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On the model theory of open generalized polygons

Anna-Maria Ammer and Katrin Tent

We show that for any n ≥ 3 the theory of open generalized n-gons is complete,
decidable and strictly stable, yielding a new class of examples in the zoo of stable
theories.

1. Introduction

Generalized polygons were introduced by Tits in order to give geometric interpre-
tations of the groups of Lie type in rank 2, in the same way that projective planes
correspond to groups of type A2. In fact, generalized polygons are the rank 2 case
of spherical buildings. A generalized n-gon is a bipartite graph with diameter n
(i.e., any two vertices have distance at most n), girth 2n (i.e., the smallest cycles
have length 2n) and such that all vertices have valency at least 3. Clearly, for n = 2
such a graph is simply a complete bipartite graph and in what follows we always
assume n ≥ 3. Thinking of the bipartition as corresponding to points and lines,
we see that the case n = 3 is simply a different way of phrasing the axioms of a
projective plane, namely, any two points lie on a unique line, any two lines intersect
in a unique point and every line contains at least three points. (It then easily follows
that every point has at least three lines passing through it.) Remarkably, if the graph
is finite, then by a fundamental result of Feit and Higman [1964] the only possible
values for n are 3, 4, 6 and 8. Similar restrictions hold for other well-behaved or
tame categories of generalized polygons, e.g., if one assumes that the underlying sets
of vertices are compact, or algebraic, one obtains the same restrictions. Since we
tend to think of finite Morley rank as a rather strong tameness assumption it might
be remarkable that this restriction does not hold in this setting; see [Tent 2000].

In fact, it is easy to see that infinite generalized n-gons exist for any n ≥3: starting
with a finite bipartite configuration that does not contain any 2k-cycles for k < n,
one can easily complete this by freely adding enough paths in order to make sure
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that the graph has diameter n (see Definition 2.4 below). In fact, such constructions
yield the only known examples of generalized n-gons for n ̸= 3, 4, 6, 8.

Free projective planes were studied by M. Hall [1943], Siebenmann [1965], and
Kopeikina [1945] and their model theory was studied in [Tent 2011; Hyttinen and
Paolini 2021; Tent and Zilber 2015]. The theory of the free projective planes is
strictly stable by [Hyttinen and Paolini 2021] and the notion of independence in the
sense of stability agrees with the one studied in [Tent 2014; Müller and Tent 2019].
In this note we extend the results from [Tent 2011; Hyttinen and Paolini 2021]
to open generalized polygons, using the methods developed in [Tent 2000; 2014;
Müller and Tent 2019]. In particular, it was shown in [Hyttinen and Paolini 2021]
that the theory of open projective planes is complete, strictly stable, does not have
a prime model and has uncountably many nonisomorphic countable models.

2. Generalized polygons

We first recall some graph-theoretic notions. For a and b in A, the distance d(a, b)

between a and b is the smallest number m for which there is a path

a = a0, a1, . . . , am = b

with ai in A, where ai and ai+1 are incident for 0 ≤ i < m. We may write dA(a, b)

to emphasize the dependence on the graph A.
The girth of a graph A is the length of a shortest cycle in A. The diameter

of a graph A is the maximal distance between two elements in A. We say that
a subgraph A of a graph B is isometrically embedded into B if for all a, b ∈ A
we have dA(a, b) = dB(a, b). For a vertex a ∈ A we write D1(a) for the set of
neighbours of a. Then |D1(a)| is called the valency of a in A.

From now on we fix n ≥ 3.

Definition 2.1. A weak generalized n-gon 0 is a bipartite graph with diameter n
and girth 2n. If 0 is thick, i.e., if each vertex has valency at least 3, then 0 is a
generalized n-gon.

A partial n-gon is a connected bipartite graph of girth at least 2n.
A (partial) n-gon 00 is nondegenerate if 00 contains a cycle of length at least

2n + 2 or a path γ = (x0, . . . , xn+3) with d00(x0, xn+3) = n + 3.
A (generalized) n-gon 00 contained as a subgraph in a generalized n-gon 0 is

called a (generalized) sub-n-gon of 0.

Remark 2.2. Note that every thick generalized n-gon is nondegenerate.
The assumption that a partial n-gon is connected is not strictly necessary (and

it is not required in [Hall 1943] for n = 3). Note that for n = 3 any two distinct
points have distance 2 (and similarly for lines). This is not true anymore for n > 3,
so the requirement that the graph is connected prevents ambiguities.
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Definition 2.3. Let (x = x0, . . . , xn−1 = y) be a path in 0. If every xi , 1 ≤ i ≤ n−2,
has valency 2 in 0, then (x1, . . . , xn−2) is called a clean arc in 0 (with endpoints
x, y). A loose end is a vertex of valency at most 1.

A hat-rack of length k ≥ n + 3 is a path (x0, . . . , xk) together with subsets of
D1(xi ) for 1 ≤ i ≤ k − 1.

The following definition is due to Tits [1977], who first introduced free extensions
for generalized polygons, expanding earlier definitions by M. Hall and Siebenmann
[Hall 1943; Siebenmann 1965].

Definition 2.4. Let 00 be a partial n-gon. We define the free completion of 00 by
induction on i < ω as follows:

For i ≥ 0 we obtain 0i+1 from 0i by adding a clean arc between every two
elements of 0i which have distance n + 1 in 0i . Then 0 = F(00) =

⋃
i<ω 0i is

called the free n-completion of 00. We say that 0 is freely generated over 00.

Note that if 00 does not contain vertices at distance ≥ n + 1, then F(00) = 00.
Also note that by adding a clean arc between vertices of distance n + 1 we are
creating a new cycle of length 2n.

Remark 2.5. If two elements in a generalized n-gon 0 have distance less than n,
there is a unique shortest path in 0 connecting them (otherwise we would obtain a
short cycle).

A weak generalized n-gon which contains a 2(n+1)-cycle is a generalized n-gon
(see [van Maldeghem 1998, Section 1.3]). Hence if 00 is a partial, nondegenerate n-
gon, then F(00)=0 contains a 2(n+1)-cycle and in fact, 0 is an infinite generalized
n-gon [van Maldeghem 1998] and every vertex z in F(00) has infinite valency.

We also note the following for future reference:

Remark 2.6. Let 0 be a generalized n-gon and let γ ⊂ 0 be a 2n-cycle. Then
for any x ∈ γ there is a unique x ′

∈ γ with d(x, x ′) = n (x ′ is called the opposite
of x in γ ), and for any y ∈ D1(x) \ γ there is a unique y′

∈ D1(x ′) such that
d(y, y′) = n − 2. Note that the result of adding a clean arc to γ ∪ {y} is the same
as adding a clean arc to γ ∪ {y′

}.

Definition 2.7. Let 0 be a generalized n-gon and A ⊂ 0. Then ⟨A⟩0 denotes the
intersection of all generalized sub-n-gons of 0 containing A. For 00 ⊂ 0 we put
⟨A⟩00 = ⟨A⟩0 ∩ 00.

Remark 2.8. If A ⊆ 00 ⊆ 0, then ⟨A⟩00 is the intersection of all B ⊃ A, B ⊆ 00,
such that A is isometrically contained in B. If A is nondegenerate, then ⟨A⟩0 is
a generalized sub-n-gon of 0, the n-gon (not necessarily freely) generated by A
in 0. Since shortest paths between vertices at distance n − 1 are unique, clearly
⟨A⟩0 ⊆ acl(A)0. If 0 = F(A), then ⟨A⟩0 = 0.



436 ANNA-MARIA AMMER AND KATRIN TENT

We note the following useful observations:

Lemma 2.9. Let 00 be a nondegenerate partial n-gon, and let 0 = F(00) =
⋃

0i

be as in Definition 2.4.

(i) If A ⊂ 0k \0i is isometrically embedded into 0k , then ⟨A⟩0 does not intersect
0i and ⟨A⟩0 = F(A).

(ii) If A ⊂ 00 is such that 0k \ A is isometrically embedded into 0k , then ⟨0k \ A⟩0

does not intersect A.

(iii) Any automorphism of 00 extends to an automorphism of 0.

Proof. All parts follow directly from the construction: e.g., for (i) it suffices to
show inductively that 01(A) is isometrically embedded into 0k+1 \ 0i . Then (i)
follows by induction. Let γ ⊂ 0k+1 \ 0i be a clean arc connecting a, b ∈ A with
dA(a, b) = n + 1. Any c ∈ γ has valency 2, so any path from c to an element in A
passes through a or b. Since A is isometrically embedded in 0k , the claim follows.
The proof for part (ii) is similar and part (iii) is clear. □

Now we can state the main definition of this note, extending the definition of
free and open projective planes from [Hall 1943] to generalized n-gons.

Definition 2.10. A (partial) generalized n-gon 0 is open if every finite subgraph
contains a loose end or a clean arc.

We call a generalized n-gon 0 free if it is the free n-completion of a hat-rack of
length at least n + 3. In particular, we let 0k denote the free n-completion of the
path γk = (x0, . . . , xk) for k ≥ n + 3.

Note that 0k is a free generalized n-gon for k ≥ n + 3.

Remark 2.11. Clearly, every free generalized n-gon is open. Beware, however,
that the converse is not true in general (see Proposition 3.16), but holds for finitely
generated generalized n-gons (see Proposition 4.1).

Clearly, as observed by [Hyttinen and Paolini 2021] for the case n = 3 being an
open generalized n-gon is a first-order property. We can therefore define:

Definition 2.12. Let Tn denote the theory of open generalized n-gons in the language
of graphs expanded by predicates for the bipartition.

Note that Tn is ∀∃-axiomatizable. We start with some easy observations:

Remark 2.13. It follows immediately from Remark 2.5 and the definition of an
open generalized n-gon that for M |H Tn and a nondegenerate subgraph A ⊆ M we
have acl(A) |H Tn . In other words, every algebraically closed nondegenerate subset
of a model of Tn is itself a model of Tn . Clearly, acl(A) is prime over A [Tent and
Ziegler 2012, Section 5.3].
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Remark 2.14. Let Tn,γ be the theory Tn expanded by constants for the vertices of
a path γ = (a0, . . . , an+3). Then F(γ ) is the prime model of Tn,γ since F(γ ) is
algebraic over γ , hence countable and atomic, hence prime (see [Tent and Ziegler
2012, Theorem 4.5.2]).

This is similar to the situation in free groups described in Sela’s seminal results,
but obviously much easier to prove in the current setting: both theories are strictly
stable, and only the “natural embeddings” are elementary. Namely, we will see
later that 0k ≼ 0m if and only if k ≤ m and the embedding is the natural one.

Adapting1 Siebenmann’s definition for the case n = 3 [Siebenmann 1965] we
define:

Definition 2.15. If A is a partial n-gon, a hyperfree minimal extension of A is an
extension by a clean arc between two elements a, b ∈ A with dA(a, b) = n + 1 or
by a loose end.

Let 0 and 0′ be partial n-gons. We say that 0 is HF-constructible from 0′ (or
over 0′) if there is an ordinal α and a sequence (0β)β<α of partial n-gons such that

(i) 00 = 0′;

(ii) if β = γ + 1, then 0β is a hyperfree minimal extension of 0γ ;

(iii) if β is a limit ordinal, then 0β =
⋃

γ<β 0γ ;

(iv) 0 =
⋃

β<α 0β .

Clearly, any free completion of a partial n-gon 00 is HF-constructible from 00.
As in [Hyttinen and Paolini 2021] one can show that any open generalized n-gon

has an HF-ordering, but since we will not be using this ordering, we omit the details.

Definition 2.16. Let A, B ⊆ M |H Tn, A ∩ B = ∅. We call B closed over A if B
contains neither a clean arc with endpoints in A ∪ B nor a loose end. We say that
B is open over A if B contains no finite set closed over A and in this case we write
A ≤o A ∪ B. We write ÂM = A ∪

⋃
{B0 ⊂ M | B0 finite and closed over A}.

Remark 2.17. Note that if B1, B2 are closed over A, then so is B1 ∪ B2.

Lemma 2.18. If B is open over A and B \ A is finite, then B is HF-constructible
over A. In particular, if A is a finite open partial n-gon, then A is HF-constructible
from the empty set. Moreover, if A ≤o 0, where 0 is a generalized n-gon, then
F(A) ∼= ⟨A⟩0 ⊆ 0.

Proof. If B \ A is a minimal counterexample, then it cannot contain either a loose
end or a clean arc, contradicting the assumption of B being open over A. □

1Note that Siebenmann also allows adding vertices of valency 0.
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Now consider the class K of finite open partial n-gons (in the language of bipartite
graphs) with strong embeddings given by ≤o. Note that K is contained both in the
class of partial n-gons considered in [Tent 2011] as well as in the class of partial
n-gons considered in [Tent 2000] (see Lemma 3.12).

Definition 2.19. For graphs A ⊆ B, C , let B ⊗A C denote the free amalgam of B
and C over A.

Let A ≤o B, C be open partial n-gons (contained in some generalized n-gon 0)
with ⟨A⟩B =⟨A⟩C = A. Then we call B⊕A C := F(B⊗A C) the canonical amalgam
of B and C over A.

The canonical amalgam was used in [Tent 2011] (and for n = 3 in [Hyttinen and
Paolini 2021]).

Remark 2.20. (i) If A ≤o B, C are open partial n-gons with ⟨A⟩B = ⟨A⟩C = A,
then B, C ≤o B ⊗A C ≤o B ⊕A C . If B ⊗A C is nondegenerate, then B ⊕A C is an
open generalized n-gon.

(ii) If B∩C = A and B∪C ≤o 0 for some generalized n-gon 0, then B∪C ∼= B⊗AC
and ⟨B ∪ C⟩0

∼= B ⊕A C .

The following is as in [Tent 2000; 2011; Hyttinen and Paolini 2021]:

Proposition 2.21. Let K be the class of finite connected open partial n-gons. Then
(K, ≤o) satisfies

(i) amalgamation: if A, B1, B2 ∈K such that ιi : A → Bi and ιi (A)≤o Bi , i =1, 2,
then there exist C ∈K and κi : Bi → C , i = 1, 2 such that κi (Bi ) ≤o C , i = 1, 2,
and κ1(ι1(a)) = κ2(ι2(a)) for all a ∈ A.

(ii) joint embedding: for any two graphs A, B ∈ K there is some C ∈ K such that
A, B can be strongly embedded (in the sense of ≤o) into C.

Hence the limit 0K exists and is an open generalized n-gon.

Proof. Since ∅ ∈ K, it suffices to verify the amalgamation property. Inductively we
may assume that B is a minimal hyperfree extension of A, so either a clean arc or
a loose end. If C does not contain a copy of B over A, then B ⊗A C ∈ K and this
is enough. □

Note that the class (K, ≤o) is unbounded in the sense that for any A ∈ K there
exists some B ∈ K with A ̸= B and A ≤o B.

Definition 2.22. Let M |H Tn . Then we say that M is K-saturated if for all finite
sets A, B ∈ K with A ≤o B and any copy A′ of A strongly embedded into M there
is a strong embedding of B over A′ into M .
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Note that by construction, 0K is K-saturated and that (as in any such Hrushovski
construction) every K-saturated structure is K-homogeneous in the sense that any
partial automorphism between strongly embedded substructures extends to an
automorphism.

Theorem 2.23. For any n ≥ 3, the theory Tn of open generalized n-gons is complete
and hence decidable.

Proof. Let M |H Tn . It suffices to show that M is elementarily equivalent to 0K.
Clearly we may assume that M is ω-saturated and we claim that any ω-saturated M
is K-saturated: Let A ≤o B be from K and assume that A ≤o M (via some strong
embedding). We have to show that we can find an embedding B ′ of B into M such
that there does not exist a finite set closed over B ′ in M . This is clear if B is an
extension of A by a clean arc since such paths are unique. If B is an extension of
A by a loose end b, then the type of b over A expressing that there is no finite set
D closed over A ∪ {b} is realized in 0K, so it is consistent and therefore realized in
M by ω-saturation. Now both M and 0K are K-saturated from which it follows (by
standard back-and-forth) that they are partially isomorphic and hence elementarily
equivalent. □

We say that a set B neighbours a set A if every a ∈ A has a neighbour in B \ A.

Lemma 2.24. Let M |H Tn , A ⊂ M finite. Then M does not contain three disjoint
sets B1, B2, B3 each closed over A and neighbouring A. In particular, if B is closed
over A, then B is algebraic over A.

Proof. Consider C = A ∪ B1 ∪ B2 ∪ B3 ⊂ M . Then every vertex in A has va-
lency at least 3 in C and C contains no clean arc. It follows that C is not open,
contradicting M |H Tn .

Now suppose B is minimally closed over A and not algebraic over A with |B \ A|

minimal. Since B is not algebraic over A, we find disjoint copies B1, B2, B3 of B
over A, contradicting the first part of the lemma. □

Lemma 2.24 directly implies:

Corollary 2.25. If M |H Tn and A ⊆ M , then acl(A)M ≤o M.

Definition 2.26. Let B |H Tn and let A be a subgraph of B. We put

(i) Cl0(A)B = A;

(ii) Cli+1(A)B = ̂⟨Cl(A)i ⟩B (see Definition 2.16);

(iii) ClB(A) =
⋃

i<ω Cli (A)B .

In other words, Cl(A)B is the limit obtained from alternating between adding all
closed finite subsets, and completing the partial n-gons in B.
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Remark 2.27. For any subset A of B |HTn we have ClB(A)≤o B and by Lemma 2.24
ClB(A) ⊆ aclB(A).

Theorem 2.28. Let A, B |H Tn and A ⊆ B. The following are equivalent:

(i) A = aclB(A);

(ii) A = ClB(A);

(iii) A ≤o B;

(iv) A ≼ B.

Proof. (i) implies (ii): This follows from Lemma 2.24.

(ii) implies (iii): This is by Remark 2.27.

(iii) implies (iv): By taking appropriate elementary extensions we may assume
that A, B are ω0-saturated and hence K-saturated by the proof of Theorem 2.23.
We use Tarski’s test: Let B |H ∃x ϕ(x, ā) for some tuple ā ⊂ A and let b ∈ B such
that B |H ϕ(b, ā). We find a countable set A0 containing ā such that A0 ≤o A and
similarly we find a countable set B0 containing A0 ∪ {b} such that A0 ≤o B0 ≤o B.
Thus by K-saturation we can embed B0 over A0 into A.

(iv) implies (i): This is also proved by Tarski’s test. □

Corollary 2.29. For n +3 ≤ k ≤ m ≤ ω we have 0k ≼ 0m , i.e., the free generalized
n-gons 0k form an elementary chain.

The following lemma will be used in the proof of Theorem 2.32:

Lemma 2.30. Let M |H Tn and A, C ⊆ M , A finite and C algebraically closed.
Then there exist a ∈ A and BA = {b1, b2} ⊂ D1(a) such that for any set B closed
over C ∪ A and neighbouring A we have B ∩ BA ̸= ∅.

Proof. Suppose otherwise. Then by Remark 2.17 there is a set B closed over C ∪ A
and neighbouring A such that for all a ∈ A we have |B ∩ D1(a)| ≥ 3. Since C is
algebraically closed, we know that B ∪ A is open over C , so contains a loose end or
a clean arc which is impossible since all a ∈ A have valency at least 3 in B ∪ A. □

Note that BA ⊂ acl(AC) and BA might be a singleton.
Exactly as in [Tent 2014] and [Müller and Tent 2019] we now define the following

notion of independence (see also [Hyttinen and Paolini 2021]).

Definition 2.31. For any subsets A, B, C of the monster model M of Tn , we call
B and C independent over A, written B |⌣

∗

A C , if

acl(ABC) = acl(AB) ⊕acl(A) acl(AC).

Note that B |⌣
∗

A C implies acl(B A) ∪ acl(AC) ∼= acl(B A) ⊗A acl(C A).
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We show that Tn is stable by establishing that |⌣
∗ satisfies the required properties

of forking as in [Tent and Ziegler 2012, Theorem 8.5.10], where in the notation of
that theorem, B |⌣

∗

A C should be read as tp(A/C) ⊑ tp(A/BC).

Theorem 2.32. The theory Tn of open generalized n-gons is stable. In Tn , the
notion |⌣

∗ satisfies the properties of stable forking:

• invariance: |⌣
∗ is invariant under Aut(M).

• local character: For all A ⊆ M finite and C ⊆ M arbitrary, there is some
countable set C0 ⊆ C such that A |⌣

∗

C0
C.

• weak boundedness: For all B ⊆ M finite and A ⊆ M arbitrary, there is some
cardinal µ such that there are at most µ isomorphism types of B ′

⊆ M over C
where B ′ ∼=A B and B ′ |⌣

∗

A C.

• existence: For all B ⊆ M finite and A ⊆ C ⊆ M arbitrary, there is some B ′

such that tp(B/A) = tp(B ′/A) and B ′ |⌣
∗

A C.

• transitivity: If B |⌣
∗

A C and B |⌣
∗

AC D then B |⌣
∗

A CD.

• weak monotonicity: If B |⌣
∗

A CD, then B |⌣
∗

A C.

Proof. Invariance: Clearly |⌣
∗ is invariant under Aut(M).

Local character: Let A ⊂ M be finite and C ⊆ M arbitrary. We construct a
countable set C∞ ⊂ C such that acl(A ∪ C∞) ∪ C ≤o M. Then B = acl(A ∪ C∞)

is countable and by Remark 2.20(ii) we have A |⌣
∗

B C . By Lemma 2.30 there is a
finite set BA which intersects any set B closed over A ∪C and neighbouring A. Let
CA ⊂ C be finite such that BA ⊂ acl(A ∪ CA) and put C0 = CA, B0 = acl(A ∪ C0).
Suppose inductively that Bi , Ci have been defined, where Bi , Ci are countable. For
a finite subset X ⊂ Bi let BX be the finite set intersecting any set D closed over
X ∪ C and neighbouring X , and let CX ⊂ C be finite such that BX ⊂ acl(Ci ∪ CX ).
Put Ci+1 = Ci ∪

⋃
{CX | X ⊂ Bi finite} and Bi+1 = acl(A ∪ Ci+1). Note that

Ci+1, Bi+1 are again countable. Finally put C∞ =
⋃

i<ω Ci .
We now claim that acl(A ∪ C∞)∪ C ≤o M. Suppose otherwise and let D be a

finite set closed over acl(A∪C∞)∪C (in particular, by the definition of being closed,
D ∩ (acl(A ∪C∞)∪C) = ∅). Let Z be the set of neighbours of D in acl(A ∪C∞).
Since any element of D has at most one neighbour in acl(A∪C∞) by Theorem 2.28,
we have |Z | ≤ |D| and hence Z ⊆ Bi for some i < ω. Then by construction D is
closed over Z ∪ C ⊆ acl(A ∪ C∞)∪ C and neighbours Z , so intersects the set BZ

nontrivially. But BZ ⊂ Bi+1 by construction. Since D intersects BZ nontrivially,
this contradicts our assumption D ∩ (acl(A ∪ C∞) ∪ C) = ∅.

Weak boundedness: Let B ⊆M be finite and A⊆C ⊆M be arbitrary. If B ⊂acl(A),
the claim is obvious. So assume A, C are algebraically closed and tp(B1/A) =

tp(B2/A) = tp(B/A), so acl(B1 A) ∼= acl(B2 A) and B1 and B2 are isometric over A.
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Hence from B1, B2 |⌣
∗

A C , we have

acl(B1 AC) ∼= acl(B1 A) ⊕A C ∼= acl(B2 A) ⊕A C ∼= acl(B2 AC).

In particular we have B1C ∼= B1 ⊗A C ∼= B2C ∼= B2 A ⊗A C and so B1 and B2

are isometric over C . This isometry extends to an isometry from acl(B1 AC) to
acl(B2 AC) fixing C and since acl(B1 AC) and acl(B2C) are elementary substruc-
tures, this extends to an automorphism of M. Hence tp(B1/C) = tp(B2/C).

Existence: Let B⊆M be finite, A⊂C⊆M arbitrary and D=acl(BA)⊕acl(A)acl(C).
We may assume that C is nondegenerate and algebraically closed so that C ≼M

and C ≼ D by Theorem 2.28. By saturation and homogeneity we can embed D
over C into M in such a way that the image of D is an elementary substructure
of M. Hence we find B ′ with tp(B/A) = tp(B ′/A) and B ′ |⌣

∗

A C .

Transitivity: Let B |⌣
∗

A C and B |⌣
∗

AC D, so

acl(ABC) = acl(AB) ⊕acl(A) acl(AC)

and
acl(ABCD) ∼= acl(ABC) ⊕acl(AC) acl(ACD)

∼= (acl(AB) ⊕acl(A) acl(AC)) ⊕acl(AC) acl(ACD)

∼= acl(AB) ⊕acl(A) acl(ACD),

so B |⌣
∗

A CD.

Weak monotonicity: Let B |⌣
∗

A CD, so that

0 = acl(ABCD) ∼= acl(AB) ⊕acl(A) acl(ACD).

Now acl(AB)⊗acl(A) acl(AC) embeds isometrically into acl(AB)⊗acl(A) acl(ACD)

and hence by Lemma 2.9 we have

⟨acl(AB) ⊗acl(A) acl(AC)⟩0 = F(acl(AB) ⊗acl(A) acl(AC))

= acl(AB) ⊕acl(A) acl(AC). □

As a corollary of the proof we obtain:

Theorem 2.33. The theory T of open generalized n-gons is not superstable.

Proof. It suffices to give an example of a finite set A and an algebraically closed
set C such that there is no finite set C0 ⊂ C with A |⌣

∗

C0
C . Let

00 = γn+3 = (x0, . . . , xn+3) ≤o M.

Then ⟨00⟩M = 0 =
⋃

0i is the free completion of 00. For each 0 < i < ω let
yi ∈ 0i with d(yi , 0i−1) ≥

n
2 − 1. Let z0 ̸= xn+2 be a neighbour of xn+3 with

z0 |⌣
∗

xn+2
00 and let zi , 0 < i < ω, be a neighbour of yi with zi |⌣

∗

yi
00z0 . . . zi−1.

Finally connect zi and zi−1 by a path λi of length ≥ n −1 (depending on the parity).
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Note that the resulting graph 0̃ = 0 ∪
⋃

i<ω λi is open with 00 ≤o 0̃, and hence
we may assume 0̃ ≤o M.

Now put A = 00 and C = acl({λi : i < ω}). Then by construction there is no
finite subset C0 ⊂ C such that A |⌣

∗

C0
C . □

As in [Hyttinen and Paolini 2021] we can show that independence is not station-
ary:

Proposition 2.34. In Tn we have acl ̸= dcl.

Proof. Let M be an ω-saturated model of Tn .
If n is odd, let A = (x0, . . . , x2n+2 = x0) ≤o M be an ordered (2n+2)-cycle

in M. For i = 0, . . . , n let γi be the clean arc from xi to xi+n+1 and let mi denote
the midpoint of γi . Let C = A ∪

⋃
i=0,...,n γi . By K-homogeneity there is an

automorphism of M taking A to the ordered (2n+2)-cycle

A′
= (xn+1, . . . , x2n+2 = x0, . . . , xn+1).

This leaves the paths γi , 0 ≤ i ≤ n, invariant and hence fixes each mi . This shows
that A ̸⊆ dcl(m0, . . . , mn). On the other hand, C is closed over {mi | i = 0, . . . , n}

and hence A ⊂ acl(m0, . . . , mn−1) by Lemma 2.24.
If n is even, let A = (x0, . . . , x2n = x0) be an ordered 2n-cycle and for i =1, . . . , n

let yi /∈ {xi−1, xi+1} be a neighbour of xi and let zi be the neighbour of xi+n with
d(zi , yi ) = n −2. Let γi be the (unique) path of length n −1 from yi to xi+n and let
mi be its middle vertex. Note that zi ∈ 0i . Let D = A ∪ {y1, . . . , yn} and assume
that D ≤o M. Put C = D∪

⋃
i=1,...,n γi . Then also D′

= A∪{z1, . . . , zn} ≤o M . By
K-homogeneity there is an automorphism of M taking D to D′. This automorphism
clearly leaves A and C invariant and fixes m1, . . . , mn pointwise, but does not fix
any vertex in A. Thus as before we see that A ̸⊆ dcl(m1, . . . , mn). Since C is closed
over {mi | i = 1, . . . , n} we have A ⊆ C ⊆ acl(m1, . . . , mn) by Lemma 2.24. □

3. Elementary substructures

As noted in [Tent 2011, Section 2.2], if 00 is isomorphic to 10, their free n-
completions are also isomorphic. The reverse is obviously not true: in a completion
sequence, 01 and 00 are not isomorphic, but they clearly have the same free n-
completion.

There is nevertheless a necessary criterion for the free n-completions to be
isomorphic. This can be stated in terms of the rank function δn that was introduced
in [Tent 2000] generalizing the rank function for projective planes introduced
in [Hall 1943]. It was used again in [Tent 2011; Müller and Tent 2019].

Definition 3.1. (i) For a finite graph 0 = (V, E) with vertex set V and edge set E ,
define δn(0) = (n − 1) · |V | − (n − 2) · |E |.
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(ii) A (possibly infinite) graph 00 is n-strong in some graph 0, written 00 ≤n 0, if
and only if for all finite subgraphs X of 0 we have

δn(X/X ∩ 00) := δn(X) − δn(X ∩ 00) ≥ 0.

Remark 3.2. Note that δn is submodular, i.e., if A ≤n B and C ⊆ B, then A∩C ≤n C .
Let A and B be finite graphs and let E(A, B) denote the edges between elements
of A and elements of B. Then

δn(A/B) = δn(A \ B) − (n − 2)|E(A, B)|.

Remark 3.3 (cf. [Tent 2000, Lemma 2.4]). Let B be a graph which arises from the
graph A by successively adding clean arcs between elements of distance n+1. Then
A ≤n B, δn(A) = δn(B) and hence if A ⊆ B ⊆ 1 for some graph 1 with A ≤n 1,
then B ≤n 1. In particular, if 00 is a finite partial n-gon and 0 = F(00) =

⋃
0i as

in Definition 2.4, then δn(0i ) = δn(00) for all i < ω. Hence any finite subset A0 of
0 is contained in a finite subset A ⊆ 0 with δn(A) = δn(00).

Lemma 3.4 [Tent 2011, Proposition 2.5]. Let 0 be a generalized n-gon which is
generated by the graph 00. The following are equivalent:

(i) 00 ≤n 0.

(ii) 0 = F(00).

Remark 3.5. Note that for k ≥ n + 3 any finite subset A0 of 0k is contained in a
finite subset A ⊂ 0k such that δn(A) = n − 1 + k = δn(γk) and that n − 1 + k is
minimal with that property. Hence, if A and B are finite partial n-gons such that
0(A) ∼= 0(B), then δn(A) = δn(B). In particular, if 0k ∼= 0m , then k = m.

Definition 3.6. If A ≤n B are finite graphs such that δn(B/A) = 0 and there is
no proper subgraph A ⊂ B ′

⊂ B with A ≤n B ′
≤n B then B is called a minimal

0-extension.

Remark 3.7. Recall that K is the class of finite connected open partial n-gons. If
B ∈ K is a minimal 0-extension of A, then either B is an extension of A by a clean
arc of length n − 2 or B is closed over A in the sense of Definition 2.16.

Lemma 3.8. Let M be a model of Tn and A a finite subset of M. If A ⊆ B ⊆ M
and δn(B/A) ≤ 0, then B is algebraic over A.

Proof. If δn(B/A) < 0, then B is not HF-constructible over A and hence algebraic
over A by Lemma 2.24. Now suppose that δn(B/A) = 0. By submodularity we can
decompose the extension B over A into a finite series A= B0≤n B1≤n · · ·≤n Bk = B,
where each Bi is a minimal 0-extension of Bi−1. Hence it suffices to prove the
claim for minimal 0-extensions and for such extensions the claim follows from
Remark 3.7 and Lemma 2.24. □
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The previous lemma directly implies:

Corollary 3.9. Let 0 be an open generalized n-gon. If A ⊂0 is such that every finite
set B0 ⊃ A is contained in a finite set B such that δn(B) = δn(A), then 0 ⊆ acl(A).
In particular, any elementary embedding of 0k , k ≥ n + 3, into itself is surjective.

Corollary 3.10 (cf. [Hyttinen and Paolini 2021, Corollary 6.3]). For n+3≤k, m ≤ω

we have 0k ≼ 0m if and only if k ≤ m.

Proof. The direction from right to left is contained in Corollary 2.29. For the
direction from left to right suppose 0k embeds elementarily into 0m for m < k
via f , so f (0m) ≼ f (0k) ≼ 0m . By Corollary 3.9 and the direction from right to
left, we have f (0m) = 0m , contradicting the fact that 0m ⊊ 0k . □

To see that Tn has no prime model, we use results from [Tent 2000]. Hence we
recall the definition of the class K considered in [Tent 2000]. We show below that
K ⊆ K and hence the results from [Tent 2000] apply.

Definition 3.11. Let K be the class of finite partial n-gons A such that if A contains
a 2k-cycle for some k > n, then δn(A) ≥ 2n + 2.

The following was shown in [Tent 2000, Lemma 3.12] (unfortunately the state-
ment there contains a typo):

Lemma 3.12. Let A ∈ K with |A| ≥ n + 2. Then δn(A) ≥ 2n. Moreover, we have
in fact δn(A) ≥ 2n + 2, unless |A| = n + 2 or A is an ordinary n-gon with either a
path with n − 1 new elements or a loose end attached.

Proposition 3.13. If A ∈K contains a 2k-cycle for some k > n, then δn(A) ≥ 2n+2.
Hence K ⊆ K.

Proof. Let A be a minimal counterexample, so A contains a 2k-cycle for some k > n
and δn(A) < 2n + 2. By minimality, A cannot contain a loose end, so A = A0 ∪ γ

for some clean arc γ . Then δn(A) = δn(A0) < 2n + 2. By minimality A0 does not
contain any 2k-cycle for k > n and hence A0 ∈ K. By Lemma 3.12 we know that
|A0|= n+2 or A0 is an ordinary n-gon with either a path with n−1 new elements or
a loose end attached. But then A = A0 ∪γ does not contain any 2k-cycle for k > n,
a contradiction. □

Corollary 3.14. If 0 is a generalized n-gon such that every finite set A0 is contained
in a finite set A with δ(A) = 2n + 2, then 0 does not contain any proper elementary
submodels. In particular, 0n+3 is minimal.

Proof. This follows directly from Corollary 3.9 and Proposition 3.13. □

Definition 3.15. Consider 0n+3 and choose copies (0i : i < ω) of 0n+3 such that
0i ⊊ 0i+1. Put 0′

=
⋃

i<ω 0i .
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Note that 0′
|H Tn since Tn is an ∀∃-theory. Also, every finite subset A0 of 0′ is

contained in a finite set A ⊂ 0′ with δn(A) = 2n + 2.

Proposition 3.16. There exist open generalized n-gons which are not free. Specifi-
cally, 0′

=
⋃

0i is not free.

Proof. Clearly 0′ is not finitely generated as any finite subset is contained in some 0i .
So suppose towards a contradiction that 0′ is the free completion of an infinite
hat-rack. Then for any k ≥ 2n + 2 there exists a subset X of 0′ with δn(X) ≥ k
and X ≤n 0′, a contradiction to the observation that every finite subset A0 of 0′

is contained in a finite set A ⊂ 0′ with δn(A) = 2n + 2. Thus 0′ is open and not
free. □

Corollary 3.17. The theory Tn of open generalized n-gons does not have a prime
model.

Proof. By Corollary 3.14, 0n+3 and 0′ (as in Definition 3.15) have no proper
elementary substructures. Since they are not isomorphic, this proves the claim. □

Since we can easily find (nonelementary) embeddings of 0m into 0k for m ≥ k
we also obtain:

Corollary 3.18. The theory of open generalized n-gons is not model complete and
hence does not have quantifier elimination.

Remark 3.19. Free ∞-gons are trees. Therefore the theory of free ∞-gons is in
fact ω-stable as are their higher dimensional generalizations, right-angled buildings
and free pseudospaces; see [Tent 2014].

Theorem 3.20 [Ammer 2022, Theorems 12.1 and 12.7]. The theory Tn has weak
elimination of imaginaries and is 1-ample, but not 2-ample.

Furthermore, [Ammer 2022, Chapter 10] extends the proof from [Hyttinen and
Paolini 2021] to obtain 2ℵ0 many nonisomorphic countable open generalized n-gons
for each n. Since Tn is not superstable, there are 2κ many models of size κ for any
uncountable κ .

4. Open vs. free

While we already saw in Proposition 3.16, that there are open generalized n-gons
which are not free, we show in this final section that for finitely generated generalized
n-gons the notions of open and free coincide. For n = 3 this was proved in [Hall
1943, Theorem 4.8].

Proposition 4.1. Every finitely generated open generalized n-gon is free.

For the proof we introduce the following concept:

Definition 4.2. We call partial n-gons A, B free-equivalent if F(A) ∼= F(B).
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Lemma 4.3. Let 0 = F(A) be a generalized n-gon and suppose A is constructed
from A0 by first attaching a clean arc γ = (x1, . . . , xn−2) and then attaching loose
ends z1, . . . , zk whose respective (unique) neighbours belong to γ . Then there exist
z′

1, . . . , z′

k ∈ 0 \ A with unique neighbours in A0 such that A is free-equivalent
to A0 ∪ {z′

1, . . . , z′

k}.

Proof. Let γ ′
⊂ A be a 2n-cycle containing γ . Note that the opposites x ′

i of xi ,
i = 1, . . . , n −2, in γ belong to A0. By Remark 2.6 we can replace zi ∈ D1(x j ) by
the appropriate neighbour z′

i of the opposite x ′

j of x j and remove γ . □

Lemma 4.4. Let 0 = F(A) be a generalized n-gon and suppose A does not contain
any cycle. Then there is a hat-rack B free-equivalent to A.

Proof. Let γ = (x0, . . . , xk)⊂ A be a simple path (i.e., without repetition of vertices)
such that k ≥ n +3 is maximal. The proof is by induction on the number of vertices
of A not incident with γ . If A is a hat-rack, there is nothing to show. So let a ∈ A
have maximal distance from γ . If there is some xi ∈ γ such that d(a, xi ) = n + 1,
then let a′

∈ 0 \ A be the unique neighbour of xi with d(a′, a) = n − 2. Let A′ be
the graph obtained from A by replacing a by a′. Then F(A′) = F(A).

If there is no such vertex in γ , let γ ′
⊂ 0 be the clean arc connecting x0 and xn+1,

so F(A) = F(A ∪ γ ′). There is some y ∈ γ with d(y, a) = n + 1. Let y′ be the
neighbour of y with d(y′, a)= n−2. Then we replace A by A′

= (A\{a})∪γ ′
∪{y′

}.
Thus F(A) = F(A′) and the claim follows from Lemma 4.3 and induction. □

We can now give the proof of Proposition 4.1:

Proof. Let 0 be an open generalized n-gon finitely generated over the finite partial
n-gon A. We may assume that A is connected. If δn(A) = k, then every finite set
A0 ⊂ 0 is contained in a finite set A with δ(A) ≤ k. Hence we may assume that
A ≤n 0 and so 0 ∼= F(A) by Lemma 3.4. Therefore it suffices to show that there is
a finite hat-rack B free-equivalent to A.

By Lemma 2.18 consider a construction of A over the empty set. Clearly we
may assume that the last construction step is the addition of a loose end. We now
do induction over the number of steps adding a clean arc. If this number is zero,
then A contains no cycles and the claim follows from Lemma 4.4. Now suppose A
is obtained from A0 by adding a clean arc γ and then adding a number of loose
ends z1, . . . , zk (where the loose ends may be attached consecutively at a previous
loose end). If all loose ends are incident with γ , then we finish using Lemma 4.3.
Otherwise, we inductively reduce the distance of the loose ends by replacing them
by a loose end at smaller distance to A: if zi is a loose end, there is some x ∈ A
with d(zi , x) = n + 1 and such that x is not a loose end in A. Now replace zi by
the unique z′

i ∈ D1(x) with d(zi , z′

i ) = n − 2. In this way we reduce to the case in
Lemma 4.3 and finish. □
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Remark 4.5. Using similar arguments one can also show that for finitely generated
0, 0′

|H Tn we have 0 ∼= 0′ if and only if 0 = F(A), 0′
= F(B) for finite A, B

such that δn(A) = δn(B). We leave the proof as an exercise for the interested reader.
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