Download this article
 Download this article For screen
For printing
Recent Issues
Volume 4, Issue 1
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
 
ISSN 2832-904X (online)
ISSN 2832-9058 (print)
 
Author index
To appear
 
Other MSP journals
Approximate equivalence relations

Ehud Hrushovski

Vol. 3 (2024), No. 2, 317–416
Abstract

Generalizing results for approximate subgroups, we study approximate equivalence relations up to commensurability, in the presence of a definable measure.

As a basic framework, we give a presentation of probability logic based on continuous logic. Hoover’s normal form is valid here; if one begins with a discrete logic structure, it reduces arbitrary formulas of probability logic to correlations between quantifier-free formulas. We completely classify binary correlations in terms of the Kim–Pillay space, leading to strong results on the interpretative power of pure probability logic over a binary language. Assuming higher amalgamation of independent types, we prove a higher stationarity statement for such correlations.

We also give a short model-theoretic proof of a categoricity theorem for continuous logic structures with a measure of full support, generalizing theorems of Gromov–Vershik and Keisler, and often providing a canonical model for a complete pure probability logic theory. These results also apply to local probability logic, providing in particular a canonical model for a local pure probability logic theory with a unique 1-type and geodesic metric.

For sequences of approximate equivalence relations with an “approximately unique” probability logic 1-type, we obtain a structure theorem generalizing the “Lie model” theorem for approximate subgroups (Theorem 5.5). The models here are Riemannian homogeneous spaces, fibered over a locally finite graph.

Specializing to definable graphs over finite fields, we show that after a finite partition, a definable binary relation converges in finitely many self-compositions to an equivalence relation of geometric origin. This generalizes the main lemma for strong approximation of groups.

For NIP theories, pursuing a question of Pillay’s, we prove an archimedean finite-dimensionality statement for the automorphism groups of definable measures, acting on a given type of definable sets. This can be seen as an archimedean analogue of results of Macpherson and Tent on NIP profinite groups.

This paper is dedicated to Boris Zilber, who found the path for us.

Keywords
approximate equivalence relations, NIP, probability logic
Mathematical Subject Classification
Primary: 03C07
Milestones
Received: 15 December 2022
Revised: 23 June 2024
Accepted: 25 June 2024
Published: 19 July 2024
Authors
Ehud Hrushovski
Mathematical Institute
University of Oxford
Oxford
United Kingdom