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Sparse graphs and the fixed points on type spaces property

Rob Sullivan

We examine the topological dynamics of the automorphism groups of ω-
categorical sparse graphs resulting from Hrushovski constructions. Specifically,
we consider the fixed points on type spaces property, which a structure M has if,
for all n ∈ N, every Aut(M)-subflow of the space Sn(M) of n-types has a fixed
point. Extending a result of Evans, Hubička and Nešetřil, we show that there
exists an ω-categorical structure M , resulting from a Hrushovski construction,
such that no ω-categorical expansion of M has the fixed points on type spaces
property.

1. Introduction

The paper [Evans et al. 2019] is concerned with the topological dynamics of
the automorphism groups of sparse graphs, in the context of the Kechris–Pestov–
Todorčević correspondence [Kechris et al. 2005]. One of the key results of [Evans
et al. 2019] is the following:

Theorem [Evans et al. 2019, Theorem 1.2]. There exists an ω-categorical structure
M such that no ω-categorical expansion has an extremely amenable automorphism
group.

We recall that, for a Hausdorff topological group G, a G-flow is a continuous
action of G on a nonempty compact Hausdorff space X , and we say that G is
extremely amenable if every G-flow has a G-fixed point.

In this paper, we show that the above result holds even in the context of a more
restricted class of flows: subflows of type spaces. Let M be a relational structure.
Following [Meir and Sullivan 2023], we say that M has the fixed points on type
spaces property (FPT), if, for each n ∈N+, every subflow of Sn(M) has an Aut(M)-
fixed point, where Sn(M) denotes the Stone space of n-types with parameters from
M and the action is given by translation of parameters in formulae. This property
is studied in depth in [loc. cit.], and may be thought of as a restriction of extreme
amenability to a subclass of flows which occur naturally in a model-theoretic context.

This project formed the first part of the PhD of the author at Imperial College London, under the
supervision of professor David Evans.
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The main result of this paper is as follows.

Theorem 5.1. There is an ω-categorical structure M such that no ω-categorical
expansion has FPT , the fixed points on type spaces property.

The structure M appearing in both these results is a particular type of ω-
categorical sparse graph known as an ω-categorical Hrushovski construction (first
introduced in [Hrushovski 1988] — a clear introductory exposition may be found in
[Evans 2013]). A graph A is k-sparse if for all finite B ⊆ A, the number of edges
of B is at most k times the number of vertices of B.

The proof strategy for Theorem 5.1 is as follows. A central fact in the analysis
of sparse graphs is that a graph is k-sparse if and only if it is k-orientable: its
edges may be directed so that each vertex has at most k out-edges. This fact is well
known to graph theorists [Nash-Williams 1964], and the proof is by Hall’s marriage
theorem (see Proposition 2.6).

For any k-sparse graph M , the space Or(M) of k-orientations of M (with the
subspace topology from 2M2

) gives an Aut(M)-flow (Lemma 2.8). As in [Evans et al.
2019], we specialize to the case k= 2 (results generalize straightforwardly to any k).
Theorem 1.2 of [loc. cit.], the result of Evans, Hubička and Nešetřil mentioned
above, then immediately results from the following, using the Ryll–Nardzewski
theorem:

Proposition 5.2 (adapted from [Evans et al. 2019, Theorem 3.7]). Let M be an
infinite 2-sparse graph in which all vertices have infinite degree. Let G = Aut(M).

Consider the G-flow G ↷ Or(M). If H ≤ G fixes a 2-orientation of M , then H
has infinitely many orbits on M2.

To prove Theorem 5.1, we also use the above result. Letting M be the ω-
categorical Hrushovski construction detailed in Section 3, we define a notion of
when a 1-type encodes an orientation of M . We then define an Aut(M)-flow
morphism u : S1(M)→ 2M2

which sends each orientation-encoding 1-type to the
orientation it encodes. Let M ′ be an expansion of M with FPT, and let H =Aut(M ′).
Then H must fix a point in the subflow of orientation-encoding 1-types, so fixes an
orientation. We then use Proposition 5.2 to see that H has infinitely many orbits on
M2, so H is not oligmorphic, and therefore by the Ryll–Nardzewski theorem we
see that M ′ is not ω-categorical. Thus M has no ω-categorical expansion with FPT.

2. Background

In this section, we present the sufficient background material on topological dy-
namics, sparse graphs and Fraïssé classes with distinguished substructures (“strong
Fraïssé classes”) in order to be able to construct the ω-categorical examples of
sparse graphs (ω-categorical Hrushovski constructions) given in Section 3.
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We assume that the reader is familiar with the classical Fraïssé theory, the
pointwise convergence topology on automorphism groups of first-order structures
and the Ryll–Nardzewski theorem. (The background for these three topics can be
found in [Hodges 1993, Chapter 7] and [Evans 2013, Sections 1–2].)

The background material in this section has been mostly adapted from [Evans
et al. 2019] and [Evans 2013].

All first-order languages considered in this article will be countable and relational.

2A. Topological dynamics. A central object of study in topological dynamics is
the following (see [Auslander 1988] for a thorough background):

Definition 2.1. A G-flow is a continuous action G ↷ X of a Hausdorff topological
group G on a nonempty compact Hausdorff topological space X .

We will often simply write X to refer to the G-flow G ↷ X when this is clear
from context. Given a G-flow on X , G · x , the orbit closure of a point x ∈ X , is
a G-invariant compact subset of X . In general, a nonempty compact G-invariant
subset Y ⊆ X defines a subflow by restricting the G-action to Y .

Let X, Y be G-flows. A G-flow morphism X→Y is a continuous map α : X→Y
such that α(g · x)= g ·α(x) (this property is called G-equivariance). A surjective
G-flow morphism X → Y is called a factor of X , and we will also say that Y
is a factor of X when the morphism is contextually implied. Bijective G-flow
morphisms are isomorphisms, as they are between compact Hausdorff spaces.

2B. Graphs. We work with graphs in first-order logic as follows. Let L be a first-
order language consisting of a single binary relation symbol E . A graph consists
of an L-structure (A, E A) where the binary relation E A

⊆ A2 is symmetric and
irreflexive. We call A the vertex set, and write E A for the set of unordered pairs
{a, b} such that (a, b) ∈ E A. We call E A the edge set, and this will usually be
the relevant set we work with in this paper, following the usual graph-theoretic
definition of a graph — rather than the symmetric set E A of ordered pairs, which
we only introduce for the sake of first-order structure formalism. We will usually
just write A to denote the graph (A, E A) when this is clear from context. We will
often write ∼ instead of E in formulae to indicate adjacency.

By the above definition, here we only work with simple graphs: graphs having
no loops on a single vertex or multiple edges between two vertices.

Definition 2.2. Let (A, E A) be a graph. A set ρ A
⊆ A2 is an orientation of (A, E A)

if

• ρ A
⊆ E A;

• for each (x, y) ∈ E A, exactly one of (x, y), (y, x) is in ρ A.
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We may visualize the above definition as follows: an orientation of a graph
consists of a direction for each edge.

Note that the above definition implies that ρ A contains no directed loops or
directed 2-cycles. We will refer to (A, E A, ρ A) as an oriented graph.

Definition 2.3. Let (A, E A, ρ A) be an oriented graph.
If (x, y) ∈ ρ A, we refer to (x, y) as an out-edge of x and as an in-edge of y. We

call y an out-vertex of x , and x an in-vertex of y.
The out-neighborhood N

+
(x) of x consists of the out-vertices of x . The in-

neighborhood N–(x) of x consists of the in-vertices of x . The out-degree d
+
(x) of

x is defined to be d
+
(x) = |N

+
(x)|, and the in-degree d–(x) of x is defined to be

d–(x)= |N–(x)|.

When we refer to a subgraph of a graph, or an oriented subgraph of an oriented
graph, we mean a substructure in the model-theoretic sense. For graph theorists,
these substructures would usually be referred to as induced subgraphs.

(We use the full notation for structures in this section for clarity, but henceforth
we will usually denote graphs (A, E A) by A, and oriented graphs (A, E A, ρ A) by
A or (A, ρ A).)

2C. Sparse graphs.

Definition 2.4. Let k ∈ N+. A graph A is k-sparse if for all B ⊆fin . A, we have
|EB | ≤ k|B|.

Definition 2.5. Let (A, ρ A) be an oriented graph. Let k ∈ N+. We call ρ A a
k-orientation if for x ∈ A, we have d

+
(x)≤ k. We refer to (A, ρ A) as a k-oriented

graph.
If an undirected graph A has a k-orientation, we say it is k-orientable.

The following proposition is well-known to graph theorists [Nash-Williams
1964], and will be a key tool here. We present the proof as it is relatively brief.

Proposition 2.6 [Evans et al. 2019, Theorem 3.4]. Let A be a countable graph.
Then A is k-orientable if and only if it is k-sparse.

Proof.⇒: straightforward.

⇐: We prove the statement for finite A, and then the statement for countably
infinite A follows by a straightforward Kőnig’s lemma argument. We wish to
produce a k-orientation of A, and to do this we must direct each edge. We will
use Hall’s marriage theorem [Bollobás 1998, III.3], which for the convenience of
the reader we briefly restate: for a finite bipartite graph B with left set X and right
set Y , there is an X -saturated matching if and only if |W | ≤ |NB(W )| for W ⊆ X .
(Here NB(W ) denotes the neighborhood of W in B.)



SPARSE GRAPHS AND THE FIXED POINTS ON TYPE SPACES PROPERTY 865

Form a bipartite graph B with left set E A and right set A× [k], and place an
edge between e ∈ E A and (x, i) ∈ A×[k] if x ∈ e. Given a left-saturated matching,
if e is matched to (x, i), we orient e outwards from x , and this gives a k-orientation
of A.

To see that a left-saturated matching exists, take W ⊆ E A. Let V be the set of
vertices of the edges which lie in W . Then |NB(W )| = k|V |, and as A is k-sparse,
we have that k|V | ≥ |EA(V )|, where EA(V ) is the set of edges in A whose vertices
lie in V . As |EA(V )| ≥ |W |, by Hall’s marriage theorem there exists a left-saturated
matching of the bipartite graph B. □

For presentational simplicity, we will work with k = 2. Our results generalize
straightforwardly for k > 2.

Note. In this paper, we may occasionally say “oriented graph” to in fact mean
“2-oriented graph”. We will try to avoid this in general, but when this does occur
the meaning will be clear from context.

Definition 2.7. Let M be a 2-sparse graph. We let Or(M) ⊆ 2M2
denote the

topological space of 2-orientations of M , where the topology is given by the
subspace topology from the Cantor space 2M2

.

Lemma 2.8. Let M be a 2-sparse graph. Then Or(M) is an Aut(M)-flow with the
natural action

g · ρ = {(gx, gy) : (x, y) ∈ ρ}.

Proof. By Proposition 2.6, we see that Or(M) is nonempty, and it is immediate
that Or(M) is Aut(M)-invariant. It therefore remains to show that Or(M) is closed
in 2M2

: if σ ∈ 2M2
is not a 2-orientation, then this is witnessed on a finite set, so

2M2
\Or(M) is open. □

2D. Graph predimension. One way to characterize 2-sparsity is in terms of a
particular notion of graph predimension.

Definition 2.9. Let A be a finite graph. We define the predimension δ(A) of A to
be δ(A)= 2|A| − |E A|.

For B ⊆ A, we define the relative predimension of A over B to be δ(A/B) =

δ(A)− δ(B).

We immediately see that, for A a finite graph, A is 2-sparse if and only if for all
B ⊆ A we have δ(B)≥ 0.

2E. Strong classes. For the ω-categorical Hrushovski constructions in Section 3,
we will need to take a class of sparse graphs where we only consider particular
distinguished embeddings between structures in the class, and for this we require
the definition below. In the subsequent section, we will construct Fraïssé classes
where we only permit these distinguished embeddings between finite structures.
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Definition 2.10. Let K be a class of finite L-structures closed under isomorphisms.
Let S ⊆ Emb(K) be a class of embeddings between structures in K satisfying that

(S1) S contains all isomorphisms;

(S2) S is closed under composition;

(S3) if f : A→ C is in S and f (A)⊆ B ⊆ C with B ∈K, then f : A→ B is in S.

Then we call (K,S) a strong class, and call the elements of S strong embeddings.
(This is originally due to Hrushovski [1988]. An accessible exposition of strong

classes is in [Evans 2013, Section 3].)
If A, B ∈ K, A ⊆ B and the inclusion map ι : A ↪→ B is in S, then we write

A ≤ B and say A is a strong substructure of B. We then have that

(L1) ≤ is reflexive;

(L2) ≤ is transitive;

(L3) if A ≤ C and A ⊆ B ⊆ C with B ∈ K, then A ≤ B.

We will often write (K,≤) instead of (K,S), and we will refer to the elements
of S as ≤-embeddings.

If (K,≤) is a strong class (i.e., S satisfies (S1), (S2), (S3)), then we have that
for f : A→ B in S, if X ≤ A, then f (X)≤ B.

Definition 2.11. Suppose (K,≤) is a strong class. Let A0 ≤ A1 ≤ · · · be an
increasing ≤-chain of structures in K, and let M =

⋃
i∈N Ai . Let A ⊆fin . M .

Then we write A ≤ M , and say that A is a strong substructure of M , or that A is
≤-closed in M , to mean that there is some Ai (i ∈ N) with A ≤ Ai .

Given A ∈ K and an embedding f : A→ M , we will likewise say that f is a
≤-embedding if f (A)≤ M .

The above definition is independent of the choice of≤-chain. To see this, suppose
M is also the union of the elements of an increasing ≤-chain B0 ≤ B1 ≤ · · · of
K-structures. Take any Ai (i ∈N). Then Ai ⊆ B j for some j ∈N, and B j ⊆ Ak for
some k ≥ i . As Ai ≤ Ak , by (L3) we have Ai ≤ B j .

Let g ∈ Aut(M). Take a pair Ai ≤ A j (i < j). Then g|A j : A j → g A j is an
isomorphism, so g|A j ∈ S, and so g Ai ≤ g A j . Thus M is also the union of the
increasing ≤-chain g A0 ≤ g A1 ≤ · · · . So if A ≤ M , then g A ≤ M : that is, all
g ∈ Aut(M) preserve ≤.

2F. Fraïssé theory for strong classes. We now develop an analogue of the classical
Fraïssé theory for strong classes. We omit the proofs and state the relevant material
as a series of definitions and lemmas. (For the classical Fraïssé theory, originally
developed in [Fraïssé 1954], see [Hodges 1993, Chapter 7], and for a more complete
treatment of Fraïssé theory for strong classes, see [Evans 2013, Section 3].)
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Definition 2.12. Let (K,≤) be a strong class of L-structures.

• (K,≤) has the joint embedding property (JEP) if for A0, A1 ∈ K, there is
B ∈ K with ≤-embeddings f0 : A0→ B, f1 : A1→ B.

• (K,≤) has the amalgamation property (AP) if, for any pair of ≤-embeddings
B0

f0
←− A f1

−→ B1, there exists C ∈ K and a pair of ≤-embeddings B0
g0
−→

C g1
←− B1 such that g0 ◦ f0 = g1 ◦ f1.

• For A, B0, B1 ∈ K with A ≤ B0, B1, the free amalgam C of B0, B1 over A is
the L-structure C whose domain is the disjoint union of B0, B1 over A and
whose relations RC are exactly the unions RB0 ∪ RB1 of the relations RB0, RB1

on B0, B1 (for R a relation symbol in L). If for all L-structures A, B0, B1 ∈K
with A ≤ B0, B1 we have that the free amalgam C of B0, B1 over A is in K
with B0, B1 ≤ C , then we say that (K,≤) is a free amalgamation class.

We will usually not mention the distinguished class of embeddings in our termi-
nology, as it will be clear from context and the fact that we are working with strong
classes. For instance, we say that (K,≤) has the amalgamation property, even
though perhaps more strictly we should say that (K,≤) has the ≤-amalgamation
property.

In the following definitions and lemmas, let (K,≤) be a strong class, and let M
be the union of an increasing ≤-chain A1 ≤ A2 ≤ · · · of finite structures in (K,≤).

Definition 2.13. The ≤-age of M , written Age≤(M), is the class of A ∈ K such
that there is a ≤-embedding A→ M .

The class (Age≤(M),≤) is a ≤-hereditary strong subclass of (K,≤), and it has
the ≤-joint embedding property.

Definition 2.14. M has the ≤-extension property if for all A, B ∈ Age≤(M) and
≤-embeddings f : A→ M, g : A→ B, there exists a ≤-embedding h : B→ M
with h ◦ g = f .

M is ≤-ultrahomogeneous if each isomorphism f : A→ A′ between strong
substructures A, A′ of M extends to an automorphism of M .

(Again, when it is clear from context, we will often omit the ≤- prefix and just
say that M has the extension property or is ultrahomogeneous.)

Lemma 2.15. Let M ′ also be a union of an increasing ≤-chain in K. Suppose
M, M ′ have the same ≤-age and both have the ≤-extension property. Then M, M ′

are isomorphic.

Lemma 2.16. M is ≤-ultrahomogeneous if and only if M has the ≤-extension
property.

Lemma 2.17. Suppose M is ≤-ultrahomogeneous. Then the class (Age≤(M),≤)

has the amalgamation property.
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Definition 2.18. Let (K,≤) be a strong class. We say that (K,≤) is an amalgama-
tion class or Fraïssé class if (K ≤) contains countably many isomorphism types,
contains structures of arbitrarily large finite size, and has the joint embedding and
amalgamation properties.

Theorem 2.19 (Fraïssé–Hrushovski). Let (K,≤) be an amalgamation class. Then
there is a structure M which is a union of an increasing ≤-chain in K such that M
is ≤-ultrahomogeneous and Age≤(M) = K, and M is unique up to isomorphism
amongst structures with these properties.

We call this structure the Fraïssé limit or generic structure of K.

3. ω-categorical sparse graphs

The material in this section is based on [Evans et al. 2019] and the unpublished notes
[Evans 2013], with some minor modifications, and constitutes further background
required for Section 5.

We now construct an amalgamation class of sparse graphs whose Fraïssé limit is
ω-categorical. Specifically, this will be a version of the ω-categorical Hrushovski
construction MF , first seen in [Hrushovski 1988]. We will do this by defining a
notion of closure (i.e., a particular notion of strong substructure), d-closure, which
will be uniformly bounded. The relevance of this can be seen in the lemma below.

Lemma 3.1 [Evans et al. 2019, Remark 2.8]. Let (K,≤) be an amalgamation class
such that for each n ∈ N, (K,≤) has only finitely many isomorphism classes of
structures of size n. Suppose there is a function h : N→ N such that for B ∈ K and
A ⊆ B with |A| ≤ n, there exists A ⊆ C ≤ B with |C | ≤ h(n).

Then the Fraïssé limit M of (K,≤) is ω-categorical.

(The function h will be a uniform bound on the size of ≤-closures.)

Proof. By the Ryll–Nardzewski theorem, it suffices to show that, for n ≥ 1, Aut(M)

has finitely many orbits on Mn . Take n ≥ 1. As there are only finitely many
isomorphism types of structures of size ≤ h(n) in K and M is ≤-ultrahomogeneous,
we have that Aut(M) has finitely many orbits on {c̄ ∈ Mh(n)

: c̄ ≤ M}. We can
extend any ā ∈ Mn to an element of this set (note that in ordered tuples, we can
have repeats of elements). If ā, ā′ are not in the same orbit, then nor will their
extensions be, so we are done. □

Definition 3.2. Let C>0 be the class of finite graphs A such that for nonempty
B ⊆ A, we have δ(B) > 0.

We note that for A ∈ C>0, if A′ ⊆ A then A′ ∈ C>0.

Definition 3.3. Take A, B ∈ C>0 with A ⊆ B. We say that A is d-closed in B,
written A ≤d B, if for all A ⊊ C ⊆ B, we have δ(A) < δ(C).
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Lemma 3.4 (submodularity [Evans 2013, Lemma 3.7]). Let A be a finite graph,
and let B, C ⊆ A. Then we have that

δ(B ∪C)≤ δ(B)+ δ(C)− δ(B ∩C).

We have equality if and only if EB∪C = EB ∪ EC , i.e., B, C are freely amalgamated
over B ∩C in A.

The proof of the above lemma is straightforward. We now prove some basic
properties of ≤d .

Lemma 3.5 [Evans 2013, Lemma 3.10]. Let B ∈ C>0. Then:

(1) A ≤d B, X ⊆ B ⇒ A∩ X ≤d X.

(2) A ≤d C ≤d B ⇒ A ≤d B.

(3) A1, A2 ≤d B ⇒ A1 ∩ A2 ≤d B.

Proof. (1) Take A∩ X ⊊ Y ⊆ X . Note that A∩ Y = A∩ X . By submodularity,

δ(A∪ Y )≤ δ(A)+ δ(Y )− δ(A∩ Y )= δ(A)+ δ(Y )− δ(A∩ X),

so δ(Y )−δ(A∩ X)≥ δ(A∪Y )−δ(A) > 0, using the fact that A ⊊ A∪Y ⊆ B.

(2) We may assume A ̸= C . Take A ⊊ X ⊆ B. By (1) applied to C ≤d B and
X ⊆ B, we have C ∩ X ≤d X . Also we have A ⊆ C ∩ X ⊆ C . So, as A ≤d C ,
we have δ(A) < δ(X).

(3) By (1), A1 ∩ A2 ≤d A1. Then use (2). □

For B ∈ C>0, by part (3) of the previous lemma we see that for A ⊆ B we
have that

⋂
A⊆A′≤d B A′ ≤d B, so we can define the d-closure of A in B as this

intersection, written cldB(A).

Lemma 3.6 [Evans 2013, Lemma 3.12]. Let B ∈ C>0 and let A ⊆ B. Then
δ(A)≥ δ(cldB(A)).

Proof. Amongst all A ⊆ X ⊆ B, consider those for which δ(X) is smallest, and
then out of these choose a C of greatest size. By the first stage of selection, we
have δ(C)≤ δ(A), and by the second stage, if C ⊊ D ⊆ B then δ(C) < δ(D), so
C ≤d B. So cldB(A)⊆ C ⊆ B, and as cldB(A)≤d B, we have δ(cldB(A))≤ δ(C). □

Lemma 3.7 [Evans 2013, Lemma 3.15]. (C>0,≤d) is a free amalgamation class.

Proof. It only remains to check the free amalgamation property (which implies JEP).
We prove a stronger claim. Given A, B1, B2 ∈ C>0 such that A ≤d B1 and A ⊆ B2,
with B1, B2 ⊆ E , where E is the free amalgam of B1, B2 over A, we claim that
B2 ≤d E . Once we have the claim, note that ∅≤d B2 ≤d E implies that E ∈ C>0.
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Take B2 ⊊ X ⊆ E . Then letting Y = X ∩ B1, we have Y ⊋ A and X = B2 ∪ Y ,
and X is the free amalgam of B2, Y over A. So

δ(X)= δ(B2 ∪ Y )= δ(B2)+ δ(Y )− δ(A),

and so, as A ≤d B1,

δ(X)− δ(B2)= δ(Y )− δ(A) > 0. □

The Fraïssé limit M>0 of (C>0,≤d) is not ω-categorical, as for A ⊆fin . M>0,
there is no uniform bound on |cld(A)| in terms of |A|.

To construct ω-categorical examples, as mentioned at the start of this section,
we consider subclasses of C>0 in which d-closure is uniformly bounded.

Definition 3.8. Let F : R≥0→ R≥0 be a continuous, strictly increasing function
with F(0)= 0 and F(x)→∞ as x→∞. We define

CF := {B ∈ C>0 : δ(A)≥ F(|A|) for all A ⊆ B}.

Note that if B ∈ CF and C ⊆ B, then C ∈ CF .

Lemma 3.9 [Evans 2013, Theorem 3.19; Evans et al. 2019, Theorem 4.14].

(1) For B ∈ CF , A ⊆ B, we have |cldB(A)| ≤ F−1(2|A|).

(2) If (CF ,≤d) is an amalgamation class, then its Fraïssé limit MF is ω-categorical.

Proof. (1) From Lemma 3.6 and the fact that cldB(A)∈ CF , we have F(|cldB(A)|)≤

δ(cldB(A))≤ δ(A)≤ 2|A|.

(2) This follows from Lemma 3.1. □

Definition 3.10. Suppose that (CF ,≤d) is an amalgamation class, and write MF

for its Fraïssé limit.
For A ⊆ MF with A infinite, we say that A ≤d MF if A∩ X ≤d X for all finite

X ⊆ MF .
(Note that if A is finite, then A ≤d MF if and only if A∩ X ≤d X for all finite

X ⊆ MF , by part (1) of Lemma 3.5, so this definition is consistent.)
Similarly we define cldMF

(A) as the smallest≤d -closed subset of MF containing A.
(This is well-defined: intersections of ≤d -closed subsets of MF are ≤d -closed, by
part (2) of Lemma 3.5.)

Let A be a graph, possibly infinite, which is embeddable in MF . We say that an
embedding f : A→ MF is a ≤d -embedding if f (A)≤d MF .

We now describe a method for constructing the control function F to ensure that
(CF ,≤d) is a free amalgamation class.

Lemma 3.11 (adapted from [Evans 2013, Example 3.20; Evans et al. 2019, Ex-
ample 4.15]). Let n ∈ N. Let F be as in Definition 3.8, and assume additionally
that
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• F is piecewise smooth;

• its right derivative F ′ is decreasing;

• F ′(x)≤ 1/x for x > n;

• for A, B1, B2 ∈ CF with A≤d B1, B2 and |B1|< n, |B2|< n, the free amalgam
of B1, B2 over A lies in CF .

Then (CF ,≤d) is a free amalgamation class.

Proof. Let A, B1, B2 ∈ CF , with A ≤d B1, B2. We may assume |B1| ≥ n and
|B1| ≥ |B2|. Let E be the free amalgam of B1, B2 over A. By Lemma 3.7, E ∈ C>0

and B1, B2 ≤d E . We need to show that E ∈ CF . Assuming E ̸= B1, B2, we have
A ̸= B1, B2. Suppose X ⊆ E : we need to show that δ(X) ≥ F(|X |). As X is the
free amalgam of B1∩ X , B2∩ X over A∩ X and as A∩ X ≤d Bi ∩ X , it suffices to
check just for X = E .

We have that

δ(E)= δ(B1)+ δ(B2)− δ(A)= δ(B1)+ (|B2| − |A|)
δ(B2)− δ(A)

|B2| − |A|
.

As |B1| ≥ |B2| and as A ≤d B1 with A ̸= B1, we have

δ(B2)− δ(A)

|B2| − |A|
≥

1
|B1|

.

So
δ(E)≥ δ(B1)+

|B2| − |A|
|B1|

≥ F(|B1|)+
|B2| − |A|
|B1|

,

and as the conditions on F ensure that F(x + y)≤ F(x)+ y/x for x ≥ n, we have

δ(E)≥ F(|B1| + |B2| − |A|)= F(|E |). □

4. The fixed points on type spaces property (FPT)

The following is folklore:

Lemma 4.1. Let M be an L-structure, and let G = Aut(M) with the pointwise
convergence topology. Then, for each n ≥ 1, G acts continuously on the Stone space
Sn(M) of n-types with parameters in M , with the action given by

g · p(x̄)= {φ(x̄, gm̄) : φ(x̄, m̄) ∈ p(x̄)}.

That is, G ↷ Sn(M) with the action defined above is a G-flow.

See [Meir and Sullivan 2023, Lemma 4.1] for a proof. (The proof is relatively
straightforward and follows via a compactness argument.)

Note that we define the action of G on L(M)-formulae as

g ·φ(x̄, m̄)= φ(x̄, gm̄).



872 ROB SULLIVAN

Definition 4.2 [Meir and Sullivan 2023, Definition 4.2]. Let M be an L-structure
and let G = Aut(M). We say that M has the fixed points on type spaces property
(FPT) if every subflow of G ↷ Sn(M), n ≥ 1, has a fixed point.

Note that FPT is equivalent to every orbit closure G · p(x̄) in Sn(M) having a
fixed point.

The below lemma will play a key role in the proof of Theorem 5.1. (See
Section 2A for the definition of a factor.)

Lemma 4.3. Let M be an L-structure and let G = Aut(M). Suppose that M has
FPT. Then every subflow of each factor of G ↷ Sn(M), n ≥ 1, has a fixed point.

The proof is straightforward.

5. An ω-categorical structure such that no ω-categorical expansion has FPT

We will now discuss the main result of this paper, which is new.

Theorem 5.1. There is an ω-categorical structure M such that no ω-categorical
expansion has FPT , the fixed points on type spaces property.

The ω-categorical structure M in the above theorem will be a particular case of
the 2-sparse graph MF , the ω-categorical Hrushovski construction from Section 3.

The proof will depend on the following key result from [Evans et al. 2019]:

Proposition 5.2 [Evans et al. 2019, Theorem 3.7]. Let M be an infinite 2-sparse
graph in which all vertices have infinite degree. Let G = Aut(M), and let H ≤ G.

Consider the G-flow G ↷ Or(M). If H fixes a 2-orientation of M , then H has
infinitely many orbits on M2.

Before giving the details of the proof of Theorem 5.1, we first give an informal
general outline.

The informal overview of the proof is as follows. Let G = Aut(M). For each
orientation τ ∈ Or(M), we will define a notion of when a 1-type p(x) ∈ S1(M)

encodes τ (see Figure 1), and we will have an associated “decoding” G-morphism
u : S1(M)→ 2M2

sending each orientation-encoding 1-type back to the orientation
it encodes. We will show that each orientation has a 1-type encoding it, and thus u
contains Or(M) in its image. Now, let M ′ be an expansion of M with FPT, and let
H denote its automorphism group. There is an H -factor map w : S1(M ′)→ S1(M)

given by the restriction map, and so composing with u we see that Or(M) is an
H -subflow of a factor of S1(M ′). Thus, by Lemma 4.3, as M ′ has FPT, H fixes an
orientation of M . Therefore, by Proposition 5.2, H will have infinitely many orbits
on M2, and thus by the Ryll–Nardzewski theorem M ′ cannot be ω-categorical.

We now start the formal details of the proof of Theorem 5.1, which proceeds in
three parts.
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Part 1: specify the control function. We begin with a description of the control
function F and properties of the class CF used to produce the structure M for
Theorem 5.1. It will become clearer in later steps why we take control functions
satisfying the below conditions.

Lemma 5.3. Let F be a control function for the class CF satisfying the conditions
of Definition 3.8, and additionally assume that

• F is piecewise smooth, and its right derivative F ′(x) is decreasing;

• F(1)= 2, F(2)= 3;

• F ′(x)≤ 2/(8x + 1) for x ≥ 2, where F ′ denotes the right derivative.

Then

(1) CF contains a point and an edge, and points and edges are d-closed in elements
of CF ;

(2) (CF ,≤d) is a free amalgamation class;

(3) each vertex of MF has infinite degree (where MF is the Fraïssé limit of
(CF ,≤d));

(4) if a0a1 · · · an−1 is a path, then a0a1 · · · an−1 ∈ CF ;

(5) F(4) < 4, F(5) < 4, F(6) < 4;

(6) if abcd is a 4-cycle, then abcd ∈ CF .

Proof. (1) As F(1) = 2, if x is a point then δ({x}) = 2 = F(|{x}|), so {x} ∈ CF .
If ab is an edge, then δ(ab) = 3 = F(2), so ab ∈ CF . As F is strictly increasing,
points and edges are d-closed in elements of CF .

(2) Take A, B1, B2 ∈ CF with A ≤d B1, B2. Then as F ′(x) ≤ 2/(8x + 1) < 1/x
for x ≥ 2, by Lemma 3.11 we need only check the case |B1|, |B2| ≤ 1, and
the only nontrivial case is where A = ∅: if b1, b2 are nonadjacent points then
δ({b1, b2})= 4 > F(2). So (CF ,≤d) is a free amalgamation class.

(3) Let k ≥ 1. Let ax ∈ CF be an edge. The point a is d-closed in ax , and so by
taking the free amalgamation of k copies ax1, . . . , axk of ax over a, we have that
the star graph Sk is in CF (where Sk is the complete bipartite graph K1,k). Using
the ≤d -extension property of MF , this implies that each vertex of MF has infinite
degree.

(4) Proceed by induction, and obtain a0 · · · an−1 ∈ CF by the free amalgamation of
a0 · · · an−2 and an−2an−1 over an−2.

(5) F is strictly increasing, and so it suffices to show F(6) < 4. F(6) ≤ F(2)+∫ 6
2 2/(8x + 1) dx = 3+ 1

4 log(49)− 1
4 log(17) < 4.
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(6) Let abcd ⊆ MF be a 4-cycle. Then δ(abcd) = 4 > F(4). For C ⊊ abcd, C
either consists of a path of length 2, an edge, two nonadjacent points or a single
point. All of these lie in CF . □

Throughout the rest of the proof of Theorem 5.1 in Section 5, we will assume F
is a control function satisfying the conditions of Lemma 5.3, and we write M =MF .
The first three conditions of the above lemma are relatively standard; the fourth
condition is the one that is particularly specific to our example, constituting a mild
additional restriction on F .

Note that control functions satisfying the conditions of the above lemma do
indeed exist: for example, take F piecewise linear with F(0) = 0, F(1) = 2,
F(2)= 3, and then for x ≥ 2 define F(x)= 1

4 log(8x + 1)+ 3− 1
4 log(17).

Part 2: types encoding orientations, the encoding lemma, and its use in proving
the main theorem. Given an orientation τ ∈ Or(M), we will define a particular
notion of when a 1-type encodes τ .

We write L for the language of graphs (so M is an L-structure).

Definition 5.4. For a, b∈M , we define the label formula f (x, a, b) in the language
L(M) (with constants from M and free variable x) to be:

f (x, a, b)≡ (x ̸= a ∧ x ̸= b∧ a ̸= b∧ a ∼ b)∧

(∃ l1, l2, l3, l4)

((∧
i< j

li ̸= l j

)
∧

(∧
i

li ̸= x ∧ li ̸= a ∧ li ̸= b
)
∧

(x ∼ l1 ∧ l1 ∼ l2 ∧ l2 ∼ l3 ∧ l3 ∼ l4 ∧ l4 ∼ l1 ∧ l2 ∼ a ∧ l4 ∼ a ∧ l3 ∼ b)

)
.

(See Figure 1.)
Let τ ∈ Or(M), and let p(x) ∈ S1(M). We say that p(x) encodes τ if p(x)

contains the following set of formulae:

{ f (x, a, b) : (a, b) ∈ τ } ∪ {¬ f (x, a, b) : (a, b) ∈ M2
\ τ }.

Informally, p(x) encodes τ if, for every pair (a, b) ∈ M2, we have that (a, b) ∈

τ if and only if a, b are adjacent and (a, b) has a “label structure” L(a,b) =

{x, l(a,b)
1 , l(a,b)

2 , l(a,b)
3 , l(a,b)

4 } attached to it, where all label structures intersect exactly
in the “head vertex” x . See Figure 1 for an example of this (where p(x) has been
realized as a point c).

We define the decoding map u : S1(M)→ 2M2
by

u(p(x))= {(a, b) ∈ M2
: f (x, a, b) ∈ p(x)}.

(Note that we will often use subset notation when formally we in fact mean the
characteristic function of that subset within M2.)
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c

a b a′
b′

l(a,b)
1

l(a,b)
2 l(a,b)

3

l(a,b)
4 l(a

′,b′)
1

l(a
′,b′)

2 l(a
′,b′)

3

l(a
′,b′)

4

MF

Figure 1. Encoding an orientation using label structures.

It is immediate that if p(x) encodes τ , then u(p(x))= τ .

The proof of the following is straightforward.

Lemma 5.5. The map u is a G-flow morphism.

Now we turn to the key result used in the proof of Theorem 5.1, which we call
the encoding lemma:

Lemma 5.6. For each orientation τ ∈ Or(M), there exists a type p(x) ∈ S1(M)

encoding τ . Thus Or(M) is a subflow of the image of the decoding map u.

Before proving Lemma 5.6, whose proof involves a significant amount of techni-
cal work, we show how to use it to prove Theorem 5.1.

Proof of Theorem 5.1 given Lemma 5.6. Let M ′ be an expansion of M with FPT.
Let H = Aut(M).

We have a surjective H -flow morphism w : S1(M ′)→ S1(M) given by restriction,
i.e.,

w(p(x))= {ϕ(x) ∈ p(x) : ϕ(x) is a formula in the language L(M)}.

We have that u : S1(M)→ 2M2
is a G-flow morphism, and Or(M) is a G-subflow

of 2M2
contained in the image of u. By considering u as an H -flow morphism to its
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image, we have that u ◦w is an H -factor of S1(M ′) with Or(M) as a subflow of its
image. As M ′ has FPT, by Lemma 4.3 we see that H fixes an orientation on M . By
Proposition 5.2, H has infinitely many orbits on M2, and so is not oligomorphic.
Therefore M ′ is not ω-categorical, by the Ryll–Nardzewski theorem. □

Part 3: the proof of the encoding lemma. We now prove Lemma 5.6. This forms
the bulk of the technical work in this paper.

Let τ ∈ Or(M). To show that there exists a type encoding τ , it suffices to show
that the set of formulae

3(x)= { f (x, a, b) : (a, b) ∈ τ } ∪ {¬ f (x, a, b) : (a, b) ∈ M2
\ τ }

is finitely satisfiable in M itself: this implies via compactness that there exists a
type p(x) ∈ S1(M) containing this set of formulae.

Again, before beginning the proof of Lemma 5.6 we provide a brief informal
overview. In order to show the finite satisfiability of 3(x), we will take a finite
d-closed substructure A of M and show that the set 3A(x) is satisfiable in M , where
3A(x) consists of the formulae in 3(x) with parameters only from A. We will
construct a graph B with head vertex c of label structures over A (as in Figure 1)
such that A ≤d B and B ∈ CF . Therefore in fact we may assume A ≤d B ≤d M ,
using the ≤d-extension property. We will then show that the only label structures
in M over any pair of elements of A can be found in B, using the fact that B is
d-closed in M , and thus we have that M |H3A(c).

We now begin the formal proof. Let A ≤d M be finite. We define a graph B as

• B includes A as a substructure;

• add a new vertex c to B, with c /∈ A;

• for (a, b) ∈ τ |A (i.e., the edge ab is oriented from a to b in the orientation τ

and ab is an edge of A), add to B four new vertices l(a,b)
1 , l(a,b)

2 , l(a,b)
3 , l(a,b)

4
and new edges

cl(a,b)
1 , l(a,b)

1 l(a,b)
2 , l(a,b)

2 l(a,b)
3 , l(a,b)

3 l(a,b)
4 , l(a,b)

4 l(a,b)
1

and add two edges l(a,b)
2 a, l(a,b)

4 a (to the “start vertex” a) and one edge l(a,b)
3 b

(to the “end vertex” b).

For (a, b) ∈ τ |A, let L(a,b) = {c, l(a,b)
1 , l(a,b)

2 , l(a,b)
3 , l(a,b)

4 }. Informally, each
(a, b) ∈ τ |A has its orientation labeled by L(a,b).

We have that
B = A∪

⋃
(a,b)∈τ |A

L(a,b)

and the L(a,b) intersect only in c. We will show that A ≤d B and B ∈ CF .
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It is recommended that the reader consult Figure 1 during the technical lemmas
in this part of the proof.

Lemma 5.7. We have A ≤d B.

Proof. For A ⊊ C ⊆ B, we need to show δ(C) > δ(A).
First consider the case where A consists of a single edge ab, with (a, b) ∈ τ

(recall that we chose the control function F so that edges are always d-closed). Then,
suppressing subscripts for notational convenience, we have B={c, l1, l2, l3, l4, a, b}.
We calculate the relative predimension of some A ⊊ C ⊆ B in the table below.

C \ A δ(C/A)

l2 1
l3 1
l4 1

l1, l2 2
l1, l4 2
l2, l3 1
l3, l4 1
c, l1 3

l1, l2, l3 2
l1, l2, l4 2
l1, l3, l4 2
l2, l3, l4 1

l1, l2, l3, l4 1
c, l1, l2, l3, l4 2

The remaining cases result from free amalgamations over A, and so also have
positive predimension (as if two graphs X, Y are freely amalgamated over Z , then
δ((X ∪Y )/Z)= δ(X/Z)+δ(Y/Z)). The remaining cases are where C \ A is equal
to {l1}, {c}, {l1, l3}, {l2, l4} or {c} ∪ X , where X ⊆ {l2, l3, l4}.

Now consider the general case of finite A ≤d M . Given A ⊊ C ⊆ B, the vertices
of C consist of A together with subsets J(a,b) of L(a,b) for each (a, b) ∈ τ |A. For
(a, b) ∈ τ |A, let J ′(a,b) = J(a,b) ∪ A.

If c /∈ C , then the J ′(a,b) are freely amalgamated over A, and so from the single-
edge case we see that δ(C/A) > 0.

We now consider the case where c ∈ C . If l(a,b)
1 /∈ J(a,b) for all (a, b) ∈ τ |A, then

C consists of a vertex c with no neighbors together with a free amalgamation over
A of each of the J ′(a,b) \ {c}, for (a, b) ∈ τ |A. So, from the single-edge case and the
fact that δ({c})= 2, we have that δ(C/A) > 0.

If c ∈ C and there exists (a′, b′) ∈ τ |A with l(a
′,b′)

1 ∈ J(a′,b′), then C is the free
amalgam over A of each of the J ′(a,b)\{c} for which l(a,b)

1 /∈ J(a,b) (where (a, b)∈τ |A),
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together with ⋃
{J ′(a,b) : (a, b) ∈ τ |A, l(a,b)

1 ∈ J(a,b)}.

Therefore we need only consider the case where l(a,b)
1 ∈ J(a,b) for all (a, b) ∈ τ |A.

The single-edge calculation shows that δ(J(a,b) \ {c}/A) ≥ 1 for each J(a,b), and
these J ′(a,b) \ {c} are freely amalgamated over A. Each addition of an edge cl(a,b)

1
reduces the predimension by one, but the single addition of the vertex c adds two
to the predimension, so in total δ(C/A) > 0. □

Lemma 5.8. For (a, b) ∈ τ |A, we have that the substructures of B given by
{a, b, l(a,b)

1 , l(a,b)
2 , l(a,b)

3 , l(a,b)
4 } and L(a,b) lie in CF .

Proof. We write l1, l2, l3, l4, suppressing superscripts.
To show that {a, b, l1, l2, l3, l4} ∈ CF , we consider each subset C ⊆

{a, b, l1, l2, l3, l4} and show that δ(C) ≥ F(|C |). To speed up the process
of checking each subset C , in the below table we show that certain subsets
C ⊆ {a, b, l1, l2, l3, l4} lie in CF , and therefore every C ′ ⊆ C must satisfy
δ(C ′)≥ F(|C ′|).

C proof that C ∈ CF

l1l2l3l4, l2l3ab, l3l4ab, l1l2l4a, l2l3l4a C is a 4-cycle
l1l2l3ab free amalgam of l2l3ab, l1l2 over l2

l1l3l4ab free amalgam of l3l4ab, l1l4 over l4

l1l2l4ab free amalgam of l1l2l4a, ab over a
l1l2l3l4b free amalgam of l1l2l3l4, l3b over l3

We now check the remaining subsets C ⊆ {a, b, l1, l2, l3, l4} by directly calculat-
ing the predimension:

C δ(C) F(|C |)

l2l3l4ab 4 F(5) < 4
l1l2l3l4a 4 F(5) < 4

l1l2l3l4ab 4 F(6) < 4

We have now shown that {a, b, l1, l2, l3, l4} ∈ CF . For the second part of the
lemma, we obtain L(a,b)∈CF via the free amalgam of L(a,b) and cl1 over l1 (recalling
that we have defined our control function F so that points are always d-closed). □

Lemma 5.9. We have that B ∈ CF .

Proof. We have to show that δ(C)≥ F(|C |) for C ⊆ B. The vertices of C consist
of C ∩ A together with subsets J(a,b) of L(a,b) for each (a, b) ∈ τ |A (some of these
J(a,b) may be empty). For (a, b) ∈ τ |A, let J ′(a,b) = J(a,b) ∪ (C ∩ A).

First we consider the case where c /∈ C . C is then the free amalgam of the
J ′(a,b) (where (a, b) ∈ τ |A) over C ∩ A. Given that CF is a free amalgamation
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class and C ∩ A ≤d C , it therefore suffices to show that J ′(a,b) ∈ CF for (a, b) ∈

τ |A. Fix (a, b) ∈ τ |A. To show that J ′(a,b) ∈ CF , as J ′(a,b) is a free amalgam of
J(a,b) ∪ ({a, b} ∩C) and C ∩ A ∈ CF over {a, b} ∩C ∈ CF , it suffices to show that
J(a,b) ∪ ({a, b} ∩C) lies in CF , and we have already checked this in Lemma 5.8.

Now we consider the case where c ∈ C . If l(a,b)
1 /∈ J(a,b) for each (a, b) ∈ τ |A,

then C consists of a vertex c with no neighbors together with the free amalgam
over C ∩ A of each J ′(a,b) \ {c}, and so we are done by the first case in the previous
paragraph. Otherwise, C is the free amalgam over C ∩ A of⋃

{J ′(a,b) : l
(a,b)
1 ∈ J(a,b), (a, b) ∈ τ |A}

with each J ′(a,b) \ {c} for which l(a,b)
1 /∈ J(a,b), and so using the first case considered

above we may reduce to the case where each nonempty J(a,b) contains l(a,b)
1 .

Similarly, we may exclude the case where C contains sets J(a,b) for which
J(a,b) = {c, l(a,b)

1 , l(a,b)
3 }, as C is the free amalgam over C ∩ A of⋃
{J ′(a,b) : (a, b) ∈ τ |A, J(a,b) ̸= {c, l(a,b)

1 , l(a,b)
3 }} ∪⋃

{{c, l(a,b)
1 } ∪ (C ∩ A) : J(a,b) = {c, l(a,b)

1 , l(a,b)
3 }}

with each {l(a,b)
3 } ∪ (C ∩ A) (which lies in CF by Lemma 5.8) for which J(a,b)

= {c, l(a,b)
1 , l(a,b)

3 }. We may likewise freely amalgamate over c to exclude the cases
where C contains sets J(a,b) for which J(a,b) = {c, l(a,b)

1 }, or for which J(a,b) is any
subset of L(a,b) but we have a, b /∈ C ∩ A.

So, the case remaining is where C consists of C ∩ A together with sets J(a,b)

containing c, l(a,b)
1 and at least one of l(a,b)

2 , l(a,b)
4 , where each J(a,b) has some edge

to C ∩ A. We need to show that δ(C)≥ F(|C |).
We now calculate the relative predimension over A ∪ {c} of each remaining

possible J(a,b)∪X , X ⊆ {a, b}, in the following table, where we label each structure
as Yi , 1≤ i ≤ 11:

J(a,b) ∪ X label δ(J(a,b) ∪ X/A∪ {c})

cl1l2a Y1 1
cl1l4a Y2 1

cl1l2l3a Y3 2
cl1l2l3b Y4 2

cl1l2l3ab Y5 1
cl1l3l4a Y6 2
cl1l3l4b Y7 2

cl1l3l4ab Y8 1
cl1l2l3l4a Y9 1
cl1l2l3l4b Y10 2

cl1l2l3l4ab Y11 0
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We write ki for how many times Yi occurs in C . We also write δi = δ(Yi/A∪{c}).
Let λi = |{l1, l2, l3, l4} ∩ Yi |.

Then, recalling that the vertex c also adds 2 to the predimension, we have that

δ(C)=
∑

1≤i≤11

δi ki + 2+ δ(C ∩ A).

Now,

F(|C |)= F
(

1+ |C ∩ A| +
∑

1≤i≤11

λi ki

)

≤ F
(

1+ |C ∩ A| + 4
∑

1≤i≤11

ki

)

= F
(

1+ |C ∩ A| + 4(k4+ k7+ k10)+ 4
∑

i≤11,i /∈{4,7,10}

ki

)
.

As τ |C∩A is a 2-orientation, we have that each a ∈ C ∩ A can have at most two
label structures with a as the starting vertex (i.e., with edges to a from l2, l4), and
so ∑

i≤11,i /∈{4,7,10}

ki ≤ 2|C ∩ A|.

So

F(|C |)≤ F(8|C ∩ A| + 4(k4+ k7+ k10)+ 1+ |C ∩ A|).

As F(u + v) ≤ F(u)+ vF ′(u) and F ′(x) ≤ 2
8x+1 for x ≥ 2, we have that if

|C ∩ A| ≥ 2, then

F(|C |)≤ F(|C ∩ A|)+
2

8|C ∩ A| + 1
(8|C ∩ A| + 4(k4+ k7+ k10)+ 1)

< F(|C ∩ A|)+ 2+ k4+ k7+ k10

≤ δ(C).

If |C ∩ A| = 1, then

F(|C |)≤ F(1+ |C ∩ A|)+ (8|C ∩ A| + 4(k4+ k7+ k10))F ′(1+ |C ∩ A|)

= 3+ 2
8·2+1(8|C ∩ A| + 4(k4+ k7+ k10))

< 4+ 8
17(k4+ k7+ k10)

≤ δ(C)

(as δ(C ∩ A)= 2). □
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Lemma 5.10. Let τ ∈ Or(M). Then the set of formulae

3(x)= { f (x, a, b) : (a, b) ∈ τ } ∪ {¬ f (x, a, b) : (a, b) ∈ M2
\ τ }

is finitely satisfiable in M.

Proof. Let A ≤d M be finite, and let

8A(x)= { f (x, a, b) : (a, b) ∈ τ |A}, 9A(x)= {¬ f (x, a, b) : (a, b) ∈ A2
\ τ }.

Let 3A(x)=8A(x)∪9A(x). We will show that 3A(x) is satisfiable in M .
Let B ⊇ A be as constructed previously, with distinguished head vertex c. As

A ≤d B (Lemma 5.7) and B ∈ CF (Lemma 5.9), we may use the ≤d-extension
property of M to assume that A ≤d B ≤d M .

It is immediate from the construction of B that B |H8A(c) and hence M |H8A(c),
as for each (a, b) ∈ τ |A, there is a label structure L(a,b) attached.

We now show that M |H9A(c). It suffices to show that for (a, b) ∈ A2, if M |H
f (c, a, b) then the li , 1≤ i ≤ 4, that f (c, a, b) specifies must lie in cldM({a, b, c})
and therefore in B, as B ≤d M . We show that {l1, l2, l3, l4} ⊆ cldM({a, b, c}) in the
table below.

X/Y δ(X/Y )

l1, l2, l3, l4/a, b, c 0
l1, l2, l3/ l4, a, b, c −1
l1, l2, l4/ l3, a, b, c −1
l1, l3, l4/ l2, a, b, c −1
l2, l3, l4/ l1, a, b, c −1
l1, l2/ l3, l4, a, b, c −1
l1, l3/ l2, l4, a, b, c −2
l1, l4/ l2, l3, a, b, c −1
l2, l3/ l1, l4, a, b, c −1
l2, l4/ l1, l3, a, b, c −2
l3, l4/ l1, l2, a, b, c −1
l1/ l2, l3, l4, a, b, c −1
l2/ l1, l3, l4, a, b, c −1
l3/ l1, l2, l4, a, b, c −1
l4/ l1, l2, l3, a, b, c −1

This completes the proof of Lemma 5.10. □

The above lemma implies, via compactness, that there exists a type p(x) con-
taining the set { f (x, a, b) : (a, b) ∈ τ } ∪ {¬ f (x, a, b) : (a, b) ∈ M2

\ τ }, and thus
p(x) encodes τ . This completes the proof of the encoding lemma (Lemma 5.6),
and therefore the proof of Theorem 5.1.
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