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Independence and bases: theme and variations

Peter J. Cameron

To Boris Zilber on the occasion of his 75th birthday.

This paper describes a complex of related ideas, ranging from Urbanik’s v∗-
algebras, through Deza’s geometric groups and Zilber’s homogeneous geometries,
to Sims’ bases for permutation groups and their use in defining “size” parameters
on finite groups, with a brief look at Cherlin’s relational complexity. It is not a
complete survey of any of these topics, but aims to describe the links between
them.

1. Introduction

In the 1980s, there was widespread interest in matroids with a large amount of
symmetry. Michel Deza was studying perfect matroid designs, matroids in which
the cardinality of a flat depends only on its dimension: this class includes uniform
matroids, classical projective and affine spaces, and Steiner systems. One way to
enforce this condition is to assume a large group of automorphisms: for example, it
holds if the stabiliser of any subset is transitive on the set of points not dependent on
that subset. The tool of choice for many was the recently announced classification
of finite simple groups.

In 1988, I attended a Durham Symposium on model theory and groups run by
the London Mathematical Society. To my amazement, Boris Zilber spoke at the
symposium, giving four lectures on his recent result classifying such geometries
with rank at least seven, by geometric methods not using CFSG.

Zilber [1984] had worked on first-order theories which are categorical in all
cardinalities. We knew from Morley’s theorem that this imposes just two conditions
on the theory: countable and uncountable categoricity. The result of Engeler, Ryll-
Nardzewski and Svenonius shows that ℵ0-categoricity is equivalent to the existence
of a large automorphism group, while categoricity in higher powers forces structural
conditions such as the existence of rank functions, which led to the development
of stability theory. These nicely combine if both types of categoricity hold. In
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particular, strictly minimal countably categorical theories carry geometries of infinite
dimension which have analogues of the properties that Deza was interested in.

Zilber’s achievement in his lectures at the symposium (described in [Zilber
1988a]) was to observe that methods from the infinite case could be applied also to
finite structures. The set of elements independent of a finite subset is infinite in the
infinite case, but sufficiently large in the finite case that arguments can be adapted.

Perhaps Zilber’s methods have not been sufficiently integrated into finite combi-
natorics; we still have work to do.

2. Definitions

A family B of finite subsets of a set is said to have the exchange property if, given
B1, B2 ∈ B and y ∈ B2 \ B1, there exists x ∈ B1 \ B2 such that (B1 \ {x})∪ {y} ∈ B.

Clearly all the sets in such a family have the same cardinality. One definition
of a matroid, in terms of its set of bases, is as a collection of subsets of a finite
set having the exchange property. Matroids form an important class of structures,
describing subsets of vector spaces, edge sets of graphs (where the bases are
spanning forests), transversals to families of sets, and several others. Areas of
mathematics in which matroids occur include algebraic and tropical geometry and
homotopy theory [Giansiracusa and Giansiracusa 2018].

The set of bases in a vector space V has two properties, which serve as a
foundation for linear algebra:

(a) it has the exchange property;

(b) any map from a basis into V has a unique extension to an endomorphism of V .

It is natural to look for further examples of this phenomenon.
Let A be an algebra, in the sense of universal algebra; that is, a set carrying a

number of operations of various arities (we interpret 0-ary operations as constants).
Suppose that A is finitely generated, and let B be the set of minimal (under inclusion)
generating sets for A. Then A is an independence algebra if B has the above two
properties. The definition, and the classification of these algebras, are essentially
due to Kazimierz Urbanik [1966] (who called them v∗-algebras), but his work was
not as well known as it deserved to be, and the concept was later rediscovered in
the context of semigroup theory. Section 2 of this paper gives some details about
independence algebras and their classification, and mentions a recent result on
them.

Perhaps unaware of the work of Urbanik, semigroup theorists Fountain and
Lewin [1992] and Gould [1995] realised that earlier structural results of Howie,
Reynolds and Sullivan, and Erdos on the full transformation semigroup and the
semigroup of linear maps on a vector space could be generalised to endomorphism
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semigroups of independence algebras. I learned of the topic from John Fountain, and
set to work with Csaba Szabó to classify at least the finite independence algebras.

The endomorphisms of a structure form a monoid, and the automorphisms form
its group of units. The class of permutation groups arising as automorphism groups
of independence algebras is part of a more general class, named “geometric groups”
by Michel Deza [Cameron and Deza 1979]. These groups, and the underlying
closure systems, were studied by Boris Zilber in the 1980s, in the course of his
important researches on countably categorical and ℵ0-stable first-order structures;
he called these objects quasi-Urbanik structures; see [Zilber 1988b]. Section 3 of
this paper discusses some of their theory.

The concept of a base can be defined for any permutation group, not just the
geometric groups. Permutation group bases do not usually satisfy the exchange
property; those which do, the so-called IBIS groups, introduced by Dima Fon-
Der-Flaass and me [Cameron and Fon-Der-Flaass 1995], form a very interesting
class. Bases were introduced by Charles Sims [1970] for use in computation with
permutation groups, but raise various interesting questions; among other uses, they
form part of László Babai’s work on the graph isomorphism problem [Babai 2015],
and are connected with Cherlin’s notion of relational complexity for studying finite
homogeneous structures [Cherlin 2016; Cherlin et al. 1996]. This area is seeing
renewed activity at present, so I will not give a complete survey, but will highlight
some open questions.

The final section draws connections between various “measures” of a finite group
with parameters defined in terms of bases in all actions of the group. There are a
number of open problems here.

To conclude this section, I give a couple of essential definitions for permutation
group theory. Let G be a permutation group acting on �. The action is transitive
if there is no G-invariant subset except for � and the empty set (equivalently, any
element of � can be mapped to any other by some element of G); it is primitive
if it is transitive and, in addition, there is no G-invariant partition except for the
partition into singletons and the partition with a single part. The stabiliser of an
element α ∈ � is the subgroup of G consisting of all elements mapping α to itself.
The action is semiregular or free if the stabiliser of every point is the identity; it is
regular if it is transitive and semiregular.

3. Independence algebras

An independence algebra is a finitely generated algebra with the properties

(a) the minimal generating sets have the exchange property;

(b) any map from a minimal generating set into the algebra extends uniquely to
an endomorphism of the algebra.
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The definition makes no explicit mention of the operations of the algebra; there
is some freedom about these, as long as the correct subalgebras and endomorphisms
are obtained. (A minimal generating set is a subset minimal with respect to being
contained in no proper subalgebra.) Thus a classification up to isomorphism is not
possible. Urbanik classified the algebras up to clone equivalence, noting that an
algebra clone-equivalent to an independence algebra is an independence algebra.
Szabó and I used a slightly weaker, but arguably more natural, equivalence. We say
that two algebras A and B are SE-equivalent if there is a bijection between them
which preserves subalgebras and endomorphisms. It turns out that there is one case
only where these notions differ (one SE-equivalence class of independence algebras
splits into two clone-equivalence classes). For further discussion see [Araújo et al.
2022; 2011; Araújo and Fountain 2004].

There is another small difference also: Urbanik did not allow constants, but used
constant-valued unary operations instead. We will see that the presence or absence
of constants is crucial to the classification.

First consider the case where A has rank 1. (The rank is the cardinality of a
minimal generating set; the exchange property guarantees its invariance.) If there
are no constants, then any singleton subset of A is a generating set, and any element
can be mapped to any other by a unique automorphism. Thus the automorphism
group G of A acts regularly. For any group G, there is an independence algebra of
this form; we take A = G and, for each g ∈ G, equip A with a unary operation µg

given by µg(x) = gx . Then G acts regularly on A by right multiplication.
Now suppose that there is a set C of constants. Then the bases are the singletons

not contained in C , and any of them can be mapped to any other by a unique
automorphism; so we can identify A \ C with a group G. There is a unique
endomorphism fc mapping the identity element of G to c, for each c ∈ C . There
is a left action of G on C , defined by the rule that the endomorphism g ◦ fc

(composed left-to-right) maps the identity of G to an element which we take to
be g(c). Conversely, given any group G and left action of G on a set C we obtain
an independence algebra on the disjoint union G ∪ C : it has a constant γc for
each c ∈ C (interpreted as c) and a unary operation µg for each g ∈ G given by
µg(h) = gh for h ∈ G, µg(c) = g(c).

The phrase “an independence algebra of rank 1” seems to me a remarkably
concise way of defining a group with an action on a set.

This construction extends as follows. For any set X , and any group G with a
left action on C , define an algebra on the set A = (X × G) ∪ C with C as set of
constants, and unary operations µg defined by

µg((x, h)) = (x, gh), µg(c) = g(c).

This is an independence algebra whose subalgebras are all the sets (Y × G) ∪ C
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for Y ⊆ X , so that the subalgebra lattice is the Boolean algebra B(X) of subsets
of X . Every finitely generated independence algebra whose subalgebra lattice is a
Boolean algebra is of this form; these are the trivial independence algebras. (We
could follow the model theorists and call them disintegrated.)

Next, it is shown that the subalgebra lattice of a nontrivial independence algebra
is a projective or affine space, depending on whether the algebra has constants or
not. The arguments for this are quite general, not assuming finiteness or even finite
rank; an accessible account is in [Cameron and Szabó 2000].

Finally it is shown that the algebras are of three types:

(a) Let V be a vector space over a division ring F . Then there is an independence
algebra whose elements are those of V ; the operations are addition in V and
scalar multiplication by elements of F . The subalgebras are the subspaces
of V , and so the subalgebra lattice is the projective space built on V . If W is a
subspace of V , we obtain an independence algebra by taking the elements of
W to be constants; its subalgebra lattice is the projective space on V/W .

(b) Let V be a vector space over a division ring F . For each c ∈ F with c ̸= 0, 1,
define a binary operation βc(x, y) = cx + (1−c)y. (If |F | = 2, we use instead
the ternary operation τ(x, y, z) = x + y + z.) This defines an independence
algebra whose subalgebras are the affine subspaces. If W is a subspace of V ,
we can add unary operations for translations by elements of W to obtain an
algebra whose subalgebras are the unions of cosets of W corresponding to
affine subspaces of V/W .

(c) Let G be a sharply 2-transitive group on �: this means that any pair of distinct
elements of � can be mapped to any other such pair by a unique element of G.
Let {Oi : i ∈ I } be the set of orbits of G on triples of distinct elements of �.
For each i ∈ I , define a binary operation µi by

µi (a, a) = a, µi (a, b) = c if (a, b, c) ∈ Oi .

This defines an independence algebra; its endomorphisms are the elements of
G together with the constant functions, and its rank is 2.

The sharply 2-transitive groups have been of interest for a long time, partly
because of their connections with projective planes. It was known to Burnside
and Frobenius, and probably earlier, that a finite sharply 2-transitive group has a
regular normal subgroup, and so is the group of 1-dimensional affine maps over a
finite nearfield (this is a structure satisfying the field axioms except possibly the
commutativity of multiplication and one distributive law). The finite nearfields were
all determined by Zassenhaus [1935]: there are infinitely many Dickson nearfields
(obtained from Galois fields by “twisting” the multiplication) and seven exceptional
nearfields.
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For a long time it was not known whether all sharply 2-transitive groups are
given by nearfields. Several authors [Grätzer 1963; Kerby 1974; Tits 1952; Wilke
1972] defined algebraic structures from such groups, which were given various
names and satisfied slightly different sets of axioms. Eventually the question was
resolved in [Rips et al. 2017]: infinite sharply 2-transitive groups do not necessarily
have regular normal subgroups, and so cannot all be defined from nearfields.

The most recent appearance of independence algebras is in the paper [Araújo et al.
2022]. This gives more details about the relation between Urbanik’s v∗-algebras and
independence algebras, the relation between clone equivalence and SE-equivalence,
and the classification theorem, and goes on to develop matrix theory for most types
of independence algebras, though in the case of sharply 2-transitive groups this
works only for those defined over nearfields.

4. Geometric groups

The automorphism group of an independence algebra has some remarkable proper-
ties:

(a) it acts transitively on (ordered) bases for the algebra;

(b) the stabiliser of any tuple of points fixes pointwise the subalgebra they generate
and acts transitively on the points outside this subalgebra.

Forgetting the algebra, the problem of determining the groups with properties
like these arises in a couple of places:

• The automorphism group of a strictly minimal set in a totally categorical
first-order structure has this property, where the role of subalgebras is taken
by definably closed sets; as we saw, Boris Zilber was motivated by this.

• Michel Deza defined an analogue of a matroid in the semilattice of partial
permutations rather than the lattice of subsets; he called it a permutation
geometry (by analogy with the term “combinatorial geometry”, an alternative
name for a matroid, proposed by Gian-Carlo Rota).

I will not describe the motivation further, but go straight to the definition. These
groups were called “geometric groups” by Deza; not an ideal name, since there are
many ways in which a group can be “geometric”, and there is no connection with
the topic of geometric group theory, but I will stick to this term.

A geometric group, then, is a permutation group in which the stabiliser of any
finite tuple acts transitively on the points it does not fix (if any).

We see immediately that, in a geometric group, the analogue of a basis for
independence algebras can be defined as a sequence of points (x1, x2, . . . , xr ) in
which each point is moved by the stabiliser of its predecessors, but the stabiliser
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of the whole sequence is the identity. Then the group acts transitively on ordered
bases. The number r is the rank of the geometric group.

What are the geometric groups? It is clear that a geometric group of rank 1 is an
arbitrary group acting regularly, perhaps with some added fixed points. So we can
assume that the rank is at least 2.

As noted above, Zilber [1984] determined all geometric groups of rank at least 7:
they are stabilisers of sequences of points in the symmetric group, the general
linear group, or the affine group (the last two over a finite field). His proof used
elementary arguments inspired by model theory. To elaborate a little, [Zilber 1984]
analysed the structure of countably categorical ℵ0-stable structures via their strongly
minimal sets, showing as a result that totally categorical structures could not be
finitely axiomatised. Strictly minimal sets in these structures involve locally finite
geometries which are shown to be either disintegrated (all subsets of a set) or
projective or affine spaces over finite fields; it is this result which he was able
to “finitise”, giving the characterisation noted at the start of this paragraph.

At about the same time, Maund [1989] used the recently announced classification
of finite simple groups to determine all geometric groups of rank at least 2. The
bulk of the work is involved in determining those groups of rank 2, since they occur
as building blocks for the groups of larger rank. The list is as follows:

(a) H ≀ S2, where H acts regularly.

(b) M · S3 ≤ H ≀ S3, where H is abelian and regular and

M = {(h1, h2, h3) ∈ H 3
: h1h2h3 = 1}.

(c) Sharply 2-transitive groups.

(d) V 2
· AGL(1, q) or V 2

· GL(2, q), where V is a vector space over GF(q).

(e) C(q−1)/2 × PSL(2, q) with q ≡ 3 (mod 4).

(f) Cq−1 × Sz(q), where q is an odd power of 2.

(g) PGL(3, 2) and PGL(3, 3).

(In case (d), we regard V 2 as V ⊗ W , where dim(W ) = 2, and GL(2, q) or its
subgroup AGL(1, q) acts on W .)

Maund used this list and some geometry to determine all finite geometric groups
of rank at least 2. Unfortunately this work has never been published.

This list was used in [Cameron and Szabó 2000] to give a determination of finite
independence algebras. For each geometric group we have to decide whether or
not it is possible to define maps to play the role of endomorphisms, and operations
preserved by the group to make the domain into an algebra.
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5. Bases for permutation groups

The concept of a base for a permutation group arose in computational group theory.
A base is a sequence of points in the permutation domain whose pointwise stabiliser
is the identity. Thus, for geometric groups, bases in the sense previously defined
are bases here also.

The importance of a base is that two elements of a permutation group G which
agree on a base for G must coincide: for if g and h are the two elements, then gh−1

fixes the base pointwise, so gh−1
= 1. This can lead to a compact representation of

group elements if the base size is small. So it is of interest to find a small base for
a permutation group. Let bm(G) be the size of a smallest base for G.

We can find a base very simply, by choosing points and stabilising them until
we reach the identity. This is potentially rather wasteful. Though it is hard to find
the base of smallest size for a given group, there are two simple methods which
perform rather well, involving choosing base points in order:

• There is no need to include a point which is fixed by the stabiliser of the points
already chosen. We call a base irredundant if no point is fixed by the stabiliser
of its predecessors. We note that bases of geometric groups in the earlier sense
are by definition irredundant.

• Motivated by this, a good heuristic is to choose each new base point from
an orbit of largest size of the stabiliser of its predecessors. This is a “greedy
algorithm”, and a base produced by this algorithm is called a greedy base.
The heuristic is based on the idea that to descend a chain of subgroups to
the identity, we should choose the subgroup of largest possible index in its
predecessor at each stage, and the index of the stabiliser of a point is the size
of the orbit of that point.

Note that bases are ordered sequences, and there is no guarantee that reordering
an irredundant or greedy base will result in another with the same property.

Clearly, for a geometric group, irredundant bases and greedy bases are the same,
and they have a beautiful geometric structure: they are the bases of a matroid.
However, the last condition holds more generally, according to this remarkable
theorem of Cameron and Fon-Der-Flaass [1995].

Theorem 1. For a permutation group G, the following conditions are equivalent:

(a) all irredundant bases have the same size;

(b) the result of reordering an irredundant base is still irredundant;

(c) the irredundant bases are the bases of a matroid.

Proof. Clearly (c) implies (a). Also (a) implies (b), since if reordering a base
created a redundancy then a smaller irredundant base could be obtained by removing



INDEPENDENCE AND BASES: THEME AND VARIATIONS 425

some elements. Suppose that (b) holds, and let (a1, . . . , ar ) and (b1, . . . , bs) be
irredundant bases. The stabiliser of a1, . . . , ar−1 cannot fix all of b1, . . . , bs ;
suppose that it moves bi . Then (a1, . . . , ar−1, bi , ar ) is a base, which must be
redundant since swapping the last two elements gives a redundant base. But the
only possible redundancy is that ar is fixed by the stabiliser of the earlier points, so
(a1, . . . , ar−1, bi ) is an irredundant base. Thus the exchange property holds. □

Groups satisfying these conclusions are called IBIS groups (an acronym for
“Irredundant Bases of Invariant Size”. Every geometric group is an IBIS group; the
converse is far from true. For a simple example, a Frobenius group (a transitive group
in which the stabiliser of any two points is trivial but the stabiliser of a single point
is not) is an IBIS group of rank 2: the bases are all the 2-element sets. A Frobenius
group is a geometric group if and only if it is sharply 2-transitive, and as we saw,
all sharply 2-transitive groups are automorphism groups of independence algebras.

A large class of (intransitive) examples is given by the following construction.
Let C be a linear code of length n over the finite field F (a subspace of Fn). Let

G be the additive group of C , and let � = {1, . . . , n}× F . Define an action of G
on � by

a : (i, x) 7→ (i, x + ai )

for a = (a1, . . . , an) ∈ C . This is an IBIS group. It acts on n|F | points, and has rank
equal to the dimension of the code; if there is no coordinate in which all codewords
are zero, then it has n orbits each of size |F |.

The classification problem for primitive IBIS groups is likely to be easier, though
even that has not yet been done. In [Cameron and Fon-Der-Flaass 1995], the IBIS
groups whose associated matroid is a uniform matroid are determined; these are
Frobenius and Zassenhaus groups and their analogues, that is, groups which, for
some positive integer t , are t-transitive and have the property that the pointwise
stabiliser of any t + 1 points is trivial. (The uniform matroid of rank r is the one
whose bases are all the sets of size r of the ground set.) All such finite groups
with t > 1 (that is, those which are not Frobenius groups) have been explicitly
determined (without using CFSG), by Zassenhaus, Feit, Ito and Suzuki for t = 2,
and by Gorenstein and Hughes for larger values.

(However, infinite examples are easy to construct and exist in profusion: there is
an action of the free group of countable rank with this property for any value of t .)

It is also not known whether there is a similar geometric characterisation of
groups in which all greedy bases have the same size.

Blaha [1992] showed that irredundant and greedy bases are not too much larger
than the smallest possible:

Theorem 2. Let G be a permutation group of degree n with minimal base size b(G).
Then
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(a) any irredundant base for G has size at most b(G) log n (logarithm to base 2);

(b) any greedy base for G has size at most b(G)(log log n + c).

Blaha proved that these bounds are essentially best possible. But for primitive
groups, stronger results should be possible. It is conjectured, for example, that
if G is primitive, then a greedy base for G has size at most cb(G), where c is a
universal constant. Indeed, the limit superior of the ratio of greedy base size to
base size, as b(G) → ∞, is conjectured to be 9

8 . The extreme examples involve
the symmetric group Sm acting on the set of 2-element subsets of {1, . . . , m}. The
greedy algorithm chooses disjoint 2-sets until almost all elements of {1, . . . , m}

have been covered, and then has to go back and extend two disjoint pairs to a
4-vertex path, giving a base of size roughly 3

4 m; on the other hand, covering most
of {1, . . . , m} by 3-vertex paths gives a base of size roughly 2

3 m.
Recently, Coen Del Valle and Colva Roney-Dougal have given the exact value of

the base size for the symmetric group of degree n acting on r -sets for 2 ≤ r ≤ n/2.
The result is complicated to state, depending on the relative sizes of n and r .

We conclude with two further occurrences of bases.

(a) The first fractional exponential bound for the order of a uniprimitive (primitive
but not 2-transitive) permutation group of degree n was found by Babai [1981].
He showed that such a group has a base whose size is bounded by 4

√
n log n.

It is clear that a group with degree n and a base of size b has order at most nb.
(Soon after Babai’s result appeared, it was observed that much stronger results
could be found using the classification of finite simple groups: a bound nc log n

with “known” exceptions. These exceptions are the so-called large-base groups
which are explained below.)

(b) Graph theorists have considered the metric dimension of a connected graph, the
smallest d for which there is a d-tuple (v1, . . . , vd) of vertices such that any
vertex is uniquely determined by its d-tuple of distances from these vertices.
It is clear that such a d-tuple is a base for the automorphism group of the
graph. The occurrence of similar concepts in very different fields led to a lot
of repetition and rediscovery, which my survey with Robert Bailey [Bailey and
Cameron 2011] sets out to clear up.

These two things are related. Babai’s proof involved constructing from the group a
set of binary relations called a coherent configuration and showing that this config-
uration has relatively small “dimension” (using the relations in the configuration in
place of graph distances).

A large-base group is either a symmetric or alternating group Sn or An in its
action on the set of k-subsets of {1, . . . , n}, or a subgroup of the wreath product
of such a group with the symmetric group of degree l containing the socle Al

n of
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this group. Their base sizes are fractional powers of the degree, and so their orders
are roughly nn1/kl

. Often in computational group theory it is necessary to treat the
large-base groups separately.

There has been a lot of very recent activity around permutation group bases. Scott
Harper remarked that the result about IBIS groups gives us powerful information
about permutation groups where all irredundant bases have the same size, but the
groups for which all minimal bases have the same size has at present no comparable
theory. One could ask similar questions about “greedy bases” in Blaha’s sense.

It is also appropriate to mention here the work of Gill, Lodà and Spiga [Gill
et al. 2022] on a parameter they call height, which is the maximum size of an
independent set (where a set is independent if its pointwise stabiliser is properly
contained in the pointwise stabiliser of any subset). They showed that the height of
a primitive permutation group of degree n which is not a large-base group is smaller
than 9 log n. This parameter then gives a bound for the relational complexity of
a permutation group, a parameter introduced by Cherlin [Cherlin 2016; Cherlin
et al. 1996], in connection with the model theory of finite permutation groups: the
relational complexity is at most the height plus one.

To elaborate: the relational complexity of G is the least k for which G is an
automorphism group of a homogeneous relational structure with arity k; more
precisely, it is the least k such that, for any n ≥ k, if (a1, . . . , an) and (b1, . . . , bn)

are two n-tuples of points, they lie in the same G-orbit if and only if all corresponding
sub-k-tuples (ai1, . . . , aik ) and (bi1, . . . , bik ) lie in the same G-orbit.

Gill et al. also proved a similar bound on the maximum size of an irredundant
base for a primitive permutation group.

6. Finite group parameters

In this final section I discuss a few “measures” of a finite group which are related
to base size of permutation actions of the group. As we will see, some of these can
be defined in terms of the subgroup lattice of G, a topic with a long history but still
many open problems: see [Schmidt 1994] for a fairly recent account.

The smallest number d(G) of generators of G is not a good measure of size,
since arbitrarily large finite groups (such as symmetric groups) are 2-generated. We
can avoid this problem as follows. If f is a function from finite groups to natural
numbers, let

f ↑(G) = max{ f (H) : H ≤ G}.

For any f , the function f ↑ is monotonic (in the sense that G ≤ H implies
f ↑(G)≤ f ↑(H)). For example, for the symmetric groups, we have d↑(Sn)=⌊n/2⌋

for n > 3 [McIver and Neumann 1987].
Define two other measures as follows:
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(a) µ(G) is the maximal size of a minimal (under inclusion) generating set for G.
The parameter µ(G) is important in the analysis of a random walk on generating
sets for G; see [Diaconis and Saloff-Coste 1998]. For the symmetric groups
we have µ(Sn) = µ↑(Sn) = n − 1 [Whiston 2000].

(b) l(G) is the length of the largest subgroup chain in G. This is an interest-
ing measure which bounds various other measures, and was considered by
Babai [1986]. It has the nice properties that it is monotonic and, if N is a
normal subgroup of G, then l(G) = l(N )+ l(G/N ); so its value is determined
by the composition factors of G. In 1982, I showed that

l(Sn) =

⌈3n
2

⌉
− b(n) − 1,

where b(n) is the number of 1s in the base 2 representation of n. This appears
in a paper with Solomon and Turull [Cameron et al. 1989]; these authors have
computed l(G) for various simple groups G.

Given a finite group G, we define three numbers b1(G), b2(G), b3(G) as follows.
In each case, the maximum is taken over all permutation representations of G (not
necessarily faithful).

• b1(G) is the maximum, over all representations, of the maximum size of an
irredundant base.

• b2(G) is the maximum, over all representations, of the maximum size of a
minimal base.

• b3(G) is the maximum, over all representations, of the minimum base size.

Clearly we have b3(G) ≤ b2(G) ≤ b1(G). These inequalities can be strict. The
group G = PSL(2, 7) has b1(G) = 5, b2(G) = 4, and b3(G) = 3.

Proposition 1. b1(G) = l(G).

Proof. An irredundant base (x1, . . . , xk) gives a descending chain of subgroups
G = G0 > G1 > · · · > Gk , where Gi is the pointwise stabiliser of {x1, . . . , xi }.
Conversely, given a chain of subgroups, take the union of the coset spaces of these
subgroups, and form a base by choosing the given subgroups in the order given. □

There is a connection between b2 and µ. Let B(n) denote the Boolean lattice of
subsets of an n-set, and L(G) the subgroup lattice of G.

Proposition 2. Let G be a finite group.

(a) The largest n such that B(n) is embeddable as a join-semilattice of L(G)

is µ↑(G).

(b) The largest n such that B(n) is embeddable as a meet-semilattice of L(G) in
such a way that the minimal element is a normal subgroup of G is b2(G).
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(c) B(n) is embeddable as a meet-semilattice in L(G) if and only if it is embed-
dable as a join-semilattice.

Proof. (a) If {g1, . . . , gn} is an independent set in G, then the subgroups generated
by subsets of this set form a join-semilattice isomorphic to B(n). Conversely, given
such a semilattice of the subgroup lattice, choose elements gi contained in all the
maximal subgroups except the i-th.

(b) Given a minimal base of size n, the subgroups stabilising subsets of the base
form a meet-semilattice whose minimal element is the kernel of the group action.
Conversely, suppose we have an embedding of B(n) as meet-semilattice. Then,
reversing order, we have subgroups HI for each I ⊆ N = {1, . . . , n}, with HN

normal in G and Hi ∩ HJ = HI∪J . Consider the permutation representation on the
union of the coset spaces H{i} for i ∈ N . The kernel of this representation is HN ,
and the subgroups H{i} form a minimal base of size n.

(c) Suppose first that B(n) is a join-semilattice of L(G). Let N = {1, . . . , n}. Then,
for every subset I of N , there is a subgroup HI of G, and HI∪J = ⟨HI , HJ ⟩ for
any two subsets I and J . Moreover, all these subgroups are distinct. In particular,
Hi ̸≤ HN\{i} for all i (where Hi is shorthand for H{i}); else

HN = ⟨Hi , HN\{i}⟩ = HN\{i},

contrary to assumption.
Let Ki = HN\{i}, and, for any I ⊆ N , put

K I =

⋂
i∈I

Ki ,

with the convention that K∅ = G. We claim that all the subgroups K I are distinct.
Suppose that two of them are equal, say K I = K J . By interchanging I and J if
necessary, we may assume that there exists i ∈ I \ J . But then Hi ≤ K J while
Hi ̸≤ K I , a contradiction.

Now it is clear that K I ∩ K J = K I∪J , so that we have an embedding of B(n) as
meet-semilattice (where we have reversed the order-isomorphism to simplify the
notation).

The reverse implication is proved by an almost identical argument. □

It is not known whether the extra condition in (b) is really necessary: perhaps
b2(G) = µ↑(G) for any G. (Note that µ↑(G) is the size of the largest independent
set of elements of G.)

Much less is known about b3(G). If G is a nonabelian finite simple group, then
b3(G) can be computed by looking only at the primitive actions of G.

One could ask similar questions about greedy bases. Nothing is known.
Another question: in which of these results can the use of CFSG be avoided?
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