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Positive characteristic Ax–Schanuel

Piotr Kowalski

This expository paper is written in celebration of Boris Zilber’s 75th birthday. We
discuss Ax–Schanuel type statements focusing on the case of positive characteristic.

1. Introduction

During the Spring 2005 Isaac Newton Institute program “Model Theory and Ap-
plications to Algebra and Analysis” in Cambridge, I learnt that I would be a
MODNET postdoc with Boris Zilber in Oxford for the academic year 2005/06.
Still in Cambridge, Boris suggested that I start thinking on “positive characteristic
versions of Ax’s theorem”. In this expository paper, I will describe what has
happened next.

It may be a good moment for a general disclaimer. This is an expository paper
representing my experience with respect to Boris’s suggestion above and I do not
claim that this paper describes adequately the state of the art in the vast area of
Ax–Schanuel type problems. In particular, comparatively very little will be said
about the amazing developments of Jonathan Pila (and many others) regarding the
modular version of Ax–Schanuel and its applications to diophantine problems, most
notably the André–Oort conjecture. I will write more about it in Section 2.

This paper is organized as follows. In Section 2, we describe the history of this
circle of problems in the case of characteristic 0. In Section 3, we focus on the
positive characteristic case and present some of the results I obtained following
Boris’s suggestion. In Section 4, we speculate on some recent ideas regarding
general forms of Ax–Schanuel and its Hasse–Schmidt differential versions.

2. Characteristic zero

In this section, we summarize the characteristic 0 situation regarding the Ax–
Schanuel problems. The disclaimer from the introduction applies mostly here.
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2A. Results. In the 1960s, Schanuel formulated two conjectures [Lang 1966,
pages 30–31]: one about transcendence of complex numbers [Ax 1971, (S)] and
one about transcendence of power series [Ax 1971, (SP)]. We state them below.

Schanuel’s conjecture (complex numbers). Let x1, . . . , xn ∈ C be linearly inde-
pendent over Q. Then

trdegQ(x1, . . . , xn, ex1, . . . , exn ) ⩾ n.

Schanuel’s conjecture (power series). Let x1, . . . , xn ∈ XC[[X ]] be linearly inde-
pendent over Q. Then

trdegC(X)(x1, . . . , xn, ex1, . . . , exn ) ⩾ n.

The conjecture on the complex numbers is open even for n = 2, since (using
Euler’s identity eiπ

+ 1 = 0) it covers the open problem of algebraic independence
of π and e and it is even still unknown whether π + e is irrational (it is named a
“candidate for the most embarrassing transcendence question in characteristic zero”
in [Brownawell 1998])! Schanuel’s conjecture for power series was proved in [Ax
1971, (SP)].

Ax [1971] also showed the following differential version of the power series
conjecture, which he actually used to show the other statements from [Ax 1971].

Differential Ax–Schanuel theorem [Ax 1971, (SD)]. Let (K , ∂) be a differential
field of characteristic 0 and C be its field of constants. For x1, . . . , xn ∈ K and
y1, . . . , yn ∈ K ∗, if

∂x1 =
∂y1

y1
, . . . , ∂xn =

∂yn

yn

and ∂x1, . . . , ∂xn are Q-linearly independent, then

trdegC(x1, . . . , xn, y1, . . . , yn) ⩾ n + 1.

Remark 2.1. There are the following passages between the power series and the
differential version of Ax’s theorem above.

(1) Since the ring of power series has a natural differential structure, the differential
version implies the power series version.

(2) Going the other way is more subtle. Seidenberg’s embedding theorem [1958]
says that any finitely generated differential field of characteristic 0 differentially
embeds into the differential field of meromorphic functions on an open subset
of C. Using this theorem, one can reduce the differential version of Ax’s
theorem to the power series one (this is explained in detail around [Freitag and
Scanlon 2018, Theorem 4.1] and in [Pila and Tsimerman 2016, Section 2.5]).
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Similar passages apply to the more complicated cases of analytic (or formal) Ax–
Schanuel statements versus the differential ones as well. Such more complicated
cases are described below.

In a subsequent paper written one year later, Ax [1972] proved the following gen-
eral geometric result about the dimension of intersections of algebraic subvarieties
of complex algebraic groups with analytic subgroups.

Ax’s theorem on the dimension of intersections [Ax 1972, Theorem 1]. Let G
be an algebraic group over the field of complex numbers C. Let A be a complex
analytic subgroup of G(C) and V be an irreducible algebraic subvariety of G
over C. We assume that K := A∩ V (C) is Zariski dense in V (C). Then there is an
analytic subgroup B ⊆ G(C) containing V (C) and A such that

dim(B) ⩽ dim(A) + dim(V ) − dim(K).

This theorem implies Schanuel’s conjecture on power series by taking:

• G as the product of the vector group Gn
a and the torus Gn

m,

• A as the n-th Cartesian power of the graph of the exponential map,

• V as the algebraic locus of the tuple (x1, . . . , xn, ex1, . . . , exn ).

Ax’s theorem on the dimension of intersections applies also (more generally) to
the case of the exponential map on a semiabelian variety [Ax 1972, Theorem 3].
The consequences of Ax’s theorem on the dimension of intersections go beyond
the case of the exponential map; for example, this theorem applies to the case of
analytic maps between the multiplicative group and an elliptic curve. We state
it precisely below, since this statement is amenable for a possible transfer to the
positive characteristic case (see Remark 2.4).

Theorem 2.2. Let
γ : Gm(C) → E(C)

be an analytic epimorphism, where E is an elliptic curve. Let

x1, . . . , xn ∈ 1 + XC[[X ]]

be multiplicatively independent. Then

trdegC(X)(x1, . . . , xn, γ (x1), . . . , γ (xn)) ⩾ n.

After Ax’s work in 1970s, Brownawell and Kubota [1977] proved a version
of the differential Ax’s theorem in the case of elliptic curves, and then Kirby
[2009] generalized it to arbitrary semiabelian varieties. These results were not
included in [Ax 1972], however they are closely related using the “passages” from
Remark 2.1. Bertrand [2008] extended [Ax 1972, Theorem 3] to commutative
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algebraic groups not having vector quotients (e.g., maximal nonsplit vectorial
extensions of a semiabelian variety).

The differential Ax’s theorem [Ax 1971, (SD)] is generalized further to “very
nonalgebraic formal maps” in [Kowalski 2008, Theorem 5.5]. This generalization
includes a differential version of Bertrand’s result and a differential Ax–Schanuel
type result about raising to nonalgebraic powers on an algebraic torus [Kowalski
2008, Theorem 6.12]. We state it below in the power series case (see Remark 2.1),
since this statement has a positive characteristic interpretation (see Remark 2.4).
Before the statement, we note that for x ∈ 1 + XC[[X ]] and α ∈ C, we define

xα
:= exp(α log(x)),

where exp, log ∈ Q[[X ]] are the standard formal power series corresponding to the
exponential and the logarithmic maps.

Theorem 2.3. Suppose that α ∈ C and [Q(α) : Q]> n. Let x1, . . . , xn ∈ 1+XC[[X ]]

be multiplicatively independent. Then

trdegC(X)(x1, . . . , xn, xα
1 , . . . , xα

n ) ⩾ n.

We now briefly describe modular analogues of Ax’s theorem. Our disclaimer from
the introduction applies very much here. Ax–Schanuel statements may go beyond
the context of group homomorphisms: the first example here is the j-function map

j : H → C,

where H is the upper half plane. The linear independence assumption from Ax’s
theorem is replaced with modular independence. Pila’s notes [2015] contain an
excellent comprehensive survey of the state of the art in this field up to 2013. Such
results have very important diophantine applications such as

• another proof of the Manin–Mumford conjecture [Pila and Zannier 2008];

• the first unconditional proof of the André–Oort conjecture for Cn [Pila 2011];

• a recent proof of the full André–Oort conjecture for Shimura varieties [Pila
et al. 2021].

Following a suggestion by the referee, we would like to point out that only the
Ax–Lindemann–Weierstrass type of results are needed in Manin–Mumford and
André–Oort, while Ax–Schanuel (in fact, a weak form of it) is used in Zilber–Pink
type problems.

In [Casale et al. 2020], the Ax–Lindemann–Weierstrass theorem with derivatives
for the uniformizing functions of genus zero Fuchsian groups of the first kind is
shown. This result is used in [Casale et al. 2020] to answer a question of Painlevé
from 1895.
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Remark 2.4. We analyze now which statements of the Ax–Schanuel results dis-
cussed above are transferable to the positive characteristic case. We would like to
mention that all the analytic Ax–Schanuel type results over C may be replaced with
their formal counterparts over an arbitrary field C , which was already done by Ax:
the reader is advised to compare Ax’s theorem on the dimension of intersections
with its formal counterpart [Ax 1972, Theorem 3], which will be stated in a more
general form in Section 3. Let us recall the setup first.

Definition 2.5 [Bochner 1946]. An n-dimensional formal group (law) over C is a
tuple of power series F ∈ C[[X, Y ]]

×n (|X | = |Y | = |Z | = n) satisfying

F(0, X) = F(X, 0) = X,

F(X, F(Y, Z)) = F(F(X, Y ), Z).

A morphism from an n-dimensional formal group G into an m-dimensional formal
group F is a tuple of power series f ∈ C[[X ]]

×m such that

F( f (X), f (Y )) = f (G(X, Y )).

There is a well-known formalization functor G 7→ Ĝ (see pages 5 and 13 in
[Manin 1963]) from the category of algebraic groups to the category of formal
groups.

Such characteristic 0 formal statements seem to be transferrable to the positive
characteristic context in the cases when the corresponding formal maps exist.

(1) The very original version of Ax–Schanuel does not look transferable, since
there are no reasonable exponential maps in positive characteristic (we will
briefly touch on the Drinfeld context at the end of Section 3).

(2) Therefore, other analytic maps need to be considered. “Analytic” may be
replaced with “formal” (as mentioned above) and then the closest one to the
exponential map which survives in the case of positive characteristic seems to
be the formal isomorphism between the multiplicative group and an ordinary
elliptic curve.

(3) The other types of such maps come from raising to powers in the multiplicative
group.

Items (2) and (3) above will be discussed in the positive characteristic context
in Section 3.

2B. Motivations and applications. Zilber [2002] used the differential Ax’s theorem
to prove weak CIT, which is a weak version of the conjecture on intersection with
tori (CIT), which was also stated in [Zilber 2002]. CIT is a finiteness statement
about intersections of subtori of a given torus with certain subvarieties of this torus.
Weak CIT was used in [Baudisch et al. 2009] to produce a characteristic 0 bad field.
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The existence of such a field was an open problem in model theory for almost 20
years.

Regarding the positive characteristic case, weak CIT does not hold and Zilber
formulated a conjectural statement in (the very last statement of) [Zilber 2005]. It
is still open whether a bad field in the positive characteristic case exists, however,
Wagner [2003] showed that its existence in the case of characteristic p > 0 implies
the existence of infinitely many p-Mersenne primes, which is an open problem
in number theory — but it is widely believed that there are finitely many of them
(for each individual prime p). Therefore, the existence of bad fields in positive
characteristic looks very unlikely. However, pursuing the following path of research
still looks interesting:

(1) prove positive characteristic versions of Ax–Schanuel;

(2) show a version of weak CIT in positive characteristic using (1);

(3) construct a version of a bad field in positive characteristic using (2);

(4) check the possible number-theoretic consequences of results obtained in (3).

As was mentioned in the previous subsection, Jonathan Pila and others used Ax–
Schanuel type results to show different versions of the André–Oort conjecture; see,
e.g., [Pila 2011; Tsimerman 2018; Casale et al. 2020; Pila et al. 2021].

There are also model-theoretic consequences of results of Ax–Schanuel type and
we would like to point out some of them.

• Kirby [2009] used his version of an Ax–Schanuel statement to obtain the
complete first-order theories of the exponential differential equations of semi-
abelian varieties which arise from an amalgamation construction in the style
of Hrushovski.

• Aslanyan [2022] did a version of the above for the j-function in place of the
exponential function on semiabelian varieties.

• Freitag and Scanlon [2018] used Ax–Lindemann–Weierstrass to establish
strong minimality and triviality of the differential equation of the j-function.
This was generalized in [Aslanyan 2021] to a more general and formal setting.

• In [Casale et al. 2020] and [Blázquez-Sanz et al. 2021], the authors go in a
quite opposite way: they first establish strong minimality using differential
Galois theory, then use Zilber’s trichotomy to prove triviality, then use that to
establish Ax–Lindemann–Weierstrass and later Ax–Schanuel. That is, they
give a new proof to Ax–Schanuel for the j -function and in fact for all Fuchsian
automorphic functions.
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3. Positive characteristic

The first (to my knowledge) positive characteristic Ax–Schanuel result concerns
additive power series. Interestingly, it is not included in the cases considered in
Remark 2.4, because such formal maps have no counterpart in the characteristic 0
case, since any additive formal power series in characteristic 0 is linear, so it is “not
interesting”. This positive characteristic additive Ax–Schanuel result is explained
in detail below.

For any commutative algebraic group G, we have the following two (usually
noncommutative) rings:

(1) the ring of algebraic endomorphisms (that is, endomorphisms of G in the
original category of algebraic groups), denoted Endalgebraic(G);

(2) the ring of formal endomorphisms (that is, endomorphisms of the formalization
of G, as below Definition 2.5, in the category of formal groups), denoted
Endformal(G).

Let C be a field of characteristic p > 0 and Ga denote the additive group scheme
over C . We consider the following two rings.

• The ring of additive polynomials over C (with composition), which we denote
by C[Fr]. This is also the skew polynomial ring over C and we have the ring
isomorphism

Endalgebraic(Ga) ∼= C[Fr].

• The ring of additive power series over C (with composition), which we denote
by C[[Fr]]. We have the ring isomorphism

Endformal(Ga) ∼= C[[Fr]].

These rings are commutative if and only if C = Fp and then they are also domains
(isomorphic to the rings of polynomials or the ring of power series). We denote the
fraction field of Fp[Fr] by Fp(Fr). We state below the main theorem of [Kowalski
2012].

Ax–Schanuel for additive power series [Kowalski 2012, Theorem 1.1]. Let F be
an additive power series over Fp and assume that

[Fp(Fr)(F) : Fp(Fr)] > n.

Let x1, . . . , xn ∈ tFp[[t]] be linearly independent over Fp[Fr]. Then we have

trdegFp
(x1, . . . , xn, F(x1), . . . , F(xn)) ⩾ n + 1.

We describe a general Ax–Schanuel result from [Kowalski 2019], which is valid
in all characteristics. We need two technical assumptions. Before stating them, we
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try to motivate them. One of the crucial properties (used in the proofs in [Ax 1972])
of analytic homomorphisms between algebraic groups is that they take invariant
algebraic differential forms into invariant algebraic differential forms. The first
technical assumption below, which is absolutely necessary, is both formalizing and
generalizing this crucial property. Regarding the second assumption, the exponential
map gives a formal isomorphism between any commutative algebraic (and even
formal) group in the case of characteristic 0 and a Cartesian power of the additive
group. This is false in the positive characteristic case, for example there is no formal
isomorphism between the additive and the multiplicative group (no exponential
map in positive characteristic!). To make the proofs work, we still need to impose
an additional assumption in the positive characteristic case, to mimic the above
characteristic 0 situation. The 1-dimensional group H in this assumption plays the
role of Ga and we need to put some extra conditions on H which are true for Ga.
We would prefer to avoid this second assumption, but we were unable to do so in
[Kowalski 2019].

(1) We define a special formal map as one which “resembles a homomorphism” in
the sense that it takes invariant differential forms into the “usual” differential
forms (before taking the completion; see [Kowalski 2019, Definition 3.10]).
In the positive characteristic case, the notion of differential forms has to be
replaced by Vojta’s notion [2007] of higher differential forms; see [Kowalski
2019, Remark 5.18(3)].

(2) We say that a commutative algebraic group A defined over the field C of
characteristic p is “good” (see [Kowalski 2019, Definition 3.4]) if there is a
one-dimensional algebraic group H over C such that we have the following
(in the case of p = 0, we drop (c)):
(a) Â ∼= Ĥ n .
(b) The map End(Ĥ) → EndC(�inv

H ) (= C) is onto.
(c) H is Fp-isotrivial, i.e., H ∼= H Fr.

To motivate the next result and give a general feeling regarding “what is it about”,
we quote from [Kowalski 2019] the following, where “the main theorem of this
paper” refers to Theorem 3.1.

A continuous map between Hausdorff spaces which is constant on a dense
set is constant everywhere. The same principle applies to an algebraic
map between algebraic varieties and to the Zariski topology (which is
not Hausdorff). However, if we mix categories there is no reason for
this principle to hold, e.g., there are nonconstant analytic maps between
algebraic varieties which are constant on a Zariski dense subset. The
main theorem of this paper roughly says that the principle above can be
saved for certain formal maps (resembling homomorphisms) between
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an algebraic variety and an algebraic group at the cost of replacing the
range of the map with its quotient by a formal subgroup of the controlled
dimension.

Theorem 3.1. Let V be an algebraic variety, K a Zariski dense formal subvariety
of V , A a “good” commutative algebraic group and F : V̂ → Â a special formal
map. Assume F vanishes on K. Then there is a formal subgroup C ⩽ Â such that
F(V̂ ) ⊆ C and

dim(C) ⩽ dim(V ) − dim(K).

As a consequence of Theorem 3.1, we obtained in [Kowalski 2019] a result
which is parallel to Ax–Schanuel for additive power series, where an additive power
series (that is, a formal endomorphism of the additive group) is replaced with a
“multiplicative” power series (that is, a formal endomorphism of the multiplica-
tive group). Let Zp denote the ring of p-adic integers. By [Hazewinkel 1978,
Theorem 20.2.13(i)], we have the ring isomorphism

Endformal(Gm, Gm) ∼= Zp.

We obtain an interesting positive characteristic version (see Example 4.15(3)
and Theorem 4.16 in [Kowalski 2019]) of raising to powers Ax–Schanuel (see
Theorem 2.3). For x ∈ 1 + XC[[X ]] and α ∈ Zp (char(C) = p > 0), we represent α

as
∑

∞

i=0 αi pi for some αi ∈ {0, 1, . . . , p − 1} and we have

xα
:= lim

n→∞

n∏
i=0

xαi pi
.

Theorem 3.2. Suppose that α∈Zp and [Q(α) :Q]>n. Let x1, . . . , xn ∈1+XC[[X ]]

be multiplicatively independent. Then

trdegC(X)(x1, . . . , xn, xα
1 , . . . , xα

n ) ⩾ n.

There is a general setup including the additive and multiplicative cases, which
we describe below following [Kowalski 2019]. Let us fix a positive integer n and a
one-dimensional algebraic group H over C . We introduce the following notation
from [Kowalski 2019].

• Let R := Endalgebraic(H) and S := Endformal(H).

• We restrict our attention to algebraic groups H such that S is a commutative
domain. We regard R as a subring of S.

• Let K denote the field of fractions of R and L be the field of fractions of S.
We regard K as a subfield of L.

Example 3.3. In the characteristic 0 case, we always have S = C , so the commuta-
tivity assumption is satisfied and we can consider any one-dimensional algebraic
group as H . We give some examples below.
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(1) If H = Ga and the characteristic is 0, then R = S = C .

(2) If H = Ga and the characteristic is p > 0, then R = C[Fr] and S = C[[Fr]]
(see the notation introduced in the beginning of this section). This is why we
needed to take C = Fp to ensure that S is commutative.

(3) If H = Gm and the characteristic is 0, then R = Z. In the case of characteristic
p > 0, we have S = Zp as mentioned above.

Below is our transcendental statement about formal endomorphisms (see [Kowal-
ski 2019, Theorem 4.16.]). We need to introduce the following notions from [Kowal-
ski 2019]. Let A be a commutative algebraic group over the field C of characteristic
p > 0.

• A formal map into Â is an A-limit map if it can be “strongly approximated” by
a sequence of polynomial maps ( fn)n in the sense that the differences fn+1− fn

are in the image of the n-th power of the appropriate Frobenius map. For
example, any formal endomorphism of Ĝa is a Ga-limit map (approximated by
additive polynomials), and any formal endomorphism of Ĝm is a Gm-limit map
(approximated by multiplicative polynomials appearing in the description of
xα before the statement of Theorem 3.2).

• We fix a complete C-algebra R with the residue field C such that R is linearly
disjoint from Calg over C and in the case of characteristic p such that L p∞

= C ,
where L is the fraction field of R (e.g., R may be the power series algebra).

• For x ∈ A(R), we call x subgroup independent if for any proper algebraic
subgroup A0 < A defined over C , we have x /∈ A0(R).

• The formal locus of x ∈ A(R) over C is defined as the formal subscheme of
Â corresponding to the image of the map ÔA,0 → R.

• The number andeg(x) denotes the dimension of the formal locus of x over C .

Theorem 3.4. Take γ ∈ S such that [K [γ ] : K ] > n and γ : Ĥ → Ĥ is an H-limit
map. Let E : Â → Â be the n-th cartesian power of γ , where A = H n . Then for any
subgroup independent x ∈ A(R)∗ we have

trdegC(x, EK (x)) ⩾ n + andegC(x).

We showed in [Kowalski 2019] that an unproved version of Theorem 3.1 without
the “goodness” assumptions implies the following conjecture. This conjecture is
important for the following reasons.

• If the field C has characteristic 0, then this conjecture is a theorem of Ax [1972,
Theorem 1F].

• Ax [1972, Section 3] showed that in the case of characteristic 0 (Ax did not
consider the positive characteristic case), [Ax 1972, Theorem 1F] implies the
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Ax–Schanuel statements regarding the differential equation of the “appropriate”
formal/analytic homomorphisms between algebraic groups (Ax focused on the
exponential maps on semiabelian varieties). The corresponding implication
holds in the positive characteristic case as well.

Main conjecture (arbitrary characteristic). Let G be an algebraic group over a
field C of arbitrary characteristic, Ĝ the formalization of G at the origin and A a
formal subgroup of Ĝ. Let K be a formal subscheme of A and let V be the Zariski
closure of K in G. Then there is a formal subgroup B of Ĝ which contains A and V̂
such that

dim(B) ⩽ dim(V ) + dim(A) − dim(K).

We formulate below a specific statement which would follow from this main
conjecture.

Specific conjecture. Suppose that char(C)= p > 0 and let γ : Ĝm → Ê be a formal
isomorphism, where E is an ordinary elliptic curve. Let x1, . . . , xn ∈ 1 + XC[[X ]]

be multiplicatively independent. Then

trdegC(X)(x1, . . . , xn, γ (x1), . . . , γ (xn)) ⩾ n.

This case seems to be related to the “interesting research paths (1)–(4)” from
Section 2B. More precisely, the formal map appearing in the specific conjecture
looks “closest” to the exponential map from the original Ax’s theorem, which was
used by Zilber to show weak CIT (see Section 2B).

We finish this section with a brief discussion of the case of the Drinfeld modules.
Drinfeld [1974] introduced elliptic modules, which are now called Drinfeld modules.
Drinfeld modules can be understood as certain homomorphisms between Fq [X ]

and K [Fr], where q is a power of p and K = Fq((θ)) is the non-Archimedean field
of Laurent series over Fq . An additive power series over K is associated to each
Drinfeld module and this series is entire on K . A number of transcendence results
for such additive power series was obtained; see, e.g., [Yu 1986]. To the best of my
knowledge, such results never include a version of the full Ax–Schanuel statement.
For a survey of this theory, we refer the reader to [Brownawell 1998]. Before the
invention of Drinfeld modules, a special case of such a series was introduced by
Carlitz, which is now called the Carlitz exponential and has the form

expC = X +

∞∑
i=1

X pi

(θ pi
− θ)(θ pi

− θ p) · · · (θ pi
− θ pi−1

)
.

There are several Schanuel type results for the Carlitz exponential (see [Denis
1995]) and a Carlitz exponential version of the (still open) conjecture on algebraic
independence of logarithms of algebraic numbers was proved in [Papanikolas 2008,
Theorem 1.2.6]. The power series we consider do not fit in the Drinfeld module
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framework, since we consider power series with constant coefficients, that is, there
is no transcendental element θ in the coefficients of our additive power series.

4. Recent ideas and speculations

In this section, we describe some recent early stage developments concerning
Ax–Schanuel type problems. One of them regards combining the results from
[Blázquez-Sanz et al. 2021] with Ax’s theorem on the dimension of intersections.
The other one is about differential versions of Ax–Schanuel in positive characteristic.

4A. Towards a general statement of Ax–Schanuel. Ax–Schanuel statements for
analytic/formal homomorphisms in the case of characteristic 0 have one “umbrella
statement” from which they all follow, which is Ax’s theorem on the dimension
of intersections from Section 3. No such “umbrella statement” was known for
Ax–Schanuel statements for the maps like the j-invariant map until the recent
preprint [Blázquez-Sanz et al. 2021], where a general form of an Ax–Schanuel type
result is given (see [Blázquez-Sanz et al. 2021, Theorem A]). In this statement, the
algebraic group G is again back in the picture (e.g., G = PGL2(C) in the case of the
j-invariant map), but the statement is quite technical and it is phrased in terms of
leaves of flat connections on G-principal bundles, where such a leaf plays the role
of the analytic subgroup A from Ax’s theorem on the dimension of intersections
from Section 3.

Connection version of Ax–Schanuel [Blázquez-Sanz et al. 2021, Theorem A]. Let
∇ be a G-principal flat connection on the algebraic bundle P → Y such that

• the algebraic group G is sparse;

• the Galois group of ∇ coincides with G.

Let V be an algebraic subvariety of P and L be a horizontal leaf of ∇. If

dim V < dim(V ∩L) + dim G

then the projection of V ∩L in Y is contained in a ∇-special subvariety of Y .

Sparsity of the algebraic group G above means that there are no proper Zariski
dense complex analytic subgroups of G. The notion of a “∇-special” is more
technical; it is phrased in terms of the Galois group of a connection (see [Blázquez-
Sanz et al. 2021, Definition 2.4]).

Unlike in the case of [Ax 1972, Theorem 1], no analytic subgroup appears in
[Blázquez-Sanz et al. 2021, Theorem A], so this theorem does not generalize [Ax
1972, Theorem 1]. We propose such a generalization which encompasses both the
connection version of Ax–Schanuel and [Ax 1972, Theorem 1]. It will appear in
[Gogolok and Kowalski ≥ 2024].
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Connection and subgroup Ax–Schanuel. Let ∇ be a G-principal flat connection
on the algebraic bundle P → Y such that the Galois group of ∇ coincides with G
and

• V is an algebraic subvariety of P ,

• A is an analytic subgroup of G,

• L is a horizontal leaf of ∇.

Suppose that V is an analytic submanifold of A which is Zariski dense in V . If

dim V < dim(V ∩L) + dim G

then there is an analytic subgroup H of G such that

dimH < dim(V ) − dim(V)

and V ⊆ AH.

The results mentioned above concern the case of characteristic 0. In the “main
conjecture” from Section 3, the notion of “analytic” is replaced with the notion of
“formal” (see Remark 2.4), which makes sense in the case of arbitrary characteristic.
The connection version of Ax–Schanuel [Blázquez-Sanz et al. 2021, Theorem A]
mentioned above has not been considered in the positive characteristic case before,
since it requires an appropriate version of the notion of a connection in positive
characteristic. This is work in progress [Gogolok and Kowalski ≥ 2024].

4B. Hasse–Schmidt differential Ax–Schanuel. Positive characteristic versions of
the differential Ax’s theorem have not been studied yet. It is clear that we cannot
consider the usual derivations anymore, since the constants of differential fields of
positive characteristic contain the image of the Frobenius map, and hence there is no
room for any transcendence. It looks natural in this case to replace the derivations
with iterative Hasse–Schmidt derivations and the field of constants with the field of
absolute constants. We give the necessary definitions below.

• A sequence ∂ = (∂n : R → R)n∈N of additive maps on a ring is called an
HS-derivation if ∂0 is the identity map, and for all n ∈ N and x, y ∈ R, we
have

∂n(xy) =

∑
i+ j=n

∂i (x)∂ j (y).

• An HS-derivation ∂ is called iterative if for all i, j ∈ N we have

∂i ◦ ∂ j =

(
i + j

i

)
∂i+ j .
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• If (K , ∂) is a field with a Hasse–Schmidt derivation, then its field of absolute
constants is the intersection

∞⋂
i=1

ker(∂i ).

The passages between the differential Ax–Schanuel and the power series Ax–
Schanuel (described in Remark 2.1) work only one way for the positive characteristic
case, since the power series ring has a natural iterative Hasse–Schmidt derivation on
it. However, it is not clear how to proceed in the opposite way, so Hasse–Schmidt
differential Ax–Schanuel type results need to be proved separately. This is work in
progress [Gogolok and Kowalski ≥ 2024].

We state below two such results which will appear in [Gogolok and Kowalski
≥ 2024] to give a flavour of these kinds of Ax–Schanuel conditions. Assume that
(K , ∂) is a field of characteristic p > 0 with a Hasse–Schmidt derivation and C is
a field contained in the field of absolute constants of (K , ∂).

Additive Hasse–Schmidt differential Ax–Schanuel. Let

F =

∞∑
m=0

cm X pm
∈ Fp[[Fr]]

and suppose that the algebraic degree of F over Fp(Fr) is greater than n. Take
x1, . . . , xn, y1, . . . , yn ∈ K such that x1, . . . , xn are linearly independent over
Fp[Fr] and for all i ∈ {1, . . . , n},

D1(yi − c0xi ) = 0,

Dp(yi − c0xi − c1x p
i ) = 0,

...

Dpm (yi − c0xi − c1x p
i − · · · − cm x pm

) = 0,

...

Then we have
trdegFp

(x1, y1, . . . , xn, yn) ⩾ n + 1.

Multiplicative Hasse–Schmidt differential Ax–Schanuel. Let

γ =

∑
ci pi

∈ Zp

and suppose that the algebraic degree of γ over Q is greater than n. Take
x1, . . . , xn, y1, . . . , yn ∈ K such that x1, . . . , xn are multiplicatively independent
and for all i ∈ {1, . . . , n},
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D1(yi x
−c0
i ) = 0,

Dp(yi x
−c0−c1 p
i ) = 0,

...

Dpm (yi x
−c0−c1 p− ···−cm pm

i ) = 0,

...
Then we have

trdegC(x1, y1, . . . , xn, yn) ⩾ n + 1.
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