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Finite group actions on abelian groups of finite Morley rank

Alexandre Borovik

Dedicated to Boris Zilber, who laid the path.

This paper develops some general results about actions of finite groups on infinite
abelian groups of exponent p in the finite Morley rank category. These results are
applicable to a range of problems on groups of finite Morley rank. Also, they yield
a proof of the long-standing conjecture of linearity of irreducible definable actions
of simple algebraic groups on elementary abelian p-groups of finite Morley rank.
Crucially, these results are needed for the papers by Ayşe Berkman and myself
where we have proved an explicit, and best possible, upper bound for the degree
of generic multiple transitivity for an action of a group of finite Morley rank on
an abelian group.

Preamble

No man is an Iland, intire of it selfe; every man is
a peece of the Continent, a part of the maine.

John Donne, 1623

The field of study reflected in the title of this paper could appear to be rather
esoteric; however, it is a part of a much wider area of classification of simple
groups of finite Morley rank. I recommend Gregory Cherlin’s informative and
incisive survey [26] of the current state of this classification. In short, there are
three types of connected simple groups of finite Morley rank: degenerate (they
do not contain involutions), odd (contain involutions, but do not contain infinite
groups of exponent 2), and even (contain infinite groups of exponent 2). Groups
of even type have been identified as simple algebraic groups over algebraically
closed fields of characteristic 2 [2]. Little is known about infinite simple groups of
degenerate type beyond a fantastic result by Frécon on groups of Morley rank 3
[40] (beautifully elucidated by Corredor and Deloro [29]). On the contrary, quite a
lot is known about groups of odd type, but still not enough for proving for them the
special case of the Cherlin–Zilber algebraicity conjecture:
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Simple groups of finite Morley rank and odd type are algebraic groups
over algebraically closed fields of odd or zero characteristic.

Since the appearance of the classification of simple groups of even type [2], the
study of simple groups of finite Morley rank has been moving in two streams:

Stream 1: Proving the Cherlin–Zilber algebraicity conjecture for groups of odd
type, as outlined in Cherlin’s survey [26].

Stream 2: Study of actions, and specifically actions as automorphisms of abelian
groups, of groups of finite Morley rank on the basis of the knowledge already
accumulated in the efforts to classify the simple ones. This direction is motivated
by the fact that groups of finite Morley rank appeared as binding groups in model
theory, and hence act somewhere. A survey of this direction can be found in [15].

Stream 2 was initiated by Cherlin who suggested to me to start looking for
areas of possible application of the classification of groups of even type [2]. After
some discussion we decided to take a look at definably primitive permutation
groups (G, X), that is, definable faithful actions of G on X such that there are no
nontrivial definable G-invariant equivalence relations on X . Since the stabilisers of
points and orbits of G on X are definable, this means, in particular, that a definably
primitive action is transitive. “Faithful” here means that only 1 fixes all elements
of X . We proved the following.

Theorem [14, Theorem 1]. There exists a function f : N → N with the following
property. If a group G of finite Morley rank acts on a set X of finite Morley rank
definably and definably primitively, then

rk(G) ⩽ f (rk X).

The proof of this result is an indicator of the role of the classification technique
in Stream 2: an answer to a basic question about actions of groups of finite Morley
rank required the use of the classification of simple groups of even type together
with the full range of techniques developed for the ongoing study of groups of odd
type.

Macpherson and Pillay [49] (following an established tradition from finite group
theory) say that a group G of finite Morley rank is of affine type if G is a semidirect
product of definable subgroups G = V ⋊ H , where V is either elementary abelian
or divisible torsion-free abelian, and the group H acts on V faithfully and V does
not leave any definable subgroup of V other than 0 or V invariant. In that case the
natural action of G on the coset space G/H is definably primitive.

This is an important class of primitive groups of permutations. In finite group
theory, this class made its first appearance in the celebrated theorem by Galois:
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A finite solvable primitive permutation group has degree pk (that is, the
set on which it acts contains pk points) for some prime number p.

and was the reason why Galois constructed Galois fields [52].
To cut a long story short, the present paper has been written because its results

are essential for the study of primitive permutation groups of finite Morley rank
and affine type carried out, over some years, by Ayşe Berkman and myself [4; 5; 6].
Our project calls on a surprising range of results and techniques, including almost
everything which has been done so far in various approaches to the Cherlin–Zilber
conjecture. In particular, the present paper uses basic concepts from the representa-
tion theory of finite groups and associative algebras [31; 38] appropriately adapted
for the finite Morley rank context.

Finally, a word about the epigraph from John Donne. I proved the results of
the present paper in a de facto imprisonment of a strict lockdown.1 I would not
even try to prove them if I did not see my work as part of a much bigger collective
project. The lockdown episode reminded me that I started my work in groups of
finite Morley rank 40 years ago, also in almost complete isolation, but got critically
important help from our (as I can now call it) community. This was how I described
it in the introduction to [2].

Vladimir Nikanorovich Remeslennikov in 1982 drew my attention to Gre-
gory Cherlin’s paper [24] on groups of finite Morley rank and conjectured
that some ideas from my work [on periodic linear groups] could be used
in this then new area of algebra. A year later Simon Thomas sent to
me the manuscripts of his work on locally finite groups of finite Morley
rank. Besides many interesting results and observations his manuscripts
contained also an exposition of Boris Zilber’s fundamental results on ℵ1-
categorical structures which were made known to many Western model
theorists in Wilfrid Hodges’ translation of Zilber’s paper [67] but which,
because of the regrettably restricted form of publication of the Russian
original, remained unknown to me.

You can learn more about this story from Wilfrid Hodges [43]; a historic perspec-
tive is presented by Bruno Poizat [56]. In the early 1980s Hodges worked hard on
development of links and channels of communication between Western and Soviet
model theorists — and, ironically, also directed me to Zilber’s works. I knew Boris
personally, but we lived in different cities in Siberia which was as if we were on
different planets. In years that followed I have learnt a lot from Boris, but here I
wish to emphasise perhaps the most important lesson: the importance of looking at
the wider landscapes of mathematics, something that I am trying to do in this paper.

1I told this bizarre story in [12].
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1. A more technical introduction

1A. Ranked universes. First of all, we work in a ranked universe in the sense of
[16, Chapter 4]. In particular, a group of finite Morley rank means for us “a group
definable in a ranked universe”. When we have several algebraic structures of finite
Morley rank in the same statement, with definable actions and relations between
them, it means that all these structures and relations belong to the same ranked
universe U (which is usually not mentioned). This convention is convenient because
it simplifies the language and makes arguments easily accessible to group theorists
with some knowledge of the finite group theory or the theory of linear algebraic
groups. So far I am aware of just one paper [60] where the expression “a group
definable in a ranked universe” is used systematically.

In applications of results of the present paper the universe U is usually the
universe of interpretable sets of some group G of finite Morley rank. For example,
in one of the principal results of the present paper, Theorem 1.5, the group G is
the semidirect product V ⋊G. In its turn, Theorem 1.5 will be applied to a point
stabiliser in some generically multiply transitive permutation group H of finite
Morley rank; see further discussion in [6].

1B. Some terminology for group actions. We use terminology and notation from
the books [2; 16] and keep in mind the ranked universe convention of Section 1A.

Let V be an infinite abelian group of finite Morley rank, and X a finite set of
definable isomorphisms from V onto V closed under composition and inversion,
so X is a finite group. We say in this situation that the finite group X acts on V
definably. We include the elements of X in the signature of the language and treat
them as function symbols. We also say that V is an X -module or that (V, X) is an
X -module.

This paper is restricted to the most important case when V is elementary abelian,
that is, abelian and periodic of exponent p for some prime number p. We usually
treat V as a vector space over the prime field Fp.

We use additive notation for the group operation in V . The key player in our
study is the subring R generated by X in the ring End V of endomorphisms of V .
Obviously, R is finite and can be viewed as a finite-dimensional Fp-algebra. It is
important to observe that elements of R are definable endomorphisms of V . We
use the usual name for R: it is the enveloping ring (or enveloping algebra over Fp)
of the action of the group X on V and is denoted

R = E(X).

In a more general situation, if G is any other group which acts on the group V , we
say that the action of G is irreducible if 0 and V are the only G-invariant subgroups
of V ; we also say that V is a simple G-module or simple R(G)-module. In our setup,
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the action of the finite group X on V cannot be irreducible: take v ̸= 0, then the
orbit of v under the action of X is finite and generates a finite X -invariant subgroup,
while V is infinite. Therefore we need to adjust the concept of irreducibility to
make it usable for the group X .

We say that the action of the group X is smooth if any X -invariant connected
definable subgroup of V equals 0 or V , and, equivalently, that V is a smooth X-
module. This is a very natural concept, and examples are abundant. For example,
let G = GLn(K ) for an algebraically closed field K of characteristic p > 0, acting
naturally on V = K n . Then the action of GLn(Fpk ) < G on V is smooth.

1C. Finite groups and Jordan properties. Our paper starts with a discussion of
the following problem, which naturally arises in [5].

Problem 1.1. Given a finite group X , find good lower bounds for the Morley ranks
of faithful smooth X-modules of fixed positive characteristic p.

The first result of the paper, Theorem 1.2 below, reduces Problem 1.1 to a
similar question about the minimal degree of faithful finite-dimensional linear
representations of the group X over an algebraically closed field of characteristic p,
the latter having been studied in finite group theory for quite some time [36; 46;
61; 62].

Let X be a finite group and p a prime number. We introduce two parameters
characterising its size and complexity:

• dp(X) is the minimal degree of a faithful linear representation of X over the
algebraically closed field Fp.

• rp(X) is the minimal Morley rank of an infinite elementary abelian p-group V
of finite Morley rank such that X acts on V faithfully, definably, and smoothly.

Theorem 1.2. Under the assumptions of Problem 1.1,

dp(X) = rp(X).

This theorem is one of a large body of results which establish close connections
and analogies between groups of finite Morley rank, on one hand, and finite groups
and algebraic groups, on another.

The following statement is an immediate corollary of Theorem 1.2 via the famous
theorem of Larsen and Pink about finite linear groups [47]; see Section 3, Fact 3.1.

Theorem 1.3. There is a function

J : N → N

with the following property:
If H is a finite simple group which acts definably and faithfully on an infinite

connected elementary abelian p-group of Morley rank n, then either
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• |H | ⩽ J (n), or

• H is a group of Lie type in characteristic p.

Section 3B contains a brief discussion of Theorem 1.3 and other “theorems of
Jordan type”; there is a feeling that there could be some general model-theoretical
facts underpinning them all.

1D. From finite groups to simple algebraic groups over algebraically closed fields.
In Sections 4B to 4K we shall study definable actions of simple algebraic groups G
over algebraically closed fields on elementary abelian p-groups of finite Morley
rank. Our approach is based on the analysis of actions on V of finite subgroups
of G, and on the use of the technique developed in Section 2. Theorem 1.4 stated
below is the principal tool for transfer of information on certain finite subgroups of
G to the group as a whole G itself. The formulation of Theorem 1.4 needs to be
preceded by a few words on simple algebraic groups.

First of all, there is some mismatch in the terminology: it is a traditional con-
vention of the theory of algebraic groups that an (infinite) algebraic group G is
called simple if G is perfect, that is, [G, G] = G, with G/Z(G) simple in the usual
sense of this word and Z(G) finite. A finite group G with the same properties is
called quasisimple in finite group theory. So if G is finite, “simple” really means
simple: no nontrivial proper normal subgroups. Of course, every finite subgroup is
algebraic, but it will be always clear from the context whether a particular algebraic
group is finite or not.

Let G = G(K ) be the group of K-points of a simple algebraic group G defined
over an algebraically closed field K of characteristic p. In model theory, it is
conventional to call G a simple algebraic group over K . By Poizat [54] the group G
is bi-interpretable with the field K (by this we mean that, inside G, field definability
implies group definability). On the other hand G is birationally isomorphic with
the group of points over K of a simple algebraic group H defined over the prime
field Fp [8]. Since G and K are bi-interpretable, this isomorphism is definable in G
as a pure group; hence we can assume without loss of generality that G is defined
over Fp and, for every intermediate field Fp < F < K , the group G contains the
subgroup G(F) = G(F) of F-points.

Let now K∞ be the algebraic closure of the prime field Fp in K and G∞ the
group of points of G over K∞. The group G∞ is the union of finite subgroups
G(Fpk ) for all natural numbers k, and hence G∞ is locally finite. As we shall see
in later sections, the restriction to the group G∞ of a definable action of the group
G on an elementary abelian p-group of finite Morley rank could be studied by
methods developed in Section 2.

Theorem 1.4. Let K be an algebraically closed field of characteristic p > 0 and
K∞ the algebraic closure of the prime field Fp in K . Let G be a semisimple
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algebraic group over K and G∞ the group of points of G over K∞. If M is a
subgroup of G containing G∞ and the structure (G, M) has finite Morley rank,
then M = G.

1E. Linearisation of actions of simple algebraic groups. In Section 4 we prove
Theorem 1.5. Here, an action of a group G on an abelian group V is called

• irreducible if V contains no G-invariant subgroups other than 0 and V , and

• definably irreducible if V contains no G-invariant definable subgroups other
than 0 and V .

If G is a connected group of finite Morley rank, then these two properties are
equivalent [2, Lemma I.11.3].

The following Theorem 1.5 in Section 4C answers the long-standing conjecture
of linearity of irreducible definable actions of simple algebraic groups on elementary
abelian p-groups of finite Morley rank [16, Question B.38] with further details
inquired about in [15, Conjecture 12]. Crucially, Theorem 1.5(1) is needed for the
papers by Ayşe Berkman and myself [5; 6]

Theorem 1.5. Let K be an algebraically closed field of characteristic p > 0 and G
be a connected algebraic group over K . Assume that G acts definably and faithfully
on an elementary abelian p-group V of finite Morley rank. Assume that this action
is definably irreducible. Then the following are true:

(1) The group V has a structure of a finite-dimensional K-vector space compatible
with the action of G.

(2) Assume in addition that G is simple. Let Ĝ be a simply connected simple
algebraic group over K covering G. Then ρ : Ĝ → G ↪→ GL(V ) is an
irreducible K-linear representation of the group Ĝ on V . There are irreducible
rational representations ω1, . . . , ωm of the group Ĝ, and there are (V ⋊ G)-
definable automorphisms ϕ1, . . . , ϕm of the field K such that ρ =

⊗m
i=1 ϕiωi .

In particular, the representation ρ is (V ⋊G)-definable.

Surprisingly, the following immediate corollary of Theorem 1.5(1) for algebraic
groups appears to be new. However, Adrien Deloro informed me that a special case
of this result, where G acted transitively on V ∖ {0}, had been proven in 1983 by
Knop [45, Satz 1].

Corollary 1.6. Let H = V ⋊G be an algebraic group over an algebraically closed
field K of characteristic p > 0, where G is a connected algebraic group and V
is unipotent (written in additive notation). Assume that V does not have closed
G-invariant subgroups other than 0 and V . Then V is an abelian group of exponent
p and has a structure of a finite-dimensional vector space over K invariant under
the action of G.
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Here, a unipotent group in characteristic p > 0 is a linear algebraic group
containing only p-elements.

Theorem 1.5(2) is a more precise and detailed version of the following result by
Bruno Poizat.

Fact 1.7 [55, Theorem 2]. If K is a field of finite Morley rank and nonzero charac-
teristic p, any simple definable subgroup G of GLn(K ) is definable in the language
of the field K augmented by a finite number of definable field automorphisms.

In characteristic 0, a much stronger result is known:

Fact 1.8 (a combination of [48; 49; 55], and [13; 35]). Let (G, V ) be a faithful,
irreducible module of finite Morley rank, where G is infinite and V is torsion-free.
Then there is a definable field over which V is a finite-dimensional vector space and
G is a subgroup of GL(V ). If in addition G is simple and contains a nonidentity
unipotent element or an involution then G is Zariski closed in GL(V ).

1F. Linear groups of finite Morley rank. Let us return to Theorem 1.5(1) and
use notation from its statement. This theorem says that G is a subgroup of the
finite-dimensional general linear group GLK (V ). This is a natural question:

Is the group G Zariski closed in GLK (V )?

If the automorphisms ϕ1, . . . , ϕm in part (2) of Theorem 1.5 are Frobenius maps
or their inverses, then the representation G → GLK (V ) is rational and its image
(which is G) is Zariski closed in GLK (V ). But here we encounter one of the oldest
problems of the theory of groups of finite Morley rank.

Problem 1.9 (Angus Macintyre, [16, Question B35, p. 364]). Can a structure of
the form

⟨K ; + , · , ϕ⟩,

where ⟨K ; + , · ⟩ is an algebraically closed field of characteristic p > 0 and
ϕ ∈ Aut(K ) is neither a Frobenius automorphism nor the inverse of one, have
finite Morley rank?

If the answer to Macintyre’s problem in no, then, in Theorem 1.5, the group G
is Zariski closed in GLK (V ). Otherwise, this is not true in general.

1G. Linearisation of actions of solvable-by-finite groups. Finally, we extend
Theorem 1.5 to solvable-by-finite groups.

Theorem 1.10. Let K be an algebraically closed field of characteristic p > 0 and G
be a connected algebraic group over K . Assume that G acts definably and faithfully
on an elementary abelian p-group V of finite Morley rank. Assume that this action
is definably irreducible. Then G◦ is a good torus and V has a definable structure of
a finite-dimensional K-vector space compatible with the action of G, with the field
K definable in V ⋊G.



FINITE GROUP ACTIONS ON ABELIAN GROUPS OF FINITE MORLEY RANK 547

2. Enveloping algebras enter the scene

2A. Definitions and generalities. In this section we work under assumptions which
are weaker than those of Theorem 1.2:

• X is a finite group which acts, definably and smoothly, on an infinite connected
elementary abelian p-group V of finite Morley rank.

Notice that we do not assume that the action of the group X is faithful. This allows
us to pass these assumptions to factor modules of V by definable X -submodules.
The group V is treated as a vector space over Fp.

Lemma 2.1. The canonical action of the group algebra A = Fp[X ] on V is defin-
able.

Proof. Indeed every element from A acts on V as a sum of definable endomorphisms
(which came from X ) and is therefore definable. □

Another important player is the enveloping algebra of X on V , that is, the ring
R generated in EndFp V by elements of X , or the image of A in EndFp V (which is
the same). We denote this ring by E(X).

Both A and R are finite-dimensional algebras over Fp, and their action on V is
smooth while the action of R on V is also faithful. We treat V as a right A-module
and right R-module, and, enlarging the signature of the language, we treat elements
from A and R as function symbols.

A finite-dimensional associative algebra over a finite field Fp of prime order p
is the same as a finite ring of characteristic p. Their structure is of course well
known. We need a definition of the Jacobson radical J (R) of a finite-dimensional
algebra R over a field: J is the intersection of all maximal left ideals of R. It can
be proved that J is an ideal, and, moreover, J can be characterised as the set of
all elements r ∈ R such that Mr = 0 for every simple (or irreducible, which is the
same) R-module M .

Fact 2.2 (Wedderburn–Maltsev theorem [37, Theorem VI.2.1]). Let R be a finite-
dimensional associative algebra with identity 1 over a finite field Fp of prime order
p and J its Jacobson radical.

(a) R = J + S, where S is a semisimple algebra, J ∩ S = 0, and S is the direct
sum of matrix algebras

S = S1 ⊕ · · · ⊕ Sk, Si ≃ Mdi ×di (Fpmi ), i = 1, 2, . . . , k.

(b) Let Q = 1 + J . Then Q is a normal p-subgroup in the group of units R∗ of R.
Moreover, R∗ is a semidirect product R∗

= Q⋊ S∗ of Q and the group of units
S∗ of S. In particular,

S∗
≃ GLd1(Fpm1 ) × · · · × GLdk (Fpmk ).
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2B. The case of smooth action. The arguments below freely use, without specific
references, definitions and results from more basic parts of the theory of modules,
which can be found, for example, in [38].

The group X will not be mentioned in the rest of this section. Rather, we work
under the following hypothesis.

Hypothesis 2.3. In the notation of Fact 2.2, R is a finite-dimensional Fp-algebra
acting definably, smoothly, and faithfully on an infinite elementary abelian p-group
V of finite Morley rank.

Lemma 2.4. Under Hypothesis 2.3, the algebra R is semisimple and V is a semisim-
ple R-module.

Proof. We work in the notation of Fact 2.2. Since VQ is a definable abelian-by-finite
p-group, VQ is nilpotent. By properties of commutators in groups of finite Morley
rank, VJ = [V, Q] < V is a proper connected definable subgroup of V invariant
under R, and hence VJ = 0. But then J = 0 and R is semisimple; therefore V is
also semisimple, that is, a direct sum

V =

⊕
ℓ∈L

Uℓ for some index set L (1)

of simple R-modules Uℓ. □

Theorem 2.5. Under Hypothesis 2.3:

(a) All simple factors in the direct sum of equation (1) are isomorphic.

(b) The algebra R is simple and therefore is isomorphic to an algebra of all
matrices of size ℓ × ℓ, for some ℓ, over a finite extension of Fp.

Proof. (a) Denote by I = I(R) the set of isomorphism classes of simple R-modules;
notice that the set I is finite. We collect isomorphic simple factors and rewrite the
direct sum of simple R-modules in equation (1) as

V =

⊕
I∈I

UI , (2)

where all simple summands of UI belong to the isomorphism class I .
We want to prove that each submodule UI is definable; then it follows from

the smoothness of the action of R on V than V = UI for some I , that is, that all
summands in (1) are isomorphic.

For that purpose, an element v ∈ V is called I -cyclic for I ∈ I if all simple
summands in the cyclic module vR belong to I . If u, v are I -cyclic elements
of V , then (u + v)R ⩽ u R + vR, and all simple summands in u R + vR, and hence
in (u + v)R, belong to I . Therefore u + v is an I -cyclic element. It follows that
the set of all I -cyclic elements in V coincides with UI .
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Let us denote by KI the set of all right ideals K in R such that all simple
summands of the factor module R/K belong to I . Then UI is defined by the
formula

8(v) :=

∨
K∈KI

(( ∧
k∈K

vk = 0
)

∧

( ∧
l∈R∖K

vl ̸= 0
))

.

This completes the proof of part (a).

(b) Now R is also the enveloping algebra of its restriction to every simple summand
of V and is therefore simple. □

2C. The weight decomposition for a coprime action of a finite abelian group and
the multiplicity formula. Now we focus our attention temporarily on actions of
finite abelian groups of orders coprime to p, and reformulate the previous results in
more familiar terms in this special case.

Let V be a connected H -module of characteristic p > 0 with H a finite abelian
group of order coprime to p. View V with the action of H as a module over the
finite group algebra A = Fp[H ]. Applying Maschke’s theorem to the action of H
on A by multiplication, we see that A is semisimple and is a direct sum of simple
finite commutative algebras, that is, finite fields (of course, of characteristic p).

We call a nonzero element v ∈ V a weight element if AnnA(v) is a maximal ideal
in A; equivalently, this means that vA is an irreducible A-module. It follows that
if F = A/AnnA(v) and λ : A → F is the canonical homomorphism, then vA is a
1-dimensional vector space over F (notice that F may be bigger than Fp) and, for
every a ∈ A, we have

va = λ(a)v,

where the left-hand side is understood in the sense of a (right) A-module, and the
right-hand side is a vector space over the field F . This justifies the homomorphisms
λ being called weights of A.

Observe that when restricted to H , weights become characters of H , that is,
homomorphisms from H to the multiplicative group F∗

p of the algebraic closure Fp

of the prime field Fp. Also it is easy to see that F ≃ Fp[λ[H ]], where

λ[H ] = {λ(h) : h ∈ H}.

Obviously, if u, v ∈ V are weight vectors for the same weight λ then either
u +v = 0 or u +v is a weight vector for λ. Hence all such vectors form a definable
A-submodule Vλ ⩽ V , and it follows from Maschke’s theorem that

V =

⊕
Vλ,

where the direct sum is taken over all weights of H on V . It follows that all weight
spaces Vλ are connected, and their total number does not exceed n = rk V . It is
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also useful to keep in mind that Vλ is a vector space under the action of the finite
field Fλ = Fp[λ[H ]]. Observe further that Fλ is the enveloping algebra for the
action of the group H on Vλ.

If we call rk Vλ the multiplicity of the weight λ then, as one would expect, we
have the following.

Theorem 2.6 (multiplicity formula). The sum of multiplicities of weights of H on
V equals rk V .

This statement is called a theorem only because of its importance; its proof is
obvious.

2D. Proof of Theorem 1.2. To prove Theorem 1.2, it would suffice to show that,
for any definable and faithful smooth X -module V , rk V ⩾ dimFp

W for some
faithful Fp[X ]-module W on which X acts faithfully.

So let V be a definable and faithful smooth X -module of smallest possible Morley
rank and R the enveloping algebra of this action. By Theorem 2.5, V is a direct
sum of isomorphic simple (in particular, finite) R-modules; obviously, X acts on
each of them faithfully.

Now we can look at one of these simple R-modules, say U . Assume that
dimFp U = n. By Theorem 2.5, R is the matrix algebra Matm×m(Fpl ), where
n = m × l. In particular, we have a definable action of R∗

= GLm(Fpl ) on U ,
and, since V is a direct sum of isomorphic copies of U , R∗ acts definably on V .
The maximal torus H of R∗ has m different weights on U and therefore on V .
From the multiplicity formula (Theorem 2.6) applied to the action of H we have
that rk V ⩾ m. But R∗, and hence the (homomorphic) image of X in R∗ has a
faithful linear representation over Fp of degree m. Hence rk V ⩾ dp(X), which
completes the proof of Theorem 1.2. □

2E. Theorem 1.2: comments. It looks as though the proof of Theorem 1.2 does
not use all axioms of finite Morley rank (as given in [2, Section I.2.1] and [16,
Section 4.1.2]); it would be interesting to find weaker conditions on the module V
under which Theorem 1.2 still holds, in a way similar to that of [30].

I expect that the method outlined here gives also new approaches to some of the
problems listed in the survey paper by Adrien Deloro and myself [15].

3. Proof of Theorem 1.3 and Jordan properties

3A. A Larsen and Pink type theorem.

Fact 3.1 [47, Theorem 0.2]. For every n there exists a constant J ′(n) depending
only on n such that any finite subgroup 0 of GLn over any field k possesses normal
subgroups 03 ⩽ 02 ⩽ 01 such that
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(a) |0 : 01| < J ′(n).

(b) Either 01 = 02, or p := char(k) is positive and 01/02 is a direct product of
finite simple groups of Lie type in characteristic p.

(c) 02/03 is abelian of order not divisible by char(k).

(d) Either 03 = {1} or p := char(k) is positive and 03 is a p-group.

Theorem 1.2 and Fact 3.1 immediately yield the following result.

Theorem 3.2. There is a function

J : N → N

with the following property:
If X is a finite group which acts definably and faithfully on an infinite connected

elementary abelian p-group of Morley rank n then H possesses normal subgroups
X3 ⩽ X2 ⩽ X1 such that

(a) |X : X1| < J (n).

(b) Either X1 = X2, or X1/X2 is a direct product of finite simple groups of Lie
type in characteristic p.

(c) X2/X3 is abelian of order not divisible by p.

(d) X3 is a p-group.

Now Theorem 1.3 is a special case of Theorem 3.2. □

3B. Theorems of Jordan type. Fact 3.1 and Theorem 3.2 can be called theorems
of Jordan type since they follow the paradigm set by Camille Jordan in his famous
theorem of 1878:

Fact 3.3 [44, p. 114]. There is a function

J : N → N

with the following property: every finite subgroup of GLn over a field of character-
istic 0 possesses an abelian normal subgroup of index ⩽ J (n).

Breuillard [20] gave an exposition of Jordan’s original proof in the modern
terminology; Collins [28] found the optimal explicit bound for J (n).

The introduction to Guld [42] contains an impressive survey of theorems of
Jordan type for finite subgroups of groups arising in complex algebraic geometry
and in differential geometry. Due to this assumption, [42] contains a more specific
and narrower definition of a Jordan group:

A group G is called Jordan, solvably Jordan or nilpotently Jordan of class
at most c (c ∈ N) if there exists a constant J ∈ N such that every finite
subgroup X ⩽ G has a subgroup Y ⩽ X such that |X : Y | ⩽ J and Y is
abelian, solvable or nilpotent of class at most c, respectively.
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Fact 3.4 [42, Theorem 2]. The birational automorphism group of a variety over a
field of characteristic 0 is nilpotently Jordan of class at most two.

There are several variations of definitions of Jordan groups, so it could be more
useful to speak about all of them as Jordan properties. Bandman and Zarhin [3] gave
a survey of results on Jordan properties in automorphism groups of some structures
of Kähler geometry. Some results on Jordan properties in positive characteristics
and further references can be found in [23; 57].

These results, together with many other results quoted in [42], create a feeling that
there could be some underlying model-theoretic concepts and results underpinning
them all.

4. Linearisation of the actions of algebraic groups

In this section, we prove Theorems 1.4, 1.5, and 1.10.

4A. Proof of Theorem 1.4. We use the definitions and terminology of Section 1D.

Theorem 1.4. Let K be an algebraically closed field of characteristic p > 0 and
K∞ the algebraic closure of the prime field Fp in K . Let G be a semisimple
algebraic group over K and G∞ the group of points of G over K∞. If M is a
subgroup of G containing G∞ and the structure (G, M) has finite Morley rank,
then M = G.

Proof. It obviously suffices to consider only the case when G is simple. Let T∞ be
a maximal torus in G∞. Its Zariski closure in G is a maximal torus in G; let us
denote it T . Obviously,

T∞ ⩽ M ∩ T ⩽ T,

with M ∩ T being a definable subgroup. By Poizat [54] the simple algebraic group
G and the field K are bi-interpretable. This allows us to apply [2, Proposition I.4.20
and Lemma I.4.21], and prove that T is a good torus in the sense of [2, Section I.4.4],
that is, every definable subgroup of T is the definable hull of its torsion part. In
particular, T is the definable hull of its torsion T∞. Hence M ∩T = T , which means
that T ⩽ M . Define

N = ⟨T m
| m ∈ M⟩.

Being generated by Zariski closed connected subgroups, N is Zariski closed. Ob-
viously, G∞ = ⟨T g

∞ | g ∈ G∞⟩ ⩽ N . But the Zariski closure of G∞ in G is G,
whence N = G and therefore M = G. □

Remark. The bi-interpretability of G and K is the cornerstone of the proof. Indeed,
if K is an algebraically closed field and T = K ∗ is its multiplicative group, then
the torus T , viewed as a pure group, in absence of the field K , is not a good torus:
it is easy to see that the structure (T∞, T ) has Morley rank two.
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4B. Proof of Theorem 1.5. This is the core of the paper.

Theorem 1.5. Let K be an algebraically closed field of characteristic p > 0 and G
be a connected algebraic group over K . Assume that G acts definably on an infinite
connected elementary abelian p-group V of finite Morley rank. Assume that this
action is definably irreducible. Then the following statements are true.

(1) The group V has a structure of a finite-dimensional K-vector space compatible
with the action of G, so the group G could be viewed as a subgroup of GL(V ).

(2) Let Ĝ be a simply connected (quasi-)simple algebraic group over K covering G.
Then ρ : Ĝ → G ↪→ GL(V ) is an irreducible K-linear representation of the
group Ĝ on V . There are irreducible rational representations ω1, . . . , ωm of
the group Ĝ, and there are (V ⋊ G)-definable automorphisms ϕ1, . . . , ϕd of
the field K , such that ρ =

⊗d
i=1 ϕiωi . In particular, the representation ρ is

(V ⋊G)-definable.

The proof of this theorem will spread over Sections 4C–4I.
It is useful to remember the ranked universe convention of Section 1A.

4C. Linearisation theorem. Recall that if G is a group of finite Morley rank acting
definably on an abelian group V of finite Morley rank, then the action is called
definably irreducible if the only G-invariant definable subgroups in V are 0 and V .

Fact 4.1 (linearisation theorem). Let V be an infinite elementary abelian p-group
of finite Morley rank and G an infinite group of finite Morley rank acting on V
faithfully, definably, and definably irreducibly. Let D be the ring of all definable
endomorphisms of V and Z = CD(G). Assume that Z is infinite.

(1) Z is an algebraically closed field definable in V ⋊ G and the action of Z on
V gives V a structure of a finite-dimensional Z-vector space (with a Z-linear
action of G).

(2) The enveloping algebra (over Z ) R = R(G) is the full matrix algebra EndZ (V ).

(3) R is definable in V ⋊G.

Proof. Clause (1) is a result by Macpherson and Pillay [49, Theorem 1.2], with a
more complete proof given by Deloro in [32]. It also follows from a more general
and very illuminating treatment of linearisation of actions of finite Morley rank given
in Deloro’s “Zilber’s skew field lemma” [33]. Clause (2) follows from basic algebra:
an irreducible subgroup G ⩽ GLn(Z) contains n2 matrices linearly independent
over Z and forming a basis of the matrix algebra Mn×n(Z). Clause (3) follows
from (1). □
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4D. Groups of units of associative algebras over finite fields: ranks. Recall that,
for a prime number r , the r -rank mr (G) of a finite group G is the minimal number
of generators in a maximal elementary abelian r-subgroup of G. When p > 2
we are interested in the case r = 2 because elements of order 2 in GLn(Fp) have
eigenvalues ±1 which, of course, belong to Fp and therefore have a nice and easy
to control behaviour. When p = 2, we use r = 3, since this still gives us some
degree of control. The two clauses (a) and (b) in the following Fact 4.2 correspond
to the cases when elements of order 2 are semisimple (p > 2) or unipotent (p = 2).

Fact 4.2. Let R be a finite-dimensional associative algebra over a finite field Fp of
prime order p and J its radical. In the notation of Fact 2.2, the following hold:

(a) Assume that p > 2. Then

m2(R∗) = d1 + d2 + · · · + dk .

(b) If p = 2 then

m3(R∗) ⩽
⌊d1

2

⌋
+

⌊d2

2

⌋
+ · · · +

⌊dk

2

⌋
.

Proof. It is easy: for proving (a), perhaps a simple reference to the proof of
Theorem 2.6 above would suffice. For (b), a proof follows from an elementary fact
from finite group theory: a cyclic group of order 3 has only one faithful irreducible
representation over the field F2, and it is of dimension 2. □

4E. Proof of Theorem 1.5 part (1). We start with a few general observations. If
the connected algebraic group G has a nontrivial unipotent radical U ̸= 1, then
CV (U ) ̸= 0 is a proper definable G-invariant subgroup of V , which contradicts the
assumptions of the theorem. Hence U = 1 and G is reductive. Set Z = Z(G). If Z
is infinite then the theorem follows from Fact 4.1. So we can assume without loss
of generality that G is semisimple.

Let K∞ ⩽ K be the algebraic closure of the prime field Fp, G∞ = G(K∞), and
R∞ = E(G∞) the enveloping algebra of G∞.

Lemma 4.3. R∞ is the matrix algebra Md×d(K∞) for some natural number d.

4F. Proof of Lemma 4.3. For a subgroup H ⩽ G∞, we denote by uH the subgroup
generated in H by all unipotent elements in H .

We analyse the series of subgroups in G∞:

Xk =
uG(Fp(m+k)!), k = 1, 2, . . . .

Obviously, they form a chain

X1 < X2 < X3 < · · · .
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and
∞⋃

i=1

X i = G∞

(since G∞ is generated by unipotent elements).
It is well known that the groups Xk , k = 2, 3, 4, . . . (that is, with the exception

of a few very small groups), are perfect, Xk = X ′

k , and therefore

(a) The groups Xk for k > 1 have no nontrivial characters Xk → F∗
p.

Let Rk = E(Xk) be the enveloping algebra of Xk in its action on V , then

R1 ⩽ R2 ⩽ R3 ⩽ · · ·

and

R∞ =

∞⋃
i=1

Ri = E(G∞).

Denote by Ji the Jacobson radical of Ri , i = 1, 2, . . . . Then Ri/Ji is semisimple
and

Ri/Ji = Mi1 ⊕ · · · ⊕ Miki ,

where Mi j are matrix algebras over finite fields Fi j of degree di j . Notice that, in
view of claim (a) above, di j > 1 for i > 1, since X i have no nontrivial actions in
dimension 1.

For p > 2 notice further that di j coincides with the 2-rank of the corresponding
group GLdi j (Fi j ) of invertible elements (Fact 4.2(a)). Therefore

(b) For p > 2, each group R∗

i contains an elementary abelian 2-subgroup of 2-rank

di = di1 + di2 + · · · + diki .

Again applying Fact 4.2 (a) we see that for p > 2 the 2-ranks di are bounded by
rk V in view of Theorem 2.6; for p = 2 we similarly have, from Fact 4.2(b), that
di ⩽ 3 rk V . Hence

(c) The numerical parameters: di , ki , di1, di2, . . . , diki stabilise starting from some
i∗ as i grows and remain the same for all i ⩾ i∗.

From that index i∗ on, embeddings Ri ⩽ R j for i < j can be much better
controlled. Indeed,

(d) After appropriately changing the numeration we have embeddings of rings
Mil ⩽ M jl for i∗ ⩽ i < j where the dimensions dil and d jl of Mil and M jl ,
correspondingly, over their centres, correspondingly, are equal: dil = d jl .

This leads to

(e) Ji ⩽ J j for i∗ ⩽ i < j .
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Indeed, if Ji ̸⩽ J j then Qi ̸⩽ Q j and in one of the factor rings M jl the image
Q = Qi ̸= 0. But Q is normalised by invertible elements of Mil . Let us focus on
groups of units and denote dil = d jl = m. Since the groups X i and X j are perfect,
we see a group Hi = SLm(Ki ) (which contains X i ) embedded into H j = SLm(K j )

(which contains X j ), where Ki and K j are two finite fields of characteristic p > 0,
and Hi is normalising a nontrivial p-subgroup Q in H j , that is, Hi ⩽ NH j (Q) and
is contained in a proper parabolic subgroup of H j which is obviously impossible:
Hi and H j have the same Lie rank m − 1, but proper parabolic subgroups in H j

have smaller Lie rank.
Now we have to take a look at the action of Ji on V . Obviously VJi = [V, Qi ].

The group V ⋊ Qi is nilpotent and V is its connected component and therefore, by
standard properties of nilpotent groups of finite Morley rank, [V, Qi ] is a connected
definable proper subgroup of V . Hence

(f) VJi is a connected definable proper subgroup of V .

Now we immediately have

(g) J∞ =
⋃

∞

i=i∗ Ji is a nilpotent ideal of R∞. Moreover, VJ∞ is a connected
definable proper subgroup of V .

If W = VJ∞ ̸= 0 then W is a definable proper connected R∞-invariant, and hence
G∞-invariant, subgroup of V . But then NG(W ) is a definable subgroup of G, and,
of course, contains G∞; hence, by Theorem 1.4, NG(W ) = G, which contradicts
irreducibility of G on V . This proves

(h) J∞ = 0

We can now complete the proof of the lemma. By Steps (h) and (d), R∞ is
semisimple and

R∞ = M1 ⊕ · · · ⊕ Mk

is the direct sum of matrix algebras of degrees d j over the field K∞.
Assume that k > 1. then

V = VM1 ⊕ · · · ⊕ VMk,

where each submodule VM j is annihilated by Ml for l ̸= j , and, moreover,

VM J =

⋂
l ̸= j

Ann
V

(Ml).

By the chain condition, VM j is the annihilator of a finite set of matrices, therefore
it is definable. Moreover, VM j is normalised by G∞, therefore G∞ ⩽ NG(VM j )

and the latter is a definable subgroup, which again leads to a contradiction with
Theorem 1.4 and irreducibility of G on V . Hence k = 1 and R∞ = Md×d(K∞). □



FINITE GROUP ACTIONS ON ABELIAN GROUPS OF FINITE MORLEY RANK 557

4G. Back to proof of Theorem 1.5 part (1). Now we can use Lemma 4.3. Let
Z∞ ≃ K ∗

∞
be the centre of R∞. Take z ∈ Z∞, z ̸= 0, 1. Then

z = g1 + · · · + gn

for some gi ∈ G∞. Some elements g ∈ G “commute” with z in the sense that

vzg = vgz for all v ∈ V . (3)

We denote by M the set of such elements in G; it is easy to see that this is a
subgroup. And here is the key observation: equation (3) can be written as a first
order statement in the group language in the group V ⋊G:

vg1g + · · · + vgng = vgg1 + · · · + vggn for all v ∈ V .

Now the subgroup M is definable in V ⋊ G, and contains G∞, so we have the
following chain of subgroups:

G∞ ⩽ M ⩽ G. (4)

The group G, being a semisimple linear algebraic over K , is decomposed as a
central product

G = G1
∗ · · · ∗ Gℓ

of simple algebraic groups Gi over K , i = 1, . . . , ℓ. If Gi
∞

is the group of points
of Gi over the field K∞, then

Gi
∞

= G1
∞

∗ · · · ∗ Gℓ
∞

,

Mi = M ∩ Gi , and in every Gi we have a chain of subgroups

Gi
∞

⩽ Mi ⩽ Gi .

Now, Theorem 1.4 gives us Mi = Gi for all i , so M = G. Recall that the subgroup
M was constructed from some element z ∈ Z . This argument applies to all z ∈ Z∞,
so Z∞ and G commute elementwise as multiplicative subgroups of End V . The
application of Fact 4.1 completes the proof of Theorem 1.5(1). □

4H. Theorem 1.5 part (2): some preparatory comments. We continue to work in
the notation of Theorem 1.5 but need additional definitions and facts about simple
algebraic groups over algebraically closed fields.

If G and H are two simple algebraic groups over an algebraically closed field
K of characteristic p > 0 which is fixed in this section, a surjective rational
homomorphism ζ : G → H is called an isogeny. It is known that ker ζ ⩽ Z(G)

is finite and has order coprime to p. Among simple algebraic groups of the same
type as G, that is, with the same root system, there is the group Ĝ, called simply
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connected, which has a isogeny onto any other simple group of the same type, and
the adjoint group G such that any group of the same type has an isogeny onto G.

Let 8 be the root system of G; we can select root subgroups

Xr = {xr (t) : t ∈ K }, r ∈ 8,

so that all of them are defined over the prime field. An isogeny ζ : G → H maps
the system of root subgroups {Xr : r ∈ 8} to a similar system in H .

If now ϕ ∈ Aut K is an automorphism of the field K then it induces a field
automorphism of G by mapping elements of root subgroups of G,

xr (t) 7→ xr (tϕ), r ∈ 8, t ∈ K .

This gives us an automorphism ϕ̃ of G, and similarly for H . Obviously, the ϕ̃

commute with the isogeny, ϕ̃ζ = ζ ϕ̃, which justifies the use of the notation ϕ̃ on
both groups G and H . Also, the action of ϕ̃ on the elements of the root subgroup
Xr = {xr (t) : t ∈ K } is the same as the action of ϕ on the elements of K . Therefore,
if ϕ̃ is a definable automorphism of G, then ϕ is a definable automorphism of K .

The automorphism ϕ̃ can be used to convert each G-module W into another
G-module, denoted W ϕ , by the rule wg := w(gϕ̃), w ∈ W , g ∈ G [58, §5].

4I. Proof of Theorem 1.5 part (2).

Proof. We know from part (1) of Theorem 1.5 that V is a finite-dimensional vector
space over the field K and G is a definable subgroup in GLK (V ).

Let Ĝ be a simply connected simple algebraic group over K and ρ : Ĝ → G
an isogeny. Then ρ is an abstract homomorphism, in the sense of the famous
Homomorphismes “abstraits” paper by Borel and Tits [10], from Ĝ to GLK (V ),

ρ : Ĝ → GL(V ).

By [10, Corollary 10.4] (compare with [58]), ρ is equivalent to a tensor product

ϕ1ω1 ⊗ · · · ⊗ϕmωm,

where ωi are rational irreducible representations of Ĝ and ϕi are automorphisms of
Ĝ induced by automorphisms of the field K .

Now all that we have to prove is that all field automorphisms ϕi are definable
in V ⋊G. For that, we have to switch from the representation-theoretic language
to the group-theoretic one.

Let ϵ be the 1-dimensional trivial representation Ĝ →GL1(K ). Set di =dimK ωi ;
by properties of tensor products, d1 · · · dm = n, where n = dimK (V ). As usual,
define diϵ = ϵ ⊕ · · · ⊕ ϵ (di times). Finally, set

ρi = d1ϵ ⊗ · · · ⊗ di−1ϵ ⊗ ϕiωi ⊗ di+1ϵ ⊗ · · · ⊗ dmϵ.
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The representations ρi are defined up to equivalence of representations, but they
can be replaced by equivalent ones in a way that makes the images Gi of ρi

pairwise commuting, [Gi , G j ] = 1 for i ̸= j . Set Ğ = G1 · · · Gm . Observe
that G ⩽ Ğ. In particular, the group Ğ acts on V irreducibly. Also, the centres
Z(Gi ) < Z(GL(V )) consist of scalar matrices. Let ζ : GL(V ) → PGL(V ) be the
canonical homomorphism; replacing all our groups by their images in PGL(V )

simplifies the arguments. The steps of this reduction are shown in diagram (5)

Ĝ

ρ=
⊗

ϕ̃i ωi

��

ρi

  

simply connected cover of G

representations

G

ζ

��

Gi

ζ

��

GL(V )

GL(V ) → PGL(V )

G
ϕ̃i ωi

//

πi

��

Gi

Id

��

PGL(V )

projections G → D

Gi PGL(V )

(5)

and explained in detail below.
We are moving now into the setup of [10, Theorem 10.3] and denote by ρ̄ and

ρ̄i the induced homomorphisms

ρ̄ = ρ · ζ : Ĝ → PGL(V ), ρ̄i = ρi · ζ : Ĝ → PGL(V ).

We denote by G and Gi the images of groups G and Gi in P = PGL(V ). Since
Gi = Gi/Z(Gi ) are simple groups, the commuting product G1 · · · Gm is a direct
product,

G1 · · · Gm = G1 × · · · × Gm .

Now we take the double centraliser closures of groups Gi , setting Di =CP(CP(Gi )),
then Gi ⩽ Di and the groups Di form a direct product

D = D1 × · · · × Dm .

It could be shown that Di ≃ PGLdi (K ), but we will not be using this fact. What
matters for us is that Di are definable in PGL(V ) and hence in V ⋊G.
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The final step in the proof starts with an observation that G ⩽ D. The group G
is of course definable, and hence the projection maps πi : G → Di are definable
in V ⋊G. The image of πi is Gi , and the triangle at the bottom of the diagram (5)
is commutative, πi = ϕ̃iωi and ϕ̃i = πiω

−1
i . Hence the field automorphism ϕ̃i of

the group G is definable in V ⋊G, and hence the automorphism ϕ of the field K is
also definable in V ⋊G. □

4J. Theorem 1.5 part (2): an example. Let Ĝ = SL2(K ), where K is an al-
gebraically closed field of characteristic p > 2, ω the canonical 2-dimensional
representation of Ĝ over K and ϕ̃ its field automorphism induced by ϕ ∈ Aut K .
Let V be the space of the representation ω⊗ ϕ̃ω; then dimK V = 4. Using the usual
notation In for the identity linear transformation of K n , we see that the image in
GL(V ) of the central element −I2 of Ĝ is

−I2 ⊗ −I ϕ̃

2 = −I2 ⊗ −I2 = I4,

which means that the image of Ĝ in GL(V ) (we denote it G) is isomorphic
to PSL2(K ). If we now move to PGL(V ), retaining the notation from the proof,
we see that G now is a subgroup in PSL2(K )× PSL2(K ) and that it happens to be
exactly the graph of the field automorphism ϕ̃ : PSL2(K ) → PSL2(K ).

If we now look only at the group V ⋊G ≃ K 4 ⋊ PSL2(K ), it would be difficult
to find its representation-theoretic origins without invoking the simply connected
cover Ĝ of the group G. Therefore, Theorem 1.5(2) corrects (and confirms, in the
corrected form) [15, Conjecture 9.].

The proof of the theorem in this special case contains an interesting little detail
which sheds light at the situation in general: we are proving the definability of the
automorphism ϕ̃ by proving the definability of its graph as a subgroup. This is a
cute tiny self-evident fact from elementary algebra which Şükrü Yalçınkaya and
myself could not find in any textbook but which we systematically use in all our
work on black box algebra [17]:

A map ϕ : G → H from a group G to a group H is a homomorphism if
and only if its graph 0ϕ ⊂ G × H of ϕ is a subgroup of G × H.

The same is of course true for rings and all other kinds of algebraic systems.
This is one of many examples of the exchange of ideas between the theory of black
box groups and the theory of groups of finite Morley rank. See also Section 5E for
further discussion.

4K. Proof of Theorem 1.10. The following result about solvable groups of finite
Morley rank is an adaptation of the method of proof of Theorem 1.5(1).

Theorem 1.10. Let G be an infinite solvable-by-finite group of finite Morley rank
which acts faithfully and definably on a connected elementary abelian p-group V
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of finite Morley rank. Assume that this action is definably irreducible. Then G◦ is a
good torus and V has a definable structure of a finite-dimensional K-vector space
compatible with the action of G, with the field K definable in V ⋊G.

Proof. Since G acts faithfully and irreducibly on V , [G◦, G◦
] acts trivially on V by

[2, Lemma I.8.2], and since the action is faithful, [G◦, G◦
] = 1 and G◦ is abelian.

By a similar argument, G◦ is a p⊥-group. By [2, Proposition I.11.7], G◦ is a good
torus. By [2, Fact I.9.5], there is a subgroup G∞ < G such that G◦

∩ G∞ is the
torsion part of G◦ and G◦G∞ = G. Obviously, G∞ is a locally finite group and G
is the definable closure of G∞.

Now we can repeat, with very small changes, the proof of Theorem 1.5(1). □

5. Historical and other comments

I wish to conclude the paper with a few words about the balance of the model-
theoretic and the group-theoretic components in the theory of simple groups of
finite Morley rank.

5A. Simple algebraic groups, Chevalley groups and the work version of the
Cherlin–Zilber conjecture. In the classification theory of simple groups of finite
Morley rank, as it stands now, the structural theory of simple algebraic groups is
heavily used, as a rule, in the form of a summary statement:

A simple algebraic group over an algebraically closed field K is a Cheval-
ley group over K .

A Chevalley group over a field or a ring R is viewed as a group given by some
specific generators and relations which involve parameters from R [8]. It can be
shown that

A Chevalley group over an algebraically closed field K is a simple alge-
braic group over K .

In works aimed at proving the Cherlin–Zilber algebraicity conjecture, this is
usually used in the following form:

An infinite simple group of finite Morley rank is a Chevalley group over
an algebraically closed field.

This allows us to use very powerful group-theoretic characterisations of Chevalley
groups and ignore the algebraic geometry aspects of the theory. See, for example,
how the Curtis–Tits–Phan–Lyons theorem [41], which describes Chevalley groups
as amalgams (in the group-theoretic sense) of groups of type SL2 or PSL2, is used
in [7].

Let G be a simple algebraic group over an algebraically closed field K . Let T be
a maximal torus in G. The canonical approach to describing G as a Chevalley group
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is to associate with T the Weyl group, a finite system 8 of roots, root subgroups,
etc. Almost all information about G needed for using G within an attempted proof
of the Cherlin–Zilber conjecture is contained in the set of the so-called root SL2-
subgroups, which can be characterised as Zariski closed subgroups in G isomorphic
to SL2(K ) or PSL2(K ) and normalised by T . They are labelled by pairs of roots
±r ∈ 8, and they generate G. The origins of the concept go to the paper by Borel
and de Siebenthal of 1949 on the structure of compact Lie groups [9]; see the
construction of root SL2-subgroups in [8, 3.2(1)]. The following special case of the
Curtis–Tits–Phan–Lyons theorem is formulated in [7, Proposition 2.1.].

Fact 5.1. Let 8 be an irreducible finite root system of rank at least 3, and let 5 be
a system of fundamental roots for 8. Let X be a group generated by subgroups Xr

for r ∈ 5. Suppose that either [Xr , Xs] = 1 or Xrs = ⟨Xr , Xs⟩ is a Chevalley group
over an algebraically closed field with the root system 8rs spanned by r and s, and
with Xr and Xs corresponding root SL2-subgroups with respect to some maximal
torus of Xrs . Then X/Z(X) is isomorphic to a Chevalley group with the root system
8 via a map carrying the subgroups Xr to root SL2-subgroups.

5B. Central extensions of simple algebraic groups. However, there is a model-
theoretic twist again: all these arguments rely on the description of central extensions
of Chevalley groups in the finite Morley rank context due to Tuna Altınel and
Gregory Cherlin [1], which, in its turn, relies on model-theoretic results by Newelski
and Wagner (independently):

Fact 5.2 ([53; 64], cf. [2, Lemma I.4.16(2)]). Let K be a field of finite Morley rank
and X a definable subgroup of K × which contains the multiplicative group of an
infinite subfield F of K (not assumed definable). Then X = K ×.

In particular, [1] allows to conclude that if the subgroup X in Fact 5.1 is of finite
Morley rank, then not only X/Z(X), but X itself is a Chevalley group.

5C. Good tori. It is worth noting that a key ingredient of the proofs of Theorem 1.4
and of Theorem 1.10, a “good torus”, a concept introduced by Gregory Cherlin [25],
is rooted in the model theory. In the book [2], Proposition I.11.7, quoted in the
proofs, goes back to Proposition I.4.15, which is a deep model-theoretic result of
2001 by Frank Wagner [64].

5D. Bi-interpretability. Another key ingredient, the bi-interpretability of the simple
algebraic group G over an algebraically closed field K , and the field K , is Bruno
Poizat’s result [54] of 1988. Its proof is purely model-theoretical and does not
use the structural theory or classification of simple algebraic groups. What is even
more remarkable, Bruno Poizat does not even assume that G is linear — in his
paper, the structure of G as an algebraic variety is proved to be definable in the
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group language of G. Its prehistory is also interesting: the model-theoretic ideas
underpinning the proof can be traced back to Zilber’s result of 1977. As Gregory
Cherlin discussed it in 1979,

[. . . ] Zilber [66] gives an elegant proof that a simple algebraic group
over an algebraically closed field is ℵ1-categorical [16, Corollary to
Theorem 3.2]. I had observed (Fall 1976) that this result can be obtained
easily, but at some length, from the known structure theory for such
groups (using a good deal of [27] and the generators and relations of
Steinberg [59]). Zilber’s proof is short and uses no structure theory.
([24, p. 2], reference numbers are updated to match the bibliography of
this paper.)

Not surprisingly, relations between model-theoretic properties between a Cheval-
ley group and its field (not necessary algebraically closed) or a ring of definition
are of natural interest.

At the present time, the most powerful result belongs to Elena Bunina [21]:

If G(R) = Gπ (8, R) is a Chevalley group of rank > 1, R is a local ring
(with 1

2 for the root systems A2, Bl, Cl, F4, G2 and with 1
3 for G2), then

the group G(R) is regularly bi-interpretable with the ring R.

As usual, the Chevalley group Gπ (8, R) is constructed from the root system 8,
a ring R and a representation π of the corresponding Lie algebra [8].

But the bi-interpretability of a Chevalley group over an algebraically closed field
K with this field is a relatively easy result.

5E. Bi-interpretability in the black box algebra. Anatoly Maltsev was the pioneer,
in 1961, of the study of bi-interpretability of Chevalley groups and their fields of
definition. Theorem 4 of his paper [50] states the bi-interpretability of linear groups
G = GLn(K ), PGLn(K ), SLn+1(K ), and PSLn+1(K ), n ⩾ 2 over a field K and the
field K .

Moreover, Maltsev had shown that this bi-interpretability is recursive: there are
algorithms which rewrite formulae from Th(G) as formulae from Th(K ), and vice
versa. This algorithmic aspect has interesting and somewhat bizarre analogues
in Black Box Algebra as developed by Şükrü Yalçınkaya and myself [18]. The
black box algebra deals with finite algebraic structures (in particular, Chevalley
groups over finite fields), where, however, algebraic operations are computed by
“black boxes” (these are finite analogues of definable structures from model theory).
Homomorphisms have to be computed (and first order formulae evaluated) by Monte-
Carlo algorithms in probabilistic polynomial time. Polynomial time morphisms
are analogues of definable homomorphisms from model theory. Interestingly, this
approach gives some indication why Maltsev skipped, in his theorem, the groups
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SL2(K ), and PSL2(K ): in the black box context, we do not have direct access to
nontrivial unipotent elements even in these “small” groups. In model theory, their
existence is a basic statement

(∃u)(u p
= 1 ∧ u ̸= 1), (6)

but in the black box groups the quantifier ∃ means “can be found in probabilistic
polynomial time” and proof of (6) for SL2(K ) and PSL2(K ) was believed to be an
intractable problem. Even this innocent looking problem was seen as impossibly
difficult:

Assume that you are given several matrices M1, . . . , Mm of size n × n
over a finite field Fpk generating a subgroup X isomorphic to SL2(Fpℓ).
Find in X a nontrivial unipotent element (that is, an elements of order p).

The reason for that is simple: the probability to hit a unipotent element at random
is about 1/pk and is exponentially small with the growth of k, even with the small
values of p.

Şükrü Yalçınkaya and myself clarified all that in [17], by constructing PGL2(K )

from PSL2(K ) viewed as a pure group, then interpreting a projective plane P2(K )

in PGL2(K ), and, finally, interpreting K in P2(K ) (the last step is well known but
has some twists in the polynomial time setting). In bigger Chevalley groups, finding
unipotent elements is done by recursion to these “small” cases (see Yalçınkaya [65]
and our forthcoming monograph [18]). This was considerably more difficult than
Maltsev’s analysis in [50] — but still, Maltsev was the pioneer.

Another example of exchange of ideas between the black box group theory and
the theory of groups of finite Morley rank was given in Section 4J. In the black
box group theory, a group homomorphism ϕ : G → H with a black box for its
graph 0ϕ < G ⋊ H is not necessarily polynomial time computable; we call it a
protomorphism. The concept of protomorphism is central to the theory of black
box groups.

5F. Alternative versions of the proof of Theorem 1.4. I will now outline two
alternative versions of the proof of Theorem 1.4, which use the structural theory of
simple algebraic groups to reduce the proof to the case of simple algebraic groups
G of type A1, that is, G = PSL2(K ) or SL2(K ).

Lemma 5.3. It suffices to prove Theorem 1.4 for G if G is of type A1, that is,
G = PSL2(K ) or SL2(K ).

Proof. Assume that we are in the setup of Theorem 1.4 and that we already know that
Theorem 1.4 is true in the special case of G being of type A1, that is, G = PSL2(K )

or SL2(K ).
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Let us pick in G∞ a maximal torus T∞ and set T = CG(T∞); this is a maximal
torus in G, and it equals the Zariski closure of T∞. Denote by L∞ the set of all
root SL2-subgroups in G∞ normalised by the torus T∞ and by L the set of their
Zariski closures. Then L is the set of all root SL2-subgroups in G normalised by
the torus T .

Let now L ∈ L. Then L∞ = L ∩ G∞ is (P)SL2(K∞) and

L∞ ⩽ M ∩ L ⩽ L ,

and by the assumptions of the lemma, L = M ∩ L < M . Since the system L
generates the group G, M = G. This proves the lemma. □

Lemma 5.4. Theorem 1.4 is true if G is of type A1, that is, G = PSL2(K )

or SL2(K ).

Proof. There are at least five approaches to a proof of this lemma.

(1) This is the most direct and straightforward approach to the proof: let T∞ be a
torus in G∞ and T = CG(∞) a torus in G. By basic linear algebra, T is contained
in a Borel subgroup of G and is therefore a good torus by [2, Proposition I.11.7].
Hence M ∩ T = T and T < M . If U∞ and V∞ are the two maximal unipotent
subgroups in G∞ normalised by T∞ then U = [U∞, T ] and V = [V∞, T ] are two
different maximal unipotent subgroups in G and belong to M . Since ⟨U, V ⟩ = G,
we have M = G. □

Other four approaches are only indicated:

(2) The lemma immediately follows from Theorem 4 of Bruno Poizat’s seminal
paper [55] (which, in its turn, is based on the model-theoretic, by their nature,
results by Frank Wagner [63; 64]).

(3) Theorem 4 of [55] has been drastically improved by the very neat result of
the paper of Mustafin and Poizat [51], which does not use Wagner’s theorem: a
superstable nonsolvable subgroup of SL2(K ) is conjugated to SL2(k), where k is
an algebraically closed subfield of K ; it is therefore transparent that if you assume,
in addition, that the pair of groups has a finite Morley rank, so has the pair of fields,
and K = k.

(4) In odd characteristics, the lemma is an almost immediate consequence of the
difficult and important result by Adrien Deloro and the late Éric Jaligot [34]. Indeed
it follows from the well-known properties of the group PSL2(K ) that the subgroup
M satisfies the assumptions of their theorem, and therefore M is isomorphic to
PSL2(F) for some algebraically closed field F (of the same characteristic as K , of
course); after that it becomes obvious that M = G.
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(5) In characteristic 2, the lemma follows from [19]. Moreover, it de facto follows
from an ancient result (the unbelievable 1900!) by Burnside [22]; see discussion in
[11, Sections 4 and 5] and in [39, pp. 11–12].

To my taste, approach (1) is the simplest and best fits the needs of classification
of simple groups of finite Morley rank. □
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