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When does ℵ1-categoricity imply ω-stability?

John T. Baldwin, Michael C. Laskowski and Saharon Shelah

For an ℵ1-categorical atomic class, we clarify the space of types over the unique
model of size ℵ1. Using these results, we prove that if such a class has a model
of size ℶ+

1 then it is ω-stable.

1. Introduction

Our principal result is:

Theorem 1.1. If an atomic class At is ℵ1-categorical and has a model of size (2ℵ0)+,
then At is ω-stable.

This result springs from several related problems in the study of Lω1,ω: the role
of ℶω1 , the possible necessity of the weak continuum hypothesis, the absoluteness
of ℵ1-categoricity.

For first order logic, Morley [1965] proved, en route to his categoricity theorem,
that an ℵ1-categorical first order theory is ω-stable (né totally transcendental).
The existence of a saturated Ehrenfeucht–Mostowski model of cardinality ℵ1 that
is generated by a well-ordered set of indiscernibles is crucial to the proof. The
construction of such indiscernibles via the Erdős–Rado theorem and Ehrenfeucht–
Mostowski models is tied closely to the existence of “large” (i.e., of size ℶω1)
models of the theory.

The compactness of first order logic yields the full upward Löwenheim–Skolem–
Tarski (LST) theory for Lω,ω: if ψ has an infinite model it has arbitrarily large
models. But for Lω1,ω, the LST-theorem replaces “an infinite model” by “a model
of size ℶω1 .” The proof proceeds by using iterations of the Erdős–Rado theorem to
find infinite sets of indiscernibles and to transfer size via Ehrenfeucht–Mostowski
models.
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By an atomic class we mean the atomic models (i.e., each finite sequence in
each model realizes a principal type over the empty set) of a complete theory in
a countable first order language. Every complete sentence in Lω1,ω defines such
a class because Chang’s theorem translates the sentence to a first order theory
omitting types and the language can be expanded to make all realized types atomic
[Baldwin 2009, Chapter 6].

Shelah calls an atomic class excellent if it satisfies an n-amalgamation property
for all n and structures of arbitrary cardinality. Shelah [1983a; 1983b] proved in
ZFC: If an atomic class K is excellent and has an uncountable model then

(1) it has models of arbitrarily large cardinality;

(2) if it is categorical in one uncountable power it is categorical in all uncountable
powers.

He also obtained a partial converse; under the very weak generalized continuum
hypothesis (2ℵn < 2ℵn+1 for n < ω): an atomic class K that has at least one
uncountable model and is categorical in ℵn for each n <ω is excellent. Thus under
VWGCH the “Hanf number” for existence and for categorical atomic classes is
reduced from ℶω1 to ℵω.

This raises the question. Does an ℵ1-categorical atomic class have arbitrarily
large models? Shelah [1975] showed it has a model in ℵ2.

For the authors, work on this problem began by searching for sentences of Lω1,ω

for which ℵ1-categoricity can be altered by forcing.1 The third author proposed an
example, but the first author objected to the proof and the second author proved in
ZFC that the putative example was not ℵ1-categorical.

In a series of papers the authors show that ℵ1categorical atomic classes (or even
simply < 2ℵ1 atomic models in ℵ1) exhibit some “superstable-like” behavior. In
[Baldwin et al. 2016] we introduced the appropriate notion of an algebraic type
for atomic classes, pseudoalgebraic (Definition 3.2.2) and proved there that for an
atomic class with < 2ℵ1 models in ℵ1 the pseudoalgebraic types were dense. This
is analogous to every nonalgebraic formula being extendible to a weakly minimal
formula in a superstable theory. In [Laskowski and Shelah 2019] it is shown that an
atomic class with few models in ℵ1 is “pcl-small”, i.e., there are few types over the
pseudoclosure of any finite set (which is a weakening of ω-stability) and here we
show that ℵ1 categoricity and the existence of an atomic model of size ℶ+

1 implies
ω-stability.

The search for weakened conditions for ω-stability is partially motivated by
asking whether the absoluteness of ℵ1-categoricity for first order logic (given by

1For sentences of Lω1,ω(Q), such sentences exist; see [Shelah 1987, §6], expounded as [Baldwin
2009, §17]. A non-ω-stable sentence with no models above the continuum is given, where ℵ1-
categoricity fails under CH but holds under Martin’s axiom.



WHEN DOES ℵ1-CATEGORICITY IMPLY ω-STABILITY? 803

the equivalence to ω-stable and no two-cardinal model) extends to atomic classes.
Baldwin [2012] proved that either arbitrarily large models (ℶω1) or ω-stability suf-
fices for such an absolute characterization. Our main theorem reduces the ℶω1 to ℶ+

1 .
In Section 2 we investigate constrained types over models and investigate their

relation to ℵ1-categoricity and ω-stability. The notion of a constrained type is just
a renaming; a type p ∈ S(M) is constrained just if it does not split over a finite
subset. Such a type is definable in the standard use in model theory — the existence
of a schema such that for all m ∈ M , φ(x,m) ∈ p ↔ dφ(x,m). In Sections 2.2
and 2.3.1 we introduce “constrained” and limit types (over models) and investigate
them under the assumption of ℵ1-categoricity. From this, we prove the main theorem.
However, our results in Section 2.2 depend on a major hypothesis, the existence of
an uncountable model in which every limit type is constrained. In Section 3 we
pay back our debt. By proving Theorem 2.3.2, we show the existence of a model
of size ℵ1 in which every limit type is constrained, using only the existence of an
uncountable model. Although the proof there uses forcing, by appealing to the
absoluteness given by Keisler’s model existence theorem for sentences of Lω1,ω(Q),
the result is really a theorem of ZFC.

2. Constrained types, ℵ1-categoricity and ω-stability

Throughout this article, T denotes a complete theory in a countable language
for which there is an uncountable atomic model. At denotes the class of atomic
models of T . In everything that follows, we only consider atomic sets, i.e., sets
for which every finite tuple is isolated by a complete formula. Throughout, M, N
denote atomic models and A, B atomic sets. We write a, b for finite atomic tuples,
and x, y, z denote finite tuples of variables.

We repeatedly use the fact that the countable atomic model M is unique up to
isomorphism. Vaught [1961] showed the existence of an uncountable atomic model
is equivalent to the countable atomic model having a proper elementary extension.
The only types we consider are either over an atomic model or are over a finite
subset of a model. In either case, we only consider types realized in atomic sets.

For general background see [Baldwin 2009] and more specifically [Baldwin et al.
2016].

2.1. Constrained types and filtrations.

Definition 2.1.1. Fix a countable complete theory T with monster model M.
At = AtT denotes the collection of atomic models of T .

(1) For M ∈ At , Sat(M) is the collection of p(x) ∈ S(M) such that if a ∈ M
realizes p, Ma is an atomic set.

(2) At is ω-stable if for every/some countable M ∈ At, Sat(M) is countable.
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The reader is cautioned that the definition of ω-stability is not equivalent to
the classical notion (i.e., S(M) countable) but within the context of atomic sets,
this revised notion of ω-stability plays an analogous role. The spaces Sat(M) are
typically not compact. However, if M is countable, then Sat(M) is a Gδ subset of
the full Stone space S(M), and thus is a Polish space. In particular, if At is not
ω-stable, then Sat(M) contains a perfect set.

Definition 2.1.2. (1) A type p ∈ Sat(M) splits over F ⊆ M if there exist
tuples b, b′

⊆ M and a formula φ(x, y) such that tp(b/F) = tp(b′/F), but
φ(x, b)∧ ¬φ(x, b′) ∈ p.

(2) We call p ∈ Sat(M) constrained if p does not split over some finite F ⊆ M
and unconstrained if p splits over every finite subset of M .

(3) For any atomic model M , let CM := {p ∈ Sat(M) : p is constrained}. We
say At has only constrained types if Sat(N )= CN for every atomic model N .

We use the term constrained in place of “does not split over a finite subset” for
its brevity, which is useful in subsequent definitions.

Remark 2.1.3. The concepts in clauses (2) and (3) above give a method of proving
that an atomic class is ω-stable. We show At is ω-stable holds if and only if both

(a) CM is countable for some/every countable atomic M and

(b) At has only constrained types.

Right to left is well-known: ω-stability immediately implies (a) and the deduc-
tion of (b) is standard [Baldwin 2009, Lemma 20.8]. Under the assumption of
ℵ1-categoricity, Theorem 2.2.1 gives (a) and Theorem 2.4.4 gives three equiva-
lents of (b). However, the short proof of Theorem 2.4.4 makes crucial use of
Theorem 2.3.2, whose lengthy proof is relegated to Section 3.

The constrained types p ∈ CM are those that have a defining scheme over a
uniform finite set of parameters, i.e., if p ∈ Sat(M) does not split over a, then for
every parameter-free φ(x, y), there is an a-definable formula dp xφ(x, y) such that
for any b ∈ M | y|, φ(x, b) ∈ p if and only if M |H dp xφ(x, b). We record three
easy facts about extensions and restrictions of types.

Lemma 2.1.4. (1) If M is a countable atomic model and p ∈ Sat(M) then p is
realized in an atomic extension of M.

(2) For any atomic models M ⪯ N and A ⊆ M is finite, then for any q ∈ Sat(N )
that does not split over A, the restriction q↾M does not split over A; and any
p ∈ Sat(M) that does not split over A has a unique nonsplitting extension
q ∈ Sat(N ).
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(3) If some atomic N has an unconstrained p ∈ Sat(N ), then for every countable
A ⊆ N , there is a countable M ⪯ N with A ⊆ M for which the restriction p↾M

is unconstrained.

(4) At has only constrained types if and only if Sat(M) = CM for every/some
countable atomic model M.

Proof. (1) Suppose a realizes p in the monster model M ⪰ M . M need not be
atomic, but M ∪ {a} is a countable atomic subset. Since every atomic model N
is ω-homogeneous, a “forth construction” shows that for every countable atomic
S ⊆ M, there is an (M, N )-elementary map f : S → N . Thus there is an atomic
M ′

⪰ M containing a.

(2) The first statement is immediate. For the second, given p(x) ∈ Sat(M) non-
splitting over A, put

q(x) :=
{
φ(x,b) : b∈ N | y|,φ(x,b′)∈ p for some b′

∈ M with tp(b′/A)= tp(b/A)
}

(3) We construct M ⪯ N as the union of an increasing elementaryω-chain Mn ⪯ N of
countable, elementary substructures of N with A ⊆ M0 and, for each n ∈ω, p↾Mn+1

splits over every finite F ⊆ Mn . It follows that M∗
:=

⋃
{Mn : n ∈ω} is as required.

(4) Left to right is immediate. For the converse, assume there is some atomic
N with an unconstrained type p ∈ Sat(N ). By (2) there is a countable M ⪯ N
with p↾M unconstrained. □

Much of the paper concerns analyzing atomic models N of size ℵ1. It is useful
to consider any such N as a direct limit of a family of countable, atomic submodels.

Definition 2.1.5. For a model N of size ℵ1, a filtration of N is a continuous,
increasing sequence (Mα : α ∈ ω1) of countable, elementary substructures with
N =

⋃
α∈ω1

Mα.

When N is atomic, then in any filtration (Mα : α ∈ ω1) of N , each of the
countable models are isomorphic. As well, any two filtrations (Mα : α ∈ ω1) and
(M ′

α : α ∈ ω1) agree on a club. Thus, for any given countable M ⪯ N , we have that
{α ∈ ω1 : M ⪯ Mα and Mα = M ′

α} is club as well.

2.2. ℵ1-categoricity implies CM is countable. Throughout this subsection, At is
an atomic class that admits an uncountable model and M denotes a fixed copy of
the countable atomic model. We aim to count the set

CM = {p ∈ Sat(M) : p is constrained}.

Theorem 2.2.5 yields the main result of the subsection:

Theorem 2.2.1. If At is ℵ1-categorical, then CM is countable for every/some
countable atomic model M.
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As M is countable, the natural action of Aut(M) on the set M induces an action
of Aut(M) on Sat(M). When M is atomic, a useful characterization of p ∈ CM is:
CM consists of those elements of Sat(M) whose orbits are countable. However, for
the results in this section we only require the easy half of this statement.

Lemma 2.2.2. Suppose p ∈ CM and M ′ is any countable, atomic model. Then:

(1) {π(p) : π : M → M ′ an isomorphism} is a countable set of constrained types
in Sat(M ′).

(2) There is a countable atomic M∗
≻ M ′ realizing π(p) for every isomorphism

π : M → M ′.

Proof. (1) Choose a finite A ⊆ M over which p does not split. As M ′ is countable,
A has only countably many images under isomorphisms π : M → M ′, and it follows
immediately from nonsplitting that if π1, π2 : M → M ′ are isomorphisms satisfying
π1(a)= π2(a) for each a ∈ A, then π1(p)= π2(p).

(2) Using (1), let {qi : i < γ ≤ ω} ⊆ Sat(M ′) be the set of all images of p under
isomorphisms π : M → M ′. We recursively construct an increasing sequence of
countable models {Mi : i < γ } with M0 = M ′ and, for each i < γ , Mi contains a
realization of q j for every j < i . Supposing i < γ and Mi has been defined, let
q∗

i ∈ Sat(Mi ) be the unique ([Baldwin 2009, Theorem 19.9]) nonsplitting extension
of qi ∈ Sat(M ′). Then letting di realize q∗

i , let Mi+1 ∈ At be an elementary extension
of Mi containing Mi ∪ {di }. Then

⋃
i<ω Mi works. □

Definition 2.2.3. Suppose (Mβ : β < ω1) is a filtration of some N ∈ At of size ℵ1.
For each β < ω1, let

RβN := {p ∈ CM : π(p) is realized in N for every isomorphism π : M → Mβ}

and let RN := {p ∈ CM : p ∈ RβN for a stationary set of β ∈ ω1}.

As any two filtrations of N agree on a club, it follows that RN is independent
of the choice of filtration of N . Similarly, RN is an isomorphism invariant, i.e., if
N ∼= N ′ are each atomic models of size ℵ1, then RN = RN ′ . We record two facts
about RN .

Lemma 2.2.4. (1) For any N ∈ At of size ℵ1, |RN | ≤ ℵ1.

(2) For any p ∈ CM there is some N ∈ At of size ℵ1 such that p ∈ RN .

Proof. (1) Choose any sequence ⟨pi : i ∈ ω2⟩ from RN and we will show that
pi = p j for some distinct i, j . Fix a filtration (Mα) of N . We shrink the sequence
in two stages. First, for each i < ω2, let α(i) ∈ ω1 be least such that pi ∈ Rα(i)N . By
pigeonhole and reindexing we may assume α(i)= α∗ for all i , i.e., each pi ∈ Rα

∗

N .
Now fix any isomorphism π : M → Mα∗ . By definition of Rα

∗

N , π(pi ) is realized
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in N for every pi . But, as |N | = ℵ1, there is c∗
∈ N realizing both π(pi ) and π(p j )

for some distinct i, j . Thus, π(pi )= π(p j ), hence pi = p j .

(2) Fix p ∈ CM . Using Lemma 2.2.2(2) at each level, construct a continuous,
increasing elementary sequence Mα of countable atomic models such that, for
every α < ω1, π(p) is realized in Mα+1 for every isomorphism π : M → Mα . Put
N :=

⋃
α<ω1

Mα. Then (Mα) is a filtration of N and p ∈ RαN for every α < ω1.
Thus, p ∈ RN . □

We are now able to prove the theorem below, which clearly implies Theorem 2.2.1.

Theorem 2.2.5. If CM is uncountable, then I (At,ℵ1)= 2ℵ1 .

Proof. It is easily verified that CM is an Fσ subset of the Polish space Sat(M), so
on general grounds, CM is either countable or else it contains a perfect set.

Our proof is nonuniform, depending on the relative sizes of 2ℵ0 and 2ℵ1 . First,
under weak CH, i.e., 2ℵ0 < 2ℵ1 then combining arguments of Keisler [1970] and
Shelah [Baldwin 2009, Theorem 18.16] shows if I (At,ℵ1) ̸= 2ℵ1 , then At is
ω-stable, so Sat(M) is countable. As CM ⊆ Sat(M), CM is countable as well.

On the other hand, assume 2ℵ0 = 2ℵ1 , so in particular WCH fails. Under this
assumption, we will prove that if CM is uncountable, then I (At,ℵ1)= 2ℵ0 , which
equals 2ℵ1 under our cardinal hypotheses for this case. Indeed, choose representa-
tives {Ni : i ∈ κ} for the isomorphism classes of atomic models of size ℵ1. If CM is
uncountable, then as noted the first sentence of the proof, CM contains a perfect set
and so |CM | = 2ℵ0 . But by Lemma 2.2.4, CM ⊆

⋃
{RNi : i ∈ κ} and |RNi | ≤ ℵ1 for

each i ∈ κ . As we are assuming 2ℵ0 > ℵ1, we conclude κ ≥ 2ℵ0 , as required. □

2.3. Limit types and ℵ1-categoricity.

Definition 2.3.1. A type p ∈ Sat(N ) is a limit type if the restriction p↾M is realized
in N for every countable M ⪯ N .

Trivially, for every N , every type in Sat(N ) realized in N is a limit type. Since
we allow M = N in the definition of a limit type, if M is countable, then the only
limit types in Sat(M) are those realized in M .

Also, if (Mα : α ∈ ω1) is a filtration of N , then a type p ∈ Sat(N ) is a limit type
if and only if N realizes p↾Mα

for cofinally many α.
The long proof of the following crucial theorem is relegated to Section 3. Note

that there are no additional assumptions on At, other than the existence of an
uncountable, atomic model.

Theorem 2.3.2. If At admits an uncountable, atomic model, then there is some
N ∈ At with |N | = ℵ1 for which every limit type in Sat(N ) is constrained.

Here, we sharpen this result under the additional assumption of ℵ1-categoricity.
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Corollary 2.3.3. If At is ℵ1-categorical and N ∈ At has size ℵ1, then for every
p ∈ Sat(N ), ∈ CN ↔ p ∈ {limit types in Sat(N )}.

Proof. The hard direction of the equality is Theorem 2.3.2. For the converse, by
the assumption of ℵ1-categoricity it suffices to construct some N ∈ At of size ℵ1

for which every p ∈ CN is a limit type. For this, first note that for every countable
atomic M , since CM is countable by Theorem 2.2.1, iterating Lemma 2.1.4(1)
ω times yields a countable atomic M ′

⪰ M that realizes every p ∈ CM . Using
this, construct a strictly increasing, continuous elementary chain (Mα : α ∈ ω1) of
countable, atomic models such that for each α ∈ ω1, Mα+1 realizes every p ∈ CMα

.
Put N :=

⋃
α∈ω1

Mα. We claim that every p ∈ CN is a limit type. So fix p ∈ CN

and choose any countable M ⪯ N . Choose a finite A ⊆ N for which p does not
split over A and choose α ∈ ω1 so that M ∪ A ⊆ Mα. By Lemma 2.1.4(2), p↾Mα

is constrained, hence it is realized in Mα+1 ⊆ N . As any such realization in N
realizes p↾M , p is a limit type. □

2.4. Characterizing ω-stability. In this subsection, we first derive Lemma 2.4.3 that
gives three consequences of ω-stability in terms of the behavior of constrained types.
Then, taking Theorem 2.3.2 as a black box (proved in Section 3), Theorem 2.4.4
shows that each of these conditions is equivalent to ω-stability under the assumption
of ℵ1-categoricity. Finally, Theorem 2.4.5 asserts that the existence of a model in ℶ+

1
and ℵ1-categoricity implies condition (1) of Theorem 2.4.4 and thus ω-stability.

Definition 2.4.1. • A proper constrained pair is a pair N ⪵ N ′ of atomic models
such that tp(c/N ) is constrained for every tuple c ∈ N ′.

• A proper relatively ℵ1-saturated pair is a proper pair N ⪵ N ′ such that, for
every countable M ⪯ N , every type p ∈ S(M) realized in N ′ is realized in N .

Note that in (2), both models must be uncountable, whereas (1) makes sense for
countable models as well. Of course, in (2) it would be equivalent to say that “every
type over every countable set A ⊆ N that is realized in N ′ is realized in N ,” but we
choose the definition above to conform with our convention about only looking at
types over models.

Lemma 2.4.2. Let At be any atomic class.

(1) If both (M,M ′) and (M ′,M ′′) are constrained pairs, then (M,M ′′) is a con-
strained pair as well.

(2) If (M,M ′) is a constrained pair of countable atomic models, then there is
an uncountable N with a filtration (Mα : α ∈ ω1) such that (Mα, N ) is a
constrained pair for every α ∈ ω1.
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Proof. (1) Choose any c ∈ M ′′. As (M ′,M ′′) is a constrained pair, choose b ∈ M ′

such that tp(c/M ′) does not split over b. As (M,M ′) is a constrained pair, choose
a ∈ M such that tp(b/M) does not split over a. We claim that tp(cb/M) does not
split over a, which clearly suffices. To see this, choose any m1,m2 from M such
that tp(m1a)= tp(m2a). By nonsplitting, this implies tp(m1ab)= tp(m2ab). Now
both m1a and m2a are from M ′, hence tp(m1abc)= tp(m2abc) as tp(c/M ′) does
not split over b.

(2) As M is a countable atomic model that is the lower part of a constrained pair, so
is any other countable, atomic model. Thus, we can form a continuous, increasing
chain (Mα : α ∈ ω1) of countable atomic models with (Mα,Mα+1) a constrained
pair for each α. This chain is a filtration of the atomic N :=

⋃
{Mα : α ∈ ω1}. That

each (Mα, N ) is a constrained pair follows from (1). □

We record the following consequences of ω-stability in atomic classes. It is
noteworthy that ℵ1-categoricity plays no role in Lemma 2.4.3, and without ad-
ditional assumptions, none of these imply ω-stability. However, following this,
with Theorem 2.4.4 we see that when coupled with ℵ1-categoricity, each of these
conditions implies ω-stability.

Lemma 2.4.3. Suppose At is an ω-stable atomic class that admits an uncountable
atomic model. Then

(1) At has only constrained types;

(2) At has a proper constrained pair; and

(3) At has a proper, relatively ℵ1-saturated pair.

Proof. (1) For an ω-stable atomic class, one can define ([Baldwin 2009, Defini-
tion 19.1]) a splitting rank on types p ∈ Sat(N ) for any model N such that ([Baldwin
2009, Theorem 19.8]): for any atomic model N and any p ∈ Sat(N ), then choosing
φ(x, a) ∈ p to be a complete formula of smallest rank, p does not split over a.
That is, p is constrained.

(2) Choose any countable, atomic model M . Since At admits an uncountable atomic
model, there is a countable, proper, atomic elementary extension M ′

≻ M . By (1),
tp(c/M) is constrained for every c ∈ M ′, hence (M,M ′) is a proper constrained pair.

(3) We first argue that there is an atomically saturated model N of size ℵ1. That is,
for every countable M ⪯ N , N realizes every p ∈ Sat(M). The existence of an un-
countable, atomically saturated N is easy. Using Lemma 2.4.3(1) all types for At are
constrained. Then, using Lemma 2.1.4(1) and (2) as in the proof of Corollary 2.3.3,
build a union of a continuous elementary chain (Mα : α ∈ ω1) of countable atomic
models with the property that for each α < ω1, Mα+1 realizes every p ∈ Sat(Mα).
The existence of such an Mα+1 is immediate since Sat(Mα) is countable and every
p ∈ Sat(Mα) can be realized in some countable, atomic elementary extension.
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Now, given an atomically saturated model N of size ℵ1, recall that if At is
ω-stable, then every model of size ℵ1 has a proper atomic extension N ′; see, e.g.,
the proof of 19.26 of [Baldwin 2009]. But then (N , N ′) is a proper, relatively
ℵ1-saturated pair. □

Given Theorem 2.2.1 and Corollary 2.3.3 (the latter depending on the promised
Theorem 2.3.2), we give short proofs of our main results.

Theorem 2.4.4. The following are equivalent for an ℵ1-categorical atomic class At:

(1) At has a proper, relatively ℵ1-saturated pair.

(2) At has a proper constrained pair.

(3) At has only constrained types.

(4) At is ω-stable.

Proof. We will show (1)⇒ (2)⇒ (3)⇒ (4), which in light of Lemma 2.4.3 suffices.

(1)⇒ (2): Suppose (M∗,M∗∗) is a proper, relatively ℵ1-saturated pair of atomic
models, and by way of contradiction suppose that (M∗,M∗∗) is not a proper
constrained pair. Choose c ∈ M∗∗ such that p := tp(c/M∗) is unconstrained.
Then, by iterating Lemma 2.1.4(3), we construct a continuous, elementary chain
(Mα : α ∈ ω1) of countable, elementary substructures of M∗ such that, for every
α ∈ ω1, p↾Mα

is unconstrained, but is realized in Mα+1. To accomplish this, by
Lemma 2.1.4(3), choose a countable M0 ⪯ M∗ such that p↾M0 is unconstrained. At
countable limits, take unions. Finally, given a countable Mα ⪯ M∗, by relative ℵ1-
saturation choose cα ∈ M∗ realizing p↾Mα

and then apply Lemma 2.1.4(3) to the set
Mα∪{cα} to get Mα+1 ⪯ M∗ with p↾Mα+1 unconstrained. Let N :=

⋃
{Mα :α ∈ω1}.

Then N has size ℵ1 and the type p↾N is an unconstrained limit type, contradicting
ℵ1-categoricity by Corollary 2.3.3.

(2)⇒ (3): Assume that (N ∗, N ∗∗) is a proper constrained pair (of any cardinality).
By an easy Löwenheim–Skolem argument (in the pair language) there is a proper
constrained pair (M,M ′) of countable atomic models. By Lemma 2.4.2(2), there is
an atomic model N of size ℵ1 with a filtration (Mα : α ∈ ω1) such that (Mα, N ) is
a constrained pair for every α ∈ ω1.

Now, by way of contradiction, assume (3) fails. By Lemma 2.1.4(4), Sat(M)
contains an unconstrained type for every countable atomic model M . Thus, for
any such M , there is a countable atomic M ′

≻ M containing a realization of
an unconstrained type. By iterating this ω1 times, we construct a continuous,
elementary chain (M ′

α : α ∈ ω1) for which M ′

α+1 contains a realization of an
unconstrained type in Sat(M ′

α). Let N ′
:=

⋃
{M ′

α : α ∈ ω1}. Note that (M ′
α, N ′)

is never a constrained pair. But this contradicts ℵ1-categoricity: If f : N → N ′

were an isomorphism, then there would be (club many) α ∈ ω1 such that f ↾Mα
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maps Mα onto M ′
α , hence maps the pair (Mα, N ) onto (M ′

α, N ′). As the former is
a constrained pair, while the latter is not, we obtain a contradiction.

(3) ⇒ (4): Assume At has only constrained types and let M be any countable,
atomic model. This means that Sat(M)=CM . However, as At is ℵ1-categorical, CM

is countable by Theorem 2.2.1. Thus, Sat(M) is countable, which is the definition
of At being ω-stable. □

With this result in hand, it is easy to deduce the main theorem. This is the
only use of the existence of a model in ℶ+

1 . We imitate the classical proof that for
every κ ≥ |L|, every L-theory with an infinite model has a κ+-saturated model of
size 2κ , to prove clause (1) of Theorem 2.4.4 and thus deduce ω-stability.

Theorem 2.4.5. If an atomic class At is ℵ1-categorical and has a model of size
(2ℵ0)+, then At is ω-stable.

Proof. Let M∗∗ be an atomic model of size (2ℵ0)+. We construct a relatively
ℵ1-saturated elementary substructure M∗

⪯ M∗∗ of size 2ℵ0 as the union of a
continuous chain (Nα : α ∈ ω1) of elementary substructures of M∗∗, each of
size 2ℵ0 , where, for each α < ω1 and each of the 2ℵ0 countable M ⪯ Nα, Nα+1

realizes each of the at most 2ℵ0 p ∈ S(M) that is realized in M∗∗. ω-stability is
immediate from (1)⇒ (4) in Theorem 2.4.4. □

3. Paying our debt

The whole of this section is aimed at proving Theorem 2.3.2: If a countable
theory T has an uncountable atomic model, then it has one in which every limit type
is constrained.2 The proof relies heavily on Keisler’s completeness theorem that
implies “model existence” of sentences of Lω1,ω(Q) is absolute between forcing
extensions. In the first subsection, we explicitly give an Lω1,ω(Q) sentence 9∗ in
a countable language extending the language of T such that in any set-theoretic
universe, 9∗ has a model of size ℵ1 if and only if there is an atomic model of
size ℵ1 with every limit type constrained.

The second subsection describes family of striated formulas [Baldwin et al.
2016]. Such formulas are used to describe a c.c.c. forcing notion (P,≤) in the third
subsection. There, we prove that (P,≤) forces the existence of an atomic model of
size ℵ1 with every limit type constrained. Thus, we conclude that 9∗ has a model
of size ℵ1 in a c.c.c. forcing extension, so by the absoluteness described above, V

has a model of 9∗ of size ℵ1, yielding our requested model.

2By the correspondence described in the introduction, it follows immediately that any com-
plete Lω1,ω-sentence with an uncountable model has an uncountable model with every limit type
constrained.
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3.1. Finding a requisite sentence 9∗ of Lω1,ω( Q). This subsection is devoted to
proving the following proposition.

Proposition 3.1.1. Let T be a first order L-theory for a countable language with
an uncountable model in At, the class of atomic models. There is a sentence
9∗

∈ (L∗)ω1,ω(Q) in an expanded (but still countable) language L∗
⊇ L for which

the following are equivalent:

(1) There is a model N ∗
|H9∗.

(2) There is an atomic model N |H T of size ℵ1 such that every limit type of N is
constrained.

Whereas the L-reduct of any N ∗
|H9∗ will satisfy (2), it is noteworthy that in

proving (2)⇒ (1), the model N ∗
|H9∗ we produce is not necessarily an expansion

of a given N witnessing (2).
The relevant 9∗ is defined in Definition 3.1.6. As we will be interested in

arbitrary models of a sentence and because “is a well ordering” is not expressible
in Lω,ω(Q), we need to generalize the notion of a filtration.

Definition 3.1.2. A linear order (I,≤) is ω1-like if it has cardinality ℵ1, but, letting
pred(i) denote { j ∈ I : j < i}, for every i ∈ I , | pred(i)| ⩽ ℵ0.

If N is any set and (I,≤) is ω1-like, then an (I,≤)-scale is a surjective function
f : N → I such that f −1(i) is countable for every i ∈ I .

If f : N → I is a scale, put Ai := f −1(pred(i)) for every i ∈ I , and note that
each Ai is countable.

Observe that “being an ω1-like linear order” is expressible by a sentence of
Lω1,ω(Q)— the point is that any uncountable linear order (I,≤) for which pred(i)
is countable for every i ∈ I has both size and cofinality ℵ1. Similarly, if an
uncountable set N has an (I,≤)-scale, then N must have size ℵ1.

We consider the sets (Ai : i ∈ I ) to be a surrogate for a filtration of N ; Ai

replaces Mα . We now define a tree order on types over certain countable subsets of
a model with cardinality ℵ1 of T .

Definition 3.1.3. Fix T, N as in Proposition 3.1.1. Suppose (I,≤) is an ω1-like
linear order and f : N → I is a scale.

(1) Define an equivalence relation E f on (N × I ) as (a, i)E f (b, j) if and only
if i = j and tp(a/Ai ) = tp(b/Ai ). Thus each equivalence class corresponds
to a type.

(2) Define a strict partial order ≺ f on (N × I )/E f as: [(a, i)] ≺ f [(b, j)] if
and only if i <I j ; tp(a/Ai ) = tp(b/Ai ); and tp(b/A j ) splits over every
finite F ⊆ Ai .

(3) A ≺ f -chain is a sequence of types linearly ordered by ≺ f (hence splitting).
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It is evident that ((N × I )/E f ,≺ f ) is tree-like in that the ≺ f -predecessors
of every E f -class are linearly ordered by ≺ f . Moreover, since (I,≤) is ω1-like,
every E f -class has only countably many ≺ f -predecessors.

Lemma 3.1.4. Let N be any atomic model of size ℵ1, (I,≤) be ω1-like, f : N → I
be any scale and I , E f , Ai , and ≺ f be as in Definition 3.1.3. The following are
equivalent:
(1) There exists an f such that T f = ((N × I )/E f ,≺ f ) has an uncountable

≺ f -chain.

(2) Some limit type in Sat(N ) is unconstrained.

(3) For every f , T f = ((N × I )/E f ,≺ f ) has an uncountable ≺ f -chain.

Proof. (3) ⇒ (1) is immediate. For (1) ⇒ (2), suppose for some f , C ⊆ T f is
an uncountable ≺ f -chain. As [(a, i)] ≺ f [(b, j)] implies i < j and since (I,≤)
is ω1-like, π2(C) := {i ∈ I : ∃a ∈ N [(a, i)] ∈ C} is cofinal in I . Therefore⋃

{Ai : i ∈ π2(C)} = N . Also, as [(a, i)] ≺ f [(b, j)] implies tp(a/Ai )= tp(b/Ai ),
there is a unique p ∈ Sat(N ) defined as p :=

⋃
{tp(a/Ai ) : (a, i)∈ C}. Furthermore,

as tp(b/A j ) splits over every finite F ⊆ Ai , it follows that p is unconstrained.
Recalling Definition 2.3.1(2), it remains to show that p is a limit type. Choose a
filtration M = (Mα) of N and argue that p↾Mα

is realized in N for every α ∈ ω1.
Given α ∈ ω1, choose i ∈ π2(C) such that Mα ⊆ Ai . Then each a ∈ N for which
(a, i) ∈ C realizes p↾Ai and hence realizes p↾Mα

. So p is a limit type.

(2)⇒ (3). Suppose N has an unconstrained limit type p ∈ Sat(N ) and fix a scale f .
Also choose a filtration (Mα : α ∈ ω1) of N . To construct an uncountable chain T f

we repeatedly use the following claim.

Claim 3.1.5. For every countable B ⊆ N there is i ∈ I such that

• B ⊆ Ai ;

• p↾Ai is realized; and

• p↾Ai splits over every finite F ⊆ B.

Proof. Given a countable B ⊆ N , since p ∈ Sat(N ) splits over every finite F ⊆ N ,
there is a countable B∗

⊇ B such that p↾B∗ splits over every finite F ⊆ B. Now
choose i ∈ I such that B∗

⊆ Ai and then choose α ∈ω1 such that Ai ⊆ Mα . Since p
is a limit type, choose c ∈ N realizing p↾Mα

and hence p↾Ai . □

Iterating Claim 3.1.5 ω1 times yields a strictly increasing sequence (iα : α ∈ ω1)

from (I,≤) and (cα : α ∈ ω1) from N , where at each stage α, we take B =⋃
{Aiβ :β <α}. It follows directly from the definition of ≺ f that (cβ, iβ)≺ f (cα, iα)

whenever β < α, so ((N × I )/E,≺ f ) has an uncountable chain. □

With Lemma 3.1.4 in hand, we now define the sentence 9∗ described in
Proposition 3.1.1.
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Definition 3.1.6. Let L∗
:= L ∪ {I,≤I , f, E,≺ f } ∪ {Q,≤Q, H} and let 9∗ be a

set of Lω1,ω(Q)-axioms ensuring that, for any N ∗
|H9∗,

(1) the L-reduct N of N ∗ is an atomic model of T (as well, N denotes the universe
of N ∗);

(2) N is uncountable;

(3) I ⊆ N and (I,≤I ) is an ω1-like linear order;

(4) f : N → I is a scale; (recall: Ai := f −1(pred(i)));

(5) E ⊆ N × I satisfies (a, i)E(b, j) if and only if i = j and tpL(a/Ai ) =

tpL(b/Ai );

(6) for all [(a, i)], [(b, j)] ∈ (N × I )/E , [(ai )] ≺ f [(b, j)] if and only if i < j ,
tpL(a/Ai )= tpL(b/Ai ), and tpL(b/A j ) splits over every finite F ⊆ Ai ;

(7) Q ⊆ N and (Q,≤Q) is a countable model of DLO;

(8) H : N × I → Q satisfies: For all (a, i), (b, j),
(a) if (a, i)E(b, j) then H(a, i)= H(b, j); and
(b) if [(a, i)] ≺ f [(b, j)], then H(a, i) <Q H(b, j).

We verify that this sentence 9∗ works for Proposition 3.1.1.

Proof of Proposition 3.1.1. For (1)⇒ (2) assume N ∗
|H 9∗ and let N be the L-

reduct of N ∗. Then (I,≤) is an ω1-ordering and f : N → I is a scale, so |N | = ℵ1.
Moreover, as the ordering on (Q,≤) forbids a strictly increasing ω1 sequence, the
existence of the function H forbids T = ((N × I )/E,≺ f ) having an uncountable
≺ f -chain. Thus, by Lemma 3.1.4, every limit type in Sat(N ) is constrained.

The converse is more involved. Assume we are given N ∈ At of size ℵ1 with
every limit type in Sat(N ) constrained. Under this assumption, with the help of
Lemma 3.1.7 we will show that a model N ∗

|H9∗ can be found in some generic
extension V[G] of V by a c.c.c. forcing extension. Once we have that, it follows by
the absoluteness gleaned from Keisler’s model existence theorem for sentences of
Lω1,ω(Q) that a model of 9∗ exists in V, giving Proposition 3.1.1(1).

So, given N as in Proposition 3.1.1(2), choose arbitrary subsets I,Q ⊆ N of
cardinality ℵ1,ℵ0, respectively and choose orderings ≤I and ≤Q as required by 9∗.
Fix an arbitrary scale f : N → I and interpret E and ≺ f as required. Since N
has every limit type constrained, it follows from Lemma 3.1.4 that ≺ f has no
uncountable chains.

It only remains to find a function H : N × I → Q as requested by 9∗. For
this, we turn to forcing, and invoke the following general lemma,3 taking X to be
(N × I/E) and ≺ to be ≺ f .

3The statement of Lemma 3.1.7 is reminiscent of how one specializes Aronszajn trees by forcing,
and the ideas of the proof can be found in Section 2 of [Baumgartner 1970].
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Lemma 3.1.7. Suppose (X,≺) is any strict partial order satisfying

(1) |X | = ℵ1;

(2) for every a ∈ X , the induced suborder (pred(a),≺) is a countable linear order;
and

(3) (X,≺) has no uncountable chain.

Then there is a c.c.c. forcing (P,≤) such that in any generic V[G] there is a function
H : X → Q such that if a ≺ b, then H(a) <Q H(b).

Proof. The partial order (P,≤) is simply the set of all finite approximations of such
an H . That is, P is the set of all functions h : X0 → Q with X0 ⊆ X finite such that
for all a, b ∈ X0, if a ≺ b, then h(a)<Q h(b), ordered by inclusion, i.e., (♯) h ≤ h′ if
and only if h ⊆ h′. It is easily checked that this forcing will produce (in V[G]) a total
function H : X → Q as desired. The nontrivial part is showing that (P,≤) has the
c.c.c. For this, choose any uncountable set Y ={hα :α∈ω1}⊆P and assume, by way
of contradiction, that hα∪hβ ̸∈ P for distinct α, β ∈ω1. By passing to a subset of Y ,
we may assume |dom(hα)| = n for some fixed n ∈ω and we argue by contradiction.
If n = 1, i.e., dom(hα)= {aα}, then by passing to a further subset, there is a single
m∗

∈ Q such that hα(aα)= m∗ for every α. The only way we could have hα∪hβ ̸∈ P

would be if aα, aβ were distinct, but ≺-comparable. But then C = {aα : α ∈ ω1}

would be an uncountable chain in (X,≺), contradicting our assumption.
So, assume n> 1 and we have proved (c.c.c.) for all n′< n. To ease notation, enu-

merate the universe X with order typeω1. For each α, write dom(hα)= (aα1 , . . . , aαn )
in increasing order, subject to this enumeration. By the 1-system lemma, there is
an uncountable subset and a root r such that dom(hα)∩ dom(hβ)= r for all distinct
pairs α, β. If r ̸= ∅, we can apply our inductive hypothesis to the family of sets
{dom(hα)\r :α∈ω1}, so we may assume r =∅, i.e., the domains {dom(hα) :α∈ω1}

are pairwise disjoint. Again, passing to a subsequence, we may assume that with
respect to the global enumeration of X aαn < aβ1 for all α < β. Additionally, we
may assume there are {m1, . . . ,mn} ⊆ Q such that hα(aαi ) = mi for all α ∈ ω1

and i ∈ {1, . . . , n}.
Now fix α < β. In order for hα ∪ hβ to not be in P, there must be some

p(α, β), q(α, β) ∈ {1, . . . , n} such that aαp(α,β) and aβq(α,β) are ≺-comparable. As
a bookkeeping device, fix a uniform4 ultrafilter U on ω1.

Thus, for any α ∈ ω1, there is some Sα ∈ U , some p(α), q(α) ∈ {1, . . . , n}

such that, by (♯), for every β ∈ Sα, aαp(α) and aβq(α) are ≺-comparable. However,
since pred(aαp(α)) was assumed to be countable, there is S∗

α ⊆ Sα , S∗
α ∈ U such that

aαp(α) ≺ aβq(α) for all β ∈ S∗
α.

4That is, every Y ∈ U has cardinality ℵ1. Equivalently, U contains all of the cocountable sub-
sets of ω1.
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Similarly, there is some S ∈U and some p∗, q∗
∈{1, . . . , n} such that for all α∈ S

and for all β ∈ S∗
α we have aαp∗ ≺ aβq∗ . We obtain our contradiction by showing that

C = {aαp∗ : α ∈ S}

is an uncountable chain in (X,≺). Since U is uniform, C is uncountable. To get
comparability, choose any α, γ ∈ S. As S∗

α, S∗
γ ∈ U , there is β ∈ S∗

α ∩ S∗
γ . It follows

that aαp∗ ≺ aβq∗ and aγp∗ ≺ aβq∗ . From our assumptions on (X,≺), (pred(aβq∗),≺) is
a linear order, so aαp∗ and aγp∗ are ≺-comparable. □

3.2. Extendible and striated formulas. Throughout this section, we work with the
atomic models of a complete, first order theory T in a countable language that has
an uncountable atomic model. We expound model theoretic properties needed in
the forcing construction of Section 3.3.

Remark 3.2.1. In this section we work with complete formulas θ(w), usually with
a prescribed partition of the free variables. Regardless of the partition, for any
subsequence v ⊆ w, we use the notation θ↾v to denote the complete formula in the
variables v that is equivalent to ∃uθ(v, u), where u = (w \ v).

Definition 3.2.2. (1) A complete formula φ(x, a) is pseudoalgebraic5 if for
some/any countable M with a ∈ M and any N ⪶ M , φ(N , a)= φ(M, a).

(2) b ∈ pcl(a,M), written b ∈ pcl(a), if and only if b ∈ N for every N ⪯ M
with a ⊆ N .

(3) A complete formula θ(z; x) is extendible if there is a pair M ⪯ N of countable,
atomic models and b ⊆ M , a ⊆ N \ M such that N |H θ(b, a).

Note that an atomic class has an uncountable model if and only if it has a
non-pseudoalgebraic type.

The definition of an extendible formula depends on the partition of its free
variables. As we require extendible formulas to be complete, they are not preserved
under adjunction of dummy variables. If lg(x)= 1, then θ(z, x) being extendible
is equivalent to it being complete, with θ(z, x) not pseudoalgebraic. Much of the
utility of the notion is given by the following fact.

Fact 3.2.3. (1) If θ(z; x) is extendible, then for any countable, atomic M and any
b ∈ M lg(z) and a ∈ M lg(x) such that M |H θ(b, a), there is M0 ⪯ M such that
b ⊆ M0 and a ⊆ M \ M0.

(2) If θ(z; x) is extendible and z′
⊆ z and x′

⊆ x, then the restriction θ↾z′;x′ is
extendible as well.

(3) Any complete formula θ(z; x) is extendible if and only if θ↾z,xi is not pseudo-
algebraic for every xi ∈ x.

5The careful distinctions of pseudoalgebraicity “in a model” of [Baldwin et al. 2016] are avoided
because we have assumed there is an uncountable atomic model.
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Proof. (1) As θ(z; x) is extendible, choose countable atomic models M ′
⪯ N ′,

b′
⊆ M and a′

⊆ N ′
\ M ′ such that N ′

|H θ(b′, a′). As θ(z; x) is complete, there is
an isomorphism f : N ′

→ M with f (b′)= b and f (a′)= a. Then M0 := f (M ′)

is as desired.

(2) This follows easily from the proof of (1).

(3) Left to right follows easily from (2). We prove the converse by induction on lg(x).
For lg(x)= 1 this is immediate, so assume this holds when lg(x)= n. Choose a
complete θ(z; x, xn) such that lg(x)= n and θ↾z,xi is non-pseudoalgebraic for each
i ≤ n. Choose any countable, atomic N and b, a, an from N so that N |H θ(b, a, an).
By (1), it suffices to find some M0 ⪯ N with b ⊆ M0 and aan ⊆ N \ M0. To obtain
this, since ∃xnθ(z; x, xn) is extendible by (2), (1) implies there is M ⪯ N with
b ⊆ M and a ⊆ N \ M . Thus, if an ∈ N \ M , we can take M0 := M and we are done.
If not, then as ban ⊆ M we can apply (1) to M and the extendible ∃xθ(z; x, xn) to
get M0 ⪯ M with b ⊆ M0 and an ∈ M \ M0. □

Next, we consider the “transitive closure” of extendibility.

Definition 3.2.4. An n-striated formula is a complete formula θ( y0, . . . , yn−1)

whose free variables are partitioned into n pieces such that, for every i < n, letting
z = ( y0, . . . , yi ) and x = ( yi , . . . , yn−1), we have θ(z, x) extendible.

A striated formula is an n-striated formula for some n.
A realization of an n-striated formula θ( y0, . . . , yn−1) is an n-chain M0 ⪯ M1 ⪯

Mn−1 of countable, atomic models, together with tuples a0, . . . , an−1 with a0 ⊆ M0

and ai ⊆ Mi \ Mi−1 for every 0< i < n such that Mn−1 |H θ(a0, . . . , an−1).

Iterating Fact 3.2.3, we see that a partitioned complete formula θ( y0, . . . , yn−1)

is n-striated if and only if for some countable atomic M and some (a0, . . . , an−1)

from M with M |H θ(a0, . . . , an−1), there are M0 ⪯ M1 ⪯ · · · ⪯ Mn−2 ⪯ M with
a0 ⊆ M0, ai ⊆ Mi \ Mi−1 for 0< i < n − 2 and an−1 ∩ Mn−2 = ∅.

Using this characterization, if θ( y0, . . . , yn−1) is n-striated and we modify the
partition of θ by fusing together two adjacent tuples, then the resulting partition
yields an (n − 1)-striated formula. Going forward, we have the following amalga-
mation property for striated formulas.

Lemma 3.2.5. Suppose α(z, x1, . . . , xn) and β(z, y1, . . . , ym) are striated and α↾z
is equivalent to β↾z. Then there is a striatedψ(z, x1, . . . , xn, y1, . . . , ym) extending
α(z, x1, . . . , xn)∧β(z, y1, . . . , ym).

Proof. Choose an (n +1)-chain M0 ⪯ M1 ⪯ · · · ⪯ Mn and b, a1, . . . , an realizing α
(so b ⊆ M0 and ai ⊆ Mi \ Mi−1 for each i) and choose similarly an (m + 1)-chain
N0 ⪯ N1 ⪯ · · · ⪯ Nm and c, d1, . . . , dm realizing β. As α↾z is equivalent to β↾z,
there is an isomorphism f : N0 → Mn with f (c) = b. Choose Mn+m ⪰ Mn for
which there is an isomorphism f ∗

: Nm → Mn+m extending f . Now, for i ≤ m put
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Mn+i := f ∗(Ni ). (Note this is compatible with our previous placements.) Also, for
each 1 ≤ i ≤ m, put an+i := f ∗(di ). Finally, put ψ(z, x1, . . . , xn, y1, . . . , ym) :=

tp(b, a1, . . . , an+m). Then the (n + m + 1)-chain M0 ⪯ · · · ⪯ Mn+m , together with
b, a1, . . . , an+m witness that ψ is striated. □

3.3. The forcing. We continue our assumption that we have a fixed complete
theory T in a countable language with an uncountable atomic model. We fix
an ω1-like dense linear order (I,≤) with least element 0 and fix a continuous,
increasing (necessarily cofinal) sequence ⟨Jα :α ∈ω1⟩ of initial segments of I . Also,
fix a set X = {xt,m : t ∈ I,m ∈ ω} of distinct variable symbols and, for each α ∈ ω1,
let Xα = {xt,m : t ∈ Jα,m ∈ω}. Our forcing below will describe a complete diagram
in the variables X corresponding to an atomic model N of size ℵ1 and the countable
substructures Nα corresponding to the variables Xα will be a filtration of N .

Definition 3.3.1. The forcing (P,≤) consists of all conditions

p =
(
u p, ℓ(p), {kp,i : i < ℓ(p)}, θp( y0, . . . , yℓ(p)−1)

)
satisfying the following properties:

(1) u p is a finite subset {s0, . . . , sℓ(p)−1} ⊆ I . We always write the elements of u p

in ascending order.

(2) ℓ(p)= |u p|.

(3) If u p ̸= ∅, then 0 ∈ u p.

(4) Each kp,i ∈ ω and denotes lg( yi ) in θp.

(5) θp( y0, . . . , yℓ(p)−1) is an ℓ(p)-striated formula, where each yi =(xsi , j : j<kp,i )

is the initial segment of the si -th row of X of length kp,i .

The ordering on P is natural, i.e., p ≤P q if and only if u p ⊆ uq , the free variables
of θp are contained in the free variables of θq and θq ⊢ θp.

We remark that the effect of requiring 0∈u p whenever u p is nonempty is to ensure
that if θp entails “xαi , j ∈ pcl(∅)”, then αi = 0. That is, in the generic model we
construct, all pseudoalgebraic complete types of singletons will be contained in M0.

It is easily verified that (P,≤) is c.c.c. (See [Baldwin et al. 2016, Claim 4.3.7]
for a verification of this in an extremely similar setting.) As well, (P,≤) is highly
homogeneous. In particular, we record the following facts, with (1) following
from (I,≤) being dense and ω1-like.

Fact 3.3.2. (1) For all α < ω1 and for all finite u1, u2 ⊆ I \ Jα with |u1| = |u2|

and min(I \ Jα) (if it exists) ̸∈ u1 ∪ u2, then there is an order isomorphism
σ ∈ Aut(I,≤) with σ(u1)= u2 and σ ↾Jα = id.

(2) Any order isomorphism σ ∈Aut(I,≤) induces both a permutation σ ′
∈Sym(X)

given by σ ′(xt,m)= xσ(t),m and an automorphism σ ∗
∈ Aut(P,≤) given by

σ ∗(p)=
(
σ(u p), ℓp, {kp,i : i < ℓ(p)}, θp(σ

′( y0), . . . , σ
′( yℓ(p)−1))

)
.
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We record three additional density conditions about (P,≤) whose verifications
depend on the following fact.

Lemma 3.3.3. Suppose δ(x) is a non-pseudoalgebraic 1-type. Then for every
countable atomic N and every e ⊆ N , there are M ⪯ N and c ∈ N \ M such that
e ⊆ M and N |H δ(c).

Proof. From the definition of (non)-pseudoalgebraicity, fix countable atomic
M∗

⪯ N ∗ and c∗
∈ N ∗

\M∗ with N ∗
|H δ(c∗). Choose any isomorphism f : N → M∗

and put e∗
:= f (e). Now, choose an isomorphism g : N ∗

→ N with g(e∗)= e. Put
M := g(M∗) and c := g(c∗). Then e ⊆ M , c ∈ N \ M , and N |H δ(c). □

The forcing is surjective in the sense that for every condition p and every variable
there is an extension of p that includes the variable.

Lemma 3.3.4 (surjective). For every p ∈ P and xt,m ∈ X , there is q ∈ P, q ≥ p
with xq = xp ∪ {xt,m}.

Proof. We may assume that p ̸=0 and that xt,m ̸∈ xp. Choose M0 ⪯ M1 ⪯· · ·⪯ Mn−1

and e0 . . . en−1 realizing θp (so e0 ⊆ M0, ei ⊆ Mi \ Mi−1 for 0 < i < n and
Mn−1 |H θ(e0, . . . , en−1)).

We first handle the case where m = 0. In this case, it must be that t ̸∈ u p.
Choose j maximal such that s j < t . Apply Lemma 3.3.3 to M j and e0 . . . e j

to get M∗

j ⪯ M j and c ∈ M j \ M∗

j with M j |H δ(c) and e0 . . . , e j ⊆ M∗

j . Now
let f : M j → M∗

j be an isomorphism fixing e0 . . . , e j pointwise. Then the type
tp(e0, . . . , e j , c, e j+1, . . . , en−1) and the (n+1)-chain f (M0)⪯ . . . f (M j )⪯ M j ⪯

M j+1 ⪯ . . .Mn−1 describes an (n +1)-striated formula θ . Let q ∈ P be the element
with xq = xp ∪ {xt,0} with θq(xq) being the complete formula generating this type.

If m > 0, then we apply the previous case to ensure that xt,0 ∈ xp. Say t = s j ,
the j-th element of u p. But then, given any e0, . . . , en−1 and M0 ⪯ · · · ⪯ Mn−1

realizing θp, extend xp,t to include xt,m by making each “new” element of e j equal
to the element e j,0 ∈ M j . □

The notational issue in what follows is the placement of free variables. For p ∈ P,
there is an explicit ordering to the variables xp occurring in θ(xp), but when we
consider extensions φ(v, xp), we do not want to specify where the vi ’s fit in the
sequence. Recall Definition 3.3.1(5).

Lemma 3.3.5 (Henkin). Suppose p ∈ P and θp(xp) ⊢ ∃vφ(v, xp). Then there is
q ∈ P, q ≥ p for which the variables in (xq \ xp) consist of a realization of φ(v, xp)

(in some order). Moreover, if p ̸= 0, then can be chosen with uq = u p.

Proof. Arguing by induction, we may assume v = {v} is a singleton, and we
may further assume that φ(v, xp) describes a complete type. Let e0, . . . , en−1 and
M0 ⪯ · · · ⪯ Mn−1 witness the truth and striation of θp and choose any b ∈ Mn−1
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such that Mn−1 |H φ(b, ep). Let j ≤ n − 1 be least such that b ∈ M j . (Note that
if φ(v, xp) ⊢ ‘v ∈ pcl(∅)′, then we must have j = 0.) Let xq = xp ∪ {xs j ,kp, j }.
Then, letting e∗

j = e j b, we have a striation e0, . . . , e j−1, e∗

j , e j+1, . . . , en−1 using
the same n-chain of models M0 ⪯ . . .Mn−1. Put

θq(xq) := tp(e0, . . . , e j−1, e∗

j , e j+1, . . . , en−1).

Then q ∈ P and q ≥ p. □

Lemma 3.3.6. Suppose p, q, r ∈ P with p ≤ q , p ≤ r , xq ∩ xr = xp, and for some
t ∈ I , uq ⊆ I<t and (ur \ u p) ⊆ I>t . Suppose further that there are M ⪯ N and
a, b, c with b∩ c = a, b ⊆ M , and (c\ a)⊆ N \ M with N |H θp(a)∧ θq(b)∧ θr (c).
Then there is r∗

∈ P, r∗
≥ q , r∗

≥ r with xr∗ = xq ∪ xr and θr∗ = tp(b, (c \ a)).

Proof. Arguing by induction, we may additionally assume that ur = u p ∪ {s∗
}

for some single s∗ > t . That is, xq \ xp lies on a single level of X . Since q ∈ P,
there is a striation of b = b0, b1, . . . , bn−1 induced by the rows of xq . As b ⊆ M ,
we can find an n-chain M0 ⪯ Mn−1 of models with Mn−1 = M , b0 ⊆ M0 and
bi ⊆ Mi ⊆ Mi−1 for all 0< i < n. As (c\ a)⊆ N \ M and as (xq \ xp) consists of a
single row (and since s∗ > t) it follows that the (n + 1)-tuple b0, . . . , bn−1, (c \ a)
is realized in the (n + 1)-chain M0 ⪯ · · · ⪯ M ⪯ N . Choose xr∗ = xq ∪ xr and put
θr∗ = tp(b0, . . . , bn−1, (c \ a)). Then r∗

∈ P and both r∗
≥ q , r∗

≥ r hold. □

Armed with these lemmas, we can now prove the main fact about the forcing
(P,≤) and the generic model

∼
N of T . For general forcing notation see [Kunen

1980]. However, note that contrary to Kunen, we use the convention that p ⩽ q
means q is a stronger condition, carrying more information.

Notation 3.3.7. In what follows, when dealing with L-formulas, we will use the
letters u, v,w, possibly with decorations to denote free variables. By contrast,
tuples denoted by x, y, z denote finite tuples from X . Thus, for example, η(v, z)
has free variables v, and z is a fixed tuple from X .

We first establish that (P,≤) forces an uncountable atomic model of T . This
initial lemma only uses the surjective and Henkin density conditions (Lemmas 3.3.4
and 3.3.5). More details of this initial construction can be found in [Baldwin et al.
2016, §4.4].

Lemma 3.3.8. There are P-names
∼
N and

∼
Nα for each α ∈ ω1 such that

(P,≤) ⊩ “
∼
N ∈ At, |

∼
N| = ℵ1, and (

∼
Nα : α ∈ ω1) is a filtration of

∼
N”.

Proof. For every n-ary atomic L-formula φ(u), choose a P-name
∼
φ such that, for

every generic subset G ⊆ P (recalling Remark 3.2.1),

∼
φ[G] = {x ∈ Xn

: T + θp↾x ⊢ φ(x) for some p ∈ G}.
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In particular, for the atomic formula of equality, we have a P-name
∼
E representing

“equality” on X2. As each θp is consistent with T , it follows that (P,≤) forces
that

∼
E is an L-congruence. Choose a P-name

∼
N representing L-structure whose

universe is the quotient X/
∼
E and whose atomic formulas are interpreted as

∼
φ, and

choose P-names
∼
Nα for the substructure with universe Xα/∼

E.
Continuing, for every L-formula ψ(u) (with quantifiers) choose a P-name

∼
ψ

analogously to
∼
φ. Using the Henkin density conditions, a straightforward induction

on the quantifier complexity of ψ shows that for every x ∈ Xn and generic G ⊆ P,

V[G] |H “
∼
N |H ψ(x/

∼
E)” ⇐⇒ x ∈

∼
ψ[G]

and similarly for each
∼
Nα . From this, it follows that (P,≤) forces that each

∼
Nα ⪯

∼
N.

As each θp is a (consistent) complete formula with respect to T , (P,≤) also forces
that

∼
N is an atomic model of T . Finally, since each θp is a striated formula, we see

that (P,≤) also forces
∼
Nα+1 properly extends

∼
Nα, hence forces |

∼
N| = ℵ1. □

It remains to show that (P,≤) forces that
∼
N has every limit type constrained.

For this, we note a consequence of splitting inside an atomic model.

Remark 3.3.9. Suppose M ⪯ N are atomic, a ∈ M , b ∈ N , but tp(b/M) splits
over a. Then, letting θ(u) isolate the complete type of a and θ ′(w, u) isolate the
complete type of ba, there must be a complete formula η(v, u) ⊢ θ(u) and two
contradictory complete formulas δ1(w, v, u) and δ2(w, v, u), each extending the
(incomplete) formula η(v, u)∧ θ ′(w, u).

Proposition 3.3.10. (P,≤) forces every limit type in Sat(∼N) to be constrained.

Proof. To ease notation, in what follows write ψ in place of the more cumbersome
∼
ψ

throughout the argument. Call a function b : ω1 →
∼
N a limit sequence if, for all

α ≤ β, tp(b(α)/
∼
Nα)= tp(b(β)/

∼
Nα). Now, if (P,≤) does not force that every limit

type is constrained, then there is some p∗
∈ P and some P-name

∼
b and some club

C ⊆ ω1 such that

p∗ ⊩
∼
b is a limit sequence with tp(

∼
b(α)/

∼
Nα) unconstrained for every α ∈ C .

(Since (P,≤) is c.c.c. we can find such a club in V.)
For each α ∈ C , choose pα ∈ P, pα ≥ p∗ and x∗

α ∈ X such that

pα ⊩ ∼
b(α)= x∗

α.

We will eventually reach a contradiction by finding some q∗
≥ p∗ and some α < β

from C such that

q∗ ⊩ tp(x∗

α/Nα) ̸= tp(x∗

β/Nα)
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contradicting that p∗ ⊩
∼
b is a limit sequence. By a routine 1-system argument,

find a “root” p0 ∈ P, some γ ∗
∈ ω1, and a stationary set S ⊆ C satisfying

• p0 ≤ pα for all α ∈ S;

• u p0 ⊆ Jγ ∗ (first paragraph of Section 3.3); and

• for all α < β in S,
– xpα ∩ Xγ ∗ = xp0 ;
– max(u pα ) <min(u pβ \ u p0);
– lg(pα)= lg(pβ) and kpα = kpβ ; and
– the formulas θpα and θpβ have the same syntactic shape (one formula can

be obtained from the other by substituting the free variables).

Note that we do not require p0 ≥ p∗. As notation, we write z for xp0 and note that
z ⊆ Xγ ∗ . Now fix, for the remainder of the argument, some α <β from S. To obtain
our desired contradiction, we first concentrate on pα. Write θpα ( y, z) and note
that y is disjoint from Xγ ∗ . We apply Remark 3.3.9, noting that pα ⊩ tp(x∗

α/∼Nα)
splits over z. Choose a complete formula η(v, z) implying θp0(z) and contradictory
complete formulas δ1(x∗

α, v, z) and δ2(x∗
α, v, z), each extending η(v, z)∧θ∗

pα (x
∗
α, z),

where θ∗
pα is the restriction of the compete formula θpα ( y, z).

By Henkin, choose q0 ∈ P, q0 ≥ p0 with uq0 ⊆ Jα and θq0(z′, z) := η(z′, z).
Next, we use Lemma 3.3.6 twice. In both cases we start with p0 ≤ q0 and p0 ≤ pα .
Our first application gives r1

α ∈ P extending both q0 and pα with θr1
α
( y, z′, z) ⊢

δ1(x∗
α, z′, z). The second application gives r2

α ∈ P, also extending both q0 and pα
with θr2

α
( y, z′, z) ⊢ δ2(x∗

α, z′, z).
Next, we use the fact that the forcing (P,≤) is highly homogeneous. Due to the

similarity of pα and pβ found by the 1-system argument and described in the third
bullet point just above, Fact 3.3.2 gives an automorphism σ of (P,≤) sending pα
to pβ , fixing q0. Put r2

β := σ(r2
α). We now apply Lemma 3.2.5 to q0 ≤ r1

α and
q0 ≤ r2

β to get q∗
∈ P with q∗

≥ r1
α and q∗

≥ r2
β . However, this is impossible, as

q∗ ⊩ δ1(x∗

α, z′, z)∧ δ2(x∗

β, z′, z),

contradicting p∗ ⊩ tp(x∗
α/∼Nα) = tp(x∗

β/∼Nα) since δ1 and δ2 were chosen to be
contradictory. □

Proof of Theorem 2.3.2. Theorem 2.3.2 follows easily from Propositions 3.1.1
and 3.3.10 and Keisler’s model existence result for Lω1,ω(Q). In particular, in
some c.c.c. forcing extension V[G], by Proposition 3.3.10, there is an uncount-
able atomic model of T with every limit type constrained. Hence, by (2)⇒ (1)
of Proposition 3.1.1, there is a model of 9∗ in V[G]. By the absoluteness of
model existence from Keisler’s theorem, there is also a model of 9∗ in V. Hence,
by (1)⇒ (2) of Proposition 3.1.1, we obtain the existence of an atomic model of T
in V such that all limit types are constrained. □
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