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Zilber’s skew-field lemma

Adrien Deloro

We revisit one of Zilber’s early results in model-theoretic algebra, viz., definability
in Schur’s lemma. This takes place in a broader context than the original version
from the seventies.

La droite laisse couler du sable.
Toutes les transformations sont possibles.

Paul Éluard

The present contribution discusses and proves a linearisation result originating
in Zilber’s early work. Let us note to begin:

(1) o-minimal dimension and Borovik–Morley–Poizat rank are examples of finite
dimensions.

(2) All necessary definitions are in Section 2.1.

(3) I have preferred not to conflate T with K in the statement.

(4) There are classical corollaries in Section 2.4.

(5) The result bears no relationship to indecomposable generation discussed in
Section 2.5.

Theorem (Zilber’s skew-field lemma). Work in a finite-dimensional theory. Let V
be a definable, connected, abelian group and S, T ≤ DefEnd(V ) be two invariant
rings of definable endomorphisms such that

• V is irreducible as an S-module;

• C(S) = T and C(T ) = S, with centralisers taken in DefEnd(V );

• S and T are infinite;

• S or T is unbounded.

Then there is a definable skew-field K such that V ∈ K-Vect<ℵ0 ; moreover, S ≃

End(V : K-Vect) and T ≃ K IdV are definable.

The present exposition contains results stemming from more general research pursued with Frank
O. Wagner [Deloro and Wagner ≥ 2024].
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Section 1 provides context. Section 2 discusses the statement, and gives all
definitions. The proof is in Section 3.

1. Introduction

Section 1.1 explains the relation to Schur’s Lemma. Section 1.2 makes some
historical remarks. Section 1.3 discusses a more famous corollary on fields in
abstract groups.

1.1. Schur’s lemma. Among the early work of Zilber are a couple of gems in
model-theoretic algebra. (More on Zilber’s early work is in [Hodges 2024] in the
present volume.) This article deals with one of the phenomena he discovered: many
ℵ1-categorical groups interpret infinite fields. The result, or the method, or the
general line of thought, is often called Zilber’s field theorem. It stems from Schur’s
lemma in representation theory:

Lemma (Schur’s lemma). Let R be a ring and V be a simple R-module. Then the
covariance ring F = CEnd(V )(R) is a skew-field, V is a vector space over F, and
R ↪→ EndR(V ).

Zilber’s deep observation is simple:

in many model-theoretically relevant cases, F is definable.

A precise and modern form of the latter statement, given as Corollary 1 in
Section 2.4, is a straightforward consequence of the main theorem above. (One
should remember that every module is actually a bimodule by introducing Schur’s
covariance ring.) I shall henceforth call it (in long form) the Schur–Zilber skew-field
lemma, hoping that Boris will not mind being in good company. Far be it from me
to minimise its significance by dubbing it a lemma instead of a theorem; quite the
opposite as lemmas are versatile devices — methods.

1.2. Editorial fortune of the lemma. This subsection is a layman’s attempt at
providing historical remarks. I apologise for misconceptions.

• As one learns from [Curtis 1999, p. 139], Schur’s lemma itself appears in [Schur
1904, §2, I.] with comment: “der auch in der Burnside’schen Darstellung der
Theorie eine wichtige Rolle spielt”.

• Before Zilber’s result was known, Cherlin [1979, §4.2, Theorem 1] found a defin-
able field independently. There interpretation is obtained by hand (and seemingly
by miracle), without a general method. Cherlin heard about Zilber’s work after
completing his own; [Cherlin 1979, §1.4] is very informative.
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• The lemma itself seems not to have drawn as much attention as its corollary on
soluble groups (Section 1.3). There are few traces of the lemma as a stand-alone
statement.

• All sources discussing the topic [Zilber 1977; 1984; Thomas 1983; Nesin 1989a;
1989b; Poizat 1987; Loveys and Wagner 1993; Borovik and Nesin 1994; Macpher-
son and Pillay 1995] rely on indecomposable generation (however, see Section 2.5).

• This is different in the o-minimal context, but [Peterzil et al. 2000, Theorem 2.6]
has its own techniques. (The earlier [Nesin et al. 1991, Proposition 2.4], which bears
no reference to Zilber, resembles the coordinatisation by hand of [Cherlin 1979].)
This and the above item may have given the impression that the Schur–Zilber lemma
is a finite Morley rank gadget; the present contribution shows that it isn’t.

• Most sources focus on the ring generated by the action instead of going to the
centraliser; exceptions are [Nesin 1989a; Macpherson and Pillay 1995]. Only the
under-cited [Nesin 1989a] discusses rings and makes the connection with Schur’s
lemma, while [Macpherson and Pillay 1995, p. 487] notices resemblances between
various linearisation results but concludes:

There appear to be no immediate implications between this and the results
recorded here, though it looks similar to Theorem 1.2.

The present contribution elucidates the desired relations.

• My own interest in the topic started when I read [Nesin 1989a] while preparing
[Deloro 2016]. This resulted in a very partial version of the theorem, in finite Morley
rank and using indecomposability. After I gave a talk on generalising “Zilber’s field
theorem” in Lyon in January 2016, Wagner shared numerous ideas, which will bear
all their fruits in the collaboration [Deloro and Wagner ≥ 2024].

1.3. Fields in soluble groups. To some extent, the Schur–Zilber lemma is the
poor relation of the following theorem [Zilber 1984, Corollary, p. 175] (currently
undergoing generalisation by Wagner):

connected, nonnilpotent, soluble groups of finite Morley rank interpret
infinite fields.

I believe the significance of the latter principle has been exaggerated for three
reasons.

(1) In the local analysis of simple groups of finite Morley rank, different soluble
subquotients may interpret nonisomorphic fields. Since there are strongly minimal
structures interpreting different infinite fields [Hrushovski 1992], any field structure
could be a false lead. (For more on how experts approach the algebraicity conjecture
on simple groups of finite Morley rank, and the influence of finite group theory
instead of pure model theory, see [Cherlin 2024; Poizat 2024].)
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(2) Fields obtained by this method can have “bad” properties, typically nonminimal
multiplicative group [Baudisch et al. 2009].

(3) The corollary focused on abstract groups and distracted us from doing repre-
sentation theory (see the remarkable [Borovik 2024]).

2. The theorem

Section 2.1 contains all necessary definitions. Section 2.2 justifies the structure of
the statement. Section 2.3 discusses optimality, Section 2.4 gives corollaries, and
Section 2.5 considers the relation to “indecomposable generation”.

The general version of the skew-field lemma is a double-centraliser theorem,
repeated below. Alternative names could have been “bimodule theorem” or “double-
centraliser linearisation”.

Theorem. Work in a finite-dimensional theory. Let V be a definable, connected,
abelian group and S, T ≤ DefEnd(V ) be two invariant rings of definable endomor-
phisms such that

• V is irreducible as an S-module (viz., in the definable, connected category);

• C(S) = T and C(T ) = S, with centralisers taken in DefEnd(V );

• S and T are infinite;

• S or T is unbounded.

Then there is a definable skew-field K such that V ∈ K-Vect<ℵ0 ; moreover, S ≃

End(V : K-Vect) and T ≃ K IdV are definable.

It would be interesting to recast this kind of double-centraliser result in the
abstract ring S ⊗ T , with no reference to V . (This is not planned in [Deloro and
Wagner ≥ 2024].)

2.1. Definitions.

• Connected: with no definable proper subgroup of finite index. (Since the context
does not provide a DCC, not all definable groups have a connected component.)

• Bounded: which does not grow larger when taking larger models. (The algebraist
may fix a saturated model with inaccessible cardinality and argue there; bounded
then means small. Also see [Halevi and Kaplan 2023].)

• Type-definable: a bounded intersection of definable sets.

• Invariant: a bounded union of type-definable sets. (The name comes from the
action of the Galois group of a “large” model. Section 2.2 gives reasons for
considering the invariant category instead of the definable one.)
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• Irreducible: no nontrivial proper submodule — a submodule being definable and
connected. (This is weaker than usual algebraic simplicity, which would also
exclude finite submodules. Model theory will handle those in its own way.)

• Finite-dimensional: which bears a reasonable dimension on interpretable sets.
Here [Wagner 2020] would say fine, integer-valued, finite-dimensional. The defini-
tion is as follows.

Definition [Wagner 2020]. A theory T is [fine, integer-valued] finite-dimensional
if there is a dimension function dim from the collection of all interpretable sets
in models of T to N ∪ {−∞}, satisfying the following for a formula ϕ(x, y) and
interpretable sets X and Y :

• Invariance: If a ≡ a′ then dim(ϕ(x, a)) = dim(ϕ(x, a′)).

• Algebraicity: X is finite nonempty if and only if dim(X)=0, and dim(∅)=−∞.

• Union: dim(X ∪ Y ) = max{dim(X), dim(Y )}.

• Fibration: If f : X → Y is an interpretable map such that dim( f −1(y)) ≥ d
for all y ∈ Y , then dim(X) ≥ dim(Y ) + d .

The dimension extends to type-definable, and then to invariant sets; of course
one should no longer expect nice additivity properties.

Except for a key “field definability lemma” (Section 2.5) we shall use little from
[Wagner 2020]. There is an ACC and a DCC on definable, connected subgroups.

2.2. Explaining the statement. Our statement deviates from traditional versions in
several respects, and we make three cases for three notions.

Skew-fields rather than fields. Schur’s lemma produces a skew-field, and so does
Zilber’s model-theoretic version.

• This went first unnoticed since ℵ1-categorical skew-fields are commutative (an-
swering a question of Macintyre’s, proved by Cherlin and Shelah — see note on
[Borovik and Nesin 1994, p. 139] — and independently by Zilber [1977].)

• It is easy to construct, in tame geometry, so-called “quaternionic representations”,
where the Schur field is the skew-field of quaternions.

• Also, the subring ⟨A⟩ ≤ End(V ) generated by a commutative group action can
be smaller than its Schur skew-field CEnd(V )(A): classical focus on the former (as
in most sources) captures only partial geometric information.

So skew-fields are naturally unavoidable. (There remains the question of which
skew-fields can arise in a finite-dimensional theory. Skew-fields abound in number
theory, but arguably number theory is far from tame. One can also doubt that the
more exotic objects constructed in [Cohn 1995] will be finite-dimensional. The
bold would conjecture that infinite skew-fields in finite-dimensional theories are
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commutative and real closed, commutative and algebraically closed, or quaternionic
over a commutative real closed field. The more reasonable may be content with
conjecturing that they are finite extensions of their centres. Either of these claims,
if true, would have an impact on their stability-theoretic properties.)

Rings rather than groups. Let V be an abelian group; then End(V ) is a ring. This
accounts for studying representations of rings.

• If G ≤ Aut(V ) is a definable acting group, the subring of End(V ) it generates
need not be definable (see “invariance” below). This may have baffled pioneers in
the topic.

• Rings were long neglected after the seminal [Zilber 1977] (a remarkable exception
being [Nesin 1989a]). Going to the enveloping ring, however, gives powerful results,
inaccessible to group-theoretic reasoning; see [Borovik 2024].

Invariance rather than definability. Leaving definability may have stopped first
investigators of the matter; it is however salutary.

• If G ≤ Aut(V ) is a definable group, then the generated subring ⟨G⟩ ≤ End(V )

is
∨

-definable; this is closer to definability than invariance is. However (see
“skew-fields” above), ⟨G⟩ does not capture enough geometric information. The
double-centraliser C(C(G)) ≥ ⟨G⟩ is more adapted to Schur-style arguments.

• So let R≤End(V) be a definable ring. Then Schur’s covariance ring CDefEnd(V )(R)

need not be definable, but it is invariant. And if R itself is invariant, CDefEnd(V )(R)

is too.

So model-theoretic invariance arises as naturally as centralisers do.

2.3. Optimality.
• Both S and T must be infinite.

Let K be a pure algebraically closed field of positive characteristic p and V = K+,
which is definably minimal. Now DefEnd(V ) consists of quasi-p-polynomials,
viz., of all maps x 7→

∑n
k=−n apk Frpk , where Fr is the Frobenius automorphism

of relevant power, and apk ∈ K; there is no bound on n. Only the action of Fp

commutes to all these. We then let S = DefEnd(V ) and T = Fp (or vice-versa).
The first is not definable.

• At least one must be unbounded.
For the same V , now let S be the ring of all quasi-p-polynomials with coefficients

in Fp, viz., the subring of DefEnd(V ) generated by Frp and its inverse. Then one
easily sees that C(S) = S is countable, and not definable.

On the other hand, it so happens that S-irreducibility can be relaxed to irreducibil-
ity as an (S, T )-bimodule [Deloro and Wagner ≥ 2024]. So in retrospect, the main
theorem can be retrieved as a corollary to [Deloro and Wagner ≥ 2024, Theorem 2].
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2.4. Corollaries. I give three corollaries, proved in Section 3.5. The first relates
the main, “double-centraliser” theorem to Schur’s lemma. The second retrieves
what is called “Zilber’s field theorem” in sources such as [Borovik and Nesin 1994].
The third is a variation coming from Nesin’s work and isolated by Poizat.

Corollary 1 (Schur–Zilber, one-sided form). Work in a finite-dimensional theory.
Let V be a definable, connected, abelian group and S ≤ DefEnd(V ) be an invariant,
unbounded ring of definable endomorphisms. Suppose that V is irreducible as an
S-module. Then CDefEnd(V )(S) is a definable skew-field.

Corollary 1 is, however, not equivalent to our main result, which also covers the
case of unbounded T and infinite S.

Corollary 2 (see [Deloro 2016, Théorème IV.1]). Work in a finite-dimensional
theory. Let V be a definable, connected, abelian group and G ≤ DefAut(V ) be
a definable group such that V is irreducible as a G-module and CDefEnd(V )(G) is
infinite. Then T = CDefEnd(V )(G) is a definable skew-field (so the action of G is
linear).

Corollary 2 (or a minor variation) unifies and should replace various results
such as [Zilber 1984, Lemma 2; Loveys and Wagner 1993, Theorem 4; Nesin
1989a, Lemma 12; Macpherson and Pillay 1995, Theorem 1.2(b); Deloro 2016,
Théorème IV.1; Peterzil et al. 2000, Theorem 2.6; Macpherson et al. 2000, Proposi-
tion 4.1]. However, there are no claims on finite generation.

Corollary 3 (after Nesin and Poizat). Work in a finite-dimensional theory. Let
V be a definable, connected, abelian group and R ≤ DefEnd(V ) be an invariant,
unbounded, commutative ring of definable endomorphisms. Suppose there is an
invariant group G ≤ DefAut(V ) such that

• V is irreducible as a G-module;

• G normalises R;

• G is connected.

Then there is a definable skew-field K such that V∈K-Vect<ℵ0 ; moreover, R ↪→K IdV

and G ↪→ GL(V : K-Vect).

It would be interesting to relax the assumption on commutativity of R. Further
generalisations are expected using endogenies instead of endomorphisms [Deloro
and Wagner ≥ 2024].

2.5. Indecomposable generation (and how to avoid it). Contrary to widespread
belief, the Schur–Zilber lemma has nothing to do with another celebrated result from
Boris’ early work: the “indecomposability theorem” [Zilber 1977, Theorem 3.3],
which by analogy with the algebraic case I prefer to call the Chevalley–Zilber
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generation lemma (again with hope that Boris will not mind being in good company).
For more on the topic, see [Poizat 2024, §8].

Both results are often presented jointly, which serves neither clarity nor purity
of methods. In contrast, the proof given here relies on another phenomenon.

Lemma (field definability; extracted from [Wagner 2020, Proposition 3.6]). Work
in a finite-dimensional theory. Let K be an invariant skew-field such that

• there is an upper bound on dimensions of type-definable subsets of K;

• K contains an invariant, unbounded subset.

Then K is definable.

The first clause is satisfied if there is a definable K-vector space of finite K-linear
dimension.

3. The proofs

The corollaries are derived in Section 3.5. Let V, S, T be as in the theorem. The
proof is a series of claims arranged in propositions.

Proof of Zilber’s skew-field lemma. It is convenient to let T act from the right and
treat V as an (S, T )-bimodule.

Proposition. (i) T is a domain acting by surjections with finite kernels; for
t ∈ T \ {0} one has V t = V .

This will later be reinforced in (x).

Proof. (i) Let t ∈ T \ {0}. Then 0 < V t is S-invariant, definable, and connected;
by S-irreducibility V t = V , so t is onto. In particular, T is a domain. Finally,
dim ker t = dim V − dim V t = 0, so ker t is finite. □

The global behaviour is difficult to control, so we go down to a more “local”
scale with a suitable notion of lines.

3.1. Lines.

Notation. Let δ = min{dim sV : s ∈ S \ {0}} and 3 = {sV : dim sV = δ} be the set
of lines.

Proposition. (ii) Every line is T -invariant.

(iii) If L ∈ 3 and s ∈ S are such that sL ̸= 0, then sL ∈ 3; in particular, L ∩ ker s
is finite.

(iv) V is a finite sum of lines.

(v) S is transitive on 3.

Items (iii) and (iv) will later be reinforced in (vi) and (ix), respectively.
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Proof. (ii) This is obvious since S and T commute.

(iii) Say L = s0V . If sL ̸= 0, then 0 < dim sL = dim((ss0)V ) ≤ dim(s0V ) = δ, so
by minimality of δ one has sL ∈3. This also implies dim(L∩ker s)= dim ker s|L =

dim L − dim sL = 0, and L ∩ ker s is finite.

(iv) The subgroup 0 <
∑

3 ≤ V is definable, connected, and S-invariant; by
S-irreducibility, it equals V . Since dimension is finite, it is a finite sum.

(v) Let L1, L2 ∈ 3, say L i = si V . Now as above, V =
∑

S sL1 ̸≤ ker s2, so there is
s ∈ S such that s2sL1 ̸= 0. But then 0 < s2sL1 = s2ss1V ≤ s2V = L2, and equality
holds. □

3.2. Linearising lines.

Proposition. (vi) If L ∈ 3 and s ∈ S are such that sL ̸= 0, then L ∩ ker s = 0.

(vii) T acts by automorphisms on every line.

The proof is different depending on whether S or T is unbounded.

Proof if T is unbounded. (vi) Suppose sL ̸= 0; we show L ∩ ker s = 0. By (v), S
is transitive on 3, so there is s ′

∈ S with s ′sL = L . Now L ∩ ker s ≤ L ∩ ker(s ′s),
so we may assume that sL = L . Recall that ker s|L = L ∩ ker s is finite by (iii).
Considering s2

|L : L → L , which is onto, we inductively find |ker sn
|L | = |ker s|L |

n ,
so K =

∑
n∈N ker sn

|L is either trivial or countably infinite. Since T is unbounded,
there is t ∈ T \ {0} annihilating K . But t has a finite kernel by (i), so K = 0, as
desired.

(vii) Let t ∈ T . Then ker t is finite and S-invariant, while S is infinite; so there is
s0 ∈ S \ {0} with s0(ker t) = 0.

Since s0 ̸= 0 and V =
∑

3 by (iv), there is L0 ∈ 3 such that s0L0 ̸= 0. Then
s0(L0 ∩ ker t) = 0 so L0 ∩ ker t ≤ L0 ∩ ker s0 by (vi).

Now if L is any other line, then there is s ∈ S with sL = L0 by (v). Therefore
s(L ∩ ker t) ≤ L0 ∩ ker t = 0, and L ∩ ker t ≤ L ∩ ker s = 0 by (vi) again.

So ker t intersects each line trivially. □

Proof if S is unbounded. The strategy is different here and we first prove weakened
versions in reverse order.

Weak (vii)′: We first prove that T acts by automorphisms on some line. By (iv),
V =

∑
3 is a finite sum, so there are L1, . . . , Ln such that

⋂n
i=1 AnnS(L i ) = 0.

In particular (S, +) ↪→
∏

i S/ AnnS(L i ) as abelian groups. Since S is unbounded,
there exists some line L such that the quotient group 6 = S/ AnnS(L) is unbounded.
Let t ∈ T \ {0}. Then K =

∑
n∈N ker tn

|L is either trivial or countably infinite. Since
6 is unbounded, there is σ ∈ 6 \ {0} annihilating K , i.e., there is s ∈ S annihilating
K but not L . By (iii) this shows K = 0, as desired.
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Weak (vi)′: We next prove: if T acts by automorphisms on L , then for s ∈ S with
sL ̸= 0 one has L ∩ ker s = 0. Indeed, L ∩ ker s is finite by (iii). Since T is infinite
there is t ∈ T \ {0} with (L ∩ker s)t = 0, but t induces an automorphism of L . This
proves (vi), but only for lines on which T acts by automorphisms.

(vii) and (vi): By (vii)′, let L be a line on which T acts by automorphisms and
L ′ be another line. Then by transitivity (v), there is s ∈ S with sL = L ′. Suppose
w ∈ L ′

∩ ker t . Then there is v ∈ L with sv = w. Now s(vt) = (sv)t = wt = 0, so
vt ∈ L ∩ ker s = 0. Since T acts by automorphisms on L , (vi)′ implies v = 0 and
w = 0, as desired. □

Since it is unclear at this stage whether every element belongs to a line, we
cannot immediately conclude that T acts by automorphisms; this requires writing
V as a direct sum.

3.3. Globalising local geometries. Instead of morphism of T -modules, we simply
say T -covariant map. We tend to reserve it for definable maps, even implicitly.

Proposition. (viii) Lines are complemented as T -modules, viz., for L ∈ 3 there is
a definable, connected, T -invariant H ≤ V with V = L ⊕ H.

(ix) V is a finite, direct sum of lines.

(x) T is a skew-field acting by automorphisms.

Proof. (viii) Say L = s0V . Since V =
∑

S sL by (iv) and (v), there is s ∈ S with
s0sL ̸= 0, so 0 < s0sL = s0ss0V ≤ L . Let s1 = s0s, so that L = s1V = s1L . Then
for v ∈ V there is ℓ ∈ L with s1v = s1ℓ; in particular, v = ℓ+ (v−ℓ) with ℓ ∈ L and
v − ℓ ∈ ker s1. Therefore H = ker s1 is such that V = L + H ; it also is T -invariant
as S and T commute. Now L ∩ H = L ∩ker s1 = 0 by (vi), so actually V = L ⊕ H .
Connectedness of H follows.

Since V = L ⊕ H is a direct decomposition as a T -module, the associated
projections are T -covariant (viz., morphisms of T -modules).

(ix) As long as possible, we recursively construct lines L1, . . . , L i with direct
complements H j (as definable, connected T -modules) satisfying

for j ≤ i , one has L j ≤
⋂

k< j Hk (viz., each new line is contained in all
previous complements).

The construction starts by (viii). Now suppose L1, . . . , L i and H1, . . . , Hi are
as claimed. A quick induction yields:

V =

( i⊕
j=1

L j

)
⊕

( i⋂
j=1

H j

)
.

Let q project V onto
⋂i

j=1 Hi with kernel
⊕i

j=1 L j . Then q is T -covariant, so
q ∈ C(T ) = S. If

⊕i
j=1 L j < V , then q ̸= 0. Now V =

∑
3 so there is L ′

∈ 3



ZILBER’S SKEW-FIELD LEMMA 581

such that q L ′
̸= 0. Then let L i+1 = q L ′

∈ 3; it satisfies L i+1 ≤
⋂i

j=1 H j . Picking
a complement as in (viii), we have reached stage i + 1.

However the process must terminate because dim
⊕i

j=1 L j = δ · i remains
bounded by dim V . So at some stage one obtains

⊕i
j=1 L j = V , as wanted.

(x) Say V =
⊕n

i=1 L i by (ix). Then for t ∈ T one has ker t =
⊕n

i=1(L i ∩ker t) = 0
by (vii). □

Hence T is a skew-field and V ∈ T -Vect, but we still fall short of definability.

3.4. Definability. We return to lines. The next result is of a purely auxiliary nature.

Proposition. (xi) Let L1, L2 ∈ 3. If σ : L1 ≃ L2 is definable and T -covariant,
then there is an invertible s ∈ S× inducing σ .

Proof. (xi) Using (viii), write V = L1 ⊕ H1 for some π1 ∈ S with L1 = im π1

and H1 = ker π1.
If L2 ∩ H1 = 0, then H1 is a common direct complement for L1 and L2.

Glue σ : L1 → L2 with IdH to produce a T -covariant map, viz., an element
of CDefEnd(V )(T ) = S, inducing σ . It clearly is invertible.

If L2 ≤ H1, then the process proving (ix) enables us to take L1 and L2 as the first
two lines in a direct sum decomposition. Consider the map given on L1 by σ , on
L2 by σ−1, and on the remaining sum by 1. It is T -covariant and bijective, hence
invertible in S; it induces σ .

The case 0 < L2 ∩ H1 < L2 cannot happen, for then ker π1|L2 ≥ L2 ∩ H1 > 0 so
by definition of lines, π1L2 = 0 and L2 ≤ H1. □

Notation. For L ∈ 3, by (viii) there exists a definable, connected, T -invariant H
such that V = L ⊕ H .

• Let πL be the relevant projection and SL = πL SπL .

• Also let TL ≤ DefEnd(L) be the image of T .

In full rigour, SL also depends on the complement chosen; we omit it from the
notation. This will not create difficulties.

Proposition. (xii) SL and TL are skew-fields contained in DefEnd(L).

(xiii) Inside DefEnd(L) one has C(SL) = TL and C(TL) = SL .

(xiv) T is definable.

Proof. In case T is unbounded, one may directly jump to (xiv).

(xii) Keep in mind that SL is an additive subgroup of S closed under multiplication
but it need not contain 1. (Sometimes SL is called a subrng, for “subring without
identity”.) However, SL per se is a ring with identity πL , as the latter acts on L
as IdL . Moreover, if πLsπL annihilates L , then since it annihilates the chosen direct
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complement, it is 0 as an endomorphism of V , viz., πLsπL = 0 in S. So SL can
be viewed as a subring of DefEnd(L), and it is exactly the subring of restrictions-
corestrictions

{
s|L
|L : s ∈ StabS(L)

}
. (This explains why the complement plays no

role in our construction. It is however useful to have both points of view on SL .)
Let s ∈ SL \{0}. Then sL = L , so by (vi) and since S and T commute, it induces

some T -covariant automorphism σ of L; by (xi) there is s ′
∈ S× inducing σ . Now

πLs ′−1πL is a two-sided inverse of s in SL . This proves that SL is a skew-field.
So is T by (x); now the restriction map T → TL , which is onto by definition, is
injective since T acts by automorphisms. Therefore TL is a skew-field as well.

(xiii) One of them is easy. Let f : L → L be a definable, TL -covariant morphism,
viz., f ∈ CDefEnd(L)(TL). By definition, f commutes with the action of T . Take
any T -invariant direct complement H and set f̂ = 0 on H . Then f̂ : V → V is
T -covariant. Hence f̂ ∈ C(T ) = S and πL f̂ πL = f ∈ SL .

Now let g : L → L be definable and SL -covariant, viz., g ∈ CDefEnd(L)(SL). We
aim at extending g to an S-covariant endomorphism of V .

For M ∈ 3 first use transitivity (v) to choose s ∈ S with sL = M . By (xi) we may
assume s ∈ S×. Notice that sgs−1 leaves M invariant, and let gM ∈ DefEnd(M) be
the induced map. We claim that this does not depend on the choice of s. Indeed let
s ′ be another invertible choice, giving rise to g′

M . Then s−1s ′ induces an element
of SL , so g commutes with it and we find gM = g′

M .
We deduce as follows that gM ∈ C(SM). For if η ∈ SM then we may assume

η ̸= 0 so by (xi) it is induced by an invertible element h ∈ S× normalising M . Then
s ′

= hs is another invertible element taking L to M . By the preceding paragraph,
s ′gs ′−1

= hgM h−1 and sgs−1
= gM agree on M , so gM commutes with η in the

ring SM .
We even prove: if s ∈ S induces σ : M ≃ N , then gN σ = σgM . Both are maps

from M to N . By (xi), we freely suppose s invertible and pick invertible sM , sN

inducing L ≃ M, N . Then s ′

M = s−1sN ∈ S takes L to M , so s ′

M gs ′−1
M agrees with

sM gs−1
M = gM on M . Thus for arbitrary m ∈ M we find

gN σ(m) = ss−1
· sN gs−1

N · s(m)

= s · (s−1sN )g(s−1
N s)(m) = sgM(m) = σgM(m).

Therefore gN σ = σgM , as claimed.
Finally take a direct sum V =

⊕
L i as in (ix) and let ĝ

(∑
ℓi

)
=

∑
gL i (ℓi ), which

is definable, well-defined, and extends g. We want to show ĝ ∈ C(S). Let s ∈ S;
also let si =πi s. It is enough to show that ĝ commutes with each si , and it is enough
to show that they commute on each L j . We have thus reduced to checking that ĝ
and σ : L j ≃ L i induced by an element of S commute. But this is the previous
paragraph.
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Hence ĝ ∈ C(S) = T and therefore g = ĝ|L ∈ TL .

(xiv) Recall that T is a skew-field by (x). If T is unbounded we directly apply
the field definability lemma from Section 2.5 (in that case, (xii) and (xiii) are not
necessary). So we suppose that S is unbounded.

We first prove that there is L such that SL is unbounded. By (ix) take any
decomposition V =

⊕n
i=1 L i and form projections πi onto L i with kernels

⊕
j ̸=i L j .

Let Si, j = πi Sπ j , an additive subgroup of S. We contend that one of them is
unbounded. Indeed, the additive group homomorphism

S →

∏
i, j

Si, j , s 7→ (πi sπ j )i, j ,

is injective since
∑

k πk = 1. Now if SL ,M and SL ′,M ′ are defined as the Si, j , one
easily sees SL ,M ≃ SL ′,M ′ definably; so all rings SL are unbounded.

A caveat: because SL and TL are mutual centralisers only in DefEnd(L) and not
in End(L), the following paragraph cannot be made more trivial.

Therefore SL is an unbounded skew-field by (xii). By field definability of
Section 2.5, SL is definable; now dim SL > 0 and dim L is finite, so L ∈ SL -Vect<ℵ0 .
In particular, all SL -endomorphisms of L are definable, so by (xiii) one has
TL = End(L : SL -Vect). This is a skew-field by (xii), so the linear dimension
over SL is 1 and T ≃ TL ≃ Sop

L is unbounded as well. □

By field definability, the skew-field T is definable and infinite, so dim T > 0; now
dim V is finite so V ∈ T -Vect<ℵ0 . Finally S = C(T ) = End(V : T -Vect). Lines in
our sense now coincide with 1-dimensional T -subspaces of V . This completes the
proof of Zilber’s skew-field lemma. □

3.5. Proofs of corollaries. We repeat the statements already given in Section 2.4.

Corollary 1 (Schur–Zilber, one-sided form). Work in a finite-dimensional theory.
Let V be a definable, connected, abelian group and S ≤ DefEnd(V ) be an invariant,
unbounded ring of definable endomorphisms. Suppose that V is irreducible as an
S-module. Then CDefEnd(V )(S) is a definable skew-field.

Proof. Let T = CDefEnd(V )(S). Notice that T acts by surjective endomorphisms,
so it is a domain. If it is finite, then it is a definable field. Otherwise we wish to
apply our theorem, but it is unclear whether S = CDefEnd(V )(T ). It actually does not
matter. Let Ŝ = CDefEnd(V )(T ) ≥ S, which is invariant and unbounded. Moreover,
CDefEnd(V )(Ŝ) = T as a “triple centraliser”, and V remains Ŝ-minimal. So we apply
the theorem with (Ŝ, T ) and get definability of the skew-field CDefEnd(V )(Ŝ) = T . □

Corollary 2. Work in a finite-dimensional theory. Let V be a definable, connected,
abelian group and G ≤ DefAut(V ) be a definable group such that V is irreducible
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as a G-module and CDefEnd(V )(G) is infinite. Then T = CDefEnd(V )(G) is a definable
skew-field (so the action of G is linear).

Proof. Let T = CDefEnd(V )(G) and S = CDefEnd(V )(T ) ⊇ G. Apply the theorem. □

Corollary 3 (after Nesin and Poizat). Work in a finite-dimensional theory. Let
V be a definable, connected, abelian group and R ≤ DefEnd(V ) be an invariant,
unbounded, commutative ring of definable endomorphisms. Suppose there is an
invariant group G ≤ DefAut(V ) such that

• V is irreducible as a G-module;

• G normalises R;

• G is connected.

Then there is a definable skew-field K such that V∈K-Vect<ℵ0 ; moreover, R ↪→K IdV

and G ↪→ GL(V : K-Vect).

Proof. Let V, R, G be as in the statement. The proof follows that of [Poizat 1987,
Théorème 3.8] closely. Let W ≤ V be R-irreducible, viz., minimal as a definable,
connected, R-submodule; this exists by the DCC on definable, connected subgroups.
Let p = AnnR(W ), a relatively definable ideal of R.

For g ∈ G, the definable, connected subgroup gW ≤ V is R-invariant, and hence
an R-submodule. Clearly AnnR(gW ) = gpg−1. Moreover, R/p ≃ R/(gpg−1).

Now, by G-irreducibility, V =
∑

G gW . So there are g1, . . . , gn ∈ G such that
V =

∑n
i=1 gi W . In particular,

⋂n
i=1 AnnR(gi W ) = 0, and R ↪→

∏
R/(gipg−1

i ).
We just saw that all terms have the same cardinality. They are therefore unbounded.

Hence, the unbounded, commutative ring R/p acts faithfully on the R/p-irre-
ducible module W . Notice that R/p≤ CDefEnd(W )(R/p). By the theorem, the action
of R/p on W is linearisable, and R/p acts by scalars. The problem is to make this
linear structure global without losing the action of G. But we know that p is a
prime ideal of R.

Now consider the set of prime ideals P ={hph−1
:h ∈G}. Suppose p1, . . . , pk ∈ P

are distinct, say pi =hiph−1
i . By prime avoidance, there are elements ri ∈pi\

⋃
j ̸=i p j .

Then taking products, there are elements r ′

i ∈
⋂

j ̸=i p j \ pi . These are used to show
that the sum

∑k
i=1 hi W is direct. In particular, k ≤ dim V and P is finite.

Since G is connected and transitive on the finite set P , the latter is a singleton,
namely P = {p}. But by faithfulness one had

⋂
P = 0, so p = 0.

Now let r ∈ R \ {0}. Then r /∈ p acts on W as a nonzero scalar, so W ≤ im r .
Since r was arbitrary, for any g ∈ G, one has gW ≤ im r . Summing, im r = V ;
this implies that ker r is finite. Then K =

∑
n∈N ker rn is either trivial or countably

infinite. But by commutativity, it is R-invariant. Since R is unbounded, there is
r0 ∈ R \ {0} annihilating K . Since r0 has a finite kernel in V , we see K = 0. Thus
the domain R acts by automorphisms on V .



ZILBER’S SKEW-FIELD LEMMA 585

Hence F = Frac(R) is naturally a subring of DefEnd(V ). By field definability,
it is definable. Now G normalises F and centralises it [Wagner 2020, §3.3]. In
particular, G centralises R. Therefore, S = CDefEnd(V )(R), which contains R by
commutativity, also contains G. It follows that V is S-irreducible and we apply the
theorem globally to conclude. □
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