.2 below, which like
everything in this line follows on several iterations of similar results which have
been proved under varying hypotheses. It makes use of the following key notion,
and several other technical terms which will be discussed further.

17I mention in passing that it has occurred to me that the sections devoted to ‘background material”
in those preprints might be helpful in thinking about the content and focus of a comprehensive
introduction to the theory of groups of finite Morley rank in odd type, for which it seems a book would
be considerably more useful than a survey, as the material needs to be revisited, unified, and put at
the level of generality most suited for potential applications. In the preprints, what can be quoted is
quoted, and what needs elaboration or variation is elaborated on, or varied, by ad hoc arguments, with
respect to the precise needs of the main argument.
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Definition 2.1. Let G be a group of finite Morley rank and V an elementary abelian
2-subgroup. Then 0V (G) is the subgroup generated by C◦

G(E) with E varying over
subgroups of V of index 2.

We are interested in 0V for V elementary abelian of rank 2, and thus 0V is gen-
erated by connected components of centralizers of involutions. Some terminology
used in the following will be explained afterward.

Theorem 2.2 (generation theorem: [19, Theorem 6.6]18). Let G be a simple L∗-
group of finite Morley rank and odd type with 2-rank at least 3, and V an elementary
abelian 2-group of rank 2 with 0V < G. Then the following hold.

(1) The normalizer of 0V in G is a strongly embedded definable subgroup.

(2) G is a D∗-group.

(3) The Sylow 2-subgroups of G are 2-tori.

(4) The Weyl group W is nontrivial, and if r is the smallest prime divisor of the
order of the Weyl group, then G contains a nontrivial unipotent r-subgroup.

In particular, if one starts with any strongly embedded subgroup M then for
any elementary abelian subgroup V of 2-rank at least 2 one has 0V ≤ M and thus
one arrives at the same conclusions, with a strongly embedded subgroup which is
definable (under the stated assumptions on G).

Now let us look at the rest of the terminology used above. First of all, in the
L∗ context the analogs of solvable group and minimal connected simple group are
D-group and D∗-group, respectively.

Definition 2.3. A connected group of finite Morley rank is a D-group if all of its
connected simple definable sections are of degenerate type. D∗-groups are defined
similarly in terms of proper sections.

This is not to say that the class of D-groups is a satisfactory generalization of
the class of solvable groups, but it is the class we are forced to deal with in this
context.

The second point concerns the Weyl group, defined classically (for compact Lie
groups, and later for algebraic groups) as N (T )/T for a maximal torus (in the
appropriate sense). But here the Weyl group is defined somewhat differently.

Definition 2.4. Let G be a group of finite Morley rank. A decent torus in G is
a definable divisible abelian subgroup which is the definable hull of its torsion
subgroup.

18Note on [19]: The statement of Theorem 1.2 given there is over-enthusiastic in its level of
generality, replacing 2 by an arbitrary prime p, but overlooking a step where in fact p should have
been 2. The situation, and the appropriate level of generality for the various results, is clarified by the
remarks in the corresponding MathSciNet review, and in more detail in [28, Section 4].
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The Weyl group associated with a maximal decent torus T is the finite group

WT = N (T )/C(T ).

By a conjugacy theorem, this is well-defined up to conjugacy in G.
One ingredient in the proof of Theorem 2.2 is a generation theorem for groups

of degenerate type.

Theorem 2.5 [15, Theorem 5]. Let G be a group of finite Morley rank of degenerate
type and V a 4-group acting definably on G. Then G = 0V (G); that is, G is
generated by the connected centralizers

C◦

G(a) (a an involution in V ).

It was at this point in [15] that the question of emancipating oneself from the
K ∗ hypothesis was raised.

Returning to the last point of Theorem 2.2, we can be more explicit about the
nontriviality of the Weyl group. One begins with a Sylow 2-subgroup S contained
in the strongly embedded subgroup M . At this point this is known to be a 2-torus.
In this situation the involutions of S are conjugate in M and by a Frattini argument
WS acts transitively on this set. So WS is nontrivial. Now take a maximal decent
torus T containing S. By a Frattini argument WT induces WS on S.

3. Strong embedding

We discuss the proof of Theorem 1.14(2) from the point of view of the L∗ setting.
One would like to prove that a D∗-group of finite Morley rank and odd type satisfying
the condition NTA2, and having a definable strongly embedded subgroup M , must
have Prüfer 2-rank 1. In the K ∗ case one has a choice of proofs, following either
[26] or [4, Theorem 6.1]. Here we will be following the latter, but work in part with
D∗-groups with NTA2 rather than with minimal connected simple groups. There is
a great deal of additional material which may be relevant, found in (at least) the
papers [1; 4; 5; 17; 19; 18; 20; 26; 34].

We begin as follows. I am now discussing material for which there appears to be
no formal reference at this level of generality; but see [4] for a highly relevant discus-
sion — although the setting for that discussion was K ∗ theory, it very likely was also
intended at the time to serve as a partial template for an approach to the L∗ setting.

Proposition 3.1. Let G be a D∗-group of finite Morley rank and odd type satisfying
the condition NTA2, and suppose G has a definable strongly embedded subgroup M.
Set B = M◦ and let T be a Sylow 2-subgroup of M , F the Fitting subgroup of B
(the largest definable connected nilpotent subgroup). Then the following hold.

(1) T ∩ F = 1.

(2) If the Prüfer 2-rank is at least 2 then M > B and |M/B| is odd.
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(3) If the Prüfer 2-rank is at least 2 then B is a maximal definable connected
subgroup of G.

(4) B is a generous subgroup of G (i.e., a generic element of G belongs to a
conjugate of B).

There is a major case division in the proof according as the involutions of M lie
inside the Fitting subgroup or outside it. Our first point above indicates that the first
of these cases can be eliminated. The method in this case is to show that this would
lead to two disjoint generic subsets of the connected group G. This line of argument
is taken over from earlier analysis, but involves quite a bit of structural analysis.
It is interesting to see how that plays out when we cannot immediately invoke the
theory of solvable groups via the hypothesis of minimal connected simplicity.

The rest of the analysis above bears on the second case. The second point follows
quickly from the first given that the involutions of T must be conjugate in M ; we
touched on this point earlier.

With Proposition 3.1 in hand, we return to the K ∗ context (and, specifically, to
the last few lines of [4]). Then the group B is solvable, so it is a Borel subgroup
of G, and one may apply the following theorem to conclude.

Theorem 3.2 [4, Theorem 3.12]. Let G be a minimal connected simple group
of finite Morley rank and B a nonnilpotent generous Borel subgroup. Then B is
self-normalizing.

This can usefully be broken down somewhat, as follows. We note that the Weyl
group is variously defined as NG(T )/CG(T ) or NG(T )/C◦

G(T ) for T a maximal
decent torus of G, but for G connected the definitions agree, by [1, Theorem 1].

We will work with the following four results in the minimal connected simple
case, and use them to give a direct treatment of the case of strong embedding.

Fact 3.3. Let G be a minimal connected simple group of finite Morley rank with
nontrivial Weyl group W = WT of odd order, p a prime divisor of the order, and let
a be a p-element of G representing an element of order p in W .

(1) If p is a minimal prime divisor of the order of W then C(a) contains a nontrivial
p-unipotent subgroup [20, Corollary 5.2].

(2) If G is of degenerate type and C(a) contains a nontrivial p-unipotent subgroup
then G contains no divisible p-torsion [25, Lemma 3.5].

(3) Suppose that G is of degenerate type, that BT is a Borel subgroup contain-
ing C(T ), that a normalizes BT , and that T contains no p-torsion. Then
BT = C(T ) is nilpotent and CBT (a) = 1 [25, Proposition 3.10].

(4) If B is a Borel subgroup containing a nontrivial unipotent p-subgroup then p
does not divide [NG(B) : B] [1, Lemma 4.3].
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Setting aside the degeneracy hypotheses occurring in the literature, for which the
assumption that the Weyl group is of odd order should be sufficient, and coming
to the case of groups of finite Morley rank of odd type with a strongly embedded
subgroup M , and Prüfer rank at least 2 (to ensure a nontrivial Weyl group), one
can apply these conditions successively to BT = M◦, with p the smallest prime
divisor of the order of the Weyl group; (1) and (2) permit the application of (3) to
conclude that BT = F(BT ), contradicting Proposition 3.1(1).

We did not use (4) here, but it comes in to the proof of (3). We also did not use
Theorem 3.2 as stated, either. The proof of that theorem makes use of the following.

Fact 3.4 [25, Corollary 3.6]. Let G be a minimal connected simple group of degen-
erate type with a nontrivial Weyl group W and let p the smallest prime divisor of
the order of the Weyl group. Then there is no p-divisible torsion in G.

This in turn makes use of Fact 3.3(1).
There is a general discrepancy between the way these various principles are stated

and the way they are applied. In the literature one separates out the degenerate type
analysis from the odd type analysis rather sharply and in the case of odd type one
uses, in particular, the existing theory of groups with strongly embedded subgroups.
If one wants to redo that theory by other methods then one may want to borrow the
theory of groups with nontrivial Weyl groups of odd order from its usual context of
degenerate type. One must then check (and also, mention) that the results do not in
fact require degeneracy.

This point only arises if one is attempting to redo (or generalize) the theory of
strongly embedded subgroups without making use of results that rely on that result.
In the existing literature, several intertwined articles appeared at the same time,
with this point more relevant at some points than at others, and in particular [4]
discusses the way its results relate to those of [25] and why it is necessary to avoid
quoting certain prior results in their most general form.

Also noteworthy is the following result from [34], as well as its method of proof
and the comments Frécon makes on that proof and its relation to prior work. (The
paper [34] takes a rather different point of view — or point of departure — from the
one adopted here, and in particular makes use of somewhat different definitions.
But Frécon begins by discussing the relations among the various points of view
available quite thoroughly, and in particular shows that the conventions adopted
do not conflict. We pass over these issues here and refer the interested reader to
Frécon’s account.)

Fact 3.5 [34, Lemma 2.8]. Let G be a minimal connected simple group of finite
Morley rank, C a Carter subgroup and p the smallest prime divisor of the order of
the Weyl group WG . If C has a nontrivial p-element, then G is of odd type and WG

has even order.
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In particular, under these hypotheses, and supposing we have a nontrivial Weyl
group of odd order, it follows that there is no nontrivial p-torus in G. This result
was obtained about the same time, but a little later, than Fact 3.3, but as Frécon
notes, the proof is more direct. We are presently in a context where this sort of
nuance can be of great technical value. Frécon’s rather concise discussion following
his proof of Lemma 2.8 of some of the dependencies among different parts of the
theory as they were developed is valuable and pertinent.

One point of interest, for us, is the way the theory of solvable groups comes in.
This frequently involves one of the following two points: p-unipotent subgroups of
solvable groups lie in the Fitting subgroups, and in the minimal connected simple
case, each p-unipotent subgroup lies in a unique Borel. One can easily conceive of
reasonable hypotheses on degenerate type groups which might allow this type of
principle to be extended to D∗-groups.

On the other hand, the theory also makes some use on occasion of some other
delicate points from the solvable theory: conjugacy of Carter subgroups, and
the delicate Bender analysis, which amounts to a close study of the maximal
intersections of pairs of Borel subgroups. The latter topic once more invokes
the properties of p-unipotent subgroups, but also brings in the characteristic zero
unipotence theory. There are some results of striking generality on the theory of
Carter subgroups of general groups of finite Morley rank, something one does not
have in the finite case, not limited to the K ∗ case, but these do not fully cover the
degenerate case. (See Section B7.)

One interesting question (with a great number of reasonable variants) is whether
the mere assumption that B is solvable allows a similar treatment of the L∗ case
(which, recall, is just the D∗ case at this point). In this form, using the existing
techniques, this does not seem very likely, at least not without considerable addi-
tional work. We will continue this discussion, which is largely a discussion of open
questions, in an appendix of a more exploratory character.

One could ask quite similar questions about the theory of Carter subgroups in
groups of degenerate type, but we have not taken this up.

4. High Prüfer 2-rank

If we set aside the strongly embedded case, the identification of L∗-groups with
NTA2 in Prüfer 2-rank at least 3 may be completed. This is Theorem 1.16. In
[18] an axiomatic framework for the proof was set out which is sufficient for the
application of the argument of [7]. This framework is the following.

Hypothesis 4.1. G is a connected simple group of finite Morley rank and odd type
with Prüfer 2-rank at least 3.

T2 is a maximal 2-torus of G.
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6 is a family of subgroups of G of type (P)SL2. We suppose that 6 has the
following properties.

(1) 6g
= 6.

(2)
〈⋃

6
〉
= G.

(3) For K in 6 we have
(a) K is normalized by T2.
(b) CK (T2) is a maximal algebraic torus of K ; this torus is denoted TK .
(c) K = E(CG(CT2(K ))).
(d) K is a Zariski closed subgroup of any definable algebraic quasisimple

subgroup of G which contains K , and which is normalized by T2.

(4) For K1, K2 in 6 distinct, and L = ⟨K1, K2⟩, we have
(a) CT (K1) ∩ CT (K2) ̸= 1.
(b) Either K1 and K2 commute or L is an algebraic group of type A2, B2 = C2,

or G2, and in that case K1 and K2 are root SL2-subgroups of L normalized
by TL .

(c) The maximal tori TK1 , TK2 associated with K1 and K2 commute.
(d) T2 ∩ L = (T2 ∩ K1) ∗ (T2 ∩ K2) is a Sylow◦ 2-subgroup of L .

Such a family 6 is called a family of root SL2-subgroups with respect to the
2-torus T2.

The key to the construction of a suitable family 6 in the context of Theorem 1.16
is the identification of suitable algebraic subgroups of CG(i) for involutions i ∈ T2.
More precisely, one works within algebraic components of ECG(i).19 Much of the
work goes into the proof of the existence of these components.

Once one has sufficiently many such subgroups (as expressed by condition (2)),
the argument becomes comparatively formal. The failure of the generation condi-
tion (2) leads to a strongly embedded subgroup. After that, the rest of the analysis
involves ordinary root subgroups inside algebraic components L , taken with respect
to the algebraic torus TL . One occasionally invokes the assumption on high Prüfer
rank, and induction (4(a)), to bypass what would otherwise be challenging technical
issues.

To reach the point of departure, namely the existence of algebraic components
in centralizers of involutions, one needs signalizer functor theory. In this area, one
quickly encounters difficulties associated with bad fields, or more particularly, a
possible embedding of the additive group of one field in characteristic zero into the
multiplicative group of another such field. This is overcome using Burdges’ unipo-
tence theory, and involves consideration of the reduced ranks of the fields involved,
taking into account the generation of algebraic groups by unipotent subgroups.

19See Section B4.
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As far as the classification of groups of high Prüfer rank is concerned, it is
primarily the adaptation of the signalizer functor theory to the L∗ setting that is still
unpublished. For this, see the preprint [21]. We mention two noteworthy points.

First, one can put the hypothesis NTA2 into a more directly applicable form.
What follows is a slightly specialized version of what is currently Proposition 3.10
of [21] (in §3.3, Structure of L-groups with NTA2).

Fact 4.2. Let H be a connected L-group of finite Morley rank and odd type, satisfy-
ing NTA2. Suppose that

OF(H) ≤ Z(H).

Then

H = Ealg(H) ∗ K where K is connected and K/Z◦(K ) has degenerate type.

Here Ealg is the product of the (individually) algebraic components of E(H).
Hence the Sylow 2-subgroup of K is central in H , and connected.

This result is certainly useful as stated, but for technical reasons it seems neces-
sary to give a sharper version, replacing OF(H) by the largest connected normal
subgroup of F(H) whose torsion subgroup has bounded exponent.

Our second point, below, is particularly technical, but it captures one of the main
points. The statement highlights the role of cotorality as well as some rank con-
ditions relating to the Burdges unipotence theory. Furthermore, as formulated, the
following can also be applied in some situations in Prüfer rank 2 and 2-rank at least 3.

Fact 4.3 [21, Lemma 4.4]. Let G be an L∗-group of finite Morley rank of odd type,
satisfying NTA2. Let i, j, k be three commuting involutions in G and let ρ be either
a prime or a symbol (0, r) satisfying the conditions

r > r f,i , r ≥ r0,i .

Suppose the following.

(1) i and j are cotoral in G.

(2) θρ(k) ∩ CG( j) ≤ θρ( j).

Then
θρ(k) ∩ CG(i) ≤ θρ(i).

Here two involutions are said to be cotoral if they lie in some 2-torus of the group
G. It is known that in a connected group of odd type, each involution lies in some
2-torus. The same theory casts some light on the cotorality condition as well [20].
The issue of cotorality becomes more delicate, and therefore more important, in
the context of Prüfer rank 2. But for some purposes the condition that the Prüfer
2-rank is at least 3 can be replaced by the much less restrictive condition there is
an elementary abelian 2-group A of 2-rank 3 such that each pair of involutions in
A is cotoral — or even somewhat less.
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The use of the symbol ρ as either a prime p or a symbol (0, r) refers to the
Burdges unipotence theory, which extends the notion of p-unipotence to include a
family of notions of (0, r)-unipotence associated with the “prime” 0. In particular
the notation θρ(k) is defined using the unipotence theory as the unipotent radical,
in the sense of ρ, of the group Oσ C(k) (the largest connected normal solvable
definable subgroup of C(k) without involutions). This is the sort of subgroup one
always considers in connection with signalizer functor theory, for reasons touched
on further in Section B4.

Noteworthy here is the restriction on ρ in terms of two associated parameters
r f,i and r0,i involving the structure of C◦

G(i). We say a bit more about these.
The parameter r0,i is familiar from Burdges unipotence theory as the maximal

reduced rank associated with the odd solvable radical of CG(i). The parameter r f,i

on the other hand is less often met with. Here the notation “ f ” stands for field, and
the parameter r f,i measures the maximum reduced rank of the multiplicative group
of a field which occurs as the base field of a component of the group

Ealg
(
CG(i)/Oσ (CG(i))

)
,

where as above, Oσ means “largest connected normal solvable definable subgroup
without involutions”.

This analysis is finely tuned, and a good deal of it is foreshadowed by Burdges’
thesis; cf. [18].

5. Prüfer 2-rank 2, 2-Rank at least 3

We come to the case of Prüfer 2-rank 2 and 2-rank at least 3. Here the strongly
embedded configuration cannot arise — that would involve a connected Sylow 2-
subgroup, and in that case the 2-rank and Prüfer 2-rank would coincide (Fact 1.15).
So one may aim outright at identification.

As we explained at the end of Section 1D, in Prüfer 2-rank 2, even the K ∗ version
of the results is unpublished.20 We now resume this discussion once more, at the
level of the L∗ theory. This material is the subject of [22–24].

In 2-rank at least 4 one arrives at the expected identification: the group is PSp4.
In 2-rank 3 the target is G2. In the course of the analysis in 2-rank 3 two cases
arise, one leading to G2 as expected. The other branch leads to a configuration quite
familiar in the finite case, but eliminated there by character theory — initially, by
modular character theory, and later by ordinary character theory. This exotic case
is associated with a “base field” of characteristic three. It also has some uniqueness
properties with respect to unipotent subgroups.

20And elaborate; and not, as yet, particularly closely vetted. I give my current view of it.
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Apart from the exotic case, the treatments of the case of 2-rank at least 4 and
the case of 2-rank 3 have a great deal in common. In very general terms, the
line of analysis in both cases is similar to the analysis in high Prüfer rank, and in
particular the signalizer functor theory is brought to bear in the same way. The first
stage involves the analysis of algebraic components of centralizers of involutions,
and the second stage focuses on the structure of the Weyl group. However, the
treatment is far less “axiomatic” and involves much more detail at the level of
particular configurations, with a number of undesirable configurations requiring
close attention prior to their elimination.

The axiomatic approach in higher Prüfer rank was based on the idea that the
Dynkin diagram encodes the structure of certain Lie rank 2 subgroups and in Prüfer
rank 3 or more the induction hypothesis already controls the possibilities for these.

In the case of Prüfer rank 2, there is considerable uniformity in the treatment of
components. When one brings in the Weyl group the two cases divide and each
is handled separately and quite explicitly. Rather than applying general theory,
the general thrust of the analysis is a direct examination of the action of the Weyl
group on root subgroups and the verification of a qualitative form of the Chevalley
commutator formula on a case-by-case basis.

The target ultimately is to invoke the theory of BN-pairs of finite Morley rank [40].
As we have mentioned, the first phase, having to do with the existence and precise
determination of the algebraic components in centralizers of involutions, involves
some close analysis of potentially pathological configurations. Here one has recourse
to some specialized topics borrowed from finite group theory, notably the Thompson
A × B theorem.

As far as the case of Prüfer rank 2 and 2-rank 2 is concerned, where one aims at
identification of PSL3, the terrain is largely unexplored, with the exception of early
unpublished work by Altseimer. Here one should focus initially on the K ∗ context.
In that case, one can at least rule out the strongly embedded configuration at the start.

6. Lately: linearization theorems

From the very beginning, understanding the representation theory of algebraic
groups in the finite Morley rank category has been a major challenge, though
partial results on the topic have already played a major role in such topics as the
classification problem and the theory of permutation actions of finite Morley rank.

A recent milestone in this area is the following, a long-standing conjecture.21

21The genesis of this result, as a byproduct of measures taken in the recent (and as of this writing,
ongoing) pandemic, is discussed in [12]. The author remarks ”My triumph would be better deserved
if it was someone else’s conjecture; unfortunately, it was my own.” This I take to be as much a
sociological remark as a philosophical one.
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Theorem 6.1 [13, Theorem 1.4]. Let K be an algebraically closed field of charac-
teristic p > 0 and G the group of points over K of a simple algebraic group defined
over K . Assume that G acts definably and irreducibly on an elementary abelian
p-group V of finite Morley rank. Then V has a structure of a finite dimensional
K-vector space VK , compatible with the action of G.

The paper [13] uses enveloping algebra techniques in ways not previously seen
in the subject. This result clearly has implications for the general study of definable
actions of groups of finite Morley rank on abelian groups, and hence in the theory
of permutation groups generally. See [10].

The theorem could well be of some relevance also in looking into some of the
more recalcitrant configurations associated with the classification problem, such as
the strongly embedded configuration in the context of L∗ theory in odd type.

A comprehensive account will be found in Borovik’s contribution to this vol-
ume [13]. In addition to the linearization of actions of algebraic groups, there is a
more general form of linearization in the finite Morley rank context, which forces a
field into existence. This “Schur–Zilber” approach is discussed by Deloro [29], in
the context of a broad generalization of the result, and a novel approach.

Appendix A: More on strong embedding

As we have indicated, a satisfactory treatment of strong embedding relies on the
hypothesis of minimal connected simplicity, that is, the assumption that all proper
definable connected subgroups are solvable, and then on the theory of solvable
groups of finite Morley rank, which is a rich subject that can be exploited in a
variety of ways, notably via Carter subgroup theory.

More than one route has been taken to the treatment of this case in the K ∗ context.
We indicated one such in the discussion around Fact 3.3.

Here we add a few comments about what is known in this direction more generally,
and consider weakenings of minimal connected simplicity that suggest themselves
as contexts for a broader treatment by the same methods.

A1. A few general results.

Fact A.1 [19, Theorem 6.6]. Let G be a simple L∗-group of finite Morley rank
of odd type, with m2(G) ≥ 2. Let V be an elementary abelian 2-group of rank 2
with 0V < G.

If p is the least prime divisor of M/M◦, then G contains a nontrivial unipotent
q-subgroup for some prime q ≤ p.

(One may rephrase the hypothesis on 0V as stating that G has a strongly embed-
ded subgroup.)
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Fact A.2 [15, Proposition 1.1, Theorem 4]. Let G be a connected, nontrivial group
of finite Morley rank and g ∈ G. Then the centralizer CG(g) is infinite. If g is a
p-element for some prime p, then C(g) contains an infinite abelian p-subgroup.

Lemma A.3. Let G be a D∗-group of finite Morley rank with a definable strongly
embedded subgroup M , and B = M◦. Suppose also condition NTA2.

Let w ∈ M\B. Then CB(w) is of unipotent type (i.e., contains no nontrivial
divisible torsion).22

Proof. Suppose S is a nontrivial divisible abelian torsion subgroup in CB(w).
Then CB(S) contains a maximal decent torus T of M and hence C(S) ≤ M . But
C(S) is connected [1, Theorem 1], and so C(S) ≤ B. Thus w ∈ C(S) ≤ B, a
contradiction. □

Taking p to be a divisor of the order of the Weyl group in this setting, it follows
that Up F(B) = 1.

From the solvable theory, the following is key for our purposes. and stands apart
from much of the rest of the theory.

Fact A.4 [25, Lemma 6.6 (Frécon)]. Let G be a connected solvable group of finite
Morley rank, and let H < G be a definable connected subgroup of G such that
N ◦

G(H) = H. Then NG(H) = H.

It would be helpful to have something that can be put to similar use in the context
of D-groups.

A2. Generalizations of minimal connected simplicity. The condition of minimal
connected simplicity states that proper connected definable subgroups are solvable.
One can generalize this condition either by restricting attention to some definable
subgroups — notably N ◦(A) for suitable definable subgroups A — or by weakening
the solvability condition, as in the D∗-condition.

Since there are substantial obstacles to the extension of the K ∗ theory to the D∗

context it seems worthwhile to consider natural extensions of the K ∗ context which
support the existing techniques. In that setting, one anticipates that the few points
where the theory of solvable groups enters in a serious way might pose further
problems, and if so it would be good to identify them.

We discuss some formal aspects of this. The following conditions are very
natural.

Definition A.5. Let G be a group of finite Morley rank, p a prime, and H a
definable subgroup.

22As remarked in [16], among all possible definitions of unipotence, this was “the broadest one
we can imagine”. Fortunately — given that — it is also a nontrivial condition that can be applied.
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(1) The group G is Up-trivial if for every degenerate type simple definable section
L of G, any definable action of a unipotent p-group on L is trivial. In particular,
L contains no nontrivial p-unipotent subgroup.

(2) H is Up-solvable if the subgroup Up(H) generated by p-unipotent subgroups
is solvable (equivalently, Up(H) ≤ F(H)).

(3) A definable subgroup H of G is a Up-uniqueness subgroup if for every non-
trivial p-unipotent subgroup U of H , we have N ◦

H (U ) ≤ H ; and we suppose
also that H does in fact contain some nontrivial p-unipotent subgroup.

(4) G is Up-minimal if every proper connected definable subgroup is Up-solvable.

(5) G is an N ◦

Up
-group if for every nontrivial abelian subgroup A the connected

normalizer N ◦

G(A) is Up-solvable.

Here condition (1) is a reasonable form of “tameness” to impose, allowing one
to explore the configurations remaining when the more extreme configurations
are eliminated. However one would not expect to work directly with that type of
hypothesis, but rather with more abstract conditions of the type of (4) or (5). Here
condition (3) is an expression of “Bender principle” used by Jaligot and developed
further by Burdges, which one would expect to play a major role.

In particular solvable groups are Up-solvable, minimal connected simple groups
are Up-minimal, and Up-minimal connected simple groups are N ◦

Up
-groups. And if

a Borel subgroup B of a minimal connected simple group G contains a nontrivial
p-unipotent subgroup, then it is a Up-uniqueness subgroup.

We would also prefer to put more emphasis on the particular subgroup B = M◦, to
the extent possible, and on the connected centralizers of Weyl group representatives,
but not on the first pass.

Lemma A.6. Let H be a connected D-group of finite Morley rank. If H is Up-trivial
then it is Up-solvable.

Proof. Let U = Up(H). By assumption U ≤ C(EH).
We first treat the case in which

Up F(H) = 1.

Then U ≤ C(F(H)) and hence U ≤ C(F(H)E(H)) = Z(F(H)), so U = 1 in this
case.

For the general case, let H = H/Up F(H). Then Up F(H)=1 and U ≤Up(H)=1,
so U ≤ Up F(H) as claimed. □

Thus a connected simple D∗-group of finite Morley rank which is Up-trivial is
Up-minimal.
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Lemma A.7. Let G be a connected simple D∗-group of finite Morley rank which is
an N ◦

Up
-group. Then any maximal connected definable Up-solvable subgroup H

with Up(H) > 1 is a Up-uniqueness subgroup.

In other words, if we call a maximal connected definable Up-solvable subgroup a
Up-Borel subgroup, then each Up-local subgroup is contained in a unique Up-Borel
subgroup.

This is the usual argument.

Proof. Assuming the contrary we can find a nontrivial p-unipotent subgroup U of H
and another maximal connected definable Up-solvable subgroup H1 containing it.

We may suppose further that the pair (H, H1) is chosen to maximize U . If
U = Up(H) = Up(H1) then H = H1 for a contradiction, so we may suppose
Up(H) > U . Then N ◦

Up(H)(U ) > U and by maximality N ◦

G(U ) ≤ H . It follows that
Up(H1) ≤ H , so U = Up(H1) and H1 ≤ N ◦

G(U ) ≤ H , for a contradiction. □

Appendix B: Glossary

Here we review some of the technical notions that occur at various points in the
discussion, to simplify navigation. Many of these notions are not explicitly defined
above, but in such cases we indicate the ideas behind them and the roles they play.

It may be helpful to have some of this collected together in one place. We also
include some introductory remarks which are less directly pertinent to the technical
discussion.

B1. Group theoretic terminology. We use terminology coming both from finite
group theory and algebraic group theory. The one place where there is a notable
terminological conflict between these two subjects is the use of the term “simple”
in algebraic group theory in the sense of “quasisimple” in finite group theory. We
use the term “simple” in its more literal sense.

Notions from finite group theory (or abstract group theory in general) can typically
be taken over directly into our subject; notions from algebraic group theory may
inspire similar notions with less geometrical definitions, which should be equivalent
to the original definitions in the context of algebraic groups over algebraically closed
fields which carry no additional definable structure. These notions are thoroughly
covered by [14], and again, with some additions, in [3], where the bulk of Chapter I
concerns various topics that fall under this heading.

We tend to work with definable subgroups, and definable sections (quotients of
a definable subgroup by a definable normal subgroup). On the other hand, some
very important subgroups that come into play tend not to be definable — notably,
2-Sylow subgroups — and accordingly when subgroups are meant to be definable,
this is always specified. One has, in general, the definable hull of any subgroup —
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or any subset — that is, the smallest definable group containing the given set. (One
should avoid using the possibly more natural expression definable closure in this
sense, as it has another meaning in model theory, of a very different character.)

It is a theorem of algebraic group theory that simple algebraic groups are linear
groups, and the classification of the simple algebraic groups makes use of this point.
We tend to identify these groups (which are functors) with the actual groups of
rational points over an algebraically closed field. This is in some ways similar
to talking about structures — or a particular structure — rather than theories. In a
similar vein we tend to assume that our groups are saturated, though in the context
of algebraic groups, there is occasionally a point to considering what happens over
the algebraic closure of the prime subfield. None of this will be visible in the
discussion in this paper; it lurks in the background.

Any algebraic group is a group of finite Morley rank, when realized concretely as
a group over some fixed algebraically closed field, and the most striking applications
of the theory to classical problems of mathematics, to date, actually come in the
context of abelian varieties, and hence lie more or less at the opposite pole from the
algebraicity conjecture. On the other hand, those applications pass in some cases
through differential algebra, and in that context one has also a rich Galois theory
and structural issues in the simple case, so in that respect at least, the subjects are
not entirely foreign to one another. In this connection I would point to [35; 36].

Less concretely relevant, but I think of some importance, is the fact that the theory
sits within the broader subject of stable group theory, which provides possibly the
most satisfactory framework for thinking about the model theoretic issues that arise.
For this the main point of entry remains [45], or its English translation.

In Table 2 (at the end) we list some more or less standard group theoretic operators
whose definitions may vary a bit in the setting of groups of finite Morley rank,
depending on whether or not issues of definability or connectedness arise. In most
cases one proves definability under standard definitions. Notational conventions
may vary, and we follow the preprints [21; 22] here, but most of this is found in [14].

Our convention here is that there is an ambient group G, and that H is one of
the customary notations for a subgroup (more often than not, a definable subgroup).
We mention that one occasionally takes connected components of nondefinable
subgroups, using relatively definable subgroups (i.e., suitable intersections).

In the finite case the use of O(G) is based on the Feit–Thompson theorem and
it presumably corresponds more closely to Oσ (G). The most immediate analog of
“odd order” in the context of finite Morley rank is “without involutions”. It is awk-
ward to try to work with a very direct analog of the operator O(G) as used in the finite
case — consider for example an algebraic torus — so we pass directly to the con-
nected analog. Most of the time it is used in a context like OF(H) where it is already
solvable, and one has the solvable version Oσ available when it is more appropriate.
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B2. Basic notions. Simple groups of finite Morley rank are divided into degenerate,
odd, even, and mixed types (pp. 511, 510).

The degenerate and odd types have finite 2-rank (zero or positive, respectively),
while even and mixed type have infinite 2-rank (pp. 506, 511, 510). When the
2-rank is finite, a critical parameter is the Prüfer 2-rank, which corresponds in the
algebraic setting to the Lie rank (p. 511).

The focus of the Borovik program (p. 506) has been on K ∗-groups, but it turns
out that in even and mixed type, by extending the theory to the so-called L∗-groups
one can get a proof of the algebraicity conjecture for even and mixed type (p. 509).

A variant L∗-theory for odd type presents more difficulties. In this case the
natural definition has to be supplemented by a condition denoted NTA2 which is
parallel to Altınel’s Lemma 1.5 in the even or mixed type setting. The condition
NTA2 remains conjectural and appears to have roughly the level of difficulty of a
full classification in the case of simple groups of Prüfer rank 1 (Definition 1.11).

In the L∗-theory one has also the more technical notions of D-groups and D∗-
groups, which play much the same role in that context as solvable groups and
minimal connected simple groups do in the K ∗ context (Definition 2.3).

We subdivide odd type correspondingly into thin, quasithin, and generic type,
corresponding to Prüfer 2-rank 1, 2, or higher (Definition 1.7).

We also must consider some notions of groups of uniqueness type, notably the
case of strong embedding. One hopes that these groups will have Prüfer 2-rank 1.
This is known in the K ∗ context (Theorems 1.14 and 2.2).

To get one’s bearings in the technical side of the subject it is helpful to go to [18],
which among other things provides a guide to a substantial body of prior work.

B3. Torsion and Weyl groups. A 5-torus is a divisible abelian torsion group and
a p-torus is a divisible abelian p-group. A decent torus is the definable hull of a
5-torus. One has conjugacy theorems for the maximal p-tori, 5-tori, or decent tori.
The Weyl group of a group G of finite Morley rank is the finite group NG(T )/CG(T )

where T is a maximal decent torus (or a maximal 5-torus). See Definition 2.4.
The study of torsion in groups of finite Morley rank leads into the close study

of Weyl groups in exotic configurations and is of particular importance in groups
which are small in the sense of uniqueness type or which are minimal connected
simple (p. 519).

B4. Classification techniques. We have made rather cavalier use of the notation
EC(i), beginning with p. 522. This permeates the classification theory for finite
groups as well as the L∗ theory as discussed here, So we elaborate.

Here i is an involution, and C(i) its centralizer. In an odd type group an involution
plays the role of a semisimple element, and the conjecture we aim to prove predicts
the structure of this group very precisely. The subgroup EC(i) is the largest normal
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subgroup of C(i) which is a direct product of quasisimple groups (that is, groups
which are simple modulo their center, and perfect). For our purposes only the
algebraic factors of EC(i) are useful; the degenerate factors will be ignored. If one
has enough algebraic factors then one hopes to reconstruct the entire group from
them. Here the odd solvable radical Oσ C◦

G(i) represents a potential obstacle to this.
The key ingredient in the analysis of EC(i) (more specifically, for the control

of Oσ C(i)) is the highly technical signalizer functor theory (p. 522). This leads
eventually to the desired algebraic components of EC(i).

This theory makes extensive use of the Burdges unipotence theory, which provides
a characteristic zero analog of the p-unipotence theory (p. 523). The theory also
requires a good understanding of torality and cotorality of involutions (p. 523),
when one comes to the case of Prüfer 2-rank 2.

For our purposes, the most important point of the Burdges unipotence theory
is that the additive group of a field is “more unipotent” than its multiplicative
group (and also, that simple algebraic groups are generated by copies of additive
groups of the base field). This feeds into the signalizer functor theory via a study of
“sufficiently unipotent” base fields, in the case in which simple algebraic sections
of a given group involve more than one base field. The precise measure of this is
given by two parameters denoted r f,i and r0,i associated with an involution i , where
the subscript “ f ” refers to base fields and the subscript “0” refers to the general
unipotence theory in characteristic zero. We do not give further details here.

Another important feature of the unipotence theory is a notion of unipotent
radical. Given that there are several notions of unipotence in play, there are several
associated notions of unipotent radical, and not all are well-behaved. Subscripts as
in θρ tend to make (oblique) references to such notions.

B5. Simple algebraic groups. We rely in a certain sense on the classification of
the simple algebraic groups as Chevalley groups over algebraically closed fields.
The point here is that we have no hope of classifying the possible theories of these
groups in an arbitrary language. There is presently a very rich supply of theories of
algebraically closed fields of finite Morley rank, inspired by Hrushovski’s refutation
of the original formulation of Zilber trichotomy. We aim only to classify the
groups obtained as abstract groups, and for this it is very natural to work toward
some explicit presentation of the group; some such approach remains necessary to
establish the existence of these groups, in fact, a point which remained an oddly
open question for half a century between the construction of the smallest algebraic
group of exceptional type by Dickson and Chevalley’s explanation of how to use a
suitably chosen basis for the associated Lie algebra as to allow for a sufficiently
well-defined exponential map over an arbitrary base field. Standard references
for this would be Steinberg’s notes and Carter’s book, both of which work very
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directly with explicit generators and relations. Chevalley had also asked for a more
geometrical theory, and in addition to the general theory of algebraic groups, the
Tits theory of buildings (and its later refinement to Moufang buildings) provides
a satisfactory approach. On a more technical level, Tits’ more ad hoc theory of
BN-pairs presents an efficient way of reaching the Chevalley–Steinberg relations.
Both of these approaches of Tits have been taken over to the context of groups of
finite Morley rank and provide essential tools for the efficient recognition of simple
groups as algebraic groups once a sufficient amount of group theoretic structural
analysis has been carried out.

It will be noticed that in this context we are never actually in a position to use the
classification of the simple algebraic groups, but it tells us what we are aiming for.
The same is true in the context of finite group theory, where one has also to make
one’s way past 26 sporadic groups (and several phantoms of other, nonexistent,
exceptions) and allow for the so-called “twisted forms” which occur when the base
field is not algebraically closed, but using the same underlying theories.

The Borovik program, in its various incarnations, accepts that we are studying
what is ultimately an algebraic problem involving the pure group language and that
there does not appear to be a more purely model theoretic route toward significant
structural results. At the same time we have learned a good deal more about what
pure model theory has to contribute, notably from the direction of model theory of
fields (this is also the case in the study of permutation groups of finite Morley rank).

We will come back to all of this in a more concrete spirit below, in terms of how
this works out in the context of the theory described in this paper. (The material of
[3] relies for the most part on fundamentally different methods which arose much
later, within the specific context of the classification of the finite simple group, and
which were in fact still undergoing development as that project came to an end.)

B6. Identification theorems. More concretely, the developments just mentioned
provide the methods used in the study of simple groups of finite Morley rank in
odd type to identify the groups in favorable cases.

In high Prüfer 2-rank one can use a method of Curtis–Tits–Phan as a way of
recovering the Steinberg–Chevalley presentation efficiently, after sufficient structural
analysis, and in Prüfer 2-rank 2 one may use the theory of BN-pairs of finite Morley
rank for the same purpose, the latter generally requiring a more detailed structural
analysis. Here, as generally, see [3] for a detailed review of how that actually works.

The model for the treatment in high Prüfer rank is [7]23 and the corresponding
axiomatization in Section 4 can be taken as the definition, for our purposes, of the
Curtis–Tits–Phan approach.

23Or possibly the sharper [8], which retains a K ∗ hypothesis but in a more limited form. This is
published only on arXiv, but finds application in [9].
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Our discussion of the case of Prüfer 2-rank 2 (and 2-rank at least 3) in Section 5
does not say much about the final identification or the underlying theory of BN-pairs.
Our discussion here has tended to focus on 2-tori as an approximation to algebraic
tori. The general thrust of the theory of BN-pairs is to identify a “Borel” subgroup
B and the “normalizer N of a maximal torus in B” with properties sufficient to
characterize the ambient group.

We work with the group N = N (T2) and with a certain subgroup B = TU of G,
where the construction of U is one of the main difficulties (this is blocked by one
bad configuration in the case in which the target group is G2).

The relevant identification theorem for our purposes is supplied by [48; 49] and
once one has identified suitable groups B, N , the structural information required to
apply the identification theorem comes down to a verification that the root subgroups
of U with respect to T (and their opposites) can be labeled so as to give the expected
action of the Weyl group (as well as some loose structural information of the sort
given in an explicit form by the Chevalley commutator formula).

In [3] we discussed these two approaches to identification in detail in Sections 6, 7,
and 10 of Chapter III, which was devoted to a number of “Specialized Topics” under
the broad heading of “Methods”. Section 9 of that chapter discusses the signalizer
functor theory, which is a considerably more specialized topic that lies more or less
at the center of the technical concerns of the present discussion (see above). It is in
fact one of the main tools for actually bringing the structural analysis to the point
where the standard approaches to identification can be applied.

B7. Solvable group theory; Carter subgroups, unipotence theory. The point of
view taken by L∗ theory in odd type makes only limited use of solvable group
theory, when compared to the prior K ∗ theory, which makes very good use of
it, notably the parts that go beyond the “basic theory”. Of particular importance
in that context are the Borel subgroups, which as usual are maximal connected
solvable subgroups. In the L∗ setting one makes good use of the Fitting subgroup
and, occasionally, a slightly larger solvable subgroup of momentary interest, but
the formal analog of “solvable group” would be “D-group”, for which there is not
much of a theory in existence, or expected.

From the basic part of the theory comes, in particular, the theory of Hall subgroups
(and, in particular, Sylow theory in full generality), the Fitting subgroup, and a
good structure theory for nilpotent subgroups. At a more sophisticated level one has
Carter subgroup theory. Carter subgroups are classically defined in the context of
finite solvable groups as self-normalizing nilpotent subgroups, and provide a kind
of analog of maximal tori in a general setting. In particular, they are conjugate.

In the context of groups of finite Morley rank, Carter subgroups are taken rather
to be definable nilpotent almost-selfnormalizing subgroups (that is, of finite index
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Symbol Finite version Our version See

CG(X) centralizer (same) Section B4

E(H)
〈

quasisimple subnormal
components

〉
(same) Section B4

F(H) Fitting subgroup (same) Proposition 3.1

NG(H) normalizer (same)

O(H) odd order radical connected degenerate
radical Fact 4.2

Oσ (H) not used O(σ ) = σ(O) p. 524

σ(H) solvable radical (same)

Up not used
〈

p-unipotent
subgroups

〉
Lemma 1.6

U(0,r) inconceivable characteristic 0
unipotence Section B4

WT , WG not used Weyl group Definition 2.4

H◦ not used connected component [14]

C◦
G , N◦

G , . . . not used connected component
of CG , NG , . . .

e.g., Theorem 1.18

0S,2 ⟨NG(A) | m2(A) = 2⟩ similar (definable hull) Definition 1.13

0V (G) ⟨CG(E) | [V : E] = 2⟩ ⟨C◦
G(E) | [V : E = 2]⟩ Definition 2.1

θ signalizer functors (ad hoc) signalizer functors
(nilpotent) Section B4

Table 2. Group theoretic operators.

in their normalizers). In this context, one does not require solvability to prove
existence, and in the solvable case one is able to recover a fully satisfactory analog
of the classical (finite) theory. The theory also provides a possible point of departure
for a truly geometrical approach to the classification problem and issues around the
algebraicity conjecture, not fully realized, but playing a very significant role in the
development of the theory over the last two decades.

At this point it seems appropriate to simply quote a large portion of [3, pp. 108–
109], which refers to §I.8 (Solvable groups) and more specifically to §I.8.4 (Carter
subgroups).

The Carter subgroup was treated first by Wagner in [50], and a
full theory given by Frécon in a series of papers beginning with
his thesis [31] [cf. [32]]. . . general and extensive. . . . The detailed
theory of solvable groups is particularly relevant to the study of
minimal simple connected groups, . . . which comes into its own in
the treatment of odd type, where problems are often reduced to the
minimal simple case and then handled by close analysis there.

The theory of Carter subgroups is very powerful.
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Also noteworthy, though not much exploited, is Frécon’s work on the conjugacy
problem in general, one of the tours de force of the subject [33].

The unipotence theory, on the other hand, continues to play a strong role in the
theory and consequently has been discussed above. It tends to come into the picture
in connection with Fitting subgroups of not necessarily solvable groups (either
as subgroups, or with respect to the action of abelian subgroups on the Fitting
subgroup). The results are rather scattered in the literature and this is one of a
number of points that would be worth revisiting in a comprehensive text relating to
the methods and results of theory of odd type groups.

References

[1] T. Altınel and J. Burdges, “On analogies between algebraic groups and groups of finite Morley
rank”, J. Lond. Math. Soc. (2) 78:1 (2008), 213–232. MR Zbl

[2] T. Altınel and J. Wiscons, “Actions of Alt(n) on groups of finite Morley rank without involutions”,
Proc. Amer. Math. Soc. 152:1 (2024), 391–401. MR Zbl

[3] T. Altınel, A. Borovik, and G. Cherlin, Simple groups of finite Morley rank, Math. Surveys and
Monographs 145, Amer. Math. Soc., Providence, RI, 2008. MR Zbl

[4] T. Altınel, J. Burdges, and O. Frécon, “On Weyl groups in minimal simple groups of finite
Morley rank”, Israel J. Math. 197:1 (2013), 377–407. MR Zbl

[5] T. Altınel, J. Burdges, and O. Frécon, “Structure of Borel subgroups in simple groups of finite
Morley rank”, Israel J. Math. 208:1 (2015), 101–162. MR Zbl

[6] A. Baudisch, M. Hils, A. Martin-Pizarro, and F. O. Wagner, “Die böse Farbe”, J. Inst. Math.
Jussieu 8:3 (2009), 415–443. MR Zbl

[7] A. Berkman and A. Borovik, “A generic identification theorem for groups of finite Morley rank”,
J. London Math. Soc. (2) 69:1 (2004), 14–26. MR Zbl

[8] A. Berkman and A. Borovik, “A generic identification theorem for groups of finite Morley rank,
revisited”, preprint, 2011. arXiv 1111.6037

[9] A. Berkman and A. Borovik, “Groups of finite Morley rank with a pseudoreflection action”, J.
Algebra 368 (2012), 237–250. MR Zbl

[10] A. Berkman and A. Borovik, “Groups of finite Morley rank with a generically multiply transitive
action on an abelian group”, Model Theory 1:1 (2022), 1–14. MR Zbl

[11] A. Borovik, “Simple locally finite groups of finite Morley rank and odd type”, pp. 247–284 in
Finite and locally finite groups (Istanbul, 1994), edited by B. Hartley et al., NATO Adv. Sci. Inst.
Ser. C: Math. Phys. Sci. 471, Kluwer Acad. Publ., Dordrecht, 1995. MR Zbl

[12] A. Borovik, “A view from lockdown: mathematics discovered, invented, and inherited”, pp.
29–34 in Math in the time of corona, edited by A. Wonders, Springer, 2021. MR

[13] A. Borovik, “Finite group actions on abelian groups of finite Morley rank”, Model Theory 3:2
(2024), 539–569.

[14] A. Borovik and A. Nesin, Groups of finite Morley rank, Oxford Logic Guides 26, Oxford Univ.
Press, 1994. MR Zbl

[15] A. Borovik, J. Burdges, and G. Cherlin, “Involutions in groups of finite Morley rank of degenerate
type”, Selecta Math. (N.S.) 13:1 (2007), 1–22. MR Zbl

https://doi.org/10.1112/jlms/jdn025
https://doi.org/10.1112/jlms/jdn025
http://msp.org/idx/mr/2427061
http://msp.org/idx/zbl/1153.03009
https://doi.org/10.1090/proc/16530
http://msp.org/idx/mr/4661090
http://msp.org/idx/zbl/07757758
https://doi.org/10.1090/surv/145
http://msp.org/idx/mr/2400564
http://msp.org/idx/zbl/1160.20024
https://doi.org/10.1007/s11856-012-0185-y
https://doi.org/10.1007/s11856-012-0185-y
http://msp.org/idx/mr/3096620
http://msp.org/idx/zbl/1298.20047
https://doi.org/10.1007/s11856-015-1195-3
https://doi.org/10.1007/s11856-015-1195-3
http://msp.org/idx/mr/3416916
http://msp.org/idx/zbl/1339.20030
https://doi.org/10.1017/S1474748008000091
http://msp.org/idx/mr/2516302
http://msp.org/idx/zbl/1179.03041
https://doi.org/10.1112/S0024610703004733
http://msp.org/idx/mr/2025324
http://msp.org/idx/zbl/1047.03028
http://msp.org/idx/arx/1111.6037
https://doi.org/10.1016/j.jalgebra.2012.06.022
http://msp.org/idx/mr/2955231
http://msp.org/idx/zbl/1270.20034
https://doi.org/10.2140/mt.2022.1.1
https://doi.org/10.2140/mt.2022.1.1
http://msp.org/idx/mr/4659500
http://msp.org/idx/zbl/07697358
https://doi.org/10.1007/978-94-011-0329-9_10
http://msp.org/idx/mr/1362813
http://msp.org/idx/zbl/0840.20021
https://doi.org/10.1007/978-3-030-77166-9
http://msp.org/idx/mr/4428509
https://doi.org/10.2140/mt.2024.3.539
http://msp.org/idx/mr/1321141
http://msp.org/idx/zbl/0816.20001
https://doi.org/10.1007/s00029-007-0030-z
https://doi.org/10.1007/s00029-007-0030-z
http://msp.org/idx/mr/2330585
http://msp.org/idx/zbl/1185.20038


AROUND THE ALGEBRAICITY PROBLEM IN ODD TYPE 537

[16] A. Borovik, J. Burdges, and G. Cherlin, “Simple groups of finite Morley rank of unipotent type”,
pp. 47–61 in Algebra, logic, set theory, edited by B. Löwe, Stud. Log. (Lond.) 4, Coll. Publ.,
London, 2007. MR Zbl

[17] A. Borovik, J. Burdges, and A. Nesin, “Uniqueness cases in odd-type groups of finite Morley
rank”, J. Lond. Math. Soc. (2) 77:1 (2008), 240–252. MR Zbl

[18] J. Burdges, “Signalizers and balance in groups of finite Morley rank”, J. Algebra 321:5 (2009),
1383–1406. MR Zbl

[19] J. Burdges and G. Cherlin, “A generation theorem for groups of finite Morley rank”, J. Math.
Log. 8:2 (2008), 163–195. MR Zbl

[20] J. Burdges and G. Cherlin, “Semisimple torsion in groups of finite Morley rank”, J. Math. Log.
9:2 (2009), 183–200. MR Zbl

[21] J. Burdges and G. Cherlin, “L∗-Groups of odd type with restricted 2-toral automorphisms, I:
High Prüfer 2-rank”, preprint, 2022, available at https://sites.math.rutgers.edu/~cherlin/Paper/
inprep.html.

[22] J. Burdges and G. Cherlin, “L∗-Groups of odd type with restricted 2-toral automorphisms, II:
Prüfer 2-rank 2 and 2-rank at least 3”, preprint, 2022, available at https://sites.math.rutgers.edu/
~cherlin/Paper/inprep.html.

[23] J. Burdges and G. Cherlin, “L∗-Groups of odd type with restricted 2-toral automorphisms,
III: Identification of PSp4”, preprint, 2022, available at https://sites.math.rutgers.edu/~cherlin/
Paper/inprep.html.

[24] J. Burdges and G. Cherlin, “L∗-Groups of odd type with restricted 2-toral automorphisms,
IV: Toward the identification of G2”, preprint, 2022, available at https://sites.math.rutgers.edu/
~cherlin/Paper/inprep.html.

[25] J. Burdges and A. Deloro, “Weyl groups of small groups of finite Morley rank”, Israel J. Math.
179 (2010), 403–423. MR Zbl

[26] J. Burdges, G. Cherlin, and É. Jaligot, “Minimal connected simple groups of finite Morley rank
with strongly embedded subgroups”, J. Algebra 314:2 (2007), 581–612. MR Zbl

[27] L. J. Corredor, A. Deloro, and J. Wiscons, “Sym(n)- and Alt(n)-modules with an additive
dimension”, J. Algebra 623 (2023), 1–33. MR Zbl

[28] A. Deloro, “p-Rank and p-groups in algebraic groups”, Turkish J. Math. 36:4 (2012), 578–582.
MR Zbl

[29] A. Deloro, “Zilber’s skew-field lemma”, Model Theory 3:2 (2024), 571–586.

[30] A. Deloro and É. Jaligot, “Involutive automorphisms of N◦
◦ -groups of finite Morley rank”,

Pacific J. Math. 285:1 (2016), 111–184. MR Zbl

[31] O. Frécon, Étude des groupes résolubles de rang de Morley fini, Ph.D. thesis, Université
Claude Bernard – Lyon 1, 2000, available at http://www-math.sp2mi.univ-poitiers.fr/~frecon/
These.pdf.

[32] O. Frécon, “Sous-groupes anormaux dans les groupes de rang de Morley fini résolubles”, J.
Algebra 229:1 (2000), 118–152. MR Zbl

[33] O. Frécon, “Conjugacy of Carter subgroups in groups of finite Morley rank”, J. Math. Log. 8:1
(2008), 41–92. MR Zbl

[34] O. Frécon, “Automorphism groups of small simple groups of finite Morley rank”, Proc. Amer.
Math. Soc. 138:7 (2010), 2591–2599. MR Zbl

[35] J. Freitag and A. Minchenko, “Superstability and central extensions of algebraic groups”, Adv.
in Appl. Math. 72 (2016), 215–230. MR Zbl

http://msp.org/idx/mr/2412897
http://msp.org/idx/zbl/1137.03018
https://doi.org/10.1112/jlms/jdm106
https://doi.org/10.1112/jlms/jdm106
http://msp.org/idx/mr/2389927
http://msp.org/idx/zbl/1141.03009
https://doi.org/10.1016/j.jalgebra.2008.12.001
http://msp.org/idx/mr/2494396
http://msp.org/idx/zbl/1176.20033
https://doi.org/10.1142/S0219061308000750
http://msp.org/idx/mr/2673698
http://msp.org/idx/zbl/1189.03043
https://doi.org/10.1142/S0219061309000860
http://msp.org/idx/mr/2679439
http://msp.org/idx/zbl/1207.03043
https://sites.math.rutgers.edu/~cherlin/Paper/inprep.html
https://sites.math.rutgers.edu/~cherlin/Paper/inprep.html
https://sites.math.rutgers.edu/~cherlin/Paper/inprep.html
https://sites.math.rutgers.edu/~cherlin/Paper/inprep.html
https://sites.math.rutgers.edu/~cherlin/Paper/inprep.html
https://sites.math.rutgers.edu/~cherlin/Paper/inprep.html
https://sites.math.rutgers.edu/~cherlin/Paper/inprep.html
https://sites.math.rutgers.edu/~cherlin/Paper/inprep.html
https://doi.org/10.1007/s11856-010-0087-9
http://msp.org/idx/mr/2735049
http://msp.org/idx/zbl/1207.20025
https://doi.org/10.1016/j.jalgebra.2006.12.031
https://doi.org/10.1016/j.jalgebra.2006.12.031
http://msp.org/idx/mr/2344580
http://msp.org/idx/zbl/1130.20031
https://doi.org/10.1016/j.jalgebra.2023.02.009
https://doi.org/10.1016/j.jalgebra.2023.02.009
http://msp.org/idx/mr/4554711
http://msp.org/idx/zbl/07671984
https://doi.org/10.3906/mat-1103-52
http://msp.org/idx/mr/2993588
http://msp.org/idx/zbl/1268.20035
https://doi.org/10.2140/mt.2024.3.571
https://doi.org/10.2140/pjm.2016.285.111
http://msp.org/idx/mr/3554245
http://msp.org/idx/zbl/1364.20017
http://www-math.sp2mi.univ-poitiers.fr/~frecon/These.pdf
https://doi.org/10.1006/jabr.2000.8302
http://msp.org/idx/mr/1765797
http://msp.org/idx/zbl/0984.20022
https://doi.org/10.1142/S0219061308000713
http://msp.org/idx/mr/2674001
http://msp.org/idx/zbl/1194.20033
https://doi.org/10.1090/S0002-9939-10-10326-8
http://msp.org/idx/mr/2607889
http://msp.org/idx/zbl/1201.20029
https://doi.org/10.1016/j.aam.2015.09.002
http://msp.org/idx/mr/3424603
http://msp.org/idx/zbl/1402.03044


538 GREGORY CHERLIN

[36] J. Freitag, R. Jaoui, and R. Moosa, “The degree of nonminimality is at most 2”, J. Math. Log.
23:3 (2023), art. id. 2250031. MR Zbl

[37] W. Hodges, “Meeting Boris Zilber”, Model Theory 3:2 (2024), 203–211.

[38] E. Hrushovski, “On pseudo-finite dimensions”, Notre Dame J. Form. Log. 54:3-4 (2013), 463–
495. MR Zbl

[39] O. H. Kegel and B. A. F. Wehrfritz, Locally finite groups, North-Holland Math. Lib. 3, North-
Holland Publishing Co., Amsterdam, 1973. MR Zbl

[40] L. Kramer, K. Tent, and H. Van Maldeghem, “Simple groups of finite Morley rank and Tits
buildings”, Israel J. Math. 109 (1999), 189–224. MR Zbl

[41] A. H. Lachlan, “Two conjectures regarding the stability of ω-categorical theories”, Fund. Math.
81:2 (1973/74), 133–145. MR Zbl

[42] A. Macintyre, “On ω1-categorical theories of fields”, Fund. Math. 71:1 (1971), 1–25. MR Zbl

[43] W. E. Marsh, On ω1-categorical but not ω-categorical theories, Ph.D. thesis, Dartmouth College,
1966, available at http://wilfridhodges.co.uk/marsh.pdf.

[44] I. Pak, “The guest publishing scam”, blog entry, 2020, available at https://igorpak.wordpress.com/
2020/10/26/the-guest-publishing-scam/.

[45] B. Poizat, Groupes stables, Nur al-Mantiq wal-Ma’rifa 2, Bruno Poizat, Villeurbanne, 1987.
MR Zbl

[46] B. Poizat, “Quelques mauvais corps de rang infini”, pp. 349–365 in Model theory and applica-
tions, edited by L. Bélair et al., Quad. Mat. 11, Aracne, Rome, 2002. MR Zbl

[47] B. Poizat, “La conjecture d’algébricité, dans une perspective historique, et surtout modèle-
théorique”, Model Theory 3:2 (2024), 479–504.

[48] K. Tent, “Split BN-pairs of rank 2: the octagons”, Adv. Math. 181:2 (2004), 308–320. MR Zbl

[49] K. Tent and H. Van Maldeghem, “Moufang polygons and irreducible spherical BN-pairs of rank
2, I”, Adv. Math. 174:2 (2003), 254–265. MR Zbl

[50] F. O. Wagner, Stable groups, London Math. Soc. Lect. Note Ser. 240, Cambridge Univ. Press,
1997. MR Zbl

[51] F. O. Wagner, “Bad fields in positive characteristic”, Bull. London Math. Soc. 35:4 (2003),
499–502. MR Zbl

[52] R. Waldecker, Isolated involutions in finite groups, Mem. Amer. Math. Soc. 1061, Amer. Math.
Soc., Providence, RI, 2013. MR Zbl

[53] B. I. Zilber, “The structure of models of categorical theories and the finite-axiomatizability
problem”, unpublished manuscript, 1977. In Russian.

Received 3 Dec 2022. Revised 28 Feb 2023.

GREGORY CHERLIN:

cherlin.math@gmail.com
Department of Mathematics, Rutgers University, Piscataway, NJ, United States

msp

https://doi.org/10.1142/S0219061322500313
http://msp.org/idx/mr/4603920
http://msp.org/idx/zbl/07712963
https://doi.org/10.2140/mt.2024.3.203
https://doi.org/10.1215/00294527-2143952
http://msp.org/idx/mr/3091666
http://msp.org/idx/zbl/1345.03059
http://msp.org/idx/mr/470081
http://msp.org/idx/zbl/0259.20001
https://doi.org/10.1007/BF02775036
https://doi.org/10.1007/BF02775036
http://msp.org/idx/mr/1679598
http://msp.org/idx/zbl/0933.20020
https://doi.org/10.4064/fm-81-2-133-145
http://msp.org/idx/mr/337572
http://msp.org/idx/zbl/0284.02025
https://doi.org/10.4064/fm-71-1-1-25
http://msp.org/idx/mr/290954
http://msp.org/idx/zbl/0228.02033
http://wilfridhodges.co.uk/marsh.pdf
https://igorpak.wordpress.com/2020/10/26/the-guest-publishing-scam/
http://msp.org/idx/mr/902156
http://msp.org/idx/zbl/0633.03019
http://msp.org/idx/mr/2159724
http://msp.org/idx/zbl/1080.03015
https://doi.org/10.2140/mt.2024.3.479
https://doi.org/10.2140/mt.2024.3.479
https://doi.org/10.1016/S0001-8708(03)00066-5
http://msp.org/idx/mr/2026861
http://msp.org/idx/zbl/1044.20013
https://doi.org/10.1016/S0001-8708(02)00039-7
https://doi.org/10.1016/S0001-8708(02)00039-7
http://msp.org/idx/mr/1963695
http://msp.org/idx/zbl/1030.20019
https://doi.org/10.1017/CBO9780511566080
http://msp.org/idx/mr/1473226
http://msp.org/idx/zbl/0897.03037
https://doi.org/10.1112/S0024609303001929
http://msp.org/idx/mr/1979004
http://msp.org/idx/zbl/1020.03034
https://doi.org/10.1090/S0065-9266-2013-00684-3
http://msp.org/idx/mr/3136255
http://msp.org/idx/zbl/1298.20018
mailto:cherlin.math@gmail.com
http://msp.org


msp
Model Theory
Vol. 3, No. 2, 2024

https://doi.org/10.2140/mt.2024.3.539

Finite group actions on abelian groups of finite Morley rank

Alexandre Borovik

Dedicated to Boris Zilber, who laid the path.

This paper develops some general results about actions of finite groups on infinite
abelian groups of exponent p in the finite Morley rank category. These results are
applicable to a range of problems on groups of finite Morley rank. Also, they yield
a proof of the long-standing conjecture of linearity of irreducible definable actions
of simple algebraic groups on elementary abelian p-groups of finite Morley rank.
Crucially, these results are needed for the papers by Ayşe Berkman and myself
where we have proved an explicit, and best possible, upper bound for the degree
of generic multiple transitivity for an action of a group of finite Morley rank on
an abelian group.

Preamble

No man is an Iland, intire of it selfe; every man is
a peece of the Continent, a part of the maine.

John Donne, 1623

The field of study reflected in the title of this paper could appear to be rather
esoteric; however, it is a part of a much wider area of classification of simple
groups of finite Morley rank. I recommend Gregory Cherlin’s informative and
incisive survey [26] of the current state of this classification. In short, there are
three types of connected simple groups of finite Morley rank: degenerate (they
do not contain involutions), odd (contain involutions, but do not contain infinite
groups of exponent 2), and even (contain infinite groups of exponent 2). Groups
of even type have been identified as simple algebraic groups over algebraically
closed fields of characteristic 2 [2]. Little is known about infinite simple groups of
degenerate type beyond a fantastic result by Frécon on groups of Morley rank 3
[40] (beautifully elucidated by Corredor and Deloro [29]). On the contrary, quite a
lot is known about groups of odd type, but still not enough for proving for them the
special case of the Cherlin–Zilber algebraicity conjecture:
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Simple groups of finite Morley rank and odd type are algebraic groups
over algebraically closed fields of odd or zero characteristic.

Since the appearance of the classification of simple groups of even type [2], the
study of simple groups of finite Morley rank has been moving in two streams:

Stream 1: Proving the Cherlin–Zilber algebraicity conjecture for groups of odd
type, as outlined in Cherlin’s survey [26].

Stream 2: Study of actions, and specifically actions as automorphisms of abelian
groups, of groups of finite Morley rank on the basis of the knowledge already
accumulated in the efforts to classify the simple ones. This direction is motivated
by the fact that groups of finite Morley rank appeared as binding groups in model
theory, and hence act somewhere. A survey of this direction can be found in [15].

Stream 2 was initiated by Cherlin who suggested to me to start looking for
areas of possible application of the classification of groups of even type [2]. After
some discussion we decided to take a look at definably primitive permutation
groups (G, X), that is, definable faithful actions of G on X such that there are no
nontrivial definable G-invariant equivalence relations on X . Since the stabilisers of
points and orbits of G on X are definable, this means, in particular, that a definably
primitive action is transitive. “Faithful” here means that only 1 fixes all elements
of X . We proved the following.

Theorem [14, Theorem 1]. There exists a function f : N → N with the following
property. If a group G of finite Morley rank acts on a set X of finite Morley rank
definably and definably primitively, then

rk(G) ⩽ f (rk X).

The proof of this result is an indicator of the role of the classification technique
in Stream 2: an answer to a basic question about actions of groups of finite Morley
rank required the use of the classification of simple groups of even type together
with the full range of techniques developed for the ongoing study of groups of odd
type.

Macpherson and Pillay [49] (following an established tradition from finite group
theory) say that a group G of finite Morley rank is of affine type if G is a semidirect
product of definable subgroups G = V ⋊ H , where V is either elementary abelian
or divisible torsion-free abelian, and the group H acts on V faithfully and V does
not leave any definable subgroup of V other than 0 or V invariant. In that case the
natural action of G on the coset space G/H is definably primitive.

This is an important class of primitive groups of permutations. In finite group
theory, this class made its first appearance in the celebrated theorem by Galois:
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A finite solvable primitive permutation group has degree pk (that is, the
set on which it acts contains pk points) for some prime number p.

and was the reason why Galois constructed Galois fields [52].
To cut a long story short, the present paper has been written because its results

are essential for the study of primitive permutation groups of finite Morley rank
and affine type carried out, over some years, by Ayşe Berkman and myself [4; 5; 6].
Our project calls on a surprising range of results and techniques, including almost
everything which has been done so far in various approaches to the Cherlin–Zilber
conjecture. In particular, the present paper uses basic concepts from the representa-
tion theory of finite groups and associative algebras [31; 38] appropriately adapted
for the finite Morley rank context.

Finally, a word about the epigraph from John Donne. I proved the results of
the present paper in a de facto imprisonment of a strict lockdown.1 I would not
even try to prove them if I did not see my work as part of a much bigger collective
project. The lockdown episode reminded me that I started my work in groups of
finite Morley rank 40 years ago, also in almost complete isolation, but got critically
important help from our (as I can now call it) community. This was how I described
it in the introduction to [2].

Vladimir Nikanorovich Remeslennikov in 1982 drew my attention to Gre-
gory Cherlin’s paper [24] on groups of finite Morley rank and conjectured
that some ideas from my work [on periodic linear groups] could be used
in this then new area of algebra. A year later Simon Thomas sent to
me the manuscripts of his work on locally finite groups of finite Morley
rank. Besides many interesting results and observations his manuscripts
contained also an exposition of Boris Zilber’s fundamental results on ℵ1-
categorical structures which were made known to many Western model
theorists in Wilfrid Hodges’ translation of Zilber’s paper [67] but which,
because of the regrettably restricted form of publication of the Russian
original, remained unknown to me.

You can learn more about this story from Wilfrid Hodges [43]; a historic perspec-
tive is presented by Bruno Poizat [56]. In the early 1980s Hodges worked hard on
development of links and channels of communication between Western and Soviet
model theorists — and, ironically, also directed me to Zilber’s works. I knew Boris
personally, but we lived in different cities in Siberia which was as if we were on
different planets. In years that followed I have learnt a lot from Boris, but here I
wish to emphasise perhaps the most important lesson: the importance of looking at
the wider landscapes of mathematics, something that I am trying to do in this paper.

1I told this bizarre story in [12].
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1. A more technical introduction

1A. Ranked universes. First of all, we work in a ranked universe in the sense of
[16, Chapter 4]. In particular, a group of finite Morley rank means for us “a group
definable in a ranked universe”. When we have several algebraic structures of finite
Morley rank in the same statement, with definable actions and relations between
them, it means that all these structures and relations belong to the same ranked
universe U (which is usually not mentioned). This convention is convenient because
it simplifies the language and makes arguments easily accessible to group theorists
with some knowledge of the finite group theory or the theory of linear algebraic
groups. So far I am aware of just one paper [60] where the expression “a group
definable in a ranked universe” is used systematically.

In applications of results of the present paper the universe U is usually the
universe of interpretable sets of some group G of finite Morley rank. For example,
in one of the principal results of the present paper, Theorem 1.5, the group G is
the semidirect product V ⋊G. In its turn, Theorem 1.5 will be applied to a point
stabiliser in some generically multiply transitive permutation group H of finite
Morley rank; see further discussion in [6].

1B. Some terminology for group actions. We use terminology and notation from
the books [2; 16] and keep in mind the ranked universe convention of Section 1A.

Let V be an infinite abelian group of finite Morley rank, and X a finite set of
definable isomorphisms from V onto V closed under composition and inversion,
so X is a finite group. We say in this situation that the finite group X acts on V
definably. We include the elements of X in the signature of the language and treat
them as function symbols. We also say that V is an X -module or that (V, X) is an
X -module.

This paper is restricted to the most important case when V is elementary abelian,
that is, abelian and periodic of exponent p for some prime number p. We usually
treat V as a vector space over the prime field Fp.

We use additive notation for the group operation in V . The key player in our
study is the subring R generated by X in the ring End V of endomorphisms of V .
Obviously, R is finite and can be viewed as a finite-dimensional Fp-algebra. It is
important to observe that elements of R are definable endomorphisms of V . We
use the usual name for R: it is the enveloping ring (or enveloping algebra over Fp)
of the action of the group X on V and is denoted

R = E(X).

In a more general situation, if G is any other group which acts on the group V , we
say that the action of G is irreducible if 0 and V are the only G-invariant subgroups
of V ; we also say that V is a simple G-module or simple R(G)-module. In our setup,
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the action of the finite group X on V cannot be irreducible: take v ̸= 0, then the
orbit of v under the action of X is finite and generates a finite X -invariant subgroup,
while V is infinite. Therefore we need to adjust the concept of irreducibility to
make it usable for the group X .

We say that the action of the group X is smooth if any X -invariant connected
definable subgroup of V equals 0 or V , and, equivalently, that V is a smooth X-
module. This is a very natural concept, and examples are abundant. For example,
let G = GLn(K ) for an algebraically closed field K of characteristic p > 0, acting
naturally on V = K n . Then the action of GLn(Fpk ) < G on V is smooth.

1C. Finite groups and Jordan properties. Our paper starts with a discussion of
the following problem, which naturally arises in [5].

Problem 1.1. Given a finite group X , find good lower bounds for the Morley ranks
of faithful smooth X-modules of fixed positive characteristic p.

The first result of the paper, Theorem 1.2 below, reduces Problem 1.1 to a
similar question about the minimal degree of faithful finite-dimensional linear
representations of the group X over an algebraically closed field of characteristic p,
the latter having been studied in finite group theory for quite some time [36; 46;
61; 62].

Let X be a finite group and p a prime number. We introduce two parameters
characterising its size and complexity:

• dp(X) is the minimal degree of a faithful linear representation of X over the
algebraically closed field Fp.

• rp(X) is the minimal Morley rank of an infinite elementary abelian p-group V
of finite Morley rank such that X acts on V faithfully, definably, and smoothly.

Theorem 1.2. Under the assumptions of Problem 1.1,

dp(X) = rp(X).

This theorem is one of a large body of results which establish close connections
and analogies between groups of finite Morley rank, on one hand, and finite groups
and algebraic groups, on another.

The following statement is an immediate corollary of Theorem 1.2 via the famous
theorem of Larsen and Pink about finite linear groups [47]; see Section 3, Fact 3.1.

Theorem 1.3. There is a function

J : N → N

with the following property:
If H is a finite simple group which acts definably and faithfully on an infinite

connected elementary abelian p-group of Morley rank n, then either
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• |H | ⩽ J (n), or

• H is a group of Lie type in characteristic p.

Section 3B contains a brief discussion of Theorem 1.3 and other “theorems of
Jordan type”; there is a feeling that there could be some general model-theoretical
facts underpinning them all.

1D. From finite groups to simple algebraic groups over algebraically closed fields.
In Sections 4B to 4K we shall study definable actions of simple algebraic groups G
over algebraically closed fields on elementary abelian p-groups of finite Morley
rank. Our approach is based on the analysis of actions on V of finite subgroups
of G, and on the use of the technique developed in Section 2. Theorem 1.4 stated
below is the principal tool for transfer of information on certain finite subgroups of
G to the group as a whole G itself. The formulation of Theorem 1.4 needs to be
preceded by a few words on simple algebraic groups.

First of all, there is some mismatch in the terminology: it is a traditional con-
vention of the theory of algebraic groups that an (infinite) algebraic group G is
called simple if G is perfect, that is, [G, G] = G, with G/Z(G) simple in the usual
sense of this word and Z(G) finite. A finite group G with the same properties is
called quasisimple in finite group theory. So if G is finite, “simple” really means
simple: no nontrivial proper normal subgroups. Of course, every finite subgroup is
algebraic, but it will be always clear from the context whether a particular algebraic
group is finite or not.

Let G = G(K ) be the group of K-points of a simple algebraic group G defined
over an algebraically closed field K of characteristic p. In model theory, it is
conventional to call G a simple algebraic group over K . By Poizat [54] the group G
is bi-interpretable with the field K (by this we mean that, inside G, field definability
implies group definability). On the other hand G is birationally isomorphic with
the group of points over K of a simple algebraic group H defined over the prime
field Fp [8]. Since G and K are bi-interpretable, this isomorphism is definable in G
as a pure group; hence we can assume without loss of generality that G is defined
over Fp and, for every intermediate field Fp < F < K , the group G contains the
subgroup G(F) = G(F) of F-points.

Let now K∞ be the algebraic closure of the prime field Fp in K and G∞ the
group of points of G over K∞. The group G∞ is the union of finite subgroups
G(Fpk ) for all natural numbers k, and hence G∞ is locally finite. As we shall see
in later sections, the restriction to the group G∞ of a definable action of the group
G on an elementary abelian p-group of finite Morley rank could be studied by
methods developed in Section 2.

Theorem 1.4. Let K be an algebraically closed field of characteristic p > 0 and
K∞ the algebraic closure of the prime field Fp in K . Let G be a semisimple
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algebraic group over K and G∞ the group of points of G over K∞. If M is a
subgroup of G containing G∞ and the structure (G, M) has finite Morley rank,
then M = G.

1E. Linearisation of actions of simple algebraic groups. In Section 4 we prove
Theorem 1.5. Here, an action of a group G on an abelian group V is called

• irreducible if V contains no G-invariant subgroups other than 0 and V , and

• definably irreducible if V contains no G-invariant definable subgroups other
than 0 and V .

If G is a connected group of finite Morley rank, then these two properties are
equivalent [2, Lemma I.11.3].

The following Theorem 1.5 in Section 4C answers the long-standing conjecture
of linearity of irreducible definable actions of simple algebraic groups on elementary
abelian p-groups of finite Morley rank [16, Question B.38] with further details
inquired about in [15, Conjecture 12]. Crucially, Theorem 1.5(1) is needed for the
papers by Ayşe Berkman and myself [5; 6]

Theorem 1.5. Let K be an algebraically closed field of characteristic p > 0 and G
be a connected algebraic group over K . Assume that G acts definably and faithfully
on an elementary abelian p-group V of finite Morley rank. Assume that this action
is definably irreducible. Then the following are true:

(1) The group V has a structure of a finite-dimensional K-vector space compatible
with the action of G.

(2) Assume in addition that G is simple. Let Ĝ be a simply connected simple
algebraic group over K covering G. Then ρ : Ĝ → G ↪→ GL(V ) is an
irreducible K-linear representation of the group Ĝ on V . There are irreducible
rational representations ω1, . . . , ωm of the group Ĝ, and there are (V ⋊ G)-
definable automorphisms ϕ1, . . . , ϕm of the field K such that ρ =

⊗m
i=1 ϕiωi .

In particular, the representation ρ is (V ⋊G)-definable.

Surprisingly, the following immediate corollary of Theorem 1.5(1) for algebraic
groups appears to be new. However, Adrien Deloro informed me that a special case
of this result, where G acted transitively on V ∖ {0}, had been proven in 1983 by
Knop [45, Satz 1].

Corollary 1.6. Let H = V ⋊G be an algebraic group over an algebraically closed
field K of characteristic p > 0, where G is a connected algebraic group and V
is unipotent (written in additive notation). Assume that V does not have closed
G-invariant subgroups other than 0 and V . Then V is an abelian group of exponent
p and has a structure of a finite-dimensional vector space over K invariant under
the action of G.
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Here, a unipotent group in characteristic p > 0 is a linear algebraic group
containing only p-elements.

Theorem 1.5(2) is a more precise and detailed version of the following result by
Bruno Poizat.

Fact 1.7 [55, Theorem 2]. If K is a field of finite Morley rank and nonzero charac-
teristic p, any simple definable subgroup G of GLn(K ) is definable in the language
of the field K augmented by a finite number of definable field automorphisms.

In characteristic 0, a much stronger result is known:

Fact 1.8 (a combination of [48; 49; 55], and [13; 35]). Let (G, V ) be a faithful,
irreducible module of finite Morley rank, where G is infinite and V is torsion-free.
Then there is a definable field over which V is a finite-dimensional vector space and
G is a subgroup of GL(V ). If in addition G is simple and contains a nonidentity
unipotent element or an involution then G is Zariski closed in GL(V ).

1F. Linear groups of finite Morley rank. Let us return to Theorem 1.5(1) and
use notation from its statement. This theorem says that G is a subgroup of the
finite-dimensional general linear group GLK (V ). This is a natural question:

Is the group G Zariski closed in GLK (V )?

If the automorphisms ϕ1, . . . , ϕm in part (2) of Theorem 1.5 are Frobenius maps
or their inverses, then the representation G → GLK (V ) is rational and its image
(which is G) is Zariski closed in GLK (V ). But here we encounter one of the oldest
problems of the theory of groups of finite Morley rank.

Problem 1.9 (Angus Macintyre, [16, Question B35, p. 364]). Can a structure of
the form

⟨K ; + , · , ϕ⟩,

where ⟨K ; + , · ⟩ is an algebraically closed field of characteristic p > 0 and
ϕ ∈ Aut(K ) is neither a Frobenius automorphism nor the inverse of one, have
finite Morley rank?

If the answer to Macintyre’s problem in no, then, in Theorem 1.5, the group G
is Zariski closed in GLK (V ). Otherwise, this is not true in general.

1G. Linearisation of actions of solvable-by-finite groups. Finally, we extend
Theorem 1.5 to solvable-by-finite groups.

Theorem 1.10. Let K be an algebraically closed field of characteristic p > 0 and G
be a connected algebraic group over K . Assume that G acts definably and faithfully
on an elementary abelian p-group V of finite Morley rank. Assume that this action
is definably irreducible. Then G◦ is a good torus and V has a definable structure of
a finite-dimensional K-vector space compatible with the action of G, with the field
K definable in V ⋊G.
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2. Enveloping algebras enter the scene

2A. Definitions and generalities. In this section we work under assumptions which
are weaker than those of Theorem 1.2:

• X is a finite group which acts, definably and smoothly, on an infinite connected
elementary abelian p-group V of finite Morley rank.

Notice that we do not assume that the action of the group X is faithful. This allows
us to pass these assumptions to factor modules of V by definable X -submodules.
The group V is treated as a vector space over Fp.

Lemma 2.1. The canonical action of the group algebra A = Fp[X ] on V is defin-
able.

Proof. Indeed every element from A acts on V as a sum of definable endomorphisms
(which came from X ) and is therefore definable. □

Another important player is the enveloping algebra of X on V , that is, the ring
R generated in EndFp V by elements of X , or the image of A in EndFp V (which is
the same). We denote this ring by E(X).

Both A and R are finite-dimensional algebras over Fp, and their action on V is
smooth while the action of R on V is also faithful. We treat V as a right A-module
and right R-module, and, enlarging the signature of the language, we treat elements
from A and R as function symbols.

A finite-dimensional associative algebra over a finite field Fp of prime order p
is the same as a finite ring of characteristic p. Their structure is of course well
known. We need a definition of the Jacobson radical J (R) of a finite-dimensional
algebra R over a field: J is the intersection of all maximal left ideals of R. It can
be proved that J is an ideal, and, moreover, J can be characterised as the set of
all elements r ∈ R such that Mr = 0 for every simple (or irreducible, which is the
same) R-module M .

Fact 2.2 (Wedderburn–Maltsev theorem [37, Theorem VI.2.1]). Let R be a finite-
dimensional associative algebra with identity 1 over a finite field Fp of prime order
p and J its Jacobson radical.

(a) R = J + S, where S is a semisimple algebra, J ∩ S = 0, and S is the direct
sum of matrix algebras

S = S1 ⊕ · · · ⊕ Sk, Si ≃ Mdi ×di (Fpmi ), i = 1, 2, . . . , k.

(b) Let Q = 1 + J . Then Q is a normal p-subgroup in the group of units R∗ of R.
Moreover, R∗ is a semidirect product R∗

= Q⋊ S∗ of Q and the group of units
S∗ of S. In particular,

S∗
≃ GLd1(Fpm1 ) × · · · × GLdk (Fpmk ).
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2B. The case of smooth action. The arguments below freely use, without specific
references, definitions and results from more basic parts of the theory of modules,
which can be found, for example, in [38].

The group X will not be mentioned in the rest of this section. Rather, we work
under the following hypothesis.

Hypothesis 2.3. In the notation of Fact 2.2, R is a finite-dimensional Fp-algebra
acting definably, smoothly, and faithfully on an infinite elementary abelian p-group
V of finite Morley rank.

Lemma 2.4. Under Hypothesis 2.3, the algebra R is semisimple and V is a semisim-
ple R-module.

Proof. We work in the notation of Fact 2.2. Since VQ is a definable abelian-by-finite
p-group, VQ is nilpotent. By properties of commutators in groups of finite Morley
rank, VJ = [V, Q] < V is a proper connected definable subgroup of V invariant
under R, and hence VJ = 0. But then J = 0 and R is semisimple; therefore V is
also semisimple, that is, a direct sum

V =

⊕
ℓ∈L

Uℓ for some index set L (1)

of simple R-modules Uℓ. □

Theorem 2.5. Under Hypothesis 2.3:

(a) All simple factors in the direct sum of equation (1) are isomorphic.

(b) The algebra R is simple and therefore is isomorphic to an algebra of all
matrices of size ℓ × ℓ, for some ℓ, over a finite extension of Fp.

Proof. (a) Denote by I = I(R) the set of isomorphism classes of simple R-modules;
notice that the set I is finite. We collect isomorphic simple factors and rewrite the
direct sum of simple R-modules in equation (1) as

V =

⊕
I∈I

UI , (2)

where all simple summands of UI belong to the isomorphism class I .
We want to prove that each submodule UI is definable; then it follows from

the smoothness of the action of R on V than V = UI for some I , that is, that all
summands in (1) are isomorphic.

For that purpose, an element v ∈ V is called I -cyclic for I ∈ I if all simple
summands in the cyclic module vR belong to I . If u, v are I -cyclic elements
of V , then (u + v)R ⩽ u R + vR, and all simple summands in u R + vR, and hence
in (u + v)R, belong to I . Therefore u + v is an I -cyclic element. It follows that
the set of all I -cyclic elements in V coincides with UI .



FINITE GROUP ACTIONS ON ABELIAN GROUPS OF FINITE MORLEY RANK 549

Let us denote by KI the set of all right ideals K in R such that all simple
summands of the factor module R/K belong to I . Then UI is defined by the
formula

8(v) :=

∨
K∈KI

(( ∧
k∈K

vk = 0
)

∧

( ∧
l∈R∖K

vl ̸= 0
))

.

This completes the proof of part (a).

(b) Now R is also the enveloping algebra of its restriction to every simple summand
of V and is therefore simple. □

2C. The weight decomposition for a coprime action of a finite abelian group and
the multiplicity formula. Now we focus our attention temporarily on actions of
finite abelian groups of orders coprime to p, and reformulate the previous results in
more familiar terms in this special case.

Let V be a connected H -module of characteristic p > 0 with H a finite abelian
group of order coprime to p. View V with the action of H as a module over the
finite group algebra A = Fp[H ]. Applying Maschke’s theorem to the action of H
on A by multiplication, we see that A is semisimple and is a direct sum of simple
finite commutative algebras, that is, finite fields (of course, of characteristic p).

We call a nonzero element v ∈ V a weight element if AnnA(v) is a maximal ideal
in A; equivalently, this means that vA is an irreducible A-module. It follows that
if F = A/AnnA(v) and λ : A → F is the canonical homomorphism, then vA is a
1-dimensional vector space over F (notice that F may be bigger than Fp) and, for
every a ∈ A, we have

va = λ(a)v,

where the left-hand side is understood in the sense of a (right) A-module, and the
right-hand side is a vector space over the field F . This justifies the homomorphisms
λ being called weights of A.

Observe that when restricted to H , weights become characters of H , that is,
homomorphisms from H to the multiplicative group F∗

p of the algebraic closure Fp

of the prime field Fp. Also it is easy to see that F ≃ Fp[λ[H ]], where

λ[H ] = {λ(h) : h ∈ H}.

Obviously, if u, v ∈ V are weight vectors for the same weight λ then either
u +v = 0 or u +v is a weight vector for λ. Hence all such vectors form a definable
A-submodule Vλ ⩽ V , and it follows from Maschke’s theorem that

V =

⊕
Vλ,

where the direct sum is taken over all weights of H on V . It follows that all weight
spaces Vλ are connected, and their total number does not exceed n = rk V . It is
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also useful to keep in mind that Vλ is a vector space under the action of the finite
field Fλ = Fp[λ[H ]]. Observe further that Fλ is the enveloping algebra for the
action of the group H on Vλ.

If we call rk Vλ the multiplicity of the weight λ then, as one would expect, we
have the following.

Theorem 2.6 (multiplicity formula). The sum of multiplicities of weights of H on
V equals rk V .

This statement is called a theorem only because of its importance; its proof is
obvious.

2D. Proof of Theorem 1.2. To prove Theorem 1.2, it would suffice to show that,
for any definable and faithful smooth X -module V , rk V ⩾ dimFp

W for some
faithful Fp[X ]-module W on which X acts faithfully.

So let V be a definable and faithful smooth X -module of smallest possible Morley
rank and R the enveloping algebra of this action. By Theorem 2.5, V is a direct
sum of isomorphic simple (in particular, finite) R-modules; obviously, X acts on
each of them faithfully.

Now we can look at one of these simple R-modules, say U . Assume that
dimFp U = n. By Theorem 2.5, R is the matrix algebra Matm×m(Fpl ), where
n = m × l. In particular, we have a definable action of R∗

= GLm(Fpl ) on U ,
and, since V is a direct sum of isomorphic copies of U , R∗ acts definably on V .
The maximal torus H of R∗ has m different weights on U and therefore on V .
From the multiplicity formula (Theorem 2.6) applied to the action of H we have
that rk V ⩾ m. But R∗, and hence the (homomorphic) image of X in R∗ has a
faithful linear representation over Fp of degree m. Hence rk V ⩾ dp(X), which
completes the proof of Theorem 1.2. □

2E. Theorem 1.2: comments. It looks as though the proof of Theorem 1.2 does
not use all axioms of finite Morley rank (as given in [2, Section I.2.1] and [16,
Section 4.1.2]); it would be interesting to find weaker conditions on the module V
under which Theorem 1.2 still holds, in a way similar to that of [30].

I expect that the method outlined here gives also new approaches to some of the
problems listed in the survey paper by Adrien Deloro and myself [15].

3. Proof of Theorem 1.3 and Jordan properties

3A. A Larsen and Pink type theorem.

Fact 3.1 [47, Theorem 0.2]. For every n there exists a constant J ′(n) depending
only on n such that any finite subgroup 0 of GLn over any field k possesses normal
subgroups 03 ⩽ 02 ⩽ 01 such that
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(a) |0 : 01| < J ′(n).

(b) Either 01 = 02, or p := char(k) is positive and 01/02 is a direct product of
finite simple groups of Lie type in characteristic p.

(c) 02/03 is abelian of order not divisible by char(k).

(d) Either 03 = {1} or p := char(k) is positive and 03 is a p-group.

Theorem 1.2 and Fact 3.1 immediately yield the following result.

Theorem 3.2. There is a function

J : N → N

with the following property:
If X is a finite group which acts definably and faithfully on an infinite connected

elementary abelian p-group of Morley rank n then H possesses normal subgroups
X3 ⩽ X2 ⩽ X1 such that

(a) |X : X1| < J (n).

(b) Either X1 = X2, or X1/X2 is a direct product of finite simple groups of Lie
type in characteristic p.

(c) X2/X3 is abelian of order not divisible by p.

(d) X3 is a p-group.

Now Theorem 1.3 is a special case of Theorem 3.2. □

3B. Theorems of Jordan type. Fact 3.1 and Theorem 3.2 can be called theorems
of Jordan type since they follow the paradigm set by Camille Jordan in his famous
theorem of 1878:

Fact 3.3 [44, p. 114]. There is a function

J : N → N

with the following property: every finite subgroup of GLn over a field of character-
istic 0 possesses an abelian normal subgroup of index ⩽ J (n).

Breuillard [20] gave an exposition of Jordan’s original proof in the modern
terminology; Collins [28] found the optimal explicit bound for J (n).

The introduction to Guld [42] contains an impressive survey of theorems of
Jordan type for finite subgroups of groups arising in complex algebraic geometry
and in differential geometry. Due to this assumption, [42] contains a more specific
and narrower definition of a Jordan group:

A group G is called Jordan, solvably Jordan or nilpotently Jordan of class
at most c (c ∈ N) if there exists a constant J ∈ N such that every finite
subgroup X ⩽ G has a subgroup Y ⩽ X such that |X : Y | ⩽ J and Y is
abelian, solvable or nilpotent of class at most c, respectively.
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Fact 3.4 [42, Theorem 2]. The birational automorphism group of a variety over a
field of characteristic 0 is nilpotently Jordan of class at most two.

There are several variations of definitions of Jordan groups, so it could be more
useful to speak about all of them as Jordan properties. Bandman and Zarhin [3] gave
a survey of results on Jordan properties in automorphism groups of some structures
of Kähler geometry. Some results on Jordan properties in positive characteristics
and further references can be found in [23; 57].

These results, together with many other results quoted in [42], create a feeling that
there could be some underlying model-theoretic concepts and results underpinning
them all.

4. Linearisation of the actions of algebraic groups

In this section, we prove Theorems 1.4, 1.5, and 1.10.

4A. Proof of Theorem 1.4. We use the definitions and terminology of Section 1D.

Theorem 1.4. Let K be an algebraically closed field of characteristic p > 0 and
K∞ the algebraic closure of the prime field Fp in K . Let G be a semisimple
algebraic group over K and G∞ the group of points of G over K∞. If M is a
subgroup of G containing G∞ and the structure (G, M) has finite Morley rank,
then M = G.

Proof. It obviously suffices to consider only the case when G is simple. Let T∞ be
a maximal torus in G∞. Its Zariski closure in G is a maximal torus in G; let us
denote it T . Obviously,

T∞ ⩽ M ∩ T ⩽ T,

with M ∩ T being a definable subgroup. By Poizat [54] the simple algebraic group
G and the field K are bi-interpretable. This allows us to apply [2, Proposition I.4.20
and Lemma I.4.21], and prove that T is a good torus in the sense of [2, Section I.4.4],
that is, every definable subgroup of T is the definable hull of its torsion part. In
particular, T is the definable hull of its torsion T∞. Hence M ∩T = T , which means
that T ⩽ M . Define

N = ⟨T m
| m ∈ M⟩.

Being generated by Zariski closed connected subgroups, N is Zariski closed. Ob-
viously, G∞ = ⟨T g

∞ | g ∈ G∞⟩ ⩽ N . But the Zariski closure of G∞ in G is G,
whence N = G and therefore M = G. □

Remark. The bi-interpretability of G and K is the cornerstone of the proof. Indeed,
if K is an algebraically closed field and T = K ∗ is its multiplicative group, then
the torus T , viewed as a pure group, in absence of the field K , is not a good torus:
it is easy to see that the structure (T∞, T ) has Morley rank two.
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4B. Proof of Theorem 1.5. This is the core of the paper.

Theorem 1.5. Let K be an algebraically closed field of characteristic p > 0 and G
be a connected algebraic group over K . Assume that G acts definably on an infinite
connected elementary abelian p-group V of finite Morley rank. Assume that this
action is definably irreducible. Then the following statements are true.

(1) The group V has a structure of a finite-dimensional K-vector space compatible
with the action of G, so the group G could be viewed as a subgroup of GL(V ).

(2) Let Ĝ be a simply connected (quasi-)simple algebraic group over K covering G.
Then ρ : Ĝ → G ↪→ GL(V ) is an irreducible K-linear representation of the
group Ĝ on V . There are irreducible rational representations ω1, . . . , ωm of
the group Ĝ, and there are (V ⋊ G)-definable automorphisms ϕ1, . . . , ϕd of
the field K , such that ρ =

⊗d
i=1 ϕiωi . In particular, the representation ρ is

(V ⋊G)-definable.

The proof of this theorem will spread over Sections 4C–4I.
It is useful to remember the ranked universe convention of Section 1A.

4C. Linearisation theorem. Recall that if G is a group of finite Morley rank acting
definably on an abelian group V of finite Morley rank, then the action is called
definably irreducible if the only G-invariant definable subgroups in V are 0 and V .

Fact 4.1 (linearisation theorem). Let V be an infinite elementary abelian p-group
of finite Morley rank and G an infinite group of finite Morley rank acting on V
faithfully, definably, and definably irreducibly. Let D be the ring of all definable
endomorphisms of V and Z = CD(G). Assume that Z is infinite.

(1) Z is an algebraically closed field definable in V ⋊ G and the action of Z on
V gives V a structure of a finite-dimensional Z-vector space (with a Z-linear
action of G).

(2) The enveloping algebra (over Z ) R = R(G) is the full matrix algebra EndZ (V ).

(3) R is definable in V ⋊G.

Proof. Clause (1) is a result by Macpherson and Pillay [49, Theorem 1.2], with a
more complete proof given by Deloro in [32]. It also follows from a more general
and very illuminating treatment of linearisation of actions of finite Morley rank given
in Deloro’s “Zilber’s skew field lemma” [33]. Clause (2) follows from basic algebra:
an irreducible subgroup G ⩽ GLn(Z) contains n2 matrices linearly independent
over Z and forming a basis of the matrix algebra Mn×n(Z). Clause (3) follows
from (1). □
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4D. Groups of units of associative algebras over finite fields: ranks. Recall that,
for a prime number r , the r -rank mr (G) of a finite group G is the minimal number
of generators in a maximal elementary abelian r-subgroup of G. When p > 2
we are interested in the case r = 2 because elements of order 2 in GLn(Fp) have
eigenvalues ±1 which, of course, belong to Fp and therefore have a nice and easy
to control behaviour. When p = 2, we use r = 3, since this still gives us some
degree of control. The two clauses (a) and (b) in the following Fact 4.2 correspond
to the cases when elements of order 2 are semisimple (p > 2) or unipotent (p = 2).

Fact 4.2. Let R be a finite-dimensional associative algebra over a finite field Fp of
prime order p and J its radical. In the notation of Fact 2.2, the following hold:

(a) Assume that p > 2. Then

m2(R∗) = d1 + d2 + · · · + dk .

(b) If p = 2 then

m3(R∗) ⩽
⌊d1

2

⌋
+

⌊d2

2

⌋
+ · · · +

⌊dk

2

⌋
.

Proof. It is easy: for proving (a), perhaps a simple reference to the proof of
Theorem 2.6 above would suffice. For (b), a proof follows from an elementary fact
from finite group theory: a cyclic group of order 3 has only one faithful irreducible
representation over the field F2, and it is of dimension 2. □

4E. Proof of Theorem 1.5 part (1). We start with a few general observations. If
the connected algebraic group G has a nontrivial unipotent radical U ̸= 1, then
CV (U ) ̸= 0 is a proper definable G-invariant subgroup of V , which contradicts the
assumptions of the theorem. Hence U = 1 and G is reductive. Set Z = Z(G). If Z
is infinite then the theorem follows from Fact 4.1. So we can assume without loss
of generality that G is semisimple.

Let K∞ ⩽ K be the algebraic closure of the prime field Fp, G∞ = G(K∞), and
R∞ = E(G∞) the enveloping algebra of G∞.

Lemma 4.3. R∞ is the matrix algebra Md×d(K∞) for some natural number d.

4F. Proof of Lemma 4.3. For a subgroup H ⩽ G∞, we denote by uH the subgroup
generated in H by all unipotent elements in H .

We analyse the series of subgroups in G∞:

Xk =
uG(Fp(m+k)!), k = 1, 2, . . . .

Obviously, they form a chain

X1 < X2 < X3 < · · · .
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and
∞⋃

i=1

X i = G∞

(since G∞ is generated by unipotent elements).
It is well known that the groups Xk , k = 2, 3, 4, . . . (that is, with the exception

of a few very small groups), are perfect, Xk = X ′

k , and therefore

(a) The groups Xk for k > 1 have no nontrivial characters Xk → F∗
p.

Let Rk = E(Xk) be the enveloping algebra of Xk in its action on V , then

R1 ⩽ R2 ⩽ R3 ⩽ · · ·

and

R∞ =

∞⋃
i=1

Ri = E(G∞).

Denote by Ji the Jacobson radical of Ri , i = 1, 2, . . . . Then Ri/Ji is semisimple
and

Ri/Ji = Mi1 ⊕ · · · ⊕ Miki ,

where Mi j are matrix algebras over finite fields Fi j of degree di j . Notice that, in
view of claim (a) above, di j > 1 for i > 1, since X i have no nontrivial actions in
dimension 1.

For p > 2 notice further that di j coincides with the 2-rank of the corresponding
group GLdi j (Fi j ) of invertible elements (Fact 4.2(a)). Therefore

(b) For p > 2, each group R∗

i contains an elementary abelian 2-subgroup of 2-rank

di = di1 + di2 + · · · + diki .

Again applying Fact 4.2 (a) we see that for p > 2 the 2-ranks di are bounded by
rk V in view of Theorem 2.6; for p = 2 we similarly have, from Fact 4.2(b), that
di ⩽ 3 rk V . Hence

(c) The numerical parameters: di , ki , di1, di2, . . . , diki stabilise starting from some
i∗ as i grows and remain the same for all i ⩾ i∗.

From that index i∗ on, embeddings Ri ⩽ R j for i < j can be much better
controlled. Indeed,

(d) After appropriately changing the numeration we have embeddings of rings
Mil ⩽ M jl for i∗ ⩽ i < j where the dimensions dil and d jl of Mil and M jl ,
correspondingly, over their centres, correspondingly, are equal: dil = d jl .

This leads to

(e) Ji ⩽ J j for i∗ ⩽ i < j .
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Indeed, if Ji ̸⩽ J j then Qi ̸⩽ Q j and in one of the factor rings M jl the image
Q = Qi ̸= 0. But Q is normalised by invertible elements of Mil . Let us focus on
groups of units and denote dil = d jl = m. Since the groups X i and X j are perfect,
we see a group Hi = SLm(Ki ) (which contains X i ) embedded into H j = SLm(K j )

(which contains X j ), where Ki and K j are two finite fields of characteristic p > 0,
and Hi is normalising a nontrivial p-subgroup Q in H j , that is, Hi ⩽ NH j (Q) and
is contained in a proper parabolic subgroup of H j which is obviously impossible:
Hi and H j have the same Lie rank m − 1, but proper parabolic subgroups in H j

have smaller Lie rank.
Now we have to take a look at the action of Ji on V . Obviously VJi = [V, Qi ].

The group V ⋊ Qi is nilpotent and V is its connected component and therefore, by
standard properties of nilpotent groups of finite Morley rank, [V, Qi ] is a connected
definable proper subgroup of V . Hence

(f) VJi is a connected definable proper subgroup of V .

Now we immediately have

(g) J∞ =
⋃

∞

i=i∗ Ji is a nilpotent ideal of R∞. Moreover, VJ∞ is a connected
definable proper subgroup of V .

If W = VJ∞ ̸= 0 then W is a definable proper connected R∞-invariant, and hence
G∞-invariant, subgroup of V . But then NG(W ) is a definable subgroup of G, and,
of course, contains G∞; hence, by Theorem 1.4, NG(W ) = G, which contradicts
irreducibility of G on V . This proves

(h) J∞ = 0

We can now complete the proof of the lemma. By Steps (h) and (d), R∞ is
semisimple and

R∞ = M1 ⊕ · · · ⊕ Mk

is the direct sum of matrix algebras of degrees d j over the field K∞.
Assume that k > 1. then

V = VM1 ⊕ · · · ⊕ VMk,

where each submodule VM j is annihilated by Ml for l ̸= j , and, moreover,

VM J =

⋂
l ̸= j

Ann
V

(Ml).

By the chain condition, VM j is the annihilator of a finite set of matrices, therefore
it is definable. Moreover, VM j is normalised by G∞, therefore G∞ ⩽ NG(VM j )

and the latter is a definable subgroup, which again leads to a contradiction with
Theorem 1.4 and irreducibility of G on V . Hence k = 1 and R∞ = Md×d(K∞). □
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4G. Back to proof of Theorem 1.5 part (1). Now we can use Lemma 4.3. Let
Z∞ ≃ K ∗

∞
be the centre of R∞. Take z ∈ Z∞, z ̸= 0, 1. Then

z = g1 + · · · + gn

for some gi ∈ G∞. Some elements g ∈ G “commute” with z in the sense that

vzg = vgz for all v ∈ V . (3)

We denote by M the set of such elements in G; it is easy to see that this is a
subgroup. And here is the key observation: equation (3) can be written as a first
order statement in the group language in the group V ⋊G:

vg1g + · · · + vgng = vgg1 + · · · + vggn for all v ∈ V .

Now the subgroup M is definable in V ⋊ G, and contains G∞, so we have the
following chain of subgroups:

G∞ ⩽ M ⩽ G. (4)

The group G, being a semisimple linear algebraic over K , is decomposed as a
central product

G = G1
∗ · · · ∗ Gℓ

of simple algebraic groups Gi over K , i = 1, . . . , ℓ. If Gi
∞

is the group of points
of Gi over the field K∞, then

Gi
∞

= G1
∞

∗ · · · ∗ Gℓ
∞

,

Mi = M ∩ Gi , and in every Gi we have a chain of subgroups

Gi
∞

⩽ Mi ⩽ Gi .

Now, Theorem 1.4 gives us Mi = Gi for all i , so M = G. Recall that the subgroup
M was constructed from some element z ∈ Z . This argument applies to all z ∈ Z∞,
so Z∞ and G commute elementwise as multiplicative subgroups of End V . The
application of Fact 4.1 completes the proof of Theorem 1.5(1). □

4H. Theorem 1.5 part (2): some preparatory comments. We continue to work in
the notation of Theorem 1.5 but need additional definitions and facts about simple
algebraic groups over algebraically closed fields.

If G and H are two simple algebraic groups over an algebraically closed field
K of characteristic p > 0 which is fixed in this section, a surjective rational
homomorphism ζ : G → H is called an isogeny. It is known that ker ζ ⩽ Z(G)

is finite and has order coprime to p. Among simple algebraic groups of the same
type as G, that is, with the same root system, there is the group Ĝ, called simply
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connected, which has a isogeny onto any other simple group of the same type, and
the adjoint group G such that any group of the same type has an isogeny onto G.

Let 8 be the root system of G; we can select root subgroups

Xr = {xr (t) : t ∈ K }, r ∈ 8,

so that all of them are defined over the prime field. An isogeny ζ : G → H maps
the system of root subgroups {Xr : r ∈ 8} to a similar system in H .

If now ϕ ∈ Aut K is an automorphism of the field K then it induces a field
automorphism of G by mapping elements of root subgroups of G,

xr (t) 7→ xr (tϕ), r ∈ 8, t ∈ K .

This gives us an automorphism ϕ̃ of G, and similarly for H . Obviously, the ϕ̃

commute with the isogeny, ϕ̃ζ = ζ ϕ̃, which justifies the use of the notation ϕ̃ on
both groups G and H . Also, the action of ϕ̃ on the elements of the root subgroup
Xr = {xr (t) : t ∈ K } is the same as the action of ϕ on the elements of K . Therefore,
if ϕ̃ is a definable automorphism of G, then ϕ is a definable automorphism of K .

The automorphism ϕ̃ can be used to convert each G-module W into another
G-module, denoted W ϕ , by the rule wg := w(gϕ̃), w ∈ W , g ∈ G [58, §5].

4I. Proof of Theorem 1.5 part (2).

Proof. We know from part (1) of Theorem 1.5 that V is a finite-dimensional vector
space over the field K and G is a definable subgroup in GLK (V ).

Let Ĝ be a simply connected simple algebraic group over K and ρ : Ĝ → G
an isogeny. Then ρ is an abstract homomorphism, in the sense of the famous
Homomorphismes “abstraits” paper by Borel and Tits [10], from Ĝ to GLK (V ),

ρ : Ĝ → GL(V ).

By [10, Corollary 10.4] (compare with [58]), ρ is equivalent to a tensor product

ϕ1ω1 ⊗ · · · ⊗ϕmωm,

where ωi are rational irreducible representations of Ĝ and ϕi are automorphisms of
Ĝ induced by automorphisms of the field K .

Now all that we have to prove is that all field automorphisms ϕi are definable
in V ⋊G. For that, we have to switch from the representation-theoretic language
to the group-theoretic one.

Let ϵ be the 1-dimensional trivial representation Ĝ →GL1(K ). Set di =dimK ωi ;
by properties of tensor products, d1 · · · dm = n, where n = dimK (V ). As usual,
define diϵ = ϵ ⊕ · · · ⊕ ϵ (di times). Finally, set

ρi = d1ϵ ⊗ · · · ⊗ di−1ϵ ⊗ ϕiωi ⊗ di+1ϵ ⊗ · · · ⊗ dmϵ.
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The representations ρi are defined up to equivalence of representations, but they
can be replaced by equivalent ones in a way that makes the images Gi of ρi

pairwise commuting, [Gi , G j ] = 1 for i ̸= j . Set Ğ = G1 · · · Gm . Observe
that G ⩽ Ğ. In particular, the group Ğ acts on V irreducibly. Also, the centres
Z(Gi ) < Z(GL(V )) consist of scalar matrices. Let ζ : GL(V ) → PGL(V ) be the
canonical homomorphism; replacing all our groups by their images in PGL(V )

simplifies the arguments. The steps of this reduction are shown in diagram (5)

Ĝ

ρ=
⊗

ϕ̃i ωi

��

ρi

  

simply connected cover of G

representations

G

ζ

��

Gi

ζ

��

GL(V )

GL(V ) → PGL(V )

G
ϕ̃i ωi

//

πi

��

Gi

Id

��

PGL(V )

projections G → D

Gi PGL(V )

(5)

and explained in detail below.
We are moving now into the setup of [10, Theorem 10.3] and denote by ρ̄ and

ρ̄i the induced homomorphisms

ρ̄ = ρ · ζ : Ĝ → PGL(V ), ρ̄i = ρi · ζ : Ĝ → PGL(V ).

We denote by G and Gi the images of groups G and Gi in P = PGL(V ). Since
Gi = Gi/Z(Gi ) are simple groups, the commuting product G1 · · · Gm is a direct
product,

G1 · · · Gm = G1 × · · · × Gm .

Now we take the double centraliser closures of groups Gi , setting Di =CP(CP(Gi )),
then Gi ⩽ Di and the groups Di form a direct product

D = D1 × · · · × Dm .

It could be shown that Di ≃ PGLdi (K ), but we will not be using this fact. What
matters for us is that Di are definable in PGL(V ) and hence in V ⋊G.
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The final step in the proof starts with an observation that G ⩽ D. The group G
is of course definable, and hence the projection maps πi : G → Di are definable
in V ⋊G. The image of πi is Gi , and the triangle at the bottom of the diagram (5)
is commutative, πi = ϕ̃iωi and ϕ̃i = πiω

−1
i . Hence the field automorphism ϕ̃i of

the group G is definable in V ⋊G, and hence the automorphism ϕ of the field K is
also definable in V ⋊G. □

4J. Theorem 1.5 part (2): an example. Let Ĝ = SL2(K ), where K is an al-
gebraically closed field of characteristic p > 2, ω the canonical 2-dimensional
representation of Ĝ over K and ϕ̃ its field automorphism induced by ϕ ∈ Aut K .
Let V be the space of the representation ω⊗ ϕ̃ω; then dimK V = 4. Using the usual
notation In for the identity linear transformation of K n , we see that the image in
GL(V ) of the central element −I2 of Ĝ is

−I2 ⊗ −I ϕ̃

2 = −I2 ⊗ −I2 = I4,

which means that the image of Ĝ in GL(V ) (we denote it G) is isomorphic
to PSL2(K ). If we now move to PGL(V ), retaining the notation from the proof,
we see that G now is a subgroup in PSL2(K )× PSL2(K ) and that it happens to be
exactly the graph of the field automorphism ϕ̃ : PSL2(K ) → PSL2(K ).

If we now look only at the group V ⋊G ≃ K 4 ⋊ PSL2(K ), it would be difficult
to find its representation-theoretic origins without invoking the simply connected
cover Ĝ of the group G. Therefore, Theorem 1.5(2) corrects (and confirms, in the
corrected form) [15, Conjecture 9.].

The proof of the theorem in this special case contains an interesting little detail
which sheds light at the situation in general: we are proving the definability of the
automorphism ϕ̃ by proving the definability of its graph as a subgroup. This is a
cute tiny self-evident fact from elementary algebra which Şükrü Yalçınkaya and
myself could not find in any textbook but which we systematically use in all our
work on black box algebra [17]:

A map ϕ : G → H from a group G to a group H is a homomorphism if
and only if its graph 0ϕ ⊂ G × H of ϕ is a subgroup of G × H.

The same is of course true for rings and all other kinds of algebraic systems.
This is one of many examples of the exchange of ideas between the theory of black
box groups and the theory of groups of finite Morley rank. See also Section 5E for
further discussion.

4K. Proof of Theorem 1.10. The following result about solvable groups of finite
Morley rank is an adaptation of the method of proof of Theorem 1.5(1).

Theorem 1.10. Let G be an infinite solvable-by-finite group of finite Morley rank
which acts faithfully and definably on a connected elementary abelian p-group V
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of finite Morley rank. Assume that this action is definably irreducible. Then G◦ is a
good torus and V has a definable structure of a finite-dimensional K-vector space
compatible with the action of G, with the field K definable in V ⋊G.

Proof. Since G acts faithfully and irreducibly on V , [G◦, G◦
] acts trivially on V by

[2, Lemma I.8.2], and since the action is faithful, [G◦, G◦
] = 1 and G◦ is abelian.

By a similar argument, G◦ is a p⊥-group. By [2, Proposition I.11.7], G◦ is a good
torus. By [2, Fact I.9.5], there is a subgroup G∞ < G such that G◦

∩ G∞ is the
torsion part of G◦ and G◦G∞ = G. Obviously, G∞ is a locally finite group and G
is the definable closure of G∞.

Now we can repeat, with very small changes, the proof of Theorem 1.5(1). □

5. Historical and other comments

I wish to conclude the paper with a few words about the balance of the model-
theoretic and the group-theoretic components in the theory of simple groups of
finite Morley rank.

5A. Simple algebraic groups, Chevalley groups and the work version of the
Cherlin–Zilber conjecture. In the classification theory of simple groups of finite
Morley rank, as it stands now, the structural theory of simple algebraic groups is
heavily used, as a rule, in the form of a summary statement:

A simple algebraic group over an algebraically closed field K is a Cheval-
ley group over K .

A Chevalley group over a field or a ring R is viewed as a group given by some
specific generators and relations which involve parameters from R [8]. It can be
shown that

A Chevalley group over an algebraically closed field K is a simple alge-
braic group over K .

In works aimed at proving the Cherlin–Zilber algebraicity conjecture, this is
usually used in the following form:

An infinite simple group of finite Morley rank is a Chevalley group over
an algebraically closed field.

This allows us to use very powerful group-theoretic characterisations of Chevalley
groups and ignore the algebraic geometry aspects of the theory. See, for example,
how the Curtis–Tits–Phan–Lyons theorem [41], which describes Chevalley groups
as amalgams (in the group-theoretic sense) of groups of type SL2 or PSL2, is used
in [7].

Let G be a simple algebraic group over an algebraically closed field K . Let T be
a maximal torus in G. The canonical approach to describing G as a Chevalley group
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is to associate with T the Weyl group, a finite system 8 of roots, root subgroups,
etc. Almost all information about G needed for using G within an attempted proof
of the Cherlin–Zilber conjecture is contained in the set of the so-called root SL2-
subgroups, which can be characterised as Zariski closed subgroups in G isomorphic
to SL2(K ) or PSL2(K ) and normalised by T . They are labelled by pairs of roots
±r ∈ 8, and they generate G. The origins of the concept go to the paper by Borel
and de Siebenthal of 1949 on the structure of compact Lie groups [9]; see the
construction of root SL2-subgroups in [8, 3.2(1)]. The following special case of the
Curtis–Tits–Phan–Lyons theorem is formulated in [7, Proposition 2.1.].

Fact 5.1. Let 8 be an irreducible finite root system of rank at least 3, and let 5 be
a system of fundamental roots for 8. Let X be a group generated by subgroups Xr

for r ∈ 5. Suppose that either [Xr , Xs] = 1 or Xrs = ⟨Xr , Xs⟩ is a Chevalley group
over an algebraically closed field with the root system 8rs spanned by r and s, and
with Xr and Xs corresponding root SL2-subgroups with respect to some maximal
torus of Xrs . Then X/Z(X) is isomorphic to a Chevalley group with the root system
8 via a map carrying the subgroups Xr to root SL2-subgroups.

5B. Central extensions of simple algebraic groups. However, there is a model-
theoretic twist again: all these arguments rely on the description of central extensions
of Chevalley groups in the finite Morley rank context due to Tuna Altınel and
Gregory Cherlin [1], which, in its turn, relies on model-theoretic results by Newelski
and Wagner (independently):

Fact 5.2 ([53; 64], cf. [2, Lemma I.4.16(2)]). Let K be a field of finite Morley rank
and X a definable subgroup of K × which contains the multiplicative group of an
infinite subfield F of K (not assumed definable). Then X = K ×.

In particular, [1] allows to conclude that if the subgroup X in Fact 5.1 is of finite
Morley rank, then not only X/Z(X), but X itself is a Chevalley group.

5C. Good tori. It is worth noting that a key ingredient of the proofs of Theorem 1.4
and of Theorem 1.10, a “good torus”, a concept introduced by Gregory Cherlin [25],
is rooted in the model theory. In the book [2], Proposition I.11.7, quoted in the
proofs, goes back to Proposition I.4.15, which is a deep model-theoretic result of
2001 by Frank Wagner [64].

5D. Bi-interpretability. Another key ingredient, the bi-interpretability of the simple
algebraic group G over an algebraically closed field K , and the field K , is Bruno
Poizat’s result [54] of 1988. Its proof is purely model-theoretical and does not
use the structural theory or classification of simple algebraic groups. What is even
more remarkable, Bruno Poizat does not even assume that G is linear — in his
paper, the structure of G as an algebraic variety is proved to be definable in the
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group language of G. Its prehistory is also interesting: the model-theoretic ideas
underpinning the proof can be traced back to Zilber’s result of 1977. As Gregory
Cherlin discussed it in 1979,

[. . . ] Zilber [66] gives an elegant proof that a simple algebraic group
over an algebraically closed field is ℵ1-categorical [16, Corollary to
Theorem 3.2]. I had observed (Fall 1976) that this result can be obtained
easily, but at some length, from the known structure theory for such
groups (using a good deal of [27] and the generators and relations of
Steinberg [59]). Zilber’s proof is short and uses no structure theory.
([24, p. 2], reference numbers are updated to match the bibliography of
this paper.)

Not surprisingly, relations between model-theoretic properties between a Cheval-
ley group and its field (not necessary algebraically closed) or a ring of definition
are of natural interest.

At the present time, the most powerful result belongs to Elena Bunina [21]:

If G(R) = Gπ (8, R) is a Chevalley group of rank > 1, R is a local ring
(with 1

2 for the root systems A2, Bl, Cl, F4, G2 and with 1
3 for G2), then

the group G(R) is regularly bi-interpretable with the ring R.

As usual, the Chevalley group Gπ (8, R) is constructed from the root system 8,
a ring R and a representation π of the corresponding Lie algebra [8].

But the bi-interpretability of a Chevalley group over an algebraically closed field
K with this field is a relatively easy result.

5E. Bi-interpretability in the black box algebra. Anatoly Maltsev was the pioneer,
in 1961, of the study of bi-interpretability of Chevalley groups and their fields of
definition. Theorem 4 of his paper [50] states the bi-interpretability of linear groups
G = GLn(K ), PGLn(K ), SLn+1(K ), and PSLn+1(K ), n ⩾ 2 over a field K and the
field K .

Moreover, Maltsev had shown that this bi-interpretability is recursive: there are
algorithms which rewrite formulae from Th(G) as formulae from Th(K ), and vice
versa. This algorithmic aspect has interesting and somewhat bizarre analogues
in Black Box Algebra as developed by Şükrü Yalçınkaya and myself [18]. The
black box algebra deals with finite algebraic structures (in particular, Chevalley
groups over finite fields), where, however, algebraic operations are computed by
“black boxes” (these are finite analogues of definable structures from model theory).
Homomorphisms have to be computed (and first order formulae evaluated) by Monte-
Carlo algorithms in probabilistic polynomial time. Polynomial time morphisms
are analogues of definable homomorphisms from model theory. Interestingly, this
approach gives some indication why Maltsev skipped, in his theorem, the groups
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SL2(K ), and PSL2(K ): in the black box context, we do not have direct access to
nontrivial unipotent elements even in these “small” groups. In model theory, their
existence is a basic statement

(∃u)(u p
= 1 ∧ u ̸= 1), (6)

but in the black box groups the quantifier ∃ means “can be found in probabilistic
polynomial time” and proof of (6) for SL2(K ) and PSL2(K ) was believed to be an
intractable problem. Even this innocent looking problem was seen as impossibly
difficult:

Assume that you are given several matrices M1, . . . , Mm of size n × n
over a finite field Fpk generating a subgroup X isomorphic to SL2(Fpℓ).
Find in X a nontrivial unipotent element (that is, an elements of order p).

The reason for that is simple: the probability to hit a unipotent element at random
is about 1/pk and is exponentially small with the growth of k, even with the small
values of p.

Şükrü Yalçınkaya and myself clarified all that in [17], by constructing PGL2(K )

from PSL2(K ) viewed as a pure group, then interpreting a projective plane P2(K )

in PGL2(K ), and, finally, interpreting K in P2(K ) (the last step is well known but
has some twists in the polynomial time setting). In bigger Chevalley groups, finding
unipotent elements is done by recursion to these “small” cases (see Yalçınkaya [65]
and our forthcoming monograph [18]). This was considerably more difficult than
Maltsev’s analysis in [50] — but still, Maltsev was the pioneer.

Another example of exchange of ideas between the black box group theory and
the theory of groups of finite Morley rank was given in Section 4J. In the black
box group theory, a group homomorphism ϕ : G → H with a black box for its
graph 0ϕ < G ⋊ H is not necessarily polynomial time computable; we call it a
protomorphism. The concept of protomorphism is central to the theory of black
box groups.

5F. Alternative versions of the proof of Theorem 1.4. I will now outline two
alternative versions of the proof of Theorem 1.4, which use the structural theory of
simple algebraic groups to reduce the proof to the case of simple algebraic groups
G of type A1, that is, G = PSL2(K ) or SL2(K ).

Lemma 5.3. It suffices to prove Theorem 1.4 for G if G is of type A1, that is,
G = PSL2(K ) or SL2(K ).

Proof. Assume that we are in the setup of Theorem 1.4 and that we already know that
Theorem 1.4 is true in the special case of G being of type A1, that is, G = PSL2(K )

or SL2(K ).
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Let us pick in G∞ a maximal torus T∞ and set T = CG(T∞); this is a maximal
torus in G, and it equals the Zariski closure of T∞. Denote by L∞ the set of all
root SL2-subgroups in G∞ normalised by the torus T∞ and by L the set of their
Zariski closures. Then L is the set of all root SL2-subgroups in G normalised by
the torus T .

Let now L ∈ L. Then L∞ = L ∩ G∞ is (P)SL2(K∞) and

L∞ ⩽ M ∩ L ⩽ L ,

and by the assumptions of the lemma, L = M ∩ L < M . Since the system L
generates the group G, M = G. This proves the lemma. □

Lemma 5.4. Theorem 1.4 is true if G is of type A1, that is, G = PSL2(K )

or SL2(K ).

Proof. There are at least five approaches to a proof of this lemma.

(1) This is the most direct and straightforward approach to the proof: let T∞ be a
torus in G∞ and T = CG(∞) a torus in G. By basic linear algebra, T is contained
in a Borel subgroup of G and is therefore a good torus by [2, Proposition I.11.7].
Hence M ∩ T = T and T < M . If U∞ and V∞ are the two maximal unipotent
subgroups in G∞ normalised by T∞ then U = [U∞, T ] and V = [V∞, T ] are two
different maximal unipotent subgroups in G and belong to M . Since ⟨U, V ⟩ = G,
we have M = G. □

Other four approaches are only indicated:

(2) The lemma immediately follows from Theorem 4 of Bruno Poizat’s seminal
paper [55] (which, in its turn, is based on the model-theoretic, by their nature,
results by Frank Wagner [63; 64]).

(3) Theorem 4 of [55] has been drastically improved by the very neat result of
the paper of Mustafin and Poizat [51], which does not use Wagner’s theorem: a
superstable nonsolvable subgroup of SL2(K ) is conjugated to SL2(k), where k is
an algebraically closed subfield of K ; it is therefore transparent that if you assume,
in addition, that the pair of groups has a finite Morley rank, so has the pair of fields,
and K = k.

(4) In odd characteristics, the lemma is an almost immediate consequence of the
difficult and important result by Adrien Deloro and the late Éric Jaligot [34]. Indeed
it follows from the well-known properties of the group PSL2(K ) that the subgroup
M satisfies the assumptions of their theorem, and therefore M is isomorphic to
PSL2(F) for some algebraically closed field F (of the same characteristic as K , of
course); after that it becomes obvious that M = G.
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(5) In characteristic 2, the lemma follows from [19]. Moreover, it de facto follows
from an ancient result (the unbelievable 1900!) by Burnside [22]; see discussion in
[11, Sections 4 and 5] and in [39, pp. 11–12].

To my taste, approach (1) is the simplest and best fits the needs of classification
of simple groups of finite Morley rank. □
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[17] A. Borovik and Ş. Yalçınkaya, “Adjoint representations of black box groups PSL2(Fq )”, J.
Algebra 506 (2018), 540–591. MR Zbl
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Zilber’s skew-field lemma

Adrien Deloro

We revisit one of Zilber’s early results in model-theoretic algebra, viz., definability
in Schur’s lemma. This takes place in a broader context than the original version
from the seventies.

La droite laisse couler du sable.
Toutes les transformations sont possibles.

Paul Éluard

The present contribution discusses and proves a linearisation result originating
in Zilber’s early work. Let us note to begin:

(1) o-minimal dimension and Borovik–Morley–Poizat rank are examples of finite
dimensions.

(2) All necessary definitions are in Section 2.1.

(3) I have preferred not to conflate T with K in the statement.

(4) There are classical corollaries in Section 2.4.

(5) The result bears no relationship to indecomposable generation discussed in
Section 2.5.

Theorem (Zilber’s skew-field lemma). Work in a finite-dimensional theory. Let V
be a definable, connected, abelian group and S, T ≤ DefEnd(V ) be two invariant
rings of definable endomorphisms such that

• V is irreducible as an S-module;

• C(S) = T and C(T ) = S, with centralisers taken in DefEnd(V );

• S and T are infinite;

• S or T is unbounded.

Then there is a definable skew-field K such that V ∈ K-Vect<ℵ0 ; moreover, S ≃
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Section 1 provides context. Section 2 discusses the statement, and gives all
definitions. The proof is in Section 3.

1. Introduction

Section 1.1 explains the relation to Schur’s Lemma. Section 1.2 makes some
historical remarks. Section 1.3 discusses a more famous corollary on fields in
abstract groups.

1.1. Schur’s lemma. Among the early work of Zilber are a couple of gems in
model-theoretic algebra. (More on Zilber’s early work is in [Hodges 2024] in the
present volume.) This article deals with one of the phenomena he discovered: many
ℵ1-categorical groups interpret infinite fields. The result, or the method, or the
general line of thought, is often called Zilber’s field theorem. It stems from Schur’s
lemma in representation theory:

Lemma (Schur’s lemma). Let R be a ring and V be a simple R-module. Then the
covariance ring F = CEnd(V )(R) is a skew-field, V is a vector space over F, and
R ↪→ EndR(V ).

Zilber’s deep observation is simple:

in many model-theoretically relevant cases, F is definable.

A precise and modern form of the latter statement, given as Corollary 1 in
Section 2.4, is a straightforward consequence of the main theorem above. (One
should remember that every module is actually a bimodule by introducing Schur’s
covariance ring.) I shall henceforth call it (in long form) the Schur–Zilber skew-field
lemma, hoping that Boris will not mind being in good company. Far be it from me
to minimise its significance by dubbing it a lemma instead of a theorem; quite the
opposite as lemmas are versatile devices — methods.

1.2. Editorial fortune of the lemma. This subsection is a layman’s attempt at
providing historical remarks. I apologise for misconceptions.

• As one learns from [Curtis 1999, p. 139], Schur’s lemma itself appears in [Schur
1904, §2, I.] with comment: “der auch in der Burnside’schen Darstellung der
Theorie eine wichtige Rolle spielt”.

• Before Zilber’s result was known, Cherlin [1979, §4.2, Theorem 1] found a defin-
able field independently. There interpretation is obtained by hand (and seemingly
by miracle), without a general method. Cherlin heard about Zilber’s work after
completing his own; [Cherlin 1979, §1.4] is very informative.
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• The lemma itself seems not to have drawn as much attention as its corollary on
soluble groups (Section 1.3). There are few traces of the lemma as a stand-alone
statement.

• All sources discussing the topic [Zilber 1977; 1984; Thomas 1983; Nesin 1989a;
1989b; Poizat 1987; Loveys and Wagner 1993; Borovik and Nesin 1994; Macpher-
son and Pillay 1995] rely on indecomposable generation (however, see Section 2.5).

• This is different in the o-minimal context, but [Peterzil et al. 2000, Theorem 2.6]
has its own techniques. (The earlier [Nesin et al. 1991, Proposition 2.4], which bears
no reference to Zilber, resembles the coordinatisation by hand of [Cherlin 1979].)
This and the above item may have given the impression that the Schur–Zilber lemma
is a finite Morley rank gadget; the present contribution shows that it isn’t.

• Most sources focus on the ring generated by the action instead of going to the
centraliser; exceptions are [Nesin 1989a; Macpherson and Pillay 1995]. Only the
under-cited [Nesin 1989a] discusses rings and makes the connection with Schur’s
lemma, while [Macpherson and Pillay 1995, p. 487] notices resemblances between
various linearisation results but concludes:

There appear to be no immediate implications between this and the results
recorded here, though it looks similar to Theorem 1.2.

The present contribution elucidates the desired relations.

• My own interest in the topic started when I read [Nesin 1989a] while preparing
[Deloro 2016]. This resulted in a very partial version of the theorem, in finite Morley
rank and using indecomposability. After I gave a talk on generalising “Zilber’s field
theorem” in Lyon in January 2016, Wagner shared numerous ideas, which will bear
all their fruits in the collaboration [Deloro and Wagner ≥ 2024].

1.3. Fields in soluble groups. To some extent, the Schur–Zilber lemma is the
poor relation of the following theorem [Zilber 1984, Corollary, p. 175] (currently
undergoing generalisation by Wagner):

connected, nonnilpotent, soluble groups of finite Morley rank interpret
infinite fields.

I believe the significance of the latter principle has been exaggerated for three
reasons.

(1) In the local analysis of simple groups of finite Morley rank, different soluble
subquotients may interpret nonisomorphic fields. Since there are strongly minimal
structures interpreting different infinite fields [Hrushovski 1992], any field structure
could be a false lead. (For more on how experts approach the algebraicity conjecture
on simple groups of finite Morley rank, and the influence of finite group theory
instead of pure model theory, see [Cherlin 2024; Poizat 2024].)
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(2) Fields obtained by this method can have “bad” properties, typically nonminimal
multiplicative group [Baudisch et al. 2009].

(3) The corollary focused on abstract groups and distracted us from doing repre-
sentation theory (see the remarkable [Borovik 2024]).

2. The theorem

Section 2.1 contains all necessary definitions. Section 2.2 justifies the structure of
the statement. Section 2.3 discusses optimality, Section 2.4 gives corollaries, and
Section 2.5 considers the relation to “indecomposable generation”.

The general version of the skew-field lemma is a double-centraliser theorem,
repeated below. Alternative names could have been “bimodule theorem” or “double-
centraliser linearisation”.

Theorem. Work in a finite-dimensional theory. Let V be a definable, connected,
abelian group and S, T ≤ DefEnd(V ) be two invariant rings of definable endomor-
phisms such that

• V is irreducible as an S-module (viz., in the definable, connected category);

• C(S) = T and C(T ) = S, with centralisers taken in DefEnd(V );

• S and T are infinite;

• S or T is unbounded.

Then there is a definable skew-field K such that V ∈ K-Vect<ℵ0 ; moreover, S ≃

End(V : K-Vect) and T ≃ K IdV are definable.

It would be interesting to recast this kind of double-centraliser result in the
abstract ring S ⊗ T , with no reference to V . (This is not planned in [Deloro and
Wagner ≥ 2024].)

2.1. Definitions.

• Connected: with no definable proper subgroup of finite index. (Since the context
does not provide a DCC, not all definable groups have a connected component.)

• Bounded: which does not grow larger when taking larger models. (The algebraist
may fix a saturated model with inaccessible cardinality and argue there; bounded
then means small. Also see [Halevi and Kaplan 2023].)

• Type-definable: a bounded intersection of definable sets.

• Invariant: a bounded union of type-definable sets. (The name comes from the
action of the Galois group of a “large” model. Section 2.2 gives reasons for
considering the invariant category instead of the definable one.)
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• Irreducible: no nontrivial proper submodule — a submodule being definable and
connected. (This is weaker than usual algebraic simplicity, which would also
exclude finite submodules. Model theory will handle those in its own way.)

• Finite-dimensional: which bears a reasonable dimension on interpretable sets.
Here [Wagner 2020] would say fine, integer-valued, finite-dimensional. The defini-
tion is as follows.

Definition [Wagner 2020]. A theory T is [fine, integer-valued] finite-dimensional
if there is a dimension function dim from the collection of all interpretable sets
in models of T to N ∪ {−∞}, satisfying the following for a formula ϕ(x, y) and
interpretable sets X and Y :

• Invariance: If a ≡ a′ then dim(ϕ(x, a)) = dim(ϕ(x, a′)).

• Algebraicity: X is finite nonempty if and only if dim(X)=0, and dim(∅)=−∞.

• Union: dim(X ∪ Y ) = max{dim(X), dim(Y )}.

• Fibration: If f : X → Y is an interpretable map such that dim( f −1(y)) ≥ d
for all y ∈ Y , then dim(X) ≥ dim(Y ) + d.

The dimension extends to type-definable, and then to invariant sets; of course
one should no longer expect nice additivity properties.

Except for a key “field definability lemma” (Section 2.5) we shall use little from
[Wagner 2020]. There is an ACC and a DCC on definable, connected subgroups.

2.2. Explaining the statement. Our statement deviates from traditional versions in
several respects, and we make three cases for three notions.

Skew-fields rather than fields. Schur’s lemma produces a skew-field, and so does
Zilber’s model-theoretic version.

• This went first unnoticed since ℵ1-categorical skew-fields are commutative (an-
swering a question of Macintyre’s, proved by Cherlin and Shelah — see note on
[Borovik and Nesin 1994, p. 139] — and independently by Zilber [1977].)

• It is easy to construct, in tame geometry, so-called “quaternionic representations”,
where the Schur field is the skew-field of quaternions.

• Also, the subring ⟨A⟩ ≤ End(V ) generated by a commutative group action can
be smaller than its Schur skew-field CEnd(V )(A): classical focus on the former (as
in most sources) captures only partial geometric information.

So skew-fields are naturally unavoidable. (There remains the question of which
skew-fields can arise in a finite-dimensional theory. Skew-fields abound in number
theory, but arguably number theory is far from tame. One can also doubt that the
more exotic objects constructed in [Cohn 1995] will be finite-dimensional. The
bold would conjecture that infinite skew-fields in finite-dimensional theories are
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commutative and real closed, commutative and algebraically closed, or quaternionic
over a commutative real closed field. The more reasonable may be content with
conjecturing that they are finite extensions of their centres. Either of these claims,
if true, would have an impact on their stability-theoretic properties.)

Rings rather than groups. Let V be an abelian group; then End(V ) is a ring. This
accounts for studying representations of rings.

• If G ≤ Aut(V ) is a definable acting group, the subring of End(V ) it generates
need not be definable (see “invariance” below). This may have baffled pioneers in
the topic.

• Rings were long neglected after the seminal [Zilber 1977] (a remarkable exception
being [Nesin 1989a]). Going to the enveloping ring, however, gives powerful results,
inaccessible to group-theoretic reasoning; see [Borovik 2024].

Invariance rather than definability. Leaving definability may have stopped first
investigators of the matter; it is however salutary.

• If G ≤ Aut(V ) is a definable group, then the generated subring ⟨G⟩ ≤ End(V )

is
∨

-definable; this is closer to definability than invariance is. However (see
“skew-fields” above), ⟨G⟩ does not capture enough geometric information. The
double-centraliser C(C(G)) ≥ ⟨G⟩ is more adapted to Schur-style arguments.

• So let R≤End(V) be a definable ring. Then Schur’s covariance ring CDefEnd(V )(R)

need not be definable, but it is invariant. And if R itself is invariant, CDefEnd(V )(R)

is too.

So model-theoretic invariance arises as naturally as centralisers do.

2.3. Optimality.
• Both S and T must be infinite.

Let K be a pure algebraically closed field of positive characteristic p and V = K+,
which is definably minimal. Now DefEnd(V ) consists of quasi-p-polynomials,
viz., of all maps x 7→

∑n
k=−n apk Frpk , where Fr is the Frobenius automorphism

of relevant power, and apk ∈ K; there is no bound on n. Only the action of Fp

commutes to all these. We then let S = DefEnd(V ) and T = Fp (or vice-versa).
The first is not definable.

• At least one must be unbounded.
For the same V , now let S be the ring of all quasi-p-polynomials with coefficients

in Fp, viz., the subring of DefEnd(V ) generated by Frp and its inverse. Then one
easily sees that C(S) = S is countable, and not definable.

On the other hand, it so happens that S-irreducibility can be relaxed to irreducibil-
ity as an (S, T )-bimodule [Deloro and Wagner ≥ 2024]. So in retrospect, the main
theorem can be retrieved as a corollary to [Deloro and Wagner ≥ 2024, Theorem 2].
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2.4. Corollaries. I give three corollaries, proved in Section 3.5. The first relates
the main, “double-centraliser” theorem to Schur’s lemma. The second retrieves
what is called “Zilber’s field theorem” in sources such as [Borovik and Nesin 1994].
The third is a variation coming from Nesin’s work and isolated by Poizat.

Corollary 1 (Schur–Zilber, one-sided form). Work in a finite-dimensional theory.
Let V be a definable, connected, abelian group and S ≤ DefEnd(V ) be an invariant,
unbounded ring of definable endomorphisms. Suppose that V is irreducible as an
S-module. Then CDefEnd(V )(S) is a definable skew-field.

Corollary 1 is, however, not equivalent to our main result, which also covers the
case of unbounded T and infinite S.

Corollary 2 (see [Deloro 2016, Théorème IV.1]). Work in a finite-dimensional
theory. Let V be a definable, connected, abelian group and G ≤ DefAut(V ) be
a definable group such that V is irreducible as a G-module and CDefEnd(V )(G) is
infinite. Then T = CDefEnd(V )(G) is a definable skew-field (so the action of G is
linear).

Corollary 2 (or a minor variation) unifies and should replace various results
such as [Zilber 1984, Lemma 2; Loveys and Wagner 1993, Theorem 4; Nesin
1989a, Lemma 12; Macpherson and Pillay 1995, Theorem 1.2(b); Deloro 2016,
Théorème IV.1; Peterzil et al. 2000, Theorem 2.6; Macpherson et al. 2000, Proposi-
tion 4.1]. However, there are no claims on finite generation.

Corollary 3 (after Nesin and Poizat). Work in a finite-dimensional theory. Let
V be a definable, connected, abelian group and R ≤ DefEnd(V ) be an invariant,
unbounded, commutative ring of definable endomorphisms. Suppose there is an
invariant group G ≤ DefAut(V ) such that

• V is irreducible as a G-module;

• G normalises R;

• G is connected.

Then there is a definable skew-field K such that V∈K-Vect<ℵ0 ; moreover, R ↪→K IdV

and G ↪→ GL(V : K-Vect).

It would be interesting to relax the assumption on commutativity of R. Further
generalisations are expected using endogenies instead of endomorphisms [Deloro
and Wagner ≥ 2024].

2.5. Indecomposable generation (and how to avoid it). Contrary to widespread
belief, the Schur–Zilber lemma has nothing to do with another celebrated result from
Boris’ early work: the “indecomposability theorem” [Zilber 1977, Theorem 3.3],
which by analogy with the algebraic case I prefer to call the Chevalley–Zilber
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generation lemma (again with hope that Boris will not mind being in good company).
For more on the topic, see [Poizat 2024, §8].

Both results are often presented jointly, which serves neither clarity nor purity
of methods. In contrast, the proof given here relies on another phenomenon.

Lemma (field definability; extracted from [Wagner 2020, Proposition 3.6]). Work
in a finite-dimensional theory. Let K be an invariant skew-field such that

• there is an upper bound on dimensions of type-definable subsets of K;

• K contains an invariant, unbounded subset.

Then K is definable.

The first clause is satisfied if there is a definable K-vector space of finite K-linear
dimension.

3. The proofs

The corollaries are derived in Section 3.5. Let V, S, T be as in the theorem. The
proof is a series of claims arranged in propositions.

Proof of Zilber’s skew-field lemma. It is convenient to let T act from the right and
treat V as an (S, T )-bimodule.

Proposition. (i) T is a domain acting by surjections with finite kernels; for
t ∈ T \ {0} one has V t = V .

This will later be reinforced in (x).

Proof. (i) Let t ∈ T \ {0}. Then 0 < V t is S-invariant, definable, and connected;
by S-irreducibility V t = V , so t is onto. In particular, T is a domain. Finally,
dim ker t = dim V − dim V t = 0, so ker t is finite. □

The global behaviour is difficult to control, so we go down to a more “local”
scale with a suitable notion of lines.

3.1. Lines.

Notation. Let δ = min{dim sV : s ∈ S \ {0}} and 3 = {sV : dim sV = δ} be the set
of lines.

Proposition. (ii) Every line is T -invariant.

(iii) If L ∈ 3 and s ∈ S are such that sL ̸= 0, then sL ∈ 3; in particular, L ∩ ker s
is finite.

(iv) V is a finite sum of lines.

(v) S is transitive on 3.

Items (iii) and (iv) will later be reinforced in (vi) and (ix), respectively.
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Proof. (ii) This is obvious since S and T commute.

(iii) Say L = s0V . If sL ̸= 0, then 0 < dim sL = dim((ss0)V ) ≤ dim(s0V ) = δ, so
by minimality of δ one has sL ∈3. This also implies dim(L∩ker s)= dim ker s|L =

dim L − dim sL = 0, and L ∩ ker s is finite.

(iv) The subgroup 0 <
∑

3 ≤ V is definable, connected, and S-invariant; by
S-irreducibility, it equals V . Since dimension is finite, it is a finite sum.

(v) Let L1, L2 ∈ 3, say L i = si V . Now as above, V =
∑

S sL1 ̸≤ ker s2, so there is
s ∈ S such that s2sL1 ̸= 0. But then 0 < s2sL1 = s2ss1V ≤ s2V = L2, and equality
holds. □

3.2. Linearising lines.

Proposition. (vi) If L ∈ 3 and s ∈ S are such that sL ̸= 0, then L ∩ ker s = 0.

(vii) T acts by automorphisms on every line.

The proof is different depending on whether S or T is unbounded.

Proof if T is unbounded. (vi) Suppose sL ̸= 0; we show L ∩ ker s = 0. By (v), S
is transitive on 3, so there is s ′

∈ S with s ′sL = L . Now L ∩ ker s ≤ L ∩ ker(s ′s),
so we may assume that sL = L . Recall that ker s|L = L ∩ ker s is finite by (iii).
Considering s2

|L : L → L , which is onto, we inductively find |ker sn
|L | = |ker s|L |

n ,
so K =

∑
n∈N ker sn

|L is either trivial or countably infinite. Since T is unbounded,
there is t ∈ T \ {0} annihilating K . But t has a finite kernel by (i), so K = 0, as
desired.

(vii) Let t ∈ T . Then ker t is finite and S-invariant, while S is infinite; so there is
s0 ∈ S \ {0} with s0(ker t) = 0.

Since s0 ̸= 0 and V =
∑

3 by (iv), there is L0 ∈ 3 such that s0L0 ̸= 0. Then
s0(L0 ∩ ker t) = 0 so L0 ∩ ker t ≤ L0 ∩ ker s0 by (vi).

Now if L is any other line, then there is s ∈ S with sL = L0 by (v). Therefore
s(L ∩ ker t) ≤ L0 ∩ ker t = 0, and L ∩ ker t ≤ L ∩ ker s = 0 by (vi) again.

So ker t intersects each line trivially. □

Proof if S is unbounded. The strategy is different here and we first prove weakened
versions in reverse order.

Weak (vii)′: We first prove that T acts by automorphisms on some line. By (iv),
V =

∑
3 is a finite sum, so there are L1, . . . , Ln such that

⋂n
i=1 AnnS(L i ) = 0.

In particular (S, +) ↪→
∏

i S/ AnnS(L i ) as abelian groups. Since S is unbounded,
there exists some line L such that the quotient group 6 = S/ AnnS(L) is unbounded.
Let t ∈ T \ {0}. Then K =

∑
n∈N ker tn

|L is either trivial or countably infinite. Since
6 is unbounded, there is σ ∈ 6 \ {0} annihilating K , i.e., there is s ∈ S annihilating
K but not L . By (iii) this shows K = 0, as desired.
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Weak (vi)′: We next prove: if T acts by automorphisms on L , then for s ∈ S with
sL ̸= 0 one has L ∩ ker s = 0. Indeed, L ∩ ker s is finite by (iii). Since T is infinite
there is t ∈ T \ {0} with (L ∩ker s)t = 0, but t induces an automorphism of L . This
proves (vi), but only for lines on which T acts by automorphisms.

(vii) and (vi): By (vii)′, let L be a line on which T acts by automorphisms and
L ′ be another line. Then by transitivity (v), there is s ∈ S with sL = L ′. Suppose
w ∈ L ′

∩ ker t . Then there is v ∈ L with sv = w. Now s(vt) = (sv)t = wt = 0, so
vt ∈ L ∩ ker s = 0. Since T acts by automorphisms on L , (vi)′ implies v = 0 and
w = 0, as desired. □

Since it is unclear at this stage whether every element belongs to a line, we
cannot immediately conclude that T acts by automorphisms; this requires writing
V as a direct sum.

3.3. Globalising local geometries. Instead of morphism of T -modules, we simply
say T -covariant map. We tend to reserve it for definable maps, even implicitly.

Proposition. (viii) Lines are complemented as T -modules, viz., for L ∈ 3 there is
a definable, connected, T -invariant H ≤ V with V = L ⊕ H.

(ix) V is a finite, direct sum of lines.

(x) T is a skew-field acting by automorphisms.

Proof. (viii) Say L = s0V . Since V =
∑

S sL by (iv) and (v), there is s ∈ S with
s0sL ̸= 0, so 0 < s0sL = s0ss0V ≤ L . Let s1 = s0s, so that L = s1V = s1L . Then
for v ∈ V there is ℓ ∈ L with s1v = s1ℓ; in particular, v = ℓ+ (v−ℓ) with ℓ ∈ L and
v − ℓ ∈ ker s1. Therefore H = ker s1 is such that V = L + H ; it also is T -invariant
as S and T commute. Now L ∩ H = L ∩ker s1 = 0 by (vi), so actually V = L ⊕ H .
Connectedness of H follows.

Since V = L ⊕ H is a direct decomposition as a T -module, the associated
projections are T -covariant (viz., morphisms of T -modules).

(ix) As long as possible, we recursively construct lines L1, . . . , L i with direct
complements H j (as definable, connected T -modules) satisfying

for j ≤ i , one has L j ≤
⋂

k< j Hk (viz., each new line is contained in all
previous complements).

The construction starts by (viii). Now suppose L1, . . . , L i and H1, . . . , Hi are
as claimed. A quick induction yields:

V =

( i⊕
j=1

L j

)
⊕

( i⋂
j=1

H j

)
.

Let q project V onto
⋂i

j=1 Hi with kernel
⊕i

j=1 L j . Then q is T -covariant, so
q ∈ C(T ) = S. If

⊕i
j=1 L j < V , then q ̸= 0. Now V =

∑
3 so there is L ′

∈ 3
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such that q L ′
̸= 0. Then let L i+1 = q L ′

∈ 3; it satisfies L i+1 ≤
⋂i

j=1 H j . Picking
a complement as in (viii), we have reached stage i + 1.

However the process must terminate because dim
⊕i

j=1 L j = δ · i remains
bounded by dim V . So at some stage one obtains

⊕i
j=1 L j = V , as wanted.

(x) Say V =
⊕n

i=1 L i by (ix). Then for t ∈ T one has ker t =
⊕n

i=1(L i ∩ker t) = 0
by (vii). □

Hence T is a skew-field and V ∈ T -Vect, but we still fall short of definability.

3.4. Definability. We return to lines. The next result is of a purely auxiliary nature.

Proposition. (xi) Let L1, L2 ∈ 3. If σ : L1 ≃ L2 is definable and T -covariant,
then there is an invertible s ∈ S× inducing σ .

Proof. (xi) Using (viii), write V = L1 ⊕ H1 for some π1 ∈ S with L1 = im π1

and H1 = ker π1.
If L2 ∩ H1 = 0, then H1 is a common direct complement for L1 and L2.

Glue σ : L1 → L2 with IdH to produce a T -covariant map, viz., an element
of CDefEnd(V )(T ) = S, inducing σ . It clearly is invertible.

If L2 ≤ H1, then the process proving (ix) enables us to take L1 and L2 as the first
two lines in a direct sum decomposition. Consider the map given on L1 by σ , on
L2 by σ−1, and on the remaining sum by 1. It is T -covariant and bijective, hence
invertible in S; it induces σ .

The case 0 < L2 ∩ H1 < L2 cannot happen, for then ker π1|L2 ≥ L2 ∩ H1 > 0 so
by definition of lines, π1L2 = 0 and L2 ≤ H1. □

Notation. For L ∈ 3, by (viii) there exists a definable, connected, T -invariant H
such that V = L ⊕ H .

• Let πL be the relevant projection and SL = πL SπL .

• Also let TL ≤ DefEnd(L) be the image of T .

In full rigour, SL also depends on the complement chosen; we omit it from the
notation. This will not create difficulties.

Proposition. (xii) SL and TL are skew-fields contained in DefEnd(L).

(xiii) Inside DefEnd(L) one has C(SL) = TL and C(TL) = SL .

(xiv) T is definable.

Proof. In case T is unbounded, one may directly jump to (xiv).

(xii) Keep in mind that SL is an additive subgroup of S closed under multiplication
but it need not contain 1. (Sometimes SL is called a subrng, for “subring without
identity”.) However, SL per se is a ring with identity πL , as the latter acts on L
as IdL . Moreover, if πLsπL annihilates L , then since it annihilates the chosen direct
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complement, it is 0 as an endomorphism of V , viz., πLsπL = 0 in S. So SL can
be viewed as a subring of DefEnd(L), and it is exactly the subring of restrictions-
corestrictions

{
s|L
|L : s ∈ StabS(L)

}
. (This explains why the complement plays no

role in our construction. It is however useful to have both points of view on SL .)
Let s ∈ SL \{0}. Then sL = L , so by (vi) and since S and T commute, it induces

some T -covariant automorphism σ of L; by (xi) there is s ′
∈ S× inducing σ . Now

πLs ′−1πL is a two-sided inverse of s in SL . This proves that SL is a skew-field.
So is T by (x); now the restriction map T → TL , which is onto by definition, is
injective since T acts by automorphisms. Therefore TL is a skew-field as well.

(xiii) One of them is easy. Let f : L → L be a definable, TL -covariant morphism,
viz., f ∈ CDefEnd(L)(TL). By definition, f commutes with the action of T . Take
any T -invariant direct complement H and set f̂ = 0 on H . Then f̂ : V → V is
T -covariant. Hence f̂ ∈ C(T ) = S and πL f̂ πL = f ∈ SL .

Now let g : L → L be definable and SL -covariant, viz., g ∈ CDefEnd(L)(SL). We
aim at extending g to an S-covariant endomorphism of V .

For M ∈ 3 first use transitivity (v) to choose s ∈ S with sL = M . By (xi) we may
assume s ∈ S×. Notice that sgs−1 leaves M invariant, and let gM ∈ DefEnd(M) be
the induced map. We claim that this does not depend on the choice of s. Indeed let
s ′ be another invertible choice, giving rise to g′

M . Then s−1s ′ induces an element
of SL , so g commutes with it and we find gM = g′

M .
We deduce as follows that gM ∈ C(SM). For if η ∈ SM then we may assume

η ̸= 0 so by (xi) it is induced by an invertible element h ∈ S× normalising M . Then
s ′

= hs is another invertible element taking L to M . By the preceding paragraph,
s ′gs ′−1

= hgM h−1 and sgs−1
= gM agree on M , so gM commutes with η in the

ring SM .
We even prove: if s ∈ S induces σ : M ≃ N , then gN σ = σgM . Both are maps

from M to N . By (xi), we freely suppose s invertible and pick invertible sM , sN

inducing L ≃ M, N . Then s ′

M = s−1sN ∈ S takes L to M , so s ′

M gs ′−1
M agrees with

sM gs−1
M = gM on M . Thus for arbitrary m ∈ M we find

gN σ(m) = ss−1
· sN gs−1

N · s(m)

= s · (s−1sN )g(s−1
N s)(m) = sgM(m) = σgM(m).

Therefore gN σ = σgM , as claimed.
Finally take a direct sum V =

⊕
L i as in (ix) and let ĝ

(∑
ℓi

)
=

∑
gL i (ℓi ), which

is definable, well-defined, and extends g. We want to show ĝ ∈ C(S). Let s ∈ S;
also let si =πi s. It is enough to show that ĝ commutes with each si , and it is enough
to show that they commute on each L j . We have thus reduced to checking that ĝ
and σ : L j ≃ L i induced by an element of S commute. But this is the previous
paragraph.
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Hence ĝ ∈ C(S) = T and therefore g = ĝ|L ∈ TL .

(xiv) Recall that T is a skew-field by (x). If T is unbounded we directly apply
the field definability lemma from Section 2.5 (in that case, (xii) and (xiii) are not
necessary). So we suppose that S is unbounded.

We first prove that there is L such that SL is unbounded. By (ix) take any
decomposition V =

⊕n
i=1 L i and form projections πi onto L i with kernels

⊕
j ̸=i L j .

Let Si, j = πi Sπ j , an additive subgroup of S. We contend that one of them is
unbounded. Indeed, the additive group homomorphism

S →

∏
i, j

Si, j , s 7→ (πi sπ j )i, j ,

is injective since
∑

k πk = 1. Now if SL ,M and SL ′,M ′ are defined as the Si, j , one
easily sees SL ,M ≃ SL ′,M ′ definably; so all rings SL are unbounded.

A caveat: because SL and TL are mutual centralisers only in DefEnd(L) and not
in End(L), the following paragraph cannot be made more trivial.

Therefore SL is an unbounded skew-field by (xii). By field definability of
Section 2.5, SL is definable; now dim SL > 0 and dim L is finite, so L ∈ SL -Vect<ℵ0 .
In particular, all SL -endomorphisms of L are definable, so by (xiii) one has
TL = End(L : SL -Vect). This is a skew-field by (xii), so the linear dimension
over SL is 1 and T ≃ TL ≃ Sop

L is unbounded as well. □

By field definability, the skew-field T is definable and infinite, so dim T > 0; now
dim V is finite so V ∈ T -Vect<ℵ0 . Finally S = C(T ) = End(V : T -Vect). Lines in
our sense now coincide with 1-dimensional T -subspaces of V . This completes the
proof of Zilber’s skew-field lemma. □

3.5. Proofs of corollaries. We repeat the statements already given in Section 2.4.

Corollary 1 (Schur–Zilber, one-sided form). Work in a finite-dimensional theory.
Let V be a definable, connected, abelian group and S ≤ DefEnd(V ) be an invariant,
unbounded ring of definable endomorphisms. Suppose that V is irreducible as an
S-module. Then CDefEnd(V )(S) is a definable skew-field.

Proof. Let T = CDefEnd(V )(S). Notice that T acts by surjective endomorphisms,
so it is a domain. If it is finite, then it is a definable field. Otherwise we wish to
apply our theorem, but it is unclear whether S = CDefEnd(V )(T ). It actually does not
matter. Let Ŝ = CDefEnd(V )(T ) ≥ S, which is invariant and unbounded. Moreover,
CDefEnd(V )(Ŝ) = T as a “triple centraliser”, and V remains Ŝ-minimal. So we apply
the theorem with (Ŝ, T ) and get definability of the skew-field CDefEnd(V )(Ŝ) = T . □

Corollary 2. Work in a finite-dimensional theory. Let V be a definable, connected,
abelian group and G ≤ DefAut(V ) be a definable group such that V is irreducible
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as a G-module and CDefEnd(V )(G) is infinite. Then T = CDefEnd(V )(G) is a definable
skew-field (so the action of G is linear).

Proof. Let T = CDefEnd(V )(G) and S = CDefEnd(V )(T ) ⊇ G. Apply the theorem. □

Corollary 3 (after Nesin and Poizat). Work in a finite-dimensional theory. Let
V be a definable, connected, abelian group and R ≤ DefEnd(V ) be an invariant,
unbounded, commutative ring of definable endomorphisms. Suppose there is an
invariant group G ≤ DefAut(V ) such that

• V is irreducible as a G-module;

• G normalises R;

• G is connected.

Then there is a definable skew-field K such that V∈K-Vect<ℵ0 ; moreover, R ↪→K IdV

and G ↪→ GL(V : K-Vect).

Proof. Let V, R, G be as in the statement. The proof follows that of [Poizat 1987,
Théorème 3.8] closely. Let W ≤ V be R-irreducible, viz., minimal as a definable,
connected, R-submodule; this exists by the DCC on definable, connected subgroups.
Let p = AnnR(W ), a relatively definable ideal of R.

For g ∈ G, the definable, connected subgroup gW ≤ V is R-invariant, and hence
an R-submodule. Clearly AnnR(gW ) = gpg−1. Moreover, R/p ≃ R/(gpg−1).

Now, by G-irreducibility, V =
∑

G gW . So there are g1, . . . , gn ∈ G such that
V =

∑n
i=1 gi W . In particular,

⋂n
i=1 AnnR(gi W ) = 0, and R ↪→

∏
R/(gipg−1

i ).
We just saw that all terms have the same cardinality. They are therefore unbounded.

Hence, the unbounded, commutative ring R/p acts faithfully on the R/p-irre-
ducible module W . Notice that R/p≤ CDefEnd(W )(R/p). By the theorem, the action
of R/p on W is linearisable, and R/p acts by scalars. The problem is to make this
linear structure global without losing the action of G. But we know that p is a
prime ideal of R.

Now consider the set of prime ideals P ={hph−1
:h ∈G}. Suppose p1, . . . , pk ∈ P

are distinct, say pi =hiph−1
i . By prime avoidance, there are elements ri ∈pi\

⋃
j ̸=i p j .

Then taking products, there are elements r ′

i ∈
⋂

j ̸=i p j \ pi . These are used to show
that the sum

∑k
i=1 hi W is direct. In particular, k ≤ dim V and P is finite.

Since G is connected and transitive on the finite set P , the latter is a singleton,
namely P = {p}. But by faithfulness one had

⋂
P = 0, so p = 0.

Now let r ∈ R \ {0}. Then r /∈ p acts on W as a nonzero scalar, so W ≤ im r .
Since r was arbitrary, for any g ∈ G, one has gW ≤ im r . Summing, im r = V ;
this implies that ker r is finite. Then K =

∑
n∈N ker rn is either trivial or countably

infinite. But by commutativity, it is R-invariant. Since R is unbounded, there is
r0 ∈ R \ {0} annihilating K . Since r0 has a finite kernel in V , we see K = 0. Thus
the domain R acts by automorphisms on V .
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Hence F = Frac(R) is naturally a subring of DefEnd(V ). By field definability,
it is definable. Now G normalises F and centralises it [Wagner 2020, §3.3]. In
particular, G centralises R. Therefore, S = CDefEnd(V )(R), which contains R by
commutativity, also contains G. It follows that V is S-irreducible and we apply the
theorem globally to conclude. □
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Zilber–Pink, smooth parametrization, and some old stories

Yosef Yomdin

The Zilber–Pink conjecture pertains to the “finiteness of unlikely intersections”
and falls within the realms of logic, algebraic, and arithmetic geometry. Smooth
parametrization involves dividing mathematical objects into simple pieces and
then representing each piece parametrically while maintaining control over high-
order derivatives. Originally, such parametrizations emerged and were predomi-
nantly utilized in applications of real algebraic geometry in smooth dynamics.

The paper comprises two parts. The first part provides informal insights into
certain basic results and observations in the field, aimed at elucidating the recent
convergence of the seemingly disparate topics mentioned above. The second
part offers a retrospective account spanning from 1964 to 1974. During that
period, Boris and I studied at the same places, initially in Tashkent and later in
Novosibirsk Akademgorodok.

1. Introduction

The author first encountered Boris Zilber at the 110th Tashkent Physics-Mathematics
School in 1964. From then until 1974, we shared the same academic journey,
studying mathematics in Tashkent, and later in Novosibirsk Akademgorodok. While
we engaged in numerous discussions about mathematics, our paths diverged in terms
of specialization: Boris delved into mathematical logic and model theory, while
I pursued analysis and differential topology. Initially, the gap seemed immense.
However, mathematics is a unified discipline! It is one! After many years, my
favorite topic, smooth parametrization, emerged as an important tool in the recent
remarkable progress in the Zilber–Pink conjecture.

In Sections 2 to 4 below, I attempt to explain, in a very informal manner, the
connections between these seemingly distinct topics. I am grateful to have received
insights from some of the most active participants in the modern research towards
the Zilber–Pink conjecture. Their explanations were indispensable to me. I hope
that my brief presentation below can be of assistance to some readers.

Finally, in Section 5, I share some recollections from the Tashkent and Akadem-
gorodok period, from 1964 to 1974, which Boris and I experienced together.
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2. The Zilber–Pink conjecture, and how one can prove it

The Zilber–Pink conjecture ([7; 20; 28], see also [17; 27]) concerns “unlikely inter-
sections”. The intersection of two algebraic subvarieties in a variety V is deemed
unlikely if its dimension is larger than expected. The conjecture asserts that under
some conditions the sets of unlikely intersections are finite. The conjecture offers
a uniform framework for various classical problems in Algebraic and Arithmetic
Geometry, along with other significant consequences. Recently, there has been
dramatic progress in several classical problems, directly related to the Zilber–Pink
conjecture: [2; 4; 19; 21] is a very small sample.

Various forms of “smooth parametrization” have played an important role in this
progress. Before delving into this topic in Section 4, let’s provide a highly informal
and intuitive overview of the Pila–Zannier approach that has recently enabled the
proof of some very important specific versions of the Zilber–Pink conjecture.

In fact, in the applications of the Pila–Zannier strategy to special point or unlikely
intersection problems, the points v which Condition A below concerns, live in a
certain preimage Ṽ of the algebraic V , rather than in V itself.

In many cases a “height” can be associated to the objects v ∈ Ṽ we aim to
count in Zilber–Pink. For a rational number r = p/q the height H(r) is defined as
max{|p|, |q|}. Similarly for torsion points on pseudo-abelian varieties, and so on.
Suppose the number of v ∈ Ṽ with H(v) ≤ H is finite for each H < ∞, and let
N (Ṽ , H) denote the cardinality of the set v ∈ Ṽ , with H(v) ≤ H . We then assume
the following Condition A: For a transcendental Ṽ and for each ϵ > 0 there exists
a constant c(ϵ) such that

N (Ṽ , H) ≤ c(ϵ)H ϵ, H > 0. (2.1)

Results of this nature are now available for counting rational points on transcen-
dental varieties, and in many other cases, starting with the fundamental works of
Bombieri and Pila [6] and Pila and Wilkie [18]. Smooth parametrizations appeared,
in the context of Diophantine geometry, essentially, in [6]. We discuss them, in
somewhat more detail, in Section 4.

Now let us make an additional assumption, called Condition B: There exist ϵ0 > 0
and C > 0 such that for any H > 0 if there are v of height H then, in fact,

N (Ṽ , H) ≥ C H ϵ0 . (2.2)

In some important cases this second assumption is also satisfied (for instance, due
to the Galois group action on the v’s; see [4; 21]). Now, if Conditions A and B are
satisfied, we get the required finiteness. Indeed, fix ϵ < ϵ0 in (2.1). If there exist v’s
with an arbitrarily big height H , we get a contradiction with the asymptotic bound,
for H → ∞, provided by (2.2). We conclude that the height of v is bounded, and
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hence, so is the total number of v’s. This completes the sketch of the Pila–Zannier
approach to the Zilber–Pink conjecture.

3. Bombieri–Pila and Pila–Wilkie

In this section we provide a very informal overview of some results and approaches
presented in the foundational papers by Bombieri–Pila [6] and Pila–Wilkie [18].
These papers establish, among other things, Condition A for counting rational points
on certain transcendental analytic varieties. In [6], the focus is on curves, while [18]
extends the results to varieties of higher dimension, definable in a certain o-minimal
structure.

The approach involves considering rational points v of a given height H on the
graph 0 of a Ck-function 9 with explicitly bounded derivatives up to order k. The
objective is to demonstrate that all these rational points lie on a “small” number of
algebraic hypersurfaces W of a certain degree d , which depends on the dimension,
k, and H . Later, a form of Bézout’s theorem, if available, is utilized to bound the
intersections 0 ∩ W , which contain our rational points v.

The key step in this approach is to derive an upper bound on certain Vandermonde-
type determinants VdM, whose vanishing indicates that the points v lie on an
algebraic hypersurface W of degree d. Here the k-smoothness of 9 and 0 comes
into play: the entries of the VdM are represented via Taylor expansion, leading to
significant cancellations, and ultimately, to the required upper bound.

On the other hand, since the entries of the VdM are rational points v of the given
height H , the determinants VdM are themselves rational numbers with the height,
explicitly bounded by a certain D, which depends on H , the number of points,
and the dimensions. Therefore, if we can show that |VdM| < 1

D , we conclude that,
indeed, VdM = 0, implying that our points lie on an algebraic hypersurface W of
degree d . Orchestrating the interrelations between H, k, d , and other parameters is
a highly nontrivial task, but ultimately successful.

This concludes the process of counting rational points of a given height H on
the graph 0 of a Ck-function 9 with explicitly bounded derivatives up to order k.

The paper [16] was useful to the author in better understanding (especially in
several variables) this part of the approach of [6].

To extend the result from a smooth piece 0 to counting rational points on a
transcendental analytic variety V , it becomes necessary to cover V with the graphs
0 j of Ck-functions 9 j , with explicitly bounded derivatives up to order k. Such a
covering is what we refer to as a smooth parametrization. The existence of such
smooth parametrizations for V — a bounded semialgebraic set — was demonstrated
in [22] and [14]. While this result sufficed for applications in dynamics, for which it
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was initially intended, it needed to be extended to analytic varieties for applications
in counting rational points.

This extension of smooth parametrizations to sets V definable in a certain o-
minimal structure was achieved in [18], together with proving condition A for
such V : for each ϵ > 0,

N (V tr, H) ≤ c(ϵ)H ϵ, H > 0,

where V tr denotes the “transcendental part” of V . Moreover, the very important
Wilkie conjecture was posed in [18]: if V is definable in the o-minimal structure,
generated by the exponential function, then, in fact, N (V tr, H) is bounded by a
polynomial in log H .

Some special cases of the Wilkie conjecture were settled before a restricted case
of this conjecture was proved in [1]. Finally, the full conjecture was confirmed in [5].
New important developments in o-minimal structures and in smooth parametriza-
tions were achieved in [5], a paper that also offers an excellent introduction to
smooth parametrizations.

4. Smooth parametrizations

In this section we discuss smooth parametrizations in somewhat more detail. We
include a short and informal discussion of the striking recent work [2], where a
powerful new class of analytic parametrizations was defined.

“Parametrization” is a change of variables that simplifies the understanding
of a mathematical structure under investigation. The most important example
in the realm of algebraic and analytic geometry is provided by the resolution of
singularities, in its various versions. In many problems of dynamics, analysis,
Diophantine and computational geometry it is crucial to maintain control over
high-order derivatives while performing a change of variables. Parametrizations of
this type are referred to as “smooth parametrizations”.

An illustrative example is provided by the Ck-parametrization of a semi-algebraic
set A. This can be seen as a high-order quantitative version of the well-known result
on the existence of a triangulation of such sets A, with the number of simplices
bounded in terms of the combinatorial data (the degree) of A. In a Ck-version we
additionally require that each simplex S j in the triangulation be an image of the
standard simplex 1, under the parametrization mapping 9 j , with all the derivatives
of 9 j up to order k uniformly bounded.

To state the Ck-parametrization theorem of [14; 23; 22] more precisely, let’s recall
the definition of semi-algebraic sets. Semi-algebraic sets in Rn are defined by a finite
number of real polynomial equations and inequalities, plus set-theoretic operations.
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Given a semi-algebraic set A ⊂ Rn , the diagram D(A) of the set A comprises the
“discrete” data of A — the ambient dimension n, the degrees and the number of the
equations and inequalities, and the set-theoretic formula defining A. Hence, D(A)

does not depend on specific values of the coefficients of the polynomials involved.

Theorem 4.1. For any natural k and for any compact semi-algebraic set A inside
the cube I n in Rn , there exists a Ck-parametrization of A, with the number N (A, k)

of the Ck-charts 9 j , depending only on k and on the diagram D(A) of A.

The bound on N (A, k) obtained in [14; 23; 22; 8] was explicit but high (ini-
tially doubly exponential in k). See also [3]. While this sufficed for the intended
applications in dynamics (the “entropy conjecture” for C∞ maps), it soon became
apparent that controlling questions like the semicontinuity modulus of the entropy
required polynomial growth of N (A, k) in k. This remained an open problem for a
long time, along with some dynamical consequences.

To circumvent these difficulties, analytic parametrizations were introduced in
[24]. Here, we require the above parametrization mappings 9 j to be real analytic,
extendible to a complex neighborhood of 1 j of a controlled size, and explicitly
bounded there. This worked in dimensions 1 (and also 2, for diffeomorphisms),
but faced challenges in higher dimensions. The primary issue was that typically,
an infinite number of analytic charts 9 j was required to cover A, because of the
hyperbolic geometry of the problem. This direction was further developed in
[24; 25; 11; 12; 13], but the finiteness problem remained unsolved.

Let us mention also [15], where some initial steps towards applications of smooth
parametrization in computational geometry were provided, and [26], which gave an
overview of different types of smooth parametrization and their possible applications
(up to 2015).

As for newer advances, let us mention, besides [2], a very recent development
by D. Burguet [9] of smooth parametrization techniques for dynamics of curves. It
led to the solution of long-standing open problems in smooth dynamics.

Finally, in [2] a new type of analytic parametrization was introduced and termed
complex cellular structures. The key distinction between complex cellular structures
and analytic parametrizations is that the domain of the parametrization mappings
9 j (in complex dimension one) is either the unit disk, as before, or an annu-
lus with a prescribed ratio between radii. In higher dimensions the domains of
the parametrization mappings 9 j are constructed inductively, combining the two
one-dimensional models. The construction and proofs heavily rely on complex
hyperbolic geometry.

Complex cellular structures not only restored the finiteness of parametrizations
but achieved much more. In particular, a polynomial bound on the grows of
N (A, k) with k in Theorem 4.1 was established, thus proving several longstanding
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conjectures in smooth dynamics (in combination with [10]). Complex cellular
structures provide significant advances also in Diophantine geometry.

Anticipated further progress in these areas is highly promising, and likely
to address also open questions regarding various types of smooth and analytic
parametrizations, including those raised in [24; 25; 11; 12; 13].

5. The old stories

I first met Boris at the 110th Tashkent Physics-Mathematics School in 1964, if I
remember correctly. This school was a remarkable place to learn, to hope, and
to dream. Mathematics, in the form of problems to solve, books, lectures, and
discussions, was omnipresent. One of our schoolmates once proposed a solution to
the Fermat problem (xk

+yk
= zk), and I (like many others, I believe) could not sleep

until finding a flaw in the colleague’s arguments. Then there were mathematical
Olympiads, starting with the school level, then advancing to the city level, and finally
reaching the All-Siberian Olympiad in 1965, held at Novosibirsk State University
in the famous Akademgorodok near Novosibirsk. Both Boris and I were among
the winners of the lower level Olympiads and were invited to the All-Siberian
Olympiad.

However, before we arrived (in August 1965), an unusual incident occurred. On
the first of May 1965, as on any other May Day, there was a mass demonstration
organized by the authorities at the central square of Tashkent, the capital of Uzbek-
istan, then a part of the USSR. All the glory and power of Uzbekistan’s authorities
were showcased at the central podium. We, at our 110th school, were compelled
to participate in this mass demonstration. As per tradition, when the columns of
participants passed near the central podium, the loudspeakers usually announced
congratulations and greetings to the Communist Party, the people of the Soviet
Union, or other similarly grand entities. Sometimes, however, the congratulations
were more specific, such as to the workers of a particular industrial plant currently
passing near the podium. And as we passed, a miracle occurred: the loudspeakers
congratulated the winners of the preliminary tour of the All-Siberian Olympiad,
explicitly mentioning our humble names!

We, in our small group, were elated and proud, but this was not the end of
the story. Comrade Rashidov, the first secretary of the Uzbek Communist Party,
who was present at the central podium, immediately noticed that among the six
explicitly mentioned names of the winners, there was no clear Uzbek name! Perhaps
one of our good friends had a partial Uzbek heritage. However, even this winner,
upon investigation, turned out to be only half Uzbek and half Tatar. Comrade
Rashidov promptly demanded correction of this egregious error. The next day, as
usual, the central Tashkent Russian-language newspaper Pravda Vostoka (something
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like “The Truth of the East”) published a detailed report on the May Day 1965
mass demonstration in Tashkent. Included in the newspaper were the names of
the winners of the preliminary tour of the All-Siberian Olympiad: six distinctly
Uzbek names that I was hearing for the first time. Our small group was a little
apprehensive — were we still to go to the All-Siberian Olympiad? But no specific
instructions to the contrary followed, so we decided to proceed as if everything
were in order.

Comrade Rashidov was, of course, not the first to correct, in line with Party
directives, minor personal matters. There was a similar incident involving Stalin.
Once, he was quite displeased with certain verbal statements made by Lenin’s
widow, Nadezhda Krupskaya. Stalin ordered his subordinates: “Tell this fool that if
she does not cease, we will find another widow for Comrade Lenin.” But you see,
by 1965, Stalin’s era had firmly passed! It was our original group that eventually
made it to the All-Siberian Olympiad.

In total, six of us were invited, all from the 110th Tashkent school. We embarked
on the three-day train journey from Tashkent to Novosibirsk, accompanied by our
math teacher, Tamara Vladimirovna Reshetnikova.

The three weeks at the Summer School in Akademgorodok, which included
the final stage of the All-Siberian Olympiad, were truly exhilarating! Both Boris
and I were among the winners of the final stage, granting us an opportunity to
enroll in Novosibirsk Physics-Mathematics School. I decided to seize this exciting
opportunity, while Boris opted to return to the Tashkent 110th school. However, a
year later, he returned to Akademgorodok to participate in the entrance examinations
to Novosibirsk State University. I was also there; despite finishing with top grades at
the Novosibirsk Physics-Mathematics School, I gained no advantage at the entrance
examinations. A fair rule indeed! It was challenging, but we both succeeded,
becoming first-year students at Novosibirsk State University.

I won’t delve into our student years here. While it was an exhilarating experience
for us, from an outside perspective, things were probably quite ordinary. However,
as we approached completing our M.A. theses and especially entering the Ph.D.
study, we found ourselves in an entirely new reality.

Now, I am compelled to recount a sordid tale of antisemitic persecution in
Akademgorodok, beginning in 1968 and culminating in 1971, the year of our
graduation. I cherished my life in Akademgorodok and am grateful to the kind
individuals (some of whose names I will mention below) who assisted Boris and
me, as well as many others, in navigating through those difficult times. However,
omitting this part of our lives would be impossible; it was crucially significant for
me, and likely for Boris as well.

From 1965, when I arrived there, until 1968, I observed no signs of antisemitism
in Akademgorodok. Perhaps it existed among the higher social echelons, but not
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among the students. The entrance examinations to Novosibirsk State University
were utterly fair! While I cannot provide documented evidence, I believe that around
30 percent of the new mathematics students in 1966 were Jews from various parts
of the USSR. They knew that in Novosibirsk, there was a fair chance! However,
in 1968 and 1969, the situation underwent a dramatic shift. Some of our Russian
student acquaintances now served on the new entrance examination committees,
intentionally created to hinder the chances of Jewish applicants. Occasionally,
they confided in us, maintaining the open traditions of our old friendship, about
what transpired during these entrance examinations. They recounted the now well-
known tales of exceptionally challenging mathematical problems posed to Jewish
candidates, among other tactics.

We were also informed that the authorities’ decision was to make Akademgorodok
“judenrein” — free of Jews. I am uncertain whether this German term was used by
the Akademgorodok Party Committee, but this is what was communicated to us.
While all this was disconcerting, it did not directly affect us; we were veterans of
3–4 years, not the unfortunate new entrants.

However, in the spring of 1971, the year of our graduation, our turn arrived.
Suddenly (for us, as we had not taken the earlier warning signs seriously), two-
thirds of our top Jewish graduates received insufficient grades in their final exams.
They could no longer aspire to continue their doctoral studies at Novosibirsk State
University, or anywhere in Akademgorodok. This was a devastating blow! Both
Boris and I weathered this challenging experience successfully (mostly due to the
efforts of our mentors)! We could carry on! And at that moment, I still did not fully
comprehend what was happening! This purge expelled our best and closest friends,
and I merely participated in their farewell graduation celebrations, still hopeful for
a bright future.

Allow me to digress briefly about myself — it’s a rather amusing anecdote!
Thanks to the vigorous efforts of my advisor, Vladimir Ivanovich Kuzminov, I
was to get a starting research position (as a so-called “stager”) at the Institute of
Mathematics. This position was deemed secure: theoretically it could withstand
even mediocre grades in the final exams. However, I harbored no illusions — I was
certain they could find fault even with the stager position. Indeed, in April 1971,
I was promptly selected for immediate military service, a fate usually reserved
before 1971 for relatively weak graduates. This time, the list of potential servicemen
included 13 highly accomplished graduates, among them 10 Jews, including myself
(but not Boris), and 3 Russians. The absence of Boris’s name from this glorious list
may be understood from what is explained below: the main target was not him but
his advisor Taitslin.

Naturally, my stager position at the Institute of Mathematics was revoked. We,
the new servicemen, were slated to serve in the Moscow rocket defense. If I indeed
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entered this service, I could not entertain the notion of emigrating to Israel for
at least 20 years, due to the secrecy restrictions. Moreover, even perestroika, as
we now know, would not have provided much respite: mass emigration to Israel
commenced only in 1991, precisely 20 years after 1971.

Eventually, after some introspection, I wholeheartedly accepted this shift in my
fate. I commenced a series of farewell gatherings. Surprisingly, I quickly discovered
that this was a far simpler existence than pursuing mathematics or preparing for
Ph.D. entrance exams. Particularly since we, the Jewish candidates, were uncertain
where we might face persecution: in mathematics exams, in Communist philosophy,
or elsewhere.

Thankfully, Marshal Grechko, the defense minister of the USSR, struck out
all the Jewish names from the Novosibirsk list of potential servicemen. Marshal
Grechko surely had to personally intervene in this minor issue solely due to the
global significance of the Moscow rocket defense.

Now I returned to my tribulations, and Boris and I found ourselves facing the
oral Ph.D. entrance exams. The first was in mathematics. Remarkably, the math
exams were conducted rather transparently: all the Jews who had survived the
purge at the graduation exams (around 70 such Jews, as I recall, from different
faculties of Novosibirsk State University) were assigned to a single examination
committee. Its head was Academician Yanenko, and after the first day of exams,
we all knew precisely what was happening. Typically, Yanenko would interrupt
the examinee after three minutes, declaring, “No, this is not it!” If the examinee
persisted, Yanenko would repeat this scenario more frequently and forcefully until,
in 8–10 minutes, he rendered the verdict: “You may know something, but at best to
the level of 3.” A grade 3 in mathematics did not qualify for doctoral studies.

This scheme operated flawlessly. As far as I am aware, only three Jews out of
the 70 managed to breach this absolute defense: Boris, myself, and Grisha Soifer.
My success story was brief and straightforward: during my examination, at the
fourth minute, Academician Yanenko abruptly departed — perhaps for a place even
academicians have to reach on foot. The rest of the committee promptly awarded
me the highest grade, 5, and then, with great insistence, urged me to leave the
room. I complied most happily. I am uncertain how Grisha Soifer achieved it! As
for Boris, it seems his admission was a move in a campaign against his unofficial
advisor, Michael Abramovich Taitslin. Well before our doctoral study entrance
exams described above, Taitslin had apparently been warned that he had more
than enough Jewish students and could not accept any more. Now, for Boris, the
pivotal events occurred on the last possible day to apply to the Ph.D. entrance
exams. Among the required application documents was a written agreement from
the prospective advisor. In Boris’s case, his official advisor was Yu. L. Ershov.
Ershov was expected to agree, but on this final day he let Boris know that he
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could not serve as his advisor due to several significant administrative and scientific
reasons. Boris’s only hope of continuing his Ph.D. studies in Akademgorodok was
if Taitslin agreed to be his advisor in the remaining few hours. And he did agree,
despite the warnings. Boris passed Yanenko’s scrutiny without difficulty, but as a
result of his generosity in taking on Boris, Taitslin was expelled from the Institute
of Mathematics and later from Akademgorodok altogether.

The remaining Ph.D. entrance exams, including Communist philosophy, pro-
ceeded smoothly. And now, after all these trials, there began a joyous season for
me and, I presume, for Boris. Three years of unfettered scientific research and
study, with scarcely a thought of the entrance battles. This period was profoundly
significant for all our future endeavors! I am grateful to the circumstances for this
felicitous interlude.

I wish to express my gratitude to another outstanding individual who greatly
aided many of us during difficult times: Alexei Andreevich Lyapunov. Sometime
during my three-year Ph.D. study, the Novosibirsk Energy Institute, where I was
slated to work upon completing my Ph.D., announced that they were no longer
interested in my services. Presumably, this was due to the burgeoning phenomenon
of Jewish emigration to Israel, and they wished to avoid potential entanglements
with me. I was apprehensive that my Ph.D. study might be affected, but nothing
of the sort occurred. A few weeks after the announcement from the Novosibirsk
Energy Institute, a young and athletic-looking individual knocked on my door. He
relayed that he had been tasked by Lyapunov, one of the prominent scientists in
Akademgorodok, to contact me. Lyapunov’s message to me was that he might
wield some influence at the Novosibirsk Energy Institute and, if I were interested,
he could exert his best efforts to reinstate my position. I was deeply appreciative
but requested him not to intervene. By then, I was already seriously contemplating
emigrating to Israel.

I previously mentioned my advisor Vladimir Ivanovich Kuzminov. Allow me to
also acknowledge Igor Aleksandrovich Shvedov. During those trying times, they
both did what they could to assist their Jewish students. And, of course, once again,
I express my gratitude to Alexei Andreevich Lyapunov.

One more pleasant recollection from those halcyon days. One autumn (probably,
of 1973) Boris and I both served as group leaders in the obligatory autumn student
agricultural service — in our case, this involved harvesting potatoes. My group
consistently ranked last in the daily ratings, and I felt dejected by my failure.
However, a couple of years later, I was appointed group leader of the combined
group of female students from the Tashkent Polytechnical Institute. This time,
the obligatory autumn student agricultural service involved picking cotton. Again,
my group languished at the bottom of the daily ratings, but this time, I was not
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disheartened by my failure. As far as I know, Boris missed out on this opportunity
to lead students in picking cotton.

In 1974, I left Novosibirsk for Barnaul, and after three months there, I moved to
Tashkent. Finally, in 1978, I immigrated to Israel. Boris relocated to Kemerovo, and
we only crossed paths again in the late 1990s. Since then, we have been meeting
more or less regularly.
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The existential closedness and Zilber–Pink conjectures

Vahagn Aslanyan

Dedicated to Boris Zilber on the occasion of his 75th birthday.

We survey the history of, and recent developments on, two major conjectures
originating in Zilber’s model-theoretic work on complex exponentiation: existen-
tial closedness and Zilber–Pink. The main focus is on the modular versions of
these conjectures and specifically on novel variants incorporating the derivatives
of modular functions. The functional analogues of all the conjectures are already
theorems, which we also present. The paper also contains some new results and
conjectures.

1. Introduction

In the early 2000s, Boris Zilber [2002; 2005; 2015] produced an influential body of
work around the model theory of the complex exponential field Cexp :=(C;+, · ,exp),
where exp : z →ez is the exponential function. He showed that Schanuel’s conjecture
(SC for short) on the transcendence properties of exp (see Section 2A) plays a central
role in the model-theoretic properties of Cexp. However, the conjecture is out of
reach — it implies the algebraic independence of e and π over the rationals, which
is a long-standing unsolved problem. This makes it hard to understand the model
theory of Cexp. So Zilber constructed algebraically closed fields of characteristic 0
equipped with a unary function, which satisfies some of the basic properties of Cexp

and, most importantly, (the analogue of) Schanuel’s conjecture. He then isolated
and axiomatised the “most” existentially closed ones among these exponential fields
by a Hrushovski style amalgamation-with-predimension construction. These are
called pseudo-exponential fields. While these models are not existentially closed
in the first-order sense, they are existentially closed in certain “tame” extensions.
The axiom guaranteeing this is known as strong existential closedness or strong
exponential closedness, or SEC for short.
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Zilber showed that his axiomatisation of pseudo-exponential fields is uncountably
categorical. In particular, there is a unique pseudo-exponential field of cardinality
of the continuum, denoted by Bexp. Zilber conjectured that Bexp is isomorphic
to Cexp. This is equivalent to the combination of two conjectures — Schanuel’s
conjecture and the strong exponential closedness conjecture stating that SEC holds
on Cexp. A variant of the SEC conjecture, known as exponential closedness or
existential closedness (EC for short) is currently an active research field in model
theory. It states roughly that systems of equations involving field operations and
the complex exponential function have solutions unless they are “overdetermined”
(i.e., the number of independent equations is larger than the number of variables).
The notion of overdetermined systems is in fact related to Schanuel’s conjecture:
a system is overdetermined if its solution would be a counterexample to Schanuel’s
conjecture. As the name suggests, SEC is a strong version of EC guaranteeing
that under certain conditions, systems of exponential equations have generic solu-
tions.

Zilber’s work on the model theory of complex exponentiation also gave rise
to a Diophantine conjecture: the conjecture on intersections with tori, or CIT for
short. It states roughly that intersections of algebraic varieties with torsion cosets of
algebraic tori, whose dimensions are larger than expected, are governed by finitely
many torsion cosets of algebraic tori. The statement makes sense in the more general
setting of semiabelian varieties which gives rise to the conjecture on intersections
with semiabelian varieties, or CIS for short. Both CIT and CIS were proposed in
[Zilber 2002] and independently by Bombieri, Masser, and Zannier in [Bombieri
et al. 2007]. The Manin–Mumford and Mordell–Lang conjectures are special cases
of CIS. Zilber used CIT to deduce a uniform version of Schanuel’s conjecture from
itself, which then was used to establish some partial results towards exponential
closedness (see [Zilber 2002]).

SC, EC, and CIT are quite general in form; replacing the exponential function
by other transcendental functions often allows one to formulate analogues of these
conjectures in other settings. Most notably, such analogues have been extensively ex-
plored for modular functions and, in particular, the j -invariant. However, these ana-
logues are being studied for other reasons too: the modular analogue of Schanuel’s
conjecture is a special case of the Grothendieck–André generalised period conjecture
(see [Bertolin 2002, 1.3 Corollaire; André 2004, §23.4.4; Aslanyan et al. 2023a,
§6.3]), EC in that setting is a natural problem in complex geometry and model theory,
and the analogue of CIT is a special case of the Zilber–Pink conjecture for (mixed)
Shimura varieties, henceforth referred to as ZP. The latter was proposed by Pink
(independently from Zilber and Bombieri, Masser, and Zannier) as a far-reaching
conjecture unifying the André–Oort, André–Pink–Zannier, Manin–Mumford, and
Mordell–Lang conjectures [Pink 2005a; 2005b].
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Furthermore, from a model-theoretic point of view, if both SC and EC hold then
in a certain sense they give a “complete” list of properties (non-first-order axioms)
of the function under consideration.1 This is formalised by Zilber’s categoricity
and quasiminimality theorem in the exponential setting. There is no such theorem
in the modular setting and there cannot be one, for the upper half-plane (hence the
set of the reals) is definable from the graph of j , but the philosophy of SC and EC
together giving a full description of the algebraic and transcendental properties of
j still applies. It is likely that a formal categoricity/quasiminimality result can be
established for some relations defined in terms of j (which give proper reducts of
the complex field with j); this is part of our current research programme.

In this paper we present the above-mentioned conjectures in the exponential
and modular settings, mostly focusing on the latter. As pointed out above, the
modular variants of these conjectures are in part motivated by their exponential
counterparts. However, there are some inherent differences between the two settings
resulting in quite different methods and approaches, although some methods work
in both contexts. One such difference is that unlike exponential functions, which
are defined on the whole complex plane, modular functions are defined only on the
upper half-plane. These spaces are “geometrically different”, which accounts for
different approaches to EC and ZP in these two settings. This also makes the model-
theoretic treatment of modular functions significantly harder. For example, direct
counterparts of many aspects of Zilber’s work on exponentiation, e.g., categoricity
and quasiminimality, fail gravely in the modular setting (as explained above).

Further, modular functions satisfy third-order differential equations as opposed
to first-order differential equations for exponential functions. So we can consider
SC, EC, and ZP for modular functions together with their first two derivatives (the
third one being algebraic over these). This generalisation makes the problems more
challenging, but it also gives a deeper insight into them by providing a broader model-
theoretic picture. Let us briefly discuss two more reasons to consider SC, EC, and ZP
for modular functions together with derivatives. Often when dealing with variants
of these conjectures, not least their differential versions, even when derivatives are
not considered, the approaches and techniques require looking at the derivatives
anyway (see, for instance, [Aslanyan et al. 2021; Aslanyan 2022b]). Also, modular
forms of weight 2 are the derivatives of modular functions (weight 0), which means
that studying these problems for modular forms of weight 2 (without derivatives) is
the same as studying them for the first derivatives of modular functions.

We state several versions of the conjectures in this new setting, some of which
have appeared in the literature while others are new. We then explain the relationship

1This means, in particular, that if EC holds then SC is the strongest possible transcendence
statement about the function under consideration.
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between these various conjectures and present their functional variants, all of which
were proven in recent years, save for Ax’s original theorem proven in 1971.

1A. Abbreviations. In the paper we consider several variants of three conjectures:
Schanuel’s conjecture, the existential closedness conjecture, and the Zilber–Pink
conjecture. We use abbreviations to refer to those conjectures, and for the conve-
nience of the reader we list some of these abbreviations below.

Schanuel

• SC — Schanuel conjecture

• MSC — modular Schanuel conjecture

• MSCD — modular Schanuel conjecture with derivatives

Existential closedness

• EC — existential closedness or exponential closedness

• MEC — modular existential closedness

• MECD — modular existential closedness with derivatives

Zilber–Pink

• CIT — conjecture on intersections with tori

• ZP — Zilber–Pink

• MZP — modular Zilber–Pink

• MZPD — modular Zilber–Pink with derivatives

1B. Dedication. This paper is dedicated to Boris Zilber on the occasion of his
75th birthday, and is motivated by his work. Boris was my DPhil supervisor (jointly
with Jonathan Pila) at the University of Oxford from 2013 to 2017. His guidance
has been instrumental in shaping my mathematical thinking and research interests,
and his continued support, both throughout my DPhil and after that, has been
tremendously helpful in my mathematical career. The hours spent with Boris at the
Mathematical Institute and at Merton are some of my fondest memories of Oxford.
I would like to thank him for everything and wish him a happy 75th birthday.

2. The exponential setting

In this section we look briefly at Zilber’s work on model theory of complex expo-
nentiation and the conjectures it gave rise to.

2A. Schanuel’s conjecture and exponential closedness. We begin by formulating
Schanuel’s conjecture.
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Conjecture 2.1 (Schanuel’s conjecture — SC [Lang 1966, p. 30]). For any Q-
linearly independent complex numbers z1, . . . , zn ,

tdQ Q(z1, . . . , zn, ez1, . . . , ezn ) ≥ n,

where td stands for transcendence degree.

This conjecture is believed to capture all transcendence properties of the expo-
nential function. This can and will shortly be explained in a more precise sense. For
now let us mention that Schanuel’s conjecture for n = 2 already implies the algebraic
independence of e and π by choosing z1 = π i , z2 = 1, which is a long-standing
open problem. Thus, even for n = 2 the conjecture is out of reach of current
methods. However, partial results towards this conjecture are known, including the
Lindemann–Weierstrass theorem and the Gelfond–Schneider theorem.

Zilber [2005] presented a novel model-theoretic approach to Schanuel’s conjec-
ture. He constructed algebraically closed fields of characteristic 0 equipped with a
unary function, known as pseudo-exponentiation, satisfying certain basic properties
of the complex exponential functions and some desirable properties, not least the
analogue of Schanuel’s conjecture. He axiomatised these structures in the language
Lω1,ω(Q), where Q is a quantifier for “there are uncountably many”, and showed
that the resulting theory is categorical in uncountable cardinals. The unique model
of cardinality 2ℵ0 is called the pseudo-exponential field or the Zilber field and is
usually denoted by Bexp. Zilber then conjectured that Bexp is isomorphic to Cexp.
This shows, in a sense, that Schanuel’s conjecture must play a central role in the
model theory of Cexp.

Zilber verified that all of the axioms of pseudo-exponentiation hold in Cexp save
for Schanuel’s conjecture and an axiom called strong exponential closedness (SEC).
So Zilber’s conjecture that Bexp ∼=Cexp is equivalent to the conjunction of Schanuel’s
conjecture and the strong exponential closedness conjecture (stating that the axiom
holds in Cexp).

Let us explain what (strong) exponential closedness means. Schanuel’s conjecture
can be interpreted as a statement about nonsolvability of certain systems of equations,
which we demonstrate on an example below.

Example 2.2 [Aslanyan et al. 2023b]. Assume e and π are algebraically indepen-
dent over Q. Then for any nonconstant polynomial p(X, Y ) ∈ Q[X, Y ] the system
ez

= 1, p(z, e) = 0 does not have solutions in C. On the other hand, if e and π are
algebraically dependent, then for some p that system does have a complex solution.

Another reason for a system not to have a solution is when the system is incom-
patible with the identity ex+y

= ex ey .

Example 2.3. The system z2 = z1 + 1, 3ez1 = ez2 does not have a solution, for
the first equation implies ez2 = e · ez1 and e ̸= 3. On the other hand, the system
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z2 = z1 + 1, ez2 = z1, ez2 = e · ez1 does have solutions even though there are three
equations in two variables. Of course, the three equations are not “analytically”
independent — the third one follows from the first one by taking exponentials of
both sides — but they are algebraically independent.

In general, systems incompatible with the functional equation of exp are not
solvable. Moreover, SC implies that if a system is “overdetermined”, e.g., n variables
with more than n algebraically independent equations, then there is no solution, un-
less the system can somehow be reduced using the functional equation ex+y

= ex ey .
With this interpretation SC becomes more natural, and exponential closedness (EC)
is its dual conjecture stating roughly that a system of exponential equations does
have a solution in C unless having a solution contradicts Schanuel’s conjecture. Let
us give a precise statement in geometric terms, observing first that understanding the
solvability of systems of exponential equations is equivalent to understanding when
algebraic varieties contain exponential points (i.e., points of the form (z̄, exp(z̄))).
For instance, the equation eez

+ z − 1 = 0 has a solution if and only if the variety
V ⊆ C2

× (C×)2 (with coordinates (x1, x2, y1, y2) defined by the equations x2 = y1,
y2 + x1 − 1 = 0) contains an exponential point.

Conjecture 2.4 (exponential closedness — EC [Zilber 2005; Bays and Kirby 2018]).
Let V ⊆ Cn

× (C×)n be a free and rotund variety. Then V contains a point of the
form (z1, . . . , zn, ez1, . . . , ezn ).

Freeness and rotundity are the conditions that make sure containing an exponential
point does not contradict SC, as illustrated on the above examples. Now we define
these notions precisely.

Definition 2.5. An irreducible variety V ⊆ Cn
× (C×)n is additively (resp. multi-

plicatively) free if its projection to Cn (resp. (C×)n) is not contained in a translate
of a Q-linear subspace of Cn (resp. algebraic subgroup of (C×)n). A variety is
called free if it is additively and multiplicatively free.

We let x̄ and ȳ denote the coordinates on Cn and (C×)n , respectively. For a k×n
matrix M of integers we define [M] : Cn

× (C×)n
→ Ck

× (C×)k to be the map
given by [M] : (x̄, ȳ) 7→ (Mx̄, ȳM), where

(Mx̄)i =

n∑
j=1

mi j x j and (ȳM)i =

n∏
j=1

ymi j
j .

Definition 2.6. An irreducible variety V ⊆ Cn
×(C×)n is rotund if for any 1 ≤ k ≤ n

and any k×n matrix M of integers dim [M](V ) ≥ rk M .

Since exp maps Q-linear equations to multiplicative ones, if the projections of
V satisfy either a linear or multiplicative equation and we want it to contain an
exponential point, then these equations should match; otherwise they would not
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be compatible with exp. Freeness takes care of this scenario by ensuring no such
equations hold on the variety. Rotundity comes from SC; it states that V and its
various projections given by the maps [M] have sufficiently large dimension so an
exponential point in V would not give a counterexample to SC.

Now we can formulate SEC, which is a strong version of EC.

Conjecture 2.7 (strong exponential closedness — SEC [Zilber 2005; Bays and
Kirby 2018]). Let V ⊆ Cn

× (C×)n be a free and rotund variety. Then for every
finitely generated field K ⊆ C over which V is defined, there is a point

(z1, . . . , zn, ez1, . . . , ezn ) ∈ V

which is generic in V over K , that is, tdK K (z̄, ez̄) = dim V .

It is obvious that SEC implies EC. The converse is also true assuming SC and
CIT hold (see [Eterović 2022; Kirby and Zilber 2014]).

Remark 2.8. The Rabinowitsch trick can be used to show that EC implies that
a free and rotund variety contains a Zariski dense set of exponential points (see
[Kirby 2009, Theorem 4.11] and [Aslanyan 2022a, Proposition 4.34]), but a priori
such a set may not contain a generic point.

2B. Conjecture on intersections with tori. Zilber [2002] studied the solvability
of exponential sums equations as a special case of the exponential closedness
conjecture. In order to prove that certain systems of such equations are solvable, he
needed a uniform version of Schanuel’s conjecture. He then proposed a Diophantine
conjecture, called the conjecture on intersections with tori, or CIT for short, which
acts as the difference between SC and uniform SC. The conjecture states roughly
that when we intersect an algebraic variety with algebraic tori then we do not expect
to get too many intersections which are atypically large. We will shortly give a
precise formulation, but we need to introduce some notions first.

Let V and W be subvarieties of some variety S. A nonempty component X of
the intersection V ∩ W is atypical in S if dim X > dim V + dim W − dim S, and
typical if dim X = dim V +dim W −dim S. Note that if S is smooth then a nonstrict
inequality always holds.

An algebraic torus is an irreducible algebraic subgroup of a multiplicative
group (C×)n . Algebraic subgroups of (C×)n (not necessarily irreducible) are
defined by multiplicative equations of the form ym1

1 · · · ymn
n = 1 with mi ∈ Z. Any

system of such equations (if consistent) defines an algebraic group. It splits as the
union of an algebraic torus (the component containing the identity) and its finitely
many translates by torsion points. Torsion cosets of algebraic tori are called special
varieties. For an algebraic variety V ⊆(C×)n an atypical subvariety of V is an
atypical component of an intersection of V with a special variety T .
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Now we are ready to formulate the conjecture on intersections with tori, which
is the Zilber–Pink conjecture for algebraic tori. There are many equivalent forms
of the conjecture; we consider four of them.

Conjecture 2.9 (conjecture on intersections with tori — CIT [Zilber 2002; Bombieri
et al. 2007; Pila 2022]). Let V ⊆ (C×)n be an algebraic variety.

(1) There is a finite collection 6 of proper special subvarieties of (C×)n such that
every atypical subvariety of V is contained in some T ∈ 6.

(2) V contains only finitely many maximal atypical subvarieties.

(3) Let Atyp(V ) be the union of all atypical subvarieties of V . Then Atyp(V ) is
contained in a finite union of proper special subvarieties of (C×)n .

(4) Atyp(V ) is a Zariski closed subset of V .

2C. Functional/differential variants. We have so far considered three conjectures
for (C×)n , namely, SC, EC, and CIT. As pointed out above, Schanuel’s conjecture
is out of reach, CIT is wide open, and while EC is more tractable, it is also open.
In spite of that, the functional analogues of all three conjectures are known.

Ax proved a functional analogue of Schanuel’s conjecture in 1971. Below in a
differential field (F; +, · , D1, . . . , Dm) we define a relation Exp(x̄, ȳ) as the set
of all (x̄, ȳ) ∈ Fn

× (F×)n for which Dk yi = yi Dk xi for all k, i . Then Exp(F) is
the set of all tuples (x̄, ȳ) ∈ Fn

× (F×)n with F |H Exp(x̄, ȳ) (for all n).2

Theorem 2.10 (Ax–Schanuel [Ax 1971, Theorem 3]). Let (F; +, · , D1, . . . , Dm)

be a differential field with field of constants C =
⋂m

k=1 ker Dk . Let also (xi , yi )∈ F2,
i = 1, . . . , n, be such that (x̄, ȳ) ∈ Exp(F). Assume x1, . . . , xn are Q-linearly
independent mod C , that is, they are Q-linearly independent in the quotient vector
space F/C. Then tdC C(x̄, ȳ) ≥ n + rk(Dk xi )i,k .

Ax’s proof of this theorem is differential algebraic. There is an equivalent
complex analytic formulation of Ax–Schanuel (the equivalence follows from Sei-
denberg’s embedding theorem). Tsimerman [2015] gave a new proof of that complex
analytic statement based on o-minimality.

The differential version of EC for fields with several commuting derivations was
established recently by Aslanyan, Eterović, and Kirby.

Theorem 2.11 (differential EC [Aslanyan et al. 2021, Theorem 4.3]). For a differ-
ential field (F; +, · , D1, . . . , Dm) with m commuting derivations, let V ⊆ F2n be
a rotund variety. Then there exists a differential field extension K of F such that
V (K ) ∩ Exp(K ) ̸= ∅. In particular, when F is differentially closed,

V (F) ∩ Exp(F) ̸= ∅.

2More generally, here and later, given a relation R on a structure M , we write R(M) for the set of
all tuples from M satisfying the relation R.
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The proof of this theorem uses some important differential algebraic ideas from
[Kirby 2009], where the case of ordinary differential fields was treated. Kirby’s
approach (which in fact contains some inaccuracies and is not complete) is based
on Ax’s proof of the Ax–Schanuel theorem, while the argument given in [Aslanyan
et al. 2021] uses the statement of Ax–Schanuel as a black box and works quite
generally.

Example 2.12. In the above theorem the variety V need not be free. However,
freeness is a necessary condition in EC. For example, the variety V ⊆ C2

× (C×)2

defined by the equations x2 = x1, y2 = y1 + 1, which is rotund but not free, cannot
intersect the graph of any function. But it does intersect Exp(K ) for any differential
field K — indeed any constant point in V is actually in Exp(K ).

Finally, the following functional analogue of CIT was established independently
in [Zilber 2002] and in [Bombieri et al. 2007]. Both proofs rely on the Ax–Schanuel
theorem. Kirby [2009] adapted Zilber’s argument and gave a new proof using the uni-
form version of Ax–Schanuel, which follows from Ax–Schanuel by an application
of the compactness theorem of first-order logic (see [Kirby 2009, Theorem 4.3]).

Theorem 2.13 (functional CIT [Zilber 2002; Bombieri et al. 2007; Kirby 2009]).
For every subvariety V ⊆ (C×)n there is a finite collection 6 of proper subtori of
(C×)n such that every atypical component of an intersection of V with a coset of a
torus is contained in a coset of some torus T ∈ 6.

Theorem 2.13 is indeed a functional version of CIT as it talks about weakly special
varieties (arbitrary cosets of tori) and positive-dimensional atypical intersections. In
other words, it can be thought of as CIT over function fields, where we work modulo
the constants (in this case, the field of complex numbers). It does not say anything
about special points or special coordinates in atypical intersections, so it is often
called the geometric component of CIT (i.e., CIT without its arithmetic component).
Since its statement is algebraic (rather than differential algebraic), it is also often
called weak CIT although, strictly speaking, it is not a weak version of CIT.

In addition to the above-mentioned theorems, some other partial results have
also been obtained towards EC and CIT in recent years. For EC see [Aslanyan
et al. 2023b; Gallinaro 2021; 2023; Brownawell and Masser 2017; D’Aquino et al.
2018]. It would be impractical to try to give a comprehensive list of references for
CIT and its generalisations to semiabelian varieties, so we refer the reader to Pila’s
recent book [2022] and references therein.

3. The modular setting

We let H ⊆ C denote the complex upper half-plane and j : H → Y (1) denote the
modular j-function. We identify the modular curve Y (1) with the complex affine
line C.
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Recall that the j -function is invariant under the linear fractional action of SL2(Z)

on H and behaves nicely under the action of GL+

2 (Q) (where + denotes posi-
tive determinant). More precisely, there is a collection of modular polynomials
8N (Y1, Y2) ∈ Z[Y1, Y2], N ∈ N, such that

∀z1, z2 ∈ H
(
∃g ∈ GL+

2 (Q) with z2 = gz1

iff ∃N ∈ N such that 8N ( j (z1), j (z2)) = 0
)
.

These correspondences are often referred to as the “functional equations” of
the j-function. They are analogous to the functional equation ex+y

= ex ey of the
exponential function. This analogy allows one to state the modular counterparts of
the exponential conjectures mentioned in the previous section, and that is what we
do in this section. We focus on the j-function as other modular functions can be
treated similarly, and often results about other modular functions can be deduced
from those about j since j is a uniformiser for the modular group: it generates the
field of all modular functions.

Now let us introduce some notation that will be used throughout the rest of the
paper.

Notation. Let n be a positive integer, k ≤ n and 1 ≤ i1 < · · · < ik ≤ n.

• Subsets of C2n (e.g., Hn
×Cn) are interpreted as subsets of Cn

× Cn , and we
denote the coordinates on this space by (x̄, ȳ).

• Prx̄ : C2n
→ Cn is the projection to the first n coordinates, and Prȳ : C2n

→ Cn

is the projection to the second n coordinates.

• prı̄ : Cn
→ Ck is the map prı̄ : (x1, . . . , xn) 7→ (xi1, . . . , xik ).

• Prı̄ : C2n
→ C2k denotes the map Prı̄ : (x̄, ȳ) 7→ (prı̄ x̄, prı̄ ȳ).

• By abuse of notation we let j : Hn
→ Cn denote all Cartesian powers of itself

and 0 j ⊆ Hn
×Cn denote its graph.

3A. Modular Schanuel conjecture and modular existential closedness. We begin
by stating the analogue of Schanuel’s conjecture for the j-function. It is a special
case of the Grothendieck–André generalised period conjecture [Bertolin 2002,
1.3 Corollaire; André 2004, §23.4.4; Aslanyan et al. 2023a, §6.3].

Conjecture 3.1 (modular Schanuel conjecture — MSC). Let z1, . . . , zn ∈ H be
nonquadratic numbers with distinct GL+

2 (Q)-orbits. Then

tdQ Q(z1, . . . , zn, j (z1), . . . , j (zn)) ≥ n.

Schneider’s theorem, stating that if both z and j (z) are algebraic over Q then z
must be a quadratic irrational number, is a special case of this conjecture.
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As in the exponential setting, this conjecture can be interpreted as a statement
about nonsolvability of certain systems of equations involving the j-function.

Example 3.2. Let a, b ∈ Qalg be algebraic nonspecial numbers, that is, their preim-
ages under j are not quadratic irrationals. By Schneider’s theorem, these preimages
cannot be algebraic. Consider the system

j (z1) = a, j (z2) = b, z2
1 + z2

2 + 1 = 0.

If this system has a solution, then tdQ Q(z1, z2, j (z1), j (z2)) = 1. Hence, by MSC,
either z1 or z2 must be a quadratic number or they must be in the same GL+

2 (Q)-
orbit. By our choice of a and b, the numbers z1 and z2 are transcendental over Q,
hence nonquadratic. If they satisfy a relation z2 = gz1 for some g ∈ GL+

2 (Q) then,
together with the equation z2

1 + z2
2 + 1 = 0, we can conclude that z1, z2 ∈ Qalg,

which is a contradiction. So MSC implies that the above system has no complex
solutions. Note that it is overdetermined in the sense that we have 3 equations but
only 2 variables.

Thus, we can propose a dual conjecture stating roughly that such a system always
has a solution unless it contradicts MSC. We begin by recalling a few definitions
from [Aslanyan 2022a].

Definition 3.3. Let V ⊆ Hn
×Cn be an algebraic variety.

• V is 0 j -broad if for any 1 ≤ k1 < · · · < kl ≤ n we have dim Prk̄ V ≥ l.

• V is modularly free if no equation of the form 8N (yi , yk) = 0, or of the form
yi = c with c ∈ C a constant, holds on V .

• V is GL+

2 (Q)-free if no equation of the form xi = gxk with g ∈ GL+

2 (Q), or
of the form xk = c with c ∈ H a constant, holds on V .

• V is 0 j -free if it is GL+

2 (Q)-free and modularly free.

• V is 0 j -froad3 if it is 0 j -free and 0 j -broad.

Now we are ready to state the existential closedness conjecture.

Conjecture 3.4 (modular existential closedness — MEC [Aslanyan and Kirby 2022,
Conjecture 1.2]). Let V ⊆ Hn

×Cn be an irreducible 0 j -froad variety defined
over C. Then V ∩ 0 j ̸= ∅.

As in the exponential setting, we can consider a strong version of MEC — re-
ferred to as SMEC — stating that 0 j -froad varieties contain generic points from 0 j .
Eterović [2022] proved that MSC, MZP (see below), MEC imply SMEC.

3To be pronounced like “fraud”.
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3B. Modular Zilber–Pink. Pink [2005a; 2005b] proposed a far-reaching conjecture
in the setting of mixed Shimura varieties generalising the Manin–Mumford, Mordell–
Lang, and André–Oort conjectures. That conjecture also generalises Zilber’s CIT
conjecture (although Pink came up with it independently from Zilber and Bombieri–
Masser–Zannier) and is now known as the Zilber–Pink conjecture. Thus, CIT is the
Zilber–Pink conjecture for algebraic tori. In this section we look at the Zilber–Pink
conjecture in the modular setting, i.e., for Y (1)n (identified with Cn as usual).

Definition 3.5. • A j -special variety in Cn is an irreducible component of a variety
defined by some modular equations 8N (yk, yl) = 0.

• Let V ⊆ Cn be a variety. A j-atypical subvariety of V is an atypical component
of an intersection V ∩ T , where T is j-special.

As for CIT, modular Zilber–Pink has several equivalent formulations. Four of
them are presented below.

Conjecture 3.6 (modular Zilber–Pink — MZP [Pila 2022, Conjecture 19.2]). Let
V ⊆ Cn be an algebraic variety. Let also Atyp j (V ) be the union of all j -atypical
subvarieties of V . Then the following equivalent conditions hold.

(1) There is a finite collection 6 of proper j-special subvarieties of Cn such that
every j-atypical subvariety of V is contained in some T ∈ 6.

(2) V contains only finitely many maximal j-atypical subvarieties.

(3) Atyp j (V ) is contained in a finite union of proper j-special subvarieties of Cn .

(4) Atyp j (V ) is a Zariski closed subset of V .

As in the exponential setting, MZP and SC imply a uniform version of SC.

3C. Functional/differential variants. The j -function satisfies an order 3 algebraic
differential equation over Q, and none of lower order (see [Mahler 1969]). Namely,
9( j, j ′, j ′′, j ′′′) = 0, where

9(y0, y1, y2, y3) =
y3

y1
−

3
2

( y2

y1

)2
+

y2
0 − 1968y0 + 2654208

2y2
0(y0 − 1728)2

· y2
1 .

Thus
9(y, y′, y′′, y′′′) = Sy + R(y)(y′)2,

where S denotes the Schwarzian derivative defined by Sy = (y′′′/y′)−
3
2(y′′/y′)2

and
R(y) =

y2
− 1968y + 2654208
2y2(y − 1728)2

is a rational function.
All functions j (gz) with g ∈ SL2(C) satisfy the equation 9(y, y′, y′′, y′′′) = 0

and all solutions (not necessarily defined on H) are of that form (see [Freitag and
Scanlon 2018, Lemma 4.2]).
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Note that for nonconstant y, the relation 9(y, y′, y′′, y′′′) = 0 is equivalent to
y′′′

= η(y, y′, y′′), where

η(y, y′, y′′) :=
3
2

·
(y′′)2

y′
− R(y) · (y′)3

is a rational function over Q.
From now on, y′, y′′, y′′′ will denote some variables/coordinates and not the

derivatives of y. Derivations of abstract differential fields will not be denoted by ′.
When we deal with actual functions though, ′ will denote the derivative, e.g., j ′ is
the derivative of j .

Definition 3.7. Let (F; +, · , D1, . . . , Dm) be a differential field with constant field
C =

⋂m
k=1 ker Dk . We define a binary relation D0 j (x, y) by

∃y′, y′′, y′′′

[
9(y, y′, y′′, y′′′) = 0

∧

m∧
k=1

Dk y = y′Dk x ∧ Dk y′
= y′′Dk x ∧ Dk y′′

= y′′′Dk x
]
.

The relation D0×

j (x, y) is defined by the formula D0 j (x, y) ∧ x /∈ C ∧ y /∈ C . By
abuse of notation, we let D0 j and D0×

j also denote the Cartesian powers of these
relations.

If F is a field of meromorphic functions of variables t1, . . . , tm over some complex
domain with derivations d/dtk , then D0×

j (F) is interpreted as the set of all tuples
(x, y) ∈ F2 where x = x(t1, . . . , tm) is some meromorphic function and y = j (gx)

for some g ∈ GL2(C).
Pila and Tsimerman proved the following analogue of Ax’s theorem for the

j-function.

Theorem 3.8 (Ax–Schanuel for j [Pila and Tsimerman 2016, Theorem 1.3]). Let
(F; +, · , D1, . . . , Dm) be a differential field with commuting derivations and with
field of constants C. Let also (zi , ji ) ∈ D0×

j (F), i = 1, . . . , n. If the ji ’s are
pairwise modularly independent (i.e., no two of them satisfy an equation given by a
modular polynomial) then tdC C(z̄, ȷ̄ ) ≥ n + rk(Dkzi )i,k .

The proof of Pila and Tsimerman relies on o-minimality and, in particular, the
definability of the restriction of the j-function to a fundamental domain in the o-
minimal structure Ran,exp. Recently, a differential-algebraic proof of Ax–Schanuel
for all Fuchsian automorphic functions (including j) was given in [Blázquez-Sanz
et al. 2021].

In [Aslanyan et al. 2021], Aslanyan, Eterović, and Kirby use the Ax–Schanuel
theorem for the j -function to establish an existential closedness result for D0 j . The
proof is differential algebraic, and its advantage is that it treats Ax–Schanuel as a
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black box without looking into it, as opposed to the approach of [Kirby 2009] where
the proof of Ax–Schanuel is appealed to. For that reason the proof works both for
exp and j , and is expected to work in any reasonable situation where Ax–Schanuel
is known.

Theorem 3.9 (functional MEC [Aslanyan et al. 2021, Theorem 1.1]). Let F be a
differential field, and V ⊆ F2n be a 0 j -broad variety. Then there is a differential
field extension K ⊇ F such that V (K ) ∩ D0 j (K ) ̸= ∅. In particular, if F is
differentially closed then V (F) ∩ D0 j (F) ̸= ∅.

Remark 3.10. In the above theorem the variety V need not be free. However,
freeness is a necessary condition in MEC; see Example 2.12.

Also, when V is defined over the constants C and is strongly 0 j -broad (i.e., strict
inequalities hold in Definition 3.3 (first bullet point)), we have V (K )∩D0×

j (K ) ̸=∅;
see [Aslanyan et al. 2021, Theorem 1.3].

The Ax–Schanuel theorem can also be used to establish a functional variant of
modular Zilber–Pink, which was done by Pila and Tsimerman [2016, Theorem
7.1]. They used tools of o-minimality, while [Aslanyan 2022b, Theorem 5.2] gave
a differential-algebraic proof based on Kirby’s adaptation of Zilber’s proof of weak
CIT (see [Kirby 2009, Theorem 4.6]).

Definition 3.11. Let V ⊆ Cn be an algebraic variety. A j -atypical subvariety of
V is an irreducible component W of some V ∩ T , where T is a j-special variety,
such that dim W > dim V + dim T − n. A j-atypical subvariety W of V is said to
be strongly j-atypical if no coordinate is constant on W .

Theorem 3.12 (functional MZP [Pila and Tsimerman 2016; Aslanyan 2022b]).
Every algebraic variety V ⊆ Cn contains only finitely many maximal strongly j-
atypical subvarieties.

Like the MZP conjecture, this theorem can also be stated in several equivalent
forms, but we do not present them. See [Aslanyan 2022b] for details.

As in the exponential setting, recent years have seen significant progress towards
MEC and MZP. For the state-of-the-art on MZP and its generalisations see [Pila
2022] and references therein. For MEC the reader is referred to [Eterović and
Herrero 2021; Aslanyan and Kirby 2022; Gallinaro 2021; Eterović 2022; Eterović
and Zhao 2021].

4. Incorporating the derivatives of modular functions

In this section we look at the extensions of MSC, MEC, and MZP to the j -function
together with its derivatives. Analogues of MSC and MZP in this setting were
considered by Pila in some unpublished notes [2013], and we closely follow him in
Section 4A and the beginning of Section 4C. MSC with derivatives is in fact a special
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case of the Grothendieck–André generalised period conjecture. MEC with deriva-
tives was first proposed in [Aslanyan and Kirby 2022]. In addition to that conjecture
we also propose a second, more general MEC with derivatives conjecture here.

Recall that j satisfies a third-order differential equation, so it suffices to consider
only the first two derivatives. Adding higher derivatives would not change the
problems. One normally works in jet spaces when dealing with j together with
its derivatives j ′, j ′′. However, as usual, instead of the jet space J2 Hn

×J2Y (1)n

we work in Hn
×C3n . We use (x̄, ȳ, ȳ′, ȳ′′) to denote the coordinates on this space.

We denote the vector function

( j, j ′, j ′′) : Hn
→ C3n, z̄ 7→ ( j (z̄), j ′(z̄), j ′′(z̄)),

by J , and its graph by 0J .
Before proceeding we introduce further notation to be used in the rest of this

section.

Notation. Let n be a positive integer, k ≤ n and 1 ≤ i1 < · · · < ik ≤ n.

• 5ı̄ : C4n
→ C4k is defined by (x̄, ȳ, ȳ′, ȳ′′) 7→ (prı̄ x̄, prı̄ ȳ, prı̄ ȳ′, prı̄ ȳ′′).

• πı̄ : C3n
→ C3k is defined by (ȳ, ȳ′, ȳ′′) 7→ (prı̄ ȳ, prı̄ ȳ′, prı̄ ȳ′′).

• We also define the maps

πȳ : C3n
→ Cn, (ȳ, ȳ′, ȳ′′) 7→ ȳ,

5ȳ : C4n
→ Cn, (x̄, ȳ, ȳ′, ȳ′′) 7→ ȳ,

5x̄ : C4n
→ Cn, (x̄, ȳ, ȳ′, ȳ′′) 7→ x̄ .

4A. Modular Schanuel conjecture with derivatives.

Conjecture 4.1 (modular Schanuel conjecture with derivatives — MSCD). Given
nonquadratic numbers z1, . . . , zn ∈ H with distinct GL+

2 (Q)-orbits, we have

tdQ Q(z1, . . . , zn, J (z1), . . . , J (zn)) ≥ 3n.

This conjecture is a direct generalisation of MSC, but it does not reflect the
transcendence properties of J at special points. So, following [Pila 2013], we
formulate a more general conjecture.

Definition 4.2. • An irreducible subvariety U ⊆ Hn (i.e., an intersection of Hn with
some algebraic variety) is called GL+

2 (Q)-special if it is defined by some equations
of the form zi = gi,kzk , i ̸= k, with gi,k ∈ GL+

2 (Q), or of the form zi = τi where
τi ∈ H is a quadratic number.

• For a GL+

2 (Q)-special variety U we denote by ⟨U ⟩ the Zariski closure of the
graph of the restriction J |U (i.e., the set {(z̄, J (z̄)) : z̄ ∈ U }) over Qalg.
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• The GL+

2 (Q)-special closure of an irreducible variety W ⊆ Hn is the smallest
GL+

2 (Q)-special variety containing W . It exists because the irreducible components
of an intersection of GL+

2 (Q)-special varieties is GL+

2 (Q)-special.

We now explain how ⟨U ⟩ can be defined algebraically. First let us ignore the
case when U has constant coordinates. Assume the first two coordinates of U are
related, i.e., x2 = gx1 for some g =

(a
c

b
d

)
∈ GL+

2 (Q), and let 8( j (z), j (gz)) = 0
for some modular polynomial 8. Differentiating the last equality with respect to z
we get

∂8

∂Y1
( j (z), j (gz)) · j ′(z) +

∂8

∂Y2
( j (z), j (gz)) · j ′(gz) ·

ad−bc
(cz+d)2 = 0. (⋆)

Thus, ⟨U ⟩ satisfies the equation

∂8

∂Y1
(y1, y2) · y′

1 +
∂8

∂Y2
(y1, y2) · y′

2 ·
ad−bc

(cx1+d)2 = 0. (†)

Differentiating again, we get another equation between (x1, x2, y1, y2, y′

1, y′

2, y′′

1 , y′′

2 ),
and we have four equations defining the projection of ⟨U ⟩ to the first two coordinates.

In general, we have a partition of {1, . . . , n}, where two indices are in the same
block of the partition if and only if the corresponding coordinates are related on
U . If i1 < · · · < ik form such a block, then 5ı̄ ⟨U ⟩ is referred to as a block of ⟨U ⟩.
Then each block of ⟨U ⟩ is defined by equations of the form described above and
has dimension 4, and ⟨U ⟩ is the product of its blocks.

When U has a constant coordinate, say x1 (whose value must be a quadratic
irrational), then we also get blocks of dimension 1 or 0 as follows. If

x1 = τ /∈ SL2(Z)i ∪ SL2(Z)ρ, where ρ = −
1
2

+

√
3

2
i,

then j (τ ) ∈ Qalg and tdQ Q( j ′(τ ), j ′′(τ )) = 1 (see [Diaz 2000]). If, in addition,
some other coordinates, say x2, . . . , xk , are GL+

2 (Q)-related to x1 and thus take
constant values τk (with τ1 := τ ), then tdQ(τ̄ , J (τ̄ )) = 1. Thus, we get a block of
dimension 1. The equations defining such a block can be worked out as above.

On the other hand, a constant coordinate in SL2(Z)ρ would give rise to a block
of dimension 0, for the values of j, j ′, j ′′ are zeroes at these points. A constant
coordinate in GL+

2 (Q)ρ \ SL2(Z)ρ or GL+

2 (Q)i gives a block of dimension 1.
Now we are ready to state the second (and more general) version of MSCD.

Conjecture 4.3 (modular Schanuel conjecture with derivatives and special points —
MSCDS). Let z1, . . . , zn ∈ H be arbitrary and let U ⊆ Hn be the GL+

2 (Q)-special
closure of (z1, . . . , zn). Then

tdQ Q(z1, . . . , zn, J (z1), . . . , J (zn)) ≥ dim⟨U ⟩ − dim U.
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Both MSCD and MSCDS are special cases of the Grothendieck–André gener-
alised period conjecture; see [Aslanyan et al. 2023a, §6.3].

4B. Modular existential closedness with derivatives. We now introduce the appro-
priate notions of broadness and freeness which will appear in existential closedness.

Definition 4.4. Let V ⊆ Hn
×C3n be an algebraic variety.

• V is 0J -broad if for any 1 ≤ i1 < · · · < ik ≤ n we have dim 5ı̄ (V ) ≥ 3k.

• V is modularly free if no equation of the form 8N (yi , yk) = 0, or of the form
yi = c with c ∈ C a constant, holds on V .

• V is GL+

2 (Q)-free if no equation of the form xi = gxk with g ∈ GL+

2 (Q), or
of the form xk = c with c ∈ H a constant, holds on V .

• V is 0J -free if it is GL+

2 (Q)-free and modularly free.

• V is 0J -froad if it is 0J -free and 0J -broad.

Conjecture 4.5 (modular existential closedness with derivatives — MECD). Let
V ⊆ Hn

×C3n be a 0J -froad variety defined over C. Then V ∩ 0J ̸= ∅.

This is dual to Conjecture 4.1. It is possible to state a dual to Conjecture 4.3,
which would also imply that certain varieties contain J -special points. However,
in that case only dimension conditions would not suffice to guarantee existence of
J -points, e.g., an arbitrary variety of dimension 1 may not contain such a point; it
should be J -special in order to contain J -special points. So we give the following
definitions.

Definition 4.6. Let V ⊆ Hn
×C3n be an irreducible variety. Let also U ⊆ Hn be the

GL+

2 (Q)-special closure of 5x̄(V ) and T ⊆ Cn be the j -special closure4 of 5ȳ(V ).

• V is said to be 0∗

J -free if j (U ) = T and V ⊆⟨U ⟩.

• V is said to be 0∗

J -broad if dim 5ı̄ (V ) ≥ dim⟨prı̄ U ⟩ − dim prı̄ U for any ı̄ .

• V is said to be 0∗

J -froad if it is 0∗

J -free and 0∗

J -broad.

Remark 4.7. 0∗

J -freeness means that the GL+

2 (Q)-relations and modular relations
holding on V match each other, i.e., are compatible with the functional equations
of J (that is, modular correspondences and the relations obtained by differentiating
those). This condition holds vacuously for 0J -free varieties. For 0J -free varieties
0J -broadness and 0∗

J -broadness are equivalent.

Conjecture 4.8 (modular existential closedness with derivatives and special points —
MECDS). Let V ⊆ Hn

×C3n be an irreducible 0∗

J -froad variety. Then V ∩0J ̸=∅.

4The j -special closure of an irreducible set W is defined as the smallest j -special set containing W .
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4C. Modular Zilber–Pink with derivatives.

Definition 4.9. • For a GL+

2 (Q)-special variety U ⊆ Hn we denote by ⟨⟨U ⟩⟩ the
Zariski closure of J (U ) over Qalg.

• A J -special subvariety of C3n is a set of the form S = ⟨⟨U ⟩⟩, where U is a
GL+

2 (Q)-special subvariety of Hn .

• A J -special variety S is said to be associated to a j -special variety T if there is a
GL+

2 (Q)-special variety U such that S = ⟨⟨U ⟩⟩ and j (U ) = T .

Remark 4.10. • For a GL+

2 (Q)-special variety U ⊆Hn the set j (U )⊆Cn is defined
by modular equations and is irreducible (since U is irreducible), and therefore it is
j-special. Similarly, J (U ) is an irreducible locally analytic set5 and hence so is its
Zariski closure. Thus, J -special varieties are irreducible.

• The j-special varieties are bi-algebraic for the j-function, that is, they are the
images under j of algebraic varieties (namely, GL+

2 (Q)-special varieties). That is
in contrast to J -special varieties as these are not bi-algebraic for J . Nonetheless,
J -special varieties still capture the algebraic properties of the function J .

• The equations defining a J -special variety can be worked out as in Section 4A,
since ⟨⟨U ⟩⟩ is a projection of ⟨U ⟩. In particular, a variety ⟨⟨U ⟩⟩ is the product of its
blocks each of which has dimension 0, 1, 3, or 4. Dimensions 0 and 1 correspond to
constant coordinates. A block has dimension 3 if all the GL+

2 (Q)-matrices linking
its x-coordinates are upper triangular, and dimension 4 otherwise. This is because
equation (†) gives an algebraic relation between y1, y2, y′

1, y′

2 provided that c = 0,
i.e., the matrix linking x1 and x2 is upper triangular. Then we also have another such
equation linking y1, y2, y′

1, y′

2, y′′

1 , y′′

2 obtained by differentiating (⋆). When c ̸= 0,
both of these equations depend on x1, so together they yield a single algebraic
relation between y1, y2, y′

1, y′

2, y′′

1 , y′′

2 .

Definition 4.11. For a variety V ⊆ C3n we let the J -atypical set of V , denoted
AtypJ (V ), be the union of all atypical components of intersections V ∩ T in C3n ,
where T ⊆ C3n is a J -special variety.

Conjecture 4.12 (modular Zilber–Pink with derivatives — MZPD [Pila 2013]). For
every algebraic variety V ⊆ C3n there is a finite collection 6 of proper GL+

2 (Q)-
special subvarieties of Hn such that

AtypJ (V ) ∩ J (Hn) ⊆

⋃
U∈6

γ̄∈SL2(Z)n

⟨⟨γ̄U ⟩⟩.

5Strictly speaking, J (U ) may not be complex analytic as it is the image of an analytic set under an
analytic function, but it is locally analytic. It is irreducible in the sense that if J (U ) is contained in a
countable union of analytic sets then it must be contained in one of them.
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Remark 4.13. • One could propose a stronger conjecture stating that AtypJ (V ) is
covered by J -special varieties corresponding to SL2(Z)-translates of finitely many
GL+

2 (Q)-special varieties U ∈ 6. However, an intersection of V with a J -special
variety may have a component which does not intersect the image of J , or that
intersection is small. So while this stronger statement seems sensible (meaning
there does not seem to be a trivial counterexample), it is less natural and less about
the function J than Conjecture 4.12. Zilber’s original motivation for CIT came
from the idea of deducing a uniform version of Schanuel from itself. Similarly,
[Pila 2013] proposes MZPD as the difference between MSCD and its uniform
version. Since MSCD is about the function J , Pila only needed to deal with
the part of AtypJ (V ) that consists of points from the image of J . Furthermore,
Conjecture 4.12 is supported by the theorems presented in Section 4D, while we do
not have any evidence towards the said stronger statement, so we do not propose
such a conjecture.

• Given a J -special variety S ⊆ C3n with an atypical intersection V ∩ S, the inter-
section πȳ(V ) ∩ πȳ(S) may or may not be atypical. The novelty of MZPD is when
this intersection is typical as the atypical ones are accounted for MZP.

• In MZPD we may need infinitely many J -special varieties to cover the set
AtypJ (V ) ∩ J (Hn) but the conjecture states that it is “generated” by finitely many
GL+

2 (Q)-special varieties. See the example below.

Example 4.14. Consider the variety V ⊆ C9 defined by 82(y1, y2)+83(y2, y3)=0.
Let T ⊆ C3 be a j-special variety defined by 82(y1, y2) = 83(y2, y3) = 0, and let
U ⊆ H3 be GL+

2 (Q)-special such that j (U ) = T . Then for every γ̄ ∈ (SL2(Z))3

we have ⟨⟨γ̄U ⟩⟩⊆ V , and these are maximal J -special (hence atypical) in V . Thus,
the single j-special variety T “generates” an infinite set of maximal J -atypical
subvarieties of V .

MZPD has an analytic component: the intersection of AtypJ (V ) with the image
of J . We now propose an “algebraic” MZPD conjecture which we believe will
be more amenable to (differential) algebraic and geometric techniques (below we
provide evidence in support of this). The idea is to replace the set of points from the
image of J in an atypical subvariety of V by its Zariski closure. Then we need to
understand which algebraic varieties can contain a Zariski dense set of such points,
and hence this is a variant of the existential closedness problem for J . So we define
an appropriate notion of froadness which serves that purpose.

Definition 4.15. An irreducible variety W ⊆C3n is called Im(J )-froad (resp. Im(J )∗-
froad)6 if it is the projection of a 0J -froad (resp. 0∗

J -froad) variety V ⊆ Hn
×C3n

to the coordinates (ȳ, ȳ′, ȳ′′).

6Here Im stands for the image of a function.
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The following statement gives an explicit definition of these notions. Its proof is
fairly straightforward from the definitions and is left to the reader.

Proposition 4.16. Let W ⊆ C3n be an irreducible variety, and let T ⊆ Cn be the
j-special closure of πȳ(W ). Then W is Im(J )∗-froad if and only if there is a
GL+

2 (Q)-special variety U ⊆ Hn such that

• j (U ) = T ,

• W ⊆⟨⟨U ⟩⟩,

• for any ı̄ we have dim πı̄ (W ) ≥ dim ⟨⟨prı̄ (U )⟩⟩− dim prı̄ (U ).

Furthermore, W is Im(J )-froad if and only if U = Hn , T = Cn , and for any ı̄ of
length k we have dim πı̄ (W ) ≥ 2k.

Definition 4.17. For a variety V ⊆ C3n we let the froadly J -atypical set of V ,
denoted FAtypJ (V ), be the union of all Im(J )∗-froad and atypical components of
intersections V ∩ T in C3n , where T ⊆ C3n is a J -special variety.

Conjecture 4.18 (modular Zilber–Pink with derivatives for froad varieties —
MZPDF). For every algebraic variety V ⊆ C3n there is a finite collection 6 of
proper GL+

2 (Q)-special subvarieties of Hn such that

FAtypJ (V ) ⊆

⋃
U∈6

γ̄∈SL2(Z)n

⟨⟨γ̄U ⟩⟩.

Now we aim to understand the relation between Conjectures 4.12 and 4.18. We
can show they are equivalent assuming some weakened versions of MSCD and
MECD referring only to the image of J . We call these conjectures MSCDI and
MECDI, where “I” stands for “Image”.

Conjecture 4.19 (MSCDI). Let z1, . . . , zn ∈ H be arbitrary and let U ⊆ Hn be the
GL+

2 (Q)-special closure of (z1, . . . , zn). Then

tdQ Q(J (z1), . . . , J (zn)) ≥ dim⟨⟨U ⟩⟩− dim U.

Conjecture 4.20 (MECDI). Let V ⊆ C3n be an irreducible Im(J )∗-froad variety.
Then V ∩ Im(J ) ̸= ∅.

Proposition 4.21. (i) Assume MECDI. Then Conjecture 4.12 (MZPD) implies
Conjecture 4.18 (MZPDF).

(ii) Assume MSCDI. Then Conjecture 4.18 (MZPDF) implies Conjecture 4.12
(MZPD).

Proof. (i) Let W be an Im(J )∗-froad atypical subvariety of V ⊆ C3n . Then by
MECDI and the Rabinowitsch trick (see [Aslanyan 2022a, Proposition 4.34]),
W ∩ Im(J ) is Zariski dense in W . By MZPD (Conjecture 4.12), πȳ(W ∩ Im(J ))
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is contained in a union of finitely many j-special varieties depending only on V .
Hence, πȳ(W ) = πȳ(W ∩ Im(J ))Zcl is also contained in that union. Since W is
irreducible, πȳ(W ) is contained in one such j-special variety T , and since W is
Im(J )∗-froad, it is contained in a J -special variety associated to T .

(ii) (cf. [Aslanyan 2022b, Proposition 9.10]) Now assume MSCDI and MZPDF. Also
assume first that V is defined over Qalg. Let w̄ := ( j (z̄), j ′(z̄), j ′′(z̄)) ∈ AtypJ (V )

belong to an atypical component of an intersection V ∩ T , where T is J -special. If
T ′

⊆ T is the J -special closure of w̄ (that is, T ′
= ⟨⟨U ⟩⟩, where U is the GL+

2 (Q)-
special closure of z̄), then by [Aslanyan 2022b, Lemma 9.9], w̄ belongs to an atypical
component W of the intersection V ∩ T ′. MSCDI implies that W is Im(J )∗-froad.
Hence, by MZPDF W is contained in a J -special variety S associated to one of the
finitely many j-special varieties depending only on V . Then w̄ also belongs to S.

When V is defined over arbitrary parameters, rather than Qalg, the same proof
goes through provided that we can extend MSCDI and get a lower bound on the
transcendence degree of a J -point over finitely generated fields. This has been
done in [Aslanyan et al. 2023a, §5] for MSCD (see also [Eterović 2022, §4.2]), and
MSCDI can be treated similarly. □

MSCDI, like full MSCD, seems to be out of reach. Hence the second part of the
above proposition is not very helpful. On the other hand, MECDI is within reach,
albeit still open. Therefore, the first part of the proposition is more meaningful
and tells us that MZPDF (Conjecture 4.18) is probably more tractable than MZPD
(Conjecture 4.12). It is unlikely that the second implication in Proposition 4.21 can
be proven without assuming MSCDI.

4D. Functional/differential variants. The functional variants of all the above
conjectures were established in the last decade. We present them below.

Definition 4.22. Let (F; +, · , D1, . . . , Dm) be a differential field with constant
field C =

⋂m
k=1 ker Dk . Let also 9 be the rational function appearing in the

differential equation of the j-function (see Section 3C).

• We define a 4-ary relation D0J (x, y, y′, y′′) by

∃y′′′

[
9(y, y′, y′′, y′′′) = 0

∧

m∧
k=1

Dk y = y′Dk x ∧ Dk y′
= y′′Dk x ∧ Dk y′′

= y′′′Dk x
]
.

• The relation D0×

J (x, y, y′, y′′) is defined by the formula

D0J (x, y, y′, y′′) ∧ x /∈ C ∧ y /∈ C ∧ y′ /∈ C ∧ y′′ /∈ C.
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• The relations DIm(J ) and DIm(J )× are defined as ∃x D0J (x, y, y′, y′′) and
∃x D0×

J (x, y, y′, y′′), respectively.

• By abuse of notation, we use the above expressions (D0J , D0×

J , etc.) to denote
their Cartesian powers too.

If F is a field of meromorphic functions of variables t1, . . . , tm over some
complex domain with derivations d/dtk , then D0×

J (F) is interpreted as the set of
all tuples (x, y, y′, y′′)∈ F4 where x = x(t1, . . . , tm) is some meromorphic function,
y = j (gx) for some g ∈ GL2(C), and y′

= d j (gx)/dx , y′′
= d2 j (gx)/dx2.

The Ax–Schanuel theorem for J is due to Pila and Tsimerman. Again, their
proof is based on o-minimality, and Blázquez-Sanz, Casale, Freitag, and Nagloo
give a differential-algebraic/model-theoretic proof in [Blázquez-Sanz et al. 2021].

Theorem 4.23 (Ax–Schanuel for J [Pila and Tsimerman 2016, Theorem 1.3]). Let
(F; +, · , D1, . . . , Dm) be a differential field with commuting derivations and with
field of constants C. Let also (zi , ji , j ′

i , j ′′

i ) ∈ D0×

J (F), i = 1, . . . , n. If the ji are
pairwise modularly independent then tdC C(z̄, ȷ̄ , ȷ̄ ′, ȷ̄ ′′) ≥ 3n + rk(Dkzi )i,k .

As in the previous section, Ax–Schanuel can be used to prove a differential
analogue of MECD.

Theorem 4.24 (differential MECD [Aslanyan et al. 2021, Theorem 1.2]). Let F be
a differential field, and V ⊆ F4n be a 0J -broad variety. Then there is a differential
field extension K ⊇ F such that V (K ) ∩ D0J (K ) ̸= ∅. In particular, if F is
differentially closed then V (F) ∩ D0J (F) ̸= ∅.

Remark 4.25. In this theorem, when V is defined over the constants C and is
strongly 0J -broad (i.e., strict inequalities hold in Definition 4.4 (first bullet point)),
we have V (K ) ∩ D0×

j (K ) ̸= ∅; see [Aslanyan et al. 2021, Theorem 1.3].

At the end we state several analogues of MZPD and MZPDF.

Definition 4.26. For a J -special variety T ⊆ C3n and an algebraic variety V ⊆ C3n

an atypical component W of an intersection V ∩ T in C3n is a strongly J -atypical
subvariety of V if for every irreducible analytic component W0 of W ∩ J (Hn),
no coordinate is constant on πȳ(W0). The strongly J -atypical set of V , denoted
SAtypJ (V ), is the union of all strongly J -atypical subvarieties of V .

The following is a weak version of MZPD, the proof of which is based on
complex geometric tools. It generalises functional MZP (Theorem 3.12), and hence
it gives a third proof of the latter.

Theorem 4.27 (weak MZPD [Aslanyan 2022b, Theorem 7.9]). For every algebraic
variety V ⊆ C3n there is a finite collection 6 of proper GL+

2 (Q)-special subvarieties
of Hn such that

SAtypJ (V ) ∩ J (Hn) ⊆

⋃
U∈6

γ̄∈SL2(Z)n

⟨⟨γ̄U ⟩⟩.



THE EXISTENTIAL CLOSEDNESS AND ZILBER–PINK CONJECTURES 621

In order to present differential analogues of MZPD(F), we need to introduce
several definitions and pieces of notation.

Definition 4.28 [Aslanyan 2022b, §6]. Let C be an algebraically closed field.
Define D as the zero derivation on C and extend (C; +, · , D) to a differentially
closed field (K ; +, · , D).

• Let T ⊆ Cn be a j-special variety and U ⊆ Cn be a GL2(C)-special variety
associated to T , that is, U is defined by GL2(C)-equations and for any i, k the
pair of coordinates xi , xk are related on U if and only if yi , yk are modularly
related on T . Denote by ⟨⟨U, T ⟩⟩ the Zariski closure over C of the projection
of the set

D0×

J (K ) ∩ (U (K ) × T (K ) × K 2)

to the coordinates (ȳ, ȳ′, ȳ′′).

• A DJ -special variety is a variety S := ⟨⟨U, T ⟩⟩ for some T and U as above.

• S ∼ T means that S := ⟨⟨U, T ⟩⟩ for some U associated to T . For a set 6 of
j-special varieties S ∼ 6 means that S ∼ T for some T ∈ 6.

Definition 4.29. Let V ⊆ C3n be a variety. The DJ -atypical set of V , denoted
AtypDJ

(V ), is the union of all DJ -atypical subvarieties of V , that is, atypical com-
ponents of intersections V ∩T , where T ⊆ C3n is DJ -special. The set SFAtypDJ

(V )

denotes the union of all DJ -atypical subvarieties of V which are strongly Im(J )∗-
froad.7

Theorem 4.30 (functional MZPD — FMZPD [Aslanyan 2022b, Theorem 8.2]). Let
(K ; +, · , D) be a differential field with an algebraically closed field of constants C.
Given an algebraic variety V ⊆C3n , there is a finite collection 6 of proper j-special
subvarieties of Cn such that

AtypDJ
(V )(K ) ∩ DIm×

J (K ) ⊆

⋃
S∼6

S.

Theorem 4.31 (functional MZPDF — FMZPDF [Aslanyan 2022b, Theorem 9.8]).
Let C be an algebraically closed field of characteristic 0. Given an algebraic variety
V ⊆ C3n , there is a finite collection 6 of proper j-special subvarieties of Cn such
that

SFAtypDJ
(V )(C) ⊆

⋃
S∼6

S.

These theorems are analogues of MZPD and MZPDF, respectively, and so they
support those conjectures. In [Aslanyan 2022b] we give a complex geometric proof
of FMZPD (the transition from complex geometry to differential algebra is via

7A variety W ⊆ C3n is strongly Im(J )∗-froad if there is a GL+

2 (Q)-special variety U ⊆ Hn such
that j (U ) = T , W ⊆⟨⟨U ⟩⟩, and for any ı̄ we have dim πı̄ (W ) > dim ⟨⟨prı̄ (U )⟩⟩− dim prı̄ (U ).
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Seidenberg’s embedding theorem) and a differential-algebraic proof of FMZPDF.
The core of both proofs is the Ax–Schanuel theorem for J . The proof of FMZPDF
also uses the differential version of MECDI, which is a special case of Theorem 4.24.
As above, FMZPD and FMZPDF can be deduced from one another using differential
MECDI, so that gives two proofs for each of the above theorems, one differential
algebraic and one complex geometric.

For further results on MECD and MZPD see [Aslanyan and Kirby 2022; Aslanyan
et al. 2023a; Eterović 2022] and [Aslanyan 2022b], respectively. Spence [2019] has
proven some results towards the modular André–Oort with derivatives conjecture,
which is a special case of MZPD.

Remark 4.32. Section 4 turned out to be somewhat technical with some hard-to-
remember concepts and notation. Unfortunately, that seems necessary for precision
and rigour. A reader who is not familiar with the general topics discussed here
may be lost in the various versions of the conjectures and theorems. Therefore,
we would like to reiterate the main high-level idea of this section: incorporating
the derivatives into the modular versions of the Schanuel, existential closedness,
and Zilber–Pink conjectures gives a deeper insight into these problems and reveals
some hidden (possibly surprising) connections between them. Exploring these
conjectures in this more general setting would allow us to better understand the full
model-theoretic picture.
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Zilber–Pink for raising to the power i

Jonathan Pila

To Boris Zilber on the occasion of his 75th birthday.

We consider the multivalued raising-to-the-power-i function through the Schanuel–
Ax–Zilber lens. We formulate and prove an analogue of the Zilber–Pink conjecture.

1. Introduction

The purpose of this paper is to consider the (multivalued) function w = zi through
the Schanuel–Ax–Zilber lens [Ax 1971; Zilber 2002], and in particular to formulate
and prove an analogue of the Zilber–Pink conjecture [Zilber 2002; Bombieri et al.
2007; Pink 2005]. We follow the path taken by Zilber leading to his formulation of
the Zilber–Pink conjecture for semiabelian varieties: beginning with an analogue of
Schanuel’s Conjecture 3.1, we consider a “uniform” version (Conjecture 4.1), and
formulate a Zilber–Pink-type statement (Conjecture 4.2) connecting the classical
Schanuel conjecture (SC) with the uniform version for zi . Our Schanuel variant is
equivalent to a formulation of Zilber [2003a].

We then prove the Zilber–Pink-type statement, in the more general form in
Theorem 1.3 below. The connection with SC is explicated in Sections 2 and 3.
Theorem 1.3 is a somewhat exotic variant of the Zilber–Pink conjecture for even
powers of Gm = Gm(C) = C×, in which key difficulties disappear thanks to the
Gelfond–Schneider theorem.

We take w = zi to be the predicate 0 ⊂ G2
m defined by

(z, w) ∈ 0 ⇐⇒ ∃u∈C [exp(u) = z ∧ exp(iu) = w].

We let 0n = 0n denote the cartesian power of this predicate on Gn
m × Gn

m.
To formulate our theorem, we recall that the Zilber–Pink conjecture (ZP) for

subvarieties of Gn
m can be framed in terms of optimal subvarieties for V ⊆ Gn

m; see
[Habegger and Pila 2016]. These are subvarieties W ⊆ V which cannot be enlarged
inside V without increasing their defect (which is the difference between their
dimension and the dimension of the smallest torsion coset of Gn

m which contains
them). ZP is equivalent to the statement that a subvariety V ⊂ Gn

m contains only
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finitely many such optimal subvarieties. Here torsion cosets (which are cosets of
subtori by torsion points) are the “special subvarieties” of Gn

m.
In treating w = zi , the appropriate “special subvarieties” are subtori of Gn

m ×Gn
m

of a special form.

Definition 1.1. A plu-torus T ⊂ Gn
m × Gn

m is a subtorus whose lattice of exponent
vectors 3(T ) ⊂ Zn

× Zn is closed under the operation (q, r) 7→ (−r, q).

If A ⊂ Gn
m ×Gn

m is a subvariety which meets 0n then there is a smallest plu-torus
containing A (see Section 2), denoted ((A)). We define the plu-defect of A to be

δ(A) = dim ((A))− dim A.

Definition 1.2. Let V ⊂ Gn
m × Gn

m. A subvariety A ⊂ V is called plu-optimal for
V if A ∩ 0n ̸= ∅, and if A ⊂ B ⊂ V and δ(B) ≤ δ(A) imply B = A.

Theorem 1.3. Let V ⊂ Gn
m × Gn

m. Then V contains only finitely many plu-optimal
subvarieties.

To motivate the above definitions, we consider implications of SC for w = zi .
Zilber [2003a; 2015] studied Schanuel-type conjectures for raising to powers in
algebraically closed fields, and model-theoretic properties of the fields satisfying
them. A version of the present result that SC implies a certain uniformity in
the corresponding conjecture for raising to the power i is obtained there. Zilber
uses a two-sorted setup, and the conjectures are framed using the corresponding
logarithms, whereas our statement involves only the relation 0. However, the two
structures are biinterpretable, and the raising-to-the power-i Schanuel conjectures
are equivalent (I thank J. Kirby for explaining these points to me). Structures
with a predimension with similar shape to that considered here are considered in
[Caycedo and Zilber 2014; Zilber 2003b]; see also related structures in the context
of “pseudoexponentiation” discussed in [Bays and Kirby 2018].

We first observe that the pair (z, w) ∈ 0 “knows” which branch of log connects
them: if u = log z has the required property, any other u′ would need to satisfy

u′
− u ∈ 2π iZ, iu′

− iu ∈ 2π iZ

and the intersection of 2π iZ and 2πZ consists of {0} only.
Applying SC to

u1, . . . , un, iu1, . . . , iun, x1, . . . , xn, y1, . . . , yn,

where exp(ui ) = xi , exp(iui ) = yi , and eliminating the ui , iui , gives the following
statement, in which t.d.(A) denotes tr.deg. Q(A)/Q:

Let x1, . . . , xn, y1, . . . , yn ∈ C× with (x j , y j ) ∈ 0, j = 1, . . . , n. Then

t.d.(x1, . . . , xn, y1, . . . , yn) ≥ n

unless x1, . . . , xn, y1, . . . , yn are multiplicatively dependent.
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Indeed, SC asserts that t.d.(u j , iu j , x j , y j : 1 ≤ j ≤ n) ≥ 2n unless u j , iu j are
linearly dependent over Q. Now t.d.(u j , iu j : 1 ≤ j ≤ n) ≤ n, while if the u j , iu j

are linearly dependent over Q then the x j , y j are multiplicatively dependent: if,
say,

∑
j q j u j + i

∑
j r j u j = 0, where q j , r j ∈ Z, not all zero, then we get∏

j

xq j
j

∏
j

yr j
j = 1.

However, multiplicative dependence of x j , y j might hold even when Q-linear
dependence of u j , iu j does not, so that the above statement seems to lose some
information. For example, if u1 = log 2, u2 = 2π i , giving

x1 = 2, x2 = 1, y1 = 2i , y2 = e−2π

then the above conjecture does not predict t.d.(x1, x2, y1, y2) ≥ 2, but SC does, as
does Conjecture 3.1 (or see the provisional version below).

Suppose
∑

j q j u j + i
∑

j r j u j = 0 as above. Then, upon multiplying by i , we
find that −

∑
j r j u j + i

∑
j q j u j = 0 and we get a second multiplicative relation∏

j

x−r j
j

∏
j

yq j
j = 1.

The claim is that a pair of such multiplicative relations (which is easily seen to
never be dependent) forces the underlying u j , iu j to be linearly dependent over Q.
Indeed, from the first, we find that

δ =

∑
j

q j u j + i
∑

j

r j u j ∈ 2π iZ

but then the second relation implies that

iδ = −

∑
j

r j u j + i
∑

j

q j u j ∈ 2π iZ,

and so δ = 0.
Thus our “exceptional” point (x1, . . . , xn, y1, . . . , yn) ∈ Gn

m × Gn
m lies in a

subtorus of codimension at least 2 and of rather specific form: a plu-torus. This
leads us to the following provisional formulation of Schanuel’s conjecture for zi :

Let x1, . . . , xn, y1, . . . , yn ∈ C× with (x j , y j ) ∈ 0, j = 1, . . . , n. Then

t.d.(x1, . . . , xn, y1, . . . , yn) ≥ n

unless there exist integers q j , r j , not all zero, such that∏
j

xq j
j

∏
j

yr j
j = 1 =

∏
j

x−r j
j

∏
j

yq j
j .
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Thus, SC for zi leads naturally to the consideration of plu-tori. The corresponding
Zilber–Pink analogue arises from considering a uniform version of SC.

In the next section we investigate more fully the notion of plu-tori, and the related
cosets (weakly special subvarieties) with their underlying dimension notion. This
enables us to give a more refined version of Schanuel’s conjecture for zi in Section 3.
The uniform version and corresponding Zilber–Pink-type statement are set out in
Section 4, where we arrive at the formulation of Theorem 1.3. The subsequent
sections are devoted to proving Theorem 1.3 and related statements. We gather
some Ax–Schanuel-type statements in Section 5, and then finally in Sections 6–9
we gather the ingredients required to prove Theorem 1.3, first for V/Q and then in
a uniform version for families of subvarieties, from which the general case follows.

It has been my privilege over many years now to have Boris Zilber as a colleague,
to discuss mathematics with him, and in particular to hear at first-hand his unique
and inspirational approach to mathematical structures. I dedicate this paper to Boris
and look forward to many further conversations.

2. Plu-tori

We introduce some dimension notions involving pairs of linear relations. We
need this notion in the first instance for pairs (z, w) ∈ C2, but we need it also for
coordinate functions defining linear spaces.

Let

Dn = {(z1, . . . , zn, i z1, . . . , i zn) : z1, . . . , zn ∈ C} ⊂ Cn
× Cn,

and let
exp : Cn

× Cn
→ Gn

m × Gn
m

be the coordinatewise exponential map. Then 0n = exp(Dn).

Definition 2.1. Let V be a finite-dimensional complex vector space. A finite set
(z1, w1), . . . , (zn, wn) of elements of V 2 is called plu-linearly independent if they
do not satisfy any pair of nontrivial Q-linear equations of the form∑

j

q j z j +

∑
j

r jw j = 0, (1)

−

∑
j

r j z j +

∑
j

q jw j = 0. (1i )

Nontrivial means that
∑

(q2
j + r2

j ) ̸= 0. If they do satisfy such a “plu-pair” of
equations they are called plu-linearly dependent.
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Let B = {(z1, w1), . . . , (zn, wn)}. We say that (z0, w0) is plu-linearly dependent
on B if there is a plu-pair

q0z0 +

∑
j

q j z j +

∑
j

r jw j + r0w0 = 0,

−r0z0 −

∑
j

r j z j +

∑
j

q jw j + q0w0 = 0,

in which q0 or r0 is nonzero.
If say q1 ̸= 0 in the plu-pair (1), (1i ), then as above we may use (1) to eliminate

z1 but not w1 from (1i ), and we may use (1i ) to eliminate w1 but not z1 from (1) to
get a new plu-pair of equations∑

j

(r1q j − q1r j )z j +

∑
j

(q1q j + r1r j )w j = 0, (r1(1) + q1(1i ))

∑
j

(−q1q j − r1r j )z j +

∑
j

(r1q j − q1r j )w j = 0. (−q1(1) + r1(1i ))

We now show that plu-linear dependence leads to a well-defined dimension: the
cardinality of a maximal plu-independent subset, which we call a plu-basis. For
this we of course need the exchange property.

Proposition 2.2. Let B be as above. If (z0, w0) is plu-dependent on B and (z∗, w∗)

is plu-dependent on B ∪ {(z0, w0)} then (z∗, w∗) is plu-dependent on B.

Proof. We can assume that the plu-pair for the dependence of (z0, w0) on B has the
form

z0 +

∑
j

q j z j +

∑
j

r jw j = 0, −

∑
j

r j z j +

∑
j

q jw j + w0 = 0.

We use these to eliminate z0, w0 from the dependence of (z∗, w∗) on B ∪{(z0, w0)},
which remains a plu-pair. □

Proposition 2.3. Any two plu-bases have the same cardinality.

Proof. Let B, B ′ be two maximal plu-linearly independent subsets. If B = B ′ we
are done; otherwise, say (zi , wi ) ∈ B ′

\B. By the maximality, (zi , wi ) is plu-linearly
dependent over B. But since B ′ is plu-linearly independent the plu-pair must have
a nonzero coefficient for some (z j , w j ) ∈ B\B ′.

The claim is that B∗ with (zi , wi ) replacing (z j , w j ) in B is again a maximal
plu-linearly independent subset. First, it is plu-linearly independent. Otherwise, we
have (zi , wi ) plu-linearly dependent on B\{(z j , w j )}. But then by Definition 2.1
we would have (z j , w j ) dependent on B\{(z j , w j )}, a contradiction. But also by
Definition 2.1 we see that it “spans”.

This shows that #B ≥ #B ′. We symmetrically get the other inequality. □
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Definition 2.4. A Q-linear subspace L ⊂ Cn
× Cn is called plu-linear if the set

of Q-linear forms defining it is closed under the operation (q, r) 7→ (−r, q). A
plu-linear Q-subspace is also called a plu-subspace.

We observe that plu-linear subspaces have even dimension as linear subspaces.
Let L be a plu-subspace. We consider the complex vector space of pairs of complex
linear forms (∑

j

c j z j ,
∑

j

d jw j

)
, c j , d j ∈ C,

as functions on L . If the coordinate functions z j , w j are plu-linearly independent
as functions on L then there are no equations and L = Cn

× Cn . Otherwise, we
have a basis of some dimension m and then as a Q-subspace we have dim L = 2m.

The intersection of two (or more) plu-subspaces is a plu-subspace. If A ⊂Cn
×Cn

then there is a smallest plu-subspace containing A, denoted ⟨⟨A⟩⟩.
If A ⊂ Dn then the smallest Q-linear subspace of Cn

× Cn containing A is a
plu-subspace, because the “conjugate” of a given equation follows from multiplying
it through by i .

A plu-subspace of dimension 2m (as a Q-linear subspace) intersects Dn in a
Q-subspace of Dn of dimension at least dimension m since (as the “conjugate” of
any given equation holds automatically) the intersection is equal to the intersection
of Dn with a Q-subspace defined by 2n − (n + m) = n − m independent linear
equations, whence has dimension at least n + (n + m)− 2n = m. But it is also at
most this dimension, as each such equation (with its “conjugate”) eliminates one
variable. Thus, the intersection of Dn with a plu-subspace of dimension 2m is a
Q-subspace of Dn of dimension m.

Definition 2.5. A torus T ⊂ Gn
m × Gn

m is called a plu-torus if it is the image under
exp of some plu-linear Q-subspace L ⊂ Cn

× Cn .

The set of exponent vectors (q, r) ∈ Zn
× Zn defining a plu-torus is closed

under the operation (q, r) 7→ (−r, q); this is an equivalent condition to the one
in Definition 1.1. Each plu-torus T = exp(L), where L is a plu-subspace of
dimension 2m, contains the image of exp(L ∩ Dn), which we denote 0T = 0n ∩ T .

The intersection of tori is not in general a torus. However, the intersection of two
tori contains among its components a unique torus. And if the two tori are plu-tori
so is the torus component of their intersection.

Consider a subvariety (i.e., irreducible) A ⊂ Gn
m ×Gn

m. Suppose that A∩0n ̸=∅
and that A ⊂ T and A ⊂ T ′, where T, T ′ are plu-tori. Then A ⊂ T ∩ T ′, and hence
is contained in one of its components. These are disjoint from each other. The
unique preimage of (x, y) ∈ A ∩ 0n is in Dn and lies in the intersection of the
plu-linear subspaces L , L ′ corresponding to T, T ′. We thus see that A is contained
in the unique plu-torus component of the intersection.
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Thus for A ⊂ Gn
m × Gn

m with A ∩ 0n ̸= ∅ there is a unique smallest plu-torus
containing A, which we have denoted ((A)). In particular, for (x, y) ∈ 0n there is a
smallest plu-torus ((x, y)) containing (x, y). And plu-tori have even dimension (as
complex subvarieties).

Remark 2.6. More generally, if X is a quasiprojective variety (or even more
generally a connected open semialgebraic subset of one; see [Pila 2022, Chapter 14])
we can define a designated collection on X to be a collection S of subvarieties
(relatively closed and irreducible) of X such that (i) X ∈ S and (ii) S is closed under
taking irreducible components of intersections. This is somewhat more general
than the notion of “prespecial structure” considered in [Klingler et al. 2018] (we
do not insist that special points be Zariski-dense in special subvarieties), and the
still more elaborate setting of “distinguished categories” [Barroero and Dill 2021],
but still gives a well-defined notion of “smallest special subvariety containing A”
for any A ⊂ X . If � ⊂ X is some complex analytic subset then one can consider a
designated collection on X meeting � to be a collection of subvarieties of X which
have nonempty intersection with �, such that (i) X ∈ S and (ii) if Y, Z ∈ S and W
is a component of Y ∩ Z which meets � then W ∈ S. Then, as above, one has a
well-defined “smallest special subvariety” containing A for any A ⊂ X which has a
nonempty intersection with �. This notion arises, as here, naturally in considering
ZP-type formulations relevant to certain Schanuel-type statements.

We also want the corresponding “weakly special subvarieties”. These come from
considering pairs of linear equations modulo some suitable constants.

Definition 2.7. Let V be a finite-dimensional complex vector space. A finite set
(z1, w1), . . . , (zn, wn) of elements of V 2 is called strictly plu-linearly independent
modulo C if there is no nontrivial pair of equations∑

j

q j z j +

∑
j

r jw j = c, −

∑
j

r j z j +

∑
j

q jw j = ic

with q j , r j ∈ Q (not all zero), and c ∈ C.

There is a well-defined notion of strict plu-mod C basis, the cardinality of a
maximal strictly plu-linearly independent modulo C subset.

Definition 2.8. A linear subvariety L ⊂ Cn
× Cn is called a strict plu-linear subva-

riety if it is defined by linear equations which are closed under the operation∑
j

q j z j +

∑
j

r jw j = c 7→ −

∑
j

r j z j +

∑
j

q jw j = ic.

A strict plu-linear subvariety L has even dimension 2m. It intersects Dn in a
subspace of dimension at least m.
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The intersection of two strict plu-linear subspaces is a strict plu-linear subspace.
Given A ⊂ Cn

× Cn , there is a smallest strict plu-linear subvariety containing it,
which we denote ⟨⟨A⟩⟩SPL.

Definition 2.9. A torus coset T ⊂ Gn
m × Gn

m is called a strict plu-coset if it is the
image under exp of a strict plu-linear subvariety.

Equivalently, a strict plu-coset is a coset T of a torus defined by equations with
the property that if xq yr

= c on T then x−r yq
= d on T for some d with (c, d) ∈ 0.

Consider a subvariety A ⊂ Gn
m × Gn

m. Suppose that A ∩ 0n ̸= ∅ and that A ⊂ T
and A ⊂ T ′, where T, T ′ are strict plu-cosets. Then A ⊂ T ∩ T ′, and hence is
contained in one of its components. These are disjoint from each other. The unique
preimage of (x, y) ∈ A ∩ 0n is in Dn and lies in the intersection of the strict plu-
linear subvarieties L , L ′ corresponding to T, T ′. We thus see that A is contained in
the unique strict plu-coset component of the intersection.

Thus for A ⊂ Gn
m×Gn

m with A∩0n ̸=∅ there is a unique smallest strict plu-coset
containing A, which we denote

((A))SPC.

There is also a weaker notion of “plu-linear dependence modulo C” in which
the pair of constants do not need to be related by multiplication by i . There are
corresponding “plu-linear subvarieties” and “plu-cosets”, their images under exp.

For A ⊂ Gn
m × Gn

m there is a unique smallest plu-coset containing A, denoted

((A))PC.

3. Schanuel’s conjecture for z i

We can now state a more precise analogue of Schanuel’s conjecture for zi .

Conjecture 3.1 (Schanuel’s conjecture for zi (zi SC)). Suppose that (xi , yi ) ∈ 0,
i = 1, . . . , n. Then

t.d.(x1, . . . , xn, y1, . . . , yn) ≥
1
2 dim ((x1, . . . , xn, y1, . . . , yn)).

Here and throughout, “dim” denotes the complex dimension of an algebraic
variety. For n = 1 the statement reduces to the Gelfond–Schneider theorem and
so is true: for if tr.deg.(x, y) = 0 we must have x i

= y with x, y ∈ Q×. But this
is impossible unless x = 1 by Gelfond–Schneider, and since we then also have
yi

= 1/x we must have y = 1 as well, and then they are skew-multiplicatively
dependent and dim ((x, y)) = 0.

Remarks 3.2. (1) As a reduct of complex exponentiation, (C; +, ×, 0, 1, 0) is
conjecturally “tame” [Zilber 2005]; in unpublished work, Wilkie has proved it is
quasiminimal. (Quasiminimality of the corresponding structure including predicates
for all complex powers has recently been proven in [Gallinaro and Kirby 2023].)
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As an expansion of the real field the structure (R, +, ×, 0) is also tame, though
“d-minimal” (not o-minimal); see [Miller 2005].

(2) Another approach to formulating SC for zi is to use an equivalent formulation
of SC in terms of q(z) = exp(2π i z) rather than exp(z).

Observe that if x1, . . . , xn are multiplicatively independent algebraic numbers
then, under SC, their logarithms u1, . . . , un , under any determination, are alge-
braically independent. Hence these u j , iu j are certainly linearly independent
over Q, and we get a conjectural analogue of Lindemann’s theorem (often called
the Lindemann–Weierstrass theorem).

Conjecture 3.3 (zi -Lindemann–Weierstrass conjecture (zi LW)). Suppose that the
algebraic numbers x1, . . . , xn ∈ Q× are multiplicatively independent and that
(x j , y j ) ∈ 0, j = 1, . . . , n. Then y1, . . . , yn are algebraically independent.

In fact this statement already follows from zi SC, which would seem much weaker
than SC.

Proposition 3.4. zi SC implies zi LW.

Proof. Assume zi SC. Suppose x1, . . . , xn are algebraic and multiplicatively inde-
pendent. Then their logarithms (under any determination) are linearly indepen-
dent over Q. Then, by Baker’s theorem [Baker 1975], they are linearly indepen-
dent over Q. Then x j , y j are plu-multiplicatively independent and so, by zi SC,
t.d.(xi , yi ) = n. Thus y1, . . . , yn are algebraically independent. □

Remark 3.5. Note that if (z, w) ∈ 0 then also (w, z−1) ∈ 0. Thus the analogue of
“algebraic independence of logarithms” for zi , which we might call zi AIL, is in fact
equivalent to zi LW: if y1, . . . , yn are algebraic and multiplicatively independent
and (x j , y j ) ∈ 0, j = 1, . . . , n, then x1, . . . , xn are algebraically independent. It
seems interesting to consider other “zi analogues” of consequences of SC.

4. Uniform Schanuel conjecture and Zilber–Pink conjecture for z i

We can rephrase zi SC as follows:

Let V ⊂ Gn
m×Gn

m be defined over Q and with dim V <n. If (x, y)∈ V ∩0

then (x, y) are plu-multiplicatively dependent.

More generally, if T ⊂ Gn
m × Gn

m is a 2m-dimensional plu-torus, V ⊂ T is defined
over Q with dim V < m, and (x, y) ∈ V ∩ 0, then (x, y) belongs to a proper
plu-subtorus of T .

The uniform version, following [Zilber 2002], asserts that, given such T and V ,
finitely many proper plu-subtori of T account for all such (x, y).
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Conjecture 4.1 (uniform Schanuel conjecture for zi (zi USC)). Let T ⊂ Gn
m × Gn

m
be a plu-torus of dimension 2m and V ⊂ T an algebraic subvariety, defined over
Q with dim V < m. There is a finite set U of proper plu-subtori of T such that if
(x, y) ∈ V ∩ 0T then (x, y) ∈ U for some U ∈ U .

Now let L ⊂ Cn
× Cn be the Q subspace associated to T . We have W =

(Dn ∩ L) × V ⊂ L × T of dimension dim W < 2m; the ambient L × T has
dimension 4m. Therefore, any point in the intersection V ∩0T is a point in W on
the graph of exp restricted to L . If we assume SC (ideologically speaking assuming
zi SC should be enough, but this is unclear) then, as shown in [Zilber 2002], any
point (x, y) ∈ V ∩ 0 is in an atypical intersection of V with some plu-subtorus.
Thus to get from SC to zi USC we need the following Zilber–Pink-type statement,
in analogy with “CIT” of [Zilber 2002].

We state the conjecture for V/C and without dimension restrictions although for
the purposes of connecting SC and zi USC, only V/Q, 2 dim V < dim T is required.

Conjecture 4.2 (zi ZP). Let T ⊂ Gn
m × Gn

m be a plu-torus. Let V ⊂ T . There is
a finite set U of proper plu-subtori of T with the following property. If S ⊂ T is
a plu-subtorus and A ⊂cpt V ∩ S is atypical in dimension with A ∩ 0T ̸= ∅, then
there exists U ∈ U such that A ⊂ U .

Now given A ⊂ T with A∩0n ̸=∅, we have seen that there is a smallest plu-torus
containing A, denoted ((A)), and defined the plu-defect δ(A) = dim ((A))− dim A,
and corresponding notion of plu-optimal subvariety.

As in [Habegger and Pila 2016], Conjecture 4.2 is then formally equivalent to
the statement formulated as Theorem 1.3.

Conjecture 4.3. Let V ⊂ Gn
m × Gn

m. Then there are only finitely many plu-optimal
subvarieties of V .

The reason that we can prove this statement, while multiplicative ZP remains
seemingly far out of reach, is the following. An atypical intersection V ∩ S is typi-
cally a point, and any intersection point is atypical provided dim V +dim S < dim T .
In [Habegger and Pila 2016] it is shown that the full Zilber–Pink conjecture (in
the modular and abelian settings) reduces to finiteness of optimal points in general.
Now if we consider “plu-optimal points” they must be algebraic, on the one hand,
if V/Q, since tori are defined over Q, but they must also belong to 0. But the
Gelfond–Schneider theorem (see, e.g., [Baker 1975]) implies that the only such
point is (1, 1).

For example, consider the case of a curve V ⊂ T , defined over Q. Suppose S
is a plu-subtorus and (x, y) ∈ V ∩ S. If (x, y) is an isolated intersection then it
is algebraic, and consequently (x, y) ∈ 0n if and only if (x, y) = (1, 1). So if V
intersects atypically in a component meeting 0n then this component is either (1, 1)
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or all of V , in which case V is contained in a proper plu-subtorus. Thus we see
that Conjecture 4.3 holds for V .

Our strategy, following [Habegger and Pila 2016], is to apply Ax–Schanuel to
reduce to looking for plu-optimal points in the translate spaces of finitely many
families, and then the above argument is decisive in showing that there is at most
one plu-optimal point, namely the one corresponding to (1, 1), in each such family.
We go from V/Q to V/C via a uniform version. The context for this argument is
described further in Section 9 where it is presented.

Implementing this strategy requires the analogous “optimal” notions for strict
and general plu-cosets. The analogous notion for weakly special subvarieties in the
multiplicative setting is “geodesic optimal” (see [Habegger and Pila 2016]), which
appeared earlier in [Poizat 2001], and then elsewhere, as “cd-maximal”. We define
the corresponding defects:

δSPC(A) = dim ((A))SPC − dim A, δPC(A) = dim ((A))PC − dim A.

Definition 4.4. Let V ⊂ Gn
m × Gn

m. We say that A ⊂ V is strictly plu-geodesic
optimal for V if it is maximal for δSPC among subvarieties of V containing A and
meeting 0, and plu-geodesic optimal if it is maximal for δPC among subvarieties of
V containing A.

5. Ax–Schanuel for z i

Let K be a differential field with Q ⊂ Q(i) ⊂ C ⊂ K with commuting derivations
D j and constant field C . The following is a special case of “Ax–Schanuel” [Ax
1971, Theorem 3].

Proposition 5.1. Let u1, . . . , un, x1, . . . , xn, y1, . . . , yn ∈ K × with

D j xk = xk D j uk, D j yk = iyk D j uk for all j, k.

Then

tr.deg.C(u1, . . . , un, x1, . . . , xn, y1, . . . , yn) ≥ 2n + rankK (D j uk)

unless the uk, iuk are linearly dependent over Q modulo C.

Suppose that the u j , iu j are linearly dependent over Q modulo C , say∑
j

q j u j + i
∑

j

r j u j = c ∈ C (2)

with q j , r j ∈ Z not all zero. Then we find that∏
j

xq j
j

∏
j

yr j
j = c′

∈ C,
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as it is in the kernel of all the derivations. Multiplying (2) through by i we get a
second relation (1i ), and a second multiplicative relation∏

j

x−r j
j

∏
j

yq j
j = c′′

∈ C.

Now morally one wants to say that c′
= exp(c), c′′

= exp(ic) so that c′′
= c′ i ,

but the differential field setting has no interpretation of this.
Conversely, if we are given x1, . . . , xn, y1, . . . , yn satisfying the differential

relations
D j yk

yk
= i

D j xk

xk
for all j, k

then if u1, . . . , un satisfy D j xk = xk D j uk for all j, k then they also satisfy the
equations D j yk = iyk D j uk , and if the x j , y j satisfy multiplicative relations mod C
then the uk, iuk satisfy linear relations over Q modulo C .

And if we have a linear relation
∑

j q j u j + i
∑

j r j u j = c then the “conjugate”
relation indeed has constant ic.

Finally we note that with any u j , x j , y j as in Proposition 5.1 we have

rankK (D j uk) = rankK (D j xk) = rankK (D j yk) = rankK (D[x], D[y]),

where D[x] = (D j xi ) and D[y] = (D j yi ).

Corollary 5.2. Let x1, . . . , xn, y1, . . . , yn ∈ K × with

D j yk

yk
= i

D j xk

xk
for all j, k.

Then

tr.deg.C(x1, . . . , xn, y1, . . . , yn)

≥
1
2 dim ((x1, . . . , xn, y1, . . . , yn))PC + rankK (D j xk),

where (( . . . ))PC is defined using plu-multiplicative dependence modulo C.

Proof. Given x j , y j , j = 1, . . . , n satisfying these equations then some suitable u j

exist (perhaps in some extension differential field), and then the statement follows
from the above discussion. □

We next state “weak CIT” in this setting, following [Zilber 2002]. Given a variety
(or family of varieties) V then there is some finite set of linear dependencies which,
up to translations, accounts for all deficiencies in transcendence degree.

Suppose that V ⊂Gn
m×Ck is a family of algebraic varieties of generic dimension k,

parameterized by t ∈ W ⊂ Ck , with the fibre having dim Vt = k provided t /∈ W ′,
where W ′ is a proper subvariety of W .
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Proposition 5.3. Let V ⊂ Gn
m × Gn

m × Cm be a family of algebraic varieties,
parameterized by points of W ⊂ Cm , of generic dimension k outside W ′.

Then there exists a finite set 6 of integer vectors (q, r) ∈ Z2n
\{0} with the

following property. Suppose t ∈ W\W ′, and A ⊂cpt Vt ∩ 0 with

dim A > k − n.

Then there exists (q, r) ∈ 6 and c, c′
∈ C such that∏

j

xq j
j

∏
j

yr j
j = c and

∏
j

x−r j
j

∏
j

yq j
j = c′

for any point (x, y) ∈ A.

Proof. This is essentially a special case of Proposition 8 of [Zilber 2002], though we
consider families of general dimension, not necessarily k < n. It is an application
of the compactness theorem of first-order logic. Suppose, towards a contradiction,
that no such finite set exists. Certainly if dim A = 0 then this property is satisfied
for any such tuple. Therefore, for some ℓ > 0 we have the property that for any
finite set 6 of tuples there exists t ∈ W\W ′ and a component A ⊂cpt Vt ∩ 0 of
dimension ℓ with ℓ > k − n. Then it is consistent to have a differential field
with ℓ derivations, of rank ℓ on some set {x1, . . . , xn} of functions and to have
also functions y1, . . . , yn satisfying the required equations but with the x j , y j ,
j = 1, . . . , n not plu-multiplicatively dependent modulo constants, giving the
contradiction. □

By repeating this on the families of intersections (the parameter now being the
constants c′, c′′

∈ C), we find that some finite collection of families of plu-cosets
accounts for all plu-geodesic optimal intersections with varieties in the family V .

6. The defect condition

Given a plu-torus T and a subvariety A ⊂ T meeting 0T we have three defects: the
first with respect to plu-tori, the second with respect to strict plu-cosets, and the
third with respect to (general) plu-cosets:

δ(A) = dim ((A))− dim A,

δSPC(A) = dim ((A))SPC − dim A,

δPC(A) = dim ((A))PC − dim A.

Evidently
δPC ≤ δSPC(A) ≤ δ(A).

Suppose that (xi , yi ) are a basis of coordinate pairs on A with respect to plu-
multiplicative dependence. The difference between the defect measures to what
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extent these functions are strictly plu-dependent mod C, and then the extent to
which the remaining strictly plu-dependent mod C ones are plu-multiplicatively
dependent mod C.

Suppose A ⊂ B. Then strict plu-multiplicative relations modulo constants on B
remain strict plu-multiplicative relations modulo constants on A, and if the constant
pairs (ck, dk) in these relations are plu-multiplicatively independent on B they
remain so on A. We therefore see that the defect condition holds between δ and
δSPC, namely

δ(B) − δSPC(B) ≤ δ(A) − δSPC(A).

Similarly, the defect condition holds between δPC and δSPC.

Proposition 6.1. Fix V ⊂ Gn
m × Gn

m.

(i) A plu-optimal subvariety for V is strictly plu-geodesic optimal.

(ii) A strictly plu-geodesic optimal subvariety is plu-geodesically optimal.

Proof. Suppose A ⊂ V is plu-optimal and A ⊂ B ⊂ V . Suppose δSPC(B) ≤ δSPC(A).
Then, by the defect condition,

δ(B) ≤ δ(A) − δSPC(A) + δSPC(B) ≤ δ(A).

Since A is optimal, we have B = A, and so A is strictly plu-geodesically optimal.
This proves (i). The proof of (ii) is similar. □

7. Families of plu-cosets

In this section we introduce some terminology and notation that will be needed in
the proofs of the main results. For general properties of linear tori see [Bombieri
and Gubler 2006, Chapter 3.1]. A family of (general) plu-cosets of a plu-torus X is
determined by a finite set of plu-multiplicative pairs of equations

xq(k)

yr (k)

= 1, x−r (k)

yq(k)

= 1 for k = 1, . . . , K

which define X , and a finite set of exponent vectors, independent of those above,
for some further equations which determine the cosets in the family:

xq(k)

yr (k)

= ck, x−r (k)

yq(k)

= dk for k = K + 1, . . . , K + L ,

such that the fibres are torus cosets in X (i.e., the exponent vectors generate a
primitive lattice).

The plu-cosets are parameterized by the coordinates

(c, d) = (cK+1, . . . , cK+L , dK+1, . . . , dK+L) ∈ GL
m × GL

m.

We denote the parameter space by X S = GL
m × GL

m. The cosets are then the fibres
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of the map π : X → X S given by

π(x, y) =
(
xq(K+1)

yr (K+1)

, . . . , xq(K+L)

yr (K+L)

, x−r (K+1)

yq(K+1)

, . . . , x−r (K+L)

yq(K+L))
.

Such a family we denote SD, where D is the data (exponent vectors for the
equations of T and for the additional equations of the cosets in the family). The
fibre over (c, d) ∈ X S is denoted SD

c,d . The fibre SD
c,d is a strict plu-coset just

if (c, d) ∈ 0L . The union X of the plu-cosets over the family we call the envelope
of SD and denote it [SD

].
We observe that the preimage under π of a plu-torus is a plu-torus, and likewise

for strict and general plu-cosets. To see this, consider a condition of the form

cQd R
= γ, c−Rd Q

= δ,

where Q = (Q1, . . . , QL), R = (R1, . . . , RL) are tuples of integers. The preimage
in X is determined, in addition to the equations for X , by

x
∑

Q j q( j)
−

∑
R j r ( j)

y
∑

Q j r ( j)
+

∑
R j q( j)

= γ,

x−
∑

R j q( j)
−

∑
Q j r ( j)

y−
∑

R j r ( j)
+

∑
Q j q( j)

= δ,

which is a plu-pair.

8. Proof of Theorem 1.3 for V/Q

We can now prove Theorem 1.3 (Conjecture 4.3) for V/Q following the first part
of the proof of [Habegger and Pila 2016, Theorem 10.1], using the fact that 0 has
just one algebraic point (a consequence of the Gelfond–Schneider theorem).

Theorem 8.1. Let V ⊂ Gn
m × Gn

m with V/Q. Then there are only finitely many
plu-optimal subvarieties of V .

Proof. Let A ⊂ V be a plu-optimal component which meets 0n .
We observe that if A ⊂ S for some plu-coset S then this coset must be strict. For

suppose (x, y) ∈ A ∩0n , so (x, y) ∈ S. Let (u, iu) be the tuple of logarithms. Say
that xq yr

= c, x−r yq
= d is a pair of equations defining S. So we have∑

q j u j + i
∑

r j u j = γ

with exp(γ ) = c. But then, multiplying by i , we also have

−

∑
r j u j + i

∑
q j u j = iγ,

whence d = exp(iγ ).
Plu-optimal subvarieties are plu-geodesic optimal. The plu-geodesic-optimal

subvarieties of V arise from intersections with finitely many families SD of plu-
cosets. Fix one of these families S and denote the parameter space X S . Let
τ = dim Sc,d be the dimension of the plu-cosets in the family.
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We have a projection π : [S] → X S whose fibres are the Sc,d . The intersections
V ∩ Sc,d are the fibres of the restriction of this projection to V , whose image in X S

we denote VS , and we have VS/Q. There is a Zariski-open subvariety V ′
⊂ V in

which the fibre over the image has the generic fibre dimension ν = dim V −dim VS .
Suppose A ⊂ V ∩ Sc,d is plu-optimal and meets 0n . If A ⊂ V \V ′ then it

is certainly plu-optimal for the component of V \V ′ it is in. The proof is then
concluded by induction on dim V (the base case dim V = 1 was dealt with in the
second paragraph following the statement of Conjecture 4.3).

So we assume that A ∩ V ′
̸= ∅ and then dim A = ν and π(A) = (c, d). Since

A ∩ 0n ̸= ∅ we have some (x, y) ∈ A ∩ 0n . Thus each component (xi , yi ) ∈ 01,
with logarithm ui . And now if∑

j

q j u j + i
∑

j

r j u j = γ

then this implies
−

∑
j

r j u j + i
∑

j

q j u j = iγ.

Then c = exp(γ ), d = exp(iγ ) and we have (c, d) ∈ 0.
The claim is that {(c, d)} is a plu-optimal point component of VS . We can assume

that we have already dealt with any family of smaller plu-cosets that might have
given rise to A, i.e., we can assume that

Sc,d = ((A))PC.

Then
dim ((A)) = dim Sc,d + dim ((c, d)),

whence
δ(A) = dim ((A))− dim A = dim ((c, d))+ τ − ν.

Suppose that {(c, d)} ⊂ B, {(c, d)} ̸= B with δ(B) ≤ δ(c, d) = dim ((c, d)). Let
C be the component of the preimage of B in V ′ containing A. Then

δ(C)=dim ((C))−dim C ≤dim ((B))+τ−(dim B+ν)≤dim ((c, d))+τ−ν =δ(A).

Then C = A by the plu-optimality of A and so B = {(c, d)} is optimal.
But then (c, d) is algebraic, and since it belongs to 0n we must have (c, d)= (1, 1).

So we get at most one plu-optimal subvariety in each family. □

Remarks 8.2. (1) Can one effectively determine the finitely many families of
plu-cosets? (For the general multiplicative setting [Bombieri et al. 2007] gives an
effective argument for this.) For curves this seems clearly possible.

(2) This shows that SC would imply a uniform zi SC. Does zi SC itself imply some
uniformity, and if so what is the intervening “ZP” statement?
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9. Uniformity and proof of Theorem 1.3 for V/C

Here we prove that Conjecture 4.3 holds uniformly for varieties in families, in the
sense of [Scanlon 2004]: the formal sum of the optimal subvarieties is bounded as
a cycle, which we make precise in Conjecture 9.2. This uses the fact established in
[Habegger and Pila 2016], already exploited here, that ZP is equivalent to showing
that the number of optimal points on any subvariety is bounded. Here we need to
upgrade this to show that the number of optimal points is uniformly bounded on a
family of varieties. We do this following the argument sketched in [Zannier 2012],
which we have fully worked out [Pila 2022, Chapter 24] for ZP in the modular and
multiplicative settings. As a by-product, we establish that Conjecture 4.3 holds
for V/C.

Let X = Gn
m ×Gn

m. A family of subvarieties of X means a subvariety V ⊂ X × P
for some constructible set P , considered as the family of fibres Vp ⊂ X , p ∈ P .
The fibre dimension of a family is the maximum dimension of a fibre.

If V is a family of subvarieties of X and h is a positive integer then we have the
incidence variety

Inch(V ) = {(z1, . . . , zh) ∈ Xh
: ∃p ∈ P : z j ∈ Vp, j = 1, . . . , h}.

Since P is only assumed constructible Inch(V ) may not be Zariski closed, and we
denote by V ⟨h⟩ its Zariski closure. In particular V ⟨1⟩ is the Zariski closure of the
union of all the fibres, which we call the envelope of the family and denote also
by [V ].

We have already seen that plu-cosets of a plu-torus T ⊂ X come in families.
Such a family is a family S ⊂ X × X S (in the above sense). The envelope [S] is a
plu-torus.

Theorem 9.1. Let V ⊆ X × P be a family of subsets of X defined over Q. Then
there is a uniform bound on the number of optimal points of Vp, p ∈ P.

Proof. We prove the theorem by induction (first) on the dimension of the parameter
space P . The case dim P = 0 is addressed by Theorem 8.1. We may then assume
that the Zariski closure of P is irreducible, that the fibre dimension v = dim Vp is
constant and equal to the generic fibre dimension, and that there is a single family
S = SD of plu-cosets such that every fibre Vp in the family has ((Vp))PC = Sc,d

for some (c, d) ∈ X S . Thus [V ] ⊂ [S]. We adopt the notation of Section 7 for this
family.

For given dim P we may assume that the theorem holds for all families W ⊂ X×Q
(i.e., of any dimension of the parameter space Q) such that each fibre has ((Wq))PC =

S′

c,d for some fibre of a family S′ of plu-cosets, and for which either dim[S′
] <

dim[S] or dim[S′
] = dim[S] and dim S′

c,d < dim Sc,d ; the base cases are trivial.
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Now we take a positive integer h, to be specified below, and consider V ⟨h⟩
⊂ [S]

h .
Then in fact V ⟨h⟩

⊂ S⟨h⟩, and the latter is a plu-torus: in addition to the equations
for [S]

h it is defined by the plu-pairs of equations

(x ( j))q(ℓ)

(y( j))r (ℓ)

= (x (k))q(ℓ)

(y(k))r (ℓ)

, (x ( j))−r (ℓ)

(y( j))q(ℓ)

= (x (k))−r (ℓ)

(y(k))q(ℓ)

for j ̸= k and ℓ = K + 1, . . . , K + L . Thus

dim S⟨h⟩
= h dim[S] − L(h − 1).

Now suppose that Vp is a fibre of V which contains h optimal points (x ( j)
0 , y( j)

0 ),
j = 1, . . . , h. Then they are atypical as point subvarieties of Vp (unless dim Vp = 0
in which case the conclusion is trivial for V ). Thus there are plu-tori T j , j =1, . . . , h
such that (x ( j)

0 , y( j)
0 ) ∈ T j ∩ 0X , j = 1, . . . , h and

dim T j + dim Vp < dim[S].

Consider the plu-torus
T = T1 × · · · × Th .

Since the equations defining S⟨h⟩ are between different groups of variables, they
are independent of the equations defining each T j , and we have

dim T ∩ S⟨h⟩
= dim T − L(h − 1).

Then
(x0, y0) =

(
(x (1)

0 , . . . , x (h)
0 , y(1)

0 , . . . , y(1)
0 )

)
∈ T ∩ S⟨h⟩

∩ 0T

and is atypical for V ⟨h⟩ as a subvariety of S⟨h⟩ provided that

dim V ⟨h⟩
+ dim T ∩ S⟨h⟩ < dim S⟨h⟩.

Thus we find that (x0, y0) is atypical provided

dim P + h dim v + h(dim[S] − v − 1) − L(h − 1) < h dim[S] − L(h − 1),

that is, provided h > dim P . We now assume this (but the choice of h needs to be
on the basis of some combinatorial principles further below).

We can now apply Theorem 8.1 to V ⟨h⟩, which is defined over Q, to conclude that
atypical points are contained in one of finitely many proper plu-subtori U ⊂ S⟨h⟩.
Each such U is determined by at least one plu-pair of equations∏

j

(x ( j))s( j)
(y( j))t ( j)

= 1,
∏

j

(x ( j))−t ( j)
(y( j))s( j)

= 1.

Consider the exponent vector pair (s(ℓ), t (ℓ)) on a particular set of variables. If
this is not in the lattice 3(S) generated by the equations defining S (the fixed ones
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and the variable one), and if we have some points (x ( j), y( j)), j ̸= ℓ and sufficiently
many points (x (ℓ), y(ℓ)) such that, for each of the (x (ℓ), y(ℓ)), the relation

(x (1))s(1)

· · · (x (ℓ))s(ℓ)
· · · (x (h))s(h)

(y(1))t (1)

· · · (y(ℓ))t(ℓ)
· · · (y(h))t (h)

= 1,

and the companion relation

(x (1))−t (1)

· · · (x (ℓ))−t(ℓ)
· · · (x (h))−t (h)

(y(1))s(1)

· · · (y(ℓ))s(ℓ)
· · · (y(h))s(h)

= 1,

hold, then we get many points (x (ℓ), y(ℓ)) ∈ Vp satisfying an additional plu-relation
mod C with the exponent-pair (s(ℓ), t (ℓ)). The corresponding family S′ of plu-
cosets has smaller fibre dimension than S.

If (s(ℓ), t (ℓ)) is in 3(S), then using the relations defining S⟨h⟩ we can replace
this plu-pair by an equivalent pair of equations with trivial exponent pair (s(ℓ), t (ℓ)).
It may be that, for some U , every (s(ℓ), t (ℓ)) ∈ 3(S). But since the equations
defining U define a proper plu-subtorus of S⟨h⟩, when the relation is shifted to a
single set of variables it must be one that does not hold identically on [S], but gives
a proper plu-subtorus SU .

We thus have that, for any h optimal points on some fibre Vp, we get one of
finitely many possibilities: that some designated coordinate lies in one of the SU , or
the h-tuple of tuples satisfies one of finitely many relations involving exponent pairs
that, wherever they are nontrivial on a group of variables, do not belong to 3(S).

If we now choose a much larger H and have plu-optimal (x ( j)
0 , y( j)

0 ), j =1, . . . ,H
in some order, then by the hypergraph Ramsey theorem we can be assured that there
is some subset of H of them for which all choices (in order) of h satisfy the same
one of these conditions. We thus find that we have many points on some family of
plu-cosets of smaller dimension, or many points in some smaller plu-torus SU . We
can therefore complete the proof by induction. □

A rephrasing of Conjecture 4.3 is that, for V ⊂ Gn
m × Gn

m, the formal sum of
plu-optimal subvarieties is a cycle V opt. We now want to frame a uniform version
that, over families V , the plu-optimal cycle is uniformly bounded as a cycle. We
formulate this following [Scanlon 2004].

It should be borne in mind that zi ZP makes a nontrivial statement only for
subvarieties that meet 0n . If V does not meet 0n then, by definition, V has no
plu-optimal subvarieties and V opt is empty, while if V does meet 0n then V itself
is plu-optimal for V and V opt is nonempty.

Conjecture 9.2 (Uzi ZP). Let V ⊂ Gn
m × Gn

m × P be a family of subvarieties. Then
there is a family W ⊂ Gn

m × Gn
m × Q such that, for every p ∈ P for which Vp

meets 0n , there exists q ∈ Q such that V opt
p = Wq .

Theorem 9.3. Uzi ZP holds for families V defined over Q.



644 JONATHAN PILA

Proof. We replay the proof of Theorem 8.1. The plu-geodesic optimal subvarieties
of all the Vp come in finitely many families. For each such family, the plu-optimal
subvarieties on the fibres of V correspond to plu-optimal points on the family of
fibres of the projections. For each such family there is a uniformly bounded number
of plu-optimal points on a fibre by Theorem 9.1. □

Corollary 9.4 (Theorem 1.3). Conjecture 4.3 holds for V/C.

Proof. Every such V is a fibre in a family defined over Q. □

In a similar way, Theorem 9.3 holds for families defined over C as every such
family V ⊂ Gn

m × Gn
m × P is a subfamily (meaning its fibres are a subset of the

fibres) of a larger family V ⊂ Gn
m × Gn

m × Q defined over Q.
The present results generalize suitably to other algebraic powers, as will be

shown in forthcoming work of Cassani. It seems also interesting to consider
modular analogues.
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1. Introduction

The goal of this paper is to sketch (hopefully for a wide spectrum of mathematicians
ranging from those working in geometry to those working in logic; specifically,
model theory) some recent interactions between model theory and a roughly 150-
year old study of analytic functions involving complex analysis, algebraic topology,
and number theory that explore the canonicity of universal covers. Towards this
goal we discuss and present several examples indicating the main ideas of the proofs
and the necessary changes in method for different situations.

Here is Zilber’s description of his own project (from his 2000 Logic Colloquium
talk in Paris [52]):
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The initial hope of this author in [51] that any uncountably categorical
structure comes from a classical context (the trichotomy conjecture),
was based on the belief that logically perfect structures could not be
overlooked in the natural progression of mathematics. Allowing some
philosophical license here, this was also a belief in a strong logical
predetermination of basic mathematical structures. As a matter of fact,
it turned out to be true in many cases. . . . Another situation where this
principle works is the context of o-minimal structures [38].

A rather ambitious project aimed at finding categorical axiomatizations (Defini-
tion 3.0.1) of various kinds of universal covers has been unfolding in the twenty-first
century. The simplest example of such universal covers is given by the short exact
sequence

0→ ker(exp)→ (C,+, 0)
exp
−−→ (C,+, · , 0, 1)→ 1. (1)

Zilber’s original project really aimed to understand the sequence

0→ ker(exp)↣ (C,+, · , exp)
exp
−−→→ (C,+, · , exp)→ 1. (2)

The first diagram describes a two-sorted cover of the multiplicative group by the
additive group. The full field structure is studied on the range space although the
kernel is of the homomorphism from (C,+, 0) to (C, · , 1).

The second [54] corresponds to the theory of the complex exponential field. The
domain and range of the map are the same exponential field but the kernel is again
computed with respect to the homomorphism exp from (C,+)→ (C∗,×).

In both cases, first order axioms are supplemented by an Lω1,ω-sentence asserting
the kernel is isomorphic to Z, i.e., is standard. Here, we focus on three main families
of generalizations (described in the chart below) of the first diagram. As this question
was extended to more general algebraic contexts, the fundamental cover diagram
from (1) changed to this more general situation:

C
p
−→→ S(C). (3)

Notice two things:

• The map p remains a projection, but it will significantly change as the family
of examples unfolds.

• There is no longer a kernel when S(C) is not a group.

Therefore, in a Protean way, the infinitary description that in the particular case
described a ‘standard kernel’ assumes various guises for different examples. Usually,
the descriptions are of ‘standard fibers’ rather than having a ‘standard kernel’.



ZILBER’S NOTION OF LOGICALLY PERFECT STRUCTURE: UNIVERSAL COVERS 649

Crucially, in all cases except part of Section 5 the target will be some kind of
definable set in an algebraically closed field. The necessary vocabulary for the
domain will vary among the situations considered. Shimura varieties require a more
general domain:

Notation 1.0.1 (the general situation).

X+
p
−→ S(C)→ 1. (4)

Here, S(C) is a variety arising as the quotient of the action of a discrete group on
H (hyperbolic space) or more generally (Shimura varieties) on a hermitian symmetric
domain X+. The target is described by a first order theory T := Th(S(C)) in a
large enough (field) countable vocabulary with quantifier elimination (possible, as
S is definable in (C,+,×)). Notation 1.0.1 thus instantiates the general schema,
with appropriate notations for specific cases to be given as we discuss them. Zil-
ber describes the value of his project in terms of ‘a complete formal invariant’
(Remark 5.3.2).

The geometric value of the project is perhaps in the fact that the formula-
tion of the categorical theory of the universal cover of a variety X . . . is
essentially a formulation of a complete formal invariant of X. [16, §1]

Table 1 organizes the papers which are the major source for this study. It also
provides a keyword describing the main method or context used, and the section of
this paper where issues around the specific variant are explained.

The first row of the table — an axiomatization of the exponential map from
the complex field to itself; see [54] — differs from the others in the role of the
quantifier ‘there exists uncountably many’. In that case it is essential to directly
control the cardinality of the algebraic closure of a countable set; moreover, the

topic section sources method/context

complex exponentiation 1 [53] quasiminimality

cov mult group 1 [55; 6] quasiminimality
j-function 4.1 [25] background

modular/Shimura curves 4 [15; 16] quasiminimality

finite Morley rank groups 5.1 [7] fmr and notop
abelian varieties 5.3 [9] fmr and notop; quasiminimality

Shimura varieties 6 [19] notop

smooth varieties 8 [57] o-quasiminimality

Table 1. Chief sources for the general topics covered in this study,
together with the main method or context used.
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domain has a field structure that disappears in the two-sorted approach of the rest.
In the remaining rows, the infinitary logic Lω1,ω is used to control the size of fibers
of the cover or when the structure is a group the size of the kernel. This requirement
suffices to also control the cardinality of the algebraic closure.

The next block of rows deals with curves (1-dimensional objects), where cate-
goricity is obtained by quasiminimality.

The following block deals with higher-dimensional varieties; those rows stray
from formal categoricity towards more traditional descriptions of models, and
quasiminimality is replaced by a different version of excellence arising in She-
lah’s study of notop theories (an important notion in classification theory). Both
quasiminimality and ‘notop’ apply to abelian varieties.

The last row considers families of covers of arbitrary smooth algebraic varieties
with an infinitary logic construction defined over o-minimal expansions of the reals.
There, the focus is on categoricity in ℵ1.

It is worth noting that we could have organized our chart under a totally different
scheme. The abelian varieties and (C,+) are specific varieties. The j -function and
the Shimura varieties may be regarded as moduli spaces for (generalized) families
of varieties.1 After preliminary discussions on the model theoretic framework, in
Section 4 we sketch in some detail categoricity of universal covers of modular
curves. In the later sections we describe the modifications to this program necessary
for higher dimensions.

Mathematical encounters.

Some ancient history: in and out of the Zilber world. The first author turns to the
first person singular for some memories:

Zilber and I both received our Ph.D.’s in the early 1970’s. An important result
appeared in both theses: the solution to Morley’s conjecture that an ℵ1-categorical
theory has finite Morley rank. Such an overlap was not an issue during the Cold
War. (On the other hand, my advisor, Lachlan, had to write an entirely new thesis
when the result of the proposed one appeared in the west as he was about to submit.)

Given my zero knowledge of Russian, I first learned in any detail of Zilber’s
work during the 1980–81 model theory year in Jerusalem. Greg Cherlin had no
such deficiency and gave with Harrington and Lachlan an alternate proof of Zilber’s
theorem that there were no finitely axiomatizable totally categorical theories. They
relied on the classification of finite simple groups. A few years later Boris completed
his model theoretic proof of the key combinatorial lemma avoiding that reliance.

I first knew Boris in any depth during the model theory semester in Chicago
1991–92. Unfortunately, I had partially financed a semester by agreeing to be acting

1Types of Shimura varieties include Siegel, PEL-type, and Hodge-type; only some parametrize
algebraic varieties.
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head the Fall semester, thereby restricting my mathematical activity. In that busy
fall, Boris and Angus Macintyre lectured on Tuesday’s on Zariski geometries and
o-minimality, respectively. The lively group include Macintyre, Zilber, Laskowski,
Marker, Otero, D’Aquino and myself, with Pillay driving in weekly from Notre
Dame. Lunch was at a deli that Boris insisted on because of the soup followed by
coffee at Jamoch’s, the first modern coffee house in the UIC area.

About that time, I began work on the Hrushovski construction, but in a quite
different direction from Boris: predimension with irrational α. This led to my work
with Shelah giving the first full proof of the 0-1 law with edge probability n−α and
that the theory of the Shelah–Spencer graph was stable, building on the 1992 Ph.D.
thesis of my student Shi. And this led to work with Kitty Holland on fusions, giving
the first construction of a rank 2 field with a definable infinite predicate. And then
back to Boris and his work on complex exponentiation. Understanding his notion
of quasiminimal excellence inspired the desire to understand Shelah’s more general
notion of excellence. Thence came my monograph on abstract elementary classes
and subsequent work on infinitary logic. In any case, visits several times a decade
to Oxford always were exciting sources of ideas and pleasant times.

An unlikely encounter of two areas: MAMLS at Rutgers, 2001. The second author
of this paper witnessed and participated in one of those momentous encounters of
two areas that only seldom happen, and recounts it in the first person singular:

During the MAMLS Meeting at Rutgers in February 2001, a group of peo-
ple working in Abstract Elementary Classes (including Rami Grossberg, Monica
VanDieren, Olivier Lessmann and myself) was very busy discussing Shelah’s notion
of excellence, originally linked to his work in the model theory of Lω1,ω. The
n-amalgamation diagram was very much part of that discussion. There was a
lecture by Boris Zilber at the end of the day, and we all attended, not expecting to
understand much, but eager to see him speak. To our great surprise, at the end of
Zilber’s lecture (dealing with exponential covers, mentioning many analytic number
theoretic methods that were arcane to us, and mixing in areas such as Nevanlinna
theory), he asked a final question and drew a picture underscoring his question.
Boris’s picture was exactly the n-amalgamation diagram we had been discussing
thoroughly with the AEC people those very same days; his question was exactly
about the behavior of types in the amalgam and how it could be controlled by small
pieces in the components. We jumped to talk to him at the end of his lecture, with
the excitement of seeing a potential connection. Boris said he didn’t know the
model theory of Lω1ω but he would look into excellence. . .

The rest is history: after a few weeks, a first draft of a proof of properties of
pseudoexponentiation drawing on a version of excellence and quasiminimality in
Lω1ω was circulated, and Zilber started using many methods from excellent classes
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and infinitary logic. The richness of this approach has provided many interesting
connections; we explore some of them in our paper.

A word of thanks from the second author. Once again the second author turns to
the first person singular.

I would like to thank Boris Zilber, at a very personal level, for a
life-changing conversation we had in 2007 in Utrecht, during a
meeting organized by Juliette Kennedy, on connections between
mathematics, philosophy and art. One evening, after dinner, Boris
said “let’s go for a walk and speak a bit about mathematics.” In the
cold night along the canals, he described, for about an hour, some
of what he had been doing — I kept asking and asking questions.
At some point, on a bridge, he turned to me and said, “But you,
on what have you been working?” I tried to gather my thoughts
on the spot while walking, and started describing a project we
had back then with Berenstein and Hyttinen [11] of understanding
independence notions in continuous logic, trying to extend the
work of Chatzidakis and Hrushovski to the continuous case and
encountering difficulties. Boris asked me to describe briefly contin-
uous model theory and continuous abstract elementary classes. At
some point, he said I obviously had tools for dealing with model
theoretical approaches to quantum mechanics. I asked how so. He
said, “look at Gelfand triples . . . ”. I returned to Helsinki, where
I was spending a sabbatical, and Boris’s remarks made a deep
change in my own approach to model theory, in the possibilities I
started slowly unfolding. I am deeply grateful for that momentous
conversation, and for all the lines of work arising from that evening!

2. Model theory in mathematics

We first deal with some variations in model theoretic and geometric terminology.

2.1. Model theoretic background. Mathematical logic makes a central distinction
between a vocabulary and a collection of sentences in a logic. For this reason, we
use ‘language’ only for the second and reserve ‘vocabulary’ for what is sometimes
called similarity type.

Definition 2.1.1 (vocabulary and structure). 1. A vocabulary τ is a collection of
constant, relation, and function symbols (with finitely many arguments).

2. A τ -structure is a set in which each τ -symbol is interpreted, e.g., an n-ary
relation symbol as an n-ary relation.
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Definition 2.1.2. Full formalization involves the following components.

1. A vocabulary with associated notion of structure as in Definition 2.1.1.

2. A logic L has:
a A class L(τ ) of ‘well formed’ formulas.
b A notion of ‘truth of a formula’ from the class L(τ ) in a τ -structure,

usually denoted A |H ϕ.
c A notion of a ‘formal deduction’ for this logic.

3. Axioms: Specific sentences of the logic that specify the basic properties of the
situation in question.

Example 2.1.3 (three important logics).

1. The first order language Lω,ω(τ ) associated with τ is the least set of formulas
containing the atomic τ -formulas and closed under finite Boolean operations
and quantification over finitely many individuals.

2. The Lω1,ω(τ ) language associated with τ is the least set of formulas containing
the atomic τ -formulas and closed under countable Boolean operations and
quantification over finitely many individuals.

3. The second order language associated with τ , denoted L2(τ ), is the least set of
formulas extending Lω,ω(τ ) by allowing quantification over sets and relations.
L2({=}) is symbiotic (‘morally equivalent’, roughly speaking) with set theory.

Morley rank (corresponding to the Krull/Weil dimension in the particular case
of fields) was introduced in [36] to study theories categorical in uncountable power.
Section 5 explores the role of finite Morley rank groups in studying covers. Three
good sources for the more advanced model theory used here are [33; 41; 49].

2.2. Various viewpoints. We now discuss two quite different uses of the three
words automorphism, model and definable, coming from areas of mathematics
relevant to this paper. (The difference in use depending on the area of mathematics
has been at times a source of confusion.)

Remark 2.2.1 (automorphism: two notions).

In model theory: An automorphism of a τ -structure A is a permutation of its
universe A that preserves (in both directions) each relation or function symbol
for τ . For instance, the automorphisms of a geometry (when given in terms of
lines and points together with an incidence relation) are the collineations.

In algebraic geometry: An automorphism of a variety is an invertible mor-
phism.2

2This begs the question of defining morphism. A good approximation is “definable map”. In
algebraic geometry a morphism is a constructible (generically quasirational) bijection; cf. [42, p. 79,
Section 4.4]. Biregular and birational are more specific syntactic restrictions on an isomorphism.



654 JOHN T. BALDWIN AND ANDRÉS VILLAVECES

Remark 2.2.2 (model: two notions).

In model theory: The word model also sees different uses depending on the
area. In logic, a model is sometimes just a τ -structure but often signifies that
the structure satisfies a theory (as in “(C,+, · , 0, 1) is a model of the theory
ACF0”). Minimal model might mean ‘no proper elementary submodel’ or, very
differently, ‘every definable subset is finite or cofinite’.

In algebraic geometry: A model is a specific biregularity class within a birational
equivalence class. In Weil/Zariski style, a variety is determined by a coordinate
ring, but only up to isomorphism of this coordinate ring. A ‘model’ of the
variety might be a specific affine variety with that coordinate ring, but any
biregularly isomorphic variety would also be a model.

Thus, unlike model theory, algebraic geometry does not identify ‘models’
up to isomorphism. Rather, it looks for a specific ‘canonical representation’
among ‘isomorphic solution sets’. A minimal model is a smooth variety X
with function field K such that if Y is another smooth variety with function
field K and f : X 7→ Y is birational, then f is an isomorphism.

Remark 2.2.3 (definable/defined: two notions).

In model theory: A subset X of a model Mn is defined over a set A if there is a
formula φ(x, a) with solution set X .

In usual mathematics: the word ‘defined’ is often short for ‘well-defined’ saying
that the value of a function defined on a quotient space does not depend on the
choice of a representative.

In model theory, we add the adjective ‘definable’ when there is a formula of the
language that captures the notion. Thus, the algebraic geometric ‘automorphism’
becomes ‘definable bijection’. It is worth noting that many important automorphisms
in algebraic geometry do not necessarily preserve structure.

Remark 2.2.4 (Why infinitary logic?). A natural question at this point is: Why
is axiomatizability in Lω1,ω relevant to geometric questions? The answer to this
question is not univocal, and strongly reflects different historical issues arising
in different areas of mathematics. We discuss four responses, two from ordinary
mathematics, two from logic.

1. In ordinary mathematics:

(a) The constraints of expressibility offered by a particular logic force a
detailed analysis of the hypotheses of a result. This analysis in similar
earlier cases has led to, for example, the Zilber–Pink conjecture and the
Conjecture on the intersection of tori (see, e.g., [13]).



ZILBER’S NOTION OF LOGICALLY PERFECT STRUCTURE: UNIVERSAL COVERS 655

(b) Of course, each of the ‘canonical structures’ is explicitly definable in
set theory. But this definition in most cases is useless for studying the
object. Useful succinct second order axioms are available for the real and
complex numbers but are only partially known for universal covers. First
order logic is stymied a priori by the intractability of arithmetic. Thus,
categoricity in infinitary logic is essential for giving an ‘algebraic’ account
of an ‘analytic object’. This use of model theory can be seen as part of the
larger scale GAGA mathematical program of bridging analytical concepts
and algebraic ones.

2. In logic (in particular, in model theory):
(a) A natural question is: are there important mathematical notions expressible

in infinitary logic which are not expressible in first order? The study of
complex exponentiation yielded a superb initial example: the categoricity
of the covering map of C∗ in [6].

(b) This raises the question of what are the new axioms in this paper that
require an infinitary description. The infinite dimension axioms are well
known and the switch from ‘standard kernel’ to ‘standard fiber over z’ (i.e.,
q−1(z)) is unremarkable. It seems the finite index conditions (Section 4.4)
are not first order expressible.

3. Categoricity, quasiminimality and excellence

We give a quick sketch of notions around categoricity3 and the history of their
logical development.

Definition 3.0.1 (categoricity).

1. A theory T in a logic L is a collection of L-sentences in a vocabulary τ .

2. T is categorical in cardinality κ (κ-categorical) if all models M of T with
|M | = κ are isomorphic.

Although certain canonical mathematical structures are fruitfully axiomatized in
second order logic, rather than second order categoricity, we usually consider these
characterizations as defining these structures in set theory. Such definitions are
exactly what it means to be a structure. Second order categoricity per se gives no
useful mathematical information. In contrast, κ-categoricity in first order logic or
in Lω1,ω provides very significant (combinatorial geometric) information; it assigns
a dimension to each model.

3More specifically, when in model theory we use the word categoricity, we mean categoricity in a
specific cardinality or ‘in power’. See a thorough discussion of categoricity in various logics in [4,
§3.1] and an exposition of the philosophical import of the notion in [14].
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3.1. The classical categoricity theorems. The following results survey the spec-
trum of cardinals in which certain types of theory can be categorical. These theorems
are of the form if a theory (or a sentence) is categorical in some high enough
cardinal(s), then it must be categorical on a tail of cardinals.

Theorem 3.1.1 (Morley’s categoricity theorem [36]). A countable first order theory
is categorical in one uncountable cardinal if and only if it is categorical in all
uncountable cardinals.

Theorem 3.1.2 (Shelah’s categoricity under the weak continuum hypothesis below
ℵω [45; 46]). Assuming 2ℵn < 2ℵn+1 a sentence in Lω1,ω that is categorical in ℵn

(for every n < ω) is categorical in all uncountable cardinals.

Theorem 3.1.3 (Shelah’s categoricity theorem for excellent sentences [45; 46]). An
excellent sentence in Lω1,ω is categorical in one uncountable cardinal if and only if
it is categorical in all uncountable cardinals.

Theorem 3.1.4 (Zilber’s categoricity for quasiminimal excellent classes). A quasi-
minimal excellent class is categorical in all uncountable cardinals [54].

3.2. Pregeometries (matroids) and quasiminimality. The presence of quasimini-
mal pregeometries provides an extremely fruitful and natural control of models in a
class (and of their interactions).

Definition 3.2.1 (combinatorial geometry). A closure system is a set G together
with a ‘closure’ relation on subsets of G,

cl : P(G)→ P(G),

satisfying the following axioms.

A1. cl(X)= ∪{cl(X ′) : X ′ ⊆fin X}.

A2. X ⊆ cl(X).

A3. cl(cl(X))= cl(X).

(G, cl) is a pregeometry if, in addition, we have:

A4. If a ∈ cl(Xb) and a ̸∈ cl(X), then b ∈ cl(Xa).

If points are closed (cl({a})= {a}, for each a) the structure is called a geometry.

Pregeometries are virtually the same mathematical objects as matroids.

Definition 3.2.2. 1. A subset D of a τ -structure M is first order-definable in M
if there is a ∈ M and an Lω,ω(τ )-formula ϕ(x, y) such that D = {m ∈ M :
M |H ϕ(m, a)}. If a ∈ A ⊆ M , D is definable with parameters from A.

2. aclM(A), the algebraic closure of A in M , is {m ∈ M : φ(m, ā), ā ∈ A}, where
φ(x, ā) has only finitely many solutions in M .
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3. dclM(A), the definable closure of A in M , is defined as was the algebraic
closure, but replacing ‘finitely many’ by ‘one’.

4. An infinite definable subset D (or its defining formula ϕ(x)) is strongly minimal
if every definable subset of D in every elementary extension of M is finite or
cofinite.

5. A theory is strongly minimal if the formula x = x is strong minimal.

The notion of type is a crucial tool in model theory.

Definition 3.2.3. 1. The first order type of a over B (in M), denoted tpM(a/B),
is the set of Lω,ω-formulas with parameters from B that are satisfied in M (for
a, B ⊆ M).

2. The quantifier-free type of a over B (in M), denoted tpqf(a/B : M), is the set
of quantifier-free first order formulas ϕ(x, b) such that M |H ϕ(a, b) (as before,
b ranges over tuples of B).

In most contexts, when we just say ‘the type of a over B,’ we mean the first
order type. Note also that if a property is defined without parameters in M , then it
is uniformly defined in all models of Th(M) (the theory of M , i.e., the set of all τ
sentences that are true in M).

Here are three fundamental observations on strongly minimal sets.

• A strongly minimal set admits a combinatorial geometry when the closure is
taken as acl (Definition 3.2.2).

• There is a unique type of elements in a strongly minimal set that are not
algebraic. This is called the generic type for D.

• In many important examples (e.g., DCF0), the structure of the model is con-
trolled by its strongly minimal sets.

Shelah’s abstract notion of independence (for some first order theories, crystal-
lized as nonforking) weakens the notion of combinatorial geometry by dropping
A3; in some desirable cases this property is recovered on the points realizing a
regular type and in even better cases the dimensions of the regular types determine
the isomorphism type of the model. However, a priori, the existence of a global
dimension is unusual.

We now look at the generalization of strong minimality, introduced by Zilber,
that is central in the connections between model theory and algebraic geometry
described in this paper.

Definition 3.2.4 (quasiminimal structure). A structure M is quasiminimal if every
first order (Lω1,ω) definable subset of M is countable or cocountable. Algebraic
closure is generalized by saying b ∈ acl′(X) if there is a first order formula with
countably many solutions over X which is satisfied by b.
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Definition 3.2.5 (quasiminimal excellent geometry). Let K be a class of L-structures
such that M ∈ K admits a closure relation clM mapping X ⊆ M to clM(X) ⊆ M
that satisfies the following properties.

1. Basic conditions
(a) Each clM defines a pregeometry on M .
(b) For each X ⊆ M , clM(X) ∈ K .
(c) (the countable closure property, or ccp): If |X | ≤ ℵ0 then |cl(X)| ≤ ℵ0.

2. Homogeneity
(a) A class K of models has ℵ0-homogeneity over ∅ (Definition 3.2.5) if the

models of K are pairwise qf-back and forth equivalent (Definition 4.3.7).
(b) A class K of models has ℵ0-homogeneity over models if for any G ∈ K with

G empty or a countable member of K , any H, H ′ with G ≤ H,G ≤ H ′,
H is qf-back and forth equivalent with H ′ over G.

3. K is an almost quasiminimal excellent geometry if the universe of any model
H ∈ K is in cl(X) for any maximal cl-independent set X ⊆ H .

4. We call a class which satisfies these conditions an almost quasiminimal excel-
lent geometry [8].

An almost quasiminimal excellent geometry with strong submodel taken as
A ≤ M , if aclM(A) = A, gives an abstract elementary class (AEC)4. But the
distinct notion of a quasiminimal AEC (defined in terms of ≤ rather than any
axioms) is due to Vasey [50].

To obtain that the class is complete for Lω1,ω, [8; 30] add the requirement of
ℵ0-categoricity.

Remark 3.2.6. This definition differs only superficially from those in, e.g., [30],
where the connections with the combinatorial geometry was emphasized by dis-
tinguishing the treatment of elements depending on whether they were in cl(H).
However, [8] required a quasiminimal structure to have a unique generic type. This
requirement fails in the two-sorted treatment we deal with here; there may be
acl-bases in each sort. So we replace quasiminimality with almost quasiminimality
(less explicit in [9]) and we thus restore Zilber’s first intuition (Definition 3.2.4)
that quasiminimality means that all definable sets are countable or cocountable.

Remark 3.2.7 (excellence). From Zilber’s introduction [54] of the notion, it has
been known that the axioms 3.2.5 imply ℵ1-categoricity. See the exposition in [3].
But, without further ‘excellence’ hypotheses, it was unknown whether the class had
larger models. Two formulations of excellence are: (1) [45; 46] n-amalgamation
of independent systems of models, for all n < ω; (2) [30] a local condition on the

4See [23] for the early history of the model theory of AECs.



ZILBER’S NOTION OF LOGICALLY PERFECT STRUCTURE: UNIVERSAL COVERS 659

properties of a ‘crown’. Either implies the existence of arbitrarily large models
for theories in Lω1,ω. As we discuss in Section 5.2, influenced by work Hart and
Shelah on first order classification theory, the next result (here modified by ‘almost’)
clarified the relationship.

Crucial Fact 3.2.8 (Bays, Hart, Hyttinen, Kesälä, Kirby). Every almost-quasi-
minimal class (Definition 3.2.5) is excellent (in the sense of Remark 3.2.7). Thus, it
is categorical in all uncountable cardinalities.

4. Modular and Shimura curves

We begin with an astronaut’s view of the j-function and then turn to the model
theoretic treatment of some generalizations.

4.1. The great confluence. The general form (over a field of characteristic 0) of
an elliptic curve is

y2
= x3
+ ax + b.

At least since Diophantus (3rd century AD), the search for integer solutions for
such equations has been a central question. The cataloguing of such equations was
a major achievement of the 19th century. One key step toward this classification is
to generalize the original problem and look first for complex solutions. The solution
set of an elliptic curve is then a smooth, projective, algebraic curve of genus one.
It can be thought of as a ‘classical torus’ Tτ := C/3τ , where τ ∈ C and 3τ is the
lattice in C (the subgroup of (C,+) generated by ⟨1, τ ⟩.

Klein studied modular and automorphic functions, which provide surprising
and deep links between geometry, complex analysis and number theory. The most
famous example is the j-function, analytic on H= {z : Im(z) > 0}, the upper half
plane, and maps onto C and meromorphic with some poles on the real axis and the
following remarkable properties.

Theorem 4.1.1 (classification of tori by the j-function). The following conditions
are equivalent:

1. There exists s =
[a

c
b
d

]
∈ SL2(Z) such that s(τ )= (aτ + b)/(cτ + d)= τ ′.

2. Tτ ≈ Tτ ′ (in the algebraic geometry sense of Remark 2.2.1.)

3. j (τ )= j (τ ′).

This astonishing classical fact paves the way toward modern day classifications.
It provides equivalences between analytic and number-theoretic notions. Strikingly,
j is defined as a rational function of two analytic functions g2 and g3 (each of them
coding so-called ‘modularity’ properties):

j (τ )= 123
·

g2(τ )
3

g2(τ )3− 27g3(τ )3
.
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But where does the word ‘elliptic’ come from? A meromorphic function is called
an elliptic function if it is doubly periodic: there are two R-linear independent
complex numbers ω1 and ω2 such that ∀z ∈ C, f (z+ω1)= f (z) and f (z+ω2)=

f (z). Abel discovered such doubly periodic functions arose from the solutions of
elliptic integrals — originally defined to find the arc length of an ellipse. Weierstrass
used the symbol ℘ to denote a family of functions ℘(z,3τ ) where the defining
double sum runs over the elements of the lattice 3τ , generated by 1 and τ . The
crucial property of the function is that every meromorphic function that is periodic
on 3τ is a rational combination of ℘(z,3τ ) and ℘ ′(z,3τ ). This field of functions
is precisely Abel’s field of elliptic functions.

Klein’s discovery of the j function unified the results of Weierstrass. In his
famous investigation of the psychology of mathematical investigation, Hadamard
devotes several pages to Poincaré’s generalization of the j-function to the family
of functions derived from Fuchsian group actions. The crucial phrase for us is ‘the
transformations I had used to define the Fuchsian functions were identical with
those of non-Euclidean geometry’ [24, p. 33].

This completes a very quick summary of the 19th century predecessors of the
theory of moduli spaces, developed in the next section. This study involves complex
analysis, actions by a discrete group, number theory, and non-Euclidean geometry.
The crucial model theoretic step is to formalize in a vocabulary for two-sorted
structures of the form

A=
〈
⟨H ; {gi }i∈N⟩, ⟨F,+, · , 0, 1⟩, j : H → F

〉
,

where ⟨F,+, · , 0, 1⟩ is an algebraically closed field of characteristic 0, ⟨H ; {gi }i<ω⟩

is a set together with countably many unary function symbols, and j : H → F .
In the next section we provide some of the mathematical background for a formal

analysis of these two-sorted structures.

4.2. Moduli spaces. Moduli spaces in geometry are parametrized collections of
objects, together with equivalences that allow us to see when two objects are in
some sense ‘the same’, and with families that articulate the variation between the
objects in the collection. Paraphrasing the important survey [10], ‘moduli spaces
are a geometric solution to a geometric classification problem.’ They parametrize
collections of geometric objects, they define equivalences to say when two objects
are the ‘same’, and establish families that determine how we allow our objects to
vary or modulate.

In model theory, the notion of a uniform family of definable sets has been
thoroughly studied. Such a family is given by a formula of the form φ(x, y).
Each set in the family is the solution set of φ(a, y) (for some a), and the set
{a : (∃ y)φ(a, y)} is an indexing set of the family. In the algebraic geometry setting,
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one can require that the x fall into a variety V and the y into a variety Wa. V is a
step toward the notion of a moduli space.

Except in Section 5, we consider moduli spaces arising from a pair (G, X)
consisting of a group G acting on a space X . The algebraic varieties we study
arise as quotients 0 \ X (for 0 a subgroup of G; see Definition 4.2.2). A modular
curve arises as a connected component of quotient of H by congruence subgroups
(Definition 4.2.9) of GL2(R). Shimura generalized the topic to groups acting on
wider classes of domains. Shimura curves are rather more complicated yet generally
share similar categoricity properties. Shimura varieties of higher dimension raise
many new issues that we sketch in Section 6. In this section, we consider only
covers of modular curves by H.

Here, H = {z ∈ C : Im(z) > 0} refers, as in the rest of this paper, to the upper
half complex plane, also called the hyperbolic plane when endowed with a metric
and topology that make it hyperbolic rather than Euclidean. See [35] for a detailed
description. In all our examples, the function p maps the hyperbolic plane into
a complex variety. We consider the action of PSL2(R) on H as fractional linear
transformations: for A =

[a
c

b
d

]
∈ SL2(Z) and τ ∈ H, A(τ )= (aτ + b)/(cτ + d).

The group of bijections (isometries, isom(H)) that preserve the hyperbolic metric
of H is generated by PSL2(R) and the map z 7→ −z̄; PSL2(R) consists precisely of
all those isometries that preserve orientation (e.g., [28]). After outlining here the
classical theory of such actions and moduli spaces, in Section 4.3 we describe a
model theoretic approach.

Definition 4.2.1 (Fuchsian group).

1. A subgroup G ≤ isom(H)≈ PSL2(R) is discrete if it is discrete in the induced
topology.

2. A Fuchsian group is a discrete subgroup of PSL2(R).

The most important example of a Fuchsian group is PSL2(Z). Underlying this
entire study and almost one and a half centuries of interactions between number
theory and complex analysis is the remarkable fact that the quotient of H by certain
discrete subgroups has the structure of a Riemann surface [35, §1.8] and even an
algebraic variety which, in important cases, is a moduli space [34].

Definition 4.2.2 (quotient of H by a group). If a group G acts on a set X , G \ X
has universe the collection of G-orbits of the action. π is the canonical map taking
x to its orbit Gx . The prototypical example corresponds to X = H.

Definition 4.2.3. The quotients V = S(C) of H by a discrete group 0 that we
consider are examples of moduli spaces. V =

⋃
a∈C Va is the image of a map p

from H that acts as a uniformizer for a family of varieties Va . Namely, for each
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a, b ∈ H, we have Va ∼= Vb if and only if, for some γ ∈ 0,

γ (a)= b ⇐⇒ p(a)= p(b).

We explored in Section 4.1 the ur-example of a moduli space, elliptic curves as
uniformized by the j-function. The next definition relies on the fact that, while
elements of PSL2(R) fix H setwise, they also act on all of C.

Definition 4.2.4 (cusp). Let 0 be a discrete subgroup of PSL2(R).

1. We say c ∈R∪{∞} is a cusp of 0 if c is the unique fixed point of some γ ∈ 0.

2. P0 is the set of cusps of 0 and H∗ = H∗0 = H∪ P0.

We relate some standard facts (see [25, p. 15]). The first relies on the fact that
while some of the quotients we study are not compact, they can be compactified by
adding finitely many cusps from R∪ {∞}.

Fact 4.2.5. For any discrete subgroup 0 ⊆ PSL2(R), the quotient 0 \ H∗0 is a
compact Hausdorff space that can be given the structure of a Riemann surface.
Therefore if 0′ is of finite index in 0, the quotient 0′ \H∗0 is a compact Riemann
surface, and is therefore algebraic by the Riemann existence theorem. H∗0 is the
compactification of the quasiprojective algebraic variety (so first order definable)
H0.

For the purposes of this paper, since the quasiprojective variety H0 = 0\H deter-
mines the (classical) algebraic variety (set of solutions of a system of polynomial
equations) H∗0 , we work hereafter with H0 . This is natural from a model-theoretic
standpoint since (in this situation) there are only finitely many cusps and so the sets
differ by only finitely many points.

Notation 4.2.6 fixes the group G for the rest of Section 4. Setting the determinant
as 1 and modding out the center guarantees the group action preserves both distance
and orientation.

Notation 4.2.6. Let G =GLad
2 (Q)

+
=def PSL2(Q)/Z(PSL2(Q))≈ PSL2(Q) mod-

ulo its center. 0 varies over subgroups of G

We now distinguish two kinds of points in H: ‘special’ points and ‘Hodge-
generic’ points. The equivalence of the following definition with the usual notion
[15, Definition 2.2] for Shimura varieties is in [15, Theorem 2.3].

Definition 4.2.7 (special points). Fix ⟨H, S(C), p⟩ with S(C) biholomophic to
0 \H. A point x ∈ H is special if there is a g ∈ G whose unique fixed point is x .

We omit the definition of a Hodge generic point arising in algebra, as it does not
enter our discussion; we use only the equivalent characterization given in part 1 of
Fact 4.2.8 and the dichotomy in part 2. (The equivalence is part of Proposition 2.5 in
[15] and the dichotomy is noted just after that proposition.) It is worth mentioning
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that for a point the fact of being ‘special’ or ‘Hodge generic’ does not depend on
the choice of the group 0; furthermore, these two notions are preserved by the
action of G = GLad

2 (Q)
+.

Fact 4.2.8 (special and Hodge generic points [15, Proposition 2.5]).

1. If x is Hodge generic the only g ∈ G that fixes x is the identity.

2. Every point in H is either Hodge generic or special.

Although we are studying the categoricity of the universal cover of a specific
modular curve (e.g., the image of the j-function, 0 \H), other modular curves
naturally arise in the analysis. The study of families of such curves is expounded in
[48, Sections 6 and 7]. A key tool to give a uniform treatment to a family is the
existence of a common commensurator of the generating Fuchsian groups. In fact,
the members of the family are interalgebraic and the entire family (indexed by the
0N ) is studied in [17].

Definition 4.2.9. 1. The groups 0N (N a fixed integer) are given by

0N =

{[
a b
c d

]
∈ 0 : b ≡ c ≡ 0, a ≡ d ≡ 1 mod N

}
.

Note that each 0N has finite index in 0 and if N |M then 0M ⊆ 0N .

2. Two subgroups 0 and 0′ of a group H are said to be commensurable if 0∩0′

is of finite index in both of them.

3. A congruence subgroup is a subgroup 0′ of 0 such that some 0N is a finite
index subgroup of 0′.

4. The commensurator comm(0) of a subgroup 0 of PSL2(R) is

{δ ∈ PSL2(R) : δ0δ
−1 is commensurable with 0}.

We rely on the following standard fact.

Lemma 4.2.10. The group G = GLad
2 (Q)

+ (Notation 4.2.6) is the commensurator
of any congruence subgroup 0 of SL2(Z).

Because the functions g ∈ G are in the formal vocabulary, we employ congru-
ence subgroups 0g from Notation 4.2.11 rather than the 0N . The Z g defined in
Notation 4.2.11 play a central role both in the quantifier elimination and via an
inverse limit in Section 4.4.

Notation 4.2.11. Let G be fixed as in Notation 4.2.6, and recall that each of
the congruence subgroups of PSL2(Z) act on H. For any finite sequence g =
⟨e, g2, . . . , gn⟩ from G (by convention, g1 = e), introduce the following objects,
which are well-defined by our choice of p and 0.

1. 0g = 0 ∩ g−1
2 0g2 ∩ · · · ∩ g−1

n 0gn .
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2. Let p : H→ S(C).

(a) Z g is defined as {(p(x), p(g2x), . . . , p(gnx)) ∈ S(C)n : x ∈ H}.
(b) pg : H→ Z g ⊆ S(C)n is defined by

x 7→ p(gx)= ⟨p(x), p(g2(x)), . . . , p(gn(x))⟩.

(c) [φg] : Hg → Z g is defined by [φg]x0g
= pg(x); by Lemma 4.2.12, it is

onto.

3. Hg = 0g \H.

The following lemma is central to Section 4.4.2. Its proof uses Shimura theory
very heavily.

Lemma 4.2.12 [19, 3.22]. The map [φg] is bijective on the Hodge generic points
and the image Z g is a variety contained in Sn(C), n = lg(g). Moreover, for all g,
Z g is defined over the maximal abelian extension L of the field of definition, E , of
S.

Remark 4.2.13. From the model theoretic standpoint, it makes no sense to say
the [φg] are definable since their domains Hg are not. While the maps [φg] are
bijective on Hodge generic points, they may identify special points.

4.3. First order completeness for modular and Shimura curves. We now lay out
the vocabulary and first order theory for studying modular curves. The mathematical
input is a Fuchsian group 0 acting on hyperbolic space H and the image curve
S(C)=0\H∗0 (Definition 4.2.4) with a standard model p=⟨H, S, p⟩. The structure
of a discrete group is unwieldy from a traditional model theoretic standpoint because
its first order theory is unstable and undecidable. Just as modules are usually studied
in model theory by adding unary function symbols fr for the elements of the ring,
in order to represent the action of G on H, we add symbols fg for g ∈ G as unary
functions that act on H. We thus use a two-sorted presentation of our structures: a
sort for the domain, a sort for the target, and a map p connecting them.

Remark 4.3.1 (sorts). A two-sorted structure interprets two sort symbols and
additional relation and function symbols with the understanding that each such
relation/function either is restricted to one of the predicates or explicitly connects
them.

Notation 4.3.2 (the formal vocabulary τ ). The two-sorted vocabulary τ consists of
the sorts (unary predicate symbols) D (the covering sort), S the target sort, and a
function q mapping D onto the sort S.

We write τG for the vocabulary of the first sort with G = Gad(Q+). The second
τF =R where R is the set of formulas in {+,−, 0, 1,×} specified in Notation 4.3.3.
τ is τG ∪τF ∪{p}. There are constant symbols for each element of the field Eab(6)
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defined in Notation 4.3.3. We use fg to name the functions acting on D, but often
write the shorter g(x) or gx instead of fg(x).

The following notation is essential to understand the Axioms 4.3.5. Note in the
prototype q is replaced by the known covering map p.

Notation 4.3.3. The standard model for a modular curve determined by a Fuchsian
group 0 ⊆ G = Gad(Q+) will consist of a τ -structure p = ⟨H, S, p⟩ with the
domain H, the variety S(F) over the algebraically closed field F defined by 0 \H,
and R the set of all Zariski closed relations on S(F)n (for all n) with constants
from a field Eab(6) that are true in F . Eab is the maximal abelian extension of
the defining (reflex) field E of S. Eab(6) is the extension of Eab (F0 in [19, §4,
p. 17]) obtained by adding the coordinates of the (≤ ℵ0) special points, and closing
to a field.

Notation 4.3.4. For a structure p, we write Th( p) for the complete first order
theory of all sentences true in p and T ( p) for the specified set of axioms true of p.
Clearly, T ( p)⊆ Th( p).

We must distinguish Th( p) from its subset T ( p) until we prove T ( p) is a
complete axiomatization of Th( p).

Definition 4.3.5 (first order axioms). T ( p) is the following collection of first order
sentences that are to hold in a structure ⟨D, S(F), q⟩.

1. Each sentence in Th(⟨H, { fg : g ∈ G⟩). These include ‘special point axioms’
SPg: For each g ∈ G that fixes a unique point in D,

∀x, y ∈ D[(g(x)= x ∧ g(y)= y)⇒ x = y].

2. Th(S(C),R) (R from Notation 4.3.2).

3. The covering map; for each g ∈ Gm and all m < ω:
(a) Mod1

g: ∀x ∈ D (q(g1(x), . . . q(gm(x)) ∈ Z g).

(b) Mod2
g: ∀z ∈ Z g ∃x ∈ D (q(g1(x)), . . . q(gm(x))= z).

(c) MOD= {Mod1
ḡ ∧Mod2

ḡ : ḡ ∈ Gm,m < ω}.

Note that MOD is a countable collection of first order sentences.

Notation 4.3.6. By the choice of Eab(6), special points belong to dcl(∅). There-
fore, we can name each one of them by dg, where g ∈ G fixes dg. Any g that fixes
a point is in G−Sl2(Z) [19, Lemma 3.13]. There will be distinct g1, g2 that fix the
same point (e.g., if g2= g2

1). If so, T ( p)⊢ dg1 = dg2 The theory of (D,G) contains
the uniqueness axiom (Definition 4.3.5.1) that entails g(dg)= dg.

The cover sort is a set with unary functions. Both its theory (since the universe is
a union of orbits) and that of the field sort (since algebraically closed) are strongly
minimal and quantifier eliminable.
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Definition 4.3.7. We say two structures M and N are qf-back and forth equivalent
if the system I of partial isomorphisms of M and N between isomorphic finitely
generated substructures satisfies the back and forth condition: For each f ∈ I
and each m ∈ M − dom f , there exists an n ∈ N such that f ∪ {⟨m, n⟩} ∈ I , and
symmetrically, for each n ∈ N− im f , there exists m ∈M such that f ∪{⟨m, n⟩} ∈ I .
In this situation dom f is definably close.

Notation 4.3.8. We write g(x) for (g1(x), . . . gn(x)), where g has length n and
begins with e. And then g(x) denotes the sequence of length nm obtained when g
is applied to each element of a sequence x ∈ (D)m . When convenient we write gx
or gx for the action, omitting the parentheses.

We now sketch the proof of Theorem 4.3.13 that T ( p) axiomatizes a complete,
quantifier eliminable τ -theory.

Definition 4.3.9 (the back and forth). Fix two models q = ⟨D, S(F), q⟩ and q ′ =
⟨D′, S(F ′), q ′⟩ of T ( p). We define the qf-back-and-forth system I of substructures
of q and q ′ For each f ∈ I , dom f and rg f are each finitely generated over
Eab(6). A typical member f of the system for q has dom f = U = UD ∪US .
Since U is finitely generated, UD consists of the G-orbits of a finite number of
x ∈ D; US is S(LU ) where LU is the field generated by Eab(6) (since the elements
of Eab(6) elements are named), the coordinates of the q(x) for x ∈UD and finitely
many additional points of F ∩U . Note that the additional points determine finitely
many new field elements since q is constant on each orbit, so the field remains
finitely generated. Define a similar subsystem for q ′, labeling by putting primes
on corresponding objects. By Fact 4.2.8 every point of D is either special and so
named in the vocabulary (Notation 4.3.6), or Hodge generic. Thus we can ignore
the special points in building the back and forth system.

Suppose f is an isomorphism between U ⊆ q and U ′ ⊆ q ′. Then f restricts to a
G-equivariant (elements in the same orbit have the same image) injection of UD

into UD′ and an embedding of S(LU ) into S(F ′) induced by an embedding σ of L
into S(F ′), that fixes Eab(6).

The following claim is stated for arbitrary finite sequences g, but only singleton x .
The type rd of an infinite sequence (here represented by an infinite tuple of variables
v) includes the types of gx for any finite g.

The main consequence of the following claim is that we may reduce types of
points in the domains sort to quantifier-free types of their images in the field sort.

Claim 4.3.10 [15, Proposition 3.3]. If d ∈ D−UD is Hodge generic:

rd(v) |H tpq f (d/U ),

where rd(v)=
⋃

g∈G tpq f (q(g(d))/U )= tpq f (⟨q(g(d)) : g ∈ G⟩/U ).
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Proof. We show that there is a unique quantifier-free type over U of an element of D
that restricts to rd . The consistent nontrivial types in τG are (i) {x ̸= f : f ∈UD} and
(ii) {x ̸= gx} for any nonidentity g ∈G. The first is captured by (q(x), q( f )) ̸∈ Ze,e

for each f ∈UD and the second by (q(x), q(x)) ̸∈ Ze,g if g ̸∈ 0 and these are both
in r(v).

Suppose h ∈ S(M)ω (for a saturated M |H T ( p) containing U ) realizes rd(v)

and h with d ′ ∈ D(M) satisfy h = ⟨q(g(d ′)) : g ∈ G⟩. By the previous paragraph
d ′ ̸∈UD . So d ′ realizes tpq f (d/U ) as required. □

Notation 4.3.11. For a type r(v) over a set A and an isomorphism f from A to B,
f (r) is the set of B-formulas φ(v, f (a)) with φ(v, a) ∈ r .

Claim 4.3.12 [15, Proposition 3.4]. Fix g. If x ∈UD , there is an x ′ ∈UD′ such that
q(g(x ′)) ∈ S(F ′)m realizes f (tpq f (q(g(x))/LU )).

Proof. We write Z q
g for the points in S(F) satisfying (the formula defining) Z g .

Using Notation 4.3.11, Claim 4.3.10 implies that the smallest algebraic subvariety
W q

g of S(F)n that is defined over LU and contains q(g(x)) ∈ S(F)n determines
tpq f (g(x))/LU ). Since Mod1

g is true in q, W q
g ⊆ Z q

g . But since by Lemma 4.2.12 Z q
g

is fixed setwise by σ (the map described after Definition 4.3.9), being defined over
Eab(6), we have Z q ′

g = Z q
g , and therefore W q ′

g ⊆ Z q ′
g . Now applying Mod2

g in q ′,
we find the required x ′. □

Having proved Claim 4.3.12, we can finish the argument. We need one more
crucial piece for the ‘forth’. What if x ∈ D −UD? For this, we need q ′ to be
ω-saturated (realize all types over finite sets).

Theorem 4.3.13. Suppose that q and q ′ are ω-saturated. Then the q f -system
described in Definition 4.3.9 is a back and forth; hence, T ( p) is complete.

Proof. Suppose f is an isomorphism between U ⊆ q and U ′ ⊆ q ′. Then f restricts
to a G-equivariant injection of UD into UD′ and an embedding of S(LU ) into S(F ′)
induced by an embedding σ of Lu into S(F ′), that fixes Eab(6).

For x ∈ q−U , we must find x ′ ∈U ′ so that f ∪(x, x ′) generates an isomorphism
between the structures generated by U ∪ {x} and U ′ ∪ {x ′}. If x ∈ S, x = q(x̌) for
some x̌ ∈ D so we restrict to that case. If x ∈UD , x ′ exists as U ′D is closed under
action by G. Since the coordinates of special points are in Eab(6), whose points
are all named, for a special point x , x ′ must equal x .

The difficult case is when x ∈ D − UD is Hodge generic. But we noted in
Claim 4.3.10 that it suffices to simultaneously realize all types

tpq f ((q(g1x), . . . , q(gnx))/U )

for all g (of arbitrary length). A slight variant on the argument for Claim 4.3.12
still holds if for fixed x , we replace a single g by an arbitrary finite set of g. By
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compactness, the entire type is consistent and so satisfied in the ω-saturated q ′.
There is one final step. By induction we have to choose x ′ for a sequence x, y, x
where x ∈ UD and y ∈ U k

S for some k. But what if x ∈ US? By Claim 4.3.10,
tpq f (x, y) is determined by tpq f (g(x), y) (in the field sort). That we can choose of
x ′ ∈U ′S to satisfy f (tpq f (g(x), y)) is now immediate by ω-saturation and quantifier
elimination in the field sort.

By Karp’s theorem [5, Theorem 3], the existence of the back and forth implies
all ω-saturated models of T ( p) are Lω1,ω (indeed, L∞,ω) elementarily equivalent.
Every model has an ω-saturated elementary extension, so T ( p) is complete. □

4.4. Galois representations and finite index conditions. In this section we begin
by considering the action of discrete and Galois groups on the domain and field
sorts. Then we unite these approaches by defining a Galois representation. We then
state the key to establishing categoricity, a consequence of Serre’s open mapping
theorem.

4.4.1. Two views: domain and field sort. We explore the following diagram, which
links the domain sort (via the quotient) with the field sort.

Hh̄ ≈ 0h̄ \H Z h̄

Hḡ ≈ 0ḡ \H Z ḡ

[φh̄ ]

idHḡ ψh̄,ḡ

[φḡ]

Convention 4.4.1. g = ⟨e, g1 . . . gn−1⟩ has length n. We restrict to g with 0g ⊴0
(normal subgroup). Recall Z g ⊆ S(C)lg(g).

We have two views of ‘essentially’ the same map. The first moves to a quotient
on the domain side which is not τ -definable; the second ‘names’ the range of the
first in the target side. We begin with quotient data but with manifestations in both
the domain and target.

Domain/quotient data: The first view motivates id for identity.

Definition 4.4.2. Let g ⊆ h. Define idhg : Hh→ Hg by [x]0h 7→ [x]0g .

The normality hypothesis implies that 0g/0h acts on Hg: for λ ∈ 0g , λ[x]0g :=

[λx]0g , so the representatives λi of the cosets of 0g/0h index the equivalence
classes; thus the action is transitive.

Field data: We define the right-hand column of the diagram.

Definition 4.4.3. 1. For g⊆ h, lg(g)=n, lg(h)=m, ψh,g , denotes the restriction
of the natural projection from S(C)m onto S(C)m to a map from Zh ⊆ S(C)m

onto Z g ⊆ S(C)n .
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2. Choose z ∈ Z g and let L = L z be a finitely generated extension of the defining
field for S such that z is defined over L . Write L for acl(L).

3. Now, Aut(C/L) acts on the fiber ofψh,g over z, by its action on the coordinates
of z; as it would for any definable finite-to-one map from Zm

h → Zn
g .

To connect the two sides, conjugating by [φh], Aut(L/L) acts on id−1
hg (φ

−1
g (z)).

Lemma 4.4.4 [19, p. 14, top]. Aut(C/L) acts on the fiber of ψh,g over z, (and
so via [φh] on id−1

hg (z)). This action commutes with the action of the free and
transitive (simply transitive) action of 0g/0h on the fibers of idh,g . Thus we have a
homomorphism (Galois representation) ρz

g,h from Aut(L/L) into 0g/0h.

4.4.2. Galois representation. While the notion of a representation of a group A
frequently refers to linear representations, a homomorphism of A into a matrix group
B, here we will discuss specific examples of a more general notion: a representation
of A is a homomorphism of A into a group B. This is a Galois representation if
A is the Galois group of one field over another. In Section 4.4.1, we gave Galois
representations of Aut(L/L) into 0g/0h. In order to understand how to combine
the actions of the 0g/0h as g, h vary, we need the notion of inverse limit.

Definition 4.4.5 (inverse limit). Given a directed set (I,≤) an inverse system on I
is a family of structures ⟨Ai : i ∈ I ⟩, and for i < j , maps fi j from A j to Ai such
that i < j < k implies fi j ◦ f jk = fik .

An inverse limit of this inverse system is an object Â = lim
←−

Ai and a family of
morphisms gi : Â→ Ai such that

(1) for all i < j in I , fi j ◦ g j = gi , and

(2) given any A′ and family g′i satisfying (1) there is a unique morphism h : Â→ A′

such that for all i ∈ I, g′i = gi ◦ h.

Definition 4.4.6 (Galois representations of inverse limits). We work with a modular
curve S(C) = 0 \H which is defined over Eab(6) (Notation 4.3.3). Since each
0g ⊆0, ρz

g,h :Aut(L/L)→0 and by taking an inverse limit of the representations
ρz

g,h, we obtain:

ρz
: Gal(L/L)→ 0

where 0 = lim
←−

h 0/0h. The h range over all finite sequences as Convention 4.4.1.
See Definition 4.4.5 and compare [19, p. 16].

For any groups H1 ≤ H2 that act on a set X the H1-orbits of X partition the
H2-orbits. So if [H2 : H1] is finite and H2 is infinite, the orbits will have the same
cardinality and the smaller [H2 : H1] is, the closer we are to an isomorphism.

Now, we can state the first of two crucial sufficient conditions for categoricity.
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Definition 4.4.7 (FIC1). The first finite index condition (FIC1) is satisfied by a
modular curve p : H→ S(C) if:

For any nonspecial points x1, . . . xm ∈H in distinct G-orbits (Definitions 4.4.2 and
4.4.3) and for any field L containing the field over Eab(6) along with the coordinates
of the p(xi ), the image of the induced homomorphism ρ : Gal(L/L)→ 0m has
finite index in 0m .

Recall from Claim 4.3.10 that

rd(v) |H tpq f (d/U ),

where rd(v)=
⋃

g∈G tpq f (q(g(d))/U )= tpq f (⟨q(gd) : g ∈ G⟩/U ). The argument
for Claim 4.3.10 began with the observation that rd(v) implied, in particular, that
d ̸∈ DU , so d is an independent Hodge generic. We will deduce from Lemma 4.4.8
that (under FIC1) only finitely many tuples g from rd are really needed.

Lemma 4.4.8. Assume FIC1. Then, for each z, for some ĝ, the map

ρz : Aut(L/L ĝ) 7→ 0m
ĝ = lim
←−h⊇ ĝ(0 ĝ/0h)

m

is surjective.

Proof. Let I = im(ρz) and let k = [0 : I ]. Suppose not. Choose ĝ with g ⊆ ĝ such
that [0g : 0 ĝ] = k. Thus, for any h ⊇ ĝ, ρz must be onto 0 ĝ/0h. For, if not, there
is an η ∈ 0 ĝ/0h and that is not in I ; it must be in a new coset of I in 0, contrary
to the choice of ĝ. □

Corollary 4.4.9. Assume FIC1. For d ∈ D−U ,

tpq f (q( ĝ(d))/U ) |H rd(v) |H tpq f (d/U ).

Proof. The second implication is Claim 4.3.10. For the first, choose any h ⊇ ĝ(d)
and let m = lg( ĝ), r = lg(h). Let F ⊆ Z r

h be the fiber over ĝ(d ′) ∈ Zm
ĝ of the

finite-to-one map ψhĝ : Z r
h → Zm

ĝ . Similarly, tpq f (h(d)/LU ) is determined by
the Aut(C/LU )-orbit G ⊆ F containing h(d). Then, tpq f (h(x)/LU ) is determined
by the Aut(C/LU )-orbit G ⊆ F containing h(x). But G = F , since ρz induces a
homomorphism from Aut(C/LU ) onto 0 ĝ/0h and 0 ĝ/0h acts transitively on the
fiber. Since this holds for any such h, we finish. □

We turn now to the infinitary axioms that are needed to obtain categoricity.

Notation 4.4.10 (infinitary axioms).

1. 8∞ is the Lω1,ω sentence asserting that for (D, S, q) both the dimension
of the field bi-interpretable with S and of the strongly minimal structure
⟨D, { fg : g ∈ 0}⟩ are infinite.
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2. SF (standard fibers) denotes the Lω1,ω-axiom:

(∀x∀y ∈ D)(q(x)= q(y)→
∨

g∈0
x = fg(y)).

3. T∞( p) denotes Th( p)∪ {8∞}.
4. T∞SF ( p) denotes Th( p)∪ {SF} ∪ {8∞}.

Definition 4.4.11. For ⟨D, S(F), q⟩ |H T∞SF ( p) and X ⊂ D ∪ S(F),

cl(X)= q−1(acl(q(X)))

where acl is the field algebraic closure in F .

An essential consequence of the standard fibers axiom is that Definition 4.4.11
defines an almost quasiminimal closure relation satisfying the countable closure
condition from Definition 3.2.4. This closure dimension restricts on the separate
sorts to the dimension of the constituent strongly minimal sets that is expressed in
8∞. This accomplishes the aim of an (Lω1,ω-complete so ℵ0-categorical) Lω1,ω

theory with arbitrarily large models.
A class K of models has ℵ0-homogeneity over ∅ (Definition 3.2.5) (the precise

statement is from [19, p. 4]) if the models of K are pairwise qf-back and forth
equivalent (Definition 4.3.7).

Theorem 4.4.12 [15, Theorem 4.11]. If the standard model p of a modular curve
satisfies FIC1, then the class of models of T∞SF ( p) is ℵ0-homogenous over ∅. In
particular, by Karp [5; 27], all models of T∞SF ( p) are back and forth equivalent and
so satisfy the same sentences of Lω1,ω.

Proof. Our task is to replace the ω-saturation hypothesis from Theorem 4.3.13
by adding the infinitary axioms and the condition FIC1. As in the proof of
Theorem 4.3.13 we need only worry about Hodge generic points. Suppose we
have a partial function f from q to q ′ with domain and range U and U ′ as in
Theorem 4.3.13 between models q and q ′ of T∞SF ( p). Proceed as in the proof of
the second paragraph of Theorem 4.3.13. We vary the argument for the ‘difficult
case’ from the 3rd paragraph. Choose ĝ by Lemma 4.4.8. Taking ĝ for the g in
Claim 4.3.12, for x ∈UD , there is an x ′ ∈UD′ such that

q( ĝ(x ′)) ∈ S(F ′)m (∗)

realizes f (tpq f (q( ĝ(x))/LU )). We want to show that the same choice x ′ satisfies
(∗) for every h ⊇ ĝ. This is immediate from Corollary 4.4.9. The argument is
completed by induction as in the ‘final step’ of the proof of Theorem 4.3.13. □

Remark 4.4.13 (FIC2). Like FIC1, FIC2 is a finite index condition on Galois repre-
sentations into inverse limits. Now, however there are independence conditions over
the ground field. [15, Condition 4.8] provides sufficient conditions so that a minor
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modification of the proof of Theorem 4.4.12, shows FIC2 implies homogeneity over
models; pairs of models are back and forth equivalent over a countable submodel.
This is the first place in the argument where types over countable algebraically
closed fields rather than the empty set (i.e., a fixed countable field) are encountered.
Combining this result with Theorem 4.4.12, the homogeneity conditions are now
stronger than those defining quasiminimal excellence in [8]. Thus, we apply that
paper and obtain:

Theorem 4.4.14. For any modular curve interpreted as a standard model p
(Notation 4.3.3) for T∞( p), T∞SF ( p) is almost quasiminimal excellent and so
categorical in every infinite power.

Proof. We need only that FIC1 and FIC2 hold for all modular curves. This is proved
in [15, §5], where the proof for FIC1 relies heavily on [44, §6] and FIC2 on [43]. □

With further effort they extend this result to Shimura curves.

Remark 4.4.15. Keisler’s theorem [29, Corollary 5.10] and work of Shelah [3,
§7] show that an ℵ1-categorical sentence φ of Lω1,ω not only has only countably
many types in any countable fragment of Lω1,ω containing φ (Keisler) but has a
completion5 (Shelah). Equivalently, the completion must specify the isomorphism
type of the countable model. The only such completion consistent with having an
uncountable model is adding 8∞.

We have used FIC1 to prove categoricity in all powers. In fact, ℵ1-categoricity
implies FIC1. For this, [15; 19] argue that the weaker hypothesis of having just
countably many types over the empty set in the theory T∞SF implies FIC1. If FIC1
holds, for some z, by Lemma 4.4.8, for every g, there is h⊇ g with a 0g/0h-orbit
contained in ψ−1

hg (z) that projects to that 0g orbit. So under the assumption that
FIC1 fails, there is a g, such that for every h ⊇ g there are distinct 0g/0h-orbits
O1, O2 contained in ψ−1

hg (z) that project to the same 0g-orbit.
By Claim 4.3.10, if two points are Galois equivalent they realize the same

quantifier free τ -type; so O1, O2 realize distinct Galois orbits (and so any two orbits
that project to them must realize distinct τ -types). But since 0 acts transitively on
each Z g , there is a complete tree of splittings of Aut(C/L) orbits that all project to
z. This contradicts Keisler’s theorem. So ℵ1-categoricity of T∞SF implies FIC1.

Remark 4.4.16. [15, §5], using both Serre’s open mapping theorem [44, §6] for
the finite index condition and work by [43] on Shimura curves show FIC1 and
FIC2 hold for all modular and Shimura curves. So our remaining sections concern
higher-dimensional varieties. FIC1 is known for some higher dimensional Shimura
varieties and conjecturally for others, while FIC2 is true for all [19].

5That is, a sentence φ∗ that implies φ and decides every Lω1,ω-sentence.
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[15] use both to prove categoricity. Since the Galois group is not accessible in
our formal language, FIC1 cannot be directly expressed in the two-sorted theory.
So the goal of a ‘fully formal invariant’ cannot be achieved unless explicit reliance
on the finite index conditions as an hypothesis is avoided.

5. First order excellence

Here is the opening paragraph of [9].

Let G = Gn be a complex algebraic torus, or let G be a complex
abelian variety. Considering G(C) as a complex Lie group, with
LG = T0(G(C)) its (abelian) Lie algebra, the exponential map
provides a surjective analytic homomorphism

exp : LG−→→ G(C).

In the spirit of Zilber, their paper aims at finding ‘algebraic descriptions’ of the
cover exp which characterize the standard structure (at least up to categoricity in
power). They solve a more general problem by providing a first order theory T̂ for
the situation and showing each model M̃ (M̂ here) of T̂ is determined by relations
among two designated substructures and a certain transcendence degree. In this
generality, the result is proved for any abelian group of finite Morley rank (henceforth
fmr groups). Then, under slightly stronger hypotheses, the result becomes a true
categoricity result for, in particular, an abelian variety defined over a number field.

We address in this section four new ingredients: formalized nonstandard covers,
‘first order excellence’, Kummer theory, and a distinction between classification
and categoricity. First order excellence appears to be both necessary and applicable
for higher order Shimura varieties.

As noted in [9], the quasiminimal approach studied earlier in this paper suffices to
prove the Lω1,ω-categoricity in power for abelian varieties. The goal of this section
is to identify the distinctive elements of the proof from [9] that later reappear in [19].

5.1. The two-sorted structure and fmr groups. A first order theory T is stable in κ
if any M |H T , with |M | = κ , |S(M)| = κ . (S(M) denotes the set of 1-types over
M .) Morley showed that ω-stability (more properly, ℵ0-stability) of a theory T is
equivalent to stability in all powers (and also to the Morley rank having an ordinal
value for each type). We need here a slightly weaker condition called superstability:
T is stable in κ if κ ≥ 2ℵ0 .

The theory of (Z,+) is one of the prototypical strictly superstable theories6 (that
is, superstable, but not ℵ0-stable). One can fix arbitrarily the congruence class of an
element x for each n. This gives 2ℵ0 distinct types realized by nonstandard integers.

6The other one is the theory of countably many equivalence relations En such that for each n, each
En-class is split into infinitely many En+1-classes (and En+1 ⊆ En).
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There is an extensive theory of fmr groups (see [1; 12]). We need here only the
basics. In particular, Macintyre’s result [32] that an ω-stable group is divisible by
finite. We now introduce the two-sorted theory; with that notation we are able at
the end of this section to outline the main steps of the proof.

Unlike [15], where lim
←−

Z g is in the background of the proof of (our) Theorem
4.4.12 but not the statement, [9] builds the structure of nonstandard covers into the
vocabulary of the two sorted structure by the ρn below.

Bays, Hart, and Pillay [9, §2.2] use the inverse limit of Definition 5.1.1 for
divisible abelian groups; although it is not profinite, they refer to it as a profinite
universal cover denoted Ĝ of G and G is renamed as M . Although the hat has
only one meaning in [9], it becomes overloaded here so we denote the inverse limit
defined below as M̃ . While in [9] a typical 2-sorted (3-sorted in Section 8) structure
τ̂ is represented as either (M̃,M) or M̃ , we write M̂ = (M̃,M) and M̃ for the or
(profinite cover) inverse limit from [9, §1.2, 2.1] as that is the actual usage in most
of the cited paper.

Definition 5.1.1 (M̃). Given a commutative, divisible, abelian group (M,+), con-
sider the inverse limit M̃ = lim

←−
Mn of isomorphic copies Mm of M with the index

set partially ordered by m ≤ n if and only if m|n and with maps ηnm (multiplication
by m

n ) taking Mn 7→ Mm . Concretely, (M̃,+) is the subgroup of the direct product
of ω copies of M , containing those sequences (⟨gk : 1≤ k <ω⟩) such that if k = nm,
gm = n× gk and gn = m× gk .

Notation 5.1.2 (the vocabulary τ̂ ). Let G be the given abelian group and T :=Th(G)
in a large enough countable language that T has quantifier elimination. Further,
let T̂ be the theory of (Ĝ,G) in the two-sorted language τ̂ consisting of the maps
ρn : Ĝ→ G for each n, the theory T and, for each acleq(∅)-definable subgroup H
of G, a predicate H for H and a predicate Ĥ for {x ∈ Ĝ : ρn(x) ∈ H, n ∈ N}.

Although the kernel of ρ = ρ1 is definable in the vocabulary given, a further
predicate ker0 is included denoting the divisible part of the kernel (otherwise, it is
only type-definable).

The axioms [9, §2.5] of T̂ are chosen so as to ensure the next result holds.

Theorem 5.1.3 [9, §2.7, 2.8, 2.21]. For an fmr group G, (G
←−
,G, ρ0) |H T̂ and

therefore T̂ admits quantifier elimination and is superstable of finite U-rank.

Although the T in Notation 5.1.2 is ω-stable, T̂ is only superstable; also, many
elements of ker(ρ) are not divisible in ker(ρ).

Remark 5.1.4 (quasiminimality, unidimensionality, notop). Abelian varieties as
opposed to fmr groups, can be handled either by the quasiminimality methods of
Section 4 or by the methods described in this section. A crucial distinction from
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Section 4 is that the former considered only the theory of unary functions from a
group acting on the domain, while here we have the full group structure.

To explain the fmr proof we need some further model theoretic background. In
general two types p, q over M are orthogonal when in different models N extending
M the number of realizations of p and q can be varied arbitrarily. Non-orthogonality
for strongly minimal sets has a particularly clear meaning. The strongly minimal
sets D1 and D2 are nonorthogonal if there is a definable finite to finite binary
relation on D1× D2. A theory is unidimensional if all types are nonorthogonal.

The three features that underlie the [9] proof are:

1. A fmr abelian group has finite width [2, XV.1] (aka almost ℵ1-categorical [31]):
Any model is the algebraic closure of the union of the bases of a collection of
strongly minimal Di for i < n < ω. The Di are defined over the prime model
(the unique up to isomorphism model elementarily embedded in every model
of the theory).

2. In models of T̂ with M0 the prime model of T and where G is defined over a
number field k0, Kummer theory allows the control of ρ−1(M0) by the kernel
ρ−1(0).

3. In studying abelian varieties the n in 1) can be taken as 1 because the variety is
interalgebraic with an algebraically closed field and so almost strongly minimal
(M = acl(D) for strongly minimal D).

Since Kummer theory doesn’t apply to arbitrary Shimura varieties, features 2
and 3 fail for more general higher-dimensional Shimura varieties (see Section 6).

5.2. First order excellence and fmr groups. Shelah’s main gap program defines
a sequence of properties X of countable first order theories forming a sequence
of dichotomies [4, §5.5] such that: if T satisfies X , T has the maximal number
of models in every uncountable cardinal. If T fails X , the models of T satisfy
conditions useful for classification. (e.g., stability implies the existence of the
‘nonforking’ independence relation). The positive side of the final dichotomy in
the sequence is superstable without the omitting types order property (denoted
notop). Under this hypothesis, Shelah ([47] and earlier papers) showed that an
appropriate class of models of T had a notion of independence among structures
with n-amalgamation for all n that yields the classification of models. Hart [26]
reduced the amalgamation requirement to 2-amalgamation and this reduction was
extended to the quasiminimal excellent case in [8]. In Section 6, we note this ‘notop’
approach is used to study higher-dimensional Shimura varieties.

In Section 3 of [9] the techniques of [26] are adapted to the specific framework
here to establish a decomposition of models of T̂ analogous to that in Remark 5.1.4
for models of T . This yields
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Theorem 5.2.1 [9, Theorem 3.31]. Each model M̂ of T̂ is determined up to iso-
morphism by the transcendence degree of the algebraically closed field K such that
M ∼=G(K ), the isomorphism type of the inverse image, M̂0, of the prime model M0

of T , and the isomorphism type of M over M0.

5.3. Abelian varieties. From the model theoretic standpoint, an abelian variety is a
complete algebraic variety whose points form a group such that the group operations
are definable in the ambient field. For abelian varieties, Kummer theory eliminates
(as in [7; 22]) the reliance in Theorem 5.2.1 on knowing the isomorphism type of
M̌0 over the kernel. The situation described in the opening paragraph of Section 5
is a special case. Namely, let G be (the formula defining) an abelian variety G(K )
over a field K as in the introduction to Section 5. Assume G(C) and its ring of
endomorphisms are definable over a number field k0. With this notation:

Theorem 5.3.1 [9, Theorem 4.6]. a model M̂ = ⟨M̃,M, q⟩ of T̂ is determined up
to isomorphism by the transcendence degree of the algebraically closed field K
such that M ∼= G(K ), and the τ̂ isomorphism type of ker ρ.

Remark 5.3.2 (complete formal invariant). Theorem 5.3.1 gives categoricity in all
uncountable cardinalities by adding the Lω1,ω sentence characterizing the standard
kernel. But Theorem 5.3.1 is more general than categoricity; it shows that models
with nonstandard (possibly uncountable) kernel are characterized by the τ̂ -diagram
of the kernel. Of course, this statement cannot be formalized in languages with
bounded length of conjunctions since the kernels can be arbitrarily large. But Zilber’s
goal (just after Notation 1.0.1) only aimed at complete formal characterization for
prototypical mathematical structures.

6. Higher-dimensional Shimura varieties

A Shimura variety is a higher-dimensional generalization of a modular curve that
arises as a quotient variety of a Hermitian symmetric space X+ by a congruence
subgroup of a reductive algebraic group defined over Q. We consider Shimura
varieties that are moduli spaces for generalized algebraic varieties. Rather than
discussing further technical details on the definition of a Shimura datum (G, X),
we survey the differences that arise in generalizing the results in Remark 4.4.16
about Shimura curves to higher-dimensional Shimura varieties: S(C)= 0 \ X+.

Central difficulties arise directly from the higher dimension in two ways. First, in
the curve case the 2-sorted structure is (almost)-quasiminimal because the variety in
field sort is a curve and so strongly minimal and the geometric closure on the cover
sort is given by a ∈ cl(X) if a ∈ q−1(acl((q(X)). Quasiminimality can fail in higher
dimensions. Second, rather than special points which are fixed points of some g,
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one must treat special subvarieties [19, §3.4] and finite unions thereof, special
domains. The fact that these are not merely points leads to several difficulties.

1. The structure of the covering sort is no longer strongly minimal. Even after
naming the elements of the group the special subvarieties give a complicated
structure on the covering sort.

2. In the curve case the intersection of special domains was a point; that may fail
in higher dimensions.

3. The theories of two inverse limit structures p̂ and p̃ are considered as the
covering space. The first structure is the analog of lim

←−
Z g (Notation 4.2.11).

The second consists only of the standard points of this limit. The canonical
universal cover p satisfies the first order Th( p̃) but not in general Th( p̂)
[20, Example 5.7, Corollary 5.14].

4. An Lω1,ω categorical axiomatization is not claimed. Each model can be pre-
cisely characterized but the characterization is not in Lω1,ω. See Remark 5.3.2.

5. Finally, even this characterization depends on whether the variety under con-
sideration satisfies finite index conditions as in the modular case. Although
FIC1 and FIC2 are true in the modular curve case, here the truth of FIC1 for p
is actually equivalent to the characterizability of models of T inf

SF ( p) since [19]
shows FIC2 is true.

7. Model theory and analysis

One can signal three different model theoretic approaches to analysis:

1. Axiomatic analysis studies behavior of fields of functions with operators but
without explicit attention in the formalism of continuity but rather to the
algebraic properties of the functions. The function symbols of the vocabulary
act on the functions being studied; the functions are elements of the domain of
the model.

Example: DCF0 as discussed below.

2. Definable analysis has a lower level of abstraction; the domain of the func-
tions remains the universe of the model. The functions being studied are the
compositions of the functions named in the vocabulary; one cannot quantify
over them.

Example: o-minimality.

3. Implicit analysis. Attempts to provide ‘algebraic characterizations of important
mathematical structure by axiomatizations in infinitary logic that are categorical
in power. Example: the material in this paper.
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The first two are discussed in [4, §6.3]. The work expounded in this paper has
many commonalities with a prime example of axiomatic analysis: the study of
transcendence results for solutions of differential equations by the study of the ω-
stable theory DCF0 of differentially closed fields of characteristic zero. The notion
of ‘not integrable by elementary functions (Painlevé said ‘irreducible’) is formalized
by ‘the solution set is strongly minimal’ [37]. The study of Schwartzian equations
provides a general framework in which the j-function and modular curves are
explored. The work includes, variations on the Ax–Lindemann–Weierstrass theorem,
proofs that Generic differential equations are strongly minimal [18] and Differential
Chow Varieties are Kolchin-constructible [21], and analysis of strongly minimal
solution sets defined by differential equations in terms of the Zilber trichotomy and
ℵ0-categoricity.

But while the mathematical topics are the same, the aims are different: The
covers project tries to assign a categorical description of each cover. The DCF0

approach tries to understand transcendence results for solutions of the differential
equations.

The crucial methodological difference is the two-sorted nature of the cover
program. The axiomatic analysis framework is preserved in that there is no explicit
treatment of convergence or continuity. But connecting the domain and target
by quotients under an explicit group action as well as the use of infinitary logic
provides tools not available in the earlier examples of axiomatic analysis.

8. Families of covers of algebraic curves

In recent work, Daw and Zilber [16; 17] deal with families of covers of curves.
They build on earlier constructions we have discussed in this paper. Rather than a
cover of a single variety, albeit one that parametrized a family of varieties, an entire
family of such covers is studied and the covering space becomes an analytic Zariski
structure [56]. In [57], the analysis of families is generalized by being placed in a
geometric algebraic setting.

The most salient difference between these works and those discussed earlier in
this paper is that, rather than a cover of a single variety, an entire family of covers
is now the main subject. Our earlier Definition 4.2.9 is now replaced by a basic
vocabulary consisting of three sorts, together with maps 0N \H 7→ C covering a
family of curves SN (C).

8.1. Pseudo-analytic covers of modular curves. Major differences of the paper [16]
from the earlier discussion of modular curves include:

1. The basic vocabulary is now 3-sorted. More specifically, [16] considers struc-
tures (D,G, jN ,C) where the jN : H ↠ SN (C). The discrete group is now
given as a third sort incorporating a group operation (so its pregeometry is
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locally modular, rather than trivial). This sort contains group with distin-
guished subsets7 (GL+2 (Q),×,Sl2(Z), E(Q), {dq , d ′q : q ∈ Q)}, where E is
the collection of elliptic elements of the group; those that have unique fixed
points. This structure is specified up to isomorphism by a sentence of Lω1,ω.
But not all group elements are still named in the formal language.

2. The uniformizing functions jN each map into P3(C) rather than into the
arbitrarily high-dimensional spaces of the maps [φg] in [15; 19]. Furthermore,
these are now defined over Q rather than over Eab(6).

3. As well as an almost quasiminimal axiomatization of the 3-sorted structure, the
domain is considered as a Zariski Analytic set with a quasiminimal geometry.
Both of these structures are shown to be uncountably categorical.

4. The special points are not named. However as in Definition 4.3.5 they are
uniquely associated with elliptic elements of the group.

In many ways, this last distinction is the most important for the general program,
as naming of the special points trivializes some of the arithmetic. In [16], the
structure of the family is proved to be categorical in all uncountable cardinalities.

8.2. Locally o-minimal covers of algebraic varieties. The paper [57] takes a more
general approach. It abstracts away from naming all elements of the discrete groups
as earlier in this paper. The relations among the universal and finite covers are given
more abstractly as properties of maps from a domain (whose smoothness is defined
topologically and geometrically but not algebraically) onto families of algebraic
varieties. This smoothness as well as the eventual quasiminimality for curves8 is
controlled by external o-minimal structures.

Remark 8.2.1. 1. The formalization is new. For a fixed model R of the theory T
of a fixed o-minimal expansion of the reals (e.g the restricted analytic functions)
a structure U(R) is defined. The resulting structure U(R) is an abstract Zariski
structure9.

2. Generalizing the last paragraph of Section 8.1, in the standard model the
domain is a complex manifold U(C) with holomorphic maps fi onto algebraic
varieties X i (C) with natural projections pri, j among the X i . These analytic
properties are definable using theory of K-analytic sets in o-minimal expansions
of the reals developed in [39; 40]. We fix k ⊆ C a subfield over which the
varieties Xi are all defined.

7 E is the elliptic Möbius transformations and the dq , dq are specific diagonal matrices.
8The set-up is for arbitrary algebraic varieties, but the categoricity result is only for curves and we

restrict to that case.
9Actually, U(R) = U (K ) where K is taken as an algebraically closed field R+ iR and U (R) is

constructed analogously to U (C).
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3. The ostensibly two-sorted structure of 1) becomes one-sorted because the
field can be interpreted in the abstract Zariski structure. And the third sort of
Section 8.1 has disappeared because the group is no longer referenced directly.

4. The o-minimal geometry of algebraic closure in U(R) imposes the desired
quasiminimal geometry on U(R). The dimension function is denoted cdim for
‘combinatorial dimension’. Note that the ordering is not externally imposed
on U: rather, it is implied by the predicates described in (1) above and the
dimension just mentioned.

5. As before, there is an Lω1,ω sentence that axiomatizes the quasiminimal (ex-
cellent) geometry and whose models form an AEC that is categorical in all
cardinalities.

Zilber [57] proved the following theorem:

Theorem 8.2.2 (categoricity of families of smooth complex algebraic varieties [57]).
Let U be a cover of a family of smooth complex algebraic variety, formalized as in
Remark 8.2.1, and let U(R) be its associated Lω1ω-definable class. If dimC(U)= 1,
(i.e., if the varieties are curves) and cdim(R/k) is infinite, then U(R) is categorical
in all uncountable cardinals.

Zilber remarks that in the case of higher-dimensional varieties, categoricity in
ℵ1 can still be proved.

Example 8.2.3. Here are some examples from [57]. Fix the o-minimal expansion
RAn = Rexp,an of the reals with the exponential function and the restricted (to
bounded intervals) analytic functions.

• Let I = N, U = C, fk(z) = exp( z
k ), Dn = {z ∈ C : −2πn < Im(z) < 2πn}.

These are easily seen to provide a cover system.

• The j -function with variants jN as uniformizers for the modular curves 0N \H

are examples; this study allows one to formalize their analytic properties in
terms of o-minimality. Finally, other examples include the Siegel half-space
and polarized algebraic varieties (these last examples are claimed but not
developed by Zilber).
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Positive characteristic Ax–Schanuel

Piotr Kowalski

This expository paper is written in celebration of Boris Zilber’s 75th birthday. We
discuss Ax–Schanuel type statements focusing on the case of positive characteristic.

1. Introduction

During the Spring 2005 Isaac Newton Institute program “Model Theory and Ap-
plications to Algebra and Analysis” in Cambridge, I learnt that I would be a
MODNET postdoc with Boris Zilber in Oxford for the academic year 2005/06.
Still in Cambridge, Boris suggested that I start thinking on “positive characteristic
versions of Ax’s theorem”. In this expository paper, I will describe what has
happened next.

It may be a good moment for a general disclaimer. This is an expository paper
representing my experience with respect to Boris’s suggestion above and I do not
claim that this paper describes adequately the state of the art in the vast area of
Ax–Schanuel type problems. In particular, comparatively very little will be said
about the amazing developments of Jonathan Pila (and many others) regarding the
modular version of Ax–Schanuel and its applications to diophantine problems, most
notably the André–Oort conjecture. I will write more about it in Section 2.

This paper is organized as follows. In Section 2, we describe the history of this
circle of problems in the case of characteristic 0. In Section 3, we focus on the
positive characteristic case and present some of the results I obtained following
Boris’s suggestion. In Section 4, we speculate on some recent ideas regarding
general forms of Ax–Schanuel and its Hasse–Schmidt differential versions.

2. Characteristic zero

In this section, we summarize the characteristic 0 situation regarding the Ax–
Schanuel problems. The disclaimer from the introduction applies mostly here.
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2A. Results. In the 1960s, Schanuel formulated two conjectures [Lang 1966,
pages 30–31]: one about transcendence of complex numbers [Ax 1971, (S)] and
one about transcendence of power series [Ax 1971, (SP)]. We state them below.

Schanuel’s conjecture (complex numbers). Let x1, . . . , xn ∈ C be linearly inde-
pendent over Q. Then

trdegQ(x1, . . . , xn, ex1, . . . , exn ) ⩾ n.

Schanuel’s conjecture (power series). Let x1, . . . , xn ∈ XC[[X ]] be linearly inde-
pendent over Q. Then

trdegC(X)(x1, . . . , xn, ex1, . . . , exn ) ⩾ n.

The conjecture on the complex numbers is open even for n = 2, since (using
Euler’s identity eiπ

+ 1 = 0) it covers the open problem of algebraic independence
of π and e and it is even still unknown whether π + e is irrational (it is named a
“candidate for the most embarrassing transcendence question in characteristic zero”
in [Brownawell 1998])! Schanuel’s conjecture for power series was proved in [Ax
1971, (SP)].

Ax [1971] also showed the following differential version of the power series
conjecture, which he actually used to show the other statements from [Ax 1971].

Differential Ax–Schanuel theorem [Ax 1971, (SD)]. Let (K , ∂) be a differential
field of characteristic 0 and C be its field of constants. For x1, . . . , xn ∈ K and
y1, . . . , yn ∈ K ∗, if

∂x1 =
∂y1

y1
, . . . , ∂xn =

∂yn

yn

and ∂x1, . . . , ∂xn are Q-linearly independent, then

trdegC(x1, . . . , xn, y1, . . . , yn) ⩾ n + 1.

Remark 2.1. There are the following passages between the power series and the
differential version of Ax’s theorem above.

(1) Since the ring of power series has a natural differential structure, the differential
version implies the power series version.

(2) Going the other way is more subtle. Seidenberg’s embedding theorem [1958]
says that any finitely generated differential field of characteristic 0 differentially
embeds into the differential field of meromorphic functions on an open subset
of C. Using this theorem, one can reduce the differential version of Ax’s
theorem to the power series one (this is explained in detail around [Freitag and
Scanlon 2018, Theorem 4.1] and in [Pila and Tsimerman 2016, Section 2.5]).
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Similar passages apply to the more complicated cases of analytic (or formal) Ax–
Schanuel statements versus the differential ones as well. Such more complicated
cases are described below.

In a subsequent paper written one year later, Ax [1972] proved the following gen-
eral geometric result about the dimension of intersections of algebraic subvarieties
of complex algebraic groups with analytic subgroups.

Ax’s theorem on the dimension of intersections [Ax 1972, Theorem 1]. Let G
be an algebraic group over the field of complex numbers C. Let A be a complex
analytic subgroup of G(C) and V be an irreducible algebraic subvariety of G
over C. We assume that K := A∩ V (C) is Zariski dense in V (C). Then there is an
analytic subgroup B ⊆ G(C) containing V (C) and A such that

dim(B) ⩽ dim(A) + dim(V ) − dim(K).

This theorem implies Schanuel’s conjecture on power series by taking:

• G as the product of the vector group Gn
a and the torus Gn

m,

• A as the n-th Cartesian power of the graph of the exponential map,

• V as the algebraic locus of the tuple (x1, . . . , xn, ex1, . . . , exn ).

Ax’s theorem on the dimension of intersections applies also (more generally) to
the case of the exponential map on a semiabelian variety [Ax 1972, Theorem 3].
The consequences of Ax’s theorem on the dimension of intersections go beyond
the case of the exponential map; for example, this theorem applies to the case of
analytic maps between the multiplicative group and an elliptic curve. We state
it precisely below, since this statement is amenable for a possible transfer to the
positive characteristic case (see Remark 2.4).

Theorem 2.2. Let
γ : Gm(C) → E(C)

be an analytic epimorphism, where E is an elliptic curve. Let

x1, . . . , xn ∈ 1 + XC[[X ]]

be multiplicatively independent. Then

trdegC(X)(x1, . . . , xn, γ (x1), . . . , γ (xn)) ⩾ n.

After Ax’s work in 1970s, Brownawell and Kubota [1977] proved a version
of the differential Ax’s theorem in the case of elliptic curves, and then Kirby
[2009] generalized it to arbitrary semiabelian varieties. These results were not
included in [Ax 1972], however they are closely related using the “passages” from
Remark 2.1. Bertrand [2008] extended [Ax 1972, Theorem 3] to commutative
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algebraic groups not having vector quotients (e.g., maximal nonsplit vectorial
extensions of a semiabelian variety).

The differential Ax’s theorem [Ax 1971, (SD)] is generalized further to “very
nonalgebraic formal maps” in [Kowalski 2008, Theorem 5.5]. This generalization
includes a differential version of Bertrand’s result and a differential Ax–Schanuel
type result about raising to nonalgebraic powers on an algebraic torus [Kowalski
2008, Theorem 6.12]. We state it below in the power series case (see Remark 2.1),
since this statement has a positive characteristic interpretation (see Remark 2.4).
Before the statement, we note that for x ∈ 1 + XC[[X ]] and α ∈ C, we define

xα
:= exp(α log(x)),

where exp, log ∈ Q[[X ]] are the standard formal power series corresponding to the
exponential and the logarithmic maps.

Theorem 2.3. Suppose that α ∈ C and [Q(α) : Q]> n. Let x1, . . . , xn ∈ 1+XC[[X ]]

be multiplicatively independent. Then

trdegC(X)(x1, . . . , xn, xα
1 , . . . , xα

n ) ⩾ n.

We now briefly describe modular analogues of Ax’s theorem. Our disclaimer from
the introduction applies very much here. Ax–Schanuel statements may go beyond
the context of group homomorphisms: the first example here is the j-function map

j : H → C,

where H is the upper half plane. The linear independence assumption from Ax’s
theorem is replaced with modular independence. Pila’s notes [2015] contain an
excellent comprehensive survey of the state of the art in this field up to 2013. Such
results have very important diophantine applications such as

• another proof of the Manin–Mumford conjecture [Pila and Zannier 2008];

• the first unconditional proof of the André–Oort conjecture for Cn [Pila 2011];

• a recent proof of the full André–Oort conjecture for Shimura varieties [Pila
et al. 2021].

Following a suggestion by the referee, we would like to point out that only the
Ax–Lindemann–Weierstrass type of results are needed in Manin–Mumford and
André–Oort, while Ax–Schanuel (in fact, a weak form of it) is used in Zilber–Pink
type problems.

In [Casale et al. 2020], the Ax–Lindemann–Weierstrass theorem with derivatives
for the uniformizing functions of genus zero Fuchsian groups of the first kind is
shown. This result is used in [Casale et al. 2020] to answer a question of Painlevé
from 1895.
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Remark 2.4. We analyze now which statements of the Ax–Schanuel results dis-
cussed above are transferable to the positive characteristic case. We would like to
mention that all the analytic Ax–Schanuel type results over C may be replaced with
their formal counterparts over an arbitrary field C , which was already done by Ax:
the reader is advised to compare Ax’s theorem on the dimension of intersections
with its formal counterpart [Ax 1972, Theorem 3], which will be stated in a more
general form in Section 3. Let us recall the setup first.

Definition 2.5 [Bochner 1946]. An n-dimensional formal group (law) over C is a
tuple of power series F ∈ C[[X, Y ]]

×n (|X | = |Y | = |Z | = n) satisfying

F(0, X) = F(X, 0) = X,

F(X, F(Y, Z)) = F(F(X, Y ), Z).

A morphism from an n-dimensional formal group G into an m-dimensional formal
group F is a tuple of power series f ∈ C[[X ]]

×m such that

F( f (X), f (Y )) = f (G(X, Y )).

There is a well-known formalization functor G 7→ Ĝ (see pages 5 and 13 in
[Manin 1963]) from the category of algebraic groups to the category of formal
groups.

Such characteristic 0 formal statements seem to be transferrable to the positive
characteristic context in the cases when the corresponding formal maps exist.

(1) The very original version of Ax–Schanuel does not look transferable, since
there are no reasonable exponential maps in positive characteristic (we will
briefly touch on the Drinfeld context at the end of Section 3).

(2) Therefore, other analytic maps need to be considered. “Analytic” may be
replaced with “formal” (as mentioned above) and then the closest one to the
exponential map which survives in the case of positive characteristic seems to
be the formal isomorphism between the multiplicative group and an ordinary
elliptic curve.

(3) The other types of such maps come from raising to powers in the multiplicative
group.

Items (2) and (3) above will be discussed in the positive characteristic context
in Section 3.

2B. Motivations and applications. Zilber [2002] used the differential Ax’s theorem
to prove weak CIT, which is a weak version of the conjecture on intersection with
tori (CIT), which was also stated in [Zilber 2002]. CIT is a finiteness statement
about intersections of subtori of a given torus with certain subvarieties of this torus.
Weak CIT was used in [Baudisch et al. 2009] to produce a characteristic 0 bad field.
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The existence of such a field was an open problem in model theory for almost 20
years.

Regarding the positive characteristic case, weak CIT does not hold and Zilber
formulated a conjectural statement in (the very last statement of) [Zilber 2005]. It
is still open whether a bad field in the positive characteristic case exists, however,
Wagner [2003] showed that its existence in the case of characteristic p > 0 implies
the existence of infinitely many p-Mersenne primes, which is an open problem
in number theory — but it is widely believed that there are finitely many of them
(for each individual prime p). Therefore, the existence of bad fields in positive
characteristic looks very unlikely. However, pursuing the following path of research
still looks interesting:

(1) prove positive characteristic versions of Ax–Schanuel;

(2) show a version of weak CIT in positive characteristic using (1);

(3) construct a version of a bad field in positive characteristic using (2);

(4) check the possible number-theoretic consequences of results obtained in (3).

As was mentioned in the previous subsection, Jonathan Pila and others used Ax–
Schanuel type results to show different versions of the André–Oort conjecture; see,
e.g., [Pila 2011; Tsimerman 2018; Casale et al. 2020; Pila et al. 2021].

There are also model-theoretic consequences of results of Ax–Schanuel type and
we would like to point out some of them.

• Kirby [2009] used his version of an Ax–Schanuel statement to obtain the
complete first-order theories of the exponential differential equations of semi-
abelian varieties which arise from an amalgamation construction in the style
of Hrushovski.

• Aslanyan [2022] did a version of the above for the j-function in place of the
exponential function on semiabelian varieties.

• Freitag and Scanlon [2018] used Ax–Lindemann–Weierstrass to establish
strong minimality and triviality of the differential equation of the j-function.
This was generalized in [Aslanyan 2021] to a more general and formal setting.

• In [Casale et al. 2020] and [Blázquez-Sanz et al. 2021], the authors go in a
quite opposite way: they first establish strong minimality using differential
Galois theory, then use Zilber’s trichotomy to prove triviality, then use that to
establish Ax–Lindemann–Weierstrass and later Ax–Schanuel. That is, they
give a new proof to Ax–Schanuel for the j -function and in fact for all Fuchsian
automorphic functions.



POSITIVE CHARACTERISTIC AX–SCHANUEL 691

3. Positive characteristic

The first (to my knowledge) positive characteristic Ax–Schanuel result concerns
additive power series. Interestingly, it is not included in the cases considered in
Remark 2.4, because such formal maps have no counterpart in the characteristic 0
case, since any additive formal power series in characteristic 0 is linear, so it is “not
interesting”. This positive characteristic additive Ax–Schanuel result is explained
in detail below.

For any commutative algebraic group G, we have the following two (usually
noncommutative) rings:

(1) the ring of algebraic endomorphisms (that is, endomorphisms of G in the
original category of algebraic groups), denoted Endalgebraic(G);

(2) the ring of formal endomorphisms (that is, endomorphisms of the formalization
of G, as below Definition 2.5, in the category of formal groups), denoted
Endformal(G).

Let C be a field of characteristic p > 0 and Ga denote the additive group scheme
over C . We consider the following two rings.

• The ring of additive polynomials over C (with composition), which we denote
by C[Fr]. This is also the skew polynomial ring over C and we have the ring
isomorphism

Endalgebraic(Ga) ∼= C[Fr].

• The ring of additive power series over C (with composition), which we denote
by C[[Fr]]. We have the ring isomorphism

Endformal(Ga) ∼= C[[Fr]].

These rings are commutative if and only if C = Fp and then they are also domains
(isomorphic to the rings of polynomials or the ring of power series). We denote the
fraction field of Fp[Fr] by Fp(Fr). We state below the main theorem of [Kowalski
2012].

Ax–Schanuel for additive power series [Kowalski 2012, Theorem 1.1]. Let F be
an additive power series over Fp and assume that

[Fp(Fr)(F) : Fp(Fr)] > n.

Let x1, . . . , xn ∈ tFp[[t]] be linearly independent over Fp[Fr]. Then we have

trdegFp
(x1, . . . , xn, F(x1), . . . , F(xn)) ⩾ n + 1.

We describe a general Ax–Schanuel result from [Kowalski 2019], which is valid
in all characteristics. We need two technical assumptions. Before stating them, we
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try to motivate them. One of the crucial properties (used in the proofs in [Ax 1972])
of analytic homomorphisms between algebraic groups is that they take invariant
algebraic differential forms into invariant algebraic differential forms. The first
technical assumption below, which is absolutely necessary, is both formalizing and
generalizing this crucial property. Regarding the second assumption, the exponential
map gives a formal isomorphism between any commutative algebraic (and even
formal) group in the case of characteristic 0 and a Cartesian power of the additive
group. This is false in the positive characteristic case, for example there is no formal
isomorphism between the additive and the multiplicative group (no exponential
map in positive characteristic!). To make the proofs work, we still need to impose
an additional assumption in the positive characteristic case, to mimic the above
characteristic 0 situation. The 1-dimensional group H in this assumption plays the
role of Ga and we need to put some extra conditions on H which are true for Ga.
We would prefer to avoid this second assumption, but we were unable to do so in
[Kowalski 2019].

(1) We define a special formal map as one which “resembles a homomorphism” in
the sense that it takes invariant differential forms into the “usual” differential
forms (before taking the completion; see [Kowalski 2019, Definition 3.10]).
In the positive characteristic case, the notion of differential forms has to be
replaced by Vojta’s notion [2007] of higher differential forms; see [Kowalski
2019, Remark 5.18(3)].

(2) We say that a commutative algebraic group A defined over the field C of
characteristic p is “good” (see [Kowalski 2019, Definition 3.4]) if there is a
one-dimensional algebraic group H over C such that we have the following
(in the case of p = 0, we drop (c)):
(a) Â ∼= Ĥ n .
(b) The map End(Ĥ) → EndC(�inv

H ) (= C) is onto.
(c) H is Fp-isotrivial, i.e., H ∼= H Fr.

To motivate the next result and give a general feeling regarding “what is it about”,
we quote from [Kowalski 2019] the following, where “the main theorem of this
paper” refers to Theorem 3.1.

A continuous map between Hausdorff spaces which is constant on a dense
set is constant everywhere. The same principle applies to an algebraic
map between algebraic varieties and to the Zariski topology (which is
not Hausdorff). However, if we mix categories there is no reason for
this principle to hold, e.g., there are nonconstant analytic maps between
algebraic varieties which are constant on a Zariski dense subset. The
main theorem of this paper roughly says that the principle above can be
saved for certain formal maps (resembling homomorphisms) between
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an algebraic variety and an algebraic group at the cost of replacing the
range of the map with its quotient by a formal subgroup of the controlled
dimension.

Theorem 3.1. Let V be an algebraic variety, K a Zariski dense formal subvariety
of V , A a “good” commutative algebraic group and F : V̂ → Â a special formal
map. Assume F vanishes on K. Then there is a formal subgroup C ⩽ Â such that
F(V̂ ) ⊆ C and

dim(C) ⩽ dim(V ) − dim(K).

As a consequence of Theorem 3.1, we obtained in [Kowalski 2019] a result
which is parallel to Ax–Schanuel for additive power series, where an additive power
series (that is, a formal endomorphism of the additive group) is replaced with a
“multiplicative” power series (that is, a formal endomorphism of the multiplica-
tive group). Let Zp denote the ring of p-adic integers. By [Hazewinkel 1978,
Theorem 20.2.13(i)], we have the ring isomorphism

Endformal(Gm, Gm) ∼= Zp.

We obtain an interesting positive characteristic version (see Example 4.15(3)
and Theorem 4.16 in [Kowalski 2019]) of raising to powers Ax–Schanuel (see
Theorem 2.3). For x ∈ 1 + XC[[X ]] and α ∈ Zp (char(C) = p > 0), we represent α

as
∑

∞

i=0 αi pi for some αi ∈ {0, 1, . . . , p − 1} and we have

xα
:= lim

n→∞

n∏
i=0

xαi pi
.

Theorem 3.2. Suppose that α∈Zp and [Q(α) :Q]>n. Let x1, . . . , xn ∈1+XC[[X ]]

be multiplicatively independent. Then

trdegC(X)(x1, . . . , xn, xα
1 , . . . , xα

n ) ⩾ n.

There is a general setup including the additive and multiplicative cases, which
we describe below following [Kowalski 2019]. Let us fix a positive integer n and a
one-dimensional algebraic group H over C . We introduce the following notation
from [Kowalski 2019].

• Let R := Endalgebraic(H) and S := Endformal(H).

• We restrict our attention to algebraic groups H such that S is a commutative
domain. We regard R as a subring of S.

• Let K denote the field of fractions of R and L be the field of fractions of S.
We regard K as a subfield of L.

Example 3.3. In the characteristic 0 case, we always have S = C , so the commuta-
tivity assumption is satisfied and we can consider any one-dimensional algebraic
group as H . We give some examples below.
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(1) If H = Ga and the characteristic is 0, then R = S = C .

(2) If H = Ga and the characteristic is p > 0, then R = C[Fr] and S = C[[Fr]]
(see the notation introduced in the beginning of this section). This is why we
needed to take C = Fp to ensure that S is commutative.

(3) If H = Gm and the characteristic is 0, then R = Z. In the case of characteristic
p > 0, we have S = Zp as mentioned above.

Below is our transcendental statement about formal endomorphisms (see [Kowal-
ski 2019, Theorem 4.16.]). We need to introduce the following notions from [Kowal-
ski 2019]. Let A be a commutative algebraic group over the field C of characteristic
p > 0.

• A formal map into Â is an A-limit map if it can be “strongly approximated” by
a sequence of polynomial maps ( fn)n in the sense that the differences fn+1− fn

are in the image of the n-th power of the appropriate Frobenius map. For
example, any formal endomorphism of Ĝa is a Ga-limit map (approximated by
additive polynomials), and any formal endomorphism of Ĝm is a Gm-limit map
(approximated by multiplicative polynomials appearing in the description of
xα before the statement of Theorem 3.2).

• We fix a complete C-algebra R with the residue field C such that R is linearly
disjoint from Calg over C and in the case of characteristic p such that L p∞

= C ,
where L is the fraction field of R (e.g., R may be the power series algebra).

• For x ∈ A(R), we call x subgroup independent if for any proper algebraic
subgroup A0 < A defined over C , we have x /∈ A0(R).

• The formal locus of x ∈ A(R) over C is defined as the formal subscheme of
Â corresponding to the image of the map ÔA,0 → R.

• The number andeg(x) denotes the dimension of the formal locus of x over C .

Theorem 3.4. Take γ ∈ S such that [K [γ ] : K ] > n and γ : Ĥ → Ĥ is an H-limit
map. Let E : Â → Â be the n-th cartesian power of γ , where A = H n . Then for any
subgroup independent x ∈ A(R)∗ we have

trdegC(x, EK (x)) ⩾ n + andegC(x).

We showed in [Kowalski 2019] that an unproved version of Theorem 3.1 without
the “goodness” assumptions implies the following conjecture. This conjecture is
important for the following reasons.

• If the field C has characteristic 0, then this conjecture is a theorem of Ax [1972,
Theorem 1F].

• Ax [1972, Section 3] showed that in the case of characteristic 0 (Ax did not
consider the positive characteristic case), [Ax 1972, Theorem 1F] implies the



POSITIVE CHARACTERISTIC AX–SCHANUEL 695

Ax–Schanuel statements regarding the differential equation of the “appropriate”
formal/analytic homomorphisms between algebraic groups (Ax focused on the
exponential maps on semiabelian varieties). The corresponding implication
holds in the positive characteristic case as well.

Main conjecture (arbitrary characteristic). Let G be an algebraic group over a
field C of arbitrary characteristic, Ĝ the formalization of G at the origin and A a
formal subgroup of Ĝ. Let K be a formal subscheme of A and let V be the Zariski
closure of K in G. Then there is a formal subgroup B of Ĝ which contains A and V̂
such that

dim(B) ⩽ dim(V ) + dim(A) − dim(K).

We formulate below a specific statement which would follow from this main
conjecture.

Specific conjecture. Suppose that char(C)= p > 0 and let γ : Ĝm → Ê be a formal
isomorphism, where E is an ordinary elliptic curve. Let x1, . . . , xn ∈ 1 + XC[[X ]]

be multiplicatively independent. Then

trdegC(X)(x1, . . . , xn, γ (x1), . . . , γ (xn)) ⩾ n.

This case seems to be related to the “interesting research paths (1)–(4)” from
Section 2B. More precisely, the formal map appearing in the specific conjecture
looks “closest” to the exponential map from the original Ax’s theorem, which was
used by Zilber to show weak CIT (see Section 2B).

We finish this section with a brief discussion of the case of the Drinfeld modules.
Drinfeld [1974] introduced elliptic modules, which are now called Drinfeld modules.
Drinfeld modules can be understood as certain homomorphisms between Fq [X ]

and K [Fr], where q is a power of p and K = Fq((θ)) is the non-Archimedean field
of Laurent series over Fq . An additive power series over K is associated to each
Drinfeld module and this series is entire on K . A number of transcendence results
for such additive power series was obtained; see, e.g., [Yu 1986]. To the best of my
knowledge, such results never include a version of the full Ax–Schanuel statement.
For a survey of this theory, we refer the reader to [Brownawell 1998]. Before the
invention of Drinfeld modules, a special case of such a series was introduced by
Carlitz, which is now called the Carlitz exponential and has the form

expC = X +

∞∑
i=1

X pi

(θ pi
− θ)(θ pi

− θ p) · · · (θ pi
− θ pi−1

)
.

There are several Schanuel type results for the Carlitz exponential (see [Denis
1995]) and a Carlitz exponential version of the (still open) conjecture on algebraic
independence of logarithms of algebraic numbers was proved in [Papanikolas 2008,
Theorem 1.2.6]. The power series we consider do not fit in the Drinfeld module
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framework, since we consider power series with constant coefficients, that is, there
is no transcendental element θ in the coefficients of our additive power series.

4. Recent ideas and speculations

In this section, we describe some recent early stage developments concerning
Ax–Schanuel type problems. One of them regards combining the results from
[Blázquez-Sanz et al. 2021] with Ax’s theorem on the dimension of intersections.
The other one is about differential versions of Ax–Schanuel in positive characteristic.

4A. Towards a general statement of Ax–Schanuel. Ax–Schanuel statements for
analytic/formal homomorphisms in the case of characteristic 0 have one “umbrella
statement” from which they all follow, which is Ax’s theorem on the dimension
of intersections from Section 3. No such “umbrella statement” was known for
Ax–Schanuel statements for the maps like the j-invariant map until the recent
preprint [Blázquez-Sanz et al. 2021], where a general form of an Ax–Schanuel type
result is given (see [Blázquez-Sanz et al. 2021, Theorem A]). In this statement, the
algebraic group G is again back in the picture (e.g., G = PGL2(C) in the case of the
j-invariant map), but the statement is quite technical and it is phrased in terms of
leaves of flat connections on G-principal bundles, where such a leaf plays the role
of the analytic subgroup A from Ax’s theorem on the dimension of intersections
from Section 3.

Connection version of Ax–Schanuel [Blázquez-Sanz et al. 2021, Theorem A]. Let
∇ be a G-principal flat connection on the algebraic bundle P → Y such that

• the algebraic group G is sparse;

• the Galois group of ∇ coincides with G.

Let V be an algebraic subvariety of P and L be a horizontal leaf of ∇. If

dim V < dim(V ∩L) + dim G

then the projection of V ∩L in Y is contained in a ∇-special subvariety of Y .

Sparsity of the algebraic group G above means that there are no proper Zariski
dense complex analytic subgroups of G. The notion of a “∇-special” is more
technical; it is phrased in terms of the Galois group of a connection (see [Blázquez-
Sanz et al. 2021, Definition 2.4]).

Unlike in the case of [Ax 1972, Theorem 1], no analytic subgroup appears in
[Blázquez-Sanz et al. 2021, Theorem A], so this theorem does not generalize [Ax
1972, Theorem 1]. We propose such a generalization which encompasses both the
connection version of Ax–Schanuel and [Ax 1972, Theorem 1]. It will appear in
[Gogolok and Kowalski ≥ 2024].
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Connection and subgroup Ax–Schanuel. Let ∇ be a G-principal flat connection
on the algebraic bundle P → Y such that the Galois group of ∇ coincides with G
and

• V is an algebraic subvariety of P ,

• A is an analytic subgroup of G,

• L is a horizontal leaf of ∇.

Suppose that V is an analytic submanifold of A which is Zariski dense in V . If

dim V < dim(V ∩L) + dim G

then there is an analytic subgroup H of G such that

dimH < dim(V ) − dim(V)

and V ⊆ AH.

The results mentioned above concern the case of characteristic 0. In the “main
conjecture” from Section 3, the notion of “analytic” is replaced with the notion of
“formal” (see Remark 2.4), which makes sense in the case of arbitrary characteristic.
The connection version of Ax–Schanuel [Blázquez-Sanz et al. 2021, Theorem A]
mentioned above has not been considered in the positive characteristic case before,
since it requires an appropriate version of the notion of a connection in positive
characteristic. This is work in progress [Gogolok and Kowalski ≥ 2024].

4B. Hasse–Schmidt differential Ax–Schanuel. Positive characteristic versions of
the differential Ax’s theorem have not been studied yet. It is clear that we cannot
consider the usual derivations anymore, since the constants of differential fields of
positive characteristic contain the image of the Frobenius map, and hence there is no
room for any transcendence. It looks natural in this case to replace the derivations
with iterative Hasse–Schmidt derivations and the field of constants with the field of
absolute constants. We give the necessary definitions below.

• A sequence ∂ = (∂n : R → R)n∈N of additive maps on a ring is called an
HS-derivation if ∂0 is the identity map, and for all n ∈ N and x, y ∈ R, we
have

∂n(xy) =

∑
i+ j=n

∂i (x)∂ j (y).

• An HS-derivation ∂ is called iterative if for all i, j ∈ N we have

∂i ◦ ∂ j =

(
i + j

i

)
∂i+ j .
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• If (K , ∂) is a field with a Hasse–Schmidt derivation, then its field of absolute
constants is the intersection

∞⋂
i=1

ker(∂i ).

The passages between the differential Ax–Schanuel and the power series Ax–
Schanuel (described in Remark 2.1) work only one way for the positive characteristic
case, since the power series ring has a natural iterative Hasse–Schmidt derivation on
it. However, it is not clear how to proceed in the opposite way, so Hasse–Schmidt
differential Ax–Schanuel type results need to be proved separately. This is work in
progress [Gogolok and Kowalski ≥ 2024].

We state below two such results which will appear in [Gogolok and Kowalski
≥ 2024] to give a flavour of these kinds of Ax–Schanuel conditions. Assume that
(K , ∂) is a field of characteristic p > 0 with a Hasse–Schmidt derivation and C is
a field contained in the field of absolute constants of (K , ∂).

Additive Hasse–Schmidt differential Ax–Schanuel. Let

F =

∞∑
m=0

cm X pm
∈ Fp[[Fr]]

and suppose that the algebraic degree of F over Fp(Fr) is greater than n. Take
x1, . . . , xn, y1, . . . , yn ∈ K such that x1, . . . , xn are linearly independent over
Fp[Fr] and for all i ∈ {1, . . . , n},

D1(yi − c0xi ) = 0,

Dp(yi − c0xi − c1x p
i ) = 0,

...

Dpm (yi − c0xi − c1x p
i − · · · − cm x pm

) = 0,

...

Then we have
trdegFp

(x1, y1, . . . , xn, yn) ⩾ n + 1.

Multiplicative Hasse–Schmidt differential Ax–Schanuel. Let

γ =

∑
ci pi

∈ Zp

and suppose that the algebraic degree of γ over Q is greater than n. Take
x1, . . . , xn, y1, . . . , yn ∈ K such that x1, . . . , xn are multiplicatively independent
and for all i ∈ {1, . . . , n},
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D1(yi x
−c0
i ) = 0,

Dp(yi x
−c0−c1 p
i ) = 0,

...

Dpm (yi x
−c0−c1 p− ···−cm pm

i ) = 0,

...
Then we have

trdegC(x1, y1, . . . , xn, yn) ⩾ n + 1.
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Analytic continuation and
Zilber’s quasiminimality conjecture

Alex J. Wilkie

In this article, which is dedicated to my friend and colleague Boris Zilber on
the occasion of his 75th birthday, I put forward a strategy for proving his quasi-
minimality conjecture for the complex exponential field. That is, for showing
that every subset of C definable in the expansion of the complex field by the
complex exponential function is either countable or cocountable. In fact the
strategy applies to any expansion of the complex field by a countable set of
entire functions (in any number of variables) and is based on a certain property
— an analytic continuation property — of the o-minimal structure obtained by
expanding the ordered field of real numbers by the restrictions to compact boxes
of the real and imaginary parts of the functions in the given set.

In a final section I discuss briefly the (rather limited) extent of our uncondi-
tional knowledge in the area.

After some reflection we, Boris and I, agreed that it was in July 1993 that he first
asked me whether I had thought about the model theory of the complex exponential
field. The occasion was Logic Colloquium ’93, the European Summer Meeting of
the Association for Symbolic Logic, which was held that year at Keele University in
the UK. We were both invited to give plenary lectures. Boris spoke about his results
on model-theoretic dimensions in complex (and ultrametric) analysis and I gave a
talk on recent work with Angus (eventually published in the paper [Macintyre and
Wilkie 1996]) concerning the decidability of the real exponential field, which was
still my main concern. I certainly hadn’t even considered the complex exponential.
In fact the idea seemed absurd; the set of integers was definable and so as far as I
was concerned it was not a tame structure. But Boris, then as now, had considerably
more imagination, and deeper insights than I did into potentially good model-
theoretic behaviour of familiar mathematical structures. If the set of reals was also
definable then, he agreed, the situation would indeed be hopeless. But what if it
wasn’t? In fact, could it not be the case that every definable subset of C was either
countable or cocountable? That remark had a profound effect on my mathematical
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life and was the motivational force for much of my research since that moment
almost thirty years ago. It still is.

I soon realised that I could make progress on the problem — the quasiminimality
problem as Boris called it — only through o-minimal theory and hard analysis:
my knowledge of abstract stability theory and its generalizations was simply not
strong enough, and certainly not up to a level to be able to follow and make
a meaningful contribution to Boris’s ingenious, beautiful and eventually highly
successful construction of a “pseudoexponential” field using a combination of
Hrushovski’s predimensions and Shelah’s theory of excellent classes. So my own
approach started with the observation that the complex exponential function is
definable in an o-minimal structure (when considered as a function from R2 to R2)
provided that the imaginary part of its argument is restricted to a bounded interval.
(One may take this structure to be, for example, the real ordered field expanded
by both the real exponential function and by the sine function restricted to the
interval [0, π].) After several years I came up with about forty pages of notes
purporting to contain, amongst other things, a proof that the complex exponential
field was quasiminimal and I intended to present a sketch of the argument at an
Oberwolfach meeting in July 2004.

Most readers of this article will know that Boris’ conjecture is still unresolved
and hence that there must have been a mistake, as indeed there was. But three
things did come out of those notes. Firstly, I had established (correctly) a positive
solution of Schanuel’s conjecture for “generic” finite sequences of real numbers,
and this rescued my Oberwolfach talk. (The result was eventually generalized and
published in the paper [Bays et al. 2010] written jointly with two of the editors of
this volume.) Secondly, in order to cope with the fact that the 2π iZ-periodicity of
the complex exponential function is at complete variance with the whole ethos of
o-minimality, I was forced to investigate whether, and if so how, points with integer
coordinates could lie in sets defined by algebro-exponential equations, and thereby
obtain a measure of “nontameness”. I certainly did not want to assume the full
version of Schanuel’s conjecture (which would have settled this particular issue),
but if it could be shown that either there were few such points or, if not, then at
least one such point behaved generically, then the “generic Schanuel theorem” just
mentioned could be used and this might be sufficient to control the periodicity. It
didn’t work but, and I apologize for a small personal digression at this point, the
idea of quantitatively investigating the occurrence of points with integer coordinates
in sets defined as above did appeal to me. In fact, why not do the same in the
framework of general o-minimal structures?

So I temporarily abandoned work on the quasiminimality problem and initiated
the project of counting integer points lying in sets definable in a fixed, but arbitrary,
o-minimal structure. I had limited success at the time, only managing to prove a
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result in the case of one-dimensional sets. The paper [Wilkie 2004] was published
in 2004 and came to the attention of Jonathan Pila who had been working on similar
issues. He had obtained bounds of the same general nature as mine for rational
points lying in low-dimensional, globally subanalytic sets (i.e., sets definable in
the o-minimal structure Ran), but was finding it difficult to put his arguments into a
general setting that would smoothly facilitate an induction on dimension. Jonathan
and I met soon after and agreed that the setting had to be o-minimality. Our point-
counting theorem was published in [Pila and Wilkie 2006] and this is how, at
least from my point of view, that result came about: my motivation for studying
integer points in o-minimally definable sets was, apart from the fun of it, completely
motivated by Boris’ quasiminimality problem. I had no inkling of how, over the
following fifteen years, the result would be applied, with huge success, by Jonathan
and many others to problems in diophantine geometry.

Serendipity? Not exactly. For while Boris, as far as I know, did not foresee such
applications, his conjectures, often fearless but always with sound intellectual bases,
have been an inspirational source of research throughout our community even when,
and perhaps especially when, that research takes unexpected directions.

I mentioned that three things came out of my 2004 notes. The third occupies the
remainder of this paper. It concerns my strategy, which I still believe to be plausible,
for proving the quasiminimality conjecture for the complex exponential field and,
possibly, for many other expansions of the complex field by entire functions. I am
very grateful to the editors for giving me this opportunity to explain the strategy
despite the fact that, at the time of writing, it has not resulted in any definite results.
The main theorems do establish the quasiminimality of a certain class of structures
expanding the complex field but is conditional on a property of locally definable
holomorphic functions, namely that they have analytic continuations along “generic”
paths (i.e., those avoiding obvious singularities). The first theorem is precisely
this, while the second provides a criterion for the continuation in purely complex
analytic terms that avoid notions of general definability.

So let R̃ be a fixed o-minimal expansion of the real ordered field R :=⟨R;<,+, · ⟩.
Following [Peterzil and Starchenko 2001; 2003] we say that a complex valued func-
tion F of the n complex variables z1, . . . , zn is definable if the real and imaginary
parts of F are definable in R̃ (without parameters) when considered as functions of
the 2n real variables x1, y1, . . . , xn, yn , where z j = x j + iy j for j = 1, . . . , n. If F
is holomorphic, its domain will always be assumed to be, without further mention,
a connected, open subset (a fortiori a definable subset if F is definable) of Cn . We
write dom(F) for the domain of F .

Peterzil and Starchenko developed complex analysis in this definable context,
but in fact many of the subtleties of their work will not be needed here since we
will only be working with the standard structure R̃. However, one of their results
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is still worth mentioning, namely that if {Ft : t ∈ Rd
} is a definable family of

n-variable, holomorphic functions, then there exists N such that for all t ∈ Rd and
all a ∈ dom(Ft), if ∂αF/∂zα vanishes at a for each α ∈ Nn with |α| ≤ N , then Ft is
identically zero. (This is, of course, obvious if R̃ is polynomially bounded, but not
so clear otherwise. For example, and of particular relevance to Zilber’s problem, the
Ft ’s could range over polynomials in z1, . . . , zn, log z1, . . . , log zn of some fixed
degree (and with suitable simply connected domains).)

Anyway, returning to definitions, we consider the closure operator LD( · )— “lo-
cally definable from” — where we specify that for all n ≥ 1 and all a1, . . . , an+1 ∈ C,

an+1 ∈ LD(a1, . . . , an) ⇐⇒ F(a1, . . . , an)= an+1 (1)

for some definable, holomorphic function F with ⟨a1, . . . , an⟩ ∈ dom(F).
It is straightforward to show that LD is a pregeometry and, further, that for all

b1, . . . , bm ∈ C,

b1, . . . , bm are LD-independent if and only if whenever G is a nonzero,
definable, holomorphic function with ⟨b1, . . . , bm⟩ ∈ dom(G), then
G(b1, . . . , bm) ̸= 0.

(2)

(See [Wilkie 2008] for details.)
Strictly speaking LD(X) should be specified for all subsets X of C and this is

done in the usual way by taking LD(X) to be the union of all LD(X0)’s as X0

ranges over finite subsets of X . There is a small issue concerning the LD-closure of
the empty set, which is taken to be {s+i t : s, t ∈ R, both definable in R̃}. One easily
checks (using the Cauchy–Riemann equations) that if G is a nonzero, definable,
holomorphic function with s + i t ∈ dom(G) and G(s + i t) = 0, then both s and
t are indeed definable in R̃, so this choice of LD(∅) is consistent with (2) above.
However, the relationship between the LD-dimension of an arbitrary finite subset
of C and the dimension of the corresponding set of real and imaginary parts (for
the usual pregeometry of the o-minimal structure R̃) is more complicated and is
resolved in Section 4 of [Wilkie 2008].

Examples. (a) If we take R̃ to be just R, then LD is just algebraic closure (over Q)
in the field C. More generally, if we expand R by a set A of constants, then LD is
algebraic closure over the subfield Q(A) of C. (Two remarks: firstly, I do not find
this at all obvious (the proof can be found in [Wilkie 2005]), and secondly, recall
that our holomorphic functions are allowed to be definable in R̃ so, for example, we
can distinguish (uniformly in parameters) between different roots of a polynomial.)

(b) Let R̃ = Rexp := ⟨R, exp⟩, where exp : R → R : x 7→ ex . Then, by a result
of Bianconi [2005], LD is still just algebraic closure (but this time it’s over the
minimal model K ≼ Rexp of the theory of Rexp). Of course, things are different,
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and of great relevance to Zilber’s problem, if we expand Rexp by the restricted sine
function and we will be discussing this situation later.

(c) For R̃ = Ran (where the definable sets are the globally subanalytic sets — see,
for example, [Denef and van den Dries 1988]), LD is trivial: LD(X)= LD(∅)= C

for all X ⊆ C simply because all r ∈ R are definable.

In view of example (c) above we now assume that the language of R̃ is countable
so, in particular, LD(∅) is countable. We shall require rather more:

Lemma (existence of generic lines). Let A be a countable subset of R. Then there
exists ω ∈ C (in fact an uncountable, dense set of them) such that for all continuous
functions φ : [0, 1] 7→ C definable in the structure ⟨R̃, s⟩s∈A and satisfying φ(0) ̸= 0,
we have that φ(t) ̸= tω for all t ∈ [0, 1].

Proof. For each such φ let

Sφ := {ω ∈ C : for all t ∈ [0, 1], φ(t) ̸= tω}.

It clearly follows from the continuity of φ and the compactness of the closed unit
interval that Sφ is an open subset of C. So by the Baire category theorem we will
be done if we show that Sφ is a dense subset of C (because there are only countably
many φ’s).

So let ω0 be an arbitrary complex number and let ϵ > 0. Let 1 be the open
disc in C centred at ω0 and of radius ϵ and suppose, for a contradiction, that
1⊆ C∖ Sφ , i.e., that for all ω ∈1, there exists t ∈ [0, 1] such that φ(t)= tω. Then,
by definable choice and since dimension is nondecreasing under definable, injective
maps (working in the o-minimal structure ⟨R̃, s⟩s∈A), there exist ω1, ω2 ∈1 with
ω1 ̸= ω2 such that for some t0 ∈ [0, 1], φ(t0) = t0ω1 and φ(t0) = t0ω2. This is
absurd unless t0 = 0; but this is also ruled out since φ(0) ̸= 0. □

We will be considering analytic continuations of definable functions along generic
paths in Cn . In fact, we only need to consider linear paths: for a, ω ∈ Cn (n ≥ 1),
define the map λa,ω : C 7→ Cn by λa,ω(z) := a + zω (for z ∈ C). We say that
λa,ω is generic on a set T ⊆ C if λa,ω(t) is a generic n-tuple for each t ∈ T , i.e.,
if a1 + tω1, . . . , an + tωn are LD-independent complex numbers for each t ∈ T
(where a = ⟨a1, . . . , an⟩ and ω = ⟨ω1, . . . , ωn⟩). The set T is almost always the
interval [0, 1], so that for any a, ω we have that λa,ω(0)= a.

We now come to our main definitions.

Definition 1. We say that the structure R̃ has the analytic continuation property
(ACP) if for all LD-independent a1, . . . , an ∈C, all definable, holomorphic functions
F with a = ⟨a1, . . . , an⟩ ∈ dom(F) and all ω ∈ Cn with λa,ω generic on [0, 1], there
exists a definable, holomorphic function G with λa,ω([0, 1])⊆ dom(G)⊆ Cn such
that G(a)= F(a). (And hence, by (2), G(λa,ω(z))= F(λa,ω(z)) for all z ∈ C such
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that λa,ω(z) lies in the connected component of dom(F)∩ dom(G) containing the
point a. So the function G ◦ λa,ω analytically continues, in the usual sense, the
function F ◦ λa,ω (restricted to a sufficiently small open neighbourhood of 0 ∈ C)
to an open set containing the interval [0, 1].)

Definition 2. Let 1 ≤ l ≤ n and let M ⊆ Cn . Then we say that M is an l-dimensional,
locally definable, complex submanifold of Cn (or just an l-manifold for short) if

(a) M is a closed subset of Cn , and

(b) for all a ∈ M , there exist a definable open set W with a ∈ W ⊆ Cn and a
holomorphic, definable map G = ⟨G1, . . . ,Gn−l⟩ : W → Cn−l such that a
is a nonsingular point of the zero set of G (i.e., G(a) = 0 and the vectors
⟨(∂G j/∂z1)(a), . . . , (∂G j/∂zn)(a)⟩ (for 1≤ j ≤n−l) are linearly independent
over C) and, further, M ∩ W = Zreg(G), where Zreg(G) denotes the set of
nonsingular points of the zero set of G.

Example. If R̃ = ⟨R, exp↾[0, 1], sin↾[0, 2π ]⟩, then the graph of the complex ex-
ponential function 0exp := {⟨z, ez

⟩ : z ∈ C} is a 1-dimensional, locally definable,
complex submanifold of C2.

Definition 3. The structure C̃ is defined to be the expansion of the complex field
by all l-dimensional, locally definable, complex submanifolds of Cn (for all l, n
with 1 ≤ l < n).

Remark. With R̃ as in the example above, we see that C̃ is an expansion of Cexp

(:= the complex field expanded by the complex exponential function). I do not know
if it is a proper expansion. For example, it is clear that every connected component
of an l-manifold is also an l-manifold, but it seems to me (and, in fact, to Zilber)
to be perfectly possible that some l-manifold, M say, is definable in Cexp but that
some connected component of M is not.

Theorem 4. Suppose that R̃ has the ACP. Then the structure C̃ is quasiminimal.
That is, for any subset S of C which is definable in the language L(C̃) of C̃ (and
we do allow parameters here), we have that either S is countable or its complement
C \ S is countable. In fact, the same is true for sets S defined by a formula of the
infinitary language L(C̃)∞,ω provided, of course, that the formula contains only
countably many parameters.

Proof. We first show that if u and v are elements of C \ LD(∅) then there exists a
back-and-forth system (for the structure C̃) containing the pair ⟨u, v⟩.

Then by a classical result of Karp [1964] the quasiminimality condition for
parameter-free formulas follows from this since it implies that if S ⊆C is a parameter-
free L(C̃)∞,ω-definable set, then either S ⊆ LD(∅) or else C \ LD(∅) ⊆ S, and
LD(∅) is countable.
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So suppose that u, v∈ C\LD(∅). We may assume that λu,v−u is generic on [0, 1].
For otherwise, by the countability of LD(∅), there exists some w ∈ C\LD(∅) such
that both λu,w−u and λw,v−w are generic on [0, 1] and we prove the result for the
pair u, w and for the pair w, v.

We now set up a back-and-forth argument.
For n ≥ 1 and a = ⟨a1, . . . , an⟩, b = ⟨b1, . . . , bn⟩ ∈ Cn we write a ∼n b if

(i)n a1 = u and b1 = v;

(ii)n for some m with 1 ≤ m ≤ n and some i1, . . . , im with 1 ≤ i1 < · · ·< im ≤ n
we have that λa′,b′−a′ is generic on [0, 1], where a′

:= ⟨ai1, . . . , aim ⟩ and
b′

:= ⟨bi1, . . . , bim ⟩;

(iii)n there exists a definable, connected, open set V ⊆Cm with λa′,b′−a′([0, 1])⊆ V
and, for each j = 1, . . . , n, a definable, holomorphic function F j : V → C

such that F j (λa′,b′−a′(0)) = F j (ai1, . . . , aim ) = a j and F j (λa′,b′−a′(1)) =

F j (bi1, . . . , bim )= b j .

We clearly have ⟨u⟩ ∼1 ⟨v⟩ (where, in this case, n = m = 1, V = C and F1 is the
identity function on C).

In order to establish the back-and-forth property, suppose that n ≥ 1 and that
a ∼n b as above, with m, a′, b′ as in (ii)n . We write λ for λa′,b′−a′ .

So let an+1 ∈ C. We must find bn+1 ∈ C such that ⟨a, an+1⟩ ∼n+1 ⟨b, bn+1⟩.
There are two cases.

Case 1. an+1 /∈ LD(ai1, . . . , aim ).
Let A be a finite subset of R containing the real and imaginary parts of ai1, . . . , aim ,

an+1, bi1, . . . , bim . Apply the generic lines lemma to obtain some ω ∈ C such
that for all continuous φ : [0, 1] → C definable in the structure ⟨R̃, c⟩c∈A with
φ(0) ̸= 0, we have φ(t) ̸= tω for all t ∈ [0, 1] and, further, such that ω does
not lie in the (countable) set LD(bi1, . . . , bim , an+1). Let bn+1 := an+1 + ω. We
show that ⟨a, an+1⟩ ∼ ⟨b, bn+1⟩. Now (i)n+1 is obvious and for (ii)n+1, (iii)n+1

we replace m by m + 1 (≤ n + 1) and let im+1 := n + 1. We also replace a′ by
⟨a′, an+1⟩ and b′ by ⟨b′, bn+1⟩ so that λ (= λa′,b′−a′) becomes λ∗

: C → Cm+1

given by λ∗(z) := ⟨λ(z), an+1 + zω⟩. We must show that λ∗ is generic on [0, 1].
So suppose, for a contradiction, that for some t0 ∈ [0, 1] the (m + 1)-tuple λ∗(t0)
has LD-dimension < m + 1. Now since λ(t0) has LD-dimension m (because λ is
generic on [0, 1]) we must have an+1 + t0ω ∈ LD(λ(t0)). So there exists a definable,
holomorphic function F with λ(t0) ∈ dom(F) and such that

F(λ(t0))= an+1 + t0ω. (∗)

Now we cannot have t0 = 0, for then we would have a′
= λ(0) ∈ dom(F) and

F(a′)=an+1, which contradicts the hypothesis of Case 1. Also, t0 ̸=1, for otherwise
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we would have that ω = F(λ(1))− an+1 = F(b′)− an+1 ∈ LD(bi1, . . . , bim , an+1).
So 0< t0 < 1 and since dom(F) is open and λ is continuous, there exist rationals
q1, q2 with 0< q1 < t0 < q2 < 1 such that λ([q1, q2])⊆ dom(F).

Define φ : [0, 1] → C to be the continuous function which takes the value
−an+1 + F(λ(t)) for q1 ≤ t ≤ q2 and which is linear on the intervals [0, q1], [q2, 1]

with, say, φ(0)= 1 and φ(1)= 0.
Then φ is definable in the structure ⟨R̃, c⟩c∈A because λ is, an+1 is, and F

is definable in R̃ without parameters. Further, φ(0) ̸= 0 so by the construction
of ω we have that φ(t) ̸= tω for all t ∈ [0, 1]. In particular, φ(t0) ̸= t0, i.e.,
−an+1 + F(λ(t0)) ̸= t0ω, which contradicts (∗) and establishes (ii)n+1.

As for (iii)n+1, we take our new V to be V × C and our new F j ’s — call them
F∗

j for j = 1, . . . , n + 1 — to be specified (for ⟨z1, . . . , zm+1⟩ ∈ V × C) by setting
F∗

j (z1, . . . , zm+1) := F j (z1, . . . , zm) if 1 ≤ j ≤ n and F∗

n+1(z1, . . . , zm+1) := zm+1.
Then the required conditions for (iii)n+1 carry over from (iii)n for j = 1, . . . , n,

and for j = n + 1 we have, for each t ∈ [0, 1],

F∗

n+1(λ⟨a′,an+1⟩,⟨b′,bn+1⟩−⟨a′,an+1⟩(t))= an+1 + t (bn+1 − an+1),

which takes the value an+1 for t = 0 and bn+1 for t = 1. So we have that
⟨a, an+1⟩ ∼n+1 ⟨b, bn+1⟩ as required.

Case 2. an+1 ∈ LD(ai1, . . . , aim ).
In this case there is a definable, holomorphic function F such that a′

∈ dom(F)
and F(a′)= an+1. Apply the ACP to obtain a definable, holomorphic function G
with λ([0, 1])⊆ dom(G)⊆ Cm satisfying G(a′)= F(a′), i.e., G(a′)= an+1. Now
with V ⊆ Cm as given by (iii)n , note that λ([0, 1]) ⊆ V ∩ dom(G). Let U be a
definable, connected open subset of V ∩ dom G such that λ([0, 1])⊆ U . (Clearly
such a U exists and may be taken, for example, to be a certain finite union of
polydiscs with Gaussian rational centres and rational radii.)

We now take the same m as in (ii)n so that (i)n+1 and (ii)n+1 are obviously
satisfied. For (iii)n+1 we take the F j ’s as given by (iii)n for j = 1, . . . , n and
restrict them to the set U . For Fn+1 we take G restricted to U so that Fn+1(λ(0))=
Fn+1(a′)= G(a′)= an+1. Finally, taking bn+1 := Fn+1(λ(1)) completes the con-
struction in Case 2.

Of course we also need to consider the “back” case, where we take some bn+1 ∈ C

and have to find some an+1 ∈ C satisfying ⟨a, an+1⟩ ∼ ⟨b, bn+1⟩. But this follows
in exactly the same way upon noting that for any c, d ∈ Cl we have that λc,d−c is
generic on [0, 1] if and only if λd,c−d is (because the ranges on [0, 1] are the same).

So, our system {⟨a, b⟩ : n ≥ 1, a, b ∈ Cn and a ∼n b} has the back-and-forth
property.

We must now show that atomic formulas of L(C̃) are preserved from a to b
whenever a ∼n b.
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So let 1 ≤ l ≤ n and suppose that M ⊆ Cn is an l-manifold. Suppose a ∈ M
and b ∈ Cn are such that a ∼n b. We must show that b ∈ M (and similarly for
a and b interchanged, for which the proof is the same). Write a = ⟨a1, . . . , an⟩

and b = ⟨b1, . . . , bn⟩. Let m, 1 ≤ i1 < · · ·< im ≤ n, V and the F j ’s be as in (ii)n
and (iii)n , and write F for the map ⟨F1, . . . , Fn⟩ : V → Cn .

Define T := {t ∈ [0, 1] : F(λ(t)) ∈ M}, where, as before, λ = λa′,b′−a′ and
a′

= ⟨ai1, . . . , aim ⟩, b′
= ⟨bi1, . . . , bim ⟩,

Then T is not empty because 0 ∈ T . Also, T is a closed subset of [0, 1] because
M is closed (see Definition 2(a)). So we shall be done if we can show that T is
open.

So let t0 ∈ [0, 1] be such that F(λ(t0)) ∈ M . Say F(λ(t0)) = c = ⟨c1, . . . , cn⟩.
Choose G = ⟨G1, . . . ,Gn−l⟩ and W as in Definition 2(b) for this particular c ∈ M .
Then c ∈ Zreg(G), and by reducing W (definably) if necessary we may suppose that
w is a nonsingular point of the zero set of G for all w ∈ W satisfying G(w)= 0. By
continuity, there exists ϵ > 0 such that F(λ(t)) ∈ W for all t ∈ [t0 − ϵ, t0 + ϵ]. Thus
{z ∈ V : F(z) ∈ W } is a definable, open subset of V containing λ([t0 − ϵ, t0 + ϵ])

and G ◦ F : {z ∈ V : F(z)∈ W }* → C is a definable holomorphic function such that
G ◦ F(λ(t0))= 0, where the * denotes taking the connected component of the set
{z ∈ V : F(z)∈ W } that contains the point λ(t0) (and hence the set λ([t0−ϵ, t0+ϵ])).
However, λ is generic on [0, 1] and so it follows from (2) that G ◦ F is identically
zero. In particular, G(F(λ(t)))= 0 for all t ∈ [t0 −ϵ, t0 +ϵ]. But Zreg(G)⊆ M ∩W
(Definition 2(b)) and so F(λ(t)) ∈ M for all t ∈ [t0 − ϵ, t0 + ϵ], and this shows that
T is open, as required.

The proof of our present aim is now complete apart from one small detail. The
reader may have noticed that, strictly speaking, atomic formulas of L(C̃) have the
form 8(v j1, . . . , v jp) for some 1 ≤ l < p where 8 is the symbol of the language
L(C) interpreting an l-submanifold of Cp (for some l, p with 1 ≤ l < p). But we
have tacitly assumed in our proof above that jk = k and that p is (an arbitrarily
large) n. But this assumption can easily be arranged (at least for j1, . . . , jp distinct)
by “adding vacuous variables” and observing that the set

{⟨a1, . . . , an⟩ ∈ Cn
: C̃ |H8[a j1, . . . , a jp ]}

is an (n − p + l)-submanifold of Cn .
Notice also that the graph of equality is a 1-submanifold of C2 (so we may indeed

assume in the above discussion that j1, . . . , jp are distinct) and that the graphs of
addition and multiplication are 2-submanifolds of C3, so that equality of polynomial
terms is also preserved by the ∼n relation.

We now need to deal with the case that the formula defining the set S contains a
countable set, X say, of parameters. But for this we simply apply the result above
with R̃ replaced by the structure, R̆ say, obtained by expanding R̃ by a constant for
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each element of X ′, where X ′ is the set of real and imaginary parts of elements
of X . The required result follows since it is easy to check (upon denoting by C̆ the
corresponding complex structure as given by Definition 3) that for any formula of
L(C̃)∞,ω with parameters in X there exists a parameter-free formula of L(C̆)∞,ω

that defines the same set. □

As a test for quasiminimality Theorem 4 has limited use because in order to prove
that a given structure has the ACP one still needs some reasonable mathematical
description of the definable sets and functions. We now turn to this problem in
the case of expansions of the complex field by entire functions and we look for
a complex analytic criterion for such a structure to have the ACP. To this end,
suppose that we are given, for each n ≥ 0, a countable ring Hn of entire functions
of the n complex variables z1, . . . , zn . We assume that Hn ⊆ Hn+1 (in the obvious
sense) and that each Hn contains the projection functions and is closed under
partial differentiation and Schwarz reflection (i.e., if f ∈ Hn , then ∂ f/∂z j ∈ Hn for
j = 1, . . . , n and f SR

∈ Hn , where f SR(z) := f (z̄) for z ∈ Cn (and the bar denotes
coordinatewise complex conjugation)). We then call the sequence H := ⟨Hn : n ≥ 0⟩

of rings a suitable sequence and associate to such an H a certain expansion R̃(H)
of R as follows:

For each n ≥ 0, f ∈Hn and discs D1, . . . , Dn in C with Gaussian rational
centres and rational radii, we denote by f̃ the restriction of f to the
polydisc D1 × · · · × Dn (and define f̃ (z) to be 0 for z /∈ D1 × · · · × Dn).
(For n = 0, f̃ is taken to be the element f of H0 (⊆ C).)

Now, with the usual convention concerning the identification of C with R2, we
define the structure R̃(H) to be the expansion of R by all such f̃ .

Then R̃(H), being a reduct of Ran, is a polynomially bounded, o-minimal ex-
pansion of R and its language is countable (since each Hn is and there are only
countably many polydiscs to which we restrict the functions therein).

In [Wilkie 2008] I gave a characterization of the definable, holomorphic functions
of R̃(H) around generic points of Cn . This characterization has been shown to be
insufficient around nongeneric points (see [Jones et al. 2019]), but at least it does
give an alternative description of the LD-pregeometry in terms that avoid notions
of general definability. The characterization is as follows.

Consider an LD-generic point a = ⟨a1, . . . , an⟩ ∈ Cn and let F be a definable,
holomorphic function (definable, that is, in the structure R̃(H) without parameters).
Then, as is proved in [Wilkie 2008], there exist disks D1, . . . , Dn in C (with centres
and radii as specified above) and, for some N ≥ 1, functions f1, . . . , fN ∈ Hn+N ,
and definable, holomorphic functions φ1, . . . , φN : D1 × · · · × Dn → C such that

(3) a ∈ D1 × · · · × Dn ⊆ dom(F);
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(4) for all z ∈ D1 × · · · × Dn we have that ⟨φ1(z), . . . , φN (z)⟩ is a nonsingular
zero of the map fz : CN

→ CN
: w 7→ ⟨ f1(z, w), . . . , fN (z, w)⟩;

(5) F(z)= φ1(z) for all z ∈ D1 × · · · × Dn .

In other words, F arises, at least close to the generic point a, as a coordinate
function of a map given by an application of the implicit function theorem applied
to functions from H. (Actually, the characterization from [Wilkie 2008, 1.5 and 1.6]
makes use of just the one (dependent) variable version of the implicit function
theorem together with composition, but it is easy to see that this formulation is
equivalent. Note also that the operations 1.2 and 1.3 from [Wilkie 2008] follow
from the corresponding closure conditions that we have placed on H. One can
consult [Sfouli 2012] for more on this.)

For later use we remark now that (4) is equivalent to

(4∗) for all z∈D1×· · ·×Dn and j =1, . . . , N we have f j (z, φ1(z), . . . , φN (z))=0
and J (z, φ1(z), . . . , φN (z)) ̸= 0, where J is the determinant of the Jacobian
matrix (∂ f j/∂wi )1≤i, j≤N .

(Note that J ∈ Hn+N .)
In [Wilkie 2008] I define a pregeometry D̃ on C associated with implicit functions

as discussed above. Namely, a d-tuple ⟨b1, . . . , bd⟩∈ Cd is declared to be D̃-generic
if there do not exist k ≥ 0 and bd+1, . . . , bd+k ∈ C and g1, . . . , gk+1 ∈ Hd+k such
that ⟨b1, . . . , bd , bd+1, . . . , bd+k⟩ is a nonsingular zero of the map

⟨g1, . . . , gk+1⟩ : Cd+k
→ Ck+1.

It is shown in [Wilkie 2008, Theorem 1.10] that LD and D̃ are identical pre-
geometries and as regards to our present aim this leads to our next theorem. It
states that one only needs to check that implicitly defined functions, such as the
φi ’s mentioned above, have analytic continuations along generic paths. To be more
precise we make the following:

Definition 5. We say that the suitable sequence H has the weak analytic continua-
tion property (WACP) if for all n, N ≥ 1, all a, ω ∈ Cn such that λa,ω is D̃-generic
on [0, 1], all r ∈ [0, 1] and all f ∈ (Hn+N )

N , if γ : [0, r)→ CN is a continuous map
such that ⟨λa,ω(t), γ (t)⟩ ∈ Zreg( f ) for all t ∈ [0, r) then ∥γ (t)∥ ↛ ∞ as t → ∞.
(The nonsingularity here is with respect to the last N variables (as in (4∗)), and ∥ · ∥

is some standard norm on CN .)

Notice that there is no explicit mention of definability here. Nevertheless, we
have the following:

Theorem 6. If H has the WACP then R̃(H) has the ACP. Hence, by Theorem 4, the
corresponding expansion C̃(H) of the complex field is quasiminimal (even for the
language L(C̃(H)∞,ω)).
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Remark. The structure C̃(H) is defined to be the expansion of the complex field
by all l-dimensional, locally definable, complex submanifolds of C (for all l, n
with 1 ≤ l < n) with respect to the expansion R̃(H) of the real field. It is trivial to
show that all functions in H are definable in C̃(H).

Proof of Theorem 6. Let a ∈ Cn be an LD-generic point and F a definable holomor-
phic function with a ∈ dom(F). Let ω ∈ Cn be such that λa,ω is generic on [0, 1].
We write λ for λa,ω. We must find G satisfying the conclusion of Definition 1.

Choose ⟨D1, . . . , Dn⟩, N , f = ⟨ f1, . . . , fN ⟩ and φ = ⟨φ1, . . . , φN ⟩ as in (3), (4)
and (5).

Now we may suppose that every zero, ⟨z(0), w(0)⟩ say, of f satisfies

J (⟨z(0), w(0)⟩) ̸= 0

(see (4∗)). Indeed, let fN+1 ∈ Hn+N+1 be defined by

fN+1(z, w,wN+1) := wN+1 · J (z, w)− 1.

Then, letting f ∗
:= ⟨ f1, . . . , fN , fN+1⟩, one easily calculates that the Jacobian of

f ∗ (with respect to w1, . . . , wN+1) has determinant J (z, w)2, which is nonzero
whenever fN+1(z, w,wN+1) is zero. Further, any nonsingular (with respect to
w1, . . . , wN+1) zero of f gives rise to a (unique) zero of the map f ∗. So we
may replace f by f ∗ and (3), (4) and (5) remain true (by setting φN+1(z) =

J (z, φ1(z), . . . , φN (z))−1). And now, all zeros of f ∗ are nonsingular (with respect
to w1, . . . , wN+1).

So we continue our proof with this nonsingularity assumption.
Let T be the set of all those t ≥ 0 having the following properties:

(6)t there exists a definable, open, connected set Ut ⊆ C with [0, t] ⊆ Ut ;

(7)t there exists a definable, holomorphic map ψ (t) with range contained in CN

and with λ(Ut)⊆ dom(ψ (t)) which satisfies the following two conditions;

(8)t for all u ∈ Ut we have that ⟨λ(u), ψ (t)(λ(u))⟩ is a nonsingular zero of f (with
respect to w1, . . . , wN );

(9)t ψ (t)(λ(0)) = f (λ(0)). (So, in particular, the first coordinate of ψ (t)(λ(0))
is F(a).)

We shall be done if we can show that 1 ∈ T , for then we take G to be the first
coordinate of ψ (1) to satisfy the conclusion of Definition 1.

Notice that we certainly have 0 ∈ T by taking U0 to be a (definable) disk around
0 ∈ C which is small enough to satisfy λ(U0) ⊆ D1 × · · · × Dn , and then taking
ψ (0) := φ.

Notice also that if t1, t2 ∈ T and t1 ≤ t2 then ψ (t1) ◦λ and ψ (t2) ◦λ must agree on
(Ut1 ∩ Ut2)

∗, the connected component of Ut1 ∩ Ut2 containing the interval [0, t1].
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This is because they agree at 0 (by (9)t1 and (9)t2) and λ(0) (= a) is LD-generic,
so the definable holomorphic map (ψ (t2)−ψ (t1))↾(Ut1 ∩ Ut2)

∗ must be identically
zero (the zero, that is, of CN ).

We now set r := sup{t : [0, t] ⊆ T } and we need to show that r ≥ 1. So suppose,
for a contradiction, that r < 1. By the extension property just proved, it follows
that χ :=

⋃
t<r (ψ

(t) ↾λ([0, t])) is a continuous map with domain λ([0, r)) such
that for all t ∈ [0, r) we have that ⟨λ(t), χ(λ(t))⟩ is a nonsingular zero of f (with
respect to w1, . . . , wN ); see (8)t . So by applying the WACP (with γ = χ ◦ λ) we
see that there exists some positive R and an increasing sequence ⟨tp : p ≥ 0⟩ in
[0, r) converging to r such that ∥ψ(λ(tp))∥ ≤ R for all p ≥ 0.

Let w(0) ∈ CN be a limit point of the sequence ⟨χ(λ(tp)) : p ≥ 0⟩. Then
⟨λ(r), w(0)⟩ is a zero of f (since f is certainly a continuous map throughout Cn+N )
and by our nonsingularity assumption, it is a nonsingular zero (with respect to
w1, . . . , wN ). So by the implicit function theorem there exist an open polydisc
1⊆ Cn (which we may take to be definable) with λ(r)∈1, and a holomorphic map
θ :1→ CN satisfying θ(λ(r))=w(0) and such that for all z ∈1, the (n + N )-tuple
⟨z, θ(z)⟩ is a nonsingular zero of f (with respect to w1, . . . , wN ). Further, we may
assume that 1 has been chosen small enough for there to exist a (definable) open
polydisk E ⊆ CN with w(0) ∈ E such that for all z ∈1, w = θ(z) is the one and
only solution in E of the equation f (z, w)= 0. (This follows from the uniqueness
condition in the conclusion of the implicit function theorem.) It follows from this
that θ is definable.

Now choose p large enough that tp is close enough to r to satisfy

λ(tp) ∈1 (10)

and
χ(λ(tp)) ∈ E (11)

(and hence ψ (tp)(λ(tp)) ∈ E).
Now choose ϵ > 0 so small that the rectangle

ρ := {x + iy ∈ C : tp − ϵ < x < tp + ϵ,−ϵ < y < ϵ}

is contained in Utp . (See (6)tp .)
Since λ is linear, λ(ρ) is a convex, open subset of Cn (= R2n) and since 1 is too,

it follows that λ(ρ)∩1 is convex and, in particular, connected.
Now λ(tp) ∈ λ(ρ) ∩1 (see (10)) and both θ(λ(tp)) and φ(tp)(λ(tp)) lie in E

(see (11)). So by the uniqueness condition we have that φ(tp)(λ(tp)) = θ(λ(tp))

(see (8)tp ).
But λ is generic (for either pregeometry) on [0, 1] so, by (2), φ(tp) and θ must

agree on a sufficiently small, definable open polydisk containing the point λ(tp)

and contained within λ(ρ)∩1. But then, by the principle of analytic continuation,
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they must agree throughout the connected set λ(ρ)∩1. (Note that λ(ρ)∩1 ⊆

dom(φ(tp)) ∩ dom(θ); see (7)tp .) So we may consistently define a holomorphic
map, 0 say, with domain λ(ρ)∪1 and taking values in C N by specifying 0(z) to
be φ(tp)(z) for z ∈ λ(ρ) and θ(z) for z ∈1.

Finally, since λ(r) ∈1 we may choose r ′ with r < r ′
≤ 1 such that λ(r ′) ∈1.

We now obtain a contradicion by showing that [0, r ′
] ⊆ T .

Indeed, suppose s ∈ [0, r ′
]. Then λ([0, s])⊆ λ(ρ)∪1 (because λ([0, tp])⊆ λ(ρ)

and λ([tp, s])⊆1 since1 is convex). So if we take Us to be a definable, open, con-
nected subset of C containing the interval [0, s] and contained within λ−1(λ(ρ)∪1),
and set ψ (s) := 0 ↾ λ(Us), we see that (6)s–(9)s are all satisfied. Therefore s ∈ T
as required. □

Exponentiation

We now consider the setting appropriate, with respect to the preceding discussion
of analytic continuation, for Zilber’s quasiminimality conjecture for the complex
exponential field.

We let K be a fixed countable, real closed subfield of R and let E0 be the
algebraically closed subfield K [i] of C. Then for each n ≥ 1 we let En be the
ring E0[z1, . . . , zn, ez1, . . . , ezn ] of exponential polynomials over E0 in the complex
variables z1, . . . , zn . It is clear that E := ⟨En : n ≥ 0⟩ is a suitable sequence and one
easily checks that R̃(E) is essentially the same (i.e., has the same definable sets) as
the structure RRE

K considered in [Binyamini and Novikov 2017]. The superscript
“RE” stands for “restricted elementary”: RRE

K is the expansion of R by the restricted
functions exp↾[0, 1] and sin↾[0, π] and by a constant for each element of K .

Thus, in the present context, a subset M of Cn is an l-dimensional, locally
definable, complex submanifold of Cn if it satisfies (a) and (b) of Definition 2,
where definability is now with respect to the structure RRE

K (and, as before, is without
parameters).

Let us refer to such M simply as elementary complex manifolds (ECMs). We
write CECM

K for the structure denoted C̃ in Definition 3; that is, CECM
K is the expansion

of the complex field by all ECMs.
CECM

K is certainly an expansion of Cexp. (See the remark following Definition 3.)
Notice also that the notion of an ECM is, at least apparently, more general than if
we had required the functions G1, . . . ,Gn−l of Definition 2(b) to lie in En . Perhaps
the methods of [Jones et al. 2019] could be used to produce an ECM which is not
of this latter kind.

Theorem 6 implies:

Theorem 7. If E has the WACP then the structure CECM
K (and so, in particular, the

structure Cexp) is quasiminimal, even for the language L(CECM
K )∞,ω. □
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I conclude this article with a proof that E has the WACP in the case N = 1 in
the hope that others might find a way to generalize the method, which uses the
(algebraic) valuation inequality.

So, suppose that n ≥ 1 and a, ω ∈ Cn are such that λ := λa,ω is D̃-generic
on [0, 1]. Suppose further that f ∈ En+1, r ∈ [0, 1] and that γ : [0, r) → C is a
continuous function such that

f (λ(t), γ (t))= 0 ̸=
∂ f
∂zn+1

(λ(t), γ (t)) for all t ∈ [0, r). (12)

We must show that |γ (t)| ↛ ∞ as t → r .
In order to set up a use of the valuation inequality we require the following

general fact.

Lemma. Suppose that r > 0 and that φ : [0, r)→ C is a continuous function such
that |φ(t)| → ∞ as t → r . Then either

(A) for all integers k, l, not both 0 with k ≥0, we have either |φ(t)k exp(lφ(t))|→0
as t → r or |φ(t)k exp(lφ(t))| → ∞ as t → r , or

(B) for some integers k, l, not both 0 with k ≥ 0, we have that for all countable
sets S ⊆ C, there exists α ∈ C \ S and an increasing sequence 0 ≤ t0 < t1 <
· · ·< tp < · · · converging to r such that lim j→∞ φ(t j )

k exp(lφ(t j ))= α.

Proof. Set J := {⟨k, l⟩ ∈ Z2
: k ≥ 0 and k, l not both 0}. For ⟨k, l⟩ ∈ J write

hk,l(t) for φ(t)k exp(lφ(t)) (for t ∈ [0, r)), and define c+

k,l := lim supt→r |hk,l(t)|
and c−

k,l := lim inft→r |hk,l(t)|. Then 0 ≤ c−

k,l ≤ c+

k,l ≤ ∞.
If for each ⟨k, l⟩ ∈ J we have either 0 = c−

k,l = c+

k,l or c−

k,l = c+

k,l = ∞ then clearly
(A) holds. Otherwise, choose ⟨k, l⟩ ∈ J with c+

k,l > 0 and c−

k,l < ∞. Let S be a
countable subset of C. Write h for hk,l . Now either c−

k,l < c+

k,l or 0< c−

k,l = c+

k,l <∞.
In the first case choose c ∈ R with c−

k,l < c < c+

k,l and c /∈ {|s| : s ∈ S}. By the
continuity of |h| there clearly exists a sequence 0 ≤ t ′

0 < t ′

1 < · · · converging to r
such that |h(t ′

j )| = c for all j ∈ N. But now ⟨h(t ′

j ) : j ∈ N⟩ is a bounded sequence
of complex numbers and hence has a convergent subsequence ⟨h(t j ) : j ∈ N⟩ whose
limit, α say, cannot lie in S because |α| = c.

In the second case we have limt→r |h(t)| = c, say, with 0 < c < ∞. There is
no harm in assuming that both h and φ are nonzero throughout [0, r) and so there
exist continuous functions θ , ψ : [0, r)→ R such that

h(t)= |h(t)| exp(iθ(t)), φ(t)= |φ(t)| exp(iψ(t)),

for all t ∈ [0, r).
So by definition of h we have

|h(t)| exp(iθ(t))= |φ(t)|k exp(ikψ(t)) ·exp
(
l|φ(t)|(cosψ(t)+ i sinψ(t))

)
. (13)

Hence |h(t)| = |φ(t)|k exp
(
l|φ(t)| cos(ψ(t))

)
→ c as t → r .
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We cannot have l = 0, for then k > 0 and φ would be bounded. So l ̸= 0 from
which it follows that cosψ(t)→ 0 as t → r (since c ̸= 0,∞). Thus ψ is bounded
and sinψ(t)→ ±1 as t → r . Equating arguments in (13) we obtain, for some fixed
N0 ∈ Z and for all t ∈ [0, r),

θ(t)= kψ(t)+ l|φ(t)| sinψ(t)+ 2πN0.

It follows from this that θ(t)→ ±∞ (the sign here depending on the eventual sign
of l sinψ(t)) as t → r .

Thus we may choose some θ0 ∈ R such that c exp(iθ0) /∈ S and for which there
exists a sequence 0 ≤ t0 < t1 < · · · converging to r such that θ(t j )= θ0 (mod 2πZ)
for all j ∈ N. It follows that h(t j )→ c exp(iθ0) as j → ∞, and we are done. □

Now returning to the discussion before the statement of the lemma, suppose, for
a contradiction, that (12) holds and that |γ (t)| → ∞ as t → r . By definition of
En+1 we see that f has the form

f (z1, . . . , zn, zn+1)=

∑
⟨i, j⟩∈L

Pi, j (z1, . . . , zn)zi
n+1 exp( j zn+1) (14)

for some nonempty finite set L ⊆ N2, where Pi, j ∈ En \ {0} for each ⟨i, j⟩ ∈ L . We
must have L ̸= {⟨0, 0⟩} by (12).

By the genericity of λ on [0, r ] it routinely follows that for all P ∈ En \ {0} there
exists some RP ≥ 1 such that

RP ≥ |P(λ(t))| ≥ R−1
P for all t ∈ [0, r ]. (15)

Let us pass to a nonprincipal ultrapower ⋆C of C (with corresponding ⋆R, ⋆Z, ⋆N).
Then the functions λ1, . . . , λn (where λ = ⟨λ1, . . . , λn⟩) and all the Pi, j ’s have
natural extensions to the ultrapower and (keeping the same notation for the extended
functions) (15) remains true for all t ∈

⋆R with 0 ≤ t ≤ r .
For each such t consider the subfield

Ft := E0
(
λ1(t), . . . , λn(t), exp(λ1(t)), . . . , exp(λn(t))

)
of ⋆C. Then by (the extension to the ultrapower of) (15) it follows that Ft is actually
a subfield of the valuation subring Fin(⋆C) ( := {z ∈

⋆ C : |z| ≤ R for some R ∈ R})
of ⋆C.

By the continuity of each P ◦λ (for P ∈ En) it follows that for all t1, t2 ∈
⋆ R with

0 ≤ t1, t2 ≤ r and satisfying t1 ≈ t2 (i.e., t1 infinitesimally close to t2) we have that
P(λ(t1))≈ P(λ(t2)) and so the correspondence t1 7→ t2 induces an isomorphism
It1,t2 : Ft1 → Ft2 with It1,t2(z)≈ z for all z ∈ Ft1 (and so, in particular, It1,t2(z)= z
for all z ∈ E0).

Further, by the continuity of roots of polynomials (see [Harris and Martin 1987]
or, perhaps more appropriately in the present context, [Ross 2022]) the map It1,t2
extends to an isomorphism Ĩ t1,t2 : F̃ t1 → F̃ t2 of the algebraic closures and we still
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have (for t1 ≈ t2)
F̃ t1, F̃ t2 ⊆ Fin(∗C) (16a)

and
Ĩ t1,t2(z)≈ z for all z ∈ F̃ t1 . (16b)

Now choose any t∗
∈

∗R with 0 < t∗ < r and t∗
≈ r . Extend the function

γ : [0, r)→ C to the ultrapower and set

Ht∗ := F̃t∗
(
γ (t∗), exp(γ (t∗))

)
. (17)

Then by (12) and (14), Ht∗ is a subfield of ∗C of transcendence degree at most 1
over F̃ t∗ and, in fact, exactly 1 because γ (t∗) /∈Fin(∗C) (and F̃ t∗ ⊆ Fin(∗C)). It also
follows from this — and the valuation inequality for the valuation on ∗C (restricted to
Ht∗) associated to the valuation subring Fin(∗C) of ∗C — that γ (t∗) and exp(γ (t∗))

have Q-dependent valuations which, by an easy saturation argument, implies that
(A) of the lemma (with φ = γ ) cannot hold (back in the standard situation). So (B)
holds and we choose integers k, l not both 0 with k ≥ 0 and take S to be the subset
F̃r of C. Let α ∈ C \ S and 0 ≤ t0 < t1 < · · · be a sequence converging to r such
that lim j→∞ φ(t j )

k exp(lφ(t j ))= α.
Let p ∈

∗N\N and t∗
:= tp. Then t∗

≈ r , t∗< r and α∗
:=γ (t∗)k exp(lγ (t∗))≈α.

Now for no β ∈ F̃ t∗ do we have α∗
≈ β; for this would imply

Ĩ t∗,r (β)≈ β ≈ α∗
≈ α ∈ C \ F̃r ,

which is absurd since Ĩ t∗,r (F̃ t∗)= F̃r .
Since F̃ t∗ is an algebraically closed subfield of ∗C contained in Fin(∗C) this

now implies that F̃ t∗(α
∗) is also a subfield of ∗C contained in Fin(∗C) and is of

transcendence degree 1 over F̃ t∗ . However, certainly F̃ t∗(α
∗) ⊆ Ht∗ . Further,

γ (t∗) ∈ Ht∗ and γ (t∗), being infinite, is transcendental over F̃ t∗(α
∗), which forces

Ht∗ to have transcendence degree at least 2 over F̃ t∗ . This contradiction shows
that it cannot be the case that |γ (t)| → ∞ as t → r and completes the proof of the
WACP in this rather simple situation.

With a little more care one can show that the function γ above has an extension
to a definable (in the structure RRE

K ), holomorphic function with [0, 1] ⊆ dom(γ ),
which (therefore) satisfies (12) for all t ∈ dom(γ ). It is then an easy matter to set
up an inductive argument (using the full version of the valuation inequality for
polynomially bounded o-minimal structures; see for example [Speissegger 2002])
to establish the WACP for diagonal systems of exponential polynomial equations:

Proposition 8. E has the diagonal WACP, i.e., where the map f = ⟨ f1, . . . , fN ⟩ in
Definition 5 satisfies the extra condition that f j ∈ En+ j for j = 1, . . . , N. Further,
the map γ has an extension to a definable (in RRE

K ), holomorphic function with
[0, 1] ⊆ dom(γ ). □

But, unfortunately, this is a very special case.
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Further remarks on quasiminimality

Boxall [2020] shows that every formula (parameters allowed) of the language
L(Cexp) having the form ∃ z̄(P(w̄, z̄)= 0), where P(w̄, z̄) is a term of this language
(the w̄, z̄ being sequences of variables, not necessarily of the same length), is
equivalent (in Cexp) to a countable boolean combination of formulas of the form
(∃ z̄ ∈ Qm)φ(w̄, z̄), where φ is a quantifier-free formula of L(Cexp) (containing no
parameters other than those used in P). This immediately implies that sets of the
form

π1(Z(P)) := {w ∈ C : ∃ z̄ ∈ Cm P(w, z̄)= 0}

are either countable or cocountable.
It is worth mentioning here that, even for the case m = 1, this is not a property

of entire functions in general. For instance, Alexander [1975] complements earlier
work of Tsuji [1944] by giving a complete characterization of sets of the form
π1(Z(F)) for F : C2

7→ C an entire function, and this characterization implies
that there do exist such F with both π1(Z(F)) and C \π1(Z(F)) uncountable. In
particular, there is an expansion ⟨C, F⟩ of the complex field C by an entire function
F of two variables which is not quasiminimal. However, as pointed out by P. Koiran,
it is still not known whether there exists a nonquasiminimal such expansion by an
entire function of one variable, or even by finitely many entire functions of one
variable. On the other hand, at least we do know (using a combination of ideas from
[Koiran 2003], [Wilkie 2005] and [Zilber 2005]) that there exists a transcendental
entire function f : C 7→ C such that the expansion ⟨C, f ⟩ of C is quasiminimal.
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Logic Tea in Oxford

Martin Bays and Jonathan Kirby

We assemble some recollections of Boris Zilber from students and others in the
Oxford logic group from the time he arrived in Oxford in 1999 to when the
Mathematical Institute moved building in 2013, centred around the daily Logic
Tea in the St Giles’ building common room.

The institution of Logic Tea. When Boris Zilber arrived in Oxford, he instituted a
daily Logic Tea in the Mathematical Institute. Gareth Jones recalls:

When I first arrived in Oxford, it wasn’t quite clear whether Alex Wilkie or
Boris would be my supervisor. When Boris and I met, he said something
very much like “You should come to tea every day at 4pm”. So I did,
throughout my time in Oxford.

Nick Peatfield was Boris Zilber’s first PhD student, arriving in Oxford just before
Boris in 1999.

In that first year, Logic Tea was the main focus of many days for myself
and the other four PhD students in model theory in years above me, all
being supervised by Alex. We talked about maths and life. I remember
Boris talking about the importance of developing a community in an area
of mathematics, and over the next few years we had various visitors and
more PhD students, leading to a vibrant community at Logic Tea each
afternoon.

The institute was then housed in its original 1966 building at 24–29 St Giles, a
short distance from its current location in the Andrew Wiles building. The common
room was somewhat poorly lit, getting only a little natural light from a window
at the front, when that part of the room was not partitioned off as a classroom,
and one window looking out to the bike shed area to the rear. There were lighted
cabinets containing some mathematical curiosities, and the lighting from these
was a necessary supplement to the ceiling lighting. As a result the room was cosy,
and the warm glow of the conversation with people leaning in to scrawl on the
small whiteboard-topped coffee tables leaves memories akin to a gathering around
a winter fireplace.
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Many other research groups gathered for tea once or twice a week, before or
after their seminars, but the daily frequency of the logic group tea and the number
of its adherents were unusual. Indeed, it was a regular occurrence for the circle of
chairs to gradually get pushed back as more and more people came to join the logic
tea, often to listen to whatever Boris was talking about that day. Assaf Hasson had
been a student of Hrushovski before coming to Oxford as a postdoc to work with
Boris. He explains:

Boris is willing to discuss — with the same level of enthusiasm — his
ideas with anyone interested: from young grad students, through great
mathematicians, physicists (of course), philosophers, or anyone who
happened to sit next to him at dinner or during tea time.

As Juan Diego Caycedo recalls,

Logic Tea was great, you never knew what you’d get: mathematical ideas,
stories from the Soviet Union, or something truly random like a breakfast
TV show’s discussion of how much sunscreen children should use!

Of course, it was not always Boris taking the lead. Gareth Jones recalls that

Alex and I often talked about cricket or football, depending on the time of
year. I’ve tried to carry on that tradition with my students (with varying
levels of success).

Martin Bays explains how central Logic Tea was to the group in his time:

Logic Tea was the daily ritual of proffering 30p for a cup of barely
drinkable coffee, thanking Helen Cullen who always served it, and sitting
at a table to hear the latest iteration of Boris’s stories and ideas, a ritual
which formed the backbone of my time in Oxford. At that time, Zilber’s
group all worked on a circle of ideas centred on his programme on
exponentiation, and Wilkie’s group worked on related topics from a
different perspective, so bringing us together for tea gave us a crucial
overview of what we were collectively working on, how various parts of it
were progressing, and where we might go next. I didn’t realise at the time
that this was anything special, but this unity of purpose is something I’ve
yet to see in any other group. Conversations slipped, largely at Boris’s
whim, between stories of the past, speculations on politics and philosophy,
discussion of random mathematics or physics outside of our expertise,
and the more concrete topics of our research, and I suspect that this free
flow was a crucial part of a magic which seems impossible to replicate
without a Boris.
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The oral tradition of mathematics. For Boris, mathematics seems to be primarily an
oral tradition. While written mathematics is of course important, it is the discovery
and transmission of mathematical ideas in oral form, perhaps supplemented by
a diagram and some symbols on a board, which excites him the most, and his
excitement was certainly something he communicated to his students. There was
only so much space to write on the coffee tables, but the distinction between a
tea-time talk and a seminar was not always clear. Tom Foster and others recall

. . . those seminars about Zariski geometries where at the start Boris would
draw a triangle and by the end of the hour that would still be the only
thing on the board.

Cecily Crampin was a student of Alex Wilkie who later changed career to law.

The thing I most remember about Boris, and which has influenced me
in one aspect of being a lawyer, is a talk he gave in the 2000 Logic
Colloquium in Paris. To my mind, a lot of the talks tried to take the
listener through a proof or proofs as if the listener were reading a paper,
and without the time I needed to go back and scratch my head and reread
the first bit so I understood the steps. Boris didn’t do that. He gave a
talk in which he explained why he was interested in the area of logic
which he was working on (and in which my DPhil work was based by his
suggestion). The description was much more ideas dancing than the nitty
gritty of proof. I could see it and I was excited by the vision of what could
be achieved. I still remember that, though the maths has long escaped me.
That way of speaking about a very technical subject when giving a talk
has influenced the way I approach giving seminars in property law.

One possible reason for this emphasis on oral mathematics comes from his
experience of undergraduate exams in Russia, which were usually oral exams. One
anecdote Boris would recount of those days was of a professor who found a clever
way to reduce the time taken to do individual oral exams for the dozens of students
in his class. First, he challenged the students that if they had not done the work to
prepare, they would be wasting their time to wait for their turn, so he invited those
students to leave. Once they had gone, he asked which of the remaining students
would be satisfied with a D, the lowest passing mark. They were invited to give
their names and leave. Then he asked who was sure they would get an A. No point
wasting time on them. Finally, of the remaining students, he asked which of them
wanted a chance to upgrade their C to a B, and these he would examine!

This oral mathematical background is visible in the draft manuscripts of Boris
with which his students would grapple. He would start with an outline of the
argument, and then in places the details of statement and argument and definition
would be sketched in more and more detail, as if in answer to an interlocutor.
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Tom Foster was one of Alex Wilkie’s students who remembers one discussion at
Logic Tea

. . . about “proof”, where I made what I thought was the uncontroversial
point that I didn’t think you could know something to be true until you
had written down the proof. Of course Boris completely rejected this
point. I guess Boris just discovered things in his head and it was up to
others to formalise the proof.

Alex himself provided a wonderful counterbalance to some of Boris’s traits, and
it was perhaps just as well that at Logic Tea we also heard his point of view on
proof and could take our own path between the two. Many readers will have seen
one of Alex’s handwritten manuscripts where arguments are developed carefully,
line-by-line.

Another student of Alex Wilkie was Henry Braun, who was already working on
Boris’s conjecture that the complex exponential field should be quasiminimal when
Boris arrived in Oxford. Most memorable to him was

. . . not tea but a chat as we walked together across Oxford to lunch at
Merton. Boris observed that the thinking he did indoors and outdoors was
different. Indoors, looking close to his hands, was good for manipulative
algebra. Outdoors, with eyes raised to the scenery, was the place for
geometry. One must be alert to both. The importance of choosing the
right environment for the work in hand is something I have carried into
my career outside logic.

Russian / British culture. The culture shock of arriving in Oxford from post-Soviet
Kemerovo must have been significant, and in the early years this was a regular topic
of conversation.

Henry Braun recalls that, in his first couple of weeks, Boris had to get used to
being “Boris” to the graduate students, not “Boris Iosefevich”, without disrespect.

Nick Peatfield remembers

. . . his recollections from Russia, and in particular his assertion that “if
everybody around you keeps repeating something for years and years,
you will end up believing it”. A scary thought in these times, but also a
sign that Boris himself was adjusting to some of the assumptions about
life prevalent in the West, but very different to some of those held in the
former Soviet Union.

Today, the logic group in Oxford is truly international. However, in the early
2000s almost everyone in the logic group was British. Apart from Boris, just Alex
Wilkie’s student Mario Edmundo and Boris’s student Misha Gavrilovich were the
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exceptions at that time. As such, Boris’s descriptions of a Russia which was, to us,
a very alien world were fascinating.

Vinesh Solanki describes how Boris

. . . somehow had the ability to speak matter-of-factly and even lightly about
some quite difficult things. I remember when he told us the story about
his assignment to a university after he had finished his doctorate (which
apparently happened automatically and at random in Soviet Russia). His
friend had been assigned to a university that was close to the border with
China and the two of them were going to be separated by a considerable
distance. I can’t quite remember what Boris did to change this state of
affairs but it was the way he put in his inimitable and matter-of-fact style.
“Anyway, at some point I was told that some random redistribution had
occurred which put us close enough to each other; what are the odds?”

He also told awful stories about his father’s experience during the Siege of
Leningrad and of the constant fear of life under Stalin, which really brought this
part of history to life for those of us fortunate enough to have led more sheltered
lives.

Vinesh continues:

Boris was often excited by new mathematics and ideas and his excitement
rubbed off on me. As a student, at a university with plentiful resources
and good mathematicians, I wished to learn lots of new mathematics and
there were no obstacles to doing so. During a conversation with Boris, I
remember him telling me that original research was harder to come by in
Russia and that he had to be more reliant on his own resources. It was
these kinds of stories that allowed me to come to a better understanding
of what he valued and that in a number of ways, Boris came from a world
that was harder than I understood.

If Soviet Russia was strange to us students, then Oxford was also strange to
Boris. He was rather surprised but impressed by the British sense of fairness. He
recalled that he had asked Roger Heath-Brown, then Director of Graduate Studies,
if the money left over from the graduate student allocation could be spent on this
or that student? The answer was no, because it would not be a fair process. It was
apparently better for the money to be unspent and no one to benefit than for one
person to benefit unfairly!

Boris Zilber’s approach to mathematics. Boris has always brought outside ideas
into model theory. If algebraic geometry was the source in his early days in Russia,
then physics was often the source in Oxford. Much remembered by many students
was the occasion when Boris was teaching a course on Zariski geometries when a
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Figure 1. Geometric thinking on the board: a common sight both
at Logic Tea and in seminars. Photograph by Andrés Villaveces.

student opened the door from outside and stayed there looking around to decide if
this was his lecture. Boris then noticed him, stopped the lecture and asked him what
he was looking for. The student asked “Is this quantum?” After a little thought,
Boris answered with a smile on his face: “Not yet!”

Jonathan Kirby recalls that at one Logic Tea, Boris asked him to borrow a popular
physics book from a college library. Boris soon graduated to the research literature,
and his model-theoretic perspective on explaining the mysteries of quantum me-
chanics via noncommutative geometry became a regular topic at Tea. Indeed, so
regular that Assaf Hasson explains:

The number of times I have seen Boris draw his image of the Zariski
geometry he used to interpret as the quantum group at roots of unity is
barely countable.

Nick Peatfield recalls:

One idea of Boris’s that stands out is his description of the time taken
to engage in mathematics, in comparison with that taken by empirical
scientists in the lab. He said that, whereas those scientists go to work
each day and get on with their lab work, we mathematicians have to be
“at work” a lot more of the time. We have to be “with” the problem we are
working on almost 24 hours a day, as the breakthrough is just as likely to
happen when you are brushing your teeth in the morning as when you are
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sitting at your desk consciously mulling it over. This idea has seeped into
my work as a mathematics teacher educator, where a phrase I repeat often
is that expressed by the mathematics educator John Mason: “Teaching
takes place in time; but learning takes place over time”.

Adam Harris and others remember:

. . . one day when we were in Pisa at a conference and I asked him what
he’d been doing today. He told me that he’d been looking round the sights
in Pisa with his wife, thinking about mathematics, pretending not to think
about mathematics . . .

Boris’s mathematical insights were often startling but not easy to grasp. Ayhan
Günaydin was a postdoc in Oxford.

I was working on the expansions of the ordered real field by a finitely
generated multiplicative subgroup G of the circle S. While proving an
elimination of imaginaries result with Alex Berenstein and Clifton Ealy,
we had the idea that the structure induced on the quotient S/G from
that expansion could be stable. We had some good reasons to think so!
Possibly my first day of working with Boris, he asked about what I had
been doing in those days. After presenting some results I had proven, I
also mentioned that belief of ours. Boris’s immediate reaction was “but
there are curves there!” while twisting his finger in the air. I had that
single sentence in my mind for the rest of the day: there are curves there.
What could it have meant? Even if there were curves, why would that be
opposed to being stable? There are curves in algebraically closed fields
anyway . . . . I had given up trying to understand it and asked him what he
meant. He sent me a very old-looking write-up where it is proven that
there are certain curves in certain quotients, which gives rise to defining
the real field. After that incident, I learned to pay attention to Boris’s
fantastical sounding remarks. They are always filled with a lot of insight,
however most of the time, it is very hard for us to decipher what he means.
It generally takes a great mind like his to do that!

Adam Harris:

I was often in awe of the way he thought about maths and geometry. There
were many times when the conversation moved towards a seemingly far
away subject area and he could so easily relate it back to his domain
(logic / model theory / stability) in a seemingly simple and obvious way.

I also remember a few times in supervisions when he explained a
concept that I believed I understood fairly well in general, but he explained
it in such a way that was so illuminating but simple that it immediately



728 MARTIN BAYS AND JONATHAN KIRBY

changed the way I thought about it. There were obviously quite a few
fairly confusing times too when he drew another blob with a wiggly line
in it and I had no idea what he was talking about!

Boris always made connections and could see past the details to the big picture.
Assaf Hasson remembers Boris producing a wonderful phrase:

I once asked Boris about a preprint I knew he was reading. He said “The
results are really very nice, but the paper is locally everywhere wrong”.
That is still a description I like of a certain kind of badly written papers.

Assaf continued:

Boris is one of a very few mathematicians I know who has a spark in the
eye when talking — not about his results — rather about his mathematical
philosophy, vision and conjectures. I think that the Zilber trichotomy is
indicative of his style: it is bold, far-reaching, morally true. The fact that
it is, in a precise mathematical sense, very wrong does not deter him.

Piotr Kowalski was a postdoc whose time in Oxford overlapped with Assaf Hasson.
They were working on Peterzil’s conjecture that the Zilber trichotomy should hold
for strongly minimal sets which are interpretable in o-minimal structures, and did
eventually prove a special case with a long and complicated argument. Piotr recalls:

Assaf and I were then usually working whole days on this. It turned out
to be much more difficult than we had thought and often at the Logic Tea
we were discussing the ideas which had collapsed around us. In such
moments, Boris was kindly suggesting “Maybe it is time to work on a
counterexample?”

The later years. Sylvy Anscombe and Franziska Jahnke, two students of Jochen
Koenigsmann, give their own reflections on their experience of Logic Tea with
Boris Zilber in the years just before the Mathematical Institute moved buildings.

Before either of us had ever met Boris, we heard many a legend about
him, mostly around his exceptional and deep insights and his central role
in shaping our community’s research directions through his theorems
and conjectures. Long before our time, his reputation preceded him
across the iron curtain, and growing up as mathematicians, we heard
him spoken of by our professors in awed tones. Martin Ziegler spoke of
Boris running an arboretum in Oxford, planting seedlings of ideas into
students and colleagues alike. Dugald Macpherson told of the excitement
in the Western community when Boris “came to the West”. The Oxford
administration seemed not as impressed as the research community and
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required the award of a fresh Master of Arts degree before he could start
his tenure as the chair of mathematical logic.

Personally, we were each interviewed by him before we were accepted
as PhD candidates at Oxford, though neither of us was asked testing
questions during said interviews. His maxim — then as now — is that it is
easy to find a teacher who will explain essentially all they know, but hard
to find a student willing to listen. He is a strong believer in learning by
permeation, and strongly advocates listening with full attention to talks on
almost any subject, in the expectation that frequent exposure to an abstract
concept will foster understanding. He led us by example, always willing
to ask questions, from those “stupid ones” we were thinking but not
daring to ask, to such insightful ones that they turned the speaker’s own
perspective. At the same time, he freely admitted to a certain nervousness
when outlining a research question in front of Saharon Shelah — in case
the answer was already obvious to the latter. This humility and his
kindness (Please! Call me Boris. My name is Boris! Not Prof. Zilber.)
made him approachable from day one. Despite not being supervised by
him, we were hugely influenced by his leadership of the Oxford Logic
Group.

Although on paper the main event of the week was Logic Seminar,
initiates knew that it was Logic Tea that mattered most (incidentally, a
daily occurrence with tea served by Helen). Attendance was effectively
mandatory, and Boris would gladly pay for your tea if you were short on
change. To his lament, the stamina of graduate students for the consump-
tion of tea decreased generation after generation, and eventually only
Thursdays would draw a full house. Nevertheless, reliably and daily at
4pm, Boris would be found in the common room of the old Mathematical
Institute. It is easy to picture the scene even now: Boris, sharply dressed,
trim, sometimes entering the room with his trademark beret.

The topics at tea were as varied as his mathematical interests, and very
certainly not limited to mathematics. We learned about life in the Soviet
Union, beginning with the stories of his parents during and after the war
(as a recommendation: when in the Red Army, do not complain about the
lack of shoes), the necessity of bribing officials for just about anything, as
well as having Yiddish as a first language (with a smattering of German
thrown in for good measure). His life at university brought dangers and
adventures: a mandatory undergraduate hike resulted in him and a group
of fellow students getting lost in a vast forest, only finding their way back
to civilisation by a stroke of luck and a fortuitously located cabin. Later,
he had to overcome immense difficulties to obtain a doctorate as a Jewish
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student. Although these were difficult topics, Boris recounted them with
lightness and his characteristic good humour.

Meanwhile, the denizens of Logic Tea were as varied as the conversa-
tion, and Boris’s willingness to give advice extended from the youngest
master’s student to the most eminent visiting speaker. His generosity
in sharing his ideas, both on mathematical and more mundane matters,
meant that the conversation was free flowing. Further recurrent themes
included the beauty and uses of Zariski geometries, the characteristic of
the universe (presumably finite), the mysteries of quantum physics, the
reticence of (pseudo)exponentiation, and whether the food or the intricacy
of the tables was to be preferred at Bangkok House. An all time favourite
of ours is the story of how he and his son willingly let a con-artist at a
market change a large note into smaller ones for them, knowing they were
about to be duped but still keen to watch how the trick was done.

Let’s be categorical: Logic Tea was a logically perfect structure. And
if we ever need someone trustworthy with cunning and plenty of life
experience to steal a horse with, we will choose Boris.

Boris Zilber’s character. While Boris’s approach to mathematics is most evident
at Logic Tea, many students reflected on his character more widely.

Nick Peatfield recalls:

Boris welcomed me into the model-theoretic community with care and
compassion, and his warm and welcoming personality made me feel at
home in a place that was new to both of us.

From Tom Foster:

I have lots of great memories of my time in the logic group and Boris in
particular. He created a very friendly and collaborative atmosphere which
at the time I think I just took for granted but which in hindsight I realise
was quite special.

Vinesh Solanki reflected similarly:

If I reflect on Boris, I recall his charisma, wit, strength of intuition and
generosity. In my time since leaving Oxford, I have come to realise that
this combination of traits is fairly rare.

Adam Harris:

Overall he is a kind-hearted, brilliant human being and I feel very privi-
leged to have spent so much time around him.

This reputation evidently went beyond Oxford. Juan Diego Caycedo writes:
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Shortly before going to Oxford, I met a few model-theorists at a conference
in Colombia. When I mentioned that I was going to be Boris’s student,
the first thing that they said about him was always the same: that he’s
such a kind person (not something about mathematical vision or the like).
After my years there, that’s also the first thing that I say myself when I
get a chance.

And, lest we get too caught up in the importance of our research, Juan Diego
Caycedo recalls Boris giving some perspective on life:

Of all the teatime stories, the one that I remember the most is the one
about how Boris once made a replacement heel for his wife’s shoe. She
was upset that her shoe had broken and there seemed to be no way to get
it repaired or get a new pair. Boris told us that he put a lot of work into
it and that in the end he had been as proud of that heel as of any of his
theorems.
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