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Noncommutative algebraic geometry
I: Monomial equations with a single variable

Zlil Sela

This paper is the first in a sequence on the structure of sets of solutions to systems
of equations over a free associative algebra. We start by constructing a Makanin–
Razborov diagram that encodes all the homogeneous solutions to a homogeneous
monomial system of equations. Then we analyze the set of solutions to monomial
systems of equations with a single variable.

Algebraic geometry studies the structure of sets of solutions to systems of
equations usually over fields or commutative rings. The developments and the con-
siderable abstraction that currently exist in the study of varieties over commutative
rings still resists application to the study of varieties over nonabelian rings or over
other nonabelian algebraic structures.

Since 1960 ring theorists such as P. M. Cohn [1971], G. M. Bergman [1969] and
others have tried to study varieties over nonabelian rings, notably free associative
algebras (and other free rings). However, the pathologies that they tackled and the
lack of unique factorization that they study in detail [Cohn 1971, Chapters 3–4]
prevented any attempt to prove or even speculate what can be the structure of
varieties over free associative algebras.

In this sequence of papers we suggest studying varieties over free associative
algebras using techniques and analogies of structural results from the study of vari-
eties over free groups and semigroups. Over free groups and semigroups geometric
techniques as well as low-dimensional topology play an essential role in the structure
of varieties. These include Makanin’s algorithm for solving equations, Razborov’s
analysis of sets of solutions over a free group, the concepts and techniques that
were used to construct and analyze the JSJ decomposition, and the applicability of
the JSJ machinery to study varieties over free groups and semigroups [Sela 2001;
2016]. Our main goal is to demonstrate that these techniques and concepts can be
modified to be applicable over free associative algebras as well.

Furthermore, we believe that the concepts and techniques that proved to be
successful over free groups and semigroups can be adapted to analyze varieties over
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free objects in other noncommutative and at least “partially” associative algebraic
structures. In that respect, we hope that it will be possible to use or even axiomatize
the properties of varieties over the free objects in these algebraic structures, in order
to set dividing lines between noncommutative algebraic structures, in analogy with
classification theory (of first-order theories) in model theory [Shelah 1990].

We start the analysis of systems of equations over a free associative algebra
with what we call monomial systems of equations. These are systems of equations
over a free associative algebra in which every polynomial in the system contains
two monomials. In Section 1 we analyze the case of homogeneous solutions to
homogeneous monomial systems of equations. In this case it is possible to apply the
techniques that were used in analyzing varieties over free semigroups [Sela 2016],
and associate a Makanin–Razborov diagram that encodes all the homogeneous
solutions to a homogeneous monomial system of equations.

In Section 2 we introduce limit algebras, which are a natural analogue of a
limit group, and prove that such algebras are always embedded in (limit) division
algebras (in analogy with the embeddings of limit semigroups in limit groups, that
we termed limit pairs in [Sela 2016]). The automorphism (modular) groups of these
division algebras are what is needed in the sequel in order to modify and shorten
solutions to monomial systems of equations.

In Section 3 we present a combinatorial approach to (cases of) the celebrated
Bergman’s centralizer theorem [1969]. Finally, in the fourth section we use this
combinatorial approach to analyze the set of solutions to a monomial system of
equations with a single variable. The results that we obtain are analogous to the well
known structure of the set of solutions to systems of equations with a single variable
over a free group or semigroup. We prove all our results under the assumption that
the top homogeneous parts of the coefficients in the equations are monomials with
no periodicity, in order to simplify our arguments, but we believe that eventually
this assumption can be dropped.

In the next paper in the sequence we use the techniques that are presented in
this paper to analyze monomial systems of equations that have more than a single
variable, but have no quadratic (or surface) parts. In the third paper in the sequence
we analyze the quadratic parts of monomial systems of equations. Eventually, we
hope to use our analysis of sets of solutions to monomial systems of equations to
the analysis of general varieties.

1. Homogeneous solutions of monomial equations

For simplicity, we will always assume that the free algebras that we consider are
over the field with two elements GF2. Let FA be a free associative algebra over GF2:
FA = GF2⟨a1, . . . , ak⟩. In order to study the structure of general varieties over the
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associative algebra FA, we start with varieties that are defined by monomial systems
of equations. A system of equations 8 is called monomial if it is defined using a
finite set of unknowns x1, . . . , xn , and a finite set of equations

u1(c1, . . . , cℓ, x1, . . . , xn) = v1(c1, . . . , cℓ, x1, . . . , xn),

...

us(c1, . . . , cℓ, x1, . . . , xn) = vs(c1, . . . , cℓ, x1, . . . , xn),

where the words ui and vi are monomials in the free algebra generated by the
variables x1, . . . , xn and coefficients c1, . . . , cℓ from the algebra FA, i.e., a word in
the free semigroup generated by these elements (note that the coefficients c1, . . . , cℓ

are general elements and not necessarily monomials). A monomial system of
equations is called homogeneous if all the coefficients c1, . . . , cℓ in the system are
homogeneous elements in the free associative algebra FA.

We start by analyzing all the homogeneous solutions of a homogeneous monomial
system, i.e., all the assignments of homogeneous elements in FA to the variables
x1, . . . , xn such that the equalities in a homogeneous monomial system of equations
are valid.

Let x0
1 , . . . , x0

n be a homogeneous solution of the monomial system 8. Substitut-
ing the elements x0

1 , . . . , x0
n in the monomials ui and vi , 1 ≤ i ≤ s, we get a finite

set of equalities in the free algebra FA. Since all the elements that appear in each of
these equalities are homogeneous, for each index i we can associate a segment Ji

of length that is equal to the degree of ui and vi after the substitution of x0
1 , . . . , x0

n .
We further add notation on the segment Ji for the beginnings and the ends of each
of the elements x0

1 , . . . , x0
n and the coefficients c1, . . . , cℓ of the system.

With the segments J1, . . . , Js , and the notation for the beginnings and ends of
x0

1 , . . . , x0
n and c1, . . . , cℓ, we can naturally associate a generalized equation as in

[Makanin 1977; Casals-Ruiz and Kazachkov 2011], or alternatively a band complex
(bands are added for different appearances of the same variable) as it appears in
[Bestvina and Feighn 1995]. All the lengths that appear in the band complex are
integers, so the band complex must be simplicial. Note that all the operations that
are used in the Rips machine, or in the Makanin procedure, to transfer the original
complex into a standard band complex are valid in our context, i.e., it is possible to
cut the elements x0

1 , . . . , x0
n and c1, . . . , cℓ and represent them as multiplication of

new elements according to the operations that are performed in modifying the band
complexes (or the generalized equation) along the procedure.

To clarify the applicability of the Makanin moves, one can look at the band
complex or the corresponding Makanin generalized equation differently. Given
the homogeneous solution x0

1 , . . . , x0
n , and substituting it in the homogeneous

monomial system of equations, we can naturally associate with each side of a
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monomial equation a homogeneous tree. Since each of the trees is composed from
homogeneous elements, there are no cancellations between paths (monomials) in
each separate tree, so the monomial equation implies that the homogeneous trees
that are associated with the two sides of the equation are identical.

Now, the identical trees that are associated with the two sides of a monomial
equation admit two product structures that are associated with the two sides of the
equation. Therefore, the tree that is associated with a monomial equation admits a
product structure which is the common refinement of the product structure coming
from the two sides of the equation. Each band in the band complex, or alternatively
each pair of bases in the Makanin generalized equation that is associated with the
system, indicates that a certain part in this refined product structure of the tree that
is associated with one monomial equation is identical to another part in the product
structure of a tree that is associated with another (possibly the same) monomial
equation. Alternatively, homogeneous elements in a free associative algebra have
the unique factorization property. Hence, given two factorizations of a homogeneous
element, there is a common refinement of the two factorizations.

Furthermore, each of the basic Makanin moves that can be performed on general-
ized equations can be performed in an identical way on the homogeneous trees that
are associated with homogeneous monomial equations using their refined product
structure. This means that the entire Makanin process to analyze solutions to
systems of equations over a free semigroup, which is composed from sequences of
basic moves, can be applied to the product structures of homogeneous trees that are
associated with homogeneous monomial systems of equations.

The ability to apply the Makanin basic moves to the generalized equation or
the band complex that is associated with a homogeneous system of monomial
equations implies that it is possible to associate with such a system of equations
a Makanin–Razborov diagram, using the construction of such a diagram for a
system of equations over a free semigroup as it appears in [Sela 2016]. As in a free
semigroup, the constructed diagram encodes all the homogeneous solutions to the
homogeneous system of equations in the free algebra FA.

Let G8 be the semigroup that is generated by copies of x1, . . . , xn and the
coefficients c1, . . . , cℓ modulo the relations

ui (c1, . . . , cℓ, x1, . . . , xn) = vi (c1, . . . , cℓ, x1, . . . , xn)

for 1 ≤ i ≤ s, where the monomials ui and vi are interpreted as words in a free
semigroup. With a (homogeneous) solution of the system 8 it is possible to
associate a homomorphism from G8 into the free semigroup that is generated by a
free generating set of FA.

Conversely, given a semigroup homomorphism of G8 into a free semigroup that
fits with a decomposition of the constants c1, . . . , cℓ into a product of homogeneous
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elements (there are finitely many possible ways to represent each of the coefficients
c1, . . . , cℓ as such a product), it is possible to associate with such a product a family
of solutions of the systems 8.

Therefore, the study of homogeneous solutions of a homogeneous monomial
system of equations over an associative free algebra is reduced to the study of a
collection of semigroup homomorphisms from a given f.g. semigroup into a free
semigroup. By [Sela 2016] with this collection of semigroup homomorphisms it is
possible to associate canonically a finite collection of pairs (S1, L1), . . . , (Sm, Lm),
where each of the groups L j is a limit group, and each of the semigroups S j is a
f.g. subsemigroup that generates L j . Furthermore, with G8 and its collection of
homomorphisms it is possible to associate (noncanonically) a Makanin–Razborov
diagram that encodes all its homomorphisms into free semigroups. By our ob-
servation, this Makanin–Razborov diagram of pairs encodes all the homogeneous
solutions of the system 8 in the algebra FA.

Theorem 1.1. With a homogeneous monomial system of equations over the free
associative algebra FA it is possible to associate (noncanonically) a Makanin–
Razborov diagram that encodes all its homogeneous solutions.

As a corollary of the encoding of homogeneous solutions of a system of homo-
geneous monomial equations by pairs of limit groups and their subsemigroups we
get the following.

Corollary 1.2. The collections of sets of homogeneous solutions to homogeneous
monomial systems of equations is Noetherian, i.e., every descending sequence of
such sets terminates after a finite time.

Proof. Follows immediately from the descending chain condition for limit groups
[Sela 2001], or the Noetherianity of varieties over free groups and semigroups
[Guba 1986]. □

Theorem 1.1 associates a Makanin–Razborov diagram with the set of homoge-
neous solutions to a homogeneous monomial systems of equations. Our main goal in
this sequence of papers is to associate a Makanin–Razborov diagram with the set of
(not necessarily homogeneous) solutions of a general monomial system of equations,
at least in the minimal rank case, i.e., in the case in which the Makanin–Razborov
diagram that is associated with the homogeneous system that is associated with top
homogeneous part of the nonhomogeneous system contains no free products.

2. Limit algebras, their division algebras and modular groups

The construction of the Makanin–Razborov diagram of a system of equations over a
free group uses extensively the (modular) automorphism groups of the limit groups
that are associated with its nodes. These modular groups, defined in [Sela 2001,
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Definition 5.2], enable one to proceed from a limit group to maximal shortening
quotients of it that are always proper quotients.

The semigroups that appear in the construction of the Makanin–Razborov diagram
of a system of equations over a free semigroup do not have a large automorphism
group in general, e.g., a finitely generated free semigroup has a finite automorphism
group. Hence, to study homomorphisms from a given f.g. semigroup S to the free
semigroup FSk we did the following in [Sela 2016].

Given a f.g. semigroup S we can naturally associate a group with it. Given
a presentation of S as a semigroup, we set the f.g. group Gr(S) to be the group
with the presentation of S interpreted as a presentation of a group. Clearly, the
semigroup S is naturally mapped to the group Gr(S) and the image of S in Gr(S)

generates Gr(S). We set ηS : S → Gr(S) to be this natural homomorphism of
semigroups.

The free semigroup FSk naturally embeds into a free group Fk . By the construc-
tion of the group Gr(S), every homomorphism of semigroups h : S → FSk extends
to a unique homomorphism of groups hG : Gr(S) → Fk such that h = hG ◦ ηS .

By construction, every homomorphism (of semigroups) h : S → FSk extends
to a homomorphism (of groups) hG : Gr(S) → Fk . Therefore, the study of the
structure of Hom(S, FSk) is equivalent to the study of the structure of the collection
of homomorphisms of groups Hom(Gr(S), Fk) that restrict to homomorphisms of
(the semigroup) S into the free semigroup (the positive cone) FSk .

By (canonically) associating a finite collection of maximal limit quotients with
the set of homomorphisms Hom(Gr(S), Fk) that restrict to (semigroup) homomor-
phisms from S to FSk , we are able to (canonically) replace the pair (S, Gr(S))

with a finite collection of limit quotients (S1, L1), . . . , (Sm, Lm), where each of the
groups L i is a limit group. Limit groups have rich modular groups, and these are
later used to proceed to the next levels of the Makanin–Razborov diagram of the
given system of equations over the free semigroup FSk .

In studying sets of solutions to systems of equations over a free associative
algebra, we need to study homomorphisms: h : A → FAk , where A is a f.p. algebra
and FAk is the free associative algebra of rank k. As in the case of groups and
semigroups, to study such homomorphisms we pass to convergent sequences of
homomorphisms {hn : A→FAk}, and look at the limit algebras LA that are associated
with such convergent sequences. Algebras, and in particular limit algebras, have
automorphisms, but these are not the automorphisms that will be needed in the
sequel to modify and shorten homomorphisms.

By a classical construction of [Malcev 1948; Neumann 1949], and by differ-
ent constructions of Amitsur [1966] and others, the free associative algebra FAk

can be embedded into a division algebra Div(FAk) (note that there are various
different division algebras into which FAk embeds). Given a convergent sequence
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{hn : A → FAk} with an associated limit algebra LA, it is straightforward to get
an embedding LA → Div(LA), where Div(LA) is a division algebra that is also
obtained from the convergent sequence and from the embedding FAk → Div(FAk).

In the sequel we will use (a subgroup of) the group of automorphisms of the divi-
sion algebra Div(LA) in order to modify (shorten) the homomorphisms h : A → FAk

that we need to study. These will be the modular groups that are associated with
limit algebras that appear along the nodes of the Makanin–Razborov diagrams of
the given systems of equations over the free associative algebra FAk .

An important example is (a special case of) what we call surface (or quadratic)
algebra:

SA = ⟨x1, . . . , xn | x1 · · · xn = xσ(1) · · · xσ(n)⟩

for an appropriate permutation σ ∈ Sn . Such a surface algebra is a limit algebra.
Hence, it is embedded in a division algebra Div(SA). For appropriate convergent
sequences, the modular group of Div(SA) contains the automorphism group of
a corresponding surface. Therefore, we call the modular group of Div(SA) the
Bergman modular group of a surface algebra, since it contains (or is generated by)
generalized Dehn twists that are inspired by Bergman’s centralizer theorem [1969].
These modular groups generalize the mapping class groups of surfaces; they will
be defined in the sequel, and they play an essential role in constructing Makanin–
Razborov diagrams for monomial systems of equations over a free associative
algebra.

3. A combinatorial approach to Bergman’s theorem

In the first section we studied homogeneous solutions to homogeneous monomial
systems of equations. In this section we start the study of nonhomogeneous solutions
to arbitrary monomial systems of equations. We start by studying the centralizers of
elements in a free associative algebra, i.e., we give combinatorial proof to Bergman’s
theorem, and then use these techniques to study related systems of equations. We
start with the following theorem, which can be proved easily by a direct induction,
but we also present a proof that uses techniques that we will use in the sequel.

Theorem 3.1. Let u ∈ FA be an element for which its top degree homogeneous
part is a monomial, and suppose that this top degree monomial has no nontrivial
roots. Then the centralizer of u in FA is precisely the elements in the (one variable)
algebra that is generated by u.

Proof. Suppose that x is a (nontrivial) element that satisfies xu = ux . By our
analysis of homogeneous elements, the top degree homogeneous part of x must
be a monomial which is a power of the top degree monomial in u. Hence, the top
degree monomial of x has to be identical to the top degree monomial of um for
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some m. Therefore, deg(x + um) < deg(x) and u(x + um) = (x + um)u, so the
theorem follows by induction on the degree of x . □

For later applications we present a different proof.

Proof. First, note that xu = ux if and only if x(u + 1) = (u + 1)x . Hence, we
may assume that the monomials in u do not include the one corresponding to the
identity.

In the sequel we denote by Gm the (additive) abelian group that is generated by all
the monomials of degree at most m in FA. Given x, y ∈ FA, we write x = y mod Gm

if x and y have the same monomials of degree bigger than m. If x ∈ FA, we say
that a monomial w is a monomial of codegree m in x if deg(w)+ m = deg(x), and
w is in the support of x (i.e., w appears in writing x as a sum of monomials).

Lemma 3.2. Suppose that deg(u) ≥ 2, the top degree homogeneous part of u is
a monomial and has no periodicity, and that deg(x) ≥ 2 deg(u). There exists an
element w ∈ FA, such that

x = uw = wu mod Gdeg(x)−2,

ux = xu = uwu mod Gdeg(ux)−2.

Proof. We analyze the codegree 1 monomials in the two sides of the equation
xu = ux . Let u0, x0 be the top monomials, and let u1, x1 be the codegree 1 element
in u, x . Clearly, x0u1 + x1u0 is the codegree 1 element in xu, and u0x1 + u1x0 is
the codegree 1 element in ux .

Suppose that there are no cancellations between the codegree 1 monomials (that
are obtained using the distributive law) in each of the two sides of the equation. In
that case, since u0 was assumed to have no periodicity, monomials in x0u1 cannot
be monomials in u1x0, since otherwise x0 overlaps with itself in a shift of a single
place, and x0 has a period which is u0 that has degree at least 2 by the assumption
of the lemma. Hence, monomials in x0u1 have to be monomials in u0x1. Similarly,
monomials in u1x0 have to be monomials in x1u0.

Hence, if x0 = um
0 and w0 = um−1

0 , then from the right side of the equation
xu = ux , x1 = u1w0 +u0ŵ1. From the left side of the equation, x1 = w0u1 + ŵ2u0.
So if we consider elements of codegree at most 1, x = uw1 = w2u. From the
equation xu = ux , we get that for elements of codegree at most 1, uw1u = uw2u,
so u(w1 − w2)u=0, so w1 = w2, and x = wu = uw, for elements of codegree at
most 1 (for some element w of degree deg(w) = deg(x) − deg(u)).

Suppose that there are cancellations between codegree 1 monomials in the left-
hand side xu. In that case monomials in x0u1 cancel with monomials in x1u0. Let
v1 be the codegree 1 suffix of u0, and y1 be the unique monomial in x1 for which
x0v1 = y1u0. In that case y1 = u0w̃. Hence, the monomial y1 has a product structure
which is similar with the other codegree 1 monomials in x1. Therefore, as in the
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previous case, when analyzing monomials of codegree at most 1 in x , x can be
described both as w1u and uw2 (from the two sides of the equation), and the same
argument that was used in case there are no cancellations works. □

We continue the proof of Theorem 3.1, by iteratively uncovering the homogeneous
parts in an element x that is in the centralizer of u from top to bottom. Since
x = t1u mod Gdeg(x)−2, if deg(x)≥2 deg(u), it follows that xu = t1u2 and ux =ut1u
mod Gdeg(xu)−2. Hence, if deg(t1) ≥ 2 deg(u), then t1 = t2u = ut2 mod Gdeg(t1)−2.
Applying these arguments iteratively we get that x = tum mod Gdeg(x)−2, for some
t that satisfies deg(t) = deg(u).

Therefore, xu = tumu = ux = utum mod Gdeg(xu)−2, which means that tu = ut
mod Gdeg(tu)−2 and deg(t) = deg(u).

In this case, in which tu = ut and det(t) = deg(u), the top degree monomials
of t and u are identical, and we denote this monomial u0. Suppose that s, v are
monomials of codegree 1 in either t or u, and suppose that su0 = u0v. In that case
v is the suffix of u0 and s is the prefix of u0. Since u0 is not a proper power, vu0

cannot be presented as u0w for any codegree 1 monomial w, and u0s cannot be
presented as wu0 for any codegree 1 monomial w.

Hence, if s, v are codegree 1 monomials in either t or u, and su0 = u0v, then both
u0s and vu0 can be presented uniquely in each of the two products tu and ut , which
implies that s and v must be codegree 1 monomials in both u and t . Therefore, the
codegree 1 monomials of t and u must be identical, so t = u mod Gdeg(t)−2, and
x = um+1 mod Gdeg(x)−2 for some nonnegative integer m.

We use (a finite) induction and assume that x = um+1 mod Gdeg(x)−c, for some
positive integer c < deg(u), i.e., we assume that the equality holds for all the
monomials in x and u of codegree smaller than c. To complete the proof of the
theorem, we need to prove the same equality for all the monomials of codegree at
most c.

By the inductive hypothesis, x = um+1 mod Gdeg(x)−c. Hence, x = xc−1 + v,
where xc−1 is the sum of all the monomials of codegree smaller than c in x and
deg(v) ≤ deg(x) − c. Furthermore, xc−1 is precisely the sum of all the monomials
of codegree smaller than c in um+1.

Let uc−1 be the sum of the monomials of codegree less than c in u. We set
sc to be the sum of all the monomials of codegree c in um+1

c−1 . By construction,
uc−1(xc−1 + sc) = (xc−1 + sc)uc−1 = um+2

c−1 mod Gdeg(xu)−(c+1), i.e., the monomials
of codegree at most c are identical for the three different products.

Recall that x = xc−1 + v, where deg(v) ≤ deg(x)− c. We set x = xc−1 + sc + r ,
where deg(sc) = deg(x) − c and deg(r) ≤ deg(x) − c. Let qc be the sum of the
monomials of codegree c in u. Then

ux = (uc−1+qc)(xc−1+sc+r)= xu = (xc−1+sc+r)(uc−1+qc) mod Gdeg(xu)−(c+1).
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Since uc−1(xc−1 + sc) = (xc−1 + sc)uc−1 mod Gdeg(xu)−(c+1), it follows that

utopr + qcxtop = rutop + xtopqc mod Gdeg(xu)−(c+1),

where u0 and x0 are the top monomials in u and x in correspondence. Therefore,
all these monomials are products of a top degree monomial with a codegree c
monomial, and these can be broken precisely as in the codegree 1 case, assuming
deg(x) ≥ 2 deg(u).

We are left with the case in which deg(x) = deg(u). In that case we write
u = uc−1 + qc and x = uc−1 + rc mod Gdeg(x)−(c+1), where qc and rc are the
codegree c monomials in u and x in correspondence. Since the contributions of
products of monomials of codegree smaller than c in xu and in ux are identical,
we need to look only at the equation u0rc + qcx0 = x0qc + rcu0 for the monomials
of codegree c, where x0 = u0 are identical monomials. By the argument that was
used in the codegree 1 case (when deg(x) = deg(u)), it follows that qc = rc, and
the general step of the induction is proved.

So far we may conclude that x = um+1 mod Gdeg(x)−deg(u). Thus, x +um+1 com-
mutes with u and deg(x + um+1) ≤ deg(x) − deg(u), and the theorem follows. □

So far we assumed that the top homogeneous element of u is a monomial and
that its top monomial doesn’t have a proper root. We continue by allowing u to be
a proper power.

Theorem 3.3. Let u ∈ FA be an element for which its top degree homogeneous part
is a monomial, and suppose that u = p(v) and the top degree monomial of v does
not have a proper root. Then the centralizer of u in FA is precisely the elements in
the algebra that are generated by v.

Proof. Suppose that x is a (nontrivial) element that satisfies xp(v) = p(v)x . First,
note that like Theorem 3.1, Theorem 3.3 can be proved easily by replacing x by
x + vm for an appropriate m such that deg(x + vm) < deg(x) and (x + vm)p(v) =

p(v)(x + vm). However, as in the proof of Theorem 3.1 and for future purposes,
we prefer to present a different proof. For that proof we assume that deg(v) > 1.

As in Theorem 3.1, by our analysis of homogeneous elements, the top degree
homogeneous part of x must be a monomial, which is a power of the top degree
monomial in v.

As in the proof of Theorem 3.1, if deg(x) > deg(u), then the arguments that were
used in the proof of Lemma 3.2, which remain valid under the assumptions of the
theorem, enable us to analyze the codegree 1 monomials in x . In that case, as in the
proof of Theorem 3.1, there exists an element t1 that contains a top degree monomial
and a homogeneous part of codegree 1 such that x = ut1 and x = t1u mod Gdeg(x)−2.

Applying these arguments iteratively, as in the proof of Theorem 3.1, we get
that x = tum mod Gdeg(x)−2 for some t that satisfies deg(t) ≤ deg(u), which means
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that tu = ut mod Gdeg(tu)−2. In particular, the top degree monomial of t must be a
power of the top degree monomial of v.

In case deg(t) ≤ deg(u) mod Gdeg(tu)−2, we apply the same argument that we
used in case deg(t) = deg(u) in the proof of Theorem 3.1. By these arguments, if
u = vb mod Gdeg(u)−2, then t = vs mod Gdeg(t)−2, where s is an integer, 1 ≤ s ≤ b.
This implies that x = vℓ mod Gdeg(x)−2 for some positive integer ℓ.

We continue in the same way as we did in proving Theorem 3.1. We use (a
finite) induction and assume that x = vℓ mod Gdeg(x)−c for some positive integer
c < deg(v), i.e., we assume that the equality holds for all the monomials in x and
vℓ of codegree smaller than c. To complete the proof of the theorem, we need to
prove the same equality for all the monomials of codegree at most c.

By the inductive hypothesis, x = vℓ mod Gdeg(x)−c. Hence, x = xc−1 + h,
where xc−1 is the sum of all the monomials of codegree smaller than c in x and
deg(h) ≤ deg(x)− c. Furthermore, xc−1 is precisely the sum of all the monomials
of codegree smaller than c in vℓ.

Let uc−1 be the sum of the monomials of codegree less than c in u, and let vc−1

be the sum of the monomials of codegree less than c in v. We set sc to be the sum
of all the monomials of codegree c in vℓ

c−1.
We have u = p(v), so we set dc to be the sum of all the codegree c monomials

in p(vc−1). By construction: (uc−1 + dc)(xc−1 + sc) = (xc−1 + sc)(uc−1 + dc) =

(vc−1)
ℓ+b mod Gdeg(ux)−(c+1), i.e., the monomials of codegree at most c are identi-

cal for the three different products.
Recall x = xc−1 +h, where deg(h) ≤ deg(x)−c. We set x = xc−1 +sc +r , where

deg(sc) = deg(x)−c and deg(r) ≤ deg(x)−c. Similarly, we set u = uc−1 +dc +q ,
where deg(q) ≤ deg(u) − c. Then

ux = (uc−1 + dc + q)(xc−1 + sc + r)

= xu = (xc−1 + sc + r)(uc−1 + dc + q) mod Gdeg(xu)−(c+1).

Since (uc−1 + dc)(xc−1 + sc) = (xc−1 + sc)(uc−1 + dc) modulo the same group, it
follows that utopr + qx0 = ru0 + x0q mod Gdeg(xu)−(c+1), where u0 and x0 are the
top monomials in u and x in correspondence. Therefore, all these monomials are
products of a top degree monomial with a codegree c monomial, and these can be
broken precisely as in the codegree 1 case, assuming deg(x) > deg(u).

As in the codegree 1 case, we are left with the case in which deg(x) ≤ deg(u).
In that case we write u = uc−1 + dc + qc and x = xc−1 + sc + rc as above. By the
same argument that was used in that case in analyzing the codegree 1 monomials,
the monomials of codegree c in x that are contained in rc are precisely the mono-
mials of codegree c in vℓ

+ sc, and the induction follows for c ≤ deg(v). Hence,
x = vℓ mod Gdeg(x)−deg(v). Since both x and vℓ commute with u, the sum x + vℓ

commutes with u, and deg(x + vℓ) < deg(x), the theorem follows. □
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It is possible to use the techniques that we used in this section to analyze central-
izers of general elements with monomial top homogeneous part, and centralizers of
general elements, but we won’t need to apply these techniques in this generality in
the sequel, so we omit these generalizations.

4. Equations with a single variable

In the previous section we gave combinatorial proofs to special cases of Bergman’s
theorem on the structure of centralizers in free associative algebras. Such combina-
torial proofs are needed in order to study the set of solutions to related systems of
equations that play a central role in understanding the set of solutions to a general
monomial system of equations.

In this section we study the set of solutions to monomial systems of equations
with a single variable. As will be demonstrated in the next paper in this sequence, the
techniques that are used in this section play an essential role in studying monomial
equations with no quadratic nor free parts. Note that in the general analysis of
the set of homogeneous solutions to the homogeneous system of equations that
is associated with the top level of a monomial system of equations, the Makanin–
Razborov diagram of such a homogeneous system of equations, as it appears in the
first section of this paper (that is based on [Sela 2016]), may contain quadratic and
free parts.

Recall that over free groups and semigroups equations with a single variable
were analyzed in [Lorenc 1963; Appel 1968] long before the analysis of general
systems of equations. The approach that we use combines the technique and results
for studying equations with a single variable over a free group and semigroup with
the combinatorial approach that we used in analyzing centralizers.

Lemma 4.1. Let u, v ∈ FA and suppose that the top homogeneous parts of u and v

are monomials with no periodicity (i.e., the top monomials in u and v contain no
subword α2 for some nontrivial word α).

If the equation ux = xv has a nontrivial solution, then the set of solutions to
the equation ux = xv is a set {wp(v)}, where uw = wv and p is an arbitrary
polynomial in a single variable. Furthermore, the element w, which is the solution
of minimal degree of the equation, is unique.

Proof. Recall that in a free semigroup, if u and v are nontrivial and have no periodic-
ity, then the set of solutions to the equation ux = xv is {w0v

m
= umw0}, where w0 is

a fixed element, m is an arbitrary nonnegative integer, and length(w0) ≤ length(u).
Also, note that since we assumed that the top homogeneous parts of u and v

are monomials, then the homogeneous equation that is associated with the highest
degree parts in u, x, v implies that the highest degree part of x is a monomial that
satisfies the same equation in the corresponding free semigroup.
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The set of solutions of the equation ux = xv is a linear subspace of FA. If w1

and w2 are solutions to the equation ux = xv, and they are of the same degree, then
their top homogeneous monomials are identical. Hence, w1 +w2, which is also a
solution of that equation, has strictly smaller degree than w1 and w2. Therefore,
if the equation ux = xv has a solution, then it has a unique solution of minimal
degree that we denote w.

If x0 is an arbitrary solution of ux = xv, then there exists some nonnegative
integer b such that wvb and x0 have the same top monomial. Since both x0 and
wvb are solutions of the equation ux = xv, the sum x0 +wvb is a solution of this
equation and deg(x0 + wvb) < deg(x0). Hence, the proof of the lemma follows by
induction on the degree of the solution x0. □

Unlike the case of free groups or semigroups, the equation ux = xv may have a
solution, and still it can be that there are no solutions with deg(x)≤deg(u)=deg(v).

Let t , µ, and ρ be arbitrary elements in the algebra FA. Let w = tµtρtµt ,
v = (ρtµ+µtρtµ)t and u = t (µtρ +µtρtµ). Then uw = wv, and in general there
is no element y ∈ FA such that deg(y) ≤ deg(u) = deg(v) and uy = yv.

To bound the degree of a minimal degree solution we need the following lemma.

Lemma 4.2. Let FA be the free associative algebra over GF2 that is freely generated
by k elements. Let u, v ∈ FA be as in Lemma 4.1, and suppose that the equation
ux = xv has a nontrivial solution. Then there exists a solution w, uw = wv, with
deg(w) ≤ deg(u) · (kdeg(u)

+ 2).

Proof. Suppose that x1 ̸= 0 satisfies ux1 = x1v. If deg(x1) ≤ deg(u) · (kdeg(u)
+ 2)

the lemma follows. Hence, we may assume that deg(x1) > deg(u) · (kdeg(u)
+ 2).

We use the analysis that was applied in analyzing centralizers in the previous
section. By the analysis of homogeneous elements, the top degree homogeneous
part of x1 must be a monomial. Let u0, v0, and x0 be the top monomials of u, v,
and x1. Then they must satisfy u0x0 = x0v0. Therefore, there exists a monomial z0

such that x0 = u0z0 = z0v0.
As in analyzing centralizers, we continue the analysis of x1 by analyzing its

codegree 1 monomials. We examine the codegree 1 monomials in the products
ux1 and x1v. By the proof of Lemma 3.2 we get an element z such that x1 = zv =

uz mod Gdeg(x1)−2.
We continue iteratively by analyzing products of codegree 2 in the equality

ux1 = x1v, using the equality x1 = uz = zv for the top and codegree 1 parts.
Note that monomials of codegree 2 in the equality ux1 = x1v that are products

of monomials of codegree 0 and 1 of u, v and z, that correspond to codegree 1
monomials of u and v and codegree 1 monomials of x1 (from the two sides of the
equation), cancel in pairs. The other codegree 2 monomials in the two sides of the
equation are products that are obtained as one of the following:
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(1) A product of a codegree 1 monomial of x1 with a codegree 1 monomial of v.

(2) A product of a codegree 1 monomial of u with a codegree 1 monomial of x1.
In parts (1) and (2) we need to consider only monomials that do not cancel as
products of top and codegree 1 monomials of u, v and z from the two sides of
the equation.

(3) A product of a codegree 2 monomial of x1 with the top monomial of v.

(4) A product of the top monomial of u with a codegree 2 monomial of x1.

(5) A product of a codegree 2 monomial of u with the top monomial of x1.

(6) A product of the top monomial of x1 with a codegree 2 monomial of v.

Note that because of the equation, for each codegree 2 monomial in the products
in the two sides of the equation, either 2, 4 or all 6 options occur. However, because
the top monomials of u and v have no periodicity, possibilities (5) and (6) cannot
occur together, so only 2 or 4 possibilities can occur.

Suppose that (1) occurs for some codegree 2 monomial. In that case we can
assume that the codegree 1 monomial of x1 is a product of the top monomial in u
with a codegree 1 monomial of z, since otherwise such a product cancels with a
product of type (2) by our analysis of codegree 1 products.

If in addition to (1) only (2) occurs for that codegree 2 monomial, we add a
codegree 2 monomial to z that is obtained from the given codegree 2 monomial
in the product by cutting a prefix which is equal to the top monomial of u, and a
suffix which is the top monomial of v.

If only (3) occurs (in addition to (1)) for the given codegree 2 monomial, we
also add a codegree 2 monomial to z that is identical to the one we added in case
only (1) and (2) occur. If only (4) occurs, we do not add anything. If (5) occurs we
add a codegree 2 monomial to z (the same codegree 2 monomial as in the previous
cases).

If (6) occurs, we do not add anything.
Suppose that (2) occurs for some codegree 2 monomial. In that case we can

assume that the codegree 1 monomial of x1 is a product of a codegree 1 monomial
of z with the top monomial of v. Hence, this can be dealt with precisely as what
we did in (1).

Suppose that (3) occurs. If in addition only (4) occurs, we add a codegree 2
monomial to z. If only (5) occurs, we do not add anything. If only (6) occurs, we
add a codegree 2 monomial to z. Suppose that (4) occurs. This can be dealt with
precisely as the case in which (3) occurs. Again, since the top monomials of u and
v do not have periodicity, (5) and (6) cannot occur together. Hence, we are only
left with cases in which four of the possibilities occur.
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Suppose that (1) and (2) occur for some codegree 2 monomial. In this case
we can assume that (1) occurs as a product of a codegree 1 monomial of z and a
codegree 1 of v, and (2) as a product of a codegree 1 monomial of u and codegree
1 monomial of z (otherwise (1) and (2) cancel from our analysis of codegree 1
monomials in x1). If in addition only (3) and (4) occur, we do not add anything. If
(3) and (5) occur, we add a codegree 2 monomial to z. If (3) and (6) occur, we do
not add anything. The cases in which in addition to (1) and (2), cases (4) and (5)
occur or cases (4) and (6) occur, are symmetric to (3) and (5) or (3) and (6).

Suppose that (1) occurs and (2) does not. Again, we may assume that in (1), it is
a product of a codegree 1 monomial of z with a codegree 1 monomial of v. If in
addition (3), (4) and (5) occur, we do not add anything. If (3), (4) and (6) occur,
then we add a codegree 2 monomial to z. The case in which (1) does not occur and
(2) occurs is symmetric.

After possibly adding codegree 2 monomials to z, the equation that was valid
for codegree 1 products is now valid for codegree 2 products, i.e., x1 = uz =

zv mod Gdeg(x1)−3.
We continue iteratively to construct the element z by adding higher codegree

monomials, so that the constructed element z satisfies the equation x1 = uz = zv for
products of higher and higher codegree. Suppose that x1 = uz = zv mod Gdeg(x1)−d ,
i.e., that the equation holds for all the products of codegree at most d − 1, where d
is a positive integer with d ≤ deg(u). We iteratively add codegree d monomials to
z so that the equalities hold for all codegree d products as well.

As in analyzing codegree 2 products, products of codegree d that include mono-
mials of codegree smaller than d of u, v and z that correspond to smaller codegree
monomials of x1 (from the two sides of the equation) cancel in pairs.

The various cases are straightforward generalizations of the cases in analyzing
codegree 2 products. Suppose that a codegree d product can be presented as either

(1) an odd number of products of the top monomial of u with codegree mi mono-
mials of z and codegree ℓi monomials of v, for some subset of tuples (mi , ℓi ),
where mi + ℓi = d and mi , ℓi are positive integers, for every index i ;

(2) an odd number of products of codegree s j monomials of u with codegree t j

monomials of z and with the top monomial of v, for some subset of tuples
(s j , t j ), where s j + t j = d and s j , t j are positive integers, for every index j ;

(3) a product of a codegree d monomial of x1 with the top monomial of v;

(4) a product of the top monomial of u with a codegree d monomial of x1;

(5) a product of a codegree d monomial of u with the top monomial of x1;

(6) a product of the top monomial of x1 with a codegree d monomial of v.
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Note that since we assumed that the top monomials of u and v do not have
periodicity, cases (5) and (6) cannot occur together unless d = deg(u) = deg(v). In
case both (5) and (6) occur for d = deg(u), it must be that both u and v contain
the constant monomial 1. We have ux1 = x1v if and only if (u + 1)x1 = x1(v + 1).
Hence, in case both u and v contain the constant monomial 1, we replace them by
u + 1 and v + 1. This does not change the set of solutions, and after the change,
cases (5) and (6) do not occur together for all 2 ≤ d ≤ deg(u).

The analysis of codegree d products, according to the various possibilities of
subsets of the six cases, is identical to the analysis that was used to analyze codegree
2 products. According to the analysis we decide what codegree d monomials to
add to the element z.

After possibly adding these codegree d monomials to z, the equation that was
valid for all products up to codegree d − 1 is now valid for codegree d products,
i.e., x1 = uz = zv mod Gdeg(x1)−(d+1).

Finally, we get an element z that satisfies x1 = uz = zv mod Gdeg(x1)−deg(u)−1.
After possibly changing the elements u and v so that not both of them contain

the constant monomial 1, we continue the analysis of codegree d products in the
two sides of the equation ux1 = x1v, for all d , deg(u)+ 1 ≤ d ≤ deg(x1)− deg(u),
precisely as we analyzed codegree d products for 2 ≤ d ≤ deg(u), and iteratively
add codegree d monomials to the element z. Finally, we get an element z that
satisfies x1 = uz = zv mod Gdeg(u)−1, i.e., the equalities hold for all products up to
degree deg(u) = deg(v).

We continue by looking at the equality uz = zv mod Gdeg(u)−1. Repeating the
same argument we can find an element z2 such that z = uz2 = z2v mod Gdeg(u)−1.
Continuing inductively, we get an element zr+1 such that

zr = uzr+1 = zr+1v mod Gdeg(u)−1.

We are working over the free associative algebra FAk , i.e., the algebra is over GF2

and it is freely generated by k elements. Hence, Gdeg(u)−1 as a vector space over
GF2 has dimension bounded by kdeg(u). Therefore, there exist elements of distinct
degrees {sm | m = 1, . . . , kdeg(u)

+1} (that are the elements zr that were constructed
iteratively from a given long solution) such that deg(sm) ≤ (1 + m) deg(u) and
usm = smv mod Gdeg(u)−1.

By a simple pigeonhole argument, there exists a subcollection of the indices
1 ≤ i1 < · · · < i f ≤ kdeg(u)

+ 1 such that s = si1 + · · ·+ si f and us = sv. Hence, s
is a solution of the given equation, and deg(s) ≤ deg(u) · (2 + kdeg(u)). □

So far we assumed that the top degree elements of u and v are monomials that
are not proper powers. First, we omit the periodicity assumption, and allow the top
degree monomials of u and v to have nontrivial roots.
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Lemma 4.3. With the notation of Lemma 4.2, let u, v ∈ FA and suppose that the
top homogeneous parts of u and v are monomials. Suppose that the top degree
monomial of u has nontrivial roots of degree bounded by q.

Suppose that the equation ux = xv has a nontrivial solution. Then there exists
elements w1, . . . , wd , 1 ≤ d ≤ q, such that the set of solutions to the equation
ux = xv is a set of the form {w1 p1(v) + · · · + wd pd(v)}, where uwi = wiv and
p1, . . . , pd are arbitrary polynomials in v.

Proof. Let u0 and v0 be the top monomials of u and v, and let x0 be the top
monomial of a solution x . Let t0 be a primitive root of v0. Then there exists some
fixed element s0, deg(s0) < deg(t0), such that x0 = s0tm

0 for some nonnegative
integer m. Note that the element s0 is fixed and does not depend on the solution x ,
since we assumed that u0 and v0 are proper powers of t0, which is primitive, and if
s0 is not fixed, t0 must have a proper root.

Suppose that tq
0 = v0. The top monomial of a solution x is of the form x0 = s0tm

0 ,
so we can divide the solutions x1 according to the residue classes of the nonpositive
integers m modulo q. For each residue class for which there is a solution, we
fix one of the shortest solutions in the class. We denote these shortest solutions,
w1, . . . , wd , for some d, 1 ≤ d ≤ q .

Let x be a solution. x must be in the same class as one of the fixed shortest solu-
tions wi . Hence, for some nonnegative integer b, both x and wiv

b are solutions and
they have the same top monomial. Therefore, if x ̸=wi , x +wiv

b is a nontrivial solu-
tion and deg(x+wiv

b)<deg(x). By a finite induction, x =w1 p1(v)+· · ·+wd pd(v)

for some polynomials p1, . . . , pd . □

So far we analyzed the equation ux = xv. We use similar methods to analyze
the more general equation u1xu2 = v1xv2.

Theorem 4.4. Let u1, u2, v1, v2 ∈ FA and suppose that the top homogeneous parts
of ui and vi are monomials with no periodicity (i.e., the top monomials in ui and vi

contain no subwords α2 for some nontrivial word α), and that deg(u1) > deg(v1).
Suppose that the equation u1xu2 = v1xv2 has a solution of degree bigger

than 2(deg(u1) + deg(v2))
2.

(1) There exist elements s, t ∈ FA such that u1 = v1s and v2 = tu2.

(2) An element x ∈ FA is a solution to the equation u1xu2 = v1xv2 if and only if it
is a solution of the equation sx = xt.

Proof. First, note that if (1) is true and x satisfies u1xu2 = v1xv2, then we have
v1sxu2 = v1xtu2. Hence, sx = xt . Conversely, every solution of the equation
sx = xt satisfies u1xu2 = v1xv2, so (2) is true.

As we did in analyzing centralizers and analyzing the equation ux = xv, we
analyze the homogeneous parts in x and in ui and vi going from top to bottom.
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Let u0
i and v0

i , i = 1, 2, be the top monomials in ui and vi . Let x1 be a solution of
the equation u1xu2 = v1xv2, and suppose that deg(x1) > max(deg(u1), deg(v2))+

2(deg(u1) − deg(v1)). By our analysis of homogeneous solutions, the top homoge-
neous part of the solution x1 must be a monomial as well, which we denote x0.

Since u0
1x0u0

2 = v0
1 x0v

0
2 , there exists monomials s0, t0, deg(s0) = deg(t0), such

that u0
1 = v0

1s0, v0
2 = t0u0

2 and x0 = f0tb
0 = sb

0 e0, for some positive integer b, and
deg( f0) = deg(e0) < deg(s0).

We continue by analyzing monomials of codegree 1 in ui , vi and x1. By the
same analysis that was used in analyzing centralizers and in Lemma 4.2, there exist
elements s, t with top monomials s0 and t0, and an element w with top monomial
w0, w0t0 = s0w0 = x0, such that

(i) u1 = v1s mod Gdeg(u1)−2.

(ii) v2 = tu2 mod Gdeg(v2)−2.

(iii) x1 = sw = wt mod Gdeg(x1)−2.

By iteratively applying the same construction, the above three equalities imply
that w = sm f = etm mod Gdeg(w)−2, for some positive integer m and elements e, f
with deg(s) ≤ deg(e) = deg( f ) < 2 deg(s).

We continue by analyzing products of codegree 2. First, note that as in analyzing
centralizers, if we look at codegree 2 products that involve only top monomials
and codegree 1 monomials from s, t , ui , vi and w such that the products restrict to
codegree 0 or 1 monomials of x1, ui and vi , then such codegree 2 products cancel
in pairs from the two sides of the equation.

We further look at codegree 2 products that contain a codegree 1 monomial of u2.
If the codegree 2 product contains the top monomial of t , then such a codegree
2 product cancels with a corresponding codegree 2 product from the other side
of the equation, since all the corresponding monomials of ui , vi and x1 (from the
two sides of the equation) are either codegree 0 or codegree 1. Hence, we look at
codegree 2 products that contain codegree 1 monomials of t and u2, and, therefore,
top monomials of u1 and w. Such a codegree 2 product, which is a product of the
top monomial of u1, a codegree 1 monomial of x1 and a codegree 1 monomial of
u2, cancels with either

(1) a product of the top monomial of v1, the top monomial of x1 and a codegree 2
monomial of v2;

(2) a product of the top monomial of v1, a codegree 1 monomial of x1 and a
codegree 1 monomial of v2;

(3) a product of the top monomial of v1, a codegree 2 monomial of x1 and the top
monomial of v2;
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(4) a product of the top monomial of u1, a codegree 2 monomial of x1 and the top
monomial of u2;

(5) a product of the top monomial of u1, the top monomial of x1 and a codegree 2
monomial of u2;

(6) a product of a codegree 1 monomial of u1, a codegree 1 monomial of x1 and
the top monomial of u2.

If the given codegree 2 product cancels only with a product of type (1) we don’t
add anything to w nor to t . Suppose that the given codegree 2 product cancels only
with a product of type (2). If the codegree 1 monomial of v2 equals the product
of the top monomial of t with a codegree 1 monomial of u2, then the codegree 2
product of type (2) cancels with a codegree 2 product from the other side of the
equation that contains only codegree 0 and 1 monomials of u1, x1 and u2. Hence,
in case (2) we can assume that the codegree 1 monomial of v2 is a product of a
codegree 1 monomial of t with the top monomial of u2. In that case we add a
codegree 2 monomial to t and leave w unchanged.

If the given codegree 2 product cancels only with a codegree 2 product of type (3),
we add a codegree 2 monomial to t and a codegree 2 monomial to w. If the given
codegree 2 product cancels only with a product of type (4) we add a codegree 2
monomial to t . In case the given product cancels only with a codegree 2 product of
type (5) we don’t add anything (apart from the codegree 2 monomial of u2). If it
cancels only with a codegree product of type (6) we add a codegree 2 monomial to
t and a codegree 2 monomial to w.

Because the top monomial of v2 does not have periodicity, a product of type (5)
cannot cancel with a product of type (3) nor (6). Hence, if five possibilities occur
in addition to the given one, it must be (1)–(4) and (6). In that case, we do not add
anything.

Hence, the only left possibilities are a collection of products of three different
types that cancel with the given codegree 2 product. We list the various possibilities
for the collections of codegree 2 products of three different types that cancel with
the given codegree 2 product and indicate what we add in each possibility:

(i) Products (1)–(3) cancel. We add a codegree 2 monomial to w, apart from
an existing codegree 2 monomial of v2 (that is equal to the products of the
codegree 1 monomials of t and u2 in the given codegree 2 product).

(ii) Products (1), (2) and (4) cancel. In that case we don’t add anything to w and t .
A monomial of codegree 2 already appears in v2, and is equal to the product
of the given codegree 1 monomials of t and u2.

(iii) Products (1), (2) and (5) cancel. We add a codegree 2 monomial to t , in
addition to the codegree 2 monomials that already appear in u2 and v2.
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(iv) Products (1), (2) and (6) cancel. Product (1) cancels with the given codegree 2
product. We add a codegree 2 monomial to w.

(v) Products (1), (3) and (4) cancel. We add a codegree 2 monomial to w, and the
existing codegree 2 monomial to v2.

(vi) Products (1), (3) and (6) cancel. Products (3) and (6) cancel, so this is identical
to the case that only (1) occurs in addition to the given codegree 2 product.

(vii) Products (2), (3) and (4) cancel. We add a codegree 2 monomial to w and a
codegree 2 monomial to t .

(viii) Products (2), (3) and (6) cancel. Like (vi), (3) and (6) cancel.

(ix) Products (1), (4) and (5) cancel. We add a codegree 2 monomial to t , and the
existing codegree 2 monomials to u2 and v2.

(x) Products (1), (4) and (6) cancel. Product (1) cancels with the given codegree 2
product. We add a codegree 2 monomial to w.

(xi) Products (2), (4) and (5) cancel. We just add the existing codegree 2 monomial
to u2.

(xii) Products (2), (4) and (6) cancel. Like (vi), (2) and (4) cancel.

(xiii) Products (3), (4) and (6) cancel. Like (vi), (3) and (6) cancel.

So far we analyze codegree 2 products that cancel with a given codegree 2 product
that is a product of the top monomial of u1 and w and codegree 1 monomials of
t and u2. The same analysis is valid for codegree 2 products that cancel with a
codegree 2 product of type (1), and the analogous cases from the left side of the
equation.

We continue by analyzing case (2), i.e., those codegree 2 products that cancel
with a given codegree 2 product of the top monomial of v1, a codegree 1 monomial
of x1 that is a product of the top monomial of s and a codegree 1 monomial of w,
and a codegree 1 monomial of v2 that is equal to a product of a codegree 1 monomial
of t with the top monomial of u2. Such a given codegree 2 product can cancel with
either

(1) a product of the top monomial of v1, a codegree 2 monomial of x1 and the top
monomial of v2;

(2) a product of the top monomial of v1, the top monomial of x1 and a codegree 2
monomial of v2;

(3) a product of the top monomial of u1, a codegree 2 monomial of x1 and the top
monomial of u2;

(4) a product of the top monomial of u1, the top monomial of x1 and a codegree 2
monomial of u2;
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(5) a product of the top monomial of u1, a codegree 1 monomial of x1 and a
codegree 1 monomial of u2;

(6) a product of a codegree 1 monomial of u1, which is a product of the top
monomial of v1 with a codegree 1 monomial of s, with a codegree 1 monomial
of x1, which is the product of a codegree 1 monomial of w with the top
monomial of t , and with the top monomial of u2.

If the given codegree 2 product equals only to a codegree 2 product of type (1),
we add a codegree 2 monomial to w. If it equals only to a codegree 2 product of
type (2), we add a codegree 2 monomial to t , apart from the existing codegree 2
monomial of v2. If it equals only to a codegree 2 product of type (3), we do not add
anything. If it equals only to a codegree 2 product of type (4) we add a codegree 2
monomial to t , apart from the existing codegree 2 monomial of u2. We analyzed
case (5) with all the codegree 2 products that it cancels with previously. If it equals
only to a product of type (6) we add a codegree 2 monomial to w.

Case (5) was analyzed previously, so we can assume it does not occur. A codegree
2 product of types (1) or (6) cannot cancel with a codegree 2 product of type (4).
A monomial of type (5) that cancels with a monomial of type (6) is a product of
lower codegree monomials of ui , vi and x1 from the two sides of the equation, so
we omit this case. Hence, there are 5 cases left:

(i) Products (1), (2) and (3) cancel with the given codegree 2 product. In that case
we add a codegree 2 monomial to w and a codegree 2 monomial to t , apart
from the existing codegree 2 monomial of v2.

(ii) Products (1), (2) and (6) cancel. We add a codegree 2 monomial to t .

(iii) Products (1), (3) and (6) cancel. In that case we do not add anything.

(iv) Products (2), (3) and (4) cancel. In that case we only add the already existing
codegree 2 monomials of u2 and v2.

(v) Products (2), (3) and (6) cancel. We add a codegree 2 monomial to w and t .

Codegree 2 products that contain codegree 1 monomials of v1 or u1 are treated
exactly in the same way. Hence, we are left with sets of codegree 2 products that
cancel, and each of these codegree 2 products is a product of top monomials with
codegree 2 monomials of one of the ui , vi or x1. These are analyzed precisely as
they are treated in the proof of Theorem 4.4 and in analyzing codegree 1 products,
and in each such cancellation codegree 2 monomials may be added to either s, t
or w, apart from existing codegree 2 monomials of ui and vi . Finally, we (possibly)
added codegree 2 monomials to s, w and t , such that

(i) u1 = v1s mod Gdeg(u1)−3.

(ii) v2 = tu2 mod Gdeg(v2)−3.
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(iii) x1 = sw = wt mod Gdeg(x1)−3.

We continue iteratively with products with higher codegree. Let

d = min(deg(v1), deg(u2), deg(u1) − deg(v1)).

Let r ≤ d − 1 and suppose that we added codegree r monomials to s, w and t such
that the equations above hold for all products of codegree bounded by r − 1.

We analyze codegree r products in the same way we analyzed codegree 2 products.
First, note that if a codegree r product is a product of monomials of ui , vi , s, t
and w that correspond to products of monomials of codegree smaller than r of ui ,
vi and x1 from the two sides of the equation, then such codegree r products cancel
in pairs.

Suppose that a codegree r product is a product of the top monomials of u1 and w,
and monomials of codegree qi of t and codegree mi of u2, such that qi + mi = r
and qi , mi are positive integers, and there are odd number of such pairs (qi , mi ).
We treat this case in the same way we treated the case of a codegree 2 product that
includes a codegree 1 monomial of t and a codegree 1 monomial of u2. This odd
set of codegree r products (that are all equal) cancels with either

(1) a product of the top monomial of v1, the top monomial of x1 and a codegree r
monomial of v2;

(2) an odd set of codegree r products of the top monomial of v1, codegree e j

monomial of x1 and codegree p j monomial of v2, for some positive set of pairs
(e j , p j ) that satisfy e j + p j = r , and such that the codegree p j monomial of
v2 is a product of a codegree p j monomial of t with the top monomial of u2;

(3) a product of the top monomial of v1, a codegree r monomial of x1 and the top
monomial of v2;

(4) a product of the top monomial of u1, a codegree r monomial of x1 and the top
monomial of u2;

(5) a product of the top monomial of u1, the top monomial of x1 and a codegree r
monomial of u2;

(6) an odd set of codegree r products of a codegree a j monomial of u1 and a
codegree b j monomial of x1 with the top monomial of u2, for some positive
set of pairs (a j , b j ) that satisfy a j + b j = r , and such that the codegree a j

monomial of u1 is a product of the top monomial of v1 and a codegree a j

monomial of s.

The treatment of the various cases is identical to what we did in analyzing code-
gree 2 products (cases (i)–(xiii)), just that instead of adding codegree 2 monomials to
the various elements we add codegree r monomials. The other cases of codegree r



NONCOMMUTATIVE ALGEBRAIC GEOMETRY, I 755

products are treated exactly as we treated codegree 2 products. Therefore, we
constructed elements s, t, w for which

(i) u1 = v1s mod Gdeg(u1)−d .

(ii) v2 = tu2 mod Gdeg(v2)−d .

(iii) x1 = sw = wt mod Gdeg(x1)−d .

We divide the continuation according to the minimum between deg(v1), deg(u2)

and deg(u1) − deg(v1). First we assume that

d = min
(
deg(v1), deg(u2), deg(u1) − deg(v1)

)
= deg(u1) − deg(v1).

In analyzing codegree d products, there are special codegree d products that we
need to single out and treat separately, as they may involve cancellations between
codegree d products that contain codegree d monomials of u1 or v1 and those that
contain codegree d monomials of u2 or v2.

As in analyzing smaller codegree products, note that codegree d products that are
products of smaller codegree monomials of the ui , vi , s, w and t , and correspond
to smaller codegree monomials of ui , vi and x1 from the two sides of the equation
cancel in pairs.

We continue by analyzing codegree d products that are products of top degree
monomials of u1 and w, codegree qi monomials of t and codegree mi monomials
of u2, such that qi and mi are positive and qi + mi = d, there are odd number of
such pairs (qi , mi ), and the product of these monomials of t and u2 is not equal
to u0

2, the top monomial of u2.
Such codegree d products are analyzed exactly in the same way they were

analyzed in codegree r products for r <d . Similarly, we analyze codegree d products
that are obtained an odd number of times as the product of the top monomials of v1

and s1, a codegree e j monomial of w and a codegree p j monomial of v2, such that
the product of a codegree e j monomial of w and a codegree p j monomial of v2 is
not w0u0

2, i.e., the product of the top monomials of w and u2.
In a similar way we analyze codegree d products that are products of smaller

codegree monomials of u1 and w and the top monomials of t and u2, and products
of smaller codegree monomials of v1 and s and the top monomials of w and v2,
assuming the products of these smaller degree monomials are not equal to v0

1w0 or
to v0

1 .
We continue by analyzing canceling pairs of codegree d products that are products

of top monomials of vi , ui and x1, with one codegree d monomial of these elements,
such that this codegree d monomial of u1 is not v0

1 , the codegree d monomial of x1

is not w0 and the codegree d monomial of v2 is not u0
2. These codegree d products

are analyzed in the same way they were analyzed for smaller codegree products.
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We are left with codegree d products that are either

(1) a product of a codegree d monomial of u1 that is equal to v0
1 , with top mono-

mials of x1 and u2;

(2) a product of the top monomial of v1 with top monomials of x1 and a codegree
d monomial of v2 that is equal to u0

2;

(3) a product of the top monomial of u1 with a codegree d monomial of x1 that is
equal to the top monomial of w, with the top monomial of u2;

(4) a product of the top monomial of v1 with a codegree d monomial of x1 that is
equal to the top monomial of w, with the top monomial of v2;

(5) an odd set of codegree d products of the top monomial of v1, codegree e j

monomial of x1 and codegree p j monomial of v2, for some positive pairs
(e j , p j ) that satisfy e j + p j = d , such that the monomial of x1 is a product of
the top monomial of s with a codegree e j monomial of w, and the product of
each codegree e j monomial of x1 with a codegree p j monomial of v2 is equal
to w0v

0
2 (the product of the top monomials of w and v2);

(6) an odd set of codegree d products of the top monomial of u1, codegree qi

monomials of x1 that are products of the top monomial of w with a codegree
qi monomial of t , with codegrees mi monomials of u2, for some positive set of
pairs (qi , mi ) that satisfy qi + mi = d , such that the product of each codegree
qi monomial of t with a codegree mi monomial of u2 is equal to u0

2;

(7) an odd set of codegree d products of codegree fi monomials of u1 and codegree
gi monomials of x1 with the top monomial of u2, for some positive pairs ( fi , gi )

that satisfy fi +gi = d , such that the monomial of x1 is a product of a codegree
gi monomial of w with the top monomial of t , and the product of each codegree
fi monomial of u1 with a codegree gi monomial of x1 is equal to u0

1w0 (the
product of the top monomials of u1 and w);

(8) an odd set of codegree d products of codegree h j monomials of v1 and codegree
k j monomials of x1 that are products of a codegree k j monomial of s with
the top monomial of w, with the top monomial of v2, for some positive pairs
(h j , k j ) that satisfy h j + k j = d, such that the product of each codegree h j

monomial of v1 with a codegree k j monomial of s is equal to v0
1 .

First note that (3) exists if and only if (4) exists and they cancel each other. If
(3) and (4) are the only existing possibilities, we add a codegree d monomial to w,
which is the codegree d prefix or suffix of the top monomial of w. Also note that
if cases (1) or (2) exist, codegree d monomials that already appear in u1 or v2 are
added to them. Suppose that only two of the possibilities (1), (2) and (5)–(8) exist,
possibly in addition to (3) and (4). We go over the various alternatives:
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(i) If only (1) and (2) exist, we add the constant element 1 to s and t , and the
codegree d prefix of w0 to w, where w0 is the top monomial of w. If (3) and
(4) exists as well, we only add 1 to s and t .

(ii) If only (5) and (6) exist, we just add 1 to t . If (3) and (4) exist as well, we
add the codegree d prefix of w0 to w. The case in which only (7) and (8)
exist is identical.

(iii) If only (5) and (8) exist, we add 1 to s and the codegree d prefix of w0 to w.
If (3) and (4) exist as well, we only add 1 to s. The case in which only (6)
and (7) exist is treated identically.

(iv) If only (5) and (7) exist, we add the codegree d prefix of w0 to w. If (3) and
(4) exist as well, we do not add anything to any of the variables.

(v) If only (6) and (8) exist, we add 1 to s and t and the codegree d prefix of w0

to w. If (3) and (4) exist as well, we only add 1 to s and t .

(vi) If only (1) and (8) exist, we add 1 to s and the codegree d prefix of w0 to w.
If (3) and (4) exist as well, we only add 1 to s.

(vii) If only (1) and (7) exist, we do the same as in (v), adding 1 to s and the
codegree d prefix of w0 to w. If (3) and (4) exist as well, we only add 1 to s.

(viii) If only (1) and (6) exist, we add 1 to s and t , and the codegree d prefix of w0

to w. If (3) and (4) exist as well, we only add 1 to s and t .

(ix) If only (1) and (5) exist, we add 1 to s and the codegree d prefix of w0 to w.
If (3) and (4) exist as well, we only add 1 to s.

The cases in which only case (2) and one of the cases (5)–(8) exist are treated
according to cases (vi)–(ix). Suppose that exactly four of the cases (1), (2) and
(5)–(8) exist, possibly in addition to (3) and (4). We go over the alternatives:

(i) If only (1), (2), (5) and (6) exist, we add 1 to s and the codegree d prefix of
w0 to w. If (3) and (4) exist as well, we just add 1 to s. The case in which
only (1), (2), (7) and (8) exist is identical.

(ii) If only (1), (2), (5) and (8) exist, we add 1 to t . If (3) and (4) exist as well,
we add 1 to t and the codegree d prefix of w0 to w. The case in which only
(1), (2), (6) and (7) exist is identical.

(iii) If only (1), (2), (5) and (7) exist, we add 1 to s and t . If (3) and (4) exist as
well, we add 1 to s and t and the codegree d prefix of w0 to w.

(iv) If only (1), (2), (6) and (8) exist, we do not change any of the variables. If
(3) and (4) exist as well, we add the codegree d prefix of w0 to w.

(v) If only (5), (6), (7) and (8) exist, we add 1 to s and t . If (3) and (4) exist as
well, we add 1 to s and t and the codegree d prefix of w0 to w.
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(vi) If only (1), (5), (6) and (7) exist, we add 1 to s and t . If (3) and (4) exist as
well, we add 1 to s and t and the codegree d prefix of w0 to w.

(vii) If only (1), (5), (6) and (8) exist, we add 1 to t . If (3) and (4) exist as well,
we add 1 to t and the codegree d prefix of w0 to w.

(viii) If only (1), (5), (7) and (8) exist, we add the codegree d prefix of w0 to w. If
(3) and (4) exist as well, we do not add anything to any of the variables.

(ix) If only (1), (6), (7) and (8) exist, we add 1 to t and the codegree d prefix of
w0 to w. If (3) and (4) exist as well, we just add 1 to t .

The cases in which only case (2) and three of the cases (5)–(8) exist are treated
according to cases (vi)–(ix). Suppose that cases (1), (2) and (5)–(8) exist. In that
case we add the codegree d prefix of w0 to w. If cases (3) and (4) exist as well, we
do not add anything to any of the variables.

This completes the analysis of codegree d products. We continue with the
analysis of codegree d+1 products. First, as in analyzing smaller codegree products,
codegree d + 1 products that are products of smaller codegree monomials of ui , vi ,
s, t , w, that correspond to products of smaller degree monomials of ui , vi and x1

from the two sides of the equation, cancel in pairs.

Lemma 4.5. Suppose that a codegree d +1 product is a product of the top monomi-
als of u1 and w, and monomials of codegree q of t and codegree m of u2, such that
q ≥ 0, m > 0 and q + m = d + 1. Such a codegree d + 1 product cannot be

(1) a product of the top monomial of v1, a codegree e monomial of x1 and a
codegree f monomial of v2, for e > 0 and f ≥ 0, that satisfy e + f = d + 1,
and the codegree f monomial of v2 is a product of a codegree f monomial of
t with the top monomial u0

2 of u2;

(2) a product of the top monomial of u1, a codegree d + 1 monomial of x1 and the
top monomial of u2.

Proof. If such a codegree d + 1 product can be presented as a product in the forms
(1) or (2), u0

2 has a prefix which is a suffix of t0. Hence, v0
2 has nontrivial periodicity

that contradicts our assumptions. □

Suppose that a codegree d + 1 product can be presented as a product of the top
monomials of u1 and w, and monomials of codegrees qi of t and codegree mi of u2,
such that qi ≥ 0, mi > 0 and qi + mi = d + 1, and there are an odd number of such
pairs (qi , mi ).

By Lemma 4.5, the same codegree d + 1 product is the product of the top
monomial of v1, the top monomial of x1 and a codegree d + 1 monomial of v2.

Furthermore, by the same argument that was used in the proof of Lemma 4.5, if
a codegree d + 1 product is the product of the top monomials of v1 and x1 and a
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codegree d + 1 monomial of v2, then it must be the product of an odd number of
products of the top monomials of u1 and w, and monomials of codegrees qi of t
and codegrees mi of u2, such that qi ≥ 0, mi > 0 and qi + mi = d + 1.

Lemma 4.6. Suppose that a codegree d + 1 product can be presented in an odd
number of ways as products of the top monomial of v1, a codegree e j monomial
of x1, which is the product of the top monomial of s with a codegree e j monomial
of w, and a codegree f j monomial of v2, for positive e j and f j and e j + f j = d +1,
and the codegree f j monomials of v2 are products of codegree f j monomials of t
with the top monomial u0

2 of u2.

(1) Suppose that this codegree d +1 product cannot be presented in an odd number
of ways as products of a codegree g j monomial of u1, and a codegree h j

monomial of x1 with the top monomial of u2, where the codegree h j monomial
of x1 is a codegree h j monomial of w with the top monomial of t , for positive
g j and h j and g j + h j = d + 1, and the codegree g j monomials of u1 are
products of v0

1 with codegree g j monomials of t .
Then the same codegree d + 1 product is either the product of the top

monomial of u1, a codegree d +1 monomial of x1, and the top monomial of u2,
or the product of the top monomial of v1, a codegree d +1 monomial of x1 and
the top monomial of v2, and exactly one of the two occurs.

(2) Suppose that this codegree d + 1 product can be presented in an odd number
of ways as products of a codegree g j monomial of u1, and a codegree h j

monomial of x1 with the top monomial of u2, and the codegree h j monomial of
x1 is a codegree h j monomial of w with the top monomial of t , for positive g j

and h j and g j +h j = d +1, and the codegree g j monomials of u1 are products
of v0

1 with codegree g j monomials of t .
Then either the same codegree d + 1 product is both the product of the top

monomial of u1, a codegree d +1 monomial of x1, and the top monomial of u2,
and the product of the top monomial of v1, a codegree d + 1 monomial of x1

and the top monomial of v2, or none of these two possibilities occur.

Proof. Such a codegree d + 1 product does not cancel only with the product of
monomials of codegree less than d of ui , vi and x1, from the two sides of the
equation. By Lemma 4.5 such codegree d + 1 products cannot be equal to the
following products:

(1) top degree monomials of u1 and w with monomials of t and u2;

(2) top degree monomials of v1 and x1 and a codegree d + 1 monomial of v2;

(3) monomials of v1 and s with top degree monomials of w and v2;

(4) codegree d + 1 monomials of u1 with top degree monomials of x1 and of u2.
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Therefore, such a codegree d + 1 product must be equal to an odd number of
products in the forms that are listed in the statement of the lemma. □

Lemmas 4.5 and 4.6 enable us to treat codegree d + 1 products in a similar way
to the analysis of codegree r products for r < d .

Suppose that a codegree d + 1 product is obtained in an odd number of ways as
the product of the top monomials of u1 and x1 with a codegree qi monomial of t ,
and a codegree mi monomial of u2, such that qi ≥ 0, mi > 0 and qi + mi = d + 1.
By Lemma 4.5, such a product must be equal to a product of the top monomials of
v1 and x1 and a codegree d + 1 monomial of v2.

An analogous conclusion holds if a codegree d +1 product is obtained in an odd
number of ways as the product of a codegree mi monomial of v1 with a codegree qi

of s with the top monomials of x1 and v2, such that qi ≥0, mi >0 and qi +mi =d+1.
Suppose that a codegree d + 1 product can be presented in an odd number of

ways as products of the top monomial of v1, a codegree e j monomial of x1, which
is the product of the top monomial of s with a codegree e j monomial of w, and a
codegree f j monomial of v2, for positive e j and f j and e j + p j = d + 1, and the
codegree f j monomials of v2 are products of codegree f j monomials of t with the
top monomial u0

2 of u2.
Suppose that this codegree d + 1 product cannot be presented in an odd number

of ways as products of a codegree g j monomial of u1, and a codegree h j monomial
of x1, which is a codegree h j monomial of w with the top monomial of t , for
positive g j and h j and g j + h j = d + 1, and the codegree g j monomials of u1 are
products of v0

1 with codegree g j monomials of t .
If the same codegree d + 1 product is the product of the top monomial of u1,

a codegree d + 1 monomial of x1, and the top monomial of u2, we do not add
anything. If it is the product of the top monomial of v1, a codegree d +1 monomial
of x1 and the top monomial of v2, we add a codegree d + 1 monomial to w.

Suppose that this codegree d + 1 product can be presented in an odd number of
ways as products of a codegree g j monomial of u1, and a codegree h j monomial
of x1, which is a codegree h j monomial of w with the top monomial of t , for
positive g j and h j and g j + h j = d + 1, and the codegree g j monomials of u1 are
products of v0

1 with codegree g j monomials of t .
If the same codegree d +1 product is both the product of the top monomial of u1,

a codegree d + 1 monomial of x1, and the top monomial of u2, and the product of
the top monomial of v1, a codegree d + 1 monomial of x1 and the top monomial
of v2, then we do not add anything. If none of these two possibilities occur, we add
a codegree d + 1 monomial to w (by Lemma 4.6 either both or none occur).

Suppose that a codegree d + 1 product can be presented only as the product of
the top monomial of u1, a codegree d + 1 monomial of x1 and the top monomial
of u2, and as the product of the top monomial of v1, a codegree d + 1 monomial
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of x1, and the top monomial of v2. In that case we add a codegree d + 1 monomial
to w.

This concludes the analysis of codegree d +1 products. The analysis of codegree
d +r products, r < d , is identical to the analysis of codegree d +1 products. Hence,
we (possibly) finally add codegree d +r monomials to w, and the existing codegree
d + r monomials to ui and vi for 1 ≤ r < d , and do not change s and t , such that

(i) u1 = v1s mod Gdeg(u1)−2d .

(ii) v2 = tu2 mod Gdeg(v2)−2d .

(iii) x1 = sw = wt mod Gdeg(x1)−2d .

In analyzing codegree 2d products, as in analyzing codegree d products, there are
special codegree 2d monomials that we need to single out and treat separately, as
they may involve cancellations between codegree 2d products that contain codegree
d or 2d monomials of u1 or v1 and those that contain codegree d or 2d monomials
of u2 or v2.

As in analyzing smaller codegree products, note that codegree 2d products that
are products of smaller codegree monomials of the ui , vi , s, w and t , and correspond
to smaller codegree monomials of ui , vi and x1 from the two sides of the equation
cancel in pairs.

As in analyzing codegree d products, we continue by analyzing codegree 2d
products that are products of top degree monomials of u1 and w, codegree qi

monomials of t and codegree mi monomials of u2, such that qi + mi = 2d, there
are an odd number of such pairs (qi , mi ), and the product of these monomials of t
and u2 is not equal to a codegree d suffix of u0

2, the top monomial of u2 (which is
a codegree 2d suffix of v2

0 , the top monomial of v2). Such codegree 2d products
must cancel with the product of the top monomials of v1 and x1 and a codegree
2d monomial of v2. In this case we only add the already existing codegree 2d
monomial to v2.

Similarly, we analyze codegree 2d products that are obtained in an odd number
of ways as the product of the top monomials of v1 and s1, a codegree e j monomial
of w and a codegree p j monomial of v2, such that the product of a codegree e j

monomial of w and a codegree p j monomial of v2 does not have a suffix which is
the codegree d suffix of u0

2. We analyze codegree 2d products that contain similar
monomials of v1, u1 and x1 in a similar way.

Suppose that a codegree 2d product is obtained in an odd number of ways as
the product of the top monomials of u1 and x1, a codegree qi monomial of t and a
codegree mi monomial of u2, such that qi and mi are positive and qi +mi = 2d , and
the product of the monomial of t and the monomial of u2 is a codegree d monomial
of u0

2.
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Because we assumed that the coefficients do not have any periodicity, such a
codegree 2d product must cancel with either a product of the top monomials of u1

and x1 and a codegree 2d monomial of u2, or a product of the top monomials of v1

and x1 and a codegree 2d monomial of v2. In both of these cases we only add the
already existing codegree 2d monomials to u2 or v2.

If x1 contains a monomial that is equal to the 2d prefix (or suffix) of x0
1 , then the

codegree 2d product that contains the top monomials of the ui and this codegree
2d monomial of x1 cancels with the codegree 2d product of the top monomials of
the vi with that codegree 2d monomial of x1.

As in analyzing codegree d products, we continue by analyzing canceling pairs
of codegree 2d products that are products of top monomials of vi , ui and x1, with
one codegree 2d monomials of these elements, such that this codegree 2d monomial
of u1 is not the codegree d prefix of v0

1 , the codegree 2d monomial of x1 is not the
codegree d prefix (or suffix) of w0, and the codegree 2d monomial of v2 is not the
codegree d suffix of u0

2. These codegree 2d products are analyzed in the same way
they were analyzed for smaller codegree products.

We are left with codegree 2d products that are either

(1) a product of the top monomial of u1 with a codegree 2d monomial of x1 that
is equal to a codegree d prefix (or suffix) of the top monomial of w with the
top monomial of u2;

(2) a product of the top monomial of v1 with a codegree 2d monomial of x1 that is
equal to the codegree d prefix of the top monomial of w with the top monomial
of v2;

(3) an odd set of codegree 2d products of the top monomial of v1, codegree e j

monomial of x1 and codegree p j monomial of v2, for some positive pairs
(e j , p j ) that satisfy e j + p j = 2d , such that the codegree e j monomial of x1 is
the product of the top monomial of s with a codegree e j monomial of w, and
the product of each codegree e j monomial of x1 with a codegree p j monomial
of v2 is equal to the product of a codegree d prefix of w0 with v0

2 ;

(4) an odd set of codegree 2d products of codegree fi monomials of u1 and
codegree gi monomials of x1 with the top monomial of u2, for some positive
pairs ( fi , gi ) that satisfy fi + gi = 2d, such that the codegree gi monomial
of x1 is the product of a codegree gi monomial of w with the top monomial
of t , and the product of each codegree fi monomial of u1 with a codegree gi

monomial of x1 is equal to the product of u0
1 with the codegree d prefix of w0.

Note that (1) exists if and only if (2) exists and they cancel each other. If (1) and
(2) are the only existing possibilities, we add a codegree 2d monomial to w, which
is the codegree d prefix or suffix of the top monomial of w.
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If only possibilities (3) and (4) exist, we add the codegree 2d prefix of w0 to w.
If (1)–(4) do all exist, w remains unchanged.

This completes the analysis of codegree 2d products. Codegree 2d + r products,
for 1 ≤ r < d, are treated in the same way we treated codegree d + r products.
Codegree 3d products are treated in the same we treated 2d products, and so
on. Finally, in case d = deg(u1) − deg(v1) = deg(v2) − deg(u2), we obtained the
conclusion of the theorem.

Suppose that d = min(deg(v1), deg(u2), deg(u1) − deg(v1)) = deg(v1). In that
case we continue the analysis of codegree r homogeneous parts in ui , vi and x1,
d ≤ r < deg(u1)− deg(v1), precisely as we analyzed the codegree r homogeneous
parts for 1 ≤ r ≤ d − 1. For r = deg(u1) − deg(v1), we use the same analy-
sis that we apply for codegree d products in case d = deg(u1) − deg(v1). For
r > deg(u1)− deg(v1), we continue the analysis of codegree r homogeneous parts
according to the analysis of codegree higher than d in case d = deg(u1) − deg(v1).
The analysis in the case d = min(deg(v1), deg(u2), deg(u1) − deg(v1)) = deg(u2)

is identical. □

Theorem 4.4 reduces the analysis of solutions to the equation u1xu2 = v1xv2

to the equation xt = sx , in case the equation u1xu2 = v1xv2 has a long enough
solution, and the coefficients have no periodicity. The same techniques allow one
to reduce a general equation with one variable, in case the coefficients have no
periodicity.

Theorem 4.7. Let FA be the free associative algebra over GF2 that is freely gen-
erated by k elements. Let u1, . . . , un, v1, . . . , vn ∈ FA and suppose that the top
homogeneous parts of ui and vi are monomials with no periodicity, and that for at
least one index i , 1 ≤ i ≤ n, ui ̸= vi . Suppose that the equation

u1xu2xu3 · · · un−1xun = v1xv2xv3 · · · vn−1xvn

has a solution x1 of degree bigger than 2(deg(u1) + · · · + deg(un))
2.

By Section 1, the top homogeneous part of the solution x1 has to be a monomial x0
1 ,

and x0
1 has to satisfy an equation in a free semigroup

u0
1x0

1u0
2x0

1u0
3 · · · u0

n−1x0
1u0

n = v0
1 x0

1v0
2 x0

1v0
3 · · · v0

n−1x0
1v0

n,

where u0
i and v0

i are the top monomials in ui and vi . Every solution of this equation
is semiperiodic, i.e., has to be of the form r0w

m
0 , where length(r0) < length(w0)

and w0 is primitive. We say that w0 is the period of x0, and we further assume that
length(w0) > 1.

Suppose further that deg(ui ), deg(vi ) > length(w0) for every i = 1, . . . , n, and
that the period of the top monomial of x1 contains no periodicity, and that in
addition the top monomials from the two sides of the equation that are obtained
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from the two sides of the equation after substituting the solution x1, contain no
periodicity except the one in the top monomial of x1 (this translates to a condition
on the coefficients ui and vi , 1 ≤ i ≤ n, in the equation).

Then there exist some elements s, t ∈ FA, deg(s) = deg(t) ≤ max deg(ui ), such
that

(1) every solution of the equation sx = xt is a solution of the given equation;

(2) every solution x2 of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2) + 2(deg(u1) + · · · + deg(un))
2

is a solution of the equation sx = xt.

Proof. Let x1 be a solution of the given equation that satisfies

deg(x1) > 2(deg(u1) + · · · + deg(un)).

We start by looking at the top homogeneous part of x1, which we denote x0
1 . Clearly

x0
1 satisfies the homogeneous equation

u0
1x0

1u0
2x0

1u0
3 · · · u0

n−1x0
1u0

n = v0
1 x0

1v0
2 x0

1v0
3 · · · v0

n−1x0
1v0

n,

where u0
i and v0

i are the top monomials in ui and vi .
We start the analysis of the given equation under the assumption that there exists

an index i for which deg(ui ) ̸= deg(vi ). In that case there is a shift between the
appearances of some of the (homogeneous) elements x0

1 in the two sides of the
(homogeneous) equation. Let i1 be the first index i for which deg(ui ) ̸= deg(vi ).
The next appearances of x0

1 in the two sides of the equation must have a shift of
|deg(ui1)−deg(vi1)|. Since the top homogeneous parts of ui and vi are monomials,
it follows that the top homogeneous part of x1 is a monomial as well. We keep the
notation x0

1 for the top monomial of x1.
Let d be the minimum positive shift between pairs of appearances of x0

1 in the
top degree equation. Then x0

1 = e0(t0)b
= (s0)

b f0, for some elements t0, s0 in the
semigroup generated by the free generators a1, . . . , ak of the algebra FA. Note that
deg(s0) = deg(t0) = d, e0 is a prefix of s0 and suffix of t0 and f0 is a suffix of t0
and prefix of s0. Since the top monomial u0

i and v0
i have no periodicity, t0 and s0

have no periodicity as well.
Since we assumed that the length of x0

1 is bigger than the sum of the lengths of the
degrees deg(ui ), an appearance of x0

1 in the product that is associated with the top
monomial in the left side of the equation overlaps with the corresponding appearance
of x0

1 in the right side of the equation, and may overlap with the previous or the
next appearance of x0

1 of the right side of the equation as well. Our assumptions
that deg(ui ), deg(vi ) > d together with the assumption that the coefficients have no
periodicity imply that an appearance of x0

1 in the product that is associated with the
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top monomial in one side of the equation may overlap only with the corresponding
appearance of x0

1 in the other side of the equation (and not with the previous or the
next one).

Let 1 ≤ i1 < · · · < iℓ ≤ n − 1 be the indices for which there is a (nontrivial) shift
between the appearances of x0

1 in the two sides of the equation. Let 1 ≤ j1 < · · · <

jn−1−ℓ ≤ n − 1 be the complementary indices, i.e., those indices for which there is
no shift between the corresponding appearances of the monomials x0

1 in the two
sides of the equation.

We start by analyzing the codegree 1 monomials in the products that are associated
with the two sides of the equation. We further assumed that the length of the period
in x0

1 , i.e., d = |deg(ui1) − deg(vi1)| > 1. Note that any codegree 1 monomial in
the two products is a product of top monomials with a single codegree 1 monomial
from one of the ui , vi or one of the appearances of x1.

Suppose that i1 > 1. Then x0
1 is quasiperiodic (or rather a fractional power), its

period is of length at least 2 and x0
1 contains at least 2 periods. Hence, a codegree 1

product that contains a codegree 1 monomial of u1 can cancel with either a codegree
1 product that contains a codegree 1 monomial in v1 or a codegree 1 product that
contains a codegree 1 monomial in the first appearance of x1.

If the two canceling codegree 1 products contain codegree monomials of u1

and v1, then these two codegree 1 monomials must be equal. Otherwise, the
codegree 1 product that contains a codegree 1 monomial of u1 cancels with a
codegree 1 product that contains a codegree 1 monomial of the first appearance
of x1. Now, this last codegree 1 monomial appears in the other side of the equation
as well, and it can cancel only with a codegree 1 product that contains a codegree 1
monomial of v1 that must be identical to the codegree 1 monomial of u1 that we
started with. Therefore, the codegree 1 homogeneous parts of v1 and u1 are equal.
Continuing with the same argument iteratively, the codegree 1 homogeneous parts
of the elements ui and vi are equal for all i < i1 and i > iℓ.

Let js be one of the indices for which there is no shift between the corresponding
appearances of x0

1 in the two sides of the equation. We look at the codegree 1
products in the two sides of the equation. Each such codegree 1 product is a product
of a single codegree 1 monomial from a single appearance of x0

1 or exactly one
of the coefficients ui or vi , with top degree monomials. Note that the codegree 1
products that involve codegree 1 monomials of the js appearance of x1 in the two
sides of the equation (and top degree monomials from all the coefficients and the
other appearances of x1), are precisely the same codegree 1 products in the two
sides of the equation. Hence, these do cancel. All the other codegree 1 products
in the two sides of the equation contain x0

1 in the js appearance of x1. Since x0
1 is

periodic, and the length of the period is bigger than 1, a codegree 1 product that
includes a codegree 1 monomial to the left of the js appearance of x1 cannot be
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equal to a codegree 1 product that contains a codegree 1 monomial to the right of
the js appearance of x1.

Therefore, the left codegree 1 products (with respect to the js appearance of x1)
from the two sides of the equation have to cancel and the right codegree 1 products
have to cancel as well. In particular, if for some index i , both the i − 1 and the i
appearances of x1 in the two sides of the equation have no shift, then ui and vi have
the same codegree 1 homogeneous parts.

At this point we need to examine the appearances of the variables x1 in which
there is a shift between the two sides of the equation, i.e., in places i1, . . . , iℓ, and
the coefficients ui and vi that are connected to these appearances. To do that we
break the appearances of the variables x1, and the coefficients ui , vi in the two sides
of the equations into regions (or intervals).

We look at the top monomial in the two sides of the equation. For each index
i we add a breakpoint at the left point of the pair ui , vi , and to the right of that
pair. We denote the variable that is associated with the region (interval) between
the right point of the pair ui , vi and the left point of the pair ui+1, vi+1 by wi . The
top monomial of wi is a prefix or a suffix of the top monomial x0

1 of x1. We denote
by qi the variable that is associated with the region between wi−1 and wi . Note that
the region that is associated with qi contains the support of ui and vi . If the region
that is associated with qi contains the right part of the i − 1 appearance of x1, we
denote the variable that is associated with that right part by ti−1. If it contains the
left part of the i appearance of x1, we denote the variable that is associated with
that left part by si .

As in our previous arguments, we intend to break the solution x1, so that
x1 = siwi = wi ti , whenever the variables wi , si , ti are defined and in appropriate
abelian (quotient) groups. Furthermore, each of the elements qi can be broken ac-
cording to the two sides of the equation. Hence, we intend to show that qi = ti−1ui si ,
or qi = ti−1ui , or qi = ui si , or qi = ui , and correspondingly for the elements vi

(instead of the ui ), depending on the way the elements qi are broken in the two
sides of the equation.

Because of the periodicity of x0
1 , and since we assume that the length of the

period of x0
1 is bigger than 1, a codegree 1 product that contains a codegree 1

monomial of vi cannot cancel with a codegree 1 product that contains a codegree 1
monomial in vi ′ or ui ′ for i ̸= i ′, and likewise for the ui .

Suppose that qi = vi = ti−1ui si for the top monomials. In that case two codegree
1 products that contain codegree 1 monomials of the i − 1 and i appearances of x1

that are both from the vi side, or both from the ui side, cannot cancel. Furthermore,
two codegree 1 products that cancel and belong to the two sides of the equation
cannot contain codegree 1 monomials from both appearances i − 1 and i of x1.
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Hence, in that case a pair of canceling codegree 1 products may be either

(1) codegree 1 monomials of the same appearance of x1 from the two sides of the
equation;

(2) a codegree 1 monomial of either the i or i −1 appearance of x1 for one product,
and a codegree 1 monomial of ui for the second product;

(3) a codegree 1 monomial of either the i or i −1 appearance of x1 for one product,
and a codegree 1 monomial of vi for the second product;

(4) a codegree 1 monomial of ui in one product, and a codegree 1 monomial of vi

in the second product.

If case (1) occurs we add a codegree 1 monomial to wi or wi−1 (depending on
the appearance of x1). In case (2) we add a codegree 1 monomial to ti−1 or si , and
the existing one to ui . In case (3) we add the existing codegree 1 monomial to vi

and a codegree 1 monomial to ti−1 or si (depending on the appearance of x1). In
case (4) we add only the existing codegree 1 monomials to vi and ui .

Suppose that qi = ti−1vi = ui si for the top monomials. Two codegree 1 products
that contain codegree 1 monomials of the i − 1 and i appearances of x1 from the
same side of the equation cannot be equal. Furthermore, a codegree 1 product that
contains a codegree 1 monomial of the i − 1 appearance of x1 in the ui side cannot
cancel with a codegree 1 product that contains a codegree 1 monomial in the i
appearance of x1 from the vi side. Since we assumed that deg(ui ), deg(vi ) > d , and
the coefficients have no periodicity, a codegree 1 product that contains a codegree 1
monomial of the i −1 appearance of x1 in the vi side cannot cancel with a codegree
1 product that contains a codegree 1 monomial in the i appearance of x1 from the
ui side.

Like in the case qi = vi = ti−1ui si , in that case a pair of canceling codegree 1
products may be either

(1) codegree 1 monomials of the same appearance of x1 from the two sides of the
equation;

(2) a codegree 1 monomial of either the i or i −1 appearance of x1 for one product,
and a codegree 1 monomial of ui for the second product;

(3) a codegree 1 monomial of either the i or i −1 appearance of x1 for one product,
and a codegree 1 monomial of vi for the second product;

(4) a codegree 1 monomial of ui in one product, and a codegree 1 monomial of vi

in the second product.

If case (1) occurs we add a codegree 1 monomial to wi or wi−1 (depending on the
appearance of x1). In case (2), if a codegree 1 of the i − 1 appearance of x1 is part
of the canceling pair, we add a codegree 1 monomial to wi−1 (only if the codegree 1
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product is from the ui side of the equation), a codegree 1 monomial to ti−1, and the
existing codegree 1 monomial to ui . If a codegree 1 of the i appearance of x1 is
part of the cancelling pair, we add a codegree 1 monomial to si , and the existing
codegree 1 monomial to ui . In case (3) we do the equivalent additions for vi , wi ,
ti−1 and si . In case (4) we just add the codegree 1 existing monomials to ui and vi .

So far we have constructed elements wi , ti and si such that the equations x1 =wi ti ,
x1 = siwi , qi = ui si or qi = ti−1ui , or qi = ti−1ui si or qi = ui (and correspondingly
for the vi ) hold for products of codegree at most 1. We continue by analyzing
products of codegree r , r < d , assuming that we analyzed all the products of smaller
codegree, constructed the elements wi , si and ti , and they satisfy the last equations
for products of codegree at most r − 1.

We analyze codegree r products in a similar way to their analysis in the proof of
Theorem 4.4. First, note that if a codegree r product is a product of monomials of
ui , vi , si , ti and wi that correspond to products of monomials of codegree smaller
than r of ui , vi and all the appearances of x1 from the two sides of the equation,
then such codegree r products cancel in pairs.

Let i be an index for which deg(ui ) = deg(vi ), and there is no shift between the
i − 1 and i appearances of x1. By our analysis of codegree 1 monomials, the top
monomials, and the codegree 1 homogeneous parts of ui and vi are identical. Code-
gree r products from one side of the equation that contain codegree r monomials
of the i or i − 1 appearances of x1 cancel with corresponding codegree r products
from the other side of the equation. Hence, a codegree r product that contains a
codegree r monomial of ui can cancel only with a codegree r product that contains
a codegree r monomial of vi . Therefore, the codegree r homogeneous part of ui is
identical to the codegree r homogeneous part of vi . Furthermore, for the purpose
of analyzing codegree r products, the given equation can be broken into finitely
many equations by taking out such pairs of coefficients ui , vi , and the appearances
of the solution x1 that are adjacent to them.

Suppose that for some index i there is no shift between the appearances of
x1 in the two sides of the equation. In that case codegree r products that contain
codegree r monomials of the i appearance of x1 from one side of the equation cancel
with codegree r products that contain codegree r monomials of that i appearance
of x1 from the other side of the equation. Hence, for the purpose of analyzing
codegree r products, the given equation breaks into several equations, by taking
out all the appearances of x1 that have no shift. Therefore, for the continuation of
the analysis of codegree r products, we may assume that there are no appearances
of x1 with no shift.

Since we assumed that the equation does not contain appearances of x1 in the
two sides of the equation with no shift between them, the analysis of codegree r
products that contain positive codegree monomials of either u1 or v1, or positive
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codegree monomials of either un or vn , is identical to the analysis of codegree r
monomials in Theorem 4.4, i.e., in the equation u1xu2 = v1xv2. Hence, we only
need to analyze codegree r products that contain positive codegree monomials from
some element qi = ui si = ti−1vi or from an element qi = ti−1ui si = vi .

Let qi = ui si = ti−1vi . Since ui and vi have no periodicity, a codegree r product
that contains a codegree r monomial of x1 in its i − 1 appearance cannot cancel
with a codegree r from the same side of the equation that contains a codegree r
monomial of x1 in its i appearance. Furthermore, a codegree r product that contains
a codegree r monomial of x1 in its i −1 appearance from the ui side of the equation,
cannot cancel with a codegree r product that contains a codegree r monomial of x1

in its i appearance from the vi side of the equation.
Suppose that a codegree r product can be expressed as products of codegree q j

monomials of ti−1 and codegree m j monomials of vi with top monomials of the
other elements in the vi side of the equation such that q j ≥ 0 and m j is positive
and q j + m j = r , in an odd number of ways. Such codegree r products can cancel
with either

(1) an odd number of products of codegree f j monomials of ui and codegree g j

monomials of si with top monomials of the other elements in the ui side of
the equation, such that g j ≥ 0 and f j is positive and f j + g j = r ;

(2) a product of a codegree r monomial of x1 in its i − 1 appearance with other
top monomials in the vi side of the equation;

(3) a product of a codegree r monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(4) a product of a codegree r monomial of x1 in its i − 1 appearance with other
top monomials in the ui side of the equation;

(5) a product of a codegree r monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(6) an odd number of products of a codegree b j monomial of wi−1 with a codegree
a j monomial of ti−1 for positive a j , b j , a j + b j = r , with top monomials of
the other elements from the vi side;

(7) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = r , with top monomials of the
other elements from the ui side.

If only case (1) occurs we don’t add anything to any of the elements except
the existing codegree r monomials of ui and vi . If only case (2) occurs we add a
codegree r monomial to ti−1. If only case (3) occurs we add a codegree r monomial
to wi and a codegree r monomial to si . If only case (4) occurs we add a codegree
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r monomial to wi−1 and to ti−1. If only case (5) occurs we add a codegree r
monomial to si .

Cases (2) and (3) cannot occur together, nor cases (4) and (5), nor cases (3)
and (4). If only cases (1), (2) and (4) occur, we add a codegree r monomial to wi−1.
If only cases (1), (2) and (5) occur, we add codegree r monomials to ti−1 and si . If
only (1), (3) and (5) occur, we add a codegree r monomial to wi .

We still need to treat cases (6) and (7). Note that the existence of these cases
means that codegree r products, which were supposed to exist given the smaller
codegree monomials of the various elements, may or may not exist, depending on
the existence of codegree r monomials in the various appearances of the element x1.
Also, note that case (6) cannot occur with case (3), and case (7) cannot occur with
case (4).

If only case (6) appears, we add a codegree r monomial to ti−1. If only case (7)
appears we add a codegree r monomial to si . If only cases (1), (2) and (6) appear,
we do not add anything. If only cases (1), (2) and (7) appear, we add a codegree r
monomial to ti−1 and to si . If only (1), (3) and (7) appear, we do not add anything.
If only (1), (4) and (6) appear, we add a codegree r monomial to wi−1. If only (1),
(5) and (6) appear, we add codegree r monomials to ti−1 and to si . If only (1), (5)
and (7) appear, we don’t add anything.

If only (2), (4) and (6) appear, we add codegree r monomials to wi−1 and to ti−1.
If only (2), (5) and (6) appear, we add a codegree r monomial to si . If only (2),
(5) and (7) appear, we add a codegree r monomial to ti−1. If only (3), (5) and (7)
appear, we add codegree r monomials to wi and to si .

If only (1), (6) and (7) appear, we add codegree r monomials to ti−1 and to si . If
only (2), (6) and (7) appear, we add a codegree r monomial to si . If only (5), (6)
and (7) appear, we add a codegree r monomial to ti−1. If only (1), (2), (5), (6) and
(7) appear, we do not add anything.

The case in which the codegree r product is a product of case (1) is dealt with in
a symmetric way. Hence, suppose that the codegree r product is not a product of
case (1) and cannot be expressed in an odd number of ways as products of codegree
q j monomials of ti−1 and codegree m j monomials of vi with top monomials of the
other elements in the vi side of the equation, such that q j ≥ 0 and m j is positive
and q j + m j = r .

If only (2) and (4) appear, we add a codegree r monomial to wi−1. If only (2)
and (5) appear, we add codegree r monomials to ti−1 and si . If only (2) and (6)
appear, we do not add anything. If only (2) and (7) appear, we add codegree r
monomials to ti−1 and si . If only (3) and (5) appear, we add a codegree r monomial
to wi . If only (3) and (7) appear, we add a codegree r monomial to wi . If only (4)
and (6) appear, we add a codegree r monomial to wi−1. If only (5) and (6) appear,
we add codegree r monomials to ti−1 and si . If only (5) and (7) appear, we do not
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add anything. If only (6) and (7) appear, we add codegree r monomials to ti−1

and si . Finally, if (2), (5), (6) and (7) appear, we do not add anything.
As in the proof of Theorem 4.4, it can still be that a codegree r product is of

type (7) and can also be presented in an odd number of ways as products of a
codegree b j monomial of wi with a codegree a j monomial of ti for positive a j , b j ,
a j + b j = r , with top monomials of the other elements from the vi side.

In that case it can either be presented only in these two forms or also in both
forms (3) and (5). If it can be presented in forms (3) and (5) we do not add anything.
If it cannot we add a codegree r monomial to wi .

This concludes the construction of the elements si , ti , wi for codegree r products
that involve qi = ui si = ti−1vi . Suppose that qi = vi = ti−1ui si . Since ui and vi

have no periodicity, a codegree r product that contains a codegree r monomial of
x1 in its i − 1 appearance cannot cancel with a codegree r product that contains a
codegree r monomial of x1 in its i appearance.

Suppose that a codegree r product can be expressed as products of codegree q j

monomials of ti−1, codegree m j monomials of ui and codegree p j monomials of
si with top monomials of the other elements in the ui side of the equation, such
that q j , m j , p j ≥ 0, either m j > 0 or q j , p j > 0, and q j + m j + p j = r , in an odd
number of ways. Such codegree r products can cancel with either

(1) a product of a codegree r monomial of vi with other top monomials;

(2) a product of a codegree r monomial of x1 in its i − 1 appearance with other
top monomials in the ui side of the equation;

(3) a product of a codegree r monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(4) a product of a codegree r monomial of x1 in its i − 1 appearance with other
top monomials in the vi side of the equation;

(5) a product of a codegree r monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(6) an odd number of products of a codegree b j monomial of wi−1 with a codegree
a j monomial of ti−1 for positive a j , b j , a j + b j = r , with top monomials of
the other elements from the ui side;

(7) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = r , with top monomials of the
other elements from the ui side.

According to the various cases, we add monomials to the variables ti , si , wi , in
a similar way to what we did in case qi = ui si = ti−1vi . If only case (1) occurs we
don’t add anything to any of the elements except the existing codegree r monomials
of ui and vi . If only case (2) occurs we add a codegree r monomial to ti−1. If only
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case (3) occurs we add a codegree r monomial to si . If only case (4) occurs we
add a codegree r monomial to wi−1 and to ti−1. If only case (5) occurs we add a
codegree r monomials to wi and to si .

Cases (2) and (3) cannot occur together, nor cases (4) and (5), nor cases (3)
and (4), nor (2) and (5). If only cases (1), (2) and (4) occur, we add a codegree r
monomial to wi−1. If only (1), (3) and (5) occur, we add a codegree r monomial
to wi .

As in the case in which qi = ui si = ti−1vi , the existence of cases (6) and (7)
means that codegree r products that were supposed to exist given the smaller
codegree monomials of the various elements, may or may not exist, depending on
the existence of codegree r monomials in the various appearances of the element x1.
Also, note that case (6) cannot occur with cases (3) or (5), and case (7) cannot occur
with cases (2) or (4).

If only case (6) appears, we add a codegree r monomial to ti−1. If only case (7)
appears we add a codegree r monomial to si . If only cases (1), (2) and (6) appear,
we do not add anything. If only (1), (3) and (7) appear, we do not add anything. If
only (1), (4) and (6) appear, we add a codegree r monomial to wi−1. If only (1),
(5) and (7) appear, we add a codegree r monomial to wi .

If only (2), (4) and (6) appear, we add codegree r monomials to wi−1 and to ti−1.
If only (3), (5) and (7) appear, we add codegree r monomials to wi and to si .

The case in which case (1) occurs is dealt with in an analogous way. Hence,
suppose that the codegree r product is not a product of case (1) and cannot be
expressed in an odd number of ways as products of codegree q j monomials of ti−1,
codegree m j monomials of ui and codegree p j monomials of si with top monomials
of the other elements in the ui side of the equation, such that q j , m j , p j ≥ 0, either
m j is positive or both q j , p j are positive and q j + m j + p j = r .

If only (2) and (4) appear, we add a codegree r monomial to wi−1. If only (2) and
(6) appear, we do not add anything. If only (3) and (5) appear, we add a codegree r
monomial to wi . If only (3) and (7) appear, we do not add anything. If only (4)
and (6) appear, we add a codegree r monomial to wi−1. If only (5) and (7) appear,
we add a codegree r monomial to wi .

It can still be that a codegree r product is of type (7) and can also be presented
in an odd number of ways as products of a codegree b j monomial of wi with a
codegree a j monomial of ti for positive a j , b j , a j + b j = r , with top monomials of
the other elements from the vi side. We treat this case precisely as we treated it in
the case qi = ui si = ti−1vi .

This concludes the construction of the elements si , ti , wi for codegree r products
when r < d. The elements wi , ti , and si that we constructed so far satisfy the
equations x1 = wi ti , x1 = siwi , qi = ui si or qi = ti−1ui , or qi = ti−1ui si or qi = ui

(and correspondingly for the vi ) for products of codegree smaller than d.
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To continue we need to analyze products of codegree d and higher. For presen-
tation purposes we start this analysis under the additional assumption that all the
appearances of x1 in the two sides of the equation have nontrivial shifts, i.e., the
appearances of the top monomial of the solution x0

1 in the two sides of the equality
for the top monomials are shifted. This assumption enables us to analyze the higher
codegree products using the arguments that were used in the proof of Theorem 4.4
and in analyzing smaller codegree products. Afterwards we drop this assumption.

As in Theorem 4.4, in analyzing codegree d products, there are special codegree
d products that we need to single out and treat separately, as they may involve
cancellations between codegree d products that contain codegree d monomials of
ui or vi and those that contain codegree d monomials of ui+1 or vi+1.

As in analyzing smaller codegree products, note that codegree d products that are
products of smaller codegree monomials of the ui , vi , si , wi and ti , and correspond
to smaller codegree monomials of ui , vi and x1 from the two sides of the equation
cancel in pairs.

In analyzing codegree r products for r < d, there is no interaction between
elements in qi and q j for i ̸= j . As in the proof of Theorem 4.4, in analyzing
codegree d products such interaction may happen if i and j are consecutive indices.
Hence, in analyzing codegree d products we need to go over the various possibilities
for qi and qi+1.

Suppose that qi = ui si = ti−1vi . Suppose that a codegree d product can be
expressed as products of codegree q j monomials of ti−1 and codegree m j monomials
of vi with top monomials of the other elements in the vi side of the equation, such
that q j ≥ 0 and m j is positive and q j +m j = d , in an odd number of ways. If the qi

part of such a product is not equal to u0
i nor to v0

i (the top monomials of ui and vi ),
such codegree r products are analyzed exactly in the same way they were analyzed
in codegree r products for r < d .

We have u0
i ̸= v0

i because we assumed that the top monomials of the coefficients
have no periodicity. If the qi part of such a product equals v0

i , the codegree d product
may be equal to a codegree d product that contains positive codegree monomials
in qi−1. If the qi part of such a product equals u0

i , the codegree d product may be
equal to a codegree d product that contains positive codegree monomials in qi+1.

Suppose that the qi part of the codegree d product equals u0
i . Suppose further that

qi+1 = ui+1si+1 = tivi+1. In that case such a codegree d product can cancel with
codegree d products that are either a subset of those analyzed for products of smaller
codegree, or products that include positive codegree monomials of qi+1:

(1) an odd number of products of codegree f j monomials of ui and codegree g j

monomials of si with top monomials of the other elements in the ui side of
the equation, such that g j ≥ 0 and f j is positive and f j + g j = d;
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(2) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(3) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(4) an odd number of products of codegree q j monomials of ti and codegree m j

monomials of vi+1 with top monomials of the other elements in the vi side
of the equation, such that q j ≥ 0 and m j is positive and the product of the
monomial of ti with the monomial of vi+1 is v0

i+1;

(5) an odd number of products of codegree f j monomials of ui+1 and codegree
g j monomials of si+1 with top monomials of the other elements in the ui side
of the equation, such that g j ≥ 0 and f j is positive and the product of the
monomial of ui+1 with the monomial of si+1 is v0

i+1;

(6) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = d , with top monomials of the
other elements from the ui side;

(7) an odd number of products of a codegree b j monomial of wi with a codegree
a j monomial of ti for positive a j , b j , a j + b j = d , with top monomials of the
other elements from the vi side.

Note that case (2) occurs if and only if case (3) occurs. If only one of the cases (1)
or (6) occurs, we treat them as they were treated in analyzing codegree r products
for r < d. If only case (4) or only case (5) occurs we add 1 (the identity) to si

and ti , and the codegree d prefix of w0
i to wi . If only case (7) occurs we add 1 to si

and the codegree d prefix of w0
i to wi .

If only cases (1)–(3) occur, or only cases (2), (3) and (6) occur, we treat them
as they were treated for codegree r products, r < d. If only cases (2) and (3) in
addition to one of the cases (4) or (5) occur, we add 1 to si and ti . If only cases
(2), (3) and (7) occur, we add 1 to si . If only (1), (4) and (5) occur, we don’t add
anything. If only (1), (6) and one of (4) or (5) occur, we add 1 to ti and the codegree
d prefix of w0

i to wi . If only (1), (7) and one of (4) or (5) occur, we add 1 to ti .
If only (1), (6) and (7) occur, we add the codegree d prefix of w0

i to wi . If only
(6), (7) and one of (4) or (5) occur, we add 1 to si and ti and the codegree d prefix
of w0

i to wi . If only (4), (5) and (6) occur, we add 1 to si . If only (4), (5) and (7)
occur, we add 1 to si and the codegree d prefix of w0

i to wi .
If only (1)–(5) occur, we add the codegree d prefix of w0

i to wi . If only (1)–(3)
and (6)–(7) occur, we do not add anything. If only (1)–(3), (6) and one of (4) or (5)
occur, we add 1 to ti . If only (1)–(3), (7) and one of (4) or (5) occur, we add 1 to ti
and the codegree d prefix of w0

i to wi . If only (1) and (4)–(7) occur, we add the
codegree d prefix of w0

i to wi .
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If only (2)–(6) occur, we add 1 to si and the prefix of codegree d of w0
i to wi . If

only (2)–(5) and (7) occur, we add 1 to si . If only (2)–(3), (6)–(7) and one of (4)
or (5) occur, we add 1 to si and ti and the codegree d prefix of w0

i to wi . If all the
possibilities (1)–(7) occur, we do not add anything.

Suppose that a codegree d product can be expressed as a product in case (1), and
cannot be expressed as products of codegree q j monomials of ti−1 and codegree
m j monomials of vi with top monomials of the other elements in the vi side of the
equation, such that q j ≥ 0 and m j is positive and the qi part of the product is u0

i in
an even number (possibly none) ways. In that case the analysis of such a product
and the monomials that are added to the elements ti , si and wi are analogous to the
analysis described above.

Suppose that such a codegree d product cannot be expressed as a product in
case (1), but it can be expressed as a product in case (6). If only (6) and (7) occur,
we add the codegree d prefix of w0

i to wi . If only (6) and one of (4) or (5) occur,
we add 1 to ti and the prefix of codegree d of w0

i to wi . If only (4)–(7) occur, we
add the codegree d prefix of w0

i to wi . If only (2)–(3) and (6)–(7) occur, we do not
add anything. If only (2)–(3), (6) and one of (4) or (5) occur, we add 1 to ti . If only
(2)–(7) occur, we do not add anything.

This concludes the analysis of such codegree d products in the case that qi+1 =

ui+1si+1 = tivi+1. Suppose that qi+1 = ui+1 = tivi+1si+1. As before, such a
codegree d product can cancel with codegree d products that are either a subset
of the ones that were analyzed for products of smaller codegree, or products that
include positive codegree monomials of qi+1:

(1) an odd number of products of codegree f j monomials of ui and codegree g j

monomials of si with top monomials of the other elements in the ui side of
the equation, such that g j ≥ 0 and f j is positive and f j + g j = d;

(2) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(3) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(4) an odd number of products of codegree q j monomials of ti , codegree m j

monomials of vi+1 and codegree p j monomials of si+1 with top monomials
of the other elements in the vi side of the equation, such that q j , m j , p j ≥ 0,
either m j > 0 or q j , p j > 0, and q j + m j + p j = d, and the product of the
corresponding monomials of ti , vi+1 and si+1 is the codegree d suffix of u0

i+1;

(5) a product of a monomial of ui+1, which is the codegree d suffix of u0
i+1, with

the top monomials of the all the other elements from the ui side of the equation;
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(6) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = d , with top monomials of the
other elements from the ui side;

(7) an odd number of products of a codegree b j monomial of wi with a codegree
a j monomial of ti for positive a j , b j , a j + b j = d , with top monomials of the
other elements from the vi side.

Analyzing the various possibilities in this case is identical to the case qi+1 =

ui+1si+1 = tivi+1.
Recall that we assumed that qi = ui si = ti−1vi . In addition suppose that a

codegree d product can be expressed as products of codegree f j monomials of
ui and codegree g j monomials of si with top monomials of the other elements in
the ui side of the equation, such that f j ≥ 0 and g j is positive and f j + g j = d,
in an odd number of ways, and such that the product of the monomial of ui with
the monomial of si is v0

i . In that case, the codegree d product may be equal to
a codegree d product that contains positive codegree monomials in qi−1. Such a
codegree d product can cancel with codegree d products that are either a subset
of the ones that were analyzed for products of smaller codegree, or products that
include positive codegree monomials of qi−1:

(1) an odd number of products of codegree q j monomials of ti−1 and codegree
m j monomials of vi with top monomials of the other elements in the vi side
of the equation, such that q j ≥ 0 and m j is positive and q j + m j = d;

(2) a product of a codegree d monomial of x1 in its i − 1 appearance with other
top monomials in the ui side of the equation;

(3) a product of a codegree d monomial of x1 in its i − 1 appearance with other
top monomials in the vi side of the equation;

(4) an odd number of products of codegree f j monomials of ui−1 and codegree
g j monomials of si−1 with top monomials of the other elements in the ui side
of the equation, such that g j ≥ 0 and f j is positive and the product of the
monomial of ui−1 with the monomial of si−1 is u0

i−1;

(5) an odd number of products of q j monomials of ti−2 and codegree m j mono-
mials of vi−1 with top monomials of the other elements in the vi side of the
equation, such that q j ≥ 0 and m j is positive and the product of the monomial
of ti−2 with the monomial of vi−1 is u0

i−1;

(6) an odd number of products of a codegree c j monomial of wi−1 with a codegree
h j monomial of ti−1 for positive c j , h j , c j + h j = d, with top monomials of
the other elements from the vi side;
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(7) an odd number of products of a codegree a j monomial of si−1 with a codegree
b j monomial of wi−1 for positive a j , b j , a j + b j = d , with top monomials of
the other elements from the ui side.

The analysis of this case is identical to the case in which the qi part of a codegree
d product is v0

i , and there is a possible cancellation with codegree d products that
contain positive codegree monomials of qi+1. An identical analysis applies also
when qi−1 = vi−1 = ti−2ui−1si−1.

Suppose that qi = ui = ti−1vi si and qi+1 = vi+1 = ti ui+1si+1. Suppose that a
codegree d product can be presented in an odd number of ways as products of
codegree q j monomials of ti−1, codegree m j monomials of vi and codegree p j

monomials of si with top monomials of the other elements in the vi side of the
equation, such that q j , m j , p j ≥0, either m j >0 or q j , p j >0, and q j +m j + p j =d ,
and the product of the corresponding monomials of ti−1, vi and si is the codegree
d prefix of u0

i .
Such a codegree d product can cancel with codegree d products that are either a

subset of the ones that were analyzed for products of smaller codegree, or products
that include positive codegree monomials of qi+1:

(1) a product of a monomial of ui which is the codegree d prefix of u0
i with the

top monomials of all the other elements from the ui side of the equation;

(2) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(3) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(4) a product of a monomial of vi+1 which is the codegree d suffix of v0
i+1 with the

top monomials of the all the other elements from the vi side of the equation;

(5) an odd number of products of codegree q j monomials of ti , codegree m j

monomials of ui+1 and codegree p j monomials of si+1 with top monomials
of the other elements in the ui side of the equation, such that q j , m j , p j ≥ 0,
either m j > 0 or q j , p j > 0, and q j + m j + p j = d, and the product of the
corresponding monomials of ti , vi+1 and si+1 is the codegree d suffix of v0

i+1;

(6) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = d , with top monomials of the
other elements from the vi side;

(7) an odd number of products of a codegree b j monomial of wi with a codegree
a j monomial of ti for positive a j , b j , a j + b j = d , with top monomials of the
other elements from the ui side.
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Analyzing the various possibilities in this case is identical to the case qi =

ti−1vi = ui si . The analysis of the remaining case, in which qi = ui = ti−1vi si and
qi−1 = vi−1 = ti−2ui−1si−1, is identical to the previous cases as well.

This concludes the construction of the elements si , ti , wi for codegree r products
when r ≤ d , in case all the pairs of appearances of the top monomial of the solution
x1 in the two sides of the equation have nontrivial shifts. The elements wi , ti and si

that we constructed so far satisfy the equations x1 = wi ti , x1 = siwi , qi = ui si or
qi = ti−1ui , or qi = ti−1ui si or qi = ui (and correspondingly for the vi ) for products
of codegree smaller or equal to d .

As in the proof of Theorem 4.4, we continue with the analysis of codegree d + r
products for r < d . First, as in analyzing smaller codegree products, codegree d +r
products that are products of smaller codegree monomials of ui , vi , si , ti and wi ,
that correspond to products of smaller codegree monomials of ui , vi and x1 (in all
its appearances) from the two sides of the equation, cancel in pairs. We start with
two lemmas that are the analogues of Lemmas 4.5 and 4.6.

Lemma 4.8. Suppose that a codegree d + r product can be presented both as

(1) a product of a codegree h monomial of si with a codegree c monomial of wi ,
for positive c, h, c + h = d + r , with top monomials of the other elements from
the ui side;

(2) a product of a codegree b monomial of wi with a codegree a monomial of ti
for positive a, b, a + b = d + r , with top monomials of the other elements from
the vi side.

Such a codegree d + r product may only be presented as a product of smaller
codegree monomials or (only) in one of the following two products:

(i) a product of a codegree d + r monomial of x1 in its i appearance with other
top monomials in the vi side of the equation;

(ii) a product of a codegree d + r monomial of x1 in its i appearance with other
top monomials in the ui side of the equation.

Proof. In case it can be presented as another product of a codegree d + r monomial
with top degree monomials, either the top monomial of si or the top monomial of ti
overlap with themselves with a cyclic shift. Hence they must be periodic, a contra-
diction to the assumption that the coefficients do not have nontrivial periodicity. □

Lemma 4.9. With the notation of Lemma 4.8, if a codegree d + r product can be
presented in an odd number of ways as a product in the form (1) and in an even
number of ways as a product of form (2), then such a product can be presented
precisely in one of the forms (i) or (ii). If a codegree d + r product can be presented
precisely in one of the forms (i) or (ii), then it can be presented precisely in one of
the forms (1) or (2) in an odd number of ways.
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If a codegree d + r product can be presented in an odd number of ways in both
forms (1) and (2), then it can either be presented in both forms (i) and (ii) or in
neither of them. If a codegree d + r product can be presented in both forms (i) and
(ii) then it can either be presented in both forms (1) or (2) in an odd number of
ways, or in both of them in an even number of ways.

Proof. If a codegree d + r product can be presented in both forms (1) and (2) (odd
or even number of times), the conclusion follows from Lemma 4.8. Suppose that it
can be presented in an odd number of ways in form (1) and none in form (2). If it
can also be presented as a codegree d + r product that involves positive codegree
monomials of u j , v j , s j , t j or x j , for j > i , the top monomial of ui+1 must have
nontrivial periodicity, a contradiction. If it can be also presented as a codegree
d + r product from the ui sides of the equation that involves monomials of positive
codegree monomials of u j , s j , t j or x j , for j < i , the top monomial of ui must
have nontrivial periodicity, a contradiction.

Suppose that the given codegree d +r product can also be presented as a product
of either

(1) a codegree q of ti−1 and a codegree m of vi with other top monomials from
the vi side of the equation;

(2) a codegree f of ui and a codegree g of si with other top monomials from the
ui side of the equation;

(3) a codegree d + r product from the vi side of the equation that involves mono-
mials of positive codegree monomials of v j , s j , t j or x j for j < i .

In all these cases the suffix of length r of the top monomial of ui is identical to
the prefix of length r of the period of x . If r ≤ deg(vi ) − d, then vi has nontrivial
periodicity, a contradiction. Otherwise, the top monomial in the two sides of the
equation contains periodicity that is not part of the periodicity of the solution x , a
contradiction to our assumptions. □

Suppose that qi = ui si = ti−1vi , and let r be an integer, 0 < r < d . By Lemma 4.9
if a codegree d + r product can be presented in an odd number of ways in the form
(1) of Lemma 4.8 then either

(1) it can be also presented in an odd number of ways as in form (2) of Lemma 4.8
and either in both forms (i) and (ii) in Lemma 4.8 or in neither of them;

(2) it can be presented in an even or no ways in form (2) of Lemma 4.8, and it
can also be presented precisely in one of the forms (i) or (ii) in Lemma 4.8.

By Lemma 4.9, if a codegree d + r product can be presented in form (i) of
Lemma 4.8, and in even or no ways in forms (1) or (2) of that lemma, then it can
also be presented in form (ii) of Lemma 4.8.
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Hence, if a codegree d + r product can be presented in an odd number of ways
in one of the forms (1), (2), (i) or (ii), then the appearances of the codegree d + r
products in these forms cancel in pairs. If it appears in an odd number of ways in
forms (1) and (2), and in forms (i) and (ii), we do not add anything. If it appears in
an odd number of ways in forms (1) and (2) and not in the forms (i) nor (ii), we
add a codegree d + r monomial to wi . If it appears in an odd number of ways in
the form (1), in an even number of or no ways in the form (2), and appears in the
form (i) we add a codegree d + r monomial to wi . If it appears in an odd number
of ways in the form (1), in an even number of or no ways in the form (2), and in the
form (ii), we do not add anything. If it appears in an even number of or no ways
in the forms (1) and (2), and in both form (i) and (ii), we add a codegree d + r
monomial to wi .

Therefore, if a codegree d + r product can be presented in an odd number of
ways as products of codegree q j monomials of ti−1 and codegree m j monomials of
vi with top monomials of the other elements in the vi side of the equation, such
that q j ≥ 0 and m j is positive and q j + m j = d + r , then it must be presented in
an odd number of ways as products of codegree f j monomials of ui and codegree
g j monomials of si with top monomials of the other elements in the ui side of the
equation, such that g j ≥ 0 and f j is positive and f j + g j = r .

This concludes the construction of the elements si , ti , wi in case qi = ti−1vi =ui si

(note that the elements si , ti did not change), to ensure that the equalities they are
supposed to satisfy hold for products up to codegree d + r .

Suppose that qi =ui = ti−1vi si . Lemmas 4.8 and 4.9 and their proofs remain valid
in this case. Hence, a codegree d +r product can be expressed in an odd number of
ways as products of codegree q j monomials of ti−1, codegree m j monomials of vi ,
and codegree p j monomials of si with top monomials of the other elements in the
vi side of the equation, such that q j , m j , p j ≥ 0, either m j > 0 or q j , p j > 0, and
q j + m j + p j = d + r , if and only if it is equal to a codegree d + r monomial of ui .

This concludes our treatment of codegree d + r products for r < d . We continue
by analyzing codegree 2d products. Lemmas 4.8 and 4.9 remain valid for codegree
2d products. Hence, the analysis of codegree 2d products is identical to the analysis
of codegree d + r products for r < d . The analysis of higher codegree products, for
codegree up to twice the maximal degree of the elements ui , vi , is identical as well.

Hence, in case deg(ui ), deg(vi ) > d and all the appearances of the elements x1 in
the two sides of the equation have nontrivial shifts, we finally constructed elements
si , ti , wi that satisfy the equations

(i) qi = ui si = ti−1vi or qi = vi = ti−1ui si or with exchanging the appearances
of ui and vi in the second equation;

(ii) x1 = siwi = wi ti mod Gdeg(x1)−2(deg(si )).
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Therefore, s1 and tn−1 are uniquely defined, and (given x1) w1 and wn−1 are
uniquely defined mod Gdeg(w1)−2(deg(si )). Hence, t1 and s2 are uniquely defined,
and w2 is uniquely defined mod Gdeg(w2)−2(deg(si )). Continuing iteratively, all the
elements si , ti are uniquely defined, and the elements wi are uniquely defined
mod Gdeg(wi )−2(deg(si )).

Since siwi = wi ti , it follows that si x1 = x1ti mod Gdeg(si x1)−2(deg(si )). This
implies that for every pair i, j , 1 ≤ i, j ≤ n, we have (si + s j )x1 = x1(ti + t j )

mod Gdeg(si x1)−2(deg(si )), so for every pair i, j either si = s j and ti = t j or si = s j +1
and ti = t j + 1.

Since every pair (si , ti ) is either (s1, t1) or (s1 + 1, t1 + 1), it follows that every
element x̂ that satisfies s1 x̂ = x̂ t1 is a solution of the given equation. It remains
to prove that every long enough solution of the given equation is a solution of the
equation s1x = xt1.

Let x2 be a solution of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2) + (2(deg(u1) + · · · + deg(un))
2.

By continuing the analysis of higher codegree monomials of the solution x2, we get
that there exist elements wi such that for every index i , 1 ≤ i ≤ n, we have siwi =

wi ti = x2 mod Gdeg(s1)−1. By the argument that was used to prove Lemma 4.2, it
follows that there exists a solution x̂ to the equation s1x = xt1.

Note that x2 satisfies s1x2 = x2t1 mod G2 deg(s1)−1. Hence, there exists an ele-
ment x̂2 which is a solution of the equation s1x = xt1, and x2 + x̂2 = r , where
deg(r) ≤ 2 + kdeg(s1)+2.

Suppose the given equation is v1xv2xv3 = u1xu2xu3, where deg(v1) < deg(u1)

and deg(v2) = deg(u2). In this case, u1 = v1s1, t1u2 = v1s2 and v3 = t2u3. Hence,
(x̂2 + r)v2(x̂2 + r)t2 = s1(x̂2 + r)u2(x̂2 + r). Since x̂2 is a solution to the equation
s1x = xt1, it is a solution to the given equation. Therefore

x̂2v2r t2 + rv2 x̂2t2 = s1 x̂2u2r + s1ru2 x̂2 mod Gdeg(rv2r t2).

Hence
x̂2(v2r t2 + t1u2r) = (rv2s2 + s1ru2)x̂2 mod Gdeg(rv2r t2).

Since s1 x̂2 = x̂2t1 it follows that for any polynomial p, p(s1)x̂2 = x̂2 p(t1). This im-
plies v2r t2 + t1u2r = p(t1) and rv2s2 + s1ru2 = p(s1) mod Gdeg(v2r t2)+deg(r)−deg(x2)

for the same polynomial p.
We have t1u2 = v2s2, so v2(r t2 + s2r) = p(t1) mod Gdeg(v2r t2)+deg(r)−deg(x2).

By our assumption on deg(x2) it follows that v2(r t2 + s2r) = p(t1). Similarly,
(r t1 + s1r)u2 = p(s1). Hence, p(s1) is either 0 or its leading term is of degree at
least 2.

Since (s1, t1) equals (s2, t2) or (s2 + 1, t2 + 1), we get that v2(r t1 + s1r)u2 =

v2 p(t1) = p(s1)u2. We look at the leading term in the two sides of the last equality.
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Since we assumed that the top monomials of u2 and v2 are not periodic, the top
monomial of u2 must be βs0, and the top monomial of v2 must be t0β, where β

is a prefix of t0 and a suffix of s0. Hence, t0 = βα and s0 = αβ. But this is a
contradiction, since we assumed that the periodicity in the top monomials in the two
sides of the given equation is contained in the solution x2. Therefore, s1r + r t1 = 0,
so r is a solution of the equation s1x = xt1, which means that x2 = x̂2 + r is a
solution to s1x = xt1 as well.

If the equation is u1xu2xu3=v1xv2xv3, and deg(v1)>deg(u1), deg(v3)>deg(u3),
then by the same arguments we get that r (the remainder) has to satisfy the equation

(r t1 + s1r)v2s2 x̂2 = x̂2t1v2(r t2 + s2r).

That implies that if r t1 + s1r ̸= 0, u2 must contain periodicity, a contradiction to
our assumptions. Therefore, r t1 + s1r = 0, and both r and x2 are solutions of the
equations s1x = xt1.

Suppose that the length of the equation is bigger. Then x2 is a long solu-
tion, and x2 = x̂2 + r , where x̂2 is a solution of the equation s1x = xt1, and
deg(r) ≤ 2 + kdeg(s)+2. In that case we get the equality

(x̂2 +r)v2(x̂2 +r)v3 · · · vn−1(x̂2 +r)tn−1 = s1(x̂2 +r)u2(x̂2 +r)u3 · · · un−1(x̂2 +r),

and since x̂2 is a solution of the equation s1x = xt1, we get the equality

rv2 x̂2v3 · · · vn−1 x̂2tn−1 + · · · + x̂2v2 x̂2v3 · · · x̂2vn−1r tn−1

= s1ru2 x̂2u3 · · · un−1 x̂2 + · · · + s1 x̂2u2 x̂2u3 · · · x̂2un−1r mod Gm2,

where m1 = deg(s1 x̂2u2 x̂2u3 · · · x̂2un−1r), and m2 = m1 − deg(x̂2) + deg(r).
That implies the equality

(s1r + r t1)u2 x̂2u3 · · · un−1 x̂2 + x̂2v2(s2r + r t2)u3 x̂2u4 · · · x̂2un

+ x̂2v2 · · · x̂2vn−2(sn−2r + r tn−2)un−1 x̂2un

+ x̂2v2 · · · x̂2vn−1(sn−1r + r tn−1) = 0 mod Gm2 .

Suppose that there exists an index j , 1 ≤ j ≤ n − 1, for which s jr + r t j ̸= 0.
We set j0 to be the minimal index for which s jr + r t j has maximal degree. We
look at the top degree homogeneous part in s j0r + r t j0 . The monomials in this
homogeneous part of s j0r + r t j0 contribute to top degree monomials in the j0-th
product in the sum above. These top degree monomials cancel with top degree
monomials from other summands that contain part of the top monomial of x̂2 in
place of the top monomial of s j0r + r t j0 . Hence, the top degree homogeneous part
of s j0r + r t j0 has to be a monomial as well.

Furthermore, as for an equation of length 3, this cancellation of the top monomials
implies that the top monomials of u j0 and v j0 contain parts of the top monomial
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of x̂2, that by our assumption is bigger than the length of the period of the top
monomial of x̂2. Hence, as for equation of length 3, when we substitute x̂2 in
the equation, the top monomial has periodicity that is not contained in one of
the appearances of x̂2, a contradiction to one of the assumptions of Theorem 4.7.
Therefore, for every j , s jr + r t j = 0, so r is a solution of the equation s1x = xt1,
and so is x2.

This concludes the proof of Theorem 4.7 in case all the appearances of the top
monomial of a solution x1 in the two monomials that are the top products in the
two sides of the given equation have nontrivial shifts. We still need to complete the
proof in the cases in which there are appearances of the top monomial of a solution
x1 with zero shifts.

Lemma 4.10. Let u1, u2, v1, v2 ∈ FA satisfy u1 ̸= v1, deg(ui ) = deg(vi ), i = 1, 2,
and suppose that the top homogeneous parts of ui and vi are monomials (for i =1, 2)
with no nontrivial periodicity. Then, if there exists a solution x1 to the equation
u1xu2 = v1xv2, and deg(x1) > 2(deg(u1) + deg(u2)), then there exist elements
s, t ∈ FA such that x is a solution of the equation u1xu2 = v1xv2 if and only if it is
a solution of the equation sx = xt.

Proof. The top monomials of u1 and v1, and of u2 and v2, have to be equal. We set
u1 = v1 + µ1, v2 = u2 + µ2, deg(µ1) < deg(v1) and deg(µ2) < deg(u2). Hence,
(v1 + µ1)xu2 = v1x(u2 + µ2), which implies µ1xu2 = v1xµ2. Since the top
homogeneous parts of v1 and u2 are monomials with no periodicity, so are the top
homogeneous parts of µ1 and µ2. Since deg(µ1) < deg(v1) and deg(µ2) < deg(v2),
the conclusion of the lemma follows from Theorem 4.4. □

Proposition 4.11. Let u1, u2, u3, v1, v2, v3 ∈ FA satisfy u1 ̸= v1, u3 ̸= v3, deg(ui )=

deg(vi ), i = 1, 2, 3, and suppose that the top homogeneous parts of ui and vi are
monomials (for i = 1, 2, 3) with no nontrivial periodicity. Then, if there exists a
solution x1 to the equation u1xu2xu3 = v1xv2xv3, and the only nontrivial period-
icity in the top monomials of the two sides of the equation is contained in the top
monomials of the solution x1, and deg(x1) > 2(deg(u1)+ deg(u2)+ deg(u3)), then
there exist elements s, t ∈ FA such that up to a swap between the u’s and the v’s:

(1) There exists µ1 for which u1 = µ1(s + 1) and v1 = µ1s.

(2) There exists µ2 and τ2 for which tµ2 = τ2s. Furthermore, u2 = τ2(s + 1) and
v2 = (t + 1)µ2.

(3) There exists µ3 for which u3 = tµ3 and v3 = (t + 1)µ3.

As in the conclusion of Theorem 4.7, every solution of the equation sx = xt is a
solution of the given equation u1xu2xu3 = v1xv2xv3. Every solution x2 of the given
equation u1xu2xu3 = v1xv2xv3 for which deg(x2) > 2(2 + kdeg(s1)+2

+ deg(u1) +

deg(u2) + deg(u3)) is a solution of the equation sx = xt.
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Proof. The top homogeneous parts of the ui and vi are monomials, and the equation
forces these monomials to be equal. Hence, vi = ui +ρi , where deg(ρi ) < deg(ui ),
i = 1, 2, 3. Let ρ0

i be the top homogeneous part in ρi . We start the proof by
arguing that the top homogeneous part of a solution x1 with deg(x1) > 2(deg(u1)+

deg(u2) + deg(u3)) has to be a monomial as well.
Suppose that deg(ρ1) < max(deg(ρ2), deg(ρ3)). In that case the top homo-

geneous parts have to satisfy ρ0
2 x0

1v0
3 = u0

2x0
1ρ0

3 . Since u0
2 and v0

3 are mono-
mials, it follows that x0

1 is a monomial, and so are ρ0
2 and ρ0

3 . If deg(ρ0
1) ≥

max(deg(ρ0
2), deg(ρ0

3)), then ρ0
1 has to be a monomial. This forces x0

1 to be a
monomial as well.

We look at the highest degree for which for some index i , ui ̸= vi . This cannot
occur for a single index i . If u2 = v2 at that highest degree, then the top monomial in
u2 (and v2) must have periodicity, a contradiction to our assumptions. Let d be the
codegree of that degree, and suppose that up to this codegree u3 = v3. In that case,
the equation for codegree d products reduces to the equation u1xu2 = v1xv2. If we
set ui = vi + µi , i = 1, 2, 3, then for the codegree d products, we get the equation
µ1xu2 = v1xµ2. This implies that the top part of µ1 and µ2 are monomials that are
the codegree d prefix and suffix of the top monomials of v1 and v2 in correspondence,
and that the top monomial of x1 has a period of length d .

In that case, it must be that u3 = v3 for all the homogeneous parts of codegree less
than 2d , and hence, µ1xu2 = v1xµ2 for all the products up to codegree d . Therefore,
there exists an element s, and an element t , such that v1 = u1 = µ1s mod Gdeg(u1)−d

and v2 = u2 = tµ2 mod Gdeg(u2)−d .
Since u3 = v3 for all the homogeneous parts of codegree less than 2d , and the top

monomial of u3 (and v3) do not have nontrivial periodicity, it follows that u3 = v3.
Hence, µ1xu2 = v1xµ2, and the conclusion follows from Theorem 4.4 in this case
(note that in the statement of the proposition we assumed that ui ̸= vi , i = 1, 3).

Suppose that for the codegree d homogeneous parts ui ̸= vi for i = 1, 2, 3. In
that case, we get the equation

(v1 + µ1)xu2xu3 = v1xv2x(u3 + µ3),

and ui = vi , i = 1, 2, 3, for all the homogeneous parts of codegree smaller than d.
Hence, the top homogeneous parts of µ1 and µ3 are monomials, which are the code-
gree d prefix and suffix of the top monomials of u1 and u3 in correspondence. The
top monomial of x1 (the given solution to the given equation) has to be quasiperiodic
(or rather fractional periodic), with a period of length d . Furthermore, v2 = b2 +µ2

and u2 = b2 + τ2 mod Gdeg(u2)−(d+1), where the top homogeneous parts of µ2 and
τ2 are the codegree d prefix and suffix of the top monomial of u2 (and v2).

We continue by looking at products of codegree d + 1. Every such product that
contains monomials in ui that appear also in vi , for i = 1, 2, 3, cancels with a



NONCOMMUTATIVE ALGEBRAIC GEOMETRY, I 785

similar product from the other side of the equation. Hence, to analyze cancellations,
we need to consider codegree d +1 products that contain monomials from µ1 or µ3,
or monomials of codegree d and d + 1 of u2 and v2 that do not appear in both.

Suppose that a codegree d + 1 product contains a codegree d + 1 monomial
from µ1, i.e., a codegree d + 1 monomial in u1 that is not in v1. Such a codegree
d + 1 product must contain the top monomial of x1 in its two appearances, and the
top monomial of u2 and u3. Since the top monomial of v1 doesn’t have nontrivial
periodicity, such a codegree d + 1 product cannot cancel with a codegree d + 1
product that contains the top monomial of v1 (since otherwise the suffix of the
top monomial of v1 equals a shift by 1 of itself, which implies that the suffix of
v1 contains periodicity). Therefore, a codegree d + 1 product that cancels with it
must contain a codegree 1 monomial of either u1 or v1, or the top monomial of µ1.
Since the top monomial of v2 contains no periodicity, if this codegree d +1 product
contains a codegree 1 monomial of u1 or v1 it must contain the top monomial of µ2.
Hence, this codegree d + 1 product has to be from the vi side of the equation,
and the codegree d + 1 monomial of µ1 is the codegree d prefix of a codegree 1
monomial in v1, times the (prefix) period of the top monomial of x1, which is the
degree d suffix of v1. If such a codegree d + 1 product cancels with a codegree
d +1 product that contains the top monomial of µ1, then it must contain a codegree
1 monomial of x1.

By the techniques that we used in the proofs of Theorem 4.4 and in the first part
of Theorem 4.7, there exists an element s1, deg(s1) = d, with a top monomial µ1,
such that µ1s1 = u1 = v1 mod Gdeg(u1)−2.

Suppose that a codegree d + 1 product contains a codegree d + 1 monomial of
u2 or v2. Since the top monomial of u2 (and v2) contains no periodicity, such a
product can cancel only with either

(1) a codegree d + 1 product that contains a codegree 1 monomial of u2 or v2 and
the top monomial of either µ1 or µ3;

(2) a codegree d +1 product that contains the top monomial of µ2, and a codegree
1 monomial in the second appearance of x1, and the top monomial of µ1,
the top monomial of u2, and the same codegree 1 monomial in the second
appearance of x1;

(3) a codegree d +1 product that contains the top monomial of τ2, and a codegree
1 monomial in the first appearance of x1, and the top monomial of µ3, the top
monomial of v2, and the same codegree 1 monomial in the first appearance
of x1.

Note that the two products that appear in possibilities (2) and (3) cancel each
other. Hence, a codegree d + 1 product that contains a codegree d + 1 product that
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appears in u2 or v2, but not both, must cancel with a unique codegree d +1 product
that is described in (1).

Suppose that a codegree d + 1 product contains the top monomial of µ1 and
a codegree 1 monomial of u2. Since the top monomial of u2 (and v2) has no
periodicity, it can cancel only with a codegree d + 1 product that contains either

(1) a codegree 1 monomial of v2 and the top monomial of µ3;

(2) a codegree d + 1 monomial of u2 or v2;

(3) a codegree 1 monomial of the first appearance of x1 and the top monomial
of µ2.

Similarly, suppose that a codegree d + 1 product contains the top monomial of
µ3 and a codegree 1 monomial of v2. It can cancel only with a codegree d + 1
product that contains either

(1) a codegree 1 monomial of u2 and the top monomial of µ1;

(2) a codegree d + 1 monomial of u2 or v2;

(3) a codegree 1 monomial of the second appearance of x1 and the top monomial
of τ2.

Furthermore, a codegree d +1 product that contains the top monomial of µ2 cannot
cancel with a codegree d + 1 product that contains the top monomial of τ2.

Hence, we can look at the collection of codegree d + 1 products that contain the
top monomial of µ1 and the entire collection of codegree 1 monomials of u2. Each
such product cancels with precisely one product that contains either a codegree
d +1 monomial of u2 or v2, or a codegree 1 monomial of the first appearance of x1

and the top monomial of µ2, or a codegree 1 monomial of v2 and the top monomial
of µ3. A similar statement holds for codegree d +1 products that contain a codegree
1 monomial of v2 and the top monomial of µ3.

Therefore, there exist elements t1, s2, b, w1, w2, τ2, µ2 such that

(1) t1µ2 = v2 and τ2s2 = v2 mod Gdeg(u2)−2, deg(s2) = deg(t1) = d .

(2) b + τ2 = u2 and b + µ2 = v2 mod Gdeg(u2)−(d+2).

(3) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−2.

We continue by induction for 1 ≤ r ≤ d, and assume that for r < d there exist
elements t1, s2, b, w1, w2, τ2, µ2 such that the equalities that were true for the top
2 homogeneous parts and codegree d and codegree d + 1 monomials hold for the
top r monomials, and for codegree d + r − 1 monomials,

(1) t1µ2 = v2 and τ2s2 = v2 mod Gdeg(u2)−r , deg(s2) = deg(t1) = d .

(2) b + τ2 = u2 and b + µ2 = v2 mod Gdeg(u2)−(d+r).

(3) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−r .
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We continue by studying codegree d +r products. All such products that involve
only monomials of codegree less than d of the ui , vi , 1 ≤ i ≤ 3, cancel in pairs. All
such products that involve only monomials of codegree less than d + r of the ui , vi ,
1 ≤ i ≤ 3, and codegree less than r of x1 (in its two appearances from both sides of
the equation) cancel in pairs by the induction hypothesis.

Hence, to analyze the structure of u1 and v1 (and hence, of µ1 and s1) we only
need to consider codegree d + r products that contain

(i) a codegree d + r monomial of u1 that does not appear in v1 and vice versa;

(ii) a codegree r monomial of v1 and the top monomial of µ2;

(iii) a codegree d + q j monomial of µ1, q j < r , and a codegree r − q j monomial
of the first appearance of x1;

(iv) a codegree p j monomial of v1, p j < r , and a codegree r − p j monomial of
the first appearance of x1 and the top monomial of µ2.

A product of type (iv) that cancels with products of type (i) or (ii) must cancel
with a corresponding product of type (iii) by our induction hypothesis. A product
of type (iii) that cancels with a product of type (i) or (ii) and in which q j is positive,
and the codegree r − q j monomial of the first appearance of x1 is obtained as a
product of a codegree r − m j monomial of s1 with a codegree m j − q j monomial
of w1, for q j < m j < r , cancels with a product of type (iv).

Therefore, to analyze the structure of u1, v1, s1 and w1, we consider only those
codegree d + r products that can be presented either in form (i) or (ii), that we
denote (1) and (2) in the sequel, or in the form

(3) a product of the top monomial of µ1, and a codegree r monomial of the first
appearance of x1.

A codegree d + r product that can be presented in one of the forms (1)–(3) can
cancel with either

(4) an odd number of products of a codegree d + q j monomial of µ1, 0 < q j < r ,
and a codegree r − q j monomial of the first appearance of x1;

(5) an odd number of products of a codegree d + q j monomial of µ1, 0 < q j < r ,
and a product of a codegree r − q j monomial of s1 with the top monomial
of w1;

(6) an odd number of products of a codegree d + q j monomial of µ1, q j < r ,
and a product of a codegree r − m j monomial of s1 with a codegree m j − q j

monomial of w1, where q j < m j < r ;

(7) an odd number of products of a codegree p j monomial of v1, 0 < p j < r , and a
codegree r − p j monomial of the first appearance of x1 and the top monomial
of µ2;
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(8) a product of the top monomial of v1, a codegree r monomial of the first
appearance of x1 and the top monomial of µ2;

(9) an odd number of products of a codegree p j monomial of v1, 0 < p j < r , and
a codegree m j monomial of the first appearance of x1, 0 < m j , p j + m j < r
and a codegree d + r − p j − m j monomial of µ2;

(10) an odd number of products of a codegree d + q j monomial of µ1, a codegree
m j monomial of the first appearance of x1, 0 < m j , q j +m j < r , and a codegree
r − m j − q j monomial of u2.

If (1) or (2) occur, (8) cannot occur, and (6) occurs if and only if (7) occurs as
well. If (1) occurs, (3) cannot occur. Suppose that (1) occurs. If in addition only
(2) occurs, we add a codegree d + r monomial to µ1. If in addition to (1) only (4)
and (5) occur, we also add a codegree d + r monomial to µ1. If in addition to (1)
only (5), (6) and (7) occur, we add a codegree d + r monomial to µ1. If (1) occurs,
(9) and (10) cannot occur.

Suppose that (2) occurs. If in addition only (3) occurs (and in addition possibly
(4), (6) and (7)) we add a codegree r monomial to s1. If in addition to (2) only (4)
and (5) occur, we do not add anything. If in addition to (2) only (5), (6) and (7)
occur, we do the same. If (2) occurs, (8)–(10) cannot occur.

Suppose that (3) occurs. The codegree r monomial of x1 cannot be presented
both as a product of the top monomial of s1 with a codegree r monomial of w1, and
as a codegree r monomial of s1 with the top monomial of w1. We look at all the
possible ways to present the codegree r monomial of x1 as a product of a codegree
q j monomial of s1 with a codegree r − q j monomial of w1, for 0 < q j < r . If the
number of such products is odd we don’t add anything. If the number is even, we
either add a codegree r monomial to s1 or a codegree r monomial to w1 (but not
both). The validity of this addition of a codegree r monomial to either s1 or w1

can be verified by going over the possible cancellation of the given codegree d + r
product with all the other possible forms of such a product.

This concludes the adaptation of s1, µ1 and w1 to include codegree r monomials.
The same adaptation works for t2, µ3 and w2. It is still left to analyze u2 and v2

in order to add codegree r monomials to µ2 and τ2 such that the equalities that by
induction hold for the top codegree r − 1 parts of these elements will hold for the
top codegree r part.

To analyze the structure of u2 and v2 (and hence, of µ2, τ2, t1 and s2) we start
by observing the following:

(i) The codegree d + r products that contain either a positive codegree monomial
of u1 or a positive codegree monomial of the first appearance of x1, a codegree
d + q j monomial of τ2, q j < r , a monomial of the second appearance of x1,
and a monomial of u3, cancel with codegree d + r products that contain either
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a positive codegree monomial of v1 or a positive codegree monomial of the
first appearance of x1, a codegree p j monomial of v2, p j < r , a monomial of
the second appearance of x1, and a monomial of µ3.

(ii) The codegree d +r products that contain a monomial of v1, a monomial of the
first appearance of x1, a codegree d + q j monomial of µ2, q j < r , and either
a positive codegree monomial of the second appearance of x1, or a positive
codegree monomial of v3, cancel with codegree d + r products that contain
a monomial of µ1, a monomial of the first appearance of x1, a codegree p j

monomial of u2, p j < r , either a positive codegree monomial of the second
appearance of x1, or a positive codegree monomial of u3.

Hence, to analyze the structure of u2 and v2 we only need to consider codegree
d + r products that contain

(i) a codegree d + r monomial of u2 or of v2;

(ii) the top monomial of µ1 and a codegree r monomial of u2 or a codegree r
monomial of v2 and the top monomial of µ3;

(iii) a codegree d + q j monomial of τ2, q j < r , and a codegree r − q j monomial
of the second appearance of x1 or a codegree r − q j of the first appearance of
x1 and a codegree d + q j monomial of µ2, q j < r ;

(iv) the top monomial of µ1, a codegree r − p j monomial of the first appearance
of x1 and a codegree p j monomial of u2, p j < r , or a codegree p j monomial
of v2, p j < r and a codegree r − p j monomial of the second appearance of x1

and the top monomial of µ3.

If there are two products of codegree d + r of type (i), they cancel each other,
and we can ignore them in analyzing codegree d +r products. Therefore, to analyze
the structure of u2, v2, s2, t1, µ2 and τ2, we consider only those codegree d + r
products that can be presented either in form (i) or (ii), that we denote (1) and (2)
in the sequel, or in codegree d + r products in the form

(3) a product of the top monomial of τ2, and a codegree r monomial of the second
appearance of x1;

(4) a codegree r monomial of the first appearance of x1, and the top monomial
of µ2;

(5) an odd number of products of a codegree d + q j monomial of τ2, 0 < q j < r ,
and a codegree r − q j monomial of the second appearance of x1;

(6) an odd number of products of a codegree d + q j monomial of τ2, 0 < q j < r ,
and a product of a codegree r − q j monomial of s2 with the top monomial
of w2;
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(7) an odd number of products of a codegree d + q j monomial of τ2, q j < r ,
and a product of a codegree r − m j monomial of s2 with a codegree m j − q j

monomial of w2, where q j < m j < r ;

(8) an odd number of products of a codegree p j monomial of v2, 0 < p j < r ,
and a codegree r − p j monomial of the second appearance of x1 and the top
monomial of µ3;

(9) a product of the top monomial of v2, a codegree r monomial of the second
appearance of x1 and the top monomial of µ3.

And similarly, from the other sides of the equation,

(10) an odd number of products of a codegree r−q j monomial of the first appearance
of x1, and a codegree d + q j monomial of µ2, 0 < q j < r ;

(11) an odd number of products of the top monomial of w1, a codegree r − q j

monomial of t1, and a codegree d + q j monomial of µ2, 0 < q j < r ;

(12) an odd number of products of a codegree m j −q j monomial of w1, a codegree
r −m j monomial of t1, a codegree d+q j monomial of µ2, q j < r , q j < m j < r ;

(13) an odd number of products of the top monomial of µ1, a codegree r − p j

monomial of the first appearance of x1, and a codegree p j monomial of u2,
0 < p j < r ;

(14) a product of the top monomial of µ1, a codegree r monomial of the first
appearance of x1, and the top monomial of u2.

Suppose that (1) occurs. If only one of the possibilities in (2) occurs, we add
a codegree d + r monomial to µ2 or τ2, depending which of the two possibilities
in (2) occurs. If (1) occurs, (3) and (4) cannot occur. If in addition to (1) only (5)
occurs, then (6) or (7) must occur and not both. If only (5) and (6) occur, we add
a codegree d + r monomial to τ2. If in addition to (1), (5) and (7) occur, then (8)
must occur as well, and hence at least an additional possibility must occur. If in
addition to (1), (8) occurs, then (5) and (7) must occur as well, so an additional
possibility must occur. If (1) occurs, (9) cannot occur. The possibilities (10)–(14)
are parallel to (5)–(9) and are dealt with accordingly.

Suppose that (1) and the two possibilities in (2) occur. If in addition only (5) and
(6) occur, we add a codegree d + r monomial only to µ2, and if only (10) and (11)
occur, we add a codegree d + r monomial to τ2. Suppose that (1) and only one of
the products in the form (2) occur, without loss of generality the product from the
vi side, i.e., the one that contains µ3. If in addition (5), (6), (10) and (11) occur, we
add a codegree d + r monomial to µ2.

Suppose that one of the possibilities in (2) occurs, without loss of generality
the one from the vi side. If the only additional product that cancels with it is also
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a product in form (2) from the ui side of the equation, we add a codegree d + r
monomial to both τ2 and µ2. If in addition to the form (2) only possibility (3)
occurs, we add a codegree r monomial to s2. Form (4) cannot occur. If only (5)
and (6) occur, we do not add anything. If (5) and (7) occur, (8) must occur as well.
Form (9) cannot occur. If in addition (10) and (11) occur, we add a codegree d + r
monomial to both τ2 and µ2. If only (3), (5), (6), (10) and (11) occur, we add a
codegree r monomial to s2, and a codegree d + r monomial to both µ2 and τ2.

Suppose that the two possibilities in part (2) occur. In that case (3) cannot occur.
If in addition (5), (6), (11) and (12) occur, we do not add anything. Suppose that (3)
occurs. In that case (4) cannot occur. If in addition only (5) and (6) occur, we add a
codegree r monomial to s2. If in addition to (3) only (9) occurs, we add a codegree
r monomial to w2. If (3) occurs, then (10)–(14) cannot occur. If (4) occurs the
analysis is analogous to the case in which (3) occurs.

Suppose that (5) and (6) occur. In that case (9) cannot occur. If (10) and (11)
occur as well, we add a codegree d + r monomial to both τ2 and µ2.

This concludes our treatment of codegree d + r products for r < d. So far we
proved that

(1) µ1s1 = u1 = v1 mod Gdeg(u1)−d , deg(s1) = d , u1 = v1 + µ1 mod Gdeg(u1)−2d .

(2) t1µ2 = v2 and τ2s2 = v2 mod Gdeg(u2)−d , deg(s2) = deg(t1) = d, deg(µ2) =

deg(τ2) = deg(u2) − d .

(3) b2 + τ2 = u2 and b2 + µ2 = v2 mod Gdeg(u2)−(2d).

(4) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−d .

We continue by analyzing codegree 2d products. The analysis of codegree 2d
products is similar to the analysis of codegree d + r products for r < d. In their
analysis we use the following observations:

(i) All the codegree 2d products that contain monomials of codegree smaller than
d from the elements ui , vi and x in its two appearances cancel in pairs.

(ii) All the codegree 2d products that contain a monomial of codegree bigger
than d , from b1, b2 or b3, cancel in pairs.

Hence, we need to analyze only those codegree 2d products that contain mono-
mials from either µ1, µ2, τ2, µ3, or monomials of codegree d from b1, b2, b3. To
analyze the elements u1, v1, b1, µ1, s1 and w1, we need to analyze codegree 2d
products that contain one of the following:

(i) a codegree 2d monomial of u1 that does not appear in v1 and vice versa;

(ii) a codegree d monomial of v1 and the top monomial of µ2;

(iii) a codegree d + q j monomial of µ1, q j < d , and a codegree d − q j monomial
of the first appearance of x1;
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(iv) a codegree p j monomial of v1, p j < d, and a codegree d − p j monomial of
the first appearance of x1 and the top monomial of µ2.

(v) Note that the codegree 2d product that contains the top monomials of µ1 and
τ2 cancels with the product that contains the top monomials of µ2 and µ3. Also
the codegree 2d products that contain a codegree d monomial of u1 which is
from b1 (i.e., also a monomial of v1), and the top monomial of τ2, cancel with
the products that contain the same codegree d monomial from v1, and the top
monomial of µ3.

Because of (v), the analysis of codegree 2d monomials of u1 and v1 is identical
to the analysis of codegree d + r monomials of these elements. This concludes
the construction of the element s1, and adds codegree 2d monomials to µ1, and
codegree d monomials to w1. The analysis of the elements u3, v3, b3, µ3 and w2 is
identical.

We continue by analyzing the codegree 2d monomials in u2, v2, τ2 and µ2. The
observations (i) and (ii) that we used in analyzing the codegree d + r monomials
of these elements for r < d remain valid for codegree 2d monomials. In addition
by part (v) in the analysis of codegree 2d monomials of u1 and v1, it follows that
the codegree 2d product that contains the top monomials of µ1 and τ2 cancels
with the product that contains the top monomials of µ2 and µ3. Hence, the rest of
the analysis of codegree 2d monomials of u2 and v2 is identical to the analysis of
codegree d + r monomials of these elements for r < d .

We continue by analyzing higher codegree products and monomials. We assume
inductively for r > 0 that

(1) µ1(s1 +1) = u1 and µ1s1 = v1 mod Gdeg(u1)−(d+r), deg(s1) = d , u1 = v1 +µ1

mod Gdeg(u1)−(2d+r).

(2) (t1+1)µ2 = v2, τ2(s2+1)= u2 and t1µ2 = τ2s2 mod Gdeg(u2)−(d+r), deg(s2)=

deg(t1) = d, deg(µ2) = deg(τ2) = deg(u2) − d .

(3) b2 + τ2 = u2 and b2 + µ2 = v2 mod Gdeg(u2)−(2d+r).

(4) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−(d+r).

And we continue by analyzing codegree 2d + r products. The analysis is similar
to the analysis of codegree d + r and codegree 2d products. We use the following
observations:

(i) All the codegree 2d + r products that contain monomials of ui , vi , i = 1, 2, 3,
that are all of codegree smaller than d cancel in pairs. In particular, all the
codegree 2d + r products that contain a monomial of x of codegree bigger
than d + r , in one of its two appearances, cancel in pairs.

(ii) All the codegree 2d + r products that contain monomials from all b1, b2 and
b3 cancel in pairs.
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(iii) A codegree 2d + r product that contains a monomial from µ1 of codegree
more than d, and a monomial from the first appearance of x , such that the
sum of their codegrees is less than 2d + r , an element from b2 and an element
from b3, cancels with a product that contains an element from b1, an element
from the first appearance of x , an element from µ2 and the same element
from b3. The same holds for products that contain monomials from b1, b2 and
µ3 with parallel restrictions.

(iv) A codegree 2d + r product that contains a monomial from b1, a monomial
from τ2 of codegree bigger than d , and a monomial from b3, such that the sum
of the codegrees of the monomial from τ2 and the monomial from the second
appearance of x is smaller than 2d +r , cancels with a product that contains the
same monomials of b1 and the first appearance of x , a monomial from b2 and
a monomial from µ3. The same holds for products that contain monomials
from b1, µ2 and b3 with parallel restrictions.

(v) A codegree 2d + r product that contains a monomial from µ1 of codegree
bigger than d, a monomial from τ2, and a monomial from b3, cancels with
a product that contains a monomial from b1, a monomial from µ2, and a
monomial from µ3. The same holds for products that contain monomials from
b1, µ2 and µ3 with parallel restrictions.

Hence, like in the analysis of codegree 2d products, to analyze the elements
u1, v1, b1, µ1 and w1, we need to analyze codegree 2d + r products that contain
one of the following:

(i) a codegree 2d + r monomial of u1 that does not appear in v1 and vice versa;

(ii) a codegree d + r monomial of v1 (which is a monomial of b1) and the top
monomial of µ2;

(iii) a codegree d + q j monomial of µ1, q j < d + r , and a codegree d + r − q j

monomial of the first appearance of x1;

(iv) a codegree p j monomial of v1 (which is a monomial of b1), p j < d + r , and
a codegree d + r − p j monomial of the first appearance of x1 and the top
monomial of µ2.

Hence, the analysis of codegree 2d + r monomials of u1 and v1 is identical to
the analysis of codegree d + r and 2d monomials of these elements. Note that in
analyzing products of codegree greater than 2d + r , the element s1 is already fixed,
and we only add codegree 2d + r monomials to µ1 and b1, and codegree d + r
monomials to w1. The analysis of the elements u3, v3, b3, µ3 and w2 is identical.

We continue by analyzing the codegree 2d monomials in u2, v2, τ2 and µ2. The
observations (i)–(v) that we used in analyzing the codegree 2d +r monomials of b1

and µ1 imply that analyzing codegree 2d + r monomials of b2, τ2 and µ2 is similar
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to the analysis of the codegree d + r monomials of these elements. Hence, we can
finally deduce that

(1) µ1(s1 + 1) = u1 and µ1s1 = v1, deg(s1) = d and u1 = v1 + µ1.

(2) (t1 + 1)µ2 = v2, τ2(s2 + 1) = u2 and t1µ2 = τ2s2, deg(s2) = deg(t1) = d and
deg(µ2) = deg(τ2) = deg(u2) − d.

(3) b2 + τ2 = u2 and b2 + µ2 = v2.

(4) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−deg(u1u2u3).

This proves the structure of the coefficients in the statement of Proposition 4.11.
Suppose that there exists a solution x2 to the given equation, and

deg(x2) > 2(2 + kdeg(s)+2
+ deg(u1) + deg(u2) + deg(u3)).

As in the analysis of the same equation in case there are shifts between the ap-
pearances of the element x2, we can continue the analysis of higher codegree
monomials of the solution x2, and get that there exist elements wi , i = 1, 2, that
satisfy siwi = wi ti = x1 mod Gdeg(s1)−1. By the argument that was used to prove
Lemma 4.2, it follows that there exists a solution x̂ to the equations si x = xti ,
i = 1, 2.

The element x2 satisfies s1x2 = x2t1 mod G2 deg(s1)−1. Hence, there exists an
element x̂2, which is a solution of the equation s1x = xt1, and x2 + x̂2 = r , where
deg(r) ≤ 2 + kdeg(s1)+2.

Also, x2 is a solution to the equation v1xv2xv3 = u1xu2xu3, where v1 = τ1s1,
u1 = τ1(s1 + 1), v2 = (t1 + 1)µ2, u2 = τ2(s2 + 1), v3 = (t2 + 1)µ3, u3 = t2µ3, and
τ2s2 = t1µ2. Hence

τ1(s1 +1)(x̂2 +r)τ2(s2 +1)(x̂2 +r)t2µ3 = τ1s1(x̂2 +r)(t1 +1)µ2(x̂2 +r)(t2 +1)µ3.

Therefore

(s1 + 1)rτ2(s2 + 1)x̂2t2 + (s1 + 1)x̂2τ2(s2 + 1)r t2
= s1r(t1 + 1)µ2 x̂2(t2 + 1) + s1 x̂2(t1 + 1)µ2r(t2 + 1) mod Gdeg(s1rτ2s2r t2).

Since s1 x̂2 = x̂2t1, this implies

((s1 + 1)rτ2(s2 + 1)s2 + s1r(t1 + 1)µ2(s2 + 1))x̂2

= x̂2((t1 + 1)τ2(s2 + 1)r t2 + t1(t1 + 1)µ2r(t2 + 1)) mod Gdeg(s1rτ2s2r t2).

Therefore,

(s1 + 1)rτ2(s2 + 1)s2 + s1r(t1 + 1)µ2(s2 + 1) = p(s1),

(t1 + 1)τ2(s2 + 1)r t2 + t1(t1 + 1)µ2r(t2 + 1) = p(t1)

for some polynomial p.
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This implies that rτ2s2 + s1rµ2 is a polynomial in s1, and τ2r t2 + t1µ2r is a
polynomial in t1. Hence, (r t1 + s1r)µ2 is a polynomial in s1, and τ2(r t2 + s2r) is a
polynomial in t1.

Since we assumed that the top monomials of the coefficient do not contain
periodicity, it cannot be that the top monomials of τ2 and µ2 are equal, and equal
to the top monomials of t1 and s1. Hence, r t1 + s1r = r t2 + s2r ̸= 1.

If deg(τ2) = deg(s1), then the top monomials of s1 and t1 are equal, and the top
monomials of u2 and v2 have periodicity, a contradiction. The top monomial of τ2

has no periodicity, so deg(τ2) < 2 deg(s1). If deg(τ2) > deg(s1), then necessarily
the top monomials of u2 and v2 contain periodicity, a contradiction.

Suppose that deg(τ2) < deg(s1). If the top monomial of τ2 is the same as the top
monomial of µ2, then the top monomials of the two sides of the equation contain
periodicity, a contradiction. If the top monomials of µ2 and τ2 are distinct, then the
top monomials of u2 and v2 contain periodicity, a contradiction.

Therefore, r t1 + s1r = 0, so r is a solution of the equation s1x = xt1 and so is
x2 = x̂2 + r , and the conclusion of Proposition 4.11 follows. □

Proposition 4.11 and its proof enable us to prove Theorem 4.7 in case there are
no shifts, i.e., in case the degrees of the elements ui , vi satisfy deg(ui ) = deg(vi )

for all indices i .

Proposition 4.12. Let u1, . . . , un, v1, . . . , vn ∈ FA, where FA is the free associative
algebra over GF2 that is generated by k elements, and suppose that the equation

u1xu2xu3 · · · un−1xun = v1xv2xv3 · · · vn−1xvn

has a solution x1 of degree bigger than 2(deg(u1)+· · ·+deg(un))
2. Suppose further

that

(1) For every index i , 1 ≤ i ≤ n, deg(ui ) = deg(vi ).

(2) The top homogeneous parts of ui and vi are monomials with no periodicity.

(3) For some index i , ui ̸= vi .

(4) All the periodicity in the top monomials that are associated with the top
monomials of the two sides of the equation after substituting the solution x1 is
contained in the periodicity of the top monomial of the solution x1.

Then there exist some elements s, t ∈ FA, deg(s) = deg(t) < min deg(ui ), such
that

(1) Every solution of the equation sx = xt is a solution of the given equation.

(2) Every solution x2 of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2
+ deg(u1) + · · · + deg(un))

is also a solution of the equation sx = xt.
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(3) For every index i , 1 ≤ i ≤ r , for which ui ̸= vi , there exist elements τi , µi such
that the elements ui , vi are either τi (si + 1) or (ti−1 + 1)µi or τi si or ti−1µi ,
where the elements si are either s or s + 1, and the elements ti are either t or
t + 1, and ti−1µi = τi si .

Proof. The proof of the structure of the coefficients is similar to the proof of
Proposition 4.11. Given the structure of the coefficients, it is clear that every
solution of the equation sx = xt is a solution of the given equation. It is left to
prove that every long enough solution of the given equation is a solution of the
equation sx = xt .

Suppose that x2 is a solution of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2
+ deg(u1) + · · · + deg(un)).

By the argument that we used in Proposition 4.11, it follows that the equation
sx = xt has a solution, and that x2 = x̂2 + r , where x̂2 is a solution to the equation
sx = xt , and deg(r) ≤ 2 + kdeg(s)+2.

In that case we get the equality

τ1(s1 + 1)(x̂2 + r)τ2(s2 + 1)(x̂2 + r) · · · τn−1(sn−1 + 1)(x̂2 + r)tn−1µn

= τ1s1(x̂2 + r)(t1 + 1)µ2(x̂2 + r) · · · (tn−2 + 1)µn−1(x̂2 + r)(tn−1 + 1)µn,

and since x̂2 is a solution of the equation s1x = xt1, we get the equality

(s1 + 1)rτ2(s2 + 1)x̂2 · · · τn−1(sn−1 + 1)x̂2tn−1

+ · · · + (s1 + 1)x̂2τ2(s2 + 1)x̂2 · · · τn−1(sn−1 + 1)r tn−1

= s1r(t1 + 1)µ2 x̂2 · · · (tn−2 + 1)µn−1 x̂2(tn−1 + 1)

+ · · · + s1 x̂2(t1 + 1)µ2 x̂2 · · · (tn−2 + 1)µn−1r(tn−1 + 1) mod Gm2,

where
m1 = deg((s1 + 1)rτ2(s2 + 1)x̂2 · · · τn−1(sn−1 + 1)x̂2tn−1)

and m2 = m1 − deg(x̂2) + deg(r).
By the same argument that we used in the proof of Proposition 4.11, since the top

monomials of the coefficients ui , vi , i = 1, . . . , n, do not have periodicity, and since
the top monomial in the two sides of the equation after substituting the solution x2

has no periodicity, except the one that is contained in the appearances of the top
monomial of x2, it follows that for some i , 1 ≤ i ≤ n − 1, sir = r ti . Hence, r is
a solution to the equation, sx = xt , and so is x2 = x̂2 + r , since both x̂2 and r are
solutions to this equation. □

At this point we need to consider equations in which some of the appearances of
the elements x are shifted, and some are not.
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Lemma 4.13. Let u1, u2, u3, v1, v2, v3 ∈ FA satisfy u1 ̸= v1, deg(u1) = deg(v1),
deg(u2) > deg(v2), deg(v3) > deg(u3), where FA is the free associative algebra
over GF2 that is generated by k elements.

Suppose that the top homogeneous parts of ui and vi are monomials (for
i = 1, 2, 3) with no nontrivial periodicity. If there exists a solution x1 to the
equation u1xu2xu3 = v1xv2xv3, and the only nontrivial periodicity in the top
monomials of the two sides of the equation after substituting x1 is contained in the
top monomial of the solution x1 (this translates to a condition on the top monomials
of the coefficients), and deg(x1) > 2(deg(u1)+deg(u2)+deg(u3))

2, then there exist
elements s, t ∈ FA, such that either

(1) There exists µ1 for which u1 = µ1(s + 1) and v1 = µ1s.

(2) There exist µ2 and s2, t2 for which (t +1)µ2 = v2 and tµ2s2 = u2. Furthermore,
v3 = t2u3 and the pair (s2, t2) is either (s, t) or (s + 1, t + 1).

or

(1) There exists µ1 for which u1 = µ1s and v1 = µ1(s + 1).

(2) There exist µ2 and s2, t2 for which (t +1)µ2 = u2 and v2s2 = tµ2. Furthermore,
v3 = t2u3 and the pair (s2, t2) is either (s, t) or (s + 1, t + 1).

As in the conclusion of Theorem 4.7, every solution of the equation sx = xt is
a solution of the given equation u1xu2xu3 = v1xv2xv3. Every solution x2 of the
given equation u1xu2xu3 = v1xv2xv3 that satisfies

deg(x2) > 2(2 + kdeg(s1)+2
+ deg(u1) + deg(u2) + deg(u3))

is also a solution of the equation sx = xt.

Proof. The proof is similar to the proof of Proposition 4.11. □

At this point we can complete the proof of Theorem 4.7. We already analyzed
the case in which there are nontrivial shifts between (the top monomials of) pairs
of appearances of the variable x in the two sides of the equation. Propositions 4.11
and 4.12 analyze the case in which there are no shifts between pairs of appearances
of the variable x in the two sides of the equation, and Lemma 4.13 analyzes the
case n = 3 in which there is a pair with no shift and a pair with a shift.

By the techniques that were used in proving Proposition 4.11 and in analyz-
ing the case in which there are nontrivial shifts between pairs of appearances of
the variable x , if there is a pair of coefficients, ui , vi such that ui = vi and the
i − 1 (hence, also the i-th) pair of appearances of the variable x has no shift,
then the equation breaks into two equations, the first contains the coefficients
u1, . . . , ui−1, v1, . . . , vi−1, and the second contains the coefficients ui+1, . . . , un ,
vi+1, . . . , vn . Therefore, in the sequel we may assume that there is no such pair of
coefficients ui , vi .
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Then there exist some elements s, t ∈ FA, deg(s) = deg(t) < min deg(ui ), and
elements s1, . . . , sn−1, t1, . . . , tn−1, such that

(1) For every index i , the pair (si , ti ) is either (s, t) or (s + 1, t + 1).

(2) For every pair of coefficients, ui , vi for which the two pairs of appearances of
the variable x from the two sides of the pair of coefficients have no nontrivial
shift, either ui = vi or there exist elements τi and µi such that either ui = τi si

and vi = τi (si + 1) (or vice versa), or ui = ti−1µi and vi = (ti−1 + 1)µi (or
vice versa), or ui = (ti−1 + 1)µi and vi = τi (si + 1) (or vice versa).

(3) If deg(u1) = deg(v1), either u1 = v1 or there exists τ1 such that u1 = τ1s1 and
v1 = τ1(s1 + 1) (or vice versa). If deg(un) = deg(vn), either un = vn or there
exists an element µn such that un = tn−1µn and vn = (tn−1 + 1)µn (or vice
versa).

(4) For every pair ui , vi for which the two pairs of appearances of the variable x
from the two sides of the pair of coefficients have nontrivial shifts, ui si = ti−1vi

(or vice versa), or ui = ti−1vi si (or vice versa).

(5) If deg(u1) ̸= deg(v1), then u1 = v1s1 or vice versa. If deg(un) ̸= deg(vn), then
un = tn−1vn or vice versa.

(6) Suppose that deg(ui ) ̸= deg(vi ), 1 < i < n, there is no shift between the i − 1
appearances of the variable x , and there is a nontrivial shift between the i-th
appearances of the variable x from the two sides of the equation. Then either
ui si = vi or vice versa, in which case the original equation can be broken into
two equations, the first contains the first i − 1 pairs of coefficients, and the
second contains the last n + 1 − i pairs of coefficients, or vi = (ti−1 + 1)µi

and ui si = ti−1µi (or vice versa), or ui = (ti−1 + 1)µi and vi = ti−1µi si (or
vice versa).

(7) Suppose that deg(ui ) ̸= deg(vi ), 1 < i < n, there is no shift between the i-th
appearances of the variable x , and there is a nontrivial shift between the i − 1
appearances of the variable x from the two sides of the equation. Then either
ti−1ui = vi or vice versa, in which case the original equation can be broken into
two equations, the first contains the first i pairs of coefficients, and the second
contains the last n − i pairs of coefficients, or vi = τi (si + 1) and ti−1ui = τi si

(or vice versa), or ui = τi (si + 1) and vi = ti−1τi si (or vice versa).

This description of the coefficients in a general equation with one variable, in
which the coefficients have no periodicity, and the top homogeneous parts of the
coefficients are monomials, finally implies:

(1) Every solution of the equation sx = xt is a solution of the given equation.
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(2) Every solution x2 of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2
+ deg(u1) + · · · + deg(un))

is also a solution of the equation sx = xt .

The proof of (1) follows from the structure of the coefficients, and the proof of
(2) follows by the argument that was used to prove (2) for the case in which there
are no shifts between the various appearances of the top monomial of the solution
x2 in the two sides of the given equation in Proposition 4.12.

This concludes the proof of Theorem 4.7. □
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