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Revisiting virtual difference ideals

Zoé Chatzidakis and Ehud Hrushovski

In difference algebra, basic definable sets correspond to prime ideals that are in-
variant under a structural endomorphism. The main idea of an article with Peterzil
(Proc. London Math. Soc. 85:2 (2002), 257–311) was that periodic prime ideals en-
joy better geometric properties than invariant ideals, and to understand a definable
set, it is helpful to enlarge it by relaxing invariance to periodicity, obtaining better
geometric properties at the limit. The limit in question was an intriguing but some-
what ephemeral setting called virtual ideals. However, a serious technical error
was discovered by Tom Scanlon’s UCB seminar. In this text, we correct the prob-
lem via two different routes. We replace the faulty lemma by a weaker one that still
allows recovering all results of the aforementioned paper for all virtual ideals. In
addition, we introduce a family of difference equations (“cumulative” equations)
that we expect to be useful more generally. Previous work implies that cumulative
equations suffice to coordinatize all difference equations. For cumulative equa-
tions, we show that virtual ideals reduce to globally periodic ideals, thus providing
a proof of Zilber’s trichotomy for difference equations using periodic ideals alone.

Introduction

Boris Zilber developed a geometric description of ℵ1-categorical theories, having a
trichotomy at its heart. It is based on the dimension theory of Morley (shown to
take finite values by Baldwin), but gives information of a radically new kind than
an abstract dimension theory. Intuitively, a model of the theory is coordinatized by
geometries that have either a graph-theoretic nature, or derive from linear algebra,
or belong to algebraic geometry. Though it is only the minimal definable sets that
are described in this way, Zilber (and later others) demonstrated an overwhelming
effect on the structure globally.

Zilber conjectured that there is no fourth option. This turned out to be in-
correct at the precise level of generality of ℵ1-categorical structures. But it was
established with additional hypotheses of a topological nature [11], and moreover
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proved to be meaningful and indeed to capture the nature of structures far beyond
strong minimality. Appropriate versions hold for compact complex manifolds,
for differentially closed and separably closed fields, for strongly minimal sets
interpretable in algebraically closed fields of characteristic zero [1]; the latter
closes in characteristic zero a line opened more than thirty years ago by Eugenia
Rabinovich, in her Kemerovo PhD with Zilber. The trichotomy is also meaningful
for unstable theories: see [12] for the o-minimal case. Many applications depend on
the trichotomy, including Zilber’s gem [15]. For difference equations, applications
to diophantine geometry include [3; 4; 10; 13].

Thanks to Zilber’s philosophy, when we made our first steps in the structure
of difference equations in [2], we knew in advance what it is that we should aim
to prove. The methods were informed by finite-rank stability and the nascent
generalization to simplicity. But they also relied strongly on ramification divisors,
and thus applied only in characteristic zero. Our approach in [7] to the positive
characteristic case thus had to be different.

The trichotomy results of [11] are valid for stable structures with a finite di-
mension assigned to definable sets, satisfying a “dimension theorem” controlling
dimensions of intersections. Now the model companion ACFA of the theory of
difference fields is not stable, nor does the geometry of finite-dimensional sets satisfy
the dimension theorem: the intersection of two such sets may have unexpectedly low
dimension. For instance, the naive intersection of two surfaces in 3-space over the
fixed field of the automorphism σ could be two lines interchanged by σ ; within the
fixed field their intersection point would be the only solution. Both of these patholo-
gies are ameliorated as one relaxes σ to σm (going from the equation σ(x)= F(x)
to σm(x)= F (m)(x)). At the limit, one has a virtual structure, defined and studied
in [7]; under appropriate conditions, this structure is stable and the dimension
theorem is valid. Proving this uses basic ideas from topological dynamics to obtain
recurrent points that may not be periodic; see Lemma 2.8 for example. Using a
generalization of the Zariski geometries of [11], one can then deduce the trichotomy
theorem. The concrete form it takes here allows analyzing any difference equation
via a tower of equations over fixed fields and equations of locally modular type.

In 2015, however, Tom Scanlon’s Berkeley seminar recognized a problem with a
key technical lemma, Lemma 3.7. We show below how to prove a somewhat weaker
version of this lemma: where the wrong Lemma 3.7 asserted a unique component
through a point, the corrected version, Lemma 2.16, implies that the number of
such components is finite, indeed at most the degree of the normalization of the
relevant variety in the base. All the main results of the paper remain valid with
the same set of ideas, but considerable reorganization is required. One role of the
present paper is to provide a lengthy erratum, explaining in detail how this may
be done. Parts of this paper are thus technical and need to be read in conjunction
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with [7]. However, Section 2, which contains the main correction and in particular
the key dimension theorem, is self-contained in the sense of quoting some results
from [7] but not requiring entering into their proofs.

At the same time, we take the opportunity to present a setting (“cumulative equa-
tions”) in which the limit structure is equivalent to an ordinary structure, in the sense
that the associated algebraic object is an ordinary ring with its periodic ideals, rather
than an abstract limit of such rings as in the virtual case. Results of [5] imply that
this setting, while not fully general, suffices to coordinatize all difference equations.
It may be of interest for other applications, in particular the study of limit structures
for more equations that are not necessarily algebraic over equations of SU-rank one.

We expect that a trichotomy theorem can be proved for Zariski geometries based
on Robinson structures. This has so far been worked out only in special cases; the
most general treatment is contained in the unpublished PhD thesis of Elsner [9].
Consequently, the trichotomy follows from the basic cumulative case alone, though
this is not the case for some of the other results: for finer statements such as a
description of the fields definable in the limit structures, both in [7] and here, we
use additional features of the specific structure.

Let S be a difference ring, generated by a finitely generated ring R. The main
idea of [7] was that as n becomes more and more divisible, more σ n-ideals ap-
pear, and their structures become progressively smoother. However there is also
a countercurrent at work: the difference subring Rσ n of (S, σ n) generated by R
may become smaller. This double movement leads to technical complexity. If,
however, σ(R) is contained in the ring generated by R and σ n(R) for any n, this
problem does not arise. It is this behavior (slightly generalized to fraction fields)
that we refer to as cumulative. It turns out that cumulative difference equations still
represent all isogeny classes, and allow for considerable simplification.

We are very grateful to Tom Scanlon, his Berkeley group, and especially Alex
Kruckman for identifying the error; and to the anonymous referee for the careful
reading and suggestions that have considerably improved the text.

Plan of the paper. In Section 1 we mainly recall definitions and notation from [7].
Section 2 contains the proof of Proposition 2.6 of [7], as well as some useful
auxiliary results and remarks. The cumulative case is done in the first half, the
general case in the second half. Sections 3 and 4 are devoted to rereading [7] and
making the necessary changes and adaptations: Section 3 deals with Sections 2 to
4 of [7], and Section 4 with the remainder of the paper.

1. Setting, notation, basic definitions

1.1. Setting and notation. In what follows, K is a sufficiently saturated existentially
closed difference field, containing an algebraically closed difference subfield k0, and
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� a |K |+-saturated existentially closed difference field containing K . We always
work inside �.

If L is a field, then Ls and Lalg denote the separable and algebraic closure of the
field L .

Conventions. Unless otherwise stated, all difference fields and rings will be in-
versive, i.e., the endomorphism σ is an automorphism; in other words, we take a
difference ring to be a commutative ring with a Z-action. Similarly, all difference
ideals will be reflexive, i.e., if (R, σ ) is a difference ring, a σ -ideal of R is an ideal
I such that σ(I )= σ−1(I )= I .

If k is a difference field, X = (X1, . . . , Xn), then k[X ]σ denotes the inversive
difference domain k[σ i (X j ) | i ∈ Z, 1 ≤ j ≤ n] and k(X)σ its field of fractions.
Similarly, if a is a tuple in�, k[a]σ and k(a)σ denote the inversive difference subring
and subfield of � generated by a over k. Similar notation is used for difference
rings. If a is an n-tuple, then Iσ (a/k)= { f ∈ k[X1, . . . , Xn]σ | f (a)= 0}. If k(a)σ
has finite transcendence degree over k, the limit degree of a over k, denoted ld(a/k)
or ldσ (a/k), is limn→∞[k(a, . . . , σ n+1(a)) : k(a, . . . , σ n(a))].

If A is a subset of a difference ring S, then (A)σm denotes the (reflexive) σm-ideal
of S generated by A. If A ⊂ �, then clσ (A) denotes the perfect closure of the
difference subfield of � generated by A, aclσ (A) the (field-theoretic) algebraic
closure of clσ (A), and dclσ (A) the model-theoretic definable closure of A. If A is
a subring of a difference ring S, then Aσ denotes the (inversive) difference subring
of S generated by A.

Recall that aclσ (A) coincides with the model-theoretic algebraic closure acl(A),
and that independence (in the sense of the difference field �) of A and B over
a subset C coincides with the independence (in the sense of ACF) of acl(A) and
acl(B) over acl(C).

If m ≥ 1, then �[m] denotes the σm-difference field (�, σm). The languages
L and L[m] are the languages {+,−, · , 0, 1, σ } and {+,−, · , 0, 1, σm

}. We view
L[m] as a sublanguage of L, and �[m] as a reduct of �. Recall that �[m] is also an
existentially closed saturated difference field, by Corollary 1.12 of [2]. If a is a tuple
of � and k a difference subfield of �, then qftp(a/k) denotes the quantifier-free
type of a over k in the difference field �, and if m ≥ 1, then qftp(a/k)[m] denotes
the quantifier-free type of a over k in the difference field �[m]. Similarly, if q is
a quantifier-free type over k, then q[m] denotes the set of L(k)[m] quantifier-free
formulas implied by q .

Basic and semibasic types.

Definitions 1.2. We consider quantifier-free types p, q, . . . over the algebraically
closed difference field k0, and integers m, n ≥ 1.
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(1) q satisfies (ALGm) if whenever a realizes q , then σm(a) ∈ k0(a)alg.

(2) The eventual SU-rank of q , evSU(q), is limm→∞ SU(q[m!]), where SU(q[m!])
(the SU-rank of q[m!]) is computed in the σm!-difference field�[m!]. For more
details, see Section 1 in [7], starting with 1.10. Write SU(a/k0)[n] :=SU(q[n]),
computed in the σ n-difference field �[n] (n ≥ 1, a realizing q). If D is a
countable union of k-definable subsets of some cartesian power of �, then
evSU(D)= sup{evSU(a/k) | a ∈ D}.

(3) p ∼ q if and only if for some m ≥ 1, p[m] = q[m]. The ∼-equivalence class
of p is denoted by [p] and is called a virtual type.

(4) Xp(K ) denotes the set of tuples in K which realize p[m] for some m ≥ 1, and
similarly for Xp(�). We denote by X p the underlying affine variety, i.e., the
Zariski closure of Xp(�) in affine space.

(5) A basic type is a quantifier-free type p over k0, with evSU-rank 1, which
satisfies (ALGm) for some m. Note that if p is basic, so is p[n] for every n.

(6) A semibasic type is a quantifier-free type q such that if a realizes q, then
there are tuples a1, . . . , an ∈ k0(a)alg which realize basic types over k0, are
algebraically independent over k0, and are such that a ∈ k0(a1, . . . , an)

alg.

(7) The quantifier-free type q is cumulative if for some (any) realization a of q and
every m≥1, σ(a)∈ k0(a, σm(a)). Note that this implies that k0(a)σ = k0(a)σm

for any m ≥ 1, and that (ALGm) is equivalent to (ALG1).

Remarks 1.3. Let k be an inversive difference field.

(1) We will often use the following equivalences, for a tuple a:

(i) [k(a, σ (a)) : k(a)] = ld(a/k).
(ii) The fields k(σ (a) | i ≤0) and k(σ i (a) | i ≥0) are linearly disjoint over k(a).

(iii) Iσ (a/k) is the unique prime σ -ideal of k[X ]σ extending the prime ideal
{ f (X, σ (X)) ∈ k[X, σ (X)] | f (a, σ (a))= 0} of k[X, σ (X)] (|X | = |a|).

Note that these equivalent conditions on the tuple a in the difference field �
also imply the analogous conditions for the tuple a in the difference field �[m]
for m ≥ 1 (use (ii)).

(2) Let P be a prime ideal of k[X, σ (X)] (X a tuple of variables) and assume that
σ(P ∩ k[X ]) = P ∩ k[σ(X)]. Then P extends to a prime σ -ideal of k[X ]σ .
We will usually use it with the prime ideal σ−1(P) of k[σ−1(X), X)].

Proof. All these are straightforward remarks; see also Section 1.3 of [5] for the
equivalence of (i) and (ii), and Sections 5.6 and 5.2 of [8] for the remaining items. □

1.4. Coordinate rings associated to quantifier-free types. (See also (3.5) and (3.6)
in [7]). Let q be a quantifier-free type over k0, in the tuple x of variables, fix
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a realization a of q. The pair (Rq , Rq,σ ) of coordinate rings associated to q is
defined as follows: Let k0(x)σ be the fraction field of k0[X ]σ/Iσ (a/k0), k0(x) its
subfield generated by x over k0. Then we define the ring Rq := k0(x)⊗k0 K and
the σm-difference ring Rq,σm := k0(x)σm ⊗k0 K for m ≥ 1. We often denote Rq and
Rq,σm by K {x} and K {x}σm , and define in an analogous way the coordinate rings
k1{x} and k1{x}σm if k1 is a difference field containing k0.

Given semibasic types q1(x1), . . . , qn(xn), we take the tensor product over K of
their coordinate rings, and call them the coordinate rings associated to (q1, . . . , qn).
So, we have

R(q1,...,qn) = K {x1}⊗K · · · ⊗K K {xn},

R(q1,...,qn),σm = K {x1}σm ⊗K · · · ⊗K K {xn}σm .

To a semibasic type q, we associate three new pairs of coordinate rings as fol-
lows. Say q is realized by a tuple a, and a1, . . . , an are as in the definition of
semibasic given above. We let pi = qftp(ai/k0), r = qftp(a1, . . . , an/k0), and
s = qftp(a, a1, . . . , an/k0). Then we define

R1
q = Rp1 ⊗K · · · ⊗K Rpn , R2

q = Rr , R3
q = Rs,

R1
q,σm = Rp1,σm ⊗K · · · ⊗K Rpn,σm , R2

q,σm = Rr,σm , R3
q,σm = Rs,σm .

These rings depend on the choice of the tuples a1, . . . , an , but we may fix once and
for all these tuples. Note that then R1

q⊆ R2
q⊆ R3

q⊇ Rq , that R2
q is a localization of R1

q ,
and that R3

q is integral algebraic over R2
q and over Rq . Similar statements hold for

the associated difference rings. If q is basic, we define Ri
q = Rq and Ri

q,σm = Rq,σm .
We extend the notation to the more general coordinate rings R(q1,...,qn).

We say that a coordinate ring Rσ satisfies (ALGm) or is cumulative, if the semiba-
sic types involved in the definition of Rσ all satisfy (ALGm) or are cumulative.

1.5. Convention. From now on, all quantifier-free types will satisfy (ALGm) for
some m ≥ 1, so that all coordinate rings will satisfy (ALGm).

Definitions 1.6. Let (R, Rσ ) be a pair of coordinate rings, as defined above, and S
a ring.

(1) Let P be a prime ideal of a ring S. The dimension of P , denoted by dim(P),
is the Krull dimension of the ring S/P . If I is an ideal of S, the dimension
of I , dim(I ), is sup{dim(P) | P ⊇ I, P ∈ Spec(S)}. If S = R, then dim(P)
coincides with tr.degK Frac(R/P).

(2) Let P be a prime ideal of a coordinate ring Rσ . The virtual dimension
of P , denoted vdim(P), is dim(P ∩ R). If Rσ satisfies (ALGm), it coincides
with dim(P∩Rσm ). Similarly, if I is an ideal of Rσ , then vdim(I )=dim(I∩R).
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(3) A virtual [perfect], [prime] ideal of Rσ is a [perfect1], [prime] (reflexive) σm-
ideal of Rσm for some m ≥ 1.

(4) A [perfect], [prime] periodic ideal of Rσ is a [perfect], [prime] σm-ideal I of
Rσ for some m ≥ 1. A priori, not all virtual ideals extend to periodic ideals.

(5) Let I be an ideal of R. We say that I is pure of dimension d if all minimal
primes over I have dimension d. Let I be an ideal of Rσ . We say that I is
virtually pure of dimension d if I ∩ R is pure of dimension d .

(6) Let I be a virtual ideal of Rσ = K {x}σ . Then V (I ) is the subset of K |x | defined
by a ∈ V (I ) if and only if for some m ≥ 1, for each h ∈ I ∩ Rσm , viewed as a
σm-polynomial, we have h(a, σm(a), . . .)= 0. Thus V (I ) stands in bijection
with

⋃
m Homσm (Rσm/I, K ), where Homσm refers to ring homomorphisms

commuting with σm .
Note that if Rσ = Rq for some quantifier-free type q, then V (0) is pre-

cisely Xq(K ). We call vdim(0) (i.e., the Krull dimension of R) the (virtual)
dimension of q.

2. Existence theorems for periodic ideals

The aim of this section is to give proofs of the results of [7] needed towards the proof
of the trichotomy in positive characteristic, and in particular the very important
Proposition 2.6 of [7]. We try to follow the plan of [7], and will occasionally
refer to it. While the results of Chapter 2 are indeed correct, the problem is that
our coordinate rings do not satisfy the required hypotheses. The mistake appears
in Lemma 3.7.

Assumptions. The coordinate rings we consider are those associated to tensor
products of coordinate rings of semibasic types whose corresponding basic types
have virtual dimension e, for some fixed integer e ≥ 1. A typical pair of coordinate
rings is denoted (R, Rσ ), without reference to the types involved in the construction.

As for types, we declare two virtual prime ideals P,Q equivalent, and write P∼Q,
if for some m ≥ 1, P ∩ Rσm = Q ∩ Rσm . We retain, however, Definition 1.2(3) of
virtual prime ideals; the equivalence classes are called virtual prime ideal classes.

Proposition 2.1 (addendum to Proposition 2.4 of [7]). Let (R, Rσ ) be a pair of
coordinate rings.

(1) Let P and Q be virtual prime ideals. If V (P)= V (Q), then P ∼ Q.

(2) Let P be a prime σm-ideal of Rσm . Then for some ℓ > 0, P extends to a prime
σ ℓ-ideal Q of Rσ . In particular, since V (Q) = V (P), this shows that every
set defined by a virtual prime ideal is also defined by a periodic prime ideal

1A σ -ideal I of a difference ring R is perfect if whenever anσ(a) ∈ I , then a ∈ I .
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of Rσ ; i.e., every prime periodic ideal of Rσm is equivalent to a prime periodic
ideal of Rσ .

Proof. (1) We may assume that P and Q are prime σ -ideals and that R satisfies
(ALG1). Choose a (small) subfield k1 of K such that for any m ≥ 1, P ∩ Rσm

and Q ∩ Rσm are generated by their intersection with k1{x}σm (x the variables
of R). By saturation of K , it contains a point a which is a generic point of
V (P) over k1, i.e., with tr.deg(k1(a)/k1) = dim(P). Then a is in V (Q), whence
dim(Q) ≥ dim(P), and the symmetric argument tells us that these dimensions
are equal, and that a is a generic of V (Q) over k1. Let ℓ be divisible by m and
such that P ∩ Rσ ℓ and Q ∩ Rσ ℓ are prime σ ℓ-ideals contained in (x − a)σ ℓ . Then
Iσ ℓ(a/k1)= P ∩ k1{x}σ ℓ = Q ∩ k1{x}σ ℓ , which shows that P ∼ Q.

(2) Let ϕ : Rσm →� be a K-homomorphism of σm-difference rings with kernel P .
If p1(x1), . . . , pn(xn) are the semibasic types associated to Rσ , then

Rσ = k0(x1)σ ⊗k0 · · · ⊗k0 k0(xn)σ ⊗k0 K ,

and Rσm corresponds to the subring k0(x1)σm⊗k0 · · ·⊗k0 k0(xn)σm⊗k0 K . Our map ϕ
is entirely determined by its restrictions to each of the factors of the tensor product,
and for i=1, . . . , n, we let ϕi denote the restriction of ϕ to k0(xi )σm . Since k0(x)σ is
finitely generated over k0(x)σm , Proposition 1.12(3) of [7] gives that for some ℓ > 0
divisible by m, the σ ℓ-embeddings ϕi : k0(xi )σm → � extend to σ ℓ-embeddings
ψi : k0(x)σ →� for i = 1, . . . , n. Then define ψ =ψ1⊗ψ2⊗· · ·⊗ψn⊗ idK , and
take Q = kerψ . □

Lemma 2.2. Let Rσ be a coordinate ring, and Sσ = R[c]σ a difference ring, with
S = R[c] integral algebraic (and finitely generated) over R. If P is a prime σ -ideal
of Rσ , then for some ℓ≥ 1, P ∩ Rσ ℓ extends to a prime σ ℓ-ideal of Sσ ℓ .

Proof. Replacing σ by σm for some m, we may assume that Rσ satisfies (ALG1).

Claim. There is m ≥ 1 such that for any ℓ≥ 1, if R′ = R[σ(R), . . . , σm(R)], then
P ∩ R′

σ ℓ
is the unique prime σ ℓ-ideal of R′

σ ℓ
which extends P ∩ R′[σ ℓ(R′)].

Proof of claim. Indeed, take a ∈� such that Frac(Rσ/P)≃ K (a)σ and m such that
[K (a, . . . , σm+1(a)) : K (a, . . . , σm(a))] = ld(a/K ). Then if b = (a, . . . , σm(a)),
we have ld(b/K )= ld(a/K ) and for ℓ≥ 1, ldσ ℓ(b/k0)= [K (b, σ ℓ(b)) : K (b)].

The claim now follows by the equivalences given in Remarks 1.3(1). □

For n ≥ 0, let R(n) and S(n) denote the subrings of Rσ and Sσ generated
respectively by σ i (R) and σ i (S), −n ≤ i ≤ n. Then each S(n) is Noetherian,
integral algebraic over R(n), Sσ =

⋃
n∈N S(n), and we have a natural map

Spec(Sσ )→
∏
n∈N

Spec(S(n)).
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For each n ∈N, the set Xn of prime ideals of S(n) which extend P ∩ R(n) is finite
and nonempty, and the natural map Spec(S(n + 1))→ Spec(S(n)) sends Xn+1

to Xn . Hence X := lim
←−−

Xn is a closed, compact, nonempty subset of
∏

n∈N Xn , and
is the set of prime ideals of Sσ which extend P . As each Xn is finite, and the set X
is stable under the (continuous) action of σ on Spec(Sσ ), X contains a recurrent
point Q. Let m be given by the claim, and consider S(m). Then for some ℓ ≥ 1,
we have σ ℓ(Q)∩ S(m)= Q ∩ S(m), and therefore, using Remarks 1.3(2), there is
a prime σ ℓ-ideal Q′ of S(m)σ ℓ such that

Q′ ∩ S(m)[σ−ℓ(S(m))] = Q ∩ S(m)[σ−ℓ(S(m))].

As Q contains P ∩ R′[σ−ℓ(R′)] and has the same dimension, by the claim Q′ must
extend P ∩ R′

σ ℓ
, and therefore also P ∩ Rσ ℓ . □

Remark 2.3. A consequence of our hypothesis on the dimension of the basic
types is as follows: Let P be a virtual prime ideal of Rσ . Then dim(P ∩ R) is
divisible by e. Indeed, choose m such that P ∩ Rσm is a prime σm-ideal of Rσm

and Rσ satisfies (ALGm). We may assume that m = 1. We use the notation and
definition of Section 1.4, and recall that R3 is finite integral algebraic over R.
Thus, by Lemma 2.2, P ∩ Rσ extends to a periodic prime ideal of R3

σ . This
means that Frac(Rσ/P ∩ Rσ ) is equi-algebraic over K to a difference field which
is generated over K by realizations of basic types of dimension e. Since basic
types have evSU-rank 1, these realizations may be taken independent, and therefore
tr.degK (Frac(Rσ/P ∩ Rσ )) is a multiple of e, so that dim(P ∩ Rσ ) is a multiple
of e. As Rσ is integral algebraic over R, dim(P ∩ R) is a multiple of e.

The basic cumulative case. We now prove some results in the particular case when
our coordinate rings are tensor products of coordinate rings of basic cumulative
types; this assumption holds until Proposition 2.10. The proof in the general case
follows the same lines, but is slightly more involved.

Note that the assumptions imply that all coordinate rings satisfy (ALG1), that all
virtual ideals are periodic, and that ∼ coincides with equality.

Lemma 2.4. Let I be an ideal of R of dimension d. Then there are only finitely
many periodic prime ideals of Rσ which contain I and are of dimension d.

Proof. A prime ideal of Rσ which contains I and is of dimension d must extend
a prime ideal P of R of dimension d containing I . As R is Noetherian, there are
only finitely many such prime ideals, and we may therefore assume that I = P is
prime, and extends to a periodic prime ideal of Rσ .

Then Proposition 3.10 of [7], together with Proposition 2.1, gives the result. □

Corollary 2.5. Let I be an ideal of Rσ of dimension d. Then there are only finitely
many periodic prime ideals of Rσ which contain I and are of dimension d.
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Proof. Such an ideal contains in particular I ∩ R. The result then follows from
Lemma 2.4. □

Corollary 2.6. Let I be an ideal of Rσ of dimension d. Then there are periodic
prime ideals P1, . . . , Ps of Rσ of dimension d , and a finite subset F of I , such that
if P is a periodic prime ideal of Rσ which contains F and is of dimension d , then
V (P)= V (Pi ) for some i .

Proof. By Lemma 2.4, if F is a finite subset of Rσ which generates an ideal of
dimension d and per(F) denotes the set of prime periodic ideals of Rσ containing
F and of dimension d , then per(F) is finite. Take a sufficiently large finite F such
that per(F)= per(I ). □

Lemma 2.7. Let I be a periodic ideal of Rσ of dimension d. Then I is contained in
a periodic prime ideal of Rσ of dimension d.

Proof. We may assume that I = σ(I ). Let F ⊂ I and P1, . . . , Ps be given by
Corollary 2.6. Let X be the set of prime ideals of Rσ of dimension d containing I ,
and for n ∈N, let R(n) be the subring of Rσ generated by σ i (R), −n ≤ i ≤ n, and
Xn be the set of prime ideals of R(n) containing I ∩ R(n) and of dimension d.
Each Xn is finite and nonempty, and we have natural maps Xn+1→ Xn . Hence,
X = lim

←−−
Xn is nonempty and compact. The automorphism σ acts continuously on X ,

and therefore has a recurrent point Q. Let n be such that R(n) contains F . Then for
some m>0, we have Q∩R(n)=σm(Q)∩R(n). By Remarks 1.3(2), there is a prime
σm-ideal Q′ of R(n)σm which extends Q ∩ R(n)[σ−m(R(n))]. But R(n)σm = Rσ ,
and because Q′ contains F and has dimension d , it must contain I . □

Lemma 2.8. Let I be a periodic ideal of Rσ , with I ∩ R pure of dimension d.
Then there are periodic prime ideals P1, . . . , Ps of virtual dimension d such that
V (I )= V (P1)∪ · · · ∪ V (Ps).

Proof. We already know by Lemma 2.4 (and Proposition 2.1) that V (I ) has only
finitely many irreducible components of dimension d, say V (P1), . . . , V (Ps). It
therefore suffices to show that every point of V (I ) is in one of these components.

Assume this is not the case. Let a ∈ V (I ), and m ≥ 1 such that I is a σm-ideal
and Q = (x − a)σm ⊇ I . Without loss of generality, m = 1. For n ∈ N, let R(n) be
the subring of Rσ generated by the rings σ i (R), −n ≤ i ≤ n. Then for each n ∈ N,
the ideal I ∩ R(n) is pure of dimension d , and therefore, the set Xn of prime ideals
P of R(n) of dimension d containing I ∩ R(n) and contained in Q is finite and
nonempty. Moreover, if P ∈ Xn+1, then P ∩ R(n) ∈ Xn . Hence, the compact
subset X = lim

←−−
Xn of Spec(Rσ ) is nonempty. It is the set of prime ideals of Rσ of

dimension d, containing I and contained in Q. Let F be given by Corollary 2.6,
and n such that F ⊂ R(n) and Q does not contain any of the Pi ∩ R(n). As σ
acts continuously on the compact set X , X has a recurrent point, say P . Then for
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some m ≥ 1, P ∩ R(n)= σm(P)∩ R(n). As in the proof of Lemma 2.7, there is a
prime σm-ideal P ′ of Rσ which extends P ∩ R(n)[σ−m(R(n))], and therefore has
dimension d , contains I and is not in the finite set {P1, . . . , Ps}. This gives us the
desired contradiction. □

We define a topology on V , taking the closed sets to be the sets V (I ). (It is easy to
see that the sets V (I ) are closed under intersections and under finite unions.) Then
when s is taken minimal in Lemma 2.8, the V (Pi ) are the irreducible components
of V (I ).

Lemma 2.9. Write Rσ = K {x1}⊗K · · · ⊗K K {xm}, with m ≥ 2. Let P be a prime
σ -ideal of Rσ , and let Q be the ideal Q = (x1− x2)σ corresponding to the diagonal
on Spec K {x1}×Spec K {x2}, i.e., generated by the x1, j − x2, j . Then either Q ⊆ P ,
or every irreducible component of V (P)∩ V (Q) has dimension dim(P)− e.

Proof. Assume Q ̸⊆ P , and consider the σ -ideal I = P + Q. Note that since Q is
generated by elements of R, at least one of them is not in P . Thus I ∩ R is strictly
bigger than P ∩ R, so each component of I ∩ R has dimension < dim(P).

Let R(n) be the subring of Rσ generated by σ i (R), −n ≤ i ≤ n, for n ∈N. Then
each R(n) is a localization of the affine coordinate ring of a smooth variety. (In our
construction, all proper subvarieties defined over k0, including the singular locus,
were localized away. See the discussion in (5.18) of [7].)

Hence the dimension theorem holds: since Q ∩ R(n) has codimension e, all
minimal prime ideals over P ∩ R(n)+ Q ∩ R(n) have dimension ≥ dim(P)− e.

Since R is Noetherian, I ∩ R is finitely generated. Any finite set of elements of
I∩R must already belong to P∩R(n)+Q∩R(n) for some n. Since R(n) is integral
over R, and the components of P∩R(n)+Q∩R(n) have dimension ≥ dim(P)−e,
it follows that every minimal prime of I ∩ R has dimension ≥ dim(P)− e. (The
image of an irreducible variety under a morphism with finite fibers is an irreducible
variety of the same dimension.)

In particular, I has dimension δ≥dim(P)−e. By Lemma 2.7 some periodic prime
ideal P ′ containing I has dimension δ; by Remark 2.3, δ as well as dim(P) must be
a multiple of e. We saw that δ<dim(P), so the only choice is δ= dim(P)−e. Thus
I ∩ R is pure of dimension dim(P)− e. Hence Lemma 2.8 applies, and shows that
the components V (P1), . . . , V (Pn) of V (I ) all have dimension exactly d − e. □

Proposition 2.10. Let P and Q be periodic prime ideals of Rσ . Then every irre-
ducible component of V (P)∩ V (Q) has dimension ≥ dim(P)+ dim(Q)− dim(0);
it is determined by a periodic prime ideal of Rσ intersecting R in minimal prime
ideals over (P ∩ R)+ (Q ∩ R).

Proof. This can be deduced from Lemma 2.9 by reduction to an intersection with
the diagonal 1 (identifying V (P)∩ V (Q) with P × Q ∩1). □
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The general case. The results in the cumulative case extend easily to the general
case, in most cases simply replacing equality of ideals by the equivalence relation∼.
The fact that we consider also coordinate rings of semibasic types makes things a
little more complicated, but Lemma 2.2 is of use. Also, Proposition 2.1 allows us
to juggle between periodic and virtual ideals. Recall our assumptions:

(R, Rσ ) is a tensor product of coordinate rings of semibasic types, and
all associated basic types have virtual dimension e.

Lemma 2.11. Let I be an ideal of R, of dimension d. Then, up to ∼, there are
only finitely many virtual prime ideals of Rσ which contain I and are of virtual
dimension d.

Proof. We may assume that Rσ satisfies (ALG1). Then a prime ideal of Rσ which
contains I and is of virtual dimension d must extend a prime ideal P of R of
dimension d containing I . As R is Noetherian, there are only finitely many such
prime ideals, and we may therefore assume that I = P is prime, and extends to a
virtual prime ideal of Rσ .

Let us first assume that the semibasic types involved in Rσ are all basic. Then
Proposition 3.10 of [7], together with Proposition 2.1, gives us the result.

Let us now do the general case. We consider the rings Ri introduced in Section 1.4.
Recall that R1

⊆ R2
⊆ R3

⊇ R. As R3
σ is integral algebraic over Rσ , and satisfies

(ALG1), Lemma 2.2 tells us that any virtual prime ideal of Rσ extends to a virtual
prime ideal of R3

σ . On the other hand, there are only finitely many prime ideals of
R3 which extend P , so we may assume that R = R3, Rσ = R3

σ .
The first case gives us that P ∩ R1 extends to finitely many prime virtual ideals

of R1
σ , up to ∼, and by Proposition 2.1, we may assume they are periodic. As R2

and R2
σ are localizations of R1 and R1

σ , respectively, a periodic prime ideal of R1
σ

extends to at most one (periodic) prime ideal of R2
σ . Say Q is a prime σ ℓ-ideal

of R2
σ ℓ

which extends P ∩ R2. Then there are only finitely many prime ideals of
R2
σ ℓ
[R3
] which extend Q, and by Lemma 3.9 of [7], to each of these corresponds

at most one (up to ∼) virtual ideal of R3
σ . Hence, up to ∼, there are only finitely

many virtual ideals of R3
σ extending P . □

Corollary 2.12. Let I be an ideal of Rσ of virtual dimension d. Then, up to ∼,
there are only finitely many virtual prime ideals of Rσ of virtual dimension d and
which contain I ∩ Rσm for some m > 0.

Proof. Such an ideal contains in particular I ∩ R. The result follows from
Lemma 2.11. □

Corollary 2.13. Let I be an ideal of Rσ of virtual dimension d. Then there are
periodic prime ideals P1, . . . , Ps of Rσ of virtual dimension d , and a finite subset
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F of I , such that if P is a periodic prime ideal which contains F and is of virtual
dimension d, then V (P)= V (Pi ) for some i .

Proof. By Lemma 2.11, if F is a finite subset of Rσ which generates an ideal of
dimension d and per(F) denotes the set of prime periodic ideals of Rσ containing
F and of dimension d, then per(F)/∼ is finite. Take a sufficiently large finite F
such that per(F)/∼= per(I )/∼. □

2.14. Warning. This set F is not necessarily contained in R, nor in
⋂

m Rσm , unless
Rσ is cumulative.

We will need a version of Lemma 2.8 without the purity assumption. We claim
a weaker conclusion, namely that V (I ) is contained in some V (Pi ) of maximal
dimension.

Lemma 2.15. Let I be a virtual ideal of Rσ of virtual dimension d. Then there are
m ≥ 1 and a prime σm-ideal of Rσm of dimension d which contains I ∩ Rσm .

Proof. We may assume that I = σ(I ), and that Rσ satisfies (ALG1). Let F ⊂ I
be given by Corollary 2.13. Let X be the set of prime ideals of Rσ of dimension
d containing I , and for n ∈ N, let R(n) be the subring of Rσ generated by σ i (R),
−n ≤ i ≤ n, and Xn be the set of prime ideals of R(n) containing I ∩ R(n) and of
dimension d . Each Xn is finite, nonempty, and we have natural maps X→

∏
n∈N Xn

and Xn+1→ Xn . The automorphism σ acts continuously on the compact set X ,
and therefore has a recurrent point Q. Let n be such that R(n) contains F . Then
for some m > 0, we have Q ∩ R(n)= σm(Q)∩ R(n). By Remarks 1.3(2), there is
a prime σm-ideal Q′ of R(n)σm which extends Q ∩ R(n)[σ−m(R(n))]. Applying
Proposition 2.1 to R(n)σm , we obtain a prime σ ℓ-ideal Q′′ of Rσ which extends Q′;
then Q′′ contains F and has dimension d . □

Lemma 2.16 (correct version of Lemma 3.7 in [7]). Let R be a domain which
is integrally closed, k a subfield of R, and k1 an algebraic extension of k. Let
S = k1⊗k R. Let Q be a prime ideal of S.

(1) There is a unique prime ideal of S which intersect R in (0) and is contained
in Q.

(2) If P ′ is a prime ideal of S which intersects R in (0) and if k1 is separably
algebraic over k, then S/P ′ is integrally closed.

Proof. For both (1) and (2), we may assume that S is finitely generated over R,
i.e., that k1 is a finite extension of k. Furthermore, observe that if b ∈ S, then bpn

belongs to the subring (k1 ∩ ks)⊗k R of S for some n, and that a prime ideal P of
S contains b if and only if its intersection with (k1∩ ks)⊗k R contains bpn

, i.e., the
restriction map Spec(S)→ Spec((k1 ∩ ks)⊗k R) is a bijection. We may therefore
assume that k1 is separably algebraic over k of the form k[a] for some a ∈ k1.



298 ZOÉ CHATZIDAKIS AND EHUD HRUSHOVSKI

Let f (T ) be the minimal monic polynomial of a over k and consider its factor-
ization

∏m
i=1 gi (T ) over Frac(R) into monic irreducible polynomials. Because R is

integrally closed, all gi (T ) are in R[T ] (see, e.g., Theorem 4, Chapter V, §3 in [14]).
Moreover, since f is separable, their coefficients are actually in the subfield R ∩ ks

of R, and if i ̸= j , then (gi (T ), g j (T )) = (1). Thus any prime ideal of S, and in
particular Q, contains one and only one of the elements gi (a), and the ideal of
S generated by gi (a) is prime. (For this last assertion, use the fact that gi (T ) is
irreducible over Frac(R), and that S ≃ R[T ]/ f (T )). This shows (1).

For (2), viewing R as the coordinate ring of an affine variety V over k, we know
that V is normal. A minimal prime ideal of S corresponds therefore to an irreducible
component of the (nonirreducible) variety Vk1 , and as the property of normality is
a local property, each component of Vk1 is normal, i.e., with P ′ as above, S/P ′ is
integrally closed. Here we are using the fact that k1/k is separable, so that the map
Spec(k1)→ Spec(k) is étale and if k1/k is finite, then S is a product of domains.

The fact that R is not necessarily finitely generated over K is not important: it is
a union of finitely generated K-algebras which are integrally closed. □

Proposition 2.17. Let (R, Rσ ) be a pair of coordinate rings associated to semibasic
types satisfying (ALG1). Then (R, Rσ ) satisfies the following: if Q is a prime ideal
of Rσ and if P is a prime ideal of R which is contained in Q ∩ R, then there are
only finitely many prime ideals of Rσ which extend P and are contained in Q.

Proof. Let Q ⊂ Rσ = S be a prime ideal, and let P be a prime ideal of R such
that P ⊆ Q∩ R. Let us first assume that R/P is integrally closed. Let (x1, . . . , xn)

be the coordinates corresponding to R, i.e., R = K {x1} ⊗K · · · ⊗K K {xn} and
K {xi } = k0(xi )⊗k0 K . Then

S =
(
· · · ((R⊗K {x1} K {x1}σ )⊗K {x2} K {x2}σ ) · · · ⊗K {xn} K {xn}σ

)
.

We know that each K {xi }σ is integral algebraic over K {xi } (by (ALG1)). However,
it may not be separably integral algebraic. So, we consider instead the ring

S′ =
(
· · · (R⊗K {x1} (K {x1}σ ∩ K {x1}

s))⊗K {x2} · · · ⊗K {xn} (K {xn}σ ∩ K {xn}
s)

)
.

If b ∈ S, some pm-th power of b lies in S′, so that any prime ideal of S′ extends
uniquely to a prime ideal of S. It therefore suffices to prove the result for S′.

Applying Lemma 2.16 to k = K {x1} and S1 = R⊗K {x1} (K {x1}σ ∩ K {x1}
s), we

obtain that there is a unique prime ideal P1 of S1 which extends P and is contained
in Q ∩ S1. Furthermore, S1/P1 is integrally closed. Iterate the reasoning to obtain
that there is a unique prime ideal Pn of S′ which extends P and is contained in Q
(and furthermore, S′/Pn is integrally closed).
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In the general case, let A be the integral closure of R/P . Because R/P is a
localization of a finitely generated K-algebra, it follows that A is a finite R/P-
module (see Theorem 9, Chapter V, §4 of [14]; observe also that a localization of an
integrally closed domain is integrally closed), and is integral algebraic over R/P .
So the map Spec(A)→Spec(R/P) is finite, with fibers of size at most g for some g.
Hence, the prime ideal Q/P S of S/P S has exactly s extensions Q1, . . . , Qs to
S̃ = (S/P S) ⊗R/P A, for some s with 1 ≤ s ≤ g. Let P ′ be a prime ideal of
S extending P and contained in Q; then P ′ contains P S, and therefore P ′/P S
extends to a prime ideal Q′ of S̃. This Q′ must be contained in one of the Qi . By
the first case, this determines Q′ uniquely, and therefore also P ′. Hence P has at
most s extensions to prime ideals of Rσ which are contained in Q. □

Lemma 2.18. Let I be a virtual perfect ideal of Rσ , with I ∩ R pure of dimension d.
Then there are periodic prime ideals P1, . . . , Ps of virtual dimension d such that
V (I )= V (P1)∪ · · · ∪ V (Ps).

Proof. We already know, by Lemma 2.11, that V (I ) has only finitely many irre-
ducible components of dimension d. It therefore suffices to show that every point
of V (I ) is in one of these components. Let a ∈ V (I ), and m ≥ 1 such that Rσ
satisfies (ALGm), I ∩ Rσm is a perfect σm-ideal and Q = (x − a)σm ⊇ I ∩ Rσm .
We work in Rσm , so without loss of generality, m = 1. For n ∈N, let R(n) be the
subring of Rσ generated by the rings σ i (R), −n ≤ i ≤ n. Then for each n ∈N, the
ideal I ∩ R(n) is pure of dimension d, and therefore, the set Xn of prime ideals
P of R(n) of dimension d containing I ∩ R(n) and contained in Q is finite and
nonempty. Moreover, if P ∈ Xn+1, then P ∩ R(n) ∈ Xn . Hence, the compact
subset X = lim

←−−
Xn of Spec(Rσ ) is nonempty. It is the set of prime ideals of Rσ

of dimension d, containing I and contained in Q. If P ∈ X , then P ∩ R belongs
to the finite set X0; hence, by Lemma 2.16, X is finite. On the other hand, X is
stable under the (continuous) action of σ , because I and Q are σ -ideals. Hence,
for some ℓ, σ ℓ is the identity on X , i.e., all ideals in X are prime σ ℓ-ideals. □

Proposition 2.19 (Proposition 2.6 in [7]). Let (R, Rσ ) ∈R be a pair of coordinate
rings, and let P1, P2 be two virtual prime ideals of Rσ . Then V (P1)∩V (P2)= V (I )
for some virtual perfect ideal I . The irreducible components of V (P1) ∩ V (P2)

correspond to virtual prime ideals Qi with Qi ∩ R minimal prime containing
P1 ∩ R+ P2 ∩ R.

Proof. We may assume that Rσ satisfies (ALG1), and that P1 and P2 are prime
σ -ideals. (In fact, at every stage of the proof, we allow ourselves to replace Rσ
by Rσm so that our ideals remain σ -ideals, and without explicitly saying so). For
the first assertion, it suffices to show that V (P1)∩ V (P2) has only finitely many
irreducible components: if these are of the form V (Qi ), i = 1, . . . , s, for Qi a
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prime σm-ideal of Rσm , then one takes I =
⋂s

i=1 Qi , a perfect σm-ideal of Rσm

(which contains P1 ∩ Rσm + P2 ∩ Rσm ).
If V (P1) ∩ V (P2) = ∅ then there is nothing to prove, so we assume it is

nonempty. The elements of V (P1)∩V (P2) are in correspondence with the elements
of (V (P1) × V (P2)) ∩ 1, where the corresponding pair of coordinate rings is
(Rσ ⊗K Rσ , R ⊗K R), and 1 denotes the diagonal of the underlying ambient
set V (0)× V (0). The same observation holds at the level of the Zariski closures.
We therefore replace P1 by the ideal P of Rσ ⊗K Rσ generated by P1⊗1+1⊗ P2,
and P2 by the ideal corresponding to 1, i.e., the ideal I (1) of Rσ ⊗K Rσ generated
by all a ⊗ 1− 1⊗ a, for a ∈ Rσ . Write Rσ as the tensor product over K of the
rings K {xi }σ , i = 1, . . . , n, with K {xi } associated to the semibasic type qi . Then
1=

⋂
1i , where 1i ⊂ V (0)× V (0) is defined by xi = x ′i inside

Sσ = (K {x1}σ ⊗K · · · ⊗K K {xn}σ )⊗K (K {x ′1}σ ⊗K · · · ⊗K K {x ′n}σ ).

It then suffices to show the result for P + I (11), then for each P ′+ I (12) where
P ′ is a prime periodic ideal minimal containing P + I (11), etc.

Let us first assume that qi is basic and that P does not contain I (1i ). The proof
is very similar to the proof of Lemma 2.9, with small changes. Let S = R⊗K R,
Sσ = Rσ ⊗K Rσ , and S(n) ⊂ Sσ the subring generated by σ i (S), −n ≤ i ≤ n,
for n ∈ N. Reasoning as in the proof of Lemma 2.9, all minimal prime ideals
over P + I (1i ) have dimension ≥ dim(P)− e. By Lemma 2.15, P + I (1i ) is
contained in a prime periodic ideal P ′ of dimension dim(P+I (1i )). By Remark 2.3,
dim(P+ I (1i )) must be a multiple of e, and this implies it must equal dim(P)−e.
Hence all irreducible components of V (P + I (1i )) have dimension dim(P)− e.

Note that the minimal virtual prime ideals containing P+ I (1i ) do indeed extend
minimal prime ideals over P ∩ S+ I (1i )∩ S, since they have the same dimension.

We now do the general case. As R3
σ is integral algebraic over Rσ , we may

assume that Rqi = R3
qi

, Rqi ,σ = R3
qi ,σ

, by Lemma 2.2. Write the variables of qi

as (y, y1, . . . , yr ). Then I (1i ) is the intersection of the r σ -ideals

(y1− y′1)σ , (y2− y′2)σ , . . . , (yr − y′r , y− y′)σ .

The first r − 1 of these ideals have dimension tr.degK (S)− e in Sσ ; for the last
one, work inside Sσ/(y1 − y′1, y2 − y′2, . . . , yr−1 − y′r−1)σ . Then the minimal
prime σ -ideals over I (1i )/(y1 − y′1, y2 − y′2, . . . , yr−1 − y′r−1)σ all have dimen-
sion tr.degK (Rσ ). Apply the first case to these ideals to conclude. □

Corollary 2.20 (the dimension theorem [7, (4.16)]). Let P1 and P2 be virtual prime
ideals of Rσ , and let n be the evSU-rank of V (0) (i.e., there are exactly n basic
types which are associated to Rσ ). Then all nonempty irreducible components of
V (P1)∩ V (P2) have evSU-rank ≥ (dim(P1)+ dim(P2))/e− n.
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3. Going through Sections 2, 3 and 4 of [7]

We describe which of the results of these three sections remain true without changes,
which ones are false or unnecessary, and which ones need to be repaired. Note that
while our coordinate rings are not “friendly” (because they do not satisfy (∗1)), the
assumption we make on the semibasic types considered are usually slightly stronger
than those made in the paper. Unless preceded by “the present”, references are to
results in [7].

Section 2. We gave up on the idea of finding a general setting (a modified version
of friendliness satisfied by our coordinate rings) in which one would be able to
prove the dichotomy theorem, and so in all the results, the hypotheses of friendliness
should be replaced by our hypotheses on semibasic types: the associated basic types
all have dimension e.

Notation and definitions are given in more details in (2.1) and (2.2), as well as
some examples. Proposition 2.4 states the basic results on the duality between sets
V (I ) and virtual ideals.

Proposition 2.6 is the present Proposition 2.19. The proof of Proposition 2.8
goes through verbatim.

Section 3. Paragraphs (3.1) to (3.6) are definitions and notation.
Lemma 3.7 is false. The correct version is given by the present Lemma 2.16(1),

but it is not enough to prove (∗1) for our coordinate rings. Thus Proposition 3.8 is
false as well.

However, the proofs of Lemma 3.9 and Proposition 3.10 go through without
change (except for a typo on line 4 of the proof of 3.10: it should be the inverse
image of Q ∩ K [x1, . . . , xr ]σ ).

Theorem 3.11 is implied by the present Corollary 2.12.
Proposition 3.12 goes through verbatim (note that the claim is the present

Remark 2.3). Note also that once more, Proposition 2.6 (the present Proposition 2.19)
is instrumental.

Section 4. Paragraph (4.1) consists of definitions and notation.
Proposition 4.2 remains true, but the proof needs to be slightly modified (as it

appeals to the false Lemma 3.7) towards the end. The modification is as follows:
we are in the situation of Rσ satisfying (ALG1), have chosen a1, . . . , an, a ∈ V (P)
such that the field of definition of the ideal P ∩ R is contained in k0(a1, . . . , an),
and a is generic over k0(a1, . . . , an). By (ALG1) and the way our coordinate
rings are defined, we know that the ideal I of Rσ generated by P ∩ R is pure of
dimension dim(P). As V (I ) has finitely many irreducible components and by
genericity of a, a is in only one irreducible component of V (I ), and that component
must be V (P). Hence, for any ℓ, P ∩ Rσ ℓ is defined over clσ ℓ(k0, a, a1, . . . , an).
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Corollary 4.2 and Propositions 4.3, 4.4 and 4.5 go through without change, except
in the proof of 4.3, (∗1) should be replaced by the present Proposition 2.17.

In (4.6), we slightly strengthen the requirements and only consider 0-closed sets
defined by virtual perfect ideals. This is to ensure that they have only finitely many
irreducible components.

Proposition 4.7 remains true, with a slight change at the end of the proof, similar
to the one given for 4.3.

Proposition 4.9 and Lemma 4.10 go through without change. Note the following
consequences of Lemma 4.10 of [7], which while not needed for the main theorems,
are quite useful in applications. We assume the hypotheses of 4.10.

Corollaries (of Lemma 4.10 of [7]). (1) Let d1 and d2 be tuples of realizations
of basic types among {p1, . . . , pn}. Then acl(d1)∩ acl(d2) = acl(e), where e
consists of realizations of types in {p1, . . . , pn}.

(2) Let b realize a tuple of semibasic types, and a ∈ acl(b) be such that qftp(a/k0)

satisfies (ALGm) for some m. Then qftp(a/k0) is semibasic.

Proof. Choosing c in 4.10 to be the empty sequence, (1) follows from the conclusion.

(2) Indeed, without loss of generality b consists of realizations of basic types; take
b′ realizing qftp(b/a) and independent from b over a. Then a = acl(b)∩ acl(b′)
and we may apply (1). □

Let us now discuss Theorem 4.11. The set Y needs to be modified in the following
manner:

• Condition (i) stays the same: for any semibasic type q, Xq(K ) ⊂ Y(K ) or
Xq(K )∩Y(K )=∅;

• Condition (ii) becomes: if b ∈ Y(K )n for some n, and a ∈ acl(k0b) is such
that q = qftp(a/k0) satisfies (ALGm) for some m, then Xq(K )⊂ Y(K ).

(The set Y was in fact incorrectly defined in [7], and the current definition is the
one which was used in the proof.) In the cumulative case, we furthermore impose
that all our semibasic types are cumulative.

Once this change is done, the proof goes through, although one needs to pay
attention to a clash of notation: the tuple d which appears on line 13 of page 283 has
nothing to do with the one discussed earlier in the proof; it consists of realizations
of basic types, and is independent from c over k0.

Proposition 4.12 of [7] goes through verbatim, as well as Remark 4.14, Proposi-
tion 4.15 and the verification of the axioms for Zariski geometries given in (4.16),
for the set Yb(K )=

⋃
p basic of dimension e Xp(K ). Note that the present Corollary 2.20

gives us Corollary 4.16 of [7] for semibasic types.



REVISITING VIRTUAL DIFFERENCE IDEALS 303

4. Using the Zariski geometry to get the trichotomy

The first paragraphs of Chapter 5 of [7] introduce Robinson theories and universal
domains. The real work starts with Lemma 5.10 of [7], which out of a group
configuration produces a quantifier-free definable subgroup of an algebraic group,
in some reduct �[m]. Note that in the cumulative case, the subgroup G1 can be
chosen so that its generic type is cumulative, by Proposition 1.15 of [5]. Then all
results of [7] up to Proposition 5.14 go through without change.

Paragraph (5.15) is the statement of the trichotomy theorem:

Theorem 5.15. Let p be a basic type, and assume that Xp(K ) is not modular. Then
Xp(K ) interprets an algebraically closed field of rank 1.

The proof given in [7] goes through, as it is just an adaptation of the proof of
[11] to our particular case.

We now come to the main result of the paper, given at the beginning of Section 6:

Theorem. Let K |H ACFA, let E = aclσ (E) ⊆ K , and let p be a type over E
with SU(p) = 1. Then p is not modular if and only if p is nonorthogonal to the
formula σm(x)= x pn

for some relatively prime m, n ∈ Z with m ̸= 0.

Proof. The proof goes through verbatim, to show that for some m > 0 (passing
maybe to a larger E), if a realizes p, then there is some a′ ∈ aclσ (Ea) such
that evSU(a′/E)= SU(a′/E)[m] = 1, and qftp(a′/E)[m] is nonorthogonal to the
formula (σm)r (x)= Frobn(x) for some integers r ̸= 0 and n, with (n, r)= 1 (and
in fact, r = 1). The proof is now routine, using Lemma 1.12 of [2]: let b, c be tuples
such that, in �[m], c is independent from aclσ (Ea)= aclσ (Ea′) over E , b satisfies
(σm)r (x)= Frobn(x) and belongs to E0 = aclσm (Ea′c). The proof of Lemma 1.12
of [2] then gives us an aclσ (Ea)-σm-embedding ϕ of F0 = aclσ (Ea)E0 into �[m],
such that the fields σ iϕ(F0), i = 0, . . . ,m− 1, are linearly disjoint over aclσ (Ea).
It then follows that ϕ(c) is independent from a over E (in �), and therefore p is
nonorthogonal to σmr (x)= Frobn(x). □

The proofs of the results of Section 7 are also unchanged.
We have proved one part of the trichotomy, namely the dichotomy between

modularity and a field structure. The second leg is proved in all characteristics
in (5.12) of [2]: if p is modular but has nontrivial algebraic closure geometry, then
p is nonorthogonal to an SU-rank one definable subgroup of an algebraic group,
indeed of the additive or multiplicative group, or a simple abelian variety.

Additional information concerning the nonorthogonality is available in [3; 4]. The
internal structure of modular subgroups of semiabelian varieties is fully understood;
see [6]. In the additive case, a bilinear map is definable in some cases; describing
the full induced structure remains open.
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