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Dedicated to Boris Zilber on the occasion of his 75th birthday.

Motivated by the study of meromorphic vector fields, a model theory of “compact
complex manifolds equipped with a generic derivation” is here proposed. This
is made precise by the notion of a differential CCM-structure. A first-order
axiomatisation of existentially closed differential CCM-structures is given. The
resulting theory, DCCM, is a common expansion of the theories of differentially
closed fields and compact complex manifolds. A study of the basic model theory
of DCCM is initiated, including proofs of completeness, quantifier elimination,
elimination of imaginaries, and total transcendentality. The finite-dimensional
types in DCCM are shown to be precisely the generic types of meromorphic
vector fields.

1. Introduction

The model-theoretic approach to systems of (ordinary) algebraic differential equa-
tions is via the first-order theory of differentially closed fields in characteristic
zero (DCF0). Such systems of equations, at least in the autonomous case when the
equations have constant parameters, can be presented geometrically as algebraic
vector fields; namely, a projective algebraic variety X equipped with a rational
section v : X → TX to the tangent space. In fact, the finite-dimensional fragment
of DCF0 essentially coincides with the birational geometry of algebraic vector
fields. (See, for example, [Moosa 2022] for an exposition of DCF0 from this point
of view.) Here, I am interested in generalising this model-theoretic framework
to meromorphic vector fields; namely, when X is a compact complex-analytic
space that is not necessarily algebraic and v is a meromorphic section to the
holomorphic tangent bundle. While DCF0 is built on the theory of algebraically
closed fields (ACF0), the new theory I am seeking should be built on a first-order
theory of compact complex manifolds.
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About thirty years ago, as part of the development of the notion of “Zariski-type
structure”, Zilber [1993] proposed a model theory for compact complex manifolds.
Unlike ACF0 and DCF0, the first-order theory proposed by Zilber for compact
complex manifolds was not given by an explicit axiomatisation, nor as the model
companion of a natural class of algebraic structures, but rather as theories of
particular structures: a compact complex manifold M is viewed as a first-order
structure in the language where there is a predicate for each closed complex-analytic
subset of each finite cartesian power of M . Zilber showed that the theory of any
such structure shares many properties with its algebraic predecessors: in particular,
they admit quantifier elimination and are of finite Morley rank (bounded by the
dimension of M). Later, in [Hrushovski 1998; Pillay 2000], for example, it became
common to consider all compact complex manifolds — indeed all (reduced) compact
complex-analytic spaces — at once, in a multisorted structure whose theory now
goes by the name CCM. Like differentially closed fields, CCM is a proper expansion
of ACF0. Also like DCF0, much of the richness of geometric stability theory absent
in ACF0 is present in CCM. For example, all cases of the Zilber trichotomy appear.

In this paper, I present a common expansion of CCM and DCF0, which I
call DCCM. It turns out (in Section 8, below) that the finite-dimensional fragment
of DCCM captures, precisely, the bimeromorphic geometry of meromorphic vector
fields. As such, it achieves the goal set out in this introduction.

The theory DCCM arises by considering differential CCM-structures, essentially
by adding a “derivation” to the definable closure of a generic point of a sort, say X ,
in CCM. This makes sense because the elements of the definable closure of a
generic point of X can be viewed as meromorphic maps from X to other sorts, and
hence can be differentiated. See Sections 2 and 3 for a detailed explanation.

The specific goals of this paper are:

(1) to show that the (universal) theory of differential CCM-structures admits a
model companion, which is DCCM, by giving a geometric first-order axioma-
tisation of the existentially closed models (Theorem 5.5);

(2) to show that DCCM is complete, admits quantifier elimination (Proposition 6.3)
and elimination of imaginaries (Theorem 7.6), and to give a geometric charac-
terisation of definable and algebraic closure (Proposition 6.5);

(3) to show that DCCM is totally transcendental (Theorem 7.5), and to give
geometric characterisations of nonforking independence (Corollary 7.4); and,

(4) to establish the correspondence between finite-dimensional types (over the
empty set) in DCCM and meromorphic vector fields (Theorem 8.3).

The proofs proceed largely by finding geometric analogues for the algebraic argu-
ments already familiar from DCF0.
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The next step in the study of DCCM, not attempted here, would be to establish
the canonical base property for finite-dimensional types following the strategy
of [Pillay and Ziegler 2003] in the case of DCF0. This would involve developing a
theory of jet spaces in DCCM; see for example [Bays et al. 2017], where this was
done for compact complex manifolds with a generic automorphism (CCMA). In
any case, once the canonical base property is established, a concrete manifestation
of the Zilber dichotomy for finite-dimensional minimal types in DCCM will follow.
It would then be reasonable to expect that many of the recent applications of model
theory to algebraic vector fields, as carried out in [Freitag et al. 2022; Jaoui and
Moosa 2022] for example, would extend to meromorphic vector fields.

The process of adding an automorphism to any given first-order theory of interest,
and then seeking a model companion, is well-studied (see [Chatzidakis and Pillay
1998]). Here we have “added a derivation” instead. Clearly, this does not make
sense for an arbitrary theory. But following the ideas presented here, it may be
worth investigating a robust general setting where adding a derivation does make
sense. A likely candidate might be that of Zariski-type structures in Zilber’s sense;
one that expands ACF0 and admits a functor that extends to all sorts the tangent
space construction on algebraic varieties.

2. Meromorphic varieties and their tangent spaces

In this section I want to slightly loosen the usual formalism for doing the model
theory of compact complex-analytic spaces, so as to work directly in the “compact-
ifiable” rather than compact setting.

For the fundamental notions from complex-analytic geometry we suggest [Fischer
1976]. Given a reduced compact complex-analytic space X , by the Zariski topology
on X we mean the (noetherian) topology of closed complex-analytic subsets of X .
This does not conflict with the usual meaning of the Zariski topology in the case
that X is a projective complex-algebraic variety, because in that case the complex-
analytic and complex-algebraic sets agree (Chow’s theorem).

Definition 2.1. By a meromorphic variety we mean a pair (X, X) where X is a
Zariski dense and open subset of a reduced compact complex-analytic space X .
Note that X inherits from X the structure of a reduced complex-analytic space in
its own right, which may admit other compactifications.1 We usually abbreviate
our notation by referring to X as the meromorphic variety, but it is important to
keep in mind that we view X as embedded in a fixed given compactification X .

Cartesian products of meromorphic varieties X × Y are viewed as meromorphic
varieties with the compactification X × Y = X × Y .

1Thanks to the anonymous referee for pointing out that different compactifications of X need not
be bimeromorphically equivalent.
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By the Zariski topology on X we mean the topology induced by the Zariski
topology on X . Note that this is a coarser topology than that of the closed complex-
analytic subsets of X ; such a set is Zariski closed in X if and only if its (euclidean)
closure in X is Zariski closed.

By a definable holomorphic map f : X → Y of meromorphic varieties we mean
a holomorphic map that extends to a meromorphic map f̄ : X → Y . Equivalently,
the graph of f is Zariski closed in X ×Y . More generally, a definable meromorphic
map f : X → Y is a meromorphic map that extends to a meromorphic map from X
to Y . Such a map is dominant if its image is Zariski dense in Y .

Meromorphic varieties, as I have defined them here, are intended to extend
the notion of quasiprojective variety from the complex-algebraic to the complex-
analytic setting. Indeed, the quasiprojective varieties are precisely the meromorphic
varieties X where X is projective algebraic. Note that while every regular or
rational function on a quasiprojective variety X extends to a rational function on
the projective closure X , the same is not true of holomorphic and meromorphic
functions on meromorphic varieties, and this is why we restrict our attention to
definable holomorphic and meromorphic maps, namely, the ones that do so extend.

Remark 2.2. When X = X is compact, every holomorphic (respectively, mero-
morphic) map to a meromorphic variety, f : X → Y , is definable holomorphic
(respectively, definable meromorphic). This is because, by the proper mapping
theorem, the image of f in Y is Zariski closed, and hence we can take f̄ to be f
itself, viewed as a map from X to Y .

The usual model-theoretic set-up is to consider the first-order theory of the
multisorted structure A where there is a sort for each reduced and irreducible
compact complex-analytic space, and a predicate for each Zariski closed subset
of each finite cartesian product of sorts. See, for example, the surveys [Moosa
2005a; Moosa and Pillay 2008]. Every meromorphic variety, in the above sense,
is 0-definable in A, as is every Zariski closed subset of every finite cartesian
product of meromorphic varieties. It therefore does no harm to work instead with
the expansion of A to the multisorted structure M where there is a sort for each
irreducible meromorphic variety, and a predicate for each Zariski closed subset
of each finite cartesian product of sorts. So we have added some sorts and some
predicates, but they were all already 0-definable in the original structure. I denote
by L the language of M, and by CCM the first-order L-theory of M. It admits
quantifier elimination and elimination of imaginaries, and, sort by sort, is of finite
Morley rank.

Every quasiprojective complex-algebraic variety V , given with an embedding
in a projective compactification V , is a meromorphic variety, and the algebraic
and analytic Zariski topologies on V agree. In particular, definable holomorphic
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maps in this case are just regular morphisms, and definable meromorphic maps are
rational. In this way, algebraic geometry lives as a pure reduct of CCM.

Our main use of the flexibility that M affords is that the collection of sorts is
closed under taking tangent spaces. Recall that the tangent space of a complex-
analytic space X is the linear fibre space π : TX → X associated to the sheaf of
differentials �1

X on X . So TX is a complex-analytic space and π : TX → X is a
surjective holomorphic map whose fibres are uniformly equipped with the structure
of a complex vector space, in the sense that there are holomorphic maps for addition
+ : TX ×X TX → TX, scalar multiplication λ : C × TX → TX, and zero section
z : X → TX, all over X , satisfying the vector space axioms. For any point p ∈ X , the
tangent space to X at p is the fibre of π : TX → X above p, denoted by Tp X , and
it is canonically isomorphic as a complex vector space to HomC(mX,p/m

2
X,p, C),

where mX,p is the maximal ideal of the local ring of X at p.
We claim that when X is a meromorphic variety so is TX, and that π, +, λ, z

are all definable holomorphic maps. Let us first consider the case when X = X is
already compact. We are looking for a natural compactification of TX. In fact, there
is a canonical way to do this for any linear fibre space L(F) → X associated to a
coherent analytic sheaf F on X ; it is just the relativisation of the usual embedding
of Cn in the projectivisation of Cn+1. One considers the coherent analytic sheaf
F × OX of rank one greater than F , and then the associated projective linear
space P(F ×OX ) → X . See [Fischer 1976, Section 1.9] for details. Then L(F)

embeds in P(F ×OX ) over X as a Zariski open set in such a way that the linear
structure (namely, π, +, λ, z) extends meromorphically to the projective linear
space. Applying this to F = �1

X gives TX → X the meromorphic structure we are
looking for, namely

TX := P(�1
X ×OX ).

Now, if we consider a general meromorphic variety X embedded in X , then the linear
space TX → X is just the restriction to X of TX → X , and hence TX serves as
a compactification for TX, to which the linear structure extends meromorphically.

Remark 2.3. While we have not been assuming here that X is smooth, the tangent
space is better behaved and more familiar under that assumption. As we are only
interested in the bimeromorphic structure, we can achieve smoothness by replacing
X with its nonsingular locus. Note that the set of nonsingular points of X is of the
form X ∩ U , where U is the (Zariski dense and open) set of nonsingular points
of the compactification X . It follows that the nonsingular locus of X is again a
meromorphic variety given with the same compactification X .

Recall that the tangent space construction is functorial: for each meromorphic
(respectively, holomorphic) map g : X → Y between complex-analytic spaces there
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is a meromorphic (respectively, holomorphic) map dg : TX → T Y such that

TX
dg
//

πX
��

T Y

πY
��

X
g
// Y

commutes, and we have the functoriality property d(g ◦ h) = (dg) ◦ (dh). If X and
Y are meromorphic varieties, and g : X → Y is definable meromorphic (respectively,
holomorphic), then so is dg : TX → T Y . That is, if g extends to a meromorphic
map X → Y then dg extends to a meromorphic map TX → T Y .

3. The differential structure

By a CCM-structure I mean a definably closed subset of a model of CCM. In
other words, a model of CCM∀. The goal of this section is to describe what we
might consider a “derivation” on a CCM-structure. But first, let us recall what
CCM-structures themselves look like.

Since we are in a relational language in which all elements of M are named, a
model of CCM∀ is simply a subset A of an elementary extension N of M such
that M ⊆ A. As we are in a multisorted setting, this is meant relative to every
sort, so S(M) ⊆ S(A) for all sorts S of L . But we are mostly interested in finitely
generated definably closed substructures, so where A = dcl(a) for some a ∈ X (N )

and some irreducible meromorphic variety X . Replacing X by the locus of a, we
may assume that a is a generic point of X in the sense that it is not contained in
Y (N ) for any proper Zariski closed subset Y ⊊ X . In that case we can identify A
with the set of all definable meromorphic maps g : X → S as S ranges over all other
sorts. Indeed the identification is given by g 7→ g(a) ∈ S(A), noting that every
point of S(A) arises this way as A = dcl(a), and that if two definable meromorphic
maps agree on a then they agree on X by genericity.

It is worth comparing to the algebraic case, so when X happens to be a quasi-
projective complex-algebraic variety. In that case one only needs to consider the
single target sort S = P, the projective line. Indeed, in that case, dcl(a) = C(X)

is just the field of rational functions. For nonalgebraic meromorphic varieties, if
we only considered S = P we would obtain the meromorphic function field of X ,
and not necessarily the full definable closure of a generic point. Indeed, on some
compact complex-analytic spaces, namely those of algebraic dimension 0, there
are no nonconstant meromorphic functions, but many nonconstant meromorphic
maps to other sorts.

The differential structure I want to consider is motivated by the study of the
following natural objects in bimeromorphic geometry:
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Definition 3.1. By a meromorphic vector field we mean an irreducible meromorphic
variety X equipped with a definable meromorphic section v : X → TX to the tangent
space of X .

Remark 3.2. When X = X is compact, “definable” is redundant and a meromorphic
vector field is simply a meromorphic section to the tangent space — see Remark 2.2.
So this notion does generalise what I called a meromorphic vector field in the
introduction. However, as we are only interested in the bimeromorphic geometry, it
is not much of a generalisation: we can always pass from (X, v) to (X , v̄).

Of course, every meromorphic variety equipped with its zero section is a mero-
morphic vector field, which we call the trivial vector field.

Every (rational) algebraic vector field, by which we mean an irreducible quasi-
projective complex-algebraic variety equipped with a rational section to the tangent
space, is a meromorphic vector field. Indeed, these are the only meromorphic vector
fields on algebraic varieties. In particular, as all compact complex-analytic spaces
of dimension 1 are projective algebraic curves, every 1-dimensional meromorphic
vector field is algebraic.

We already get nonalgebraic examples in dimension 2. As is pointed out
in [Rebelo 2004, Example 2], for instance, all elliptic surfaces admit interesting
meromorphic vector fields. Since there are nonalgebraic elliptic surfaces (every
compact complex surface of algebraic dimension 1 is such), this is a class of
nontrivial meromorphic vector fields that are not algebraic. These examples also
show that meromorphic vector fields can be ubiquitous in situations where no
holomorphic ones exist.

But there are also nonalgebraic holomorphic vector fields. Suppose X = X is
compact and G = Aut0(X) is the connected component of the automorphism group
of X . Then G is a complex Lie group whose Lie algebra consists precisely of the
holomorphic vector fields on X ; see [Kobayashi 1972, Section III.1]. It follows
that if X = X is nonalgebraic and Aut0(X) is positive-dimensional, then X admits
many nontrivial and nonalgebraic holomorphic (and hence meromorphic) vector
fields. So, for example, if X is any complex torus, then X = Aut0(X) acting by
translation, and hence each point of the Lie algebra of X gives rise to an (invariant)
holomorphic vector field on X .

Finally, it is worth noting, and was pointed out to me by the anonymous referee,
that, unlike in the algebraic case, there are compact complex manifolds that admit
no nontrivial meromorphic vector fields. For example, suppose X is a generic K3
surface. If X did admit a meromorphic vector field, v, then, as X has no proper
infinite closed analytic subsets, the indeterminacy locus of v would be finite, and
so, by Hartogs’ theorem, v would extend to a holomorphic vector field on X . But
K3 surfaces do not admit any nontrivial global holomorphic vector fields.
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Suppose (X, v) is a meromorphic vector field, N ⪰M is an elementary extension,
and a ∈ X (N ) is a generic point of X . What structure does v induce on A := dcl(a)?
Well, for any definable meromorphic g : X → S, we have the definable meromorphic
map ∇v(g) := dg ◦ v : X → TS. Viewing g ∈ S(A) we have defined a function
∇v : S(A) → TS(A), for all sorts S. Here are two salient properties of this function
that are easily verified using the functoriality of the tangent space construction:

• π ◦ ∇v(g) = g, where π : TS → S is the projection.

• d f ◦ ∇v(g) = ∇v( f ◦ g) for any definable meromorphic f : S → T .

We are thus lead to consider the following notion:

Definition 3.3. Let L∇ = L ∪ {∇}, where ∇ = (∇S : S sort of L) and ∇S is a
function symbol from the sort S to the sort TS. Let CCM∀,∇ denote the universal
L∇-theory which is obtained by adding to CCM∀ the following axioms:

Axiom (1) For each sort S, ∇S : S → TS is a section to π : TS → S.

Axiom (2) For each definable meromorphic map f : S1 → S2 between sorts, the
diagram

TS1
d f
// TS2

S1

∇S1

OO

f
// S2

∇S2

OO

commutes. Remembering that f and d f are not function symbols in
the language but rather their graphs are predicates, what we mean by
this is the axiom

∀xy
(
(x, y) ∈ 0( f ) =⇒ (∇S1 x, ∇S2 y) ∈ 0(d f )

)
.

We usually drop the subscript and write ∇ for ∇S whenever it is clear from
context which sort we are working in.

One consequence of Axiom (2) that gets used often without mention is that
∇(a1, a2) = (∇a1, ∇a2) under the identification T (S1 × S2) = TS1 × TS2.

We can always extend uniquely to the definable closure:

Proposition 3.4. Suppose A ⊆ N |H CCM and (A, ∇) |H CCM∀,∇ . Then there is a
unique extension of ∇ to dcl(A) making it a model of CCM∀,∇ .

Proof. Let B := dcl(A). Given a sort S we need to define ∇ on S(B). Fix b ∈ S(B)

and let X := loc(b) ⊆ S so that b ∈ X (B) is generic. Since b ∈ dcl(A), there exists
some other irreducible meromorphic variety Y admitting a dominant definable
meromorphic map f : Y → X , and a generic point a ∈ Y (A), such that b = f (a).
Now, d f : T Y → TX and ∇(a) ∈ T Y (A). Define ∇(b) := d f (∇a). Indeed, this
is forced upon us by Axiom (2) of Definition 3.3, and hence takes care of the
uniqueness part of the statement.
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We have to check that it is well-defined. Suppose we have another f ′
: Y ′

→ X
and a′

∈ Y ′(A) generic such that b = f ′(a′) as well. Let Z = loc(a, a′)⊆ Y ×Y ′ and
consider f̄ := ( f, f ′) : Z → X2. Since f̄ takes a generic point of Z to the diagonal
D ⊆ X2 we have that f̄ (Z) ⊆ D. Hence d f̄ : TZ → T (X2) lands in TD, which
is the diagonal in T (X2) = (TX)2. Since d f̄ (∇(a, a′)) = (d f (∇a), d f ′(∇a′)) by
functoriality, this means that d f (∇a) = d f ′(∇a′), as desired.

Next, observe that ∇ so defined is a function from S(B) to TS(B), and is a
section to π : TS → S. That is, (B, ∇) does satisfy Axiom (1) of Definition 3.3.
Taking f = id in the above construction, we see also that (A, ∇) ⊆ (B, ∇).

It remains to verify Axiom (2). That is, given g : S1 → S2 a definable meromorphic
map between sorts, and bi ∈ Si (B) with g(b1)=b2, we need to show dg(∇b1)=∇b2.
Note that by concatenating — namely, working in cartesian products — we can
arrange things so that b1 and b2 are defined over the same tuple from A. That
is, there is a sort S with a ∈ S(A) such that b1 = f1(a) and b2 = f2(a), where
fi : S → Si are definable meromorphic maps. Taking Zariski loci we may assume
that a is generic in S and that each bi is generic in Si . Hence

dg(∇b1) = dg(d f1(∇a)) by how ∇ is defined on B

= d(g f1)(∇a) by functoriality

= d f2(∇a) as g f1 = f2, as that is the case on the generic a

= ∇b2 by how ∇ is defined on B,
as desired. □

Definition 3.5. A differential CCM-structure is a model (A, ∇) |H CCM∀,∇ such
that A = dcl(A).

As a consequence of Proposition 3.4, when working with models of CCM∀,∇

there is little loss of generality in assuming that we have a differential CCM-structure,
namely that the underlying set is definably closed in CCM.

It is worth observing that standard points are always constant:

Lemma 3.6. Suppose (A, ∇) is a differential CCM-structure and S is a sort. If
p ∈ S(M) then ∇(p) = 0 ∈ Tp X.

Proof. Note that X := {p} is itself an irreducible meromorphic variety, and we
can consider the containment as a definable holomorphic map f : X → S. Now
TX = {(p, 0)}, and hence ∇X = 0. But, by Axiom (2) of Definition 3.3, this forces

∇S(p) = d f (∇X (p)) = 0

as d f p : Tp X → T f (p)S is a linear map. □

In the finitely dcl-generated case we recover precisely the meromorphic vector
fields that motivated Definition 3.3:
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Proposition 3.7. Suppose X is an irreducible meromorphic variety, a is a generic
point of X in some elementary extension, and A = dcl(a). Then the differen-
tial CCM-structures on A are precisely the ∇v induced by meromorphic vector
fields v : X → TX.

Proof. We have already seen that (A, ∇v) |H CCM∀,∇ if (X, v) is a meromorphic
vector field. For the converse, suppose (A, ∇) |H CCM∀,∇ . Note that a ∈ X (A)

and ∇(a) ∈ TX(A). As definable meromorphic maps, a ∈ X (A) is the identity map
on X and ∇(a) ∈ TX(A) is some v : X → TX. Axiom (1) ensures that v is a section
to π : TX → X , and hence a meromorphic vector field on X . It remains to verify
that ∇ = ∇v. Let g(a) ∈ S(A), where g : X → S is a definable meromorphic map
and S is a sort. Then

∇v(g(a)) = dg ◦ v(a) = dg ◦ ∇(a) = ∇(g(a)),

where the final equality is by Axiom (2). □

Note that Proposition 3.7 extends to meromorphic varieties the (well-known)
correspondence, in the case when X is quasiprojective algebraic, between C-linear
derivations on C(X) and rational vector fields on X .

So the study of meromorphic vector fields amounts to the study of (finitely
generated) differential CCM-structures. In the usual model-theoretic way, we will
eventually look for a model companion: a theory that axiomatises the existentially
closed differential CCM-structures.

We conclude this section by extending the notion of differential CCM-structure
to a setting where ∇ is allowed to take values in an extension. This will be useful
in what follows.

Definition 3.8. Suppose N |H CCM and A ⊆ N is a definably closed set. By an
N -valued differential CCM-structure on A we mean a map ∇ : S(A) → TS(N ), for
every sort S, such that ∇ is a section to π :TS→ S, and such that d f (∇a)=∇( f (a))

for all a ∈ S(A) and all definable meromorphic maps f .

4. Prolongations

In this section we construct a version of the tangent space that is twisted by a
differential structure. Since differential structure only has content in proper elemen-
tary extensions of M, this will necessarily be about “meromorphic varieties over
parameters” in arbitrary models of CCM, which we begin by reviewing.

Fix a model N |H CCM. Given an irreducible meromorphic variety X , we view
it as a sort of L and consider its N -points X (N ). Let us recall the Zariski topology
on X (N ) with parameters from N , sometimes referred to as the nonstandard
Zariski topology to emphasise that we are not necessarily in the prime model M.
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See [Moosa 2004, Section 2] for a more detailed discussion. Every Zariski closed
subset Y ⊆ X (M) is named as a predicate in L and so we can consider Y (N ).
These are the 0-definable Zariski closed subsets of X (N ). More generally, given a
set of parameters A ⊆ N , a Zariski closed subset Y ⊆ X (N ) over A is a subset of
the form Y = Za where a ∈ S(A) is a generic point of another sort S and Z ⊆ S × X
is a (0-definable) Zariski closed subset that projects dominantly on S. In diagrams:

Z �
�

//

ρ
��

S × X

S

That is, Y = Za arises as the generic member of a 0-definable family of Zariski closed
subsets of X . This forms a noetherian topology on X (N ). If Y is A-irreducible
then we can take Z to be irreducible, and if Y is absolutely irreducible then we can
take Z so that ρ : Z → S is a fibre space, meaning its general fibres in the standard
model are irreducible.

The general standard fibres of ρ : Z → S are of constant dimension when Z
is irreducible, giving rise to a notion of dimension for irreducible Zariski closed
subsets of X (N ), which we denote by dim Y .

The tangent space construction extends to nonstandard Zariski closed sets. Fix
Y = Za as above. Then the tangent spaces of the fibres of ρ in the standard model
vary uniformly: Consider the diagram

S × X Z? _oo

ρ
��

TZoo

dρ
��

� � // TS × TX

S TSoo

and let z : S → TS be the zero section. For any p ∈ S(M), the fibre (TZ)z(p) ⊆ TX
of dρ above z(p) is nothing other than T (Z p), the tangent space of Z p ⊆ X . Hence
we define the tangent space of Y = Za in N , denoted T Y , to be (TZ)z(a).

Suppose, now, that A = dcl(A) and we have an N -valued differential CCM-
structure ∇ on A. Then, instead of considering the zero section, we can consider
the differential section ∇. That is, since ∇(a) ∈ TS(N ), we can consider the fibre
(TZ)∇(a) ⊆ TX(N ) of dρ over ∇(a). We define this to be the prolongation space
of Y = Za , and denote it by τY . That is, τY := (TZ)∇(a).

Lemma 4.1. The above definition of τY depends only on Y and not on the presen-
tation of Y as Za .

Proof. Suppose Y also appears as Z ′

b for some 0-definable Zariski closed Z ′
⊆ S′

×X
with b ∈ S′(A) generic. Replacing b with (a, b), we may assume that there is a dom-
inant definable meromorphic map f : S′

→ S with f (b) = a, and that Z ′
⊆ Z ×S S′.
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Hence f ′
:= ( f, idX )↾Z ′ : Z ′

→ Z restricts to the identity on Z ′

b =Y = Za . Moreover,
we have

Z
ρ
��

Z ′
f ′

oo

ρ′

��

S S′
f

oo

which yields
TZ

dρ
��

TZ′
d f ′

oo

dρ′

��

TS TS′
d f
oo

Since (A, ∇) is a differential CCM-structure, d f (∇b) = ∇(a), so that

d f ′

∇(b) : (TZ′)∇(b) → (TZ)∇(a).

Since d f ′
= (d f, idTX)↾TZ′ , this shows that (TZ′)∇(b) = (TZ)∇(a), as desired. □

Remark 4.2. Given two such nonstandard Zariski closed sets Y1, Y2, there is a
natural identification of T (Y1×Y2) with T (Y1)×T (Y2) induced by the corresponding
identification for (standard) meromorphic varieties. Moreover, if (A, ∇) is an (N -
valued) differential CCM-structure over which Y1, Y2 are defined, then we also have
an identification of τ(Y1 × Y2) with τ(Y1) × τ(Y2).

We denote the restriction of π : TX → X to τY also as π : τY → Y , and it is
canonically attached to the prolongation space. For any b ∈ Y , we denote the fibre
by τbY , and call it the prolongation space to Y at b. Note that if Y is an a-definable
Zariski closed subset of X then τY is a ∇(a)-definable Zariski closed subset of TX
and τbY is a ∇(a)b-definable Zariski closed subset of Tb X .

Lemma 4.3. Suppose that (B, ∇) is an N -valued differential CCM-structure ex-
tending (A, ∇), and b ∈ Y (B). Then ∇(b) ∈ τbY .

Proof. Since b ∈ X (B) we must have ∇(b)∈ Tb X . So it remains to verify ∇(b)∈ τY .
Write Y = Za as above. Then (∇(a), ∇(b)) = ∇(a, b) ∈ TZ(N ). In particular,
∇(b) ∈ (TZ)∇(a), which is τY by construction. □

Lemma 4.4. If Y is A-irreducible and b ∈Y is generic over A then τbY is absolutely
irreducible and dim(τbY ) = dim Y .

Proof. Let a from A be such that Y = Za with Z = loc(a, b) ⊆ S × X as above.
Because ρ : Z → S is dominant, dρ restricts to a surjective C-linear map between
the tangent spaces at standard general points. Hence, at the generic point in N ,
we have that dρ(a,b) : T(a,b)Z → Ta S is a surjective C(N )-linear map, where C(N )

is the interpretation in N of the complex field, itself an algebraically closed field
extending C. By definition, the tangent space TbY is the kernel of dρ(a,b) while
the prolongation space τbY is dρ−1

(a,b)(∇a). So τbY is a coset of TbY in T(a,b)Z .
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Absolute irreducibility of τbY follows, and dim(τbY ) = dim(TbY ). Finally, note
that dim(TbY ) = dim Y because for standard general (p, q) ∈ Z(M), the tangent
space to Z p at q is of dimension dim(Z p). □

Finally, it is worth thinking about the case when Y is 0-definable, that is, using
the above notation, when a ∈ M. In that case, by Lemma 3.6, ∇ agrees with the
zero section at a, and hence τY = TZ is just the tangent space of Y . That is, for
0-definable Zariski closed sets, the prolongation and tangent spaces agree.

5. Differentially closed CCM-structures

We aim to prove that CCM∀,∇ admits a model companion. We begin by exploring
some properties of the existentially closed (e.c.) models. This amounts to proving
extension lemmas. For example, Proposition 3.4, which says that every model
of CCM∀,∇ extends to the definable closure of the underlying model of CCM∀,
implies that if (A, ∇) is an e.c. model of CCM∀,∇ then it is a differential CCM-
structure. Moreover, the e.c. models of CCM∀,∇ are precisely the existentially
closed differential CCM-structures. This justifies:

Definition 5.1. A differentially closed CCM-structure is an e.c. model of CCM∀,∇ .

Here is the main extension lemma:

Proposition 5.2. Suppose N |H CCM and (A, ∇) is an N -valued differential CCM-
structure. Suppose X is an irreducible meromorphic variety, b ∈ X (N ), and
Y := loc(b/A) is the smallest A-definable Zariski closed subset of X (N ). For any
c ∈ τbY there is an extension of ∇ to an N -valued differential CCM-structure on
dcl(Ab) such that ∇(b) = c.

Proof. Let D := dcl(Ab). We follow the approach of Proposition 3.4. That is, given
an element of D, say d = f (a, b), where a is from A and f : loc(a, b) → loc(d)

is a definable meromorphic map, we set ∇(d) := d f (∇a, c). We have to verify
that (∇a, c) ∈ T(a,b) loc(a, b) for this to even make sense, that is, to be able to
apply d f to (∇a, c). Note, first of all, that since Y = loc(b/A) ⊆ loc(b) we do
have that c ∈ τbY ⊆ Tb loc(b). So (∇a, c) ∈ Ta loc(a)× Tb loc(b), that is, (∇a, c)
lies above (a, b), and it only remains to check that (∇a, c) ∈ T loc(a, b). Since
Y = loc(b/A) ⊆ loc(b/a), and the latter is the fibre of the coordinate projection
loc(a, b) → loc(a) over a, we have that τY ⊆ τ loc(b/a), and the latter is by
definition the fibre of T loc(a, b) → T loc(a) over ∇(a). Since c ∈ τY , this tells
us that (∇a, c) ∈ T loc(a, b), as desired.

Considering the case when d = a and f : loc(a, b) → loc(a) is the coordinate
projection, we see that this definition of ∇ on D extends the given ∇ on A. Consid-
ering the case when d = b (so that a is the empty tuple and f = id), we see that
∇(b) = c, as desired.
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While the proof of Proposition 3.4 was carried out in the context of models
of CCM∀,∇ , it works equally well in the setting of N -valued differential CCM-
structures, showing that the way we have defined ∇ on D above yields, for any
sort S, a well-defined map ∇ : S(D) → TS(N ) that is a section to TS → S, and such
that dg(∇d) = ∇(g(d)) for any definable meromorphic map g and tuple d ∈ S(D).
So (D, ∇) is again an N -valued differential CCM-structure. □

Corollary 5.3. If (A, ∇) is a differentially closed CCM-structure then A |H CCM.

Proof. We have that A ⊆ N for some N |H CCM. Let (B, ∇) be a maximal
N -valued differential CCM-structure extending (A, ∇). This exists as N -valued
differential CCM-structures are preserved under unions of chains, as can be easily
verified from the definition.

We claim that B = N . Given b ∈ X (N ) for some sort X , let Y = loc(b/B) and
choose c ∈ τbY . By Proposition 5.2 we can extend ∇ to an N -valued differential
CCM-structure on dcl(Bb). By maximality, it follows that b ∈ X (B) to start with.
As X and b were arbitrary, this shows that B = N .

We have that (A, ∇) ⊆ (N , ∇) is an extension of differential CCM-structures.
By quantifier elimination, CCM has a universal-existential axiomatisation. Since
(A, ∇) is existentially closed, the truth of such axioms in (N , ∇) implies their truth
in (A, ∇). That is, A |H CCM, as desired. □

This is, of course, not enough. That is, not every differential CCM-structure on a
model of CCM is differentially closed. For example, the standard model M admits
the trivial differential structure ∇ = 0, but is not existentially closed as we can use
Proposition 5.2 to produce nontrivial differential CCM-structure extensions.

The following property of differentially closed CCM-structures, which we refer
to as the geometric axiom, can be read as saying that ∇ is a “generic” section to the
tangent space:

Proposition 5.4. If (N , ∇) is a differentially closed CCM-structure then it satisfies
the following condition:

(GA) Suppose S is a sort, X ⊆ S is an N -definable irreducible Zariski closed
subset, Y ⊆ τ X is an N -definable irreducible Zariski closed subset that
projects dominantly onto X, and Y0 ⊊ Y is a proper N -definable Zariski
closed subset. Then there exists a ∈ X (N ) such that ∇(a) ∈ Y \ Y0.

Proof. We already know, by Corollary 5.3, that N |H CCM. Let U ⪰ N be a
sufficiently saturated elementary extension, and let c ∈ Y (U) be generic in Y
over N . In particular, c ∈ Y \ Y0. By dominance, b := π(c) ∈ X (U) is generic
over N . In particular, loc(b/N )= X and c ∈τb X (U). So, by Proposition 5.2, we can
extend ∇ to a U-valued differential CCM-structure on dcl(Nb) such that ∇(b) = c.
Then, as in the proof of Corollary 5.3, we can extend ∇ further to all of U so that
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(U, ∇) |H CCM∀,∇ . Now, b witnesses that in (U, ∇) there is a point of X that is sent
by ∇ into Y \ Y0. By existential closedness of (N , ∇), there must exist a ∈ X (N )

such that ∇(a) ∈ Y \ Y0. □

As the terminology already indicates, the geometric axiom characterises differ-
entially closed CCM-structures:

Theorem 5.5. A model (N , ∇) |H CCM∀,∇ is existentially closed if and only if
N |H CCM and condition (GA) of Proposition 5.4 holds.

Proof. Corollary 5.3 and Proposition 5.4 gave the left-to-right direction. We
therefore assume that N |H CCM and (N , ∇) satisfies (GA), and show that (N , ∇)

is existentially closed. Let S be a sort, x a variable belonging to S, and φ(x) a (finite)
conjunction of L∇-literals over N that is realised by c ∈ S(A) in some extension
(A, ∇) |H CCM∀,∇ of (N , ∇). We need to show that φ(x) has a realisation already
in (N , ∇). As in the proof of Corollary 5.3, we can extend (A, ∇) further to
(U, ∇) |H CCM∀,∇ , where U |H CCM.

Let d be the order of φ(x), that is, the largest positive integer such that ∇
d(x),

namely ∇ iterated d-times and applied to x , appears in φ(x). We leave it to the
reader to verify that φ(x) can then be rewritten as (∇d(x) ∈ U ) ∧ (∇d(x) /∈ V ),
where U and V are N -definable Zariski closed subsets of T d(S), the d-th iterated
tangent space of S.

Let Y := loc(∇dc/N ) ⊆ T d(S)(U). Since c realises φ(x), we must have that
∇

d(c) ∈ U \ V and so Y ⊆ U and Y ̸⊆ V . In particular, Y0 := Y ∩ V is a proper
N -definable Zariski closed subset of Y . We aim to find a ∈ S(N ) such that
∇

d(a) ∈ Y \ Y0; this suffices as such an a would be a realisation of φ(x) in (N , ∇).
Let c̄ :=∇

d−1(c) and X := loc(c̄/N ). Then ∇
d(c)=∇(c̄), so that Y is contained

in τ X and projects dominantly onto X . Hence, by (GA), there is an ā ∈ X (N ) such
that ∇(ā) ∈ Y \ Y0. Consider the first coordinate projection π : T d−1(S) → S, and
set a := π(ā) ∈ S(N ). It suffices to show, therefore, that ∇

d−1(a) = ā.
For each ℓ ≥ 0, let us denote by πℓ : T ℓ+1S → T ℓS the canonical projection.

Moreover, for each ℓ = 0, . . . , d − 1, let āℓ be the image of ā in T ℓS. So, in
particular, ā0 = a and ād−1 = ā. We claim that it suffices to show that

āℓ+1 = ∇(āℓ) (5-1)

for all ℓ = 0, . . . , d − 2. Indeed, this would imply that

ā = ād−1 = ∇(ād−2) = ∇
2(ād−3) = · · · = ∇

d−1(a),

as desired. So let us fix ℓ=0, . . . , d−2 and show (5-1). The idea is to construe (5-1)
as a Zariski closed condition on ∇(ā). First of all, noting that πℓ+1(∇āℓ+1) = āℓ+1

and dπℓ(∇āℓ+1) = ∇(πℓāℓ+1) = ∇(āℓ), we see that (5-1) is equivalent to

πℓ+1(∇āℓ+1) = dπℓ(∇āℓ+1). (5-2)
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Next, letting ρ : T d−1S → T ℓ+1S be the projection, we have that ρ(ā) = āℓ+1, and
hence ∇(āℓ+1) = ∇(ρā) = dρ(∇(ā)). So (5-2) is equivalent to

πℓ+1dρ(∇ā) = d(πℓρ)(∇ā). (5-3)

This is a Zariski closed condition on ∇ā, and as ∇ā is in Y = loc(∇ c̄/N ), it suffices
to verify that the identity holds of ∇ c̄. But this follows from the fact that ∇ c̄ = ∇

dc,

πℓ+1dρ(∇ c̄) = πℓ+1dρ(∇dc)

= πℓ+1∇(ρ(∇d−1c))

= ρ(∇d−1c)

= ∇
ℓ+1c

= ∇(∇ℓc)

= ∇(πℓρ(∇d−1c))

= d(πℓρ)(∇dc)

= d(πℓρ)(∇ c̄).

Hence (5-3) holds, as desired. □

That condition (GA) of Proposition 5.4 is first-order expressible follows from the
fact that as X varies in an L-definable family, τ X varies in an L∇-definable family
by construction (see Section 4), and that in CCM irreducibility and domination
are definable in parameters (see [Moosa 2004, Section 2]). Theorem 5.5 thus
gives us a model companion to CCM∀,∇ , namely the theory of differentially closed
CCM-structures, which we denote DCCM.

6. Basic model theory of DCCM

From general model theory, we have that DCCM is model-complete. In this section
we prove that CCM∀,∇ has the amalgamation property, from which we can deduce
that DCCM is complete and admits quantifier elimination. As a consequence we
obtain a geometric description of algebraic and definable closure.

But first we need an extension lemma for algebraic closure, whereas we have
only dealt with definable closure (in Proposition 3.4) so far.

Lemma 6.1. Suppose (A, ∇) is a differential CCM-structure with A ⊆ N |H CCM,
and b ∈ acl(A). Then there is a unique N -valued differential CCM-structure on
dcl(Ab) extending ∇. Moreover, this extension is in fact dcl(Ab)-valued.

Proof. Let Y = loc(b/A) and c ∈ τbY . By Proposition 5.2 we can extend ∇ from A to
an N -valued differential CCM-structure on dcl(Ab) by sending ∇(b) := c. We show
that τbY = {c} is a singleton and hence c ∈ dcl(Ab), so that the above extension is in
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fact dcl(Ab)-valued, and so (dcl(Ab), ∇) |H CCM∀,∇ . This also shows uniqueness
as any extension of ∇ to dcl(Ab) would have to take b into τbY ={c}, by Lemma 4.3,
and hence would agree with the one we just constructed.

Let X := loc(b) and write Y = Za , where Z = loc(a, b) ⊆ S × X is a 0-definable
irreducible Zariski closed set and S is a sort with a ∈ S(A) generic. The fact that
b ∈ acl(A) means that Y is finite, and hence the coordinate projection ρ : Z → S is
generically finite-to-one. It follows that dpρ : Tp Z → Tρ(p)S is an isomorphism
for general p ∈ Z(M). Hence d(a,b)ρ : T(a,b)Z → Ta S is a bijection. If c, c′

∈ τbY
then we know, by the proof of Proposition 5.2, that (∇a, c), (∇a, c′) ∈ T(a,b)Z .
But as dρ takes both (∇a, c) and (∇a, c′) to ∇(a) ∈ Ta S we must have c = c′. So
τbY = {c}, as desired. □

Next we prove independent amalgamation. We use |⌣
CCM to mean nonforking

independence in CCM.

Lemma 6.2. Suppose A, B1, B2 are definably closed subsets of N |H CCM, with
A ⊆ B1 ∩ B2 and B1 |⌣

CCM
A B2. Suppose ∇i is a differential CCM-structure on Bi ,

for i = 1, 2, such that ∇1 and ∇2 agree on A. Then there is a common extension ∇

of ∇1 and ∇2 to B := dcl(B1 B2) such that (B, ∇) |H CCM∀,∇ .

Proof. Using Lemma 6.1 we can extend the differential CCM-structure on A, B1, B2

uniquely to their algebraic closures in N . In particular, ∇1 and ∇2 agree on acl(A).
So we may as well assume that A = acl(A), and Bi = acl(Bi ) for i = 1, 2. One
consequence of A being algebraically closed is that Zariski loci over A are absolutely
irreducible, and hence independence over A has the following Zariski-topological
characterisation:

b1
CCM

|⌣
A

b2 if and only if loc(b1, b2/A) = loc(b1/A) × loc(b2/A).

See [Moosa 2004, Section 2] for details.
Every tuple from B is of the form b = f (b1, b2), where each bi is from Bi , and

f : loc(b1, b2) → loc(b) is a definable meromorphic map. Our only choice is to
define

∇(b) := d f (∇1b1, ∇2b2).

But we need (∇1b1, ∇2b2) ∈ T(b1,b2) loc(b1, b2) for this to make sense. This is what
we now check.

Let a be a tuple from A such that loc(b1, b2/A) = loc(b1, b2/a). Let us denote
by ∇ the common restriction of ∇1 and ∇2 to A. Taking prolongations with respect
to the differential CCM-structure (A, ∇), and using the fact that for i = 1, 2 we
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have (A, ∇) ⊆ (Bi , ∇i ), we see that ∇i (bi ) ∈ τbi loc(bi/a). Hence,

(∇1b1, ∇2b2) ∈ τb1 loc(b1/a) × τb2 loc(b2/a)

= τ(b1,b2)(loc(b1/a) × loc(b2/a))

= τ(b1,b2) loc(b1, b2/a) as b1
CCM

|⌣
a

b2

⊆ T(b1,b2) loc(b1, b2)

as desired.
So it does make sense to set ∇(b) := d f (∇1b1, ∇2b2) for b = f (b1, b2). The next

step is to make sure this is well-defined. What if we also have b = f ′(b′

1, b′

2)? This
is dealt with exactly as in Proposition 3.4. Namely, let Z := loc(b1, b2, b′

1, b′

2) and
consider f̄ := ( f, f ′) : Z → loc(b)2. Since f̄ takes a generic point of Z to the diag-
onal we have that d f̄ : TZ → T (loc(b)2) = (T loc(b))2 lands in the diagonal. Now,
the argument in the previous paragraph, applied to bi b′

i , shows, in particular, that
(∇1(b1b′

1), ∇2(b2b′

2)) ∈ T loc(b1b′

1, b2b′

2). Hence, (∇1b1, ∇2b2, ∇1b′

1, ∇2b′

2) ∈ TZ
and we get that d f (∇1b1, ∇2b2) = d f ′(∇1b′

1, ∇2b′

2).
We have defined ∇ on B in such a way that it is a section to TS → S for any sort S.

It remains to check Axiom (2) of Definition 3.3. That is, suppose g : S → S′ is a
definable meromorphic map between sorts, and b ∈ S(B), b′

∈ S′(B) with g(b) = b′.
We need to show that dg(∇b) = ∇b′. We may assume that there are b1, b2 from
B1, B2, respectively, and definable meromorphic maps f, f ′ such that b = f (b1, b2)

and b′
= f ′(b1, b2). It follows that g f = f ′ on loc(b1, b2), and so we compute

dg(∇b) = dg(d f (∇1b1, ∇2b2)) by definition of ∇(b)

= d(g f )(∇1b1, ∇2b2) by functoriality

= d f ′(∇1b1, ∇2b2) as g f = f ′

= ∇b′ by definition of ∇(b′).

This completes the proof that (B, ∇) |H CCM∀,∇ . □

Proposition 6.3. CCM∀,∇ has the amalgamation property. In particular, DCCM
admits quantifier elimination and is complete.

Proof. Suppose (Bi , ∇) |HCCM∀,∇ , for i =1, 2, with a common substructure (A, ∇).
We seek a model (B, ∇) |H CCM∀,∇ into which (B1, ∇) and (B2, ∇) both embed
over A. Let U ⊇ B1 be a sufficiently saturated model of CCM. By universality, there
is an embedding of B2 into U over A. Moreover, after taking nonforking extensions
in CCM, we can find such an embedding such that the image of B2 is independent
from B1 over A. We may as well assume, therefore, that B2 ⊆ U already, and that
B1 |⌣

CCM
A B2. Applying Lemma 6.2, we have a differential CCM-structure ∇ on

B := dcl(B1 B2) that extends ∇ on both B1 and B2.
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Quantifier elimination now follows for DCCM, as a general consequence for a
model companion of a universal theory with amalgamation.

Completeness also follows as we have a prime substructure: all differentially
closed CCM-structures extend the standard model M |H CCM equipped with the
trivial differential structure (Lemma 3.6). □

Remark 6.4. In the case of DCF0 quantifier elimination implies that every definable
set is a finite boolean combination of the closed sets of a certain noetherian topology,
namely the Kolchin topology. There is a natural analogue of the Kolchin topology
here, a meromorphic Kolchin topology on each sort, which one expects to also be
noetherian. I leave this to the interested reader to pursue.

Next, we wish to characterise definable and algebraic closure in DCCM. First
of all, given (N , ∇) |H DCCM and A ⊆ N , let us denote by ⟨A⟩ the L∇-structure
generated by A. If A is already an L∇-substructure and a is a tuple then we denote
by A⟨a⟩ the L∇-structure generated by A ∪ {a}. Note that

A⟨a⟩ = A ∪ {a, ∇(a), ∇2(a), . . . }.

Quantifier elimination tells us that tp(a/A) = tp(a′/A) if and only if there is an
L-isomorphism α : A⟨a⟩ → A⟨a′

⟩ that fixes A pointwise and sends ∇
n(a) to ∇

n(a′)

for all n ≥ 0.
We have been using acl and dcl for algebraic and definable closure in the L-

theory CCM. We continue to do so, using acl∇ and dcl∇ for algebraic and definable
closure in the L∇-theory DCCM.

Proposition 6.5. Suppose (N , ∇) is a differentially closed CCM-structure and
A ⊆ N . Then dcl∇(A) = dcl(⟨A⟩) and acl∇(A) = acl(⟨A⟩).

Proof. By Proposition 3.4, dcl(⟨A⟩) is a differential CCM-substructure of (N , ∇).
Replacing A by dcl(⟨A⟩), we may as well assume that A is a differential CCM-
substructure to start with, and show that dcl∇(A) = A and acl∇(A) = acl(A). The
right-to-left containments are clear.

For the converses, let us first suppose that b /∈acl(A)=: B. By Lemma 6.1, (B, ∇)

is a differential CCM-substructure of (N , ∇). We can find, in some elementary
extension U of N , a copy of N over B, say N ′, such that N |⌣

CCM
B N ′. Let

α :N →N ′ be an L-isomorphism over B witnessing this, and consider b′
:= α(b′).

The fact that b |⌣
CCM
B b′ and that b /∈ B forces b ̸= b′. On the other hand, setting

∇
′
:= α∇α−1 we have that (N ′, ∇ ′) |H DCCM and that α : (N , ∇) → (N ′, ∇ ′) is

an L∇-isomorphism over B. Now, we can find a common extension of ∇ and ∇
′ to

dcl(NN ′) in N by Lemma 6.2 and then further to a model (K, ∇) |H DCCM. So,
in (K, ∇) we have produced at least two distinct realisations, b and b′, of tp(b/B).
Repeating the process we can show that tp(b/B) has arbitrarily many realisations.
That is, b /∈ acl∇(B) = acl∇(A), as desired.
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Finally, suppose, toward a contradiction, that b ∈ dcl∇(A) \ A. This time
we produce two distinct realisations of tp(b/A) for our contradiction. Since
dcl∇(A) ⊆ acl∇(A) = acl(A), we have that b ∈ acl(A) \ A. Hence tpL(b/A)

has a second realisation, b′
∈ acl(A) with b′

̸= b. We thus have an L-isomorphism
α : dcl(Ab)→ dcl(Ab′) that fixes A pointwise and sends b to b′. But, by Lemma 6.1,
dcl(Ab) and dcl(Ab′) are differential CCM-substructures of (N , ∇), and, as they
each admit unique differential structures extending ∇ on A, we must have that α is
an L∇-isomorphism. By quantifier elimination, this means tp(b/A) = tp(b′/A). □

7. Stability and elimination of imaginaries

We work now in a fixed sufficiently saturated model (U, ∇) |H DCCM and adopt
the usual convention that all parameter sets are assumed to be of cardinality less
than that of the saturation.

In order to prove that DCCM is a stable theory, and to capture the meaning of
nonforking independence therein, we follow an axiomatic approach. That is, we
first introduce a natural notion of independence and then show that it has all the
properties that characterise nonforking independence in stable theories.

Definition 7.1. Given sets A, B, C , we say that A is independent of B over C ,
denoted by A |⌣C B, to mean that dcl∇(A) |⌣

CCM
dcl∇ (C) dcl∇(B).

Note that we do not yet know that |⌣ is nonforking independence, but we allow
ourselves the notation as we will soon see that it is.

Let us first verify that |⌣ is a notion of independence, in the sense introduced
in [Kim and Pillay 1997]. First of all, it is clearly invariant under the action
of automorphisms of (U, ∇). Local character, finite character, symmetry, and
transitivity all follow easily from the corresponding properties for |⌣

CCM.

Lemma 7.2 (extension). Given a, C ⊆ B there is a′
|H tp(a/C) such that a′ |⌣C B.

Proof. We may assume that C = dcl∇(C) and B = dcl∇(B). By extension in CCM
there is a sequence (a′

n : n ≥ 0) |⌣
CCM
C B and an L-isomorphism

α : C⟨a⟩ → C ∪ {a′

n : n ≥ 0}

that fixes C pointwise and takes ∇
n(a) to a′

n for all n ≥ 0. Extend α to an L-
isomorphism

α : A := dcl(C⟨a⟩) → A′
:= dcl(C ∪ {a′

n : n ≥ 0}).

Set ∇
′
:= α∇α−1 on A′ so that (A′, ∇ ′) is a differential CCM-structure isomorphic

to (A, ∇). On the other hand, since A′ |⌣
CCM
C B, Lemma 6.2 gives us a common

extension of (A′, ∇ ′) and (B, ∇) to a model (N , ∇ ′) |H DCCM. By universality we
have an embedding ι : (N , ∇ ′) → (U, ∇) over B. Then β := ι ◦α : A → U is an L-
isomorphism with its image that fixes C pointwise and takes ∇

n(a) to ∇
n(β(a)) for
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all n ≥0. Hence, by quantifier elimination, a′
:=β(a) |H tp(a/C). Now A′ |⌣

CCM
C B

implies that ι(A′) |⌣
CCM
C B as ι is over B. But ι(A′) = β(A) = dcl(C⟨a′

⟩). So
a′ |⌣C B, as desired. □

Lemma 7.3 (stationarity over algebraically closed sets). Suppose C = acl∇(C)⊆ B,
and a, a′ are tuples. If tp(a/C) = tp(a′/C), and both a and a′ are independent of
B over C , then tp(a/B) = tp(a′/B).

Proof. We may assume, without loss of generality, that B = dcl∇(B). Since
tp(a/C) = tp(a′/C), there is an L-isomorphism α : C⟨a⟩ → C⟨a′

⟩ that fixes C
pointwise and takes ∇

n(a) to ∇
n(a′) for all n ≥ 0. Since C is algebraically closed,

and the sequences (∇na : n ≥ 0) and (∇na′
: n ≥ 0) are both CCM-independent

from B over C , stationarity over algebraically closed sets in CCM implies that there
is an L-isomorphism β : B⟨a⟩ → B⟨a′

⟩ that fixes B pointwise and takes ∇
n(a) to

∇
n(a′) for all n ≥ 0. By quantifier elimination, tp(a/B) = tp(a′/B). □

Corollary 7.4. DCCM is a stable theory and |⌣ is nonforking independence.

Proof. This follows from the above observations by the characterisation of non-
forking independence in simple (and hence stable) theories as in [Kim and Pillay
1997]. □

We can also deduce stability by counting types. In fact, we get total transcenden-
tality:

Theorem 7.5. DCCM is λ-stable for every cardinal λ ≥ 2ℵ0 .

Proof. We count types. Fix λ ≥ 2ℵ0 and a subset A ⊆ U of cardinality at most λ.
We show that there are at most λ-many complete types over A. We may assume
that A = dcl∇(A) is a differential CCM-substructure.

Suppose X is a sort, a ∈ X (U), and consider tp(a/A). By quantifier elimination,
it is determined by the sequence of types (tpL(∇na/A) : n ≥ 0) in CCM. Let

Zn := loc(∇na/A∇
n−1a).

I claim that there is some N ≥ 0 such that Zn+1 = τ∇na(Zn), for all n ≥ N . This
suffices, since then tp(a/A) is determined by the pair (N , tpL(∇N a/A)), of which
there are at most λ-many possibilities by the λ-stability of CCM.

Note that ∇
n+1(a) ∈ τ∇na(Zn), and so Zn+1 ⊆ τ∇na(Zn). But dim(τ∇na(Zn)) =

dim(Zn) by Lemma 4.4. So dim(Zn+1) is a nonincreasing function of n that must
eventually stabilise. By irreducibility of τ∇na(Zn), this forces Zn+1 = τ∇na(Zn) for
large enough n, as desired. □

Theorem 7.6. DCCM admits elimination of imaginaries.

Proof. A general criterion for elimination of imaginaries in a stable theory is that
finite sets have codes and global types have canonical bases in the home sorts; see,
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for example, [Johnson 2020, Section 3]. That finite sets in DCCM have codes in
the home sort follows from elimination of imaginaries in CCM; see [Pillay 2000;
Moosa 2005b, Appendix].

So, we fix a saturated N ⪯ U and a complete type p = tp(a/N ), and show that p
has a canonical base in N . Let N be as in the proof of Theorem 7.5; that is,

loc(∇n+1a/N∇
na) = τ∇na(loc(∇na/N∇

n−1a)),

for all n ≥ N . By elimination of imaginaries for CCM, there is a code c for
loc(∇N a/N ) in N . We claim that c is a canonical base for p.

Fix an L∇-automorphism σ of N . We need to show that pσ
= p if and only

if σ(c) = c. One direction is clear: if pσ
= p then tpL(∇N a/N )σ = tpL(∇N a/N )

and hence loc(∇N a/N )σ = loc(∇N a/N ), so that σ(c) = c.
For the converse, suppose σ(c) = c. Extend σ to an L∇-automorphism σ̂ of U ,

and let â := σ̂ (a). We have that

tpL(∇N â/N ) = tpL(∇N a/N ) since σ(c) = c,

loc(∇N+1a/N∇
N a) = τ∇N a(loc(∇N a/N∇

N−1a)) by choice of N , and

loc(∇N+1â/N∇
N â) = τ∇N â(loc(∇N â/N∇

N−1â)) by applying σ̂ .

These imply that tpL(∇N+1â/N ) = tpL(∇N+1a/N ). We can iterate to prove that
tpL(∇n â/N ) = tpL(∇na/N ) for all n ≥ 0. By quantifier elimination,

pσ
= tp(â/N ) = tp(a/N ) = p,

as desired. □

8. Meromorphic vector fields and finite-dimensional types

We return in this final section to the motivating objects of interest: meromorphic
vector fields. Our goal is to show that they are captured, up to bimeromorphic
equivalence, in DCCM by the “finite-dimensional” types.

We continue to work in a fixed sufficiently saturated model (U, ∇) |H DCCM.

Definition 8.1. Suppose A is an L∇-substructure and p = tp(b/A) is a complete
type. By the dimension of p, denoted by dim∇(p) or dim∇(b/A), we mean the
sequence of nonnegative nondecreasing integers

(
dim(loc(∇nb/A)) : n ≥ 0

)
ordered

lexicographically. If dim∇(p) is eventually constant then we say that p is finite-
dimensional and we (re)use dim∇(p) to denote that eventual finite number.

Note that the dimension depends only on the type p and not on the choice of
realisation b. On the other hand, this dimension is not invariant under definable
bijection — for example, b and ∇(b) are interdefinable over the empty set but
the dimension sequences are not always the same (one is a shift of the other).
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Nevertheless, whether or not a type is finite-dimensional, and the value of that finite
dimension in the case that it is, is invariant under definable bijection.

Dimension witnesses forking:

Proposition 8.2. Suppose a is a tuple and C ⊆ B are L∇-substructures. Then
a |⌣C B if and only if dim∇(a/B) = dim∇(a/C).

Proof. We may assume that B = dcl∇(B) and C = dcl∇(C). By Proposition 6.5, we
have that dcl∇(Ca) = dcl(C⟨a⟩). Hence a |⌣C B is equivalent to ∇

n(a) |⌣
CCM
C B

for all n ≥ 0. But, as dimension witnesses forking in CCM, this is equivalent to
dim(loc(∇na/B)) = dim(loc(∇na/C)) for all n ≥ 0. □

It follows that if p is finite-dimensional then it is of finite U -rank, and in fact
that U (p) ≤ dim∇(p). One can ask whether the same holds of Morley rank: is it
the case that Morley rank is bounded by dimension? It is also natural to ask about
the converse: if p is of finite rank (U -rank or Morley rank, it is the same thing)
must it be of finite dimension? One expects affirmative answers to these questions,
as is the case for DCF0, but I do not pursue them here.

A natural source of finite-dimensional types over the empty set are meromorphic
vector fields in the sense of Definition 3.1. Suppose (X, v) is such. Consider the
type p(x), over the empty set, which says that x ∈ X is generic and that ∇(x)= v(x).
This is consistent by the geometric axiom of Proposition 5.4. Indeed, given any
proper Zariski closed X0 ⊆ X , apply (GA) to Y the Zariski closure of the image
of v in TX = τ X and Y0 the restriction of Y to X0, yielding a U-point a ∈ X \ X0

with ∇(a) = v(a). Moreover, by quantifier elimination, this type is complete: the
L-type of x is determined by x being generic in X , and ∇(x) = v(x) implies
∇

n(x) = vn(x) for appropriate definable meromorphic vn : X → T n X , for all n.
We call p the generic type of (X, v). Note that p is finite-dimensional; in fact,
dim∇(p) = dim X . Indeed, for all n ≥ 0, we have that ∇

n(b) = vn(b) and vn is a
definable meromorphic section to T n X → X , and hence, as b is generic in X , we
get dim(loc(∇nb/A)) = dim X .

It turns out that all finite-dimensional types arise this way:

Theorem 8.3. Every finite-dimensional type over the empty set in DCCM is, up to
interdefinability, the generic type of a meromorphic vector field.

Proof. Suppose p = tp(b) is finite-dimensional. Let d ≥ 0 be such that

dim(loc(∇d+1b)) = dim(loc(∇db)).

Since the projection loc(∇d+1b)→ loc(∇db) is dominant, this means that it must be
generically finite-to-one. Hence, setting c := ∇

d+1(b), we have that c ∈ acl(∇d(b)).
As in the proof of Lemma 6.1, it follows that if Y = loc(c/∇d(b)) then τcY is a
singleton. Since Y is defined over ∇

d(b), the prolongation space τY is defined
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over ∇
d+1(b)= c, and hence also τcY is defined over c. By Lemma 4.3, ∇(c)∈ τcY .

So ∇(c) ∈ dcl(c). By quantifier elimination in CCM we can write ∇(c) = v(c)
for some definable meromorphic map v. Then, setting X := loc(c), we have that
v : X → TX is a section to the tangent space of X . That is, (X, v) is a meromorphic
vector field and q = tp(c) is its generic type. Finally, observe that b and c =∇

d+1(b)

are interdefinable over the empty set, so that p and q are interdefinable types. □

The upshot is that the finite-dimensional fragment of DCCM, over the empty set,
captures precisely the bimeromorphic geometry of meromorphic vector fields.

Remark 8.4. We have restricted our attention in this discussion to the empty set
for brevity; we could have worked more generally over arbitrary parameters A.
The result would be that the finite-dimensional types over A are precisely, up to
interdefinability, the generic types of meromorphic D-varieties over A. We leave it
to the reader to both articulate precisely, and verify, this claim.
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