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We sketch the mathematical background and the main ideas in the proofs of
categoricity of theories of several examples of universal covers — reducing an
analytic to a model theoretic (discrete) description. We hope this discussion will
be useful to a wide spectrum of mathematicians, ranging from those working in
geometry to those working in logic; specifically, model theory.
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1. Introduction

The goal of this paper is to sketch (hopefully for a wide spectrum of mathematicians
ranging from those working in geometry to those working in logic; specifically,
model theory) some recent interactions between model theory and a roughly 150-
year old study of analytic functions involving complex analysis, algebraic topology,
and number theory that explore the canonicity of universal covers. Towards this
goal we discuss and present several examples indicating the main ideas of the proofs
and the necessary changes in method for different situations.

Here is Zilber’s description of his own project (from his 2000 Logic Colloquium
talk in Paris [52]):
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The initial hope of this author in [51] that any uncountably categorical
structure comes from a classical context (the trichotomy conjecture),
was based on the belief that logically perfect structures could not be
overlooked in the natural progression of mathematics. Allowing some
philosophical license here, this was also a belief in a strong logical
predetermination of basic mathematical structures. As a matter of fact,
it turned out to be true in many cases. . . . Another situation where this
principle works is the context of o-minimal structures [38].

A rather ambitious project aimed at finding categorical axiomatizations (Defini-
tion 3.0.1) of various kinds of universal covers has been unfolding in the twenty-first
century. The simplest example of such universal covers is given by the short exact
sequence

0→ ker(exp)→ (C,+, 0)
exp
−−→ (C,+, · , 0, 1)→ 1. (1)

Zilber’s original project really aimed to understand the sequence

0→ ker(exp)↣ (C,+, · , exp)
exp
−−→→ (C,+, · , exp)→ 1. (2)

The first diagram describes a two-sorted cover of the multiplicative group by the
additive group. The full field structure is studied on the range space although the
kernel is of the homomorphism from (C,+, 0) to (C, · , 1).

The second [54] corresponds to the theory of the complex exponential field. The
domain and range of the map are the same exponential field but the kernel is again
computed with respect to the homomorphism exp from (C,+)→ (C∗,×).

In both cases, first order axioms are supplemented by an Lω1,ω-sentence asserting
the kernel is isomorphic to Z, i.e., is standard. Here, we focus on three main families
of generalizations (described in the chart below) of the first diagram. As this question
was extended to more general algebraic contexts, the fundamental cover diagram
from (1) changed to this more general situation:

C
p
−→→ S(C). (3)

Notice two things:

• The map p remains a projection, but it will significantly change as the family
of examples unfolds.

• There is no longer a kernel when S(C) is not a group.

Therefore, in a Protean way, the infinitary description that in the particular case
described a ‘standard kernel’ assumes various guises for different examples. Usually,
the descriptions are of ‘standard fibers’ rather than having a ‘standard kernel’.
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Crucially, in all cases except part of Section 5 the target will be some kind of
definable set in an algebraically closed field. The necessary vocabulary for the
domain will vary among the situations considered. Shimura varieties require a more
general domain:

Notation 1.0.1 (the general situation).

X+
p
−→ S(C)→ 1. (4)

Here, S(C) is a variety arising as the quotient of the action of a discrete group on
H (hyperbolic space) or more generally (Shimura varieties) on a hermitian symmetric
domain X+. The target is described by a first order theory T := Th(S(C)) in a
large enough (field) countable vocabulary with quantifier elimination (possible, as
S is definable in (C,+,×)). Notation 1.0.1 thus instantiates the general schema,
with appropriate notations for specific cases to be given as we discuss them. Zil-
ber describes the value of his project in terms of ‘a complete formal invariant’
(Remark 5.3.2).

The geometric value of the project is perhaps in the fact that the formula-
tion of the categorical theory of the universal cover of a variety X . . . is
essentially a formulation of a complete formal invariant of X. [16, §1]

Table 1 organizes the papers which are the major source for this study. It also
provides a keyword describing the main method or context used, and the section of
this paper where issues around the specific variant are explained.

The first row of the table — an axiomatization of the exponential map from
the complex field to itself; see [54] — differs from the others in the role of the
quantifier ‘there exists uncountably many’. In that case it is essential to directly
control the cardinality of the algebraic closure of a countable set; moreover, the

topic section sources method/context

complex exponentiation 1 [53] quasiminimality

cov mult group 1 [55; 6] quasiminimality
j-function 4.1 [25] background

modular/Shimura curves 4 [15; 16] quasiminimality

finite Morley rank groups 5.1 [7] fmr and notop
abelian varieties 5.3 [9] fmr and notop; quasiminimality

Shimura varieties 6 [19] notop

smooth varieties 8 [57] o-quasiminimality

Table 1. Chief sources for the general topics covered in this study,
together with the main method or context used.



650 JOHN T. BALDWIN AND ANDRÉS VILLAVECES

domain has a field structure that disappears in the two-sorted approach of the rest.
In the remaining rows, the infinitary logic Lω1,ω is used to control the size of fibers
of the cover or when the structure is a group the size of the kernel. This requirement
suffices to also control the cardinality of the algebraic closure.

The next block of rows deals with curves (1-dimensional objects), where cate-
goricity is obtained by quasiminimality.

The following block deals with higher-dimensional varieties; those rows stray
from formal categoricity towards more traditional descriptions of models, and
quasiminimality is replaced by a different version of excellence arising in She-
lah’s study of notop theories (an important notion in classification theory). Both
quasiminimality and ‘notop’ apply to abelian varieties.

The last row considers families of covers of arbitrary smooth algebraic varieties
with an infinitary logic construction defined over o-minimal expansions of the reals.
There, the focus is on categoricity in ℵ1.

It is worth noting that we could have organized our chart under a totally different
scheme. The abelian varieties and (C,+) are specific varieties. The j -function and
the Shimura varieties may be regarded as moduli spaces for (generalized) families
of varieties.1 After preliminary discussions on the model theoretic framework, in
Section 4 we sketch in some detail categoricity of universal covers of modular
curves. In the later sections we describe the modifications to this program necessary
for higher dimensions.

Mathematical encounters.

Some ancient history: in and out of the Zilber world. The first author turns to the
first person singular for some memories:

Zilber and I both received our Ph.D.’s in the early 1970’s. An important result
appeared in both theses: the solution to Morley’s conjecture that an ℵ1-categorical
theory has finite Morley rank. Such an overlap was not an issue during the Cold
War. (On the other hand, my advisor, Lachlan, had to write an entirely new thesis
when the result of the proposed one appeared in the west as he was about to submit.)

Given my zero knowledge of Russian, I first learned in any detail of Zilber’s
work during the 1980–81 model theory year in Jerusalem. Greg Cherlin had no
such deficiency and gave with Harrington and Lachlan an alternate proof of Zilber’s
theorem that there were no finitely axiomatizable totally categorical theories. They
relied on the classification of finite simple groups. A few years later Boris completed
his model theoretic proof of the key combinatorial lemma avoiding that reliance.

I first knew Boris in any depth during the model theory semester in Chicago
1991–92. Unfortunately, I had partially financed a semester by agreeing to be acting

1Types of Shimura varieties include Siegel, PEL-type, and Hodge-type; only some parametrize
algebraic varieties.
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head the Fall semester, thereby restricting my mathematical activity. In that busy
fall, Boris and Angus Macintyre lectured on Tuesday’s on Zariski geometries and
o-minimality, respectively. The lively group include Macintyre, Zilber, Laskowski,
Marker, Otero, D’Aquino and myself, with Pillay driving in weekly from Notre
Dame. Lunch was at a deli that Boris insisted on because of the soup followed by
coffee at Jamoch’s, the first modern coffee house in the UIC area.

About that time, I began work on the Hrushovski construction, but in a quite
different direction from Boris: predimension with irrational α. This led to my work
with Shelah giving the first full proof of the 0-1 law with edge probability n−α and
that the theory of the Shelah–Spencer graph was stable, building on the 1992 Ph.D.
thesis of my student Shi. And this led to work with Kitty Holland on fusions, giving
the first construction of a rank 2 field with a definable infinite predicate. And then
back to Boris and his work on complex exponentiation. Understanding his notion
of quasiminimal excellence inspired the desire to understand Shelah’s more general
notion of excellence. Thence came my monograph on abstract elementary classes
and subsequent work on infinitary logic. In any case, visits several times a decade
to Oxford always were exciting sources of ideas and pleasant times.

An unlikely encounter of two areas: MAMLS at Rutgers, 2001. The second author
of this paper witnessed and participated in one of those momentous encounters of
two areas that only seldom happen, and recounts it in the first person singular:

During the MAMLS Meeting at Rutgers in February 2001, a group of peo-
ple working in Abstract Elementary Classes (including Rami Grossberg, Monica
VanDieren, Olivier Lessmann and myself) was very busy discussing Shelah’s notion
of excellence, originally linked to his work in the model theory of Lω1,ω. The
n-amalgamation diagram was very much part of that discussion. There was a
lecture by Boris Zilber at the end of the day, and we all attended, not expecting to
understand much, but eager to see him speak. To our great surprise, at the end of
Zilber’s lecture (dealing with exponential covers, mentioning many analytic number
theoretic methods that were arcane to us, and mixing in areas such as Nevanlinna
theory), he asked a final question and drew a picture underscoring his question.
Boris’s picture was exactly the n-amalgamation diagram we had been discussing
thoroughly with the AEC people those very same days; his question was exactly
about the behavior of types in the amalgam and how it could be controlled by small
pieces in the components. We jumped to talk to him at the end of his lecture, with
the excitement of seeing a potential connection. Boris said he didn’t know the
model theory of Lω1ω but he would look into excellence. . .

The rest is history: after a few weeks, a first draft of a proof of properties of
pseudoexponentiation drawing on a version of excellence and quasiminimality in
Lω1ω was circulated, and Zilber started using many methods from excellent classes
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and infinitary logic. The richness of this approach has provided many interesting
connections; we explore some of them in our paper.

A word of thanks from the second author. Once again the second author turns to
the first person singular.

I would like to thank Boris Zilber, at a very personal level, for a
life-changing conversation we had in 2007 in Utrecht, during a
meeting organized by Juliette Kennedy, on connections between
mathematics, philosophy and art. One evening, after dinner, Boris
said “let’s go for a walk and speak a bit about mathematics.” In the
cold night along the canals, he described, for about an hour, some
of what he had been doing — I kept asking and asking questions.
At some point, on a bridge, he turned to me and said, “But you,
on what have you been working?” I tried to gather my thoughts
on the spot while walking, and started describing a project we
had back then with Berenstein and Hyttinen [11] of understanding
independence notions in continuous logic, trying to extend the
work of Chatzidakis and Hrushovski to the continuous case and
encountering difficulties. Boris asked me to describe briefly contin-
uous model theory and continuous abstract elementary classes. At
some point, he said I obviously had tools for dealing with model
theoretical approaches to quantum mechanics. I asked how so. He
said, “look at Gelfand triples . . . ”. I returned to Helsinki, where
I was spending a sabbatical, and Boris’s remarks made a deep
change in my own approach to model theory, in the possibilities I
started slowly unfolding. I am deeply grateful for that momentous
conversation, and for all the lines of work arising from that evening!

2. Model theory in mathematics

We first deal with some variations in model theoretic and geometric terminology.

2.1. Model theoretic background. Mathematical logic makes a central distinction
between a vocabulary and a collection of sentences in a logic. For this reason, we
use ‘language’ only for the second and reserve ‘vocabulary’ for what is sometimes
called similarity type.

Definition 2.1.1 (vocabulary and structure). 1. A vocabulary τ is a collection of
constant, relation, and function symbols (with finitely many arguments).

2. A τ -structure is a set in which each τ -symbol is interpreted, e.g., an n-ary
relation symbol as an n-ary relation.
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Definition 2.1.2. Full formalization involves the following components.

1. A vocabulary with associated notion of structure as in Definition 2.1.1.

2. A logic L has:
a A class L(τ ) of ‘well formed’ formulas.
b A notion of ‘truth of a formula’ from the class L(τ ) in a τ -structure,

usually denoted A |H ϕ.
c A notion of a ‘formal deduction’ for this logic.

3. Axioms: Specific sentences of the logic that specify the basic properties of the
situation in question.

Example 2.1.3 (three important logics).

1. The first order language Lω,ω(τ ) associated with τ is the least set of formulas
containing the atomic τ -formulas and closed under finite Boolean operations
and quantification over finitely many individuals.

2. The Lω1,ω(τ ) language associated with τ is the least set of formulas containing
the atomic τ -formulas and closed under countable Boolean operations and
quantification over finitely many individuals.

3. The second order language associated with τ , denoted L2(τ ), is the least set of
formulas extending Lω,ω(τ ) by allowing quantification over sets and relations.
L2({=}) is symbiotic (‘morally equivalent’, roughly speaking) with set theory.

Morley rank (corresponding to the Krull/Weil dimension in the particular case
of fields) was introduced in [36] to study theories categorical in uncountable power.
Section 5 explores the role of finite Morley rank groups in studying covers. Three
good sources for the more advanced model theory used here are [33; 41; 49].

2.2. Various viewpoints. We now discuss two quite different uses of the three
words automorphism, model and definable, coming from areas of mathematics
relevant to this paper. (The difference in use depending on the area of mathematics
has been at times a source of confusion.)

Remark 2.2.1 (automorphism: two notions).

In model theory: An automorphism of a τ -structure A is a permutation of its
universe A that preserves (in both directions) each relation or function symbol
for τ . For instance, the automorphisms of a geometry (when given in terms of
lines and points together with an incidence relation) are the collineations.

In algebraic geometry: An automorphism of a variety is an invertible mor-
phism.2

2This begs the question of defining morphism. A good approximation is “definable map”. In
algebraic geometry a morphism is a constructible (generically quasirational) bijection; cf. [42, p. 79,
Section 4.4]. Biregular and birational are more specific syntactic restrictions on an isomorphism.
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Remark 2.2.2 (model: two notions).

In model theory: The word model also sees different uses depending on the
area. In logic, a model is sometimes just a τ -structure but often signifies that
the structure satisfies a theory (as in “(C,+, · , 0, 1) is a model of the theory
ACF0”). Minimal model might mean ‘no proper elementary submodel’ or, very
differently, ‘every definable subset is finite or cofinite’.

In algebraic geometry: A model is a specific biregularity class within a birational
equivalence class. In Weil/Zariski style, a variety is determined by a coordinate
ring, but only up to isomorphism of this coordinate ring. A ‘model’ of the
variety might be a specific affine variety with that coordinate ring, but any
biregularly isomorphic variety would also be a model.

Thus, unlike model theory, algebraic geometry does not identify ‘models’
up to isomorphism. Rather, it looks for a specific ‘canonical representation’
among ‘isomorphic solution sets’. A minimal model is a smooth variety X
with function field K such that if Y is another smooth variety with function
field K and f : X 7→ Y is birational, then f is an isomorphism.

Remark 2.2.3 (definable/defined: two notions).

In model theory: A subset X of a model Mn is defined over a set A if there is a
formula φ(x, a) with solution set X .

In usual mathematics: the word ‘defined’ is often short for ‘well-defined’ saying
that the value of a function defined on a quotient space does not depend on the
choice of a representative.

In model theory, we add the adjective ‘definable’ when there is a formula of the
language that captures the notion. Thus, the algebraic geometric ‘automorphism’
becomes ‘definable bijection’. It is worth noting that many important automorphisms
in algebraic geometry do not necessarily preserve structure.

Remark 2.2.4 (Why infinitary logic?). A natural question at this point is: Why
is axiomatizability in Lω1,ω relevant to geometric questions? The answer to this
question is not univocal, and strongly reflects different historical issues arising
in different areas of mathematics. We discuss four responses, two from ordinary
mathematics, two from logic.

1. In ordinary mathematics:

(a) The constraints of expressibility offered by a particular logic force a
detailed analysis of the hypotheses of a result. This analysis in similar
earlier cases has led to, for example, the Zilber–Pink conjecture and the
Conjecture on the intersection of tori (see, e.g., [13]).
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(b) Of course, each of the ‘canonical structures’ is explicitly definable in
set theory. But this definition in most cases is useless for studying the
object. Useful succinct second order axioms are available for the real and
complex numbers but are only partially known for universal covers. First
order logic is stymied a priori by the intractability of arithmetic. Thus,
categoricity in infinitary logic is essential for giving an ‘algebraic’ account
of an ‘analytic object’. This use of model theory can be seen as part of the
larger scale GAGA mathematical program of bridging analytical concepts
and algebraic ones.

2. In logic (in particular, in model theory):
(a) A natural question is: are there important mathematical notions expressible

in infinitary logic which are not expressible in first order? The study of
complex exponentiation yielded a superb initial example: the categoricity
of the covering map of C∗ in [6].

(b) This raises the question of what are the new axioms in this paper that
require an infinitary description. The infinite dimension axioms are well
known and the switch from ‘standard kernel’ to ‘standard fiber over z’ (i.e.,
q−1(z)) is unremarkable. It seems the finite index conditions (Section 4.4)
are not first order expressible.

3. Categoricity, quasiminimality and excellence

We give a quick sketch of notions around categoricity3 and the history of their
logical development.

Definition 3.0.1 (categoricity).

1. A theory T in a logic L is a collection of L-sentences in a vocabulary τ .

2. T is categorical in cardinality κ (κ-categorical) if all models M of T with
|M | = κ are isomorphic.

Although certain canonical mathematical structures are fruitfully axiomatized in
second order logic, rather than second order categoricity, we usually consider these
characterizations as defining these structures in set theory. Such definitions are
exactly what it means to be a structure. Second order categoricity per se gives no
useful mathematical information. In contrast, κ-categoricity in first order logic or
in Lω1,ω provides very significant (combinatorial geometric) information; it assigns
a dimension to each model.

3More specifically, when in model theory we use the word categoricity, we mean categoricity in a
specific cardinality or ‘in power’. See a thorough discussion of categoricity in various logics in [4,
§3.1] and an exposition of the philosophical import of the notion in [14].
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3.1. The classical categoricity theorems. The following results survey the spec-
trum of cardinals in which certain types of theory can be categorical. These theorems
are of the form if a theory (or a sentence) is categorical in some high enough
cardinal(s), then it must be categorical on a tail of cardinals.

Theorem 3.1.1 (Morley’s categoricity theorem [36]). A countable first order theory
is categorical in one uncountable cardinal if and only if it is categorical in all
uncountable cardinals.

Theorem 3.1.2 (Shelah’s categoricity under the weak continuum hypothesis below
ℵω [45; 46]). Assuming 2ℵn < 2ℵn+1 a sentence in Lω1,ω that is categorical in ℵn

(for every n < ω) is categorical in all uncountable cardinals.

Theorem 3.1.3 (Shelah’s categoricity theorem for excellent sentences [45; 46]). An
excellent sentence in Lω1,ω is categorical in one uncountable cardinal if and only if
it is categorical in all uncountable cardinals.

Theorem 3.1.4 (Zilber’s categoricity for quasiminimal excellent classes). A quasi-
minimal excellent class is categorical in all uncountable cardinals [54].

3.2. Pregeometries (matroids) and quasiminimality. The presence of quasimini-
mal pregeometries provides an extremely fruitful and natural control of models in a
class (and of their interactions).

Definition 3.2.1 (combinatorial geometry). A closure system is a set G together
with a ‘closure’ relation on subsets of G,

cl : P(G)→ P(G),

satisfying the following axioms.

A1. cl(X)= ∪{cl(X ′) : X ′ ⊆fin X}.

A2. X ⊆ cl(X).

A3. cl(cl(X))= cl(X).

(G, cl) is a pregeometry if, in addition, we have:

A4. If a ∈ cl(Xb) and a ̸∈ cl(X), then b ∈ cl(Xa).

If points are closed (cl({a})= {a}, for each a) the structure is called a geometry.

Pregeometries are virtually the same mathematical objects as matroids.

Definition 3.2.2. 1. A subset D of a τ -structure M is first order-definable in M
if there is a ∈ M and an Lω,ω(τ )-formula ϕ(x, y) such that D = {m ∈ M :
M |H ϕ(m, a)}. If a ∈ A ⊆ M , D is definable with parameters from A.

2. aclM(A), the algebraic closure of A in M , is {m ∈M : φ(m, ā), ā ∈ A}, where
φ(x, ā) has only finitely many solutions in M .
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3. dclM(A), the definable closure of A in M , is defined as was the algebraic
closure, but replacing ‘finitely many’ by ‘one’.

4. An infinite definable subset D (or its defining formula ϕ(x)) is strongly minimal
if every definable subset of D in every elementary extension of M is finite or
cofinite.

5. A theory is strongly minimal if the formula x = x is strong minimal.

The notion of type is a crucial tool in model theory.

Definition 3.2.3. 1. The first order type of a over B (in M), denoted tpM(a/B),
is the set of Lω,ω-formulas with parameters from B that are satisfied in M (for
a, B ⊆ M).

2. The quantifier-free type of a over B (in M), denoted tpqf(a/B : M), is the set
of quantifier-free first order formulas ϕ(x, b) such that M |H ϕ(a, b) (as before,
b ranges over tuples of B).

In most contexts, when we just say ‘the type of a over B,’ we mean the first
order type. Note also that if a property is defined without parameters in M , then it
is uniformly defined in all models of Th(M) (the theory of M , i.e., the set of all τ
sentences that are true in M).

Here are three fundamental observations on strongly minimal sets.

• A strongly minimal set admits a combinatorial geometry when the closure is
taken as acl (Definition 3.2.2).

• There is a unique type of elements in a strongly minimal set that are not
algebraic. This is called the generic type for D.

• In many important examples (e.g., DCF0), the structure of the model is con-
trolled by its strongly minimal sets.

Shelah’s abstract notion of independence (for some first order theories, crystal-
lized as nonforking) weakens the notion of combinatorial geometry by dropping
A3; in some desirable cases this property is recovered on the points realizing a
regular type and in even better cases the dimensions of the regular types determine
the isomorphism type of the model. However, a priori, the existence of a global
dimension is unusual.

We now look at the generalization of strong minimality, introduced by Zilber,
that is central in the connections between model theory and algebraic geometry
described in this paper.

Definition 3.2.4 (quasiminimal structure). A structure M is quasiminimal if every
first order (Lω1,ω) definable subset of M is countable or cocountable. Algebraic
closure is generalized by saying b ∈ acl′(X) if there is a first order formula with
countably many solutions over X which is satisfied by b.
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Definition 3.2.5 (quasiminimal excellent geometry). Let K be a class of L-structures
such that M ∈ K admits a closure relation clM mapping X ⊆ M to clM(X) ⊆ M
that satisfies the following properties.

1. Basic conditions
(a) Each clM defines a pregeometry on M .
(b) For each X ⊆ M , clM(X) ∈ K .
(c) (the countable closure property, or ccp): If |X | ≤ ℵ0 then |cl(X)| ≤ ℵ0.

2. Homogeneity
(a) A class K of models has ℵ0-homogeneity over ∅ (Definition 3.2.5) if the

models of K are pairwise qf-back and forth equivalent (Definition 4.3.7).
(b) A class K of models has ℵ0-homogeneity over models if for any G ∈ K with

G empty or a countable member of K , any H, H ′ with G ≤ H,G ≤ H ′,
H is qf-back and forth equivalent with H ′ over G.

3. K is an almost quasiminimal excellent geometry if the universe of any model
H ∈ K is in cl(X) for any maximal cl-independent set X ⊆ H .

4. We call a class which satisfies these conditions an almost quasiminimal excel-
lent geometry [8].

An almost quasiminimal excellent geometry with strong submodel taken as
A ≤ M , if aclM(A) = A, gives an abstract elementary class (AEC)4. But the
distinct notion of a quasiminimal AEC (defined in terms of ≤ rather than any
axioms) is due to Vasey [50].

To obtain that the class is complete for Lω1,ω, [8; 30] add the requirement of
ℵ0-categoricity.

Remark 3.2.6. This definition differs only superficially from those in, e.g., [30],
where the connections with the combinatorial geometry was emphasized by dis-
tinguishing the treatment of elements depending on whether they were in cl(H).
However, [8] required a quasiminimal structure to have a unique generic type. This
requirement fails in the two-sorted treatment we deal with here; there may be
acl-bases in each sort. So we replace quasiminimality with almost quasiminimality
(less explicit in [9]) and we thus restore Zilber’s first intuition (Definition 3.2.4)
that quasiminimality means that all definable sets are countable or cocountable.

Remark 3.2.7 (excellence). From Zilber’s introduction [54] of the notion, it has
been known that the axioms 3.2.5 imply ℵ1-categoricity. See the exposition in [3].
But, without further ‘excellence’ hypotheses, it was unknown whether the class had
larger models. Two formulations of excellence are: (1) [45; 46] n-amalgamation
of independent systems of models, for all n < ω; (2) [30] a local condition on the

4See [23] for the early history of the model theory of AECs.
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properties of a ‘crown’. Either implies the existence of arbitrarily large models
for theories in Lω1,ω. As we discuss in Section 5.2, influenced by work Hart and
Shelah on first order classification theory, the next result (here modified by ‘almost’)
clarified the relationship.

Crucial Fact 3.2.8 (Bays, Hart, Hyttinen, Kesälä, Kirby). Every almost-quasi-
minimal class (Definition 3.2.5) is excellent (in the sense of Remark 3.2.7). Thus, it
is categorical in all uncountable cardinalities.

4. Modular and Shimura curves

We begin with an astronaut’s view of the j-function and then turn to the model
theoretic treatment of some generalizations.

4.1. The great confluence. The general form (over a field of characteristic 0) of
an elliptic curve is

y2
= x3
+ ax + b.

At least since Diophantus (3rd century AD), the search for integer solutions for
such equations has been a central question. The cataloguing of such equations was
a major achievement of the 19th century. One key step toward this classification is
to generalize the original problem and look first for complex solutions. The solution
set of an elliptic curve is then a smooth, projective, algebraic curve of genus one.
It can be thought of as a ‘classical torus’ Tτ := C/3τ , where τ ∈ C and 3τ is the
lattice in C (the subgroup of (C,+) generated by ⟨1, τ ⟩.

Klein studied modular and automorphic functions, which provide surprising
and deep links between geometry, complex analysis and number theory. The most
famous example is the j-function, analytic on H= {z : Im(z) > 0}, the upper half
plane, and maps onto C and meromorphic with some poles on the real axis and the
following remarkable properties.

Theorem 4.1.1 (classification of tori by the j-function). The following conditions
are equivalent:

1. There exists s =
[a

c
b
d

]
∈ SL2(Z) such that s(τ )= (aτ + b)/(cτ + d)= τ ′.

2. Tτ ≈ Tτ ′ (in the algebraic geometry sense of Remark 2.2.1.)

3. j (τ )= j (τ ′).

This astonishing classical fact paves the way toward modern day classifications.
It provides equivalences between analytic and number-theoretic notions. Strikingly,
j is defined as a rational function of two analytic functions g2 and g3 (each of them
coding so-called ‘modularity’ properties):

j (τ )= 123
·

g2(τ )
3

g2(τ )3− 27g3(τ )3
.
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But where does the word ‘elliptic’ come from? A meromorphic function is called
an elliptic function if it is doubly periodic: there are two R-linear independent
complex numbers ω1 and ω2 such that ∀z ∈ C, f (z+ω1)= f (z) and f (z+ω2)=

f (z). Abel discovered such doubly periodic functions arose from the solutions of
elliptic integrals — originally defined to find the arc length of an ellipse. Weierstrass
used the symbol ℘ to denote a family of functions ℘(z,3τ ) where the defining
double sum runs over the elements of the lattice 3τ , generated by 1 and τ . The
crucial property of the function is that every meromorphic function that is periodic
on 3τ is a rational combination of ℘(z,3τ ) and ℘ ′(z,3τ ). This field of functions
is precisely Abel’s field of elliptic functions.

Klein’s discovery of the j function unified the results of Weierstrass. In his
famous investigation of the psychology of mathematical investigation, Hadamard
devotes several pages to Poincaré’s generalization of the j-function to the family
of functions derived from Fuchsian group actions. The crucial phrase for us is ‘the
transformations I had used to define the Fuchsian functions were identical with
those of non-Euclidean geometry’ [24, p. 33].

This completes a very quick summary of the 19th century predecessors of the
theory of moduli spaces, developed in the next section. This study involves complex
analysis, actions by a discrete group, number theory, and non-Euclidean geometry.
The crucial model theoretic step is to formalize in a vocabulary for two-sorted
structures of the form

A=
〈
⟨H ; {gi }i∈N⟩, ⟨F,+, · , 0, 1⟩, j : H → F

〉
,

where ⟨F,+, · , 0, 1⟩ is an algebraically closed field of characteristic 0, ⟨H ; {gi }i<ω⟩

is a set together with countably many unary function symbols, and j : H → F .
In the next section we provide some of the mathematical background for a formal

analysis of these two-sorted structures.

4.2. Moduli spaces. Moduli spaces in geometry are parametrized collections of
objects, together with equivalences that allow us to see when two objects are in
some sense ‘the same’, and with families that articulate the variation between the
objects in the collection. Paraphrasing the important survey [10], ‘moduli spaces
are a geometric solution to a geometric classification problem.’ They parametrize
collections of geometric objects, they define equivalences to say when two objects
are the ‘same’, and establish families that determine how we allow our objects to
vary or modulate.

In model theory, the notion of a uniform family of definable sets has been
thoroughly studied. Such a family is given by a formula of the form φ(x, y).
Each set in the family is the solution set of φ(a, y) (for some a), and the set
{a : (∃ y)φ(a, y)} is an indexing set of the family. In the algebraic geometry setting,
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one can require that the x fall into a variety V and the y into a variety Wa. V is a
step toward the notion of a moduli space.

Except in Section 5, we consider moduli spaces arising from a pair (G, X)
consisting of a group G acting on a space X . The algebraic varieties we study
arise as quotients 0 \ X (for 0 a subgroup of G; see Definition 4.2.2). A modular
curve arises as a connected component of quotient of H by congruence subgroups
(Definition 4.2.9) of GL2(R). Shimura generalized the topic to groups acting on
wider classes of domains. Shimura curves are rather more complicated yet generally
share similar categoricity properties. Shimura varieties of higher dimension raise
many new issues that we sketch in Section 6. In this section, we consider only
covers of modular curves by H.

Here, H = {z ∈ C : Im(z) > 0} refers, as in the rest of this paper, to the upper
half complex plane, also called the hyperbolic plane when endowed with a metric
and topology that make it hyperbolic rather than Euclidean. See [35] for a detailed
description. In all our examples, the function p maps the hyperbolic plane into
a complex variety. We consider the action of PSL2(R) on H as fractional linear
transformations: for A =

[a
c

b
d

]
∈ SL2(Z) and τ ∈ H, A(τ )= (aτ + b)/(cτ + d).

The group of bijections (isometries, isom(H)) that preserve the hyperbolic metric
of H is generated by PSL2(R) and the map z 7→ −z̄; PSL2(R) consists precisely of
all those isometries that preserve orientation (e.g., [28]). After outlining here the
classical theory of such actions and moduli spaces, in Section 4.3 we describe a
model theoretic approach.

Definition 4.2.1 (Fuchsian group).

1. A subgroup G ≤ isom(H)≈ PSL2(R) is discrete if it is discrete in the induced
topology.

2. A Fuchsian group is a discrete subgroup of PSL2(R).

The most important example of a Fuchsian group is PSL2(Z). Underlying this
entire study and almost one and a half centuries of interactions between number
theory and complex analysis is the remarkable fact that the quotient of H by certain
discrete subgroups has the structure of a Riemann surface [35, §1.8] and even an
algebraic variety which, in important cases, is a moduli space [34].

Definition 4.2.2 (quotient of H by a group). If a group G acts on a set X , G \ X
has universe the collection of G-orbits of the action. π is the canonical map taking
x to its orbit Gx . The prototypical example corresponds to X = H.

Definition 4.2.3. The quotients V = S(C) of H by a discrete group 0 that we
consider are examples of moduli spaces. V =

⋃
a∈C Va is the image of a map p

from H that acts as a uniformizer for a family of varieties Va . Namely, for each
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a, b ∈ H, we have Va ∼= Vb if and only if, for some γ ∈ 0,

γ (a)= b ⇐⇒ p(a)= p(b).

We explored in Section 4.1 the ur-example of a moduli space, elliptic curves as
uniformized by the j-function. The next definition relies on the fact that, while
elements of PSL2(R) fix H setwise, they also act on all of C.

Definition 4.2.4 (cusp). Let 0 be a discrete subgroup of PSL2(R).

1. We say c ∈R∪{∞} is a cusp of 0 if c is the unique fixed point of some γ ∈ 0.

2. P0 is the set of cusps of 0 and H∗ = H∗0 = H∪ P0.

We relate some standard facts (see [25, p. 15]). The first relies on the fact that
while some of the quotients we study are not compact, they can be compactified by
adding finitely many cusps from R∪ {∞}.

Fact 4.2.5. For any discrete subgroup 0 ⊆ PSL2(R), the quotient 0 \ H∗0 is a
compact Hausdorff space that can be given the structure of a Riemann surface.
Therefore if 0′ is of finite index in 0, the quotient 0′ \H∗0 is a compact Riemann
surface, and is therefore algebraic by the Riemann existence theorem. H∗0 is the
compactification of the quasiprojective algebraic variety (so first order definable)
H0.

For the purposes of this paper, since the quasiprojective variety H0 = 0\H deter-
mines the (classical) algebraic variety (set of solutions of a system of polynomial
equations) H∗0 , we work hereafter with H0 . This is natural from a model-theoretic
standpoint since (in this situation) there are only finitely many cusps and so the sets
differ by only finitely many points.

Notation 4.2.6 fixes the group G for the rest of Section 4. Setting the determinant
as 1 and modding out the center guarantees the group action preserves both distance
and orientation.

Notation 4.2.6. Let G =GLad
2 (Q)

+
=def PSL2(Q)/Z(PSL2(Q))≈ PSL2(Q) mod-

ulo its center. 0 varies over subgroups of G

We now distinguish two kinds of points in H: ‘special’ points and ‘Hodge-
generic’ points. The equivalence of the following definition with the usual notion
[15, Definition 2.2] for Shimura varieties is in [15, Theorem 2.3].

Definition 4.2.7 (special points). Fix ⟨H, S(C), p⟩ with S(C) biholomophic to
0 \H. A point x ∈ H is special if there is a g ∈ G whose unique fixed point is x .

We omit the definition of a Hodge generic point arising in algebra, as it does not
enter our discussion; we use only the equivalent characterization given in part 1 of
Fact 4.2.8 and the dichotomy in part 2. (The equivalence is part of Proposition 2.5 in
[15] and the dichotomy is noted just after that proposition.) It is worth mentioning
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that for a point the fact of being ‘special’ or ‘Hodge generic’ does not depend on
the choice of the group 0; furthermore, these two notions are preserved by the
action of G = GLad

2 (Q)
+.

Fact 4.2.8 (special and Hodge generic points [15, Proposition 2.5]).

1. If x is Hodge generic the only g ∈ G that fixes x is the identity.

2. Every point in H is either Hodge generic or special.

Although we are studying the categoricity of the universal cover of a specific
modular curve (e.g., the image of the j-function, 0 \H), other modular curves
naturally arise in the analysis. The study of families of such curves is expounded in
[48, Sections 6 and 7]. A key tool to give a uniform treatment to a family is the
existence of a common commensurator of the generating Fuchsian groups. In fact,
the members of the family are interalgebraic and the entire family (indexed by the
0N ) is studied in [17].

Definition 4.2.9. 1. The groups 0N (N a fixed integer) are given by

0N =

{[
a b
c d

]
∈ 0 : b ≡ c ≡ 0, a ≡ d ≡ 1 mod N

}
.

Note that each 0N has finite index in 0 and if N |M then 0M ⊆ 0N .

2. Two subgroups 0 and 0′ of a group H are said to be commensurable if 0∩0′

is of finite index in both of them.

3. A congruence subgroup is a subgroup 0′ of 0 such that some 0N is a finite
index subgroup of 0′.

4. The commensurator comm(0) of a subgroup 0 of PSL2(R) is

{δ ∈ PSL2(R) : δ0δ
−1 is commensurable with 0}.

We rely on the following standard fact.

Lemma 4.2.10. The group G = GLad
2 (Q)

+ (Notation 4.2.6) is the commensurator
of any congruence subgroup 0 of SL2(Z).

Because the functions g ∈ G are in the formal vocabulary, we employ congru-
ence subgroups 0g from Notation 4.2.11 rather than the 0N . The Z g defined in
Notation 4.2.11 play a central role both in the quantifier elimination and via an
inverse limit in Section 4.4.

Notation 4.2.11. Let G be fixed as in Notation 4.2.6, and recall that each of
the congruence subgroups of PSL2(Z) act on H. For any finite sequence g =
⟨e, g2, . . . , gn⟩ from G (by convention, g1 = e), introduce the following objects,
which are well-defined by our choice of p and 0.

1. 0g = 0 ∩ g−1
2 0g2 ∩ · · · ∩ g−1

n 0gn .
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2. Let p : H→ S(C).

(a) Z g is defined as {(p(x), p(g2x), . . . , p(gnx)) ∈ S(C)n : x ∈ H}.
(b) pg : H→ Z g ⊆ S(C)n is defined by

x 7→ p(gx)= ⟨p(x), p(g2(x)), . . . , p(gn(x))⟩.

(c) [φg] : Hg → Z g is defined by [φg]x0g
= pg(x); by Lemma 4.2.12, it is

onto.

3. Hg = 0g \H.

The following lemma is central to Section 4.4.2. Its proof uses Shimura theory
very heavily.

Lemma 4.2.12 [19, 3.22]. The map [φg] is bijective on the Hodge generic points
and the image Z g is a variety contained in Sn(C), n = lg(g). Moreover, for all g,
Z g is defined over the maximal abelian extension L of the field of definition, E , of
S.

Remark 4.2.13. From the model theoretic standpoint, it makes no sense to say
the [φg] are definable since their domains Hg are not. While the maps [φg] are
bijective on Hodge generic points, they may identify special points.

4.3. First order completeness for modular and Shimura curves. We now lay out
the vocabulary and first order theory for studying modular curves. The mathematical
input is a Fuchsian group 0 acting on hyperbolic space H and the image curve
S(C)=0\H∗0 (Definition 4.2.4) with a standard model p=⟨H, S, p⟩. The structure
of a discrete group is unwieldy from a traditional model theoretic standpoint because
its first order theory is unstable and undecidable. Just as modules are usually studied
in model theory by adding unary function symbols fr for the elements of the ring,
in order to represent the action of G on H, we add symbols fg for g ∈ G as unary
functions that act on H. We thus use a two-sorted presentation of our structures: a
sort for the domain, a sort for the target, and a map p connecting them.

Remark 4.3.1 (sorts). A two-sorted structure interprets two sort symbols and
additional relation and function symbols with the understanding that each such
relation/function either is restricted to one of the predicates or explicitly connects
them.

Notation 4.3.2 (the formal vocabulary τ ). The two-sorted vocabulary τ consists of
the sorts (unary predicate symbols) D (the covering sort), S the target sort, and a
function q mapping D onto the sort S.

We write τG for the vocabulary of the first sort with G = Gad(Q+). The second
τF =R where R is the set of formulas in {+,−, 0, 1,×} specified in Notation 4.3.3.
τ is τG ∪τF ∪{p}. There are constant symbols for each element of the field Eab(6)
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defined in Notation 4.3.3. We use fg to name the functions acting on D, but often
write the shorter g(x) or gx instead of fg(x).

The following notation is essential to understand the Axioms 4.3.5. Note in the
prototype q is replaced by the known covering map p.

Notation 4.3.3. The standard model for a modular curve determined by a Fuchsian
group 0 ⊆ G = Gad(Q+) will consist of a τ -structure p = ⟨H, S, p⟩ with the
domain H, the variety S(F) over the algebraically closed field F defined by 0 \H,
and R the set of all Zariski closed relations on S(F)n (for all n) with constants
from a field Eab(6) that are true in F . Eab is the maximal abelian extension of
the defining (reflex) field E of S. Eab(6) is the extension of Eab (F0 in [19, §4,
p. 17]) obtained by adding the coordinates of the (≤ ℵ0) special points, and closing
to a field.

Notation 4.3.4. For a structure p, we write Th( p) for the complete first order
theory of all sentences true in p and T ( p) for the specified set of axioms true of p.
Clearly, T ( p)⊆ Th( p).

We must distinguish Th( p) from its subset T ( p) until we prove T ( p) is a
complete axiomatization of Th( p).

Definition 4.3.5 (first order axioms). T ( p) is the following collection of first order
sentences that are to hold in a structure ⟨D, S(F), q⟩.

1. Each sentence in Th(⟨H, { fg : g ∈ G⟩). These include ‘special point axioms’
SPg: For each g ∈ G that fixes a unique point in D,

∀x, y ∈ D[(g(x)= x ∧ g(y)= y)⇒ x = y].

2. Th(S(C),R) (R from Notation 4.3.2).

3. The covering map; for each g ∈ Gm and all m < ω:
(a) Mod1

g: ∀x ∈ D (q(g1(x), . . . q(gm(x)) ∈ Z g).

(b) Mod2
g: ∀z ∈ Z g ∃x ∈ D (q(g1(x)), . . . q(gm(x))= z).

(c) MOD= {Mod1
ḡ ∧Mod2

ḡ : ḡ ∈ Gm,m < ω}.

Note that MOD is a countable collection of first order sentences.

Notation 4.3.6. By the choice of Eab(6), special points belong to dcl(∅). There-
fore, we can name each one of them by dg, where g ∈ G fixes dg. Any g that fixes
a point is in G−Sl2(Z) [19, Lemma 3.13]. There will be distinct g1, g2 that fix the
same point (e.g., if g2= g2

1). If so, T ( p)⊢ dg1 = dg2 The theory of (D,G) contains
the uniqueness axiom (Definition 4.3.5.1) that entails g(dg)= dg.

The cover sort is a set with unary functions. Both its theory (since the universe is
a union of orbits) and that of the field sort (since algebraically closed) are strongly
minimal and quantifier eliminable.
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Definition 4.3.7. We say two structures M and N are qf-back and forth equivalent
if the system I of partial isomorphisms of M and N between isomorphic finitely
generated substructures satisfies the back and forth condition: For each f ∈ I
and each m ∈ M − dom f , there exists an n ∈ N such that f ∪ {⟨m, n⟩} ∈ I , and
symmetrically, for each n ∈ N− im f , there exists m ∈M such that f ∪{⟨m, n⟩} ∈ I .
In this situation dom f is definably close.

Notation 4.3.8. We write g(x) for (g1(x), . . . gn(x)), where g has length n and
begins with e. And then g(x) denotes the sequence of length nm obtained when g
is applied to each element of a sequence x ∈ (D)m . When convenient we write gx
or gx for the action, omitting the parentheses.

We now sketch the proof of Theorem 4.3.13 that T ( p) axiomatizes a complete,
quantifier eliminable τ -theory.

Definition 4.3.9 (the back and forth). Fix two models q = ⟨D, S(F), q⟩ and q ′ =
⟨D′, S(F ′), q ′⟩ of T ( p). We define the qf-back-and-forth system I of substructures
of q and q ′ For each f ∈ I , dom f and rg f are each finitely generated over
Eab(6). A typical member f of the system for q has dom f = U = UD ∪US .
Since U is finitely generated, UD consists of the G-orbits of a finite number of
x ∈ D; US is S(LU ) where LU is the field generated by Eab(6) (since the elements
of Eab(6) elements are named), the coordinates of the q(x) for x ∈UD and finitely
many additional points of F ∩U . Note that the additional points determine finitely
many new field elements since q is constant on each orbit, so the field remains
finitely generated. Define a similar subsystem for q ′, labeling by putting primes
on corresponding objects. By Fact 4.2.8 every point of D is either special and so
named in the vocabulary (Notation 4.3.6), or Hodge generic. Thus we can ignore
the special points in building the back and forth system.

Suppose f is an isomorphism between U ⊆ q and U ′ ⊆ q ′. Then f restricts to a
G-equivariant (elements in the same orbit have the same image) injection of UD

into UD′ and an embedding of S(LU ) into S(F ′) induced by an embedding σ of L
into S(F ′), that fixes Eab(6).

The following claim is stated for arbitrary finite sequences g, but only singleton x .
The type rd of an infinite sequence (here represented by an infinite tuple of variables
v) includes the types of gx for any finite g.

The main consequence of the following claim is that we may reduce types of
points in the domains sort to quantifier-free types of their images in the field sort.

Claim 4.3.10 [15, Proposition 3.3]. If d ∈ D−UD is Hodge generic:

rd(v) |H tpq f (d/U ),

where rd(v)=
⋃

g∈G tpq f (q(g(d))/U )= tpq f (⟨q(g(d)) : g ∈ G⟩/U ).
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Proof. We show that there is a unique quantifier-free type over U of an element of D
that restricts to rd . The consistent nontrivial types in τG are (i) {x ̸= f : f ∈UD} and
(ii) {x ̸= gx} for any nonidentity g ∈G. The first is captured by (q(x), q( f )) ̸∈ Ze,e

for each f ∈UD and the second by (q(x), q(x)) ̸∈ Ze,g if g ̸∈ 0 and these are both
in r(v).

Suppose h ∈ S(M)ω (for a saturated M |H T ( p) containing U ) realizes rd(v)

and h with d ′ ∈ D(M) satisfy h = ⟨q(g(d ′)) : g ∈ G⟩. By the previous paragraph
d ′ ̸∈UD . So d ′ realizes tpq f (d/U ) as required. □

Notation 4.3.11. For a type r(v) over a set A and an isomorphism f from A to B,
f (r) is the set of B-formulas φ(v, f (a)) with φ(v, a) ∈ r .

Claim 4.3.12 [15, Proposition 3.4]. Fix g. If x ∈UD , there is an x ′ ∈UD′ such that
q(g(x ′)) ∈ S(F ′)m realizes f (tpq f (q(g(x))/LU )).

Proof. We write Z q
g for the points in S(F) satisfying (the formula defining) Z g .

Using Notation 4.3.11, Claim 4.3.10 implies that the smallest algebraic subvariety
W q

g of S(F)n that is defined over LU and contains q(g(x)) ∈ S(F)n determines
tpq f (g(x))/LU ). Since Mod1

g is true in q, W q
g ⊆ Z q

g . But since by Lemma 4.2.12 Z q
g

is fixed setwise by σ (the map described after Definition 4.3.9), being defined over
Eab(6), we have Z q ′

g = Z q
g , and therefore W q ′

g ⊆ Z q ′
g . Now applying Mod2

g in q ′,
we find the required x ′. □

Having proved Claim 4.3.12, we can finish the argument. We need one more
crucial piece for the ‘forth’. What if x ∈ D −UD? For this, we need q ′ to be
ω-saturated (realize all types over finite sets).

Theorem 4.3.13. Suppose that q and q ′ are ω-saturated. Then the q f -system
described in Definition 4.3.9 is a back and forth; hence, T ( p) is complete.

Proof. Suppose f is an isomorphism between U ⊆ q and U ′ ⊆ q ′. Then f restricts
to a G-equivariant injection of UD into UD′ and an embedding of S(LU ) into S(F ′)
induced by an embedding σ of Lu into S(F ′), that fixes Eab(6).

For x ∈ q−U , we must find x ′ ∈U ′ so that f ∪(x, x ′) generates an isomorphism
between the structures generated by U ∪ {x} and U ′ ∪ {x ′}. If x ∈ S, x = q(x̌) for
some x̌ ∈ D so we restrict to that case. If x ∈UD , x ′ exists as U ′D is closed under
action by G. Since the coordinates of special points are in Eab(6), whose points
are all named, for a special point x , x ′ must equal x .

The difficult case is when x ∈ D − UD is Hodge generic. But we noted in
Claim 4.3.10 that it suffices to simultaneously realize all types

tpq f ((q(g1x), . . . , q(gnx))/U )

for all g (of arbitrary length). A slight variant on the argument for Claim 4.3.12
still holds if for fixed x , we replace a single g by an arbitrary finite set of g. By
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compactness, the entire type is consistent and so satisfied in the ω-saturated q ′.
There is one final step. By induction we have to choose x ′ for a sequence x, y, x
where x ∈ UD and y ∈ U k

S for some k. But what if x ∈ US? By Claim 4.3.10,
tpq f (x, y) is determined by tpq f (g(x), y) (in the field sort). That we can choose of
x ′ ∈U ′S to satisfy f (tpq f (g(x), y)) is now immediate by ω-saturation and quantifier
elimination in the field sort.

By Karp’s theorem [5, Theorem 3], the existence of the back and forth implies
all ω-saturated models of T ( p) are Lω1,ω (indeed, L∞,ω) elementarily equivalent.
Every model has an ω-saturated elementary extension, so T ( p) is complete. □

4.4. Galois representations and finite index conditions. In this section we begin
by considering the action of discrete and Galois groups on the domain and field
sorts. Then we unite these approaches by defining a Galois representation. We then
state the key to establishing categoricity, a consequence of Serre’s open mapping
theorem.

4.4.1. Two views: domain and field sort. We explore the following diagram, which
links the domain sort (via the quotient) with the field sort.

Hh̄ ≈ 0h̄ \H Z h̄

Hḡ ≈ 0ḡ \H Z ḡ

[φh̄ ]

idHḡ ψh̄,ḡ

[φḡ]

Convention 4.4.1. g = ⟨e, g1 . . . gn−1⟩ has length n. We restrict to g with 0g ⊴0
(normal subgroup). Recall Z g ⊆ S(C)lg(g).

We have two views of ‘essentially’ the same map. The first moves to a quotient
on the domain side which is not τ -definable; the second ‘names’ the range of the
first in the target side. We begin with quotient data but with manifestations in both
the domain and target.

Domain/quotient data: The first view motivates id for identity.

Definition 4.4.2. Let g ⊆ h. Define idhg : Hh→ Hg by [x]0h 7→ [x]0g .

The normality hypothesis implies that 0g/0h acts on Hg: for λ ∈ 0g , λ[x]0g :=

[λx]0g , so the representatives λi of the cosets of 0g/0h index the equivalence
classes; thus the action is transitive.

Field data: We define the right-hand column of the diagram.

Definition 4.4.3. 1. For g⊆ h, lg(g)=n, lg(h)=m, ψh,g , denotes the restriction
of the natural projection from S(C)m onto S(C)m to a map from Zh ⊆ S(C)m

onto Z g ⊆ S(C)n .
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2. Choose z ∈ Z g and let L = L z be a finitely generated extension of the defining
field for S such that z is defined over L . Write L for acl(L).

3. Now, Aut(C/L) acts on the fiber ofψh,g over z, by its action on the coordinates
of z; as it would for any definable finite-to-one map from Zm

h → Zn
g .

To connect the two sides, conjugating by [φh], Aut(L/L) acts on id−1
hg (φ

−1
g (z)).

Lemma 4.4.4 [19, p. 14, top]. Aut(C/L) acts on the fiber of ψh,g over z, (and
so via [φh] on id−1

hg (z)). This action commutes with the action of the free and
transitive (simply transitive) action of 0g/0h on the fibers of idh,g . Thus we have a
homomorphism (Galois representation) ρz

g,h from Aut(L/L) into 0g/0h.

4.4.2. Galois representation. While the notion of a representation of a group A
frequently refers to linear representations, a homomorphism of A into a matrix group
B, here we will discuss specific examples of a more general notion: a representation
of A is a homomorphism of A into a group B. This is a Galois representation if
A is the Galois group of one field over another. In Section 4.4.1, we gave Galois
representations of Aut(L/L) into 0g/0h. In order to understand how to combine
the actions of the 0g/0h as g, h vary, we need the notion of inverse limit.

Definition 4.4.5 (inverse limit). Given a directed set (I,≤) an inverse system on I
is a family of structures ⟨Ai : i ∈ I ⟩, and for i < j , maps fi j from A j to Ai such
that i < j < k implies fi j ◦ f jk = fik .

An inverse limit of this inverse system is an object Â = lim
←−

Ai and a family of
morphisms gi : Â→ Ai such that

(1) for all i < j in I , fi j ◦ g j = gi , and

(2) given any A′ and family g′i satisfying (1) there is a unique morphism h : Â→ A′

such that for all i ∈ I, g′i = gi ◦ h.

Definition 4.4.6 (Galois representations of inverse limits). We work with a modular
curve S(C) = 0 \H which is defined over Eab(6) (Notation 4.3.3). Since each
0g ⊆0, ρz

g,h :Aut(L/L)→0 and by taking an inverse limit of the representations
ρz

g,h, we obtain:

ρz
: Gal(L/L)→ 0

where 0 = lim
←−

h 0/0h. The h range over all finite sequences as Convention 4.4.1.
See Definition 4.4.5 and compare [19, p. 16].

For any groups H1 ≤ H2 that act on a set X the H1-orbits of X partition the
H2-orbits. So if [H2 : H1] is finite and H2 is infinite, the orbits will have the same
cardinality and the smaller [H2 : H1] is, the closer we are to an isomorphism.

Now, we can state the first of two crucial sufficient conditions for categoricity.
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Definition 4.4.7 (FIC1). The first finite index condition (FIC1) is satisfied by a
modular curve p : H→ S(C) if:

For any nonspecial points x1, . . . xm ∈H in distinct G-orbits (Definitions 4.4.2 and
4.4.3) and for any field L containing the field over Eab(6) along with the coordinates
of the p(xi ), the image of the induced homomorphism ρ : Gal(L/L)→ 0m has
finite index in 0m .

Recall from Claim 4.3.10 that

rd(v) |H tpq f (d/U ),

where rd(v)=
⋃

g∈G tpq f (q(g(d))/U )= tpq f (⟨q(gd) : g ∈ G⟩/U ). The argument
for Claim 4.3.10 began with the observation that rd(v) implied, in particular, that
d ̸∈ DU , so d is an independent Hodge generic. We will deduce from Lemma 4.4.8
that (under FIC1) only finitely many tuples g from rd are really needed.

Lemma 4.4.8. Assume FIC1. Then, for each z, for some ĝ, the map

ρz : Aut(L/L ĝ) 7→ 0m
ĝ = lim
←−h⊇ ĝ(0 ĝ/0h)

m

is surjective.

Proof. Let I = im(ρz) and let k = [0 : I ]. Suppose not. Choose ĝ with g ⊆ ĝ such
that [0g : 0 ĝ] = k. Thus, for any h ⊇ ĝ, ρz must be onto 0 ĝ/0h. For, if not, there
is an η ∈ 0 ĝ/0h and that is not in I ; it must be in a new coset of I in 0, contrary
to the choice of ĝ. □

Corollary 4.4.9. Assume FIC1. For d ∈ D−U ,

tpq f (q( ĝ(d))/U ) |H rd(v) |H tpq f (d/U ).

Proof. The second implication is Claim 4.3.10. For the first, choose any h ⊇ ĝ(d)
and let m = lg( ĝ), r = lg(h). Let F ⊆ Z r

h be the fiber over ĝ(d ′) ∈ Zm
ĝ of the

finite-to-one map ψhĝ : Z r
h → Zm

ĝ . Similarly, tpq f (h(d)/LU ) is determined by
the Aut(C/LU )-orbit G ⊆ F containing h(d). Then, tpq f (h(x)/LU ) is determined
by the Aut(C/LU )-orbit G ⊆ F containing h(x). But G = F , since ρz induces a
homomorphism from Aut(C/LU ) onto 0 ĝ/0h and 0 ĝ/0h acts transitively on the
fiber. Since this holds for any such h, we finish. □

We turn now to the infinitary axioms that are needed to obtain categoricity.

Notation 4.4.10 (infinitary axioms).

1. 8∞ is the Lω1,ω sentence asserting that for (D, S, q) both the dimension
of the field bi-interpretable with S and of the strongly minimal structure
⟨D, { fg : g ∈ 0}⟩ are infinite.
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2. SF (standard fibers) denotes the Lω1,ω-axiom:

(∀x∀y ∈ D)(q(x)= q(y)→
∨

g∈0
x = fg(y)).

3. T∞( p) denotes Th( p)∪ {8∞}.
4. T∞SF ( p) denotes Th( p)∪ {SF} ∪ {8∞}.

Definition 4.4.11. For ⟨D, S(F), q⟩ |H T∞SF ( p) and X ⊂ D ∪ S(F),

cl(X)= q−1(acl(q(X)))

where acl is the field algebraic closure in F .

An essential consequence of the standard fibers axiom is that Definition 4.4.11
defines an almost quasiminimal closure relation satisfying the countable closure
condition from Definition 3.2.4. This closure dimension restricts on the separate
sorts to the dimension of the constituent strongly minimal sets that is expressed in
8∞. This accomplishes the aim of an (Lω1,ω-complete so ℵ0-categorical) Lω1,ω

theory with arbitrarily large models.
A class K of models has ℵ0-homogeneity over ∅ (Definition 3.2.5) (the precise

statement is from [19, p. 4]) if the models of K are pairwise qf-back and forth
equivalent (Definition 4.3.7).

Theorem 4.4.12 [15, Theorem 4.11]. If the standard model p of a modular curve
satisfies FIC1, then the class of models of T∞SF ( p) is ℵ0-homogenous over ∅. In
particular, by Karp [5; 27], all models of T∞SF ( p) are back and forth equivalent and
so satisfy the same sentences of Lω1,ω.

Proof. Our task is to replace the ω-saturation hypothesis from Theorem 4.3.13
by adding the infinitary axioms and the condition FIC1. As in the proof of
Theorem 4.3.13 we need only worry about Hodge generic points. Suppose we
have a partial function f from q to q ′ with domain and range U and U ′ as in
Theorem 4.3.13 between models q and q ′ of T∞SF ( p). Proceed as in the proof of
the second paragraph of Theorem 4.3.13. We vary the argument for the ‘difficult
case’ from the 3rd paragraph. Choose ĝ by Lemma 4.4.8. Taking ĝ for the g in
Claim 4.3.12, for x ∈UD , there is an x ′ ∈UD′ such that

q( ĝ(x ′)) ∈ S(F ′)m (∗)

realizes f (tpq f (q( ĝ(x))/LU )). We want to show that the same choice x ′ satisfies
(∗) for every h ⊇ ĝ. This is immediate from Corollary 4.4.9. The argument is
completed by induction as in the ‘final step’ of the proof of Theorem 4.3.13. □

Remark 4.4.13 (FIC2). Like FIC1, FIC2 is a finite index condition on Galois repre-
sentations into inverse limits. Now, however there are independence conditions over
the ground field. [15, Condition 4.8] provides sufficient conditions so that a minor
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modification of the proof of Theorem 4.4.12, shows FIC2 implies homogeneity over
models; pairs of models are back and forth equivalent over a countable submodel.
This is the first place in the argument where types over countable algebraically
closed fields rather than the empty set (i.e., a fixed countable field) are encountered.
Combining this result with Theorem 4.4.12, the homogeneity conditions are now
stronger than those defining quasiminimal excellence in [8]. Thus, we apply that
paper and obtain:

Theorem 4.4.14. For any modular curve interpreted as a standard model p
(Notation 4.3.3) for T∞( p), T∞SF ( p) is almost quasiminimal excellent and so
categorical in every infinite power.

Proof. We need only that FIC1 and FIC2 hold for all modular curves. This is proved
in [15, §5], where the proof for FIC1 relies heavily on [44, §6] and FIC2 on [43]. □

With further effort they extend this result to Shimura curves.

Remark 4.4.15. Keisler’s theorem [29, Corollary 5.10] and work of Shelah [3,
§7] show that an ℵ1-categorical sentence φ of Lω1,ω not only has only countably
many types in any countable fragment of Lω1,ω containing φ (Keisler) but has a
completion5 (Shelah). Equivalently, the completion must specify the isomorphism
type of the countable model. The only such completion consistent with having an
uncountable model is adding 8∞.

We have used FIC1 to prove categoricity in all powers. In fact, ℵ1-categoricity
implies FIC1. For this, [15; 19] argue that the weaker hypothesis of having just
countably many types over the empty set in the theory T∞SF implies FIC1. If FIC1
holds, for some z, by Lemma 4.4.8, for every g, there is h⊇ g with a 0g/0h-orbit
contained in ψ−1

hg (z) that projects to that 0g orbit. So under the assumption that
FIC1 fails, there is a g, such that for every h ⊇ g there are distinct 0g/0h-orbits
O1, O2 contained in ψ−1

hg (z) that project to the same 0g-orbit.
By Claim 4.3.10, if two points are Galois equivalent they realize the same

quantifier free τ -type; so O1, O2 realize distinct Galois orbits (and so any two orbits
that project to them must realize distinct τ -types). But since 0 acts transitively on
each Z g , there is a complete tree of splittings of Aut(C/L) orbits that all project to
z. This contradicts Keisler’s theorem. So ℵ1-categoricity of T∞SF implies FIC1.

Remark 4.4.16. [15, §5], using both Serre’s open mapping theorem [44, §6] for
the finite index condition and work by [43] on Shimura curves show FIC1 and
FIC2 hold for all modular and Shimura curves. So our remaining sections concern
higher-dimensional varieties. FIC1 is known for some higher dimensional Shimura
varieties and conjecturally for others, while FIC2 is true for all [19].

5That is, a sentence φ∗ that implies φ and decides every Lω1,ω-sentence.
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[15] use both to prove categoricity. Since the Galois group is not accessible in
our formal language, FIC1 cannot be directly expressed in the two-sorted theory.
So the goal of a ‘fully formal invariant’ cannot be achieved unless explicit reliance
on the finite index conditions as an hypothesis is avoided.

5. First order excellence

Here is the opening paragraph of [9].

Let G = Gn be a complex algebraic torus, or let G be a complex
abelian variety. Considering G(C) as a complex Lie group, with
LG = T0(G(C)) its (abelian) Lie algebra, the exponential map
provides a surjective analytic homomorphism

exp : LG−→→ G(C).

In the spirit of Zilber, their paper aims at finding ‘algebraic descriptions’ of the
cover exp which characterize the standard structure (at least up to categoricity in
power). They solve a more general problem by providing a first order theory T̂ for
the situation and showing each model M̃ (M̂ here) of T̂ is determined by relations
among two designated substructures and a certain transcendence degree. In this
generality, the result is proved for any abelian group of finite Morley rank (henceforth
fmr groups). Then, under slightly stronger hypotheses, the result becomes a true
categoricity result for, in particular, an abelian variety defined over a number field.

We address in this section four new ingredients: formalized nonstandard covers,
‘first order excellence’, Kummer theory, and a distinction between classification
and categoricity. First order excellence appears to be both necessary and applicable
for higher order Shimura varieties.

As noted in [9], the quasiminimal approach studied earlier in this paper suffices to
prove the Lω1,ω-categoricity in power for abelian varieties. The goal of this section
is to identify the distinctive elements of the proof from [9] that later reappear in [19].

5.1. The two-sorted structure and fmr groups. A first order theory T is stable in κ
if any M |H T , with |M | = κ , |S(M)| = κ . (S(M) denotes the set of 1-types over
M .) Morley showed that ω-stability (more properly, ℵ0-stability) of a theory T is
equivalent to stability in all powers (and also to the Morley rank having an ordinal
value for each type). We need here a slightly weaker condition called superstability:
T is stable in κ if κ ≥ 2ℵ0 .

The theory of (Z,+) is one of the prototypical strictly superstable theories6 (that
is, superstable, but not ℵ0-stable). One can fix arbitrarily the congruence class of an
element x for each n. This gives 2ℵ0 distinct types realized by nonstandard integers.

6The other one is the theory of countably many equivalence relations En such that for each n, each
En-class is split into infinitely many En+1-classes (and En+1 ⊆ En).
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There is an extensive theory of fmr groups (see [1; 12]). We need here only the
basics. In particular, Macintyre’s result [32] that an ω-stable group is divisible by
finite. We now introduce the two-sorted theory; with that notation we are able at
the end of this section to outline the main steps of the proof.

Unlike [15], where lim
←−

Z g is in the background of the proof of (our) Theorem
4.4.12 but not the statement, [9] builds the structure of nonstandard covers into the
vocabulary of the two sorted structure by the ρn below.

Bays, Hart, and Pillay [9, §2.2] use the inverse limit of Definition 5.1.1 for
divisible abelian groups; although it is not profinite, they refer to it as a profinite
universal cover denoted Ĝ of G and G is renamed as M . Although the hat has
only one meaning in [9], it becomes overloaded here so we denote the inverse limit
defined below as M̃ . While in [9] a typical 2-sorted (3-sorted in Section 8) structure
τ̂ is represented as either (M̃,M) or M̃ , we write M̂ = (M̃,M) and M̃ for the or
(profinite cover) inverse limit from [9, §1.2, 2.1] as that is the actual usage in most
of the cited paper.

Definition 5.1.1 (M̃). Given a commutative, divisible, abelian group (M,+), con-
sider the inverse limit M̃ = lim

←−
Mn of isomorphic copies Mm of M with the index

set partially ordered by m ≤ n if and only if m|n and with maps ηnm (multiplication
by m

n ) taking Mn 7→ Mm . Concretely, (M̃,+) is the subgroup of the direct product
of ω copies of M , containing those sequences (⟨gk : 1≤ k <ω⟩) such that if k = nm,
gm = n× gk and gn = m× gk .

Notation 5.1.2 (the vocabulary τ̂ ). Let G be the given abelian group and T :=Th(G)
in a large enough countable language that T has quantifier elimination. Further,
let T̂ be the theory of (Ĝ,G) in the two-sorted language τ̂ consisting of the maps
ρn : Ĝ→ G for each n, the theory T and, for each acleq(∅)-definable subgroup H
of G, a predicate H for H and a predicate Ĥ for {x ∈ Ĝ : ρn(x) ∈ H, n ∈ N}.

Although the kernel of ρ = ρ1 is definable in the vocabulary given, a further
predicate ker0 is included denoting the divisible part of the kernel (otherwise, it is
only type-definable).

The axioms [9, §2.5] of T̂ are chosen so as to ensure the next result holds.

Theorem 5.1.3 [9, §2.7, 2.8, 2.21]. For an fmr group G, (G
←−
,G, ρ0) |H T̂ and

therefore T̂ admits quantifier elimination and is superstable of finite U-rank.

Although the T in Notation 5.1.2 is ω-stable, T̂ is only superstable; also, many
elements of ker(ρ) are not divisible in ker(ρ).

Remark 5.1.4 (quasiminimality, unidimensionality, notop). Abelian varieties as
opposed to fmr groups, can be handled either by the quasiminimality methods of
Section 4 or by the methods described in this section. A crucial distinction from
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Section 4 is that the former considered only the theory of unary functions from a
group acting on the domain, while here we have the full group structure.

To explain the fmr proof we need some further model theoretic background. In
general two types p, q over M are orthogonal when in different models N extending
M the number of realizations of p and q can be varied arbitrarily. Non-orthogonality
for strongly minimal sets has a particularly clear meaning. The strongly minimal
sets D1 and D2 are nonorthogonal if there is a definable finite to finite binary
relation on D1× D2. A theory is unidimensional if all types are nonorthogonal.

The three features that underlie the [9] proof are:

1. A fmr abelian group has finite width [2, XV.1] (aka almost ℵ1-categorical [31]):
Any model is the algebraic closure of the union of the bases of a collection of
strongly minimal Di for i < n < ω. The Di are defined over the prime model
(the unique up to isomorphism model elementarily embedded in every model
of the theory).

2. In models of T̂ with M0 the prime model of T and where G is defined over a
number field k0, Kummer theory allows the control of ρ−1(M0) by the kernel
ρ−1(0).

3. In studying abelian varieties the n in 1) can be taken as 1 because the variety is
interalgebraic with an algebraically closed field and so almost strongly minimal
(M = acl(D) for strongly minimal D).

Since Kummer theory doesn’t apply to arbitrary Shimura varieties, features 2
and 3 fail for more general higher-dimensional Shimura varieties (see Section 6).

5.2. First order excellence and fmr groups. Shelah’s main gap program defines
a sequence of properties X of countable first order theories forming a sequence
of dichotomies [4, §5.5] such that: if T satisfies X , T has the maximal number
of models in every uncountable cardinal. If T fails X , the models of T satisfy
conditions useful for classification. (e.g., stability implies the existence of the
‘nonforking’ independence relation). The positive side of the final dichotomy in
the sequence is superstable without the omitting types order property (denoted
notop). Under this hypothesis, Shelah ([47] and earlier papers) showed that an
appropriate class of models of T had a notion of independence among structures
with n-amalgamation for all n that yields the classification of models. Hart [26]
reduced the amalgamation requirement to 2-amalgamation and this reduction was
extended to the quasiminimal excellent case in [8]. In Section 6, we note this ‘notop’
approach is used to study higher-dimensional Shimura varieties.

In Section 3 of [9] the techniques of [26] are adapted to the specific framework
here to establish a decomposition of models of T̂ analogous to that in Remark 5.1.4
for models of T . This yields
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Theorem 5.2.1 [9, Theorem 3.31]. Each model M̂ of T̂ is determined up to iso-
morphism by the transcendence degree of the algebraically closed field K such that
M ∼=G(K ), the isomorphism type of the inverse image, M̂0, of the prime model M0

of T , and the isomorphism type of M over M0.

5.3. Abelian varieties. From the model theoretic standpoint, an abelian variety is a
complete algebraic variety whose points form a group such that the group operations
are definable in the ambient field. For abelian varieties, Kummer theory eliminates
(as in [7; 22]) the reliance in Theorem 5.2.1 on knowing the isomorphism type of
M̌0 over the kernel. The situation described in the opening paragraph of Section 5
is a special case. Namely, let G be (the formula defining) an abelian variety G(K )
over a field K as in the introduction to Section 5. Assume G(C) and its ring of
endomorphisms are definable over a number field k0. With this notation:

Theorem 5.3.1 [9, Theorem 4.6]. a model M̂ = ⟨M̃,M, q⟩ of T̂ is determined up
to isomorphism by the transcendence degree of the algebraically closed field K
such that M ∼= G(K ), and the τ̂ isomorphism type of ker ρ.

Remark 5.3.2 (complete formal invariant). Theorem 5.3.1 gives categoricity in all
uncountable cardinalities by adding the Lω1,ω sentence characterizing the standard
kernel. But Theorem 5.3.1 is more general than categoricity; it shows that models
with nonstandard (possibly uncountable) kernel are characterized by the τ̂ -diagram
of the kernel. Of course, this statement cannot be formalized in languages with
bounded length of conjunctions since the kernels can be arbitrarily large. But Zilber’s
goal (just after Notation 1.0.1) only aimed at complete formal characterization for
prototypical mathematical structures.

6. Higher-dimensional Shimura varieties

A Shimura variety is a higher-dimensional generalization of a modular curve that
arises as a quotient variety of a Hermitian symmetric space X+ by a congruence
subgroup of a reductive algebraic group defined over Q. We consider Shimura
varieties that are moduli spaces for generalized algebraic varieties. Rather than
discussing further technical details on the definition of a Shimura datum (G, X),
we survey the differences that arise in generalizing the results in Remark 4.4.16
about Shimura curves to higher-dimensional Shimura varieties: S(C)= 0 \ X+.

Central difficulties arise directly from the higher dimension in two ways. First, in
the curve case the 2-sorted structure is (almost)-quasiminimal because the variety in
field sort is a curve and so strongly minimal and the geometric closure on the cover
sort is given by a ∈ cl(X) if a ∈ q−1(acl((q(X)). Quasiminimality can fail in higher
dimensions. Second, rather than special points which are fixed points of some g,
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one must treat special subvarieties [19, §3.4] and finite unions thereof, special
domains. The fact that these are not merely points leads to several difficulties.

1. The structure of the covering sort is no longer strongly minimal. Even after
naming the elements of the group the special subvarieties give a complicated
structure on the covering sort.

2. In the curve case the intersection of special domains was a point; that may fail
in higher dimensions.

3. The theories of two inverse limit structures p̂ and p̃ are considered as the
covering space. The first structure is the analog of lim

←−
Z g (Notation 4.2.11).

The second consists only of the standard points of this limit. The canonical
universal cover p satisfies the first order Th( p̃) but not in general Th( p̂)
[20, Example 5.7, Corollary 5.14].

4. An Lω1,ω categorical axiomatization is not claimed. Each model can be pre-
cisely characterized but the characterization is not in Lω1,ω. See Remark 5.3.2.

5. Finally, even this characterization depends on whether the variety under con-
sideration satisfies finite index conditions as in the modular case. Although
FIC1 and FIC2 are true in the modular curve case, here the truth of FIC1 for p
is actually equivalent to the characterizability of models of T inf

SF ( p) since [19]
shows FIC2 is true.

7. Model theory and analysis

One can signal three different model theoretic approaches to analysis:

1. Axiomatic analysis studies behavior of fields of functions with operators but
without explicit attention in the formalism of continuity but rather to the
algebraic properties of the functions. The function symbols of the vocabulary
act on the functions being studied; the functions are elements of the domain of
the model.

Example: DCF0 as discussed below.

2. Definable analysis has a lower level of abstraction; the domain of the func-
tions remains the universe of the model. The functions being studied are the
compositions of the functions named in the vocabulary; one cannot quantify
over them.

Example: o-minimality.

3. Implicit analysis. Attempts to provide ‘algebraic characterizations of important
mathematical structure by axiomatizations in infinitary logic that are categorical
in power. Example: the material in this paper.
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The first two are discussed in [4, §6.3]. The work expounded in this paper has
many commonalities with a prime example of axiomatic analysis: the study of
transcendence results for solutions of differential equations by the study of the ω-
stable theory DCF0 of differentially closed fields of characteristic zero. The notion
of ‘not integrable by elementary functions (Painlevé said ‘irreducible’) is formalized
by ‘the solution set is strongly minimal’ [37]. The study of Schwartzian equations
provides a general framework in which the j-function and modular curves are
explored. The work includes, variations on the Ax–Lindemann–Weierstrass theorem,
proofs that Generic differential equations are strongly minimal [18] and Differential
Chow Varieties are Kolchin-constructible [21], and analysis of strongly minimal
solution sets defined by differential equations in terms of the Zilber trichotomy and
ℵ0-categoricity.

But while the mathematical topics are the same, the aims are different: The
covers project tries to assign a categorical description of each cover. The DCF0

approach tries to understand transcendence results for solutions of the differential
equations.

The crucial methodological difference is the two-sorted nature of the cover
program. The axiomatic analysis framework is preserved in that there is no explicit
treatment of convergence or continuity. But connecting the domain and target
by quotients under an explicit group action as well as the use of infinitary logic
provides tools not available in the earlier examples of axiomatic analysis.

8. Families of covers of algebraic curves

In recent work, Daw and Zilber [16; 17] deal with families of covers of curves.
They build on earlier constructions we have discussed in this paper. Rather than a
cover of a single variety, albeit one that parametrized a family of varieties, an entire
family of such covers is studied and the covering space becomes an analytic Zariski
structure [56]. In [57], the analysis of families is generalized by being placed in a
geometric algebraic setting.

The most salient difference between these works and those discussed earlier in
this paper is that, rather than a cover of a single variety, an entire family of covers
is now the main subject. Our earlier Definition 4.2.9 is now replaced by a basic
vocabulary consisting of three sorts, together with maps 0N \H 7→ C covering a
family of curves SN (C).

8.1. Pseudo-analytic covers of modular curves. Major differences of the paper [16]
from the earlier discussion of modular curves include:

1. The basic vocabulary is now 3-sorted. More specifically, [16] considers struc-
tures (D,G, jN ,C) where the jN : H ↠ SN (C). The discrete group is now
given as a third sort incorporating a group operation (so its pregeometry is
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locally modular, rather than trivial). This sort contains group with distin-
guished subsets7 (GL+2 (Q),×,Sl2(Z), E(Q), {dq , d ′q : q ∈ Q)}, where E is
the collection of elliptic elements of the group; those that have unique fixed
points. This structure is specified up to isomorphism by a sentence of Lω1,ω.
But not all group elements are still named in the formal language.

2. The uniformizing functions jN each map into P3(C) rather than into the
arbitrarily high-dimensional spaces of the maps [φg] in [15; 19]. Furthermore,
these are now defined over Q rather than over Eab(6).

3. As well as an almost quasiminimal axiomatization of the 3-sorted structure, the
domain is considered as a Zariski Analytic set with a quasiminimal geometry.
Both of these structures are shown to be uncountably categorical.

4. The special points are not named. However as in Definition 4.3.5 they are
uniquely associated with elliptic elements of the group.

In many ways, this last distinction is the most important for the general program,
as naming of the special points trivializes some of the arithmetic. In [16], the
structure of the family is proved to be categorical in all uncountable cardinalities.

8.2. Locally o-minimal covers of algebraic varieties. The paper [57] takes a more
general approach. It abstracts away from naming all elements of the discrete groups
as earlier in this paper. The relations among the universal and finite covers are given
more abstractly as properties of maps from a domain (whose smoothness is defined
topologically and geometrically but not algebraically) onto families of algebraic
varieties. This smoothness as well as the eventual quasiminimality for curves8 is
controlled by external o-minimal structures.

Remark 8.2.1. 1. The formalization is new. For a fixed model R of the theory T
of a fixed o-minimal expansion of the reals (e.g the restricted analytic functions)
a structure U(R) is defined. The resulting structure U(R) is an abstract Zariski
structure9.

2. Generalizing the last paragraph of Section 8.1, in the standard model the
domain is a complex manifold U(C) with holomorphic maps fi onto algebraic
varieties X i (C) with natural projections pri, j among the X i . These analytic
properties are definable using theory of K-analytic sets in o-minimal expansions
of the reals developed in [39; 40]. We fix k ⊆ C a subfield over which the
varieties Xi are all defined.

7 E is the elliptic Möbius transformations and the dq , dq are specific diagonal matrices.
8The set-up is for arbitrary algebraic varieties, but the categoricity result is only for curves and we

restrict to that case.
9Actually, U(R) = U (K ) where K is taken as an algebraically closed field R+ iR and U (R) is

constructed analogously to U (C).
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3. The ostensibly two-sorted structure of 1) becomes one-sorted because the
field can be interpreted in the abstract Zariski structure. And the third sort of
Section 8.1 has disappeared because the group is no longer referenced directly.

4. The o-minimal geometry of algebraic closure in U(R) imposes the desired
quasiminimal geometry on U(R). The dimension function is denoted cdim for
‘combinatorial dimension’. Note that the ordering is not externally imposed
on U: rather, it is implied by the predicates described in (1) above and the
dimension just mentioned.

5. As before, there is an Lω1,ω sentence that axiomatizes the quasiminimal (ex-
cellent) geometry and whose models form an AEC that is categorical in all
cardinalities.

Zilber [57] proved the following theorem:

Theorem 8.2.2 (categoricity of families of smooth complex algebraic varieties [57]).
Let U be a cover of a family of smooth complex algebraic variety, formalized as in
Remark 8.2.1, and let U(R) be its associated Lω1ω-definable class. If dimC(U)= 1,
(i.e., if the varieties are curves) and cdim(R/k) is infinite, then U(R) is categorical
in all uncountable cardinals.

Zilber remarks that in the case of higher-dimensional varieties, categoricity in
ℵ1 can still be proved.

Example 8.2.3. Here are some examples from [57]. Fix the o-minimal expansion
RAn = Rexp,an of the reals with the exponential function and the restricted (to
bounded intervals) analytic functions.

• Let I = N, U = C, fk(z) = exp( z
k ), Dn = {z ∈ C : −2πn < Im(z) < 2πn}.

These are easily seen to provide a cover system.

• The j -function with variants jN as uniformizers for the modular curves 0N \H

are examples; this study allows one to formalize their analytic properties in
terms of o-minimality. Finally, other examples include the Siegel half-space
and polarized algebraic varieties (these last examples are claimed but not
developed by Zilber).
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