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To Boris Zilber on the occasion of his 75th birthday.

We consider the multivalued raising-to-the-power-i function through the Schanuel–
Ax–Zilber lens. We formulate and prove an analogue of the Zilber–Pink conjecture.

1. Introduction

The purpose of this paper is to consider the (multivalued) function w = zi through
the Schanuel–Ax–Zilber lens [Ax 1971; Zilber 2002], and in particular to formulate
and prove an analogue of the Zilber–Pink conjecture [Zilber 2002; Bombieri et al.
2007; Pink 2005]. We follow the path taken by Zilber leading to his formulation of
the Zilber–Pink conjecture for semiabelian varieties: beginning with an analogue of
Schanuel’s Conjecture 3.1, we consider a “uniform” version (Conjecture 4.1), and
formulate a Zilber–Pink-type statement (Conjecture 4.2) connecting the classical
Schanuel conjecture (SC) with the uniform version for zi . Our Schanuel variant is
equivalent to a formulation of Zilber [2003a].

We then prove the Zilber–Pink-type statement, in the more general form in
Theorem 1.3 below. The connection with SC is explicated in Sections 2 and 3.
Theorem 1.3 is a somewhat exotic variant of the Zilber–Pink conjecture for even
powers of Gm = Gm(C) = C×, in which key difficulties disappear thanks to the
Gelfond–Schneider theorem.

We take w = zi to be the predicate 0 ⊂ G2
m defined by

(z, w) ∈ 0 ⇐⇒ ∃u∈C [exp(u) = z ∧ exp(iu) = w].

We let 0n = 0n denote the cartesian power of this predicate on Gn
m × Gn

m.
To formulate our theorem, we recall that the Zilber–Pink conjecture (ZP) for

subvarieties of Gn
m can be framed in terms of optimal subvarieties for V ⊆ Gn

m; see
[Habegger and Pila 2016]. These are subvarieties W ⊆ V which cannot be enlarged
inside V without increasing their defect (which is the difference between their
dimension and the dimension of the smallest torsion coset of Gn

m which contains
them). ZP is equivalent to the statement that a subvariety V ⊂ Gn

m contains only
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finitely many such optimal subvarieties. Here torsion cosets (which are cosets of
subtori by torsion points) are the “special subvarieties” of Gn

m.
In treating w = zi , the appropriate “special subvarieties” are subtori of Gn

m ×Gn
m

of a special form.

Definition 1.1. A plu-torus T ⊂ Gn
m × Gn

m is a subtorus whose lattice of exponent
vectors 3(T ) ⊂ Zn

× Zn is closed under the operation (q, r) 7→ (−r, q).

If A ⊂ Gn
m ×Gn

m is a subvariety which meets 0n then there is a smallest plu-torus
containing A (see Section 2), denoted ((A)). We define the plu-defect of A to be

δ(A) = dim ((A))− dim A.

Definition 1.2. Let V ⊂ Gn
m × Gn

m. A subvariety A ⊂ V is called plu-optimal for
V if A ∩ 0n ̸= ∅, and if A ⊂ B ⊂ V and δ(B) ≤ δ(A) imply B = A.

Theorem 1.3. Let V ⊂ Gn
m × Gn

m. Then V contains only finitely many plu-optimal
subvarieties.

To motivate the above definitions, we consider implications of SC for w = zi .
Zilber [2003a; 2015] studied Schanuel-type conjectures for raising to powers in
algebraically closed fields, and model-theoretic properties of the fields satisfying
them. A version of the present result that SC implies a certain uniformity in
the corresponding conjecture for raising to the power i is obtained there. Zilber
uses a two-sorted setup, and the conjectures are framed using the corresponding
logarithms, whereas our statement involves only the relation 0. However, the two
structures are biinterpretable, and the raising-to-the power-i Schanuel conjectures
are equivalent (I thank J. Kirby for explaining these points to me). Structures
with a predimension with similar shape to that considered here are considered in
[Caycedo and Zilber 2014; Zilber 2003b]; see also related structures in the context
of “pseudoexponentiation” discussed in [Bays and Kirby 2018].

We first observe that the pair (z, w) ∈ 0 “knows” which branch of log connects
them: if u = log z has the required property, any other u′ would need to satisfy

u′
− u ∈ 2π iZ, iu′

− iu ∈ 2π iZ

and the intersection of 2π iZ and 2πZ consists of {0} only.
Applying SC to

u1, . . . , un, iu1, . . . , iun, x1, . . . , xn, y1, . . . , yn,

where exp(ui ) = xi , exp(iui ) = yi , and eliminating the ui , iui , gives the following
statement, in which t.d.(A) denotes tr.deg. Q(A)/Q:

Let x1, . . . , xn, y1, . . . , yn ∈ C× with (x j , y j ) ∈ 0, j = 1, . . . , n. Then

t.d.(x1, . . . , xn, y1, . . . , yn) ≥ n

unless x1, . . . , xn, y1, . . . , yn are multiplicatively dependent.
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Indeed, SC asserts that t.d.(u j , iu j , x j , y j : 1 ≤ j ≤ n) ≥ 2n unless u j , iu j are
linearly dependent over Q. Now t.d.(u j , iu j : 1 ≤ j ≤ n) ≤ n, while if the u j , iu j

are linearly dependent over Q then the x j , y j are multiplicatively dependent: if,
say,

∑
j q j u j + i

∑
j r j u j = 0, where q j , r j ∈ Z, not all zero, then we get∏

j

xq j
j

∏
j

yr j
j = 1.

However, multiplicative dependence of x j , y j might hold even when Q-linear
dependence of u j , iu j does not, so that the above statement seems to lose some
information. For example, if u1 = log 2, u2 = 2π i , giving

x1 = 2, x2 = 1, y1 = 2i , y2 = e−2π

then the above conjecture does not predict t.d.(x1, x2, y1, y2) ≥ 2, but SC does, as
does Conjecture 3.1 (or see the provisional version below).

Suppose
∑

j q j u j + i
∑

j r j u j = 0 as above. Then, upon multiplying by i , we
find that −

∑
j r j u j + i

∑
j q j u j = 0 and we get a second multiplicative relation∏

j

x−r j
j

∏
j

yq j
j = 1.

The claim is that a pair of such multiplicative relations (which is easily seen to
never be dependent) forces the underlying u j , iu j to be linearly dependent over Q.
Indeed, from the first, we find that

δ =

∑
j

q j u j + i
∑

j

r j u j ∈ 2π iZ

but then the second relation implies that

iδ = −

∑
j

r j u j + i
∑

j

q j u j ∈ 2π iZ,

and so δ = 0.
Thus our “exceptional” point (x1, . . . , xn, y1, . . . , yn) ∈ Gn

m × Gn
m lies in a

subtorus of codimension at least 2 and of rather specific form: a plu-torus. This
leads us to the following provisional formulation of Schanuel’s conjecture for zi :

Let x1, . . . , xn, y1, . . . , yn ∈ C× with (x j , y j ) ∈ 0, j = 1, . . . , n. Then

t.d.(x1, . . . , xn, y1, . . . , yn) ≥ n

unless there exist integers q j , r j , not all zero, such that∏
j

xq j
j

∏
j

yr j
j = 1 =

∏
j

x−r j
j

∏
j

yq j
j .
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Thus, SC for zi leads naturally to the consideration of plu-tori. The corresponding
Zilber–Pink analogue arises from considering a uniform version of SC.

In the next section we investigate more fully the notion of plu-tori, and the related
cosets (weakly special subvarieties) with their underlying dimension notion. This
enables us to give a more refined version of Schanuel’s conjecture for zi in Section 3.
The uniform version and corresponding Zilber–Pink-type statement are set out in
Section 4, where we arrive at the formulation of Theorem 1.3. The subsequent
sections are devoted to proving Theorem 1.3 and related statements. We gather
some Ax–Schanuel-type statements in Section 5, and then finally in Sections 6–9
we gather the ingredients required to prove Theorem 1.3, first for V/Q and then in
a uniform version for families of subvarieties, from which the general case follows.

It has been my privilege over many years now to have Boris Zilber as a colleague,
to discuss mathematics with him, and in particular to hear at first-hand his unique
and inspirational approach to mathematical structures. I dedicate this paper to Boris
and look forward to many further conversations.

2. Plu-tori

We introduce some dimension notions involving pairs of linear relations. We
need this notion in the first instance for pairs (z, w) ∈ C2, but we need it also for
coordinate functions defining linear spaces.

Let

Dn = {(z1, . . . , zn, i z1, . . . , i zn) : z1, . . . , zn ∈ C} ⊂ Cn
× Cn,

and let
exp : Cn

× Cn
→ Gn

m × Gn
m

be the coordinatewise exponential map. Then 0n = exp(Dn).

Definition 2.1. Let V be a finite-dimensional complex vector space. A finite set
(z1, w1), . . . , (zn, wn) of elements of V 2 is called plu-linearly independent if they
do not satisfy any pair of nontrivial Q-linear equations of the form∑

j

q j z j +

∑
j

r jw j = 0, (1)

−

∑
j

r j z j +

∑
j

q jw j = 0. (1i )

Nontrivial means that
∑

(q2
j + r2

j ) ̸= 0. If they do satisfy such a “plu-pair” of
equations they are called plu-linearly dependent.
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Let B = {(z1, w1), . . . , (zn, wn)}. We say that (z0, w0) is plu-linearly dependent
on B if there is a plu-pair

q0z0 +

∑
j

q j z j +

∑
j

r jw j + r0w0 = 0,

−r0z0 −

∑
j

r j z j +

∑
j

q jw j + q0w0 = 0,

in which q0 or r0 is nonzero.
If say q1 ̸= 0 in the plu-pair (1), (1i ), then as above we may use (1) to eliminate

z1 but not w1 from (1i ), and we may use (1i ) to eliminate w1 but not z1 from (1) to
get a new plu-pair of equations∑

j

(r1q j − q1r j )z j +

∑
j

(q1q j + r1r j )w j = 0, (r1(1) + q1(1i ))

∑
j

(−q1q j − r1r j )z j +

∑
j

(r1q j − q1r j )w j = 0. (−q1(1) + r1(1i ))

We now show that plu-linear dependence leads to a well-defined dimension: the
cardinality of a maximal plu-independent subset, which we call a plu-basis. For
this we of course need the exchange property.

Proposition 2.2. Let B be as above. If (z0, w0) is plu-dependent on B and (z∗, w∗)

is plu-dependent on B ∪ {(z0, w0)} then (z∗, w∗) is plu-dependent on B.

Proof. We can assume that the plu-pair for the dependence of (z0, w0) on B has the
form

z0 +

∑
j

q j z j +

∑
j

r jw j = 0, −

∑
j

r j z j +

∑
j

q jw j + w0 = 0.

We use these to eliminate z0, w0 from the dependence of (z∗, w∗) on B ∪{(z0, w0)},
which remains a plu-pair. □

Proposition 2.3. Any two plu-bases have the same cardinality.

Proof. Let B, B ′ be two maximal plu-linearly independent subsets. If B = B ′ we
are done; otherwise, say (zi , wi ) ∈ B ′

\B. By the maximality, (zi , wi ) is plu-linearly
dependent over B. But since B ′ is plu-linearly independent the plu-pair must have
a nonzero coefficient for some (z j , w j ) ∈ B\B ′.

The claim is that B∗ with (zi , wi ) replacing (z j , w j ) in B is again a maximal
plu-linearly independent subset. First, it is plu-linearly independent. Otherwise, we
have (zi , wi ) plu-linearly dependent on B\{(z j , w j )}. But then by Definition 2.1
we would have (z j , w j ) dependent on B\{(z j , w j )}, a contradiction. But also by
Definition 2.1 we see that it “spans”.

This shows that #B ≥ #B ′. We symmetrically get the other inequality. □
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Definition 2.4. A Q-linear subspace L ⊂ Cn
× Cn is called plu-linear if the set

of Q-linear forms defining it is closed under the operation (q, r) 7→ (−r, q). A
plu-linear Q-subspace is also called a plu-subspace.

We observe that plu-linear subspaces have even dimension as linear subspaces.
Let L be a plu-subspace. We consider the complex vector space of pairs of complex
linear forms (∑

j

c j z j ,
∑

j

d jw j

)
, c j , d j ∈ C,

as functions on L . If the coordinate functions z j , w j are plu-linearly independent
as functions on L then there are no equations and L = Cn

× Cn . Otherwise, we
have a basis of some dimension m and then as a Q-subspace we have dim L = 2m.

The intersection of two (or more) plu-subspaces is a plu-subspace. If A ⊂Cn
×Cn

then there is a smallest plu-subspace containing A, denoted ⟨⟨A⟩⟩.
If A ⊂ Dn then the smallest Q-linear subspace of Cn

× Cn containing A is a
plu-subspace, because the “conjugate” of a given equation follows from multiplying
it through by i .

A plu-subspace of dimension 2m (as a Q-linear subspace) intersects Dn in a
Q-subspace of Dn of dimension at least dimension m since (as the “conjugate” of
any given equation holds automatically) the intersection is equal to the intersection
of Dn with a Q-subspace defined by 2n − (n + m) = n − m independent linear
equations, whence has dimension at least n + (n + m)− 2n = m. But it is also at
most this dimension, as each such equation (with its “conjugate”) eliminates one
variable. Thus, the intersection of Dn with a plu-subspace of dimension 2m is a
Q-subspace of Dn of dimension m.

Definition 2.5. A torus T ⊂ Gn
m × Gn

m is called a plu-torus if it is the image under
exp of some plu-linear Q-subspace L ⊂ Cn

× Cn .

The set of exponent vectors (q, r) ∈ Zn
× Zn defining a plu-torus is closed

under the operation (q, r) 7→ (−r, q); this is an equivalent condition to the one
in Definition 1.1. Each plu-torus T = exp(L), where L is a plu-subspace of
dimension 2m, contains the image of exp(L ∩ Dn), which we denote 0T = 0n ∩ T .

The intersection of tori is not in general a torus. However, the intersection of two
tori contains among its components a unique torus. And if the two tori are plu-tori
so is the torus component of their intersection.

Consider a subvariety (i.e., irreducible) A ⊂ Gn
m ×Gn

m. Suppose that A∩0n ̸=∅
and that A ⊂ T and A ⊂ T ′, where T, T ′ are plu-tori. Then A ⊂ T ∩ T ′, and hence
is contained in one of its components. These are disjoint from each other. The
unique preimage of (x, y) ∈ A ∩ 0n is in Dn and lies in the intersection of the
plu-linear subspaces L , L ′ corresponding to T, T ′. We thus see that A is contained
in the unique plu-torus component of the intersection.
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Thus for A ⊂ Gn
m × Gn

m with A ∩ 0n ̸= ∅ there is a unique smallest plu-torus
containing A, which we have denoted ((A)). In particular, for (x, y) ∈ 0n there is a
smallest plu-torus ((x, y)) containing (x, y). And plu-tori have even dimension (as
complex subvarieties).

Remark 2.6. More generally, if X is a quasiprojective variety (or even more
generally a connected open semialgebraic subset of one; see [Pila 2022, Chapter 14])
we can define a designated collection on X to be a collection S of subvarieties
(relatively closed and irreducible) of X such that (i) X ∈ S and (ii) S is closed under
taking irreducible components of intersections. This is somewhat more general
than the notion of “prespecial structure” considered in [Klingler et al. 2018] (we
do not insist that special points be Zariski-dense in special subvarieties), and the
still more elaborate setting of “distinguished categories” [Barroero and Dill 2021],
but still gives a well-defined notion of “smallest special subvariety containing A”
for any A ⊂ X . If � ⊂ X is some complex analytic subset then one can consider a
designated collection on X meeting � to be a collection of subvarieties of X which
have nonempty intersection with �, such that (i) X ∈ S and (ii) if Y, Z ∈ S and W
is a component of Y ∩ Z which meets � then W ∈ S. Then, as above, one has a
well-defined “smallest special subvariety” containing A for any A ⊂ X which has a
nonempty intersection with �. This notion arises, as here, naturally in considering
ZP-type formulations relevant to certain Schanuel-type statements.

We also want the corresponding “weakly special subvarieties”. These come from
considering pairs of linear equations modulo some suitable constants.

Definition 2.7. Let V be a finite-dimensional complex vector space. A finite set
(z1, w1), . . . , (zn, wn) of elements of V 2 is called strictly plu-linearly independent
modulo C if there is no nontrivial pair of equations∑

j

q j z j +

∑
j

r jw j = c, −

∑
j

r j z j +

∑
j

q jw j = ic

with q j , r j ∈ Q (not all zero), and c ∈ C.

There is a well-defined notion of strict plu-mod C basis, the cardinality of a
maximal strictly plu-linearly independent modulo C subset.

Definition 2.8. A linear subvariety L ⊂ Cn
× Cn is called a strict plu-linear subva-

riety if it is defined by linear equations which are closed under the operation∑
j

q j z j +

∑
j

r jw j = c 7→ −

∑
j

r j z j +

∑
j

q jw j = ic.

A strict plu-linear subvariety L has even dimension 2m. It intersects Dn in a
subspace of dimension at least m.
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The intersection of two strict plu-linear subspaces is a strict plu-linear subspace.
Given A ⊂ Cn

× Cn , there is a smallest strict plu-linear subvariety containing it,
which we denote ⟨⟨A⟩⟩SPL.

Definition 2.9. A torus coset T ⊂ Gn
m × Gn

m is called a strict plu-coset if it is the
image under exp of a strict plu-linear subvariety.

Equivalently, a strict plu-coset is a coset T of a torus defined by equations with
the property that if xq yr

= c on T then x−r yq
= d on T for some d with (c, d) ∈ 0.

Consider a subvariety A ⊂ Gn
m × Gn

m. Suppose that A ∩ 0n ̸= ∅ and that A ⊂ T
and A ⊂ T ′, where T, T ′ are strict plu-cosets. Then A ⊂ T ∩ T ′, and hence is
contained in one of its components. These are disjoint from each other. The unique
preimage of (x, y) ∈ A ∩ 0n is in Dn and lies in the intersection of the strict plu-
linear subvarieties L , L ′ corresponding to T, T ′. We thus see that A is contained in
the unique strict plu-coset component of the intersection.

Thus for A ⊂ Gn
m×Gn

m with A∩0n ̸=∅ there is a unique smallest strict plu-coset
containing A, which we denote

((A))SPC.

There is also a weaker notion of “plu-linear dependence modulo C” in which
the pair of constants do not need to be related by multiplication by i . There are
corresponding “plu-linear subvarieties” and “plu-cosets”, their images under exp.

For A ⊂ Gn
m × Gn

m there is a unique smallest plu-coset containing A, denoted

((A))PC.

3. Schanuel’s conjecture for z i

We can now state a more precise analogue of Schanuel’s conjecture for zi .

Conjecture 3.1 (Schanuel’s conjecture for zi (zi SC)). Suppose that (xi , yi ) ∈ 0,
i = 1, . . . , n. Then

t.d.(x1, . . . , xn, y1, . . . , yn) ≥
1
2 dim ((x1, . . . , xn, y1, . . . , yn)).

Here and throughout, “dim” denotes the complex dimension of an algebraic
variety. For n = 1 the statement reduces to the Gelfond–Schneider theorem and
so is true: for if tr.deg.(x, y) = 0 we must have x i

= y with x, y ∈ Q×. But this
is impossible unless x = 1 by Gelfond–Schneider, and since we then also have
yi

= 1/x we must have y = 1 as well, and then they are skew-multiplicatively
dependent and dim ((x, y)) = 0.

Remarks 3.2. (1) As a reduct of complex exponentiation, (C; +, ×, 0, 1, 0) is
conjecturally “tame” [Zilber 2005]; in unpublished work, Wilkie has proved it is
quasiminimal. (Quasiminimality of the corresponding structure including predicates
for all complex powers has recently been proven in [Gallinaro and Kirby 2023].)
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As an expansion of the real field the structure (R, +, ×, 0) is also tame, though
“d-minimal” (not o-minimal); see [Miller 2005].

(2) Another approach to formulating SC for zi is to use an equivalent formulation
of SC in terms of q(z) = exp(2π i z) rather than exp(z).

Observe that if x1, . . . , xn are multiplicatively independent algebraic numbers
then, under SC, their logarithms u1, . . . , un , under any determination, are alge-
braically independent. Hence these u j , iu j are certainly linearly independent
over Q, and we get a conjectural analogue of Lindemann’s theorem (often called
the Lindemann–Weierstrass theorem).

Conjecture 3.3 (zi -Lindemann–Weierstrass conjecture (zi LW)). Suppose that the
algebraic numbers x1, . . . , xn ∈ Q× are multiplicatively independent and that
(x j , y j ) ∈ 0, j = 1, . . . , n. Then y1, . . . , yn are algebraically independent.

In fact this statement already follows from zi SC, which would seem much weaker
than SC.

Proposition 3.4. zi SC implies zi LW.

Proof. Assume zi SC. Suppose x1, . . . , xn are algebraic and multiplicatively inde-
pendent. Then their logarithms (under any determination) are linearly indepen-
dent over Q. Then, by Baker’s theorem [Baker 1975], they are linearly indepen-
dent over Q. Then x j , y j are plu-multiplicatively independent and so, by zi SC,
t.d.(xi , yi ) = n. Thus y1, . . . , yn are algebraically independent. □

Remark 3.5. Note that if (z, w) ∈ 0 then also (w, z−1) ∈ 0. Thus the analogue of
“algebraic independence of logarithms” for zi , which we might call zi AIL, is in fact
equivalent to zi LW: if y1, . . . , yn are algebraic and multiplicatively independent
and (x j , y j ) ∈ 0, j = 1, . . . , n, then x1, . . . , xn are algebraically independent. It
seems interesting to consider other “zi analogues” of consequences of SC.

4. Uniform Schanuel conjecture and Zilber–Pink conjecture for z i

We can rephrase zi SC as follows:

Let V ⊂ Gn
m×Gn

m be defined over Q and with dim V <n. If (x, y)∈ V ∩0

then (x, y) are plu-multiplicatively dependent.

More generally, if T ⊂ Gn
m × Gn

m is a 2m-dimensional plu-torus, V ⊂ T is defined
over Q with dim V < m, and (x, y) ∈ V ∩ 0, then (x, y) belongs to a proper
plu-subtorus of T .

The uniform version, following [Zilber 2002], asserts that, given such T and V ,
finitely many proper plu-subtori of T account for all such (x, y).
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Conjecture 4.1 (uniform Schanuel conjecture for zi (zi USC)). Let T ⊂ Gn
m × Gn

m
be a plu-torus of dimension 2m and V ⊂ T an algebraic subvariety, defined over
Q with dim V < m. There is a finite set U of proper plu-subtori of T such that if
(x, y) ∈ V ∩ 0T then (x, y) ∈ U for some U ∈ U .

Now let L ⊂ Cn
× Cn be the Q subspace associated to T . We have W =

(Dn ∩ L) × V ⊂ L × T of dimension dim W < 2m; the ambient L × T has
dimension 4m. Therefore, any point in the intersection V ∩0T is a point in W on
the graph of exp restricted to L . If we assume SC (ideologically speaking assuming
zi SC should be enough, but this is unclear) then, as shown in [Zilber 2002], any
point (x, y) ∈ V ∩ 0 is in an atypical intersection of V with some plu-subtorus.
Thus to get from SC to zi USC we need the following Zilber–Pink-type statement,
in analogy with “CIT” of [Zilber 2002].

We state the conjecture for V/C and without dimension restrictions although for
the purposes of connecting SC and zi USC, only V/Q, 2 dim V < dim T is required.

Conjecture 4.2 (zi ZP). Let T ⊂ Gn
m × Gn

m be a plu-torus. Let V ⊂ T . There is
a finite set U of proper plu-subtori of T with the following property. If S ⊂ T is
a plu-subtorus and A ⊂cpt V ∩ S is atypical in dimension with A ∩ 0T ̸= ∅, then
there exists U ∈ U such that A ⊂ U .

Now given A ⊂ T with A∩0n ̸=∅, we have seen that there is a smallest plu-torus
containing A, denoted ((A)), and defined the plu-defect δ(A) = dim ((A))− dim A,
and corresponding notion of plu-optimal subvariety.

As in [Habegger and Pila 2016], Conjecture 4.2 is then formally equivalent to
the statement formulated as Theorem 1.3.

Conjecture 4.3. Let V ⊂ Gn
m × Gn

m. Then there are only finitely many plu-optimal
subvarieties of V .

The reason that we can prove this statement, while multiplicative ZP remains
seemingly far out of reach, is the following. An atypical intersection V ∩ S is typi-
cally a point, and any intersection point is atypical provided dim V +dim S < dim T .
In [Habegger and Pila 2016] it is shown that the full Zilber–Pink conjecture (in
the modular and abelian settings) reduces to finiteness of optimal points in general.
Now if we consider “plu-optimal points” they must be algebraic, on the one hand,
if V/Q, since tori are defined over Q, but they must also belong to 0. But the
Gelfond–Schneider theorem (see, e.g., [Baker 1975]) implies that the only such
point is (1, 1).

For example, consider the case of a curve V ⊂ T , defined over Q. Suppose S
is a plu-subtorus and (x, y) ∈ V ∩ S. If (x, y) is an isolated intersection then it
is algebraic, and consequently (x, y) ∈ 0n if and only if (x, y) = (1, 1). So if V
intersects atypically in a component meeting 0n then this component is either (1, 1)
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or all of V , in which case V is contained in a proper plu-subtorus. Thus we see
that Conjecture 4.3 holds for V .

Our strategy, following [Habegger and Pila 2016], is to apply Ax–Schanuel to
reduce to looking for plu-optimal points in the translate spaces of finitely many
families, and then the above argument is decisive in showing that there is at most
one plu-optimal point, namely the one corresponding to (1, 1), in each such family.
We go from V/Q to V/C via a uniform version. The context for this argument is
described further in Section 9 where it is presented.

Implementing this strategy requires the analogous “optimal” notions for strict
and general plu-cosets. The analogous notion for weakly special subvarieties in the
multiplicative setting is “geodesic optimal” (see [Habegger and Pila 2016]), which
appeared earlier in [Poizat 2001], and then elsewhere, as “cd-maximal”. We define
the corresponding defects:

δSPC(A) = dim ((A))SPC − dim A, δPC(A) = dim ((A))PC − dim A.

Definition 4.4. Let V ⊂ Gn
m × Gn

m. We say that A ⊂ V is strictly plu-geodesic
optimal for V if it is maximal for δSPC among subvarieties of V containing A and
meeting 0, and plu-geodesic optimal if it is maximal for δPC among subvarieties of
V containing A.

5. Ax–Schanuel for z i

Let K be a differential field with Q ⊂ Q(i) ⊂ C ⊂ K with commuting derivations
D j and constant field C . The following is a special case of “Ax–Schanuel” [Ax
1971, Theorem 3].

Proposition 5.1. Let u1, . . . , un, x1, . . . , xn, y1, . . . , yn ∈ K × with

D j xk = xk D j uk, D j yk = iyk D j uk for all j, k.

Then

tr.deg.C(u1, . . . , un, x1, . . . , xn, y1, . . . , yn) ≥ 2n + rankK (D j uk)

unless the uk, iuk are linearly dependent over Q modulo C.

Suppose that the u j , iu j are linearly dependent over Q modulo C , say∑
j

q j u j + i
∑

j

r j u j = c ∈ C (2)

with q j , r j ∈ Z not all zero. Then we find that∏
j

xq j
j

∏
j

yr j
j = c′

∈ C,
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as it is in the kernel of all the derivations. Multiplying (2) through by i we get a
second relation (1i ), and a second multiplicative relation∏

j

x−r j
j

∏
j

yq j
j = c′′

∈ C.

Now morally one wants to say that c′
= exp(c), c′′

= exp(ic) so that c′′
= c′ i ,

but the differential field setting has no interpretation of this.
Conversely, if we are given x1, . . . , xn, y1, . . . , yn satisfying the differential

relations
D j yk

yk
= i

D j xk

xk
for all j, k

then if u1, . . . , un satisfy D j xk = xk D j uk for all j, k then they also satisfy the
equations D j yk = iyk D j uk , and if the x j , y j satisfy multiplicative relations mod C
then the uk, iuk satisfy linear relations over Q modulo C .

And if we have a linear relation
∑

j q j u j + i
∑

j r j u j = c then the “conjugate”
relation indeed has constant ic.

Finally we note that with any u j , x j , y j as in Proposition 5.1 we have

rankK (D j uk) = rankK (D j xk) = rankK (D j yk) = rankK (D[x], D[y]),

where D[x] = (D j xi ) and D[y] = (D j yi ).

Corollary 5.2. Let x1, . . . , xn, y1, . . . , yn ∈ K × with

D j yk

yk
= i

D j xk

xk
for all j, k.

Then

tr.deg.C(x1, . . . , xn, y1, . . . , yn)

≥
1
2 dim ((x1, . . . , xn, y1, . . . , yn))PC + rankK (D j xk),

where (( . . . ))PC is defined using plu-multiplicative dependence modulo C.

Proof. Given x j , y j , j = 1, . . . , n satisfying these equations then some suitable u j

exist (perhaps in some extension differential field), and then the statement follows
from the above discussion. □

We next state “weak CIT” in this setting, following [Zilber 2002]. Given a variety
(or family of varieties) V then there is some finite set of linear dependencies which,
up to translations, accounts for all deficiencies in transcendence degree.

Suppose that V ⊂Gn
m×Ck is a family of algebraic varieties of generic dimension k,

parameterized by t ∈ W ⊂ Ck , with the fibre having dim Vt = k provided t /∈ W ′,
where W ′ is a proper subvariety of W .
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Proposition 5.3. Let V ⊂ Gn
m × Gn

m × Cm be a family of algebraic varieties,
parameterized by points of W ⊂ Cm , of generic dimension k outside W ′.

Then there exists a finite set 6 of integer vectors (q, r) ∈ Z2n
\{0} with the

following property. Suppose t ∈ W\W ′, and A ⊂cpt Vt ∩ 0 with

dim A > k − n.

Then there exists (q, r) ∈ 6 and c, c′
∈ C such that∏

j

xq j
j

∏
j

yr j
j = c and

∏
j

x−r j
j

∏
j

yq j
j = c′

for any point (x, y) ∈ A.

Proof. This is essentially a special case of Proposition 8 of [Zilber 2002], though we
consider families of general dimension, not necessarily k < n. It is an application
of the compactness theorem of first-order logic. Suppose, towards a contradiction,
that no such finite set exists. Certainly if dim A = 0 then this property is satisfied
for any such tuple. Therefore, for some ℓ > 0 we have the property that for any
finite set 6 of tuples there exists t ∈ W\W ′ and a component A ⊂cpt Vt ∩ 0 of
dimension ℓ with ℓ > k − n. Then it is consistent to have a differential field
with ℓ derivations, of rank ℓ on some set {x1, . . . , xn} of functions and to have
also functions y1, . . . , yn satisfying the required equations but with the x j , y j ,
j = 1, . . . , n not plu-multiplicatively dependent modulo constants, giving the
contradiction. □

By repeating this on the families of intersections (the parameter now being the
constants c′, c′′

∈ C), we find that some finite collection of families of plu-cosets
accounts for all plu-geodesic optimal intersections with varieties in the family V .

6. The defect condition

Given a plu-torus T and a subvariety A ⊂ T meeting 0T we have three defects: the
first with respect to plu-tori, the second with respect to strict plu-cosets, and the
third with respect to (general) plu-cosets:

δ(A) = dim ((A))− dim A,

δSPC(A) = dim ((A))SPC − dim A,

δPC(A) = dim ((A))PC − dim A.

Evidently
δPC ≤ δSPC(A) ≤ δ(A).

Suppose that (xi , yi ) are a basis of coordinate pairs on A with respect to plu-
multiplicative dependence. The difference between the defect measures to what
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extent these functions are strictly plu-dependent mod C, and then the extent to
which the remaining strictly plu-dependent mod C ones are plu-multiplicatively
dependent mod C.

Suppose A ⊂ B. Then strict plu-multiplicative relations modulo constants on B
remain strict plu-multiplicative relations modulo constants on A, and if the constant
pairs (ck, dk) in these relations are plu-multiplicatively independent on B they
remain so on A. We therefore see that the defect condition holds between δ and
δSPC, namely

δ(B) − δSPC(B) ≤ δ(A) − δSPC(A).

Similarly, the defect condition holds between δPC and δSPC.

Proposition 6.1. Fix V ⊂ Gn
m × Gn

m.

(i) A plu-optimal subvariety for V is strictly plu-geodesic optimal.

(ii) A strictly plu-geodesic optimal subvariety is plu-geodesically optimal.

Proof. Suppose A ⊂ V is plu-optimal and A ⊂ B ⊂ V . Suppose δSPC(B) ≤ δSPC(A).
Then, by the defect condition,

δ(B) ≤ δ(A) − δSPC(A) + δSPC(B) ≤ δ(A).

Since A is optimal, we have B = A, and so A is strictly plu-geodesically optimal.
This proves (i). The proof of (ii) is similar. □

7. Families of plu-cosets

In this section we introduce some terminology and notation that will be needed in
the proofs of the main results. For general properties of linear tori see [Bombieri
and Gubler 2006, Chapter 3.1]. A family of (general) plu-cosets of a plu-torus X is
determined by a finite set of plu-multiplicative pairs of equations

xq(k)

yr (k)

= 1, x−r (k)

yq(k)

= 1 for k = 1, . . . , K

which define X , and a finite set of exponent vectors, independent of those above,
for some further equations which determine the cosets in the family:

xq(k)

yr (k)

= ck, x−r (k)

yq(k)

= dk for k = K + 1, . . . , K + L ,

such that the fibres are torus cosets in X (i.e., the exponent vectors generate a
primitive lattice).

The plu-cosets are parameterized by the coordinates

(c, d) = (cK+1, . . . , cK+L , dK+1, . . . , dK+L) ∈ GL
m × GL

m.

We denote the parameter space by X S = GL
m × GL

m. The cosets are then the fibres
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of the map π : X → X S given by

π(x, y) =
(
xq(K+1)

yr (K+1)

, . . . , xq(K+L)

yr (K+L)

, x−r (K+1)

yq(K+1)

, . . . , x−r (K+L)

yq(K+L))
.

Such a family we denote SD, where D is the data (exponent vectors for the
equations of T and for the additional equations of the cosets in the family). The
fibre over (c, d) ∈ X S is denoted SD

c,d . The fibre SD
c,d is a strict plu-coset just

if (c, d) ∈ 0L . The union X of the plu-cosets over the family we call the envelope
of SD and denote it [SD

].
We observe that the preimage under π of a plu-torus is a plu-torus, and likewise

for strict and general plu-cosets. To see this, consider a condition of the form

cQd R
= γ, c−Rd Q

= δ,

where Q = (Q1, . . . , QL), R = (R1, . . . , RL) are tuples of integers. The preimage
in X is determined, in addition to the equations for X , by

x
∑

Q j q( j)
−

∑
R j r ( j)

y
∑

Q j r ( j)
+

∑
R j q( j)

= γ,

x−
∑

R j q( j)
−

∑
Q j r ( j)

y−
∑

R j r ( j)
+

∑
Q j q( j)

= δ,

which is a plu-pair.

8. Proof of Theorem 1.3 for V/Q

We can now prove Theorem 1.3 (Conjecture 4.3) for V/Q following the first part
of the proof of [Habegger and Pila 2016, Theorem 10.1], using the fact that 0 has
just one algebraic point (a consequence of the Gelfond–Schneider theorem).

Theorem 8.1. Let V ⊂ Gn
m × Gn

m with V/Q. Then there are only finitely many
plu-optimal subvarieties of V .

Proof. Let A ⊂ V be a plu-optimal component which meets 0n .
We observe that if A ⊂ S for some plu-coset S then this coset must be strict. For

suppose (x, y) ∈ A ∩0n , so (x, y) ∈ S. Let (u, iu) be the tuple of logarithms. Say
that xq yr

= c, x−r yq
= d is a pair of equations defining S. So we have∑

q j u j + i
∑

r j u j = γ

with exp(γ ) = c. But then, multiplying by i , we also have

−

∑
r j u j + i

∑
q j u j = iγ,

whence d = exp(iγ ).
Plu-optimal subvarieties are plu-geodesic optimal. The plu-geodesic-optimal

subvarieties of V arise from intersections with finitely many families SD of plu-
cosets. Fix one of these families S and denote the parameter space X S . Let
τ = dim Sc,d be the dimension of the plu-cosets in the family.
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We have a projection π : [S] → X S whose fibres are the Sc,d . The intersections
V ∩ Sc,d are the fibres of the restriction of this projection to V , whose image in X S

we denote VS , and we have VS/Q. There is a Zariski-open subvariety V ′
⊂ V in

which the fibre over the image has the generic fibre dimension ν = dim V −dim VS .
Suppose A ⊂ V ∩ Sc,d is plu-optimal and meets 0n . If A ⊂ V \V ′ then it

is certainly plu-optimal for the component of V \V ′ it is in. The proof is then
concluded by induction on dim V (the base case dim V = 1 was dealt with in the
second paragraph following the statement of Conjecture 4.3).

So we assume that A ∩ V ′
̸= ∅ and then dim A = ν and π(A) = (c, d). Since

A ∩ 0n ̸= ∅ we have some (x, y) ∈ A ∩ 0n . Thus each component (xi , yi ) ∈ 01,
with logarithm ui . And now if∑

j

q j u j + i
∑

j

r j u j = γ

then this implies
−

∑
j

r j u j + i
∑

j

q j u j = iγ.

Then c = exp(γ ), d = exp(iγ ) and we have (c, d) ∈ 0.
The claim is that {(c, d)} is a plu-optimal point component of VS . We can assume

that we have already dealt with any family of smaller plu-cosets that might have
given rise to A, i.e., we can assume that

Sc,d = ((A))PC.

Then
dim ((A)) = dim Sc,d + dim ((c, d)),

whence
δ(A) = dim ((A))− dim A = dim ((c, d))+ τ − ν.

Suppose that {(c, d)} ⊂ B, {(c, d)} ̸= B with δ(B) ≤ δ(c, d) = dim ((c, d)). Let
C be the component of the preimage of B in V ′ containing A. Then

δ(C)=dim ((C))−dim C ≤dim ((B))+τ−(dim B+ν)≤dim ((c, d))+τ−ν =δ(A).

Then C = A by the plu-optimality of A and so B = {(c, d)} is optimal.
But then (c, d) is algebraic, and since it belongs to 0n we must have (c, d)= (1, 1).

So we get at most one plu-optimal subvariety in each family. □

Remarks 8.2. (1) Can one effectively determine the finitely many families of
plu-cosets? (For the general multiplicative setting [Bombieri et al. 2007] gives an
effective argument for this.) For curves this seems clearly possible.

(2) This shows that SC would imply a uniform zi SC. Does zi SC itself imply some
uniformity, and if so what is the intervening “ZP” statement?
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9. Uniformity and proof of Theorem 1.3 for V/C

Here we prove that Conjecture 4.3 holds uniformly for varieties in families, in the
sense of [Scanlon 2004]: the formal sum of the optimal subvarieties is bounded as
a cycle, which we make precise in Conjecture 9.2. This uses the fact established in
[Habegger and Pila 2016], already exploited here, that ZP is equivalent to showing
that the number of optimal points on any subvariety is bounded. Here we need to
upgrade this to show that the number of optimal points is uniformly bounded on a
family of varieties. We do this following the argument sketched in [Zannier 2012],
which we have fully worked out [Pila 2022, Chapter 24] for ZP in the modular and
multiplicative settings. As a by-product, we establish that Conjecture 4.3 holds
for V/C.

Let X = Gn
m ×Gn

m. A family of subvarieties of X means a subvariety V ⊂ X × P
for some constructible set P , considered as the family of fibres Vp ⊂ X , p ∈ P .
The fibre dimension of a family is the maximum dimension of a fibre.

If V is a family of subvarieties of X and h is a positive integer then we have the
incidence variety

Inch(V ) = {(z1, . . . , zh) ∈ Xh
: ∃p ∈ P : z j ∈ Vp, j = 1, . . . , h}.

Since P is only assumed constructible Inch(V ) may not be Zariski closed, and we
denote by V ⟨h⟩ its Zariski closure. In particular V ⟨1⟩ is the Zariski closure of the
union of all the fibres, which we call the envelope of the family and denote also
by [V ].

We have already seen that plu-cosets of a plu-torus T ⊂ X come in families.
Such a family is a family S ⊂ X × X S (in the above sense). The envelope [S] is a
plu-torus.

Theorem 9.1. Let V ⊆ X × P be a family of subsets of X defined over Q. Then
there is a uniform bound on the number of optimal points of Vp, p ∈ P.

Proof. We prove the theorem by induction (first) on the dimension of the parameter
space P . The case dim P = 0 is addressed by Theorem 8.1. We may then assume
that the Zariski closure of P is irreducible, that the fibre dimension v = dim Vp is
constant and equal to the generic fibre dimension, and that there is a single family
S = SD of plu-cosets such that every fibre Vp in the family has ((Vp))PC = Sc,d

for some (c, d) ∈ X S . Thus [V ] ⊂ [S]. We adopt the notation of Section 7 for this
family.

For given dim P we may assume that the theorem holds for all families W ⊂ X×Q
(i.e., of any dimension of the parameter space Q) such that each fibre has ((Wq))PC =

S′

c,d for some fibre of a family S′ of plu-cosets, and for which either dim[S′
] <

dim[S] or dim[S′
] = dim[S] and dim S′

c,d < dim Sc,d ; the base cases are trivial.
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Now we take a positive integer h, to be specified below, and consider V ⟨h⟩
⊂ [S]

h .
Then in fact V ⟨h⟩

⊂ S⟨h⟩, and the latter is a plu-torus: in addition to the equations
for [S]

h it is defined by the plu-pairs of equations

(x ( j))q(ℓ)

(y( j))r (ℓ)

= (x (k))q(ℓ)

(y(k))r (ℓ)

, (x ( j))−r (ℓ)

(y( j))q(ℓ)

= (x (k))−r (ℓ)

(y(k))q(ℓ)

for j ̸= k and ℓ = K + 1, . . . , K + L . Thus

dim S⟨h⟩
= h dim[S] − L(h − 1).

Now suppose that Vp is a fibre of V which contains h optimal points (x ( j)
0 , y( j)

0 ),
j = 1, . . . , h. Then they are atypical as point subvarieties of Vp (unless dim Vp = 0
in which case the conclusion is trivial for V ). Thus there are plu-tori T j , j =1, . . . , h
such that (x ( j)

0 , y( j)
0 ) ∈ T j ∩ 0X , j = 1, . . . , h and

dim T j + dim Vp < dim[S].

Consider the plu-torus
T = T1 × · · · × Th .

Since the equations defining S⟨h⟩ are between different groups of variables, they
are independent of the equations defining each T j , and we have

dim T ∩ S⟨h⟩
= dim T − L(h − 1).

Then
(x0, y0) =

(
(x (1)

0 , . . . , x (h)
0 , y(1)

0 , . . . , y(1)
0 )

)
∈ T ∩ S⟨h⟩

∩ 0T

and is atypical for V ⟨h⟩ as a subvariety of S⟨h⟩ provided that

dim V ⟨h⟩
+ dim T ∩ S⟨h⟩ < dim S⟨h⟩.

Thus we find that (x0, y0) is atypical provided

dim P + h dim v + h(dim[S] − v − 1) − L(h − 1) < h dim[S] − L(h − 1),

that is, provided h > dim P . We now assume this (but the choice of h needs to be
on the basis of some combinatorial principles further below).

We can now apply Theorem 8.1 to V ⟨h⟩, which is defined over Q, to conclude that
atypical points are contained in one of finitely many proper plu-subtori U ⊂ S⟨h⟩.
Each such U is determined by at least one plu-pair of equations∏

j

(x ( j))s( j)
(y( j))t ( j)

= 1,
∏

j

(x ( j))−t ( j)
(y( j))s( j)

= 1.

Consider the exponent vector pair (s(ℓ), t (ℓ)) on a particular set of variables. If
this is not in the lattice 3(S) generated by the equations defining S (the fixed ones
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and the variable one), and if we have some points (x ( j), y( j)), j ̸= ℓ and sufficiently
many points (x (ℓ), y(ℓ)) such that, for each of the (x (ℓ), y(ℓ)), the relation

(x (1))s(1)

· · · (x (ℓ))s(ℓ)
· · · (x (h))s(h)

(y(1))t (1)

· · · (y(ℓ))t(ℓ)
· · · (y(h))t (h)

= 1,

and the companion relation

(x (1))−t (1)

· · · (x (ℓ))−t(ℓ)
· · · (x (h))−t (h)

(y(1))s(1)

· · · (y(ℓ))s(ℓ)
· · · (y(h))s(h)

= 1,

hold, then we get many points (x (ℓ), y(ℓ)) ∈ Vp satisfying an additional plu-relation
mod C with the exponent-pair (s(ℓ), t (ℓ)). The corresponding family S′ of plu-
cosets has smaller fibre dimension than S.

If (s(ℓ), t (ℓ)) is in 3(S), then using the relations defining S⟨h⟩ we can replace
this plu-pair by an equivalent pair of equations with trivial exponent pair (s(ℓ), t (ℓ)).
It may be that, for some U , every (s(ℓ), t (ℓ)) ∈ 3(S). But since the equations
defining U define a proper plu-subtorus of S⟨h⟩, when the relation is shifted to a
single set of variables it must be one that does not hold identically on [S], but gives
a proper plu-subtorus SU .

We thus have that, for any h optimal points on some fibre Vp, we get one of
finitely many possibilities: that some designated coordinate lies in one of the SU , or
the h-tuple of tuples satisfies one of finitely many relations involving exponent pairs
that, wherever they are nontrivial on a group of variables, do not belong to 3(S).

If we now choose a much larger H and have plu-optimal (x ( j)
0 , y( j)

0 ), j =1, . . . ,H
in some order, then by the hypergraph Ramsey theorem we can be assured that there
is some subset of H of them for which all choices (in order) of h satisfy the same
one of these conditions. We thus find that we have many points on some family of
plu-cosets of smaller dimension, or many points in some smaller plu-torus SU . We
can therefore complete the proof by induction. □

A rephrasing of Conjecture 4.3 is that, for V ⊂ Gn
m × Gn

m, the formal sum of
plu-optimal subvarieties is a cycle V opt. We now want to frame a uniform version
that, over families V , the plu-optimal cycle is uniformly bounded as a cycle. We
formulate this following [Scanlon 2004].

It should be borne in mind that zi ZP makes a nontrivial statement only for
subvarieties that meet 0n . If V does not meet 0n then, by definition, V has no
plu-optimal subvarieties and V opt is empty, while if V does meet 0n then V itself
is plu-optimal for V and V opt is nonempty.

Conjecture 9.2 (Uzi ZP). Let V ⊂ Gn
m × Gn

m × P be a family of subvarieties. Then
there is a family W ⊂ Gn

m × Gn
m × Q such that, for every p ∈ P for which Vp

meets 0n , there exists q ∈ Q such that V opt
p = Wq .

Theorem 9.3. Uzi ZP holds for families V defined over Q.



644 JONATHAN PILA

Proof. We replay the proof of Theorem 8.1. The plu-geodesic optimal subvarieties
of all the Vp come in finitely many families. For each such family, the plu-optimal
subvarieties on the fibres of V correspond to plu-optimal points on the family of
fibres of the projections. For each such family there is a uniformly bounded number
of plu-optimal points on a fibre by Theorem 9.1. □

Corollary 9.4 (Theorem 1.3). Conjecture 4.3 holds for V/C.

Proof. Every such V is a fibre in a family defined over Q. □

In a similar way, Theorem 9.3 holds for families defined over C as every such
family V ⊂ Gn

m × Gn
m × P is a subfamily (meaning its fibres are a subset of the

fibres) of a larger family V ⊂ Gn
m × Gn

m × Q defined over Q.
The present results generalize suitably to other algebraic powers, as will be

shown in forthcoming work of Cassani. It seems also interesting to consider
modular analogues.
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