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Dedicated to Boris Zilber on the occasion of his 75th birthday.

We survey the history of, and recent developments on, two major conjectures
originating in Zilber’s model-theoretic work on complex exponentiation: existen-
tial closedness and Zilber–Pink. The main focus is on the modular versions of
these conjectures and specifically on novel variants incorporating the derivatives
of modular functions. The functional analogues of all the conjectures are already
theorems, which we also present. The paper also contains some new results and
conjectures.

1. Introduction

In the early 2000s, Boris Zilber [2002; 2005; 2015] produced an influential body of
work around the model theory of the complex exponential field Cexp :=(C;+, · ,exp),
where exp : z →ez is the exponential function. He showed that Schanuel’s conjecture
(SC for short) on the transcendence properties of exp (see Section 2A) plays a central
role in the model-theoretic properties of Cexp. However, the conjecture is out of
reach — it implies the algebraic independence of e and π over the rationals, which
is a long-standing unsolved problem. This makes it hard to understand the model
theory of Cexp. So Zilber constructed algebraically closed fields of characteristic 0
equipped with a unary function, which satisfies some of the basic properties of Cexp

and, most importantly, (the analogue of) Schanuel’s conjecture. He then isolated
and axiomatised the “most” existentially closed ones among these exponential fields
by a Hrushovski style amalgamation-with-predimension construction. These are
called pseudo-exponential fields. While these models are not existentially closed
in the first-order sense, they are existentially closed in certain “tame” extensions.
The axiom guaranteeing this is known as strong existential closedness or strong
exponential closedness, or SEC for short.
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Zilber showed that his axiomatisation of pseudo-exponential fields is uncountably
categorical. In particular, there is a unique pseudo-exponential field of cardinality
of the continuum, denoted by Bexp. Zilber conjectured that Bexp is isomorphic
to Cexp. This is equivalent to the combination of two conjectures — Schanuel’s
conjecture and the strong exponential closedness conjecture stating that SEC holds
on Cexp. A variant of the SEC conjecture, known as exponential closedness or
existential closedness (EC for short) is currently an active research field in model
theory. It states roughly that systems of equations involving field operations and
the complex exponential function have solutions unless they are “overdetermined”
(i.e., the number of independent equations is larger than the number of variables).
The notion of overdetermined systems is in fact related to Schanuel’s conjecture:
a system is overdetermined if its solution would be a counterexample to Schanuel’s
conjecture. As the name suggests, SEC is a strong version of EC guaranteeing
that under certain conditions, systems of exponential equations have generic solu-
tions.

Zilber’s work on the model theory of complex exponentiation also gave rise
to a Diophantine conjecture: the conjecture on intersections with tori, or CIT for
short. It states roughly that intersections of algebraic varieties with torsion cosets of
algebraic tori, whose dimensions are larger than expected, are governed by finitely
many torsion cosets of algebraic tori. The statement makes sense in the more general
setting of semiabelian varieties which gives rise to the conjecture on intersections
with semiabelian varieties, or CIS for short. Both CIT and CIS were proposed in
[Zilber 2002] and independently by Bombieri, Masser, and Zannier in [Bombieri
et al. 2007]. The Manin–Mumford and Mordell–Lang conjectures are special cases
of CIS. Zilber used CIT to deduce a uniform version of Schanuel’s conjecture from
itself, which then was used to establish some partial results towards exponential
closedness (see [Zilber 2002]).

SC, EC, and CIT are quite general in form; replacing the exponential function
by other transcendental functions often allows one to formulate analogues of these
conjectures in other settings. Most notably, such analogues have been extensively ex-
plored for modular functions and, in particular, the j -invariant. However, these ana-
logues are being studied for other reasons too: the modular analogue of Schanuel’s
conjecture is a special case of the Grothendieck–André generalised period conjecture
(see [Bertolin 2002, 1.3 Corollaire; André 2004, §23.4.4; Aslanyan et al. 2023a,
§6.3]), EC in that setting is a natural problem in complex geometry and model theory,
and the analogue of CIT is a special case of the Zilber–Pink conjecture for (mixed)
Shimura varieties, henceforth referred to as ZP. The latter was proposed by Pink
(independently from Zilber and Bombieri, Masser, and Zannier) as a far-reaching
conjecture unifying the André–Oort, André–Pink–Zannier, Manin–Mumford, and
Mordell–Lang conjectures [Pink 2005a; 2005b].
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Furthermore, from a model-theoretic point of view, if both SC and EC hold then
in a certain sense they give a “complete” list of properties (non-first-order axioms)
of the function under consideration.1 This is formalised by Zilber’s categoricity
and quasiminimality theorem in the exponential setting. There is no such theorem
in the modular setting and there cannot be one, for the upper half-plane (hence the
set of the reals) is definable from the graph of j , but the philosophy of SC and EC
together giving a full description of the algebraic and transcendental properties of
j still applies. It is likely that a formal categoricity/quasiminimality result can be
established for some relations defined in terms of j (which give proper reducts of
the complex field with j); this is part of our current research programme.

In this paper we present the above-mentioned conjectures in the exponential
and modular settings, mostly focusing on the latter. As pointed out above, the
modular variants of these conjectures are in part motivated by their exponential
counterparts. However, there are some inherent differences between the two settings
resulting in quite different methods and approaches, although some methods work
in both contexts. One such difference is that unlike exponential functions, which
are defined on the whole complex plane, modular functions are defined only on the
upper half-plane. These spaces are “geometrically different”, which accounts for
different approaches to EC and ZP in these two settings. This also makes the model-
theoretic treatment of modular functions significantly harder. For example, direct
counterparts of many aspects of Zilber’s work on exponentiation, e.g., categoricity
and quasiminimality, fail gravely in the modular setting (as explained above).

Further, modular functions satisfy third-order differential equations as opposed
to first-order differential equations for exponential functions. So we can consider
SC, EC, and ZP for modular functions together with their first two derivatives (the
third one being algebraic over these). This generalisation makes the problems more
challenging, but it also gives a deeper insight into them by providing a broader model-
theoretic picture. Let us briefly discuss two more reasons to consider SC, EC, and ZP
for modular functions together with derivatives. Often when dealing with variants
of these conjectures, not least their differential versions, even when derivatives are
not considered, the approaches and techniques require looking at the derivatives
anyway (see, for instance, [Aslanyan et al. 2021; Aslanyan 2022b]). Also, modular
forms of weight 2 are the derivatives of modular functions (weight 0), which means
that studying these problems for modular forms of weight 2 (without derivatives) is
the same as studying them for the first derivatives of modular functions.

We state several versions of the conjectures in this new setting, some of which
have appeared in the literature while others are new. We then explain the relationship

1This means, in particular, that if EC holds then SC is the strongest possible transcendence
statement about the function under consideration.
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between these various conjectures and present their functional variants, all of which
were proven in recent years, save for Ax’s original theorem proven in 1971.

1A. Abbreviations. In the paper we consider several variants of three conjectures:
Schanuel’s conjecture, the existential closedness conjecture, and the Zilber–Pink
conjecture. We use abbreviations to refer to those conjectures, and for the conve-
nience of the reader we list some of these abbreviations below.

Schanuel

• SC — Schanuel conjecture

• MSC — modular Schanuel conjecture

• MSCD — modular Schanuel conjecture with derivatives

Existential closedness

• EC — existential closedness or exponential closedness

• MEC — modular existential closedness

• MECD — modular existential closedness with derivatives

Zilber–Pink

• CIT — conjecture on intersections with tori

• ZP — Zilber–Pink

• MZP — modular Zilber–Pink

• MZPD — modular Zilber–Pink with derivatives

1B. Dedication. This paper is dedicated to Boris Zilber on the occasion of his
75th birthday, and is motivated by his work. Boris was my DPhil supervisor (jointly
with Jonathan Pila) at the University of Oxford from 2013 to 2017. His guidance
has been instrumental in shaping my mathematical thinking and research interests,
and his continued support, both throughout my DPhil and after that, has been
tremendously helpful in my mathematical career. The hours spent with Boris at the
Mathematical Institute and at Merton are some of my fondest memories of Oxford.
I would like to thank him for everything and wish him a happy 75th birthday.

2. The exponential setting

In this section we look briefly at Zilber’s work on model theory of complex expo-
nentiation and the conjectures it gave rise to.

2A. Schanuel’s conjecture and exponential closedness. We begin by formulating
Schanuel’s conjecture.
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Conjecture 2.1 (Schanuel’s conjecture — SC [Lang 1966, p. 30]). For any Q-
linearly independent complex numbers z1, . . . , zn ,

tdQ Q(z1, . . . , zn, ez1, . . . , ezn ) ≥ n,

where td stands for transcendence degree.

This conjecture is believed to capture all transcendence properties of the expo-
nential function. This can and will shortly be explained in a more precise sense. For
now let us mention that Schanuel’s conjecture for n = 2 already implies the algebraic
independence of e and π by choosing z1 = π i , z2 = 1, which is a long-standing
open problem. Thus, even for n = 2 the conjecture is out of reach of current
methods. However, partial results towards this conjecture are known, including the
Lindemann–Weierstrass theorem and the Gelfond–Schneider theorem.

Zilber [2005] presented a novel model-theoretic approach to Schanuel’s conjec-
ture. He constructed algebraically closed fields of characteristic 0 equipped with a
unary function, known as pseudo-exponentiation, satisfying certain basic properties
of the complex exponential functions and some desirable properties, not least the
analogue of Schanuel’s conjecture. He axiomatised these structures in the language
Lω1,ω(Q), where Q is a quantifier for “there are uncountably many”, and showed
that the resulting theory is categorical in uncountable cardinals. The unique model
of cardinality 2ℵ0 is called the pseudo-exponential field or the Zilber field and is
usually denoted by Bexp. Zilber then conjectured that Bexp is isomorphic to Cexp.
This shows, in a sense, that Schanuel’s conjecture must play a central role in the
model theory of Cexp.

Zilber verified that all of the axioms of pseudo-exponentiation hold in Cexp save
for Schanuel’s conjecture and an axiom called strong exponential closedness (SEC).
So Zilber’s conjecture that Bexp ∼=Cexp is equivalent to the conjunction of Schanuel’s
conjecture and the strong exponential closedness conjecture (stating that the axiom
holds in Cexp).

Let us explain what (strong) exponential closedness means. Schanuel’s conjecture
can be interpreted as a statement about nonsolvability of certain systems of equations,
which we demonstrate on an example below.

Example 2.2 [Aslanyan et al. 2023b]. Assume e and π are algebraically indepen-
dent over Q. Then for any nonconstant polynomial p(X, Y ) ∈ Q[X, Y ] the system
ez

= 1, p(z, e) = 0 does not have solutions in C. On the other hand, if e and π are
algebraically dependent, then for some p that system does have a complex solution.

Another reason for a system not to have a solution is when the system is incom-
patible with the identity ex+y

= ex ey .

Example 2.3. The system z2 = z1 + 1, 3ez1 = ez2 does not have a solution, for
the first equation implies ez2 = e · ez1 and e ̸= 3. On the other hand, the system
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z2 = z1 + 1, ez2 = z1, ez2 = e · ez1 does have solutions even though there are three
equations in two variables. Of course, the three equations are not “analytically”
independent — the third one follows from the first one by taking exponentials of
both sides — but they are algebraically independent.

In general, systems incompatible with the functional equation of exp are not
solvable. Moreover, SC implies that if a system is “overdetermined”, e.g., n variables
with more than n algebraically independent equations, then there is no solution, un-
less the system can somehow be reduced using the functional equation ex+y

= ex ey .
With this interpretation SC becomes more natural, and exponential closedness (EC)
is its dual conjecture stating roughly that a system of exponential equations does
have a solution in C unless having a solution contradicts Schanuel’s conjecture. Let
us give a precise statement in geometric terms, observing first that understanding the
solvability of systems of exponential equations is equivalent to understanding when
algebraic varieties contain exponential points (i.e., points of the form (z̄, exp(z̄))).
For instance, the equation eez

+ z − 1 = 0 has a solution if and only if the variety
V ⊆ C2

× (C×)2 (with coordinates (x1, x2, y1, y2) defined by the equations x2 = y1,
y2 + x1 − 1 = 0) contains an exponential point.

Conjecture 2.4 (exponential closedness — EC [Zilber 2005; Bays and Kirby 2018]).
Let V ⊆ Cn

× (C×)n be a free and rotund variety. Then V contains a point of the
form (z1, . . . , zn, ez1, . . . , ezn ).

Freeness and rotundity are the conditions that make sure containing an exponential
point does not contradict SC, as illustrated on the above examples. Now we define
these notions precisely.

Definition 2.5. An irreducible variety V ⊆ Cn
× (C×)n is additively (resp. multi-

plicatively) free if its projection to Cn (resp. (C×)n) is not contained in a translate
of a Q-linear subspace of Cn (resp. algebraic subgroup of (C×)n). A variety is
called free if it is additively and multiplicatively free.

We let x̄ and ȳ denote the coordinates on Cn and (C×)n , respectively. For a k×n
matrix M of integers we define [M] : Cn

× (C×)n
→ Ck

× (C×)k to be the map
given by [M] : (x̄, ȳ) 7→ (Mx̄, ȳM), where

(Mx̄)i =

n∑
j=1

mi j x j and (ȳM)i =

n∏
j=1

ymi j
j .

Definition 2.6. An irreducible variety V ⊆ Cn
×(C×)n is rotund if for any 1 ≤ k ≤ n

and any k×n matrix M of integers dim [M](V ) ≥ rk M .

Since exp maps Q-linear equations to multiplicative ones, if the projections of
V satisfy either a linear or multiplicative equation and we want it to contain an
exponential point, then these equations should match; otherwise they would not
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be compatible with exp. Freeness takes care of this scenario by ensuring no such
equations hold on the variety. Rotundity comes from SC; it states that V and its
various projections given by the maps [M] have sufficiently large dimension so an
exponential point in V would not give a counterexample to SC.

Now we can formulate SEC, which is a strong version of EC.

Conjecture 2.7 (strong exponential closedness — SEC [Zilber 2005; Bays and
Kirby 2018]). Let V ⊆ Cn

× (C×)n be a free and rotund variety. Then for every
finitely generated field K ⊆ C over which V is defined, there is a point

(z1, . . . , zn, ez1, . . . , ezn ) ∈ V

which is generic in V over K , that is, tdK K (z̄, ez̄) = dim V .

It is obvious that SEC implies EC. The converse is also true assuming SC and
CIT hold (see [Eterović 2022; Kirby and Zilber 2014]).

Remark 2.8. The Rabinowitsch trick can be used to show that EC implies that
a free and rotund variety contains a Zariski dense set of exponential points (see
[Kirby 2009, Theorem 4.11] and [Aslanyan 2022a, Proposition 4.34]), but a priori
such a set may not contain a generic point.

2B. Conjecture on intersections with tori. Zilber [2002] studied the solvability
of exponential sums equations as a special case of the exponential closedness
conjecture. In order to prove that certain systems of such equations are solvable, he
needed a uniform version of Schanuel’s conjecture. He then proposed a Diophantine
conjecture, called the conjecture on intersections with tori, or CIT for short, which
acts as the difference between SC and uniform SC. The conjecture states roughly
that when we intersect an algebraic variety with algebraic tori then we do not expect
to get too many intersections which are atypically large. We will shortly give a
precise formulation, but we need to introduce some notions first.

Let V and W be subvarieties of some variety S. A nonempty component X of
the intersection V ∩ W is atypical in S if dim X > dim V + dim W − dim S, and
typical if dim X = dim V +dim W −dim S. Note that if S is smooth then a nonstrict
inequality always holds.

An algebraic torus is an irreducible algebraic subgroup of a multiplicative
group (C×)n . Algebraic subgroups of (C×)n (not necessarily irreducible) are
defined by multiplicative equations of the form ym1

1 · · · ymn
n = 1 with mi ∈ Z. Any

system of such equations (if consistent) defines an algebraic group. It splits as the
union of an algebraic torus (the component containing the identity) and its finitely
many translates by torsion points. Torsion cosets of algebraic tori are called special
varieties. For an algebraic variety V ⊆(C×)n an atypical subvariety of V is an
atypical component of an intersection of V with a special variety T .
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Now we are ready to formulate the conjecture on intersections with tori, which
is the Zilber–Pink conjecture for algebraic tori. There are many equivalent forms
of the conjecture; we consider four of them.

Conjecture 2.9 (conjecture on intersections with tori — CIT [Zilber 2002; Bombieri
et al. 2007; Pila 2022]). Let V ⊆ (C×)n be an algebraic variety.

(1) There is a finite collection 6 of proper special subvarieties of (C×)n such that
every atypical subvariety of V is contained in some T ∈ 6.

(2) V contains only finitely many maximal atypical subvarieties.

(3) Let Atyp(V ) be the union of all atypical subvarieties of V . Then Atyp(V ) is
contained in a finite union of proper special subvarieties of (C×)n .

(4) Atyp(V ) is a Zariski closed subset of V .

2C. Functional/differential variants. We have so far considered three conjectures
for (C×)n , namely, SC, EC, and CIT. As pointed out above, Schanuel’s conjecture
is out of reach, CIT is wide open, and while EC is more tractable, it is also open.
In spite of that, the functional analogues of all three conjectures are known.

Ax proved a functional analogue of Schanuel’s conjecture in 1971. Below in a
differential field (F; +, · , D1, . . . , Dm) we define a relation Exp(x̄, ȳ) as the set
of all (x̄, ȳ) ∈ Fn

× (F×)n for which Dk yi = yi Dk xi for all k, i . Then Exp(F) is
the set of all tuples (x̄, ȳ) ∈ Fn

× (F×)n with F |H Exp(x̄, ȳ) (for all n).2

Theorem 2.10 (Ax–Schanuel [Ax 1971, Theorem 3]). Let (F; +, · , D1, . . . , Dm)

be a differential field with field of constants C =
⋂m

k=1 ker Dk . Let also (xi , yi )∈ F2,
i = 1, . . . , n, be such that (x̄, ȳ) ∈ Exp(F). Assume x1, . . . , xn are Q-linearly
independent mod C , that is, they are Q-linearly independent in the quotient vector
space F/C. Then tdC C(x̄, ȳ) ≥ n + rk(Dk xi )i,k .

Ax’s proof of this theorem is differential algebraic. There is an equivalent
complex analytic formulation of Ax–Schanuel (the equivalence follows from Sei-
denberg’s embedding theorem). Tsimerman [2015] gave a new proof of that complex
analytic statement based on o-minimality.

The differential version of EC for fields with several commuting derivations was
established recently by Aslanyan, Eterović, and Kirby.

Theorem 2.11 (differential EC [Aslanyan et al. 2021, Theorem 4.3]). For a differ-
ential field (F; +, · , D1, . . . , Dm) with m commuting derivations, let V ⊆ F2n be
a rotund variety. Then there exists a differential field extension K of F such that
V (K ) ∩ Exp(K ) ̸= ∅. In particular, when F is differentially closed,

V (F) ∩ Exp(F) ̸= ∅.

2More generally, here and later, given a relation R on a structure M , we write R(M) for the set of
all tuples from M satisfying the relation R.
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The proof of this theorem uses some important differential algebraic ideas from
[Kirby 2009], where the case of ordinary differential fields was treated. Kirby’s
approach (which in fact contains some inaccuracies and is not complete) is based
on Ax’s proof of the Ax–Schanuel theorem, while the argument given in [Aslanyan
et al. 2021] uses the statement of Ax–Schanuel as a black box and works quite
generally.

Example 2.12. In the above theorem the variety V need not be free. However,
freeness is a necessary condition in EC. For example, the variety V ⊆ C2

× (C×)2

defined by the equations x2 = x1, y2 = y1 + 1, which is rotund but not free, cannot
intersect the graph of any function. But it does intersect Exp(K ) for any differential
field K — indeed any constant point in V is actually in Exp(K ).

Finally, the following functional analogue of CIT was established independently
in [Zilber 2002] and in [Bombieri et al. 2007]. Both proofs rely on the Ax–Schanuel
theorem. Kirby [2009] adapted Zilber’s argument and gave a new proof using the uni-
form version of Ax–Schanuel, which follows from Ax–Schanuel by an application
of the compactness theorem of first-order logic (see [Kirby 2009, Theorem 4.3]).

Theorem 2.13 (functional CIT [Zilber 2002; Bombieri et al. 2007; Kirby 2009]).
For every subvariety V ⊆ (C×)n there is a finite collection 6 of proper subtori of
(C×)n such that every atypical component of an intersection of V with a coset of a
torus is contained in a coset of some torus T ∈ 6.

Theorem 2.13 is indeed a functional version of CIT as it talks about weakly special
varieties (arbitrary cosets of tori) and positive-dimensional atypical intersections. In
other words, it can be thought of as CIT over function fields, where we work modulo
the constants (in this case, the field of complex numbers). It does not say anything
about special points or special coordinates in atypical intersections, so it is often
called the geometric component of CIT (i.e., CIT without its arithmetic component).
Since its statement is algebraic (rather than differential algebraic), it is also often
called weak CIT although, strictly speaking, it is not a weak version of CIT.

In addition to the above-mentioned theorems, some other partial results have
also been obtained towards EC and CIT in recent years. For EC see [Aslanyan
et al. 2023b; Gallinaro 2021; 2023; Brownawell and Masser 2017; D’Aquino et al.
2018]. It would be impractical to try to give a comprehensive list of references for
CIT and its generalisations to semiabelian varieties, so we refer the reader to Pila’s
recent book [2022] and references therein.

3. The modular setting

We let H ⊆ C denote the complex upper half-plane and j : H → Y (1) denote the
modular j-function. We identify the modular curve Y (1) with the complex affine
line C.
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Recall that the j -function is invariant under the linear fractional action of SL2(Z)

on H and behaves nicely under the action of GL+

2 (Q) (where + denotes posi-
tive determinant). More precisely, there is a collection of modular polynomials
8N (Y1, Y2) ∈ Z[Y1, Y2], N ∈ N, such that

∀z1, z2 ∈ H
(
∃g ∈ GL+

2 (Q) with z2 = gz1

iff ∃N ∈ N such that 8N ( j (z1), j (z2)) = 0
)
.

These correspondences are often referred to as the “functional equations” of
the j-function. They are analogous to the functional equation ex+y

= ex ey of the
exponential function. This analogy allows one to state the modular counterparts of
the exponential conjectures mentioned in the previous section, and that is what we
do in this section. We focus on the j-function as other modular functions can be
treated similarly, and often results about other modular functions can be deduced
from those about j since j is a uniformiser for the modular group: it generates the
field of all modular functions.

Now let us introduce some notation that will be used throughout the rest of the
paper.

Notation. Let n be a positive integer, k ≤ n and 1 ≤ i1 < · · · < ik ≤ n.

• Subsets of C2n (e.g., Hn
×Cn) are interpreted as subsets of Cn

× Cn , and we
denote the coordinates on this space by (x̄, ȳ).

• Prx̄ : C2n
→ Cn is the projection to the first n coordinates, and Prȳ : C2n

→ Cn

is the projection to the second n coordinates.

• prı̄ : Cn
→ Ck is the map prı̄ : (x1, . . . , xn) 7→ (xi1, . . . , xik ).

• Prı̄ : C2n
→ C2k denotes the map Prı̄ : (x̄, ȳ) 7→ (prı̄ x̄, prı̄ ȳ).

• By abuse of notation we let j : Hn
→ Cn denote all Cartesian powers of itself

and 0 j ⊆ Hn
×Cn denote its graph.

3A. Modular Schanuel conjecture and modular existential closedness. We begin
by stating the analogue of Schanuel’s conjecture for the j-function. It is a special
case of the Grothendieck–André generalised period conjecture [Bertolin 2002,
1.3 Corollaire; André 2004, §23.4.4; Aslanyan et al. 2023a, §6.3].

Conjecture 3.1 (modular Schanuel conjecture — MSC). Let z1, . . . , zn ∈ H be
nonquadratic numbers with distinct GL+

2 (Q)-orbits. Then

tdQ Q(z1, . . . , zn, j (z1), . . . , j (zn)) ≥ n.

Schneider’s theorem, stating that if both z and j (z) are algebraic over Q then z
must be a quadratic irrational number, is a special case of this conjecture.
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As in the exponential setting, this conjecture can be interpreted as a statement
about nonsolvability of certain systems of equations involving the j-function.

Example 3.2. Let a, b ∈ Qalg be algebraic nonspecial numbers, that is, their preim-
ages under j are not quadratic irrationals. By Schneider’s theorem, these preimages
cannot be algebraic. Consider the system

j (z1) = a, j (z2) = b, z2
1 + z2

2 + 1 = 0.

If this system has a solution, then tdQ Q(z1, z2, j (z1), j (z2)) = 1. Hence, by MSC,
either z1 or z2 must be a quadratic number or they must be in the same GL+

2 (Q)-
orbit. By our choice of a and b, the numbers z1 and z2 are transcendental over Q,
hence nonquadratic. If they satisfy a relation z2 = gz1 for some g ∈ GL+

2 (Q) then,
together with the equation z2

1 + z2
2 + 1 = 0, we can conclude that z1, z2 ∈ Qalg,

which is a contradiction. So MSC implies that the above system has no complex
solutions. Note that it is overdetermined in the sense that we have 3 equations but
only 2 variables.

Thus, we can propose a dual conjecture stating roughly that such a system always
has a solution unless it contradicts MSC. We begin by recalling a few definitions
from [Aslanyan 2022a].

Definition 3.3. Let V ⊆ Hn
×Cn be an algebraic variety.

• V is 0 j -broad if for any 1 ≤ k1 < · · · < kl ≤ n we have dim Prk̄ V ≥ l.

• V is modularly free if no equation of the form 8N (yi , yk) = 0, or of the form
yi = c with c ∈ C a constant, holds on V .

• V is GL+

2 (Q)-free if no equation of the form xi = gxk with g ∈ GL+

2 (Q), or
of the form xk = c with c ∈ H a constant, holds on V .

• V is 0 j -free if it is GL+

2 (Q)-free and modularly free.

• V is 0 j -froad3 if it is 0 j -free and 0 j -broad.

Now we are ready to state the existential closedness conjecture.

Conjecture 3.4 (modular existential closedness — MEC [Aslanyan and Kirby 2022,
Conjecture 1.2]). Let V ⊆ Hn

×Cn be an irreducible 0 j -froad variety defined
over C. Then V ∩ 0 j ̸= ∅.

As in the exponential setting, we can consider a strong version of MEC — re-
ferred to as SMEC — stating that 0 j -froad varieties contain generic points from 0 j .
Eterović [2022] proved that MSC, MZP (see below), MEC imply SMEC.

3To be pronounced like “fraud”.
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3B. Modular Zilber–Pink. Pink [2005a; 2005b] proposed a far-reaching conjecture
in the setting of mixed Shimura varieties generalising the Manin–Mumford, Mordell–
Lang, and André–Oort conjectures. That conjecture also generalises Zilber’s CIT
conjecture (although Pink came up with it independently from Zilber and Bombieri–
Masser–Zannier) and is now known as the Zilber–Pink conjecture. Thus, CIT is the
Zilber–Pink conjecture for algebraic tori. In this section we look at the Zilber–Pink
conjecture in the modular setting, i.e., for Y (1)n (identified with Cn as usual).

Definition 3.5. • A j -special variety in Cn is an irreducible component of a variety
defined by some modular equations 8N (yk, yl) = 0.

• Let V ⊆ Cn be a variety. A j-atypical subvariety of V is an atypical component
of an intersection V ∩ T , where T is j-special.

As for CIT, modular Zilber–Pink has several equivalent formulations. Four of
them are presented below.

Conjecture 3.6 (modular Zilber–Pink — MZP [Pila 2022, Conjecture 19.2]). Let
V ⊆ Cn be an algebraic variety. Let also Atyp j (V ) be the union of all j -atypical
subvarieties of V . Then the following equivalent conditions hold.

(1) There is a finite collection 6 of proper j-special subvarieties of Cn such that
every j-atypical subvariety of V is contained in some T ∈ 6.

(2) V contains only finitely many maximal j-atypical subvarieties.

(3) Atyp j (V ) is contained in a finite union of proper j-special subvarieties of Cn .

(4) Atyp j (V ) is a Zariski closed subset of V .

As in the exponential setting, MZP and SC imply a uniform version of SC.

3C. Functional/differential variants. The j -function satisfies an order 3 algebraic
differential equation over Q, and none of lower order (see [Mahler 1969]). Namely,
9( j, j ′, j ′′, j ′′′) = 0, where

9(y0, y1, y2, y3) =
y3

y1
−

3
2

( y2

y1

)2
+

y2
0 − 1968y0 + 2654208

2y2
0(y0 − 1728)2

· y2
1 .

Thus
9(y, y′, y′′, y′′′) = Sy + R(y)(y′)2,

where S denotes the Schwarzian derivative defined by Sy = (y′′′/y′)−
3
2(y′′/y′)2

and
R(y) =

y2
− 1968y + 2654208
2y2(y − 1728)2

is a rational function.
All functions j (gz) with g ∈ SL2(C) satisfy the equation 9(y, y′, y′′, y′′′) = 0

and all solutions (not necessarily defined on H) are of that form (see [Freitag and
Scanlon 2018, Lemma 4.2]).
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Note that for nonconstant y, the relation 9(y, y′, y′′, y′′′) = 0 is equivalent to
y′′′

= η(y, y′, y′′), where

η(y, y′, y′′) :=
3
2

·
(y′′)2

y′
− R(y) · (y′)3

is a rational function over Q.
From now on, y′, y′′, y′′′ will denote some variables/coordinates and not the

derivatives of y. Derivations of abstract differential fields will not be denoted by ′.
When we deal with actual functions though, ′ will denote the derivative, e.g., j ′ is
the derivative of j .

Definition 3.7. Let (F; +, · , D1, . . . , Dm) be a differential field with constant field
C =

⋂m
k=1 ker Dk . We define a binary relation D0 j (x, y) by

∃y′, y′′, y′′′

[
9(y, y′, y′′, y′′′) = 0

∧

m∧
k=1

Dk y = y′Dk x ∧ Dk y′
= y′′Dk x ∧ Dk y′′

= y′′′Dk x
]
.

The relation D0×

j (x, y) is defined by the formula D0 j (x, y) ∧ x /∈ C ∧ y /∈ C . By
abuse of notation, we let D0 j and D0×

j also denote the Cartesian powers of these
relations.

If F is a field of meromorphic functions of variables t1, . . . , tm over some complex
domain with derivations d/dtk , then D0×

j (F) is interpreted as the set of all tuples
(x, y) ∈ F2 where x = x(t1, . . . , tm) is some meromorphic function and y = j (gx)

for some g ∈ GL2(C).
Pila and Tsimerman proved the following analogue of Ax’s theorem for the

j-function.

Theorem 3.8 (Ax–Schanuel for j [Pila and Tsimerman 2016, Theorem 1.3]). Let
(F; +, · , D1, . . . , Dm) be a differential field with commuting derivations and with
field of constants C. Let also (zi , ji ) ∈ D0×

j (F), i = 1, . . . , n. If the ji ’s are
pairwise modularly independent (i.e., no two of them satisfy an equation given by a
modular polynomial) then tdC C(z̄, ȷ̄ ) ≥ n + rk(Dkzi )i,k .

The proof of Pila and Tsimerman relies on o-minimality and, in particular, the
definability of the restriction of the j-function to a fundamental domain in the o-
minimal structure Ran,exp. Recently, a differential-algebraic proof of Ax–Schanuel
for all Fuchsian automorphic functions (including j) was given in [Blázquez-Sanz
et al. 2021].

In [Aslanyan et al. 2021], Aslanyan, Eterović, and Kirby use the Ax–Schanuel
theorem for the j -function to establish an existential closedness result for D0 j . The
proof is differential algebraic, and its advantage is that it treats Ax–Schanuel as a
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black box without looking into it, as opposed to the approach of [Kirby 2009] where
the proof of Ax–Schanuel is appealed to. For that reason the proof works both for
exp and j , and is expected to work in any reasonable situation where Ax–Schanuel
is known.

Theorem 3.9 (functional MEC [Aslanyan et al. 2021, Theorem 1.1]). Let F be a
differential field, and V ⊆ F2n be a 0 j -broad variety. Then there is a differential
field extension K ⊇ F such that V (K ) ∩ D0 j (K ) ̸= ∅. In particular, if F is
differentially closed then V (F) ∩ D0 j (F) ̸= ∅.

Remark 3.10. In the above theorem the variety V need not be free. However,
freeness is a necessary condition in MEC; see Example 2.12.

Also, when V is defined over the constants C and is strongly 0 j -broad (i.e., strict
inequalities hold in Definition 3.3 (first bullet point)), we have V (K )∩D0×

j (K ) ̸=∅;
see [Aslanyan et al. 2021, Theorem 1.3].

The Ax–Schanuel theorem can also be used to establish a functional variant of
modular Zilber–Pink, which was done by Pila and Tsimerman [2016, Theorem
7.1]. They used tools of o-minimality, while [Aslanyan 2022b, Theorem 5.2] gave
a differential-algebraic proof based on Kirby’s adaptation of Zilber’s proof of weak
CIT (see [Kirby 2009, Theorem 4.6]).

Definition 3.11. Let V ⊆ Cn be an algebraic variety. A j -atypical subvariety of
V is an irreducible component W of some V ∩ T , where T is a j-special variety,
such that dim W > dim V + dim T − n. A j-atypical subvariety W of V is said to
be strongly j-atypical if no coordinate is constant on W .

Theorem 3.12 (functional MZP [Pila and Tsimerman 2016; Aslanyan 2022b]).
Every algebraic variety V ⊆ Cn contains only finitely many maximal strongly j-
atypical subvarieties.

Like the MZP conjecture, this theorem can also be stated in several equivalent
forms, but we do not present them. See [Aslanyan 2022b] for details.

As in the exponential setting, recent years have seen significant progress towards
MEC and MZP. For the state-of-the-art on MZP and its generalisations see [Pila
2022] and references therein. For MEC the reader is referred to [Eterović and
Herrero 2021; Aslanyan and Kirby 2022; Gallinaro 2021; Eterović 2022; Eterović
and Zhao 2021].

4. Incorporating the derivatives of modular functions

In this section we look at the extensions of MSC, MEC, and MZP to the j -function
together with its derivatives. Analogues of MSC and MZP in this setting were
considered by Pila in some unpublished notes [2013], and we closely follow him in
Section 4A and the beginning of Section 4C. MSC with derivatives is in fact a special
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case of the Grothendieck–André generalised period conjecture. MEC with deriva-
tives was first proposed in [Aslanyan and Kirby 2022]. In addition to that conjecture
we also propose a second, more general MEC with derivatives conjecture here.

Recall that j satisfies a third-order differential equation, so it suffices to consider
only the first two derivatives. Adding higher derivatives would not change the
problems. One normally works in jet spaces when dealing with j together with
its derivatives j ′, j ′′. However, as usual, instead of the jet space J2 Hn

×J2Y (1)n

we work in Hn
×C3n . We use (x̄, ȳ, ȳ′, ȳ′′) to denote the coordinates on this space.

We denote the vector function

( j, j ′, j ′′) : Hn
→ C3n, z̄ 7→ ( j (z̄), j ′(z̄), j ′′(z̄)),

by J , and its graph by 0J .
Before proceeding we introduce further notation to be used in the rest of this

section.

Notation. Let n be a positive integer, k ≤ n and 1 ≤ i1 < · · · < ik ≤ n.

• 5ı̄ : C4n
→ C4k is defined by (x̄, ȳ, ȳ′, ȳ′′) 7→ (prı̄ x̄, prı̄ ȳ, prı̄ ȳ′, prı̄ ȳ′′).

• πı̄ : C3n
→ C3k is defined by (ȳ, ȳ′, ȳ′′) 7→ (prı̄ ȳ, prı̄ ȳ′, prı̄ ȳ′′).

• We also define the maps

πȳ : C3n
→ Cn, (ȳ, ȳ′, ȳ′′) 7→ ȳ,

5ȳ : C4n
→ Cn, (x̄, ȳ, ȳ′, ȳ′′) 7→ ȳ,

5x̄ : C4n
→ Cn, (x̄, ȳ, ȳ′, ȳ′′) 7→ x̄ .

4A. Modular Schanuel conjecture with derivatives.

Conjecture 4.1 (modular Schanuel conjecture with derivatives — MSCD). Given
nonquadratic numbers z1, . . . , zn ∈ H with distinct GL+

2 (Q)-orbits, we have

tdQ Q(z1, . . . , zn, J (z1), . . . , J (zn)) ≥ 3n.

This conjecture is a direct generalisation of MSC, but it does not reflect the
transcendence properties of J at special points. So, following [Pila 2013], we
formulate a more general conjecture.

Definition 4.2. • An irreducible subvariety U ⊆ Hn (i.e., an intersection of Hn with
some algebraic variety) is called GL+

2 (Q)-special if it is defined by some equations
of the form zi = gi,kzk , i ̸= k, with gi,k ∈ GL+

2 (Q), or of the form zi = τi where
τi ∈ H is a quadratic number.

• For a GL+

2 (Q)-special variety U we denote by ⟨U ⟩ the Zariski closure of the
graph of the restriction J |U (i.e., the set {(z̄, J (z̄)) : z̄ ∈ U }) over Qalg.
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• The GL+

2 (Q)-special closure of an irreducible variety W ⊆ Hn is the smallest
GL+

2 (Q)-special variety containing W . It exists because the irreducible components
of an intersection of GL+

2 (Q)-special varieties is GL+

2 (Q)-special.

We now explain how ⟨U ⟩ can be defined algebraically. First let us ignore the
case when U has constant coordinates. Assume the first two coordinates of U are
related, i.e., x2 = gx1 for some g =

(a
c

b
d

)
∈ GL+

2 (Q), and let 8( j (z), j (gz)) = 0
for some modular polynomial 8. Differentiating the last equality with respect to z
we get

∂8

∂Y1
( j (z), j (gz)) · j ′(z) +

∂8

∂Y2
( j (z), j (gz)) · j ′(gz) ·

ad−bc
(cz+d)2 = 0. (⋆)

Thus, ⟨U ⟩ satisfies the equation

∂8

∂Y1
(y1, y2) · y′

1 +
∂8

∂Y2
(y1, y2) · y′

2 ·
ad−bc

(cx1+d)2 = 0. (†)

Differentiating again, we get another equation between (x1, x2, y1, y2, y′

1, y′

2, y′′

1 , y′′

2 ),
and we have four equations defining the projection of ⟨U ⟩ to the first two coordinates.

In general, we have a partition of {1, . . . , n}, where two indices are in the same
block of the partition if and only if the corresponding coordinates are related on
U . If i1 < · · · < ik form such a block, then 5ı̄ ⟨U ⟩ is referred to as a block of ⟨U ⟩.
Then each block of ⟨U ⟩ is defined by equations of the form described above and
has dimension 4, and ⟨U ⟩ is the product of its blocks.

When U has a constant coordinate, say x1 (whose value must be a quadratic
irrational), then we also get blocks of dimension 1 or 0 as follows. If

x1 = τ /∈ SL2(Z)i ∪ SL2(Z)ρ, where ρ = −
1
2

+

√
3

2
i,

then j (τ ) ∈ Qalg and tdQ Q( j ′(τ ), j ′′(τ )) = 1 (see [Diaz 2000]). If, in addition,
some other coordinates, say x2, . . . , xk , are GL+

2 (Q)-related to x1 and thus take
constant values τk (with τ1 := τ ), then tdQ(τ̄ , J (τ̄ )) = 1. Thus, we get a block of
dimension 1. The equations defining such a block can be worked out as above.

On the other hand, a constant coordinate in SL2(Z)ρ would give rise to a block
of dimension 0, for the values of j, j ′, j ′′ are zeroes at these points. A constant
coordinate in GL+

2 (Q)ρ \ SL2(Z)ρ or GL+

2 (Q)i gives a block of dimension 1.
Now we are ready to state the second (and more general) version of MSCD.

Conjecture 4.3 (modular Schanuel conjecture with derivatives and special points —
MSCDS). Let z1, . . . , zn ∈ H be arbitrary and let U ⊆ Hn be the GL+

2 (Q)-special
closure of (z1, . . . , zn). Then

tdQ Q(z1, . . . , zn, J (z1), . . . , J (zn)) ≥ dim⟨U ⟩ − dim U.
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Both MSCD and MSCDS are special cases of the Grothendieck–André gener-
alised period conjecture; see [Aslanyan et al. 2023a, §6.3].

4B. Modular existential closedness with derivatives. We now introduce the appro-
priate notions of broadness and freeness which will appear in existential closedness.

Definition 4.4. Let V ⊆ Hn
×C3n be an algebraic variety.

• V is 0J -broad if for any 1 ≤ i1 < · · · < ik ≤ n we have dim 5ı̄ (V ) ≥ 3k.

• V is modularly free if no equation of the form 8N (yi , yk) = 0, or of the form
yi = c with c ∈ C a constant, holds on V .

• V is GL+

2 (Q)-free if no equation of the form xi = gxk with g ∈ GL+

2 (Q), or
of the form xk = c with c ∈ H a constant, holds on V .

• V is 0J -free if it is GL+

2 (Q)-free and modularly free.

• V is 0J -froad if it is 0J -free and 0J -broad.

Conjecture 4.5 (modular existential closedness with derivatives — MECD). Let
V ⊆ Hn

×C3n be a 0J -froad variety defined over C. Then V ∩ 0J ̸= ∅.

This is dual to Conjecture 4.1. It is possible to state a dual to Conjecture 4.3,
which would also imply that certain varieties contain J -special points. However,
in that case only dimension conditions would not suffice to guarantee existence of
J -points, e.g., an arbitrary variety of dimension 1 may not contain such a point; it
should be J -special in order to contain J -special points. So we give the following
definitions.

Definition 4.6. Let V ⊆ Hn
×C3n be an irreducible variety. Let also U ⊆ Hn be the

GL+

2 (Q)-special closure of 5x̄(V ) and T ⊆ Cn be the j -special closure4 of 5ȳ(V ).

• V is said to be 0∗

J -free if j (U ) = T and V ⊆⟨U ⟩.

• V is said to be 0∗

J -broad if dim 5ı̄ (V ) ≥ dim⟨prı̄ U ⟩ − dim prı̄ U for any ı̄ .

• V is said to be 0∗

J -froad if it is 0∗

J -free and 0∗

J -broad.

Remark 4.7. 0∗

J -freeness means that the GL+

2 (Q)-relations and modular relations
holding on V match each other, i.e., are compatible with the functional equations
of J (that is, modular correspondences and the relations obtained by differentiating
those). This condition holds vacuously for 0J -free varieties. For 0J -free varieties
0J -broadness and 0∗

J -broadness are equivalent.

Conjecture 4.8 (modular existential closedness with derivatives and special points —
MECDS). Let V ⊆ Hn

×C3n be an irreducible 0∗

J -froad variety. Then V ∩0J ̸=∅.

4The j -special closure of an irreducible set W is defined as the smallest j -special set containing W .
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4C. Modular Zilber–Pink with derivatives.

Definition 4.9. • For a GL+

2 (Q)-special variety U ⊆ Hn we denote by ⟨⟨U ⟩⟩ the
Zariski closure of J (U ) over Qalg.

• A J -special subvariety of C3n is a set of the form S = ⟨⟨U ⟩⟩, where U is a
GL+

2 (Q)-special subvariety of Hn .

• A J -special variety S is said to be associated to a j -special variety T if there is a
GL+

2 (Q)-special variety U such that S = ⟨⟨U ⟩⟩ and j (U ) = T .

Remark 4.10. • For a GL+

2 (Q)-special variety U ⊆Hn the set j (U )⊆Cn is defined
by modular equations and is irreducible (since U is irreducible), and therefore it is
j-special. Similarly, J (U ) is an irreducible locally analytic set5 and hence so is its
Zariski closure. Thus, J -special varieties are irreducible.

• The j-special varieties are bi-algebraic for the j-function, that is, they are the
images under j of algebraic varieties (namely, GL+

2 (Q)-special varieties). That is
in contrast to J -special varieties as these are not bi-algebraic for J . Nonetheless,
J -special varieties still capture the algebraic properties of the function J .

• The equations defining a J -special variety can be worked out as in Section 4A,
since ⟨⟨U ⟩⟩ is a projection of ⟨U ⟩. In particular, a variety ⟨⟨U ⟩⟩ is the product of its
blocks each of which has dimension 0, 1, 3, or 4. Dimensions 0 and 1 correspond to
constant coordinates. A block has dimension 3 if all the GL+

2 (Q)-matrices linking
its x-coordinates are upper triangular, and dimension 4 otherwise. This is because
equation (†) gives an algebraic relation between y1, y2, y′

1, y′

2 provided that c = 0,
i.e., the matrix linking x1 and x2 is upper triangular. Then we also have another such
equation linking y1, y2, y′

1, y′

2, y′′

1 , y′′

2 obtained by differentiating (⋆). When c ̸= 0,
both of these equations depend on x1, so together they yield a single algebraic
relation between y1, y2, y′

1, y′

2, y′′

1 , y′′

2 .

Definition 4.11. For a variety V ⊆ C3n we let the J -atypical set of V , denoted
AtypJ (V ), be the union of all atypical components of intersections V ∩ T in C3n ,
where T ⊆ C3n is a J -special variety.

Conjecture 4.12 (modular Zilber–Pink with derivatives — MZPD [Pila 2013]). For
every algebraic variety V ⊆ C3n there is a finite collection 6 of proper GL+

2 (Q)-
special subvarieties of Hn such that

AtypJ (V ) ∩ J (Hn) ⊆

⋃
U∈6

γ̄∈SL2(Z)n

⟨⟨γ̄U ⟩⟩.

5Strictly speaking, J (U ) may not be complex analytic as it is the image of an analytic set under an
analytic function, but it is locally analytic. It is irreducible in the sense that if J (U ) is contained in a
countable union of analytic sets then it must be contained in one of them.
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Remark 4.13. • One could propose a stronger conjecture stating that AtypJ (V ) is
covered by J -special varieties corresponding to SL2(Z)-translates of finitely many
GL+

2 (Q)-special varieties U ∈ 6. However, an intersection of V with a J -special
variety may have a component which does not intersect the image of J , or that
intersection is small. So while this stronger statement seems sensible (meaning
there does not seem to be a trivial counterexample), it is less natural and less about
the function J than Conjecture 4.12. Zilber’s original motivation for CIT came
from the idea of deducing a uniform version of Schanuel from itself. Similarly,
[Pila 2013] proposes MZPD as the difference between MSCD and its uniform
version. Since MSCD is about the function J , Pila only needed to deal with
the part of AtypJ (V ) that consists of points from the image of J . Furthermore,
Conjecture 4.12 is supported by the theorems presented in Section 4D, while we do
not have any evidence towards the said stronger statement, so we do not propose
such a conjecture.

• Given a J -special variety S ⊆ C3n with an atypical intersection V ∩ S, the inter-
section πȳ(V ) ∩ πȳ(S) may or may not be atypical. The novelty of MZPD is when
this intersection is typical as the atypical ones are accounted for MZP.

• In MZPD we may need infinitely many J -special varieties to cover the set
AtypJ (V ) ∩ J (Hn) but the conjecture states that it is “generated” by finitely many
GL+

2 (Q)-special varieties. See the example below.

Example 4.14. Consider the variety V ⊆ C9 defined by 82(y1, y2)+83(y2, y3)=0.
Let T ⊆ C3 be a j-special variety defined by 82(y1, y2) = 83(y2, y3) = 0, and let
U ⊆ H3 be GL+

2 (Q)-special such that j (U ) = T . Then for every γ̄ ∈ (SL2(Z))3

we have ⟨⟨γ̄U ⟩⟩⊆ V , and these are maximal J -special (hence atypical) in V . Thus,
the single j-special variety T “generates” an infinite set of maximal J -atypical
subvarieties of V .

MZPD has an analytic component: the intersection of AtypJ (V ) with the image
of J . We now propose an “algebraic” MZPD conjecture which we believe will
be more amenable to (differential) algebraic and geometric techniques (below we
provide evidence in support of this). The idea is to replace the set of points from the
image of J in an atypical subvariety of V by its Zariski closure. Then we need to
understand which algebraic varieties can contain a Zariski dense set of such points,
and hence this is a variant of the existential closedness problem for J . So we define
an appropriate notion of froadness which serves that purpose.

Definition 4.15. An irreducible variety W ⊆C3n is called Im(J )-froad (resp. Im(J )∗-
froad)6 if it is the projection of a 0J -froad (resp. 0∗

J -froad) variety V ⊆ Hn
×C3n

to the coordinates (ȳ, ȳ′, ȳ′′).

6Here Im stands for the image of a function.
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The following statement gives an explicit definition of these notions. Its proof is
fairly straightforward from the definitions and is left to the reader.

Proposition 4.16. Let W ⊆ C3n be an irreducible variety, and let T ⊆ Cn be the
j-special closure of πȳ(W ). Then W is Im(J )∗-froad if and only if there is a
GL+

2 (Q)-special variety U ⊆ Hn such that

• j (U ) = T ,

• W ⊆⟨⟨U ⟩⟩,

• for any ı̄ we have dim πı̄ (W ) ≥ dim ⟨⟨prı̄ (U )⟩⟩− dim prı̄ (U ).

Furthermore, W is Im(J )-froad if and only if U = Hn , T = Cn , and for any ı̄ of
length k we have dim πı̄ (W ) ≥ 2k.

Definition 4.17. For a variety V ⊆ C3n we let the froadly J -atypical set of V ,
denoted FAtypJ (V ), be the union of all Im(J )∗-froad and atypical components of
intersections V ∩ T in C3n , where T ⊆ C3n is a J -special variety.

Conjecture 4.18 (modular Zilber–Pink with derivatives for froad varieties —
MZPDF). For every algebraic variety V ⊆ C3n there is a finite collection 6 of
proper GL+

2 (Q)-special subvarieties of Hn such that

FAtypJ (V ) ⊆

⋃
U∈6

γ̄∈SL2(Z)n

⟨⟨γ̄U ⟩⟩.

Now we aim to understand the relation between Conjectures 4.12 and 4.18. We
can show they are equivalent assuming some weakened versions of MSCD and
MECD referring only to the image of J . We call these conjectures MSCDI and
MECDI, where “I” stands for “Image”.

Conjecture 4.19 (MSCDI). Let z1, . . . , zn ∈ H be arbitrary and let U ⊆ Hn be the
GL+

2 (Q)-special closure of (z1, . . . , zn). Then

tdQ Q(J (z1), . . . , J (zn)) ≥ dim⟨⟨U ⟩⟩− dim U.

Conjecture 4.20 (MECDI). Let V ⊆ C3n be an irreducible Im(J )∗-froad variety.
Then V ∩ Im(J ) ̸= ∅.

Proposition 4.21. (i) Assume MECDI. Then Conjecture 4.12 (MZPD) implies
Conjecture 4.18 (MZPDF).

(ii) Assume MSCDI. Then Conjecture 4.18 (MZPDF) implies Conjecture 4.12
(MZPD).

Proof. (i) Let W be an Im(J )∗-froad atypical subvariety of V ⊆ C3n . Then by
MECDI and the Rabinowitsch trick (see [Aslanyan 2022a, Proposition 4.34]),
W ∩ Im(J ) is Zariski dense in W . By MZPD (Conjecture 4.12), πȳ(W ∩ Im(J ))
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is contained in a union of finitely many j-special varieties depending only on V .
Hence, πȳ(W ) = πȳ(W ∩ Im(J ))Zcl is also contained in that union. Since W is
irreducible, πȳ(W ) is contained in one such j-special variety T , and since W is
Im(J )∗-froad, it is contained in a J -special variety associated to T .

(ii) (cf. [Aslanyan 2022b, Proposition 9.10]) Now assume MSCDI and MZPDF. Also
assume first that V is defined over Qalg. Let w̄ := ( j (z̄), j ′(z̄), j ′′(z̄)) ∈ AtypJ (V )

belong to an atypical component of an intersection V ∩ T , where T is J -special. If
T ′

⊆ T is the J -special closure of w̄ (that is, T ′
= ⟨⟨U ⟩⟩, where U is the GL+

2 (Q)-
special closure of z̄), then by [Aslanyan 2022b, Lemma 9.9], w̄ belongs to an atypical
component W of the intersection V ∩ T ′. MSCDI implies that W is Im(J )∗-froad.
Hence, by MZPDF W is contained in a J -special variety S associated to one of the
finitely many j-special varieties depending only on V . Then w̄ also belongs to S.

When V is defined over arbitrary parameters, rather than Qalg, the same proof
goes through provided that we can extend MSCDI and get a lower bound on the
transcendence degree of a J -point over finitely generated fields. This has been
done in [Aslanyan et al. 2023a, §5] for MSCD (see also [Eterović 2022, §4.2]), and
MSCDI can be treated similarly. □

MSCDI, like full MSCD, seems to be out of reach. Hence the second part of the
above proposition is not very helpful. On the other hand, MECDI is within reach,
albeit still open. Therefore, the first part of the proposition is more meaningful
and tells us that MZPDF (Conjecture 4.18) is probably more tractable than MZPD
(Conjecture 4.12). It is unlikely that the second implication in Proposition 4.21 can
be proven without assuming MSCDI.

4D. Functional/differential variants. The functional variants of all the above
conjectures were established in the last decade. We present them below.

Definition 4.22. Let (F; +, · , D1, . . . , Dm) be a differential field with constant
field C =

⋂m
k=1 ker Dk . Let also 9 be the rational function appearing in the

differential equation of the j-function (see Section 3C).

• We define a 4-ary relation D0J (x, y, y′, y′′) by

∃y′′′

[
9(y, y′, y′′, y′′′) = 0

∧

m∧
k=1

Dk y = y′Dk x ∧ Dk y′
= y′′Dk x ∧ Dk y′′

= y′′′Dk x
]
.

• The relation D0×

J (x, y, y′, y′′) is defined by the formula

D0J (x, y, y′, y′′) ∧ x /∈ C ∧ y /∈ C ∧ y′ /∈ C ∧ y′′ /∈ C.
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• The relations DIm(J ) and DIm(J )× are defined as ∃x D0J (x, y, y′, y′′) and
∃x D0×

J (x, y, y′, y′′), respectively.

• By abuse of notation, we use the above expressions (D0J , D0×

J , etc.) to denote
their Cartesian powers too.

If F is a field of meromorphic functions of variables t1, . . . , tm over some
complex domain with derivations d/dtk , then D0×

J (F) is interpreted as the set of
all tuples (x, y, y′, y′′)∈ F4 where x = x(t1, . . . , tm) is some meromorphic function,
y = j (gx) for some g ∈ GL2(C), and y′

= d j (gx)/dx , y′′
= d2 j (gx)/dx2.

The Ax–Schanuel theorem for J is due to Pila and Tsimerman. Again, their
proof is based on o-minimality, and Blázquez-Sanz, Casale, Freitag, and Nagloo
give a differential-algebraic/model-theoretic proof in [Blázquez-Sanz et al. 2021].

Theorem 4.23 (Ax–Schanuel for J [Pila and Tsimerman 2016, Theorem 1.3]). Let
(F; +, · , D1, . . . , Dm) be a differential field with commuting derivations and with
field of constants C. Let also (zi , ji , j ′

i , j ′′

i ) ∈ D0×

J (F), i = 1, . . . , n. If the ji are
pairwise modularly independent then tdC C(z̄, ȷ̄ , ȷ̄ ′, ȷ̄ ′′) ≥ 3n + rk(Dkzi )i,k .

As in the previous section, Ax–Schanuel can be used to prove a differential
analogue of MECD.

Theorem 4.24 (differential MECD [Aslanyan et al. 2021, Theorem 1.2]). Let F be
a differential field, and V ⊆ F4n be a 0J -broad variety. Then there is a differential
field extension K ⊇ F such that V (K ) ∩ D0J (K ) ̸= ∅. In particular, if F is
differentially closed then V (F) ∩ D0J (F) ̸= ∅.

Remark 4.25. In this theorem, when V is defined over the constants C and is
strongly 0J -broad (i.e., strict inequalities hold in Definition 4.4 (first bullet point)),
we have V (K ) ∩ D0×

j (K ) ̸= ∅; see [Aslanyan et al. 2021, Theorem 1.3].

At the end we state several analogues of MZPD and MZPDF.

Definition 4.26. For a J -special variety T ⊆ C3n and an algebraic variety V ⊆ C3n

an atypical component W of an intersection V ∩ T in C3n is a strongly J -atypical
subvariety of V if for every irreducible analytic component W0 of W ∩ J (Hn),
no coordinate is constant on πȳ(W0). The strongly J -atypical set of V , denoted
SAtypJ (V ), is the union of all strongly J -atypical subvarieties of V .

The following is a weak version of MZPD, the proof of which is based on
complex geometric tools. It generalises functional MZP (Theorem 3.12), and hence
it gives a third proof of the latter.

Theorem 4.27 (weak MZPD [Aslanyan 2022b, Theorem 7.9]). For every algebraic
variety V ⊆ C3n there is a finite collection 6 of proper GL+

2 (Q)-special subvarieties
of Hn such that

SAtypJ (V ) ∩ J (Hn) ⊆

⋃
U∈6

γ̄∈SL2(Z)n

⟨⟨γ̄U ⟩⟩.
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In order to present differential analogues of MZPD(F), we need to introduce
several definitions and pieces of notation.

Definition 4.28 [Aslanyan 2022b, §6]. Let C be an algebraically closed field.
Define D as the zero derivation on C and extend (C; +, · , D) to a differentially
closed field (K ; +, · , D).

• Let T ⊆ Cn be a j-special variety and U ⊆ Cn be a GL2(C)-special variety
associated to T , that is, U is defined by GL2(C)-equations and for any i, k the
pair of coordinates xi , xk are related on U if and only if yi , yk are modularly
related on T . Denote by ⟨⟨U, T ⟩⟩ the Zariski closure over C of the projection
of the set

D0×

J (K ) ∩ (U (K ) × T (K ) × K 2)

to the coordinates (ȳ, ȳ′, ȳ′′).

• A DJ -special variety is a variety S := ⟨⟨U, T ⟩⟩ for some T and U as above.

• S ∼ T means that S := ⟨⟨U, T ⟩⟩ for some U associated to T . For a set 6 of
j-special varieties S ∼ 6 means that S ∼ T for some T ∈ 6.

Definition 4.29. Let V ⊆ C3n be a variety. The DJ -atypical set of V , denoted
AtypDJ

(V ), is the union of all DJ -atypical subvarieties of V , that is, atypical com-
ponents of intersections V ∩T , where T ⊆ C3n is DJ -special. The set SFAtypDJ

(V )

denotes the union of all DJ -atypical subvarieties of V which are strongly Im(J )∗-
froad.7

Theorem 4.30 (functional MZPD — FMZPD [Aslanyan 2022b, Theorem 8.2]). Let
(K ; +, · , D) be a differential field with an algebraically closed field of constants C.
Given an algebraic variety V ⊆C3n , there is a finite collection 6 of proper j-special
subvarieties of Cn such that

AtypDJ
(V )(K ) ∩ DIm×

J (K ) ⊆

⋃
S∼6

S.

Theorem 4.31 (functional MZPDF — FMZPDF [Aslanyan 2022b, Theorem 9.8]).
Let C be an algebraically closed field of characteristic 0. Given an algebraic variety
V ⊆ C3n , there is a finite collection 6 of proper j-special subvarieties of Cn such
that

SFAtypDJ
(V )(C) ⊆

⋃
S∼6

S.

These theorems are analogues of MZPD and MZPDF, respectively, and so they
support those conjectures. In [Aslanyan 2022b] we give a complex geometric proof
of FMZPD (the transition from complex geometry to differential algebra is via

7A variety W ⊆ C3n is strongly Im(J )∗-froad if there is a GL+

2 (Q)-special variety U ⊆ Hn such
that j (U ) = T , W ⊆⟨⟨U ⟩⟩, and for any ı̄ we have dim πı̄ (W ) > dim ⟨⟨prı̄ (U )⟩⟩− dim prı̄ (U ).
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Seidenberg’s embedding theorem) and a differential-algebraic proof of FMZPDF.
The core of both proofs is the Ax–Schanuel theorem for J . The proof of FMZPDF
also uses the differential version of MECDI, which is a special case of Theorem 4.24.
As above, FMZPD and FMZPDF can be deduced from one another using differential
MECDI, so that gives two proofs for each of the above theorems, one differential
algebraic and one complex geometric.

For further results on MECD and MZPD see [Aslanyan and Kirby 2022; Aslanyan
et al. 2023a; Eterović 2022] and [Aslanyan 2022b], respectively. Spence [2019] has
proven some results towards the modular André–Oort with derivatives conjecture,
which is a special case of MZPD.

Remark 4.32. Section 4 turned out to be somewhat technical with some hard-to-
remember concepts and notation. Unfortunately, that seems necessary for precision
and rigour. A reader who is not familiar with the general topics discussed here
may be lost in the various versions of the conjectures and theorems. Therefore,
we would like to reiterate the main high-level idea of this section: incorporating
the derivatives into the modular versions of the Schanuel, existential closedness,
and Zilber–Pink conjectures gives a deeper insight into these problems and reveals
some hidden (possibly surprising) connections between them. Exploring these
conjectures in this more general setting would allow us to better understand the full
model-theoretic picture.
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