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The proof of the independence theorem for Kim-independence in positive thick
NSOP1 theories by Dobrowolski and Kamsma (Model Theory 1 (2022), 55–113)
contains a gap. The theorem is still true, and in this corrigendum we give a
different proof.

1. Introduction

The proof of the independence theorem for Kim-independence in thick NSOP1

theories [Dobrowolski and Kamsma 2022, Theorem 7.7] contains a gap. Every-
thing in that proof is fine up to the point where it is argued how the theorem
follows from what is called “Claim 2” (at the bottom of page 88). By compactness,
an M-indiscernible sequence (gi hi g′

i h
′

i g
′′

i h′′

i )i∈Z is extracted from the data from
Claim 2. However, it may be that the properties (h′′

i g′′

i+1)i∈Z |H (q ′
|z0,y)

⊗Z
|M and

hi gi+1 ≡Mh>i g>i+1h′′

>i g′′

i+1
h′′

i g′′

i+1 are not carried over.
The theorem, as stated, is still true, and in this corrigendum we give a different

proof. We assume familiarity with [Dobrowolski and Kamsma 2022].

2. Technical tools

We reformulate the chain condition in a form that will be useful to us.

Lemma 2.1 (chain condition). Let T be a thick NSOP1 theory. Suppose that
a |⌣

K
M

b and that (bi )i<ω is a Morley sequence in some global M-Ls-invariant type
with b0 = b. Then, writing p(x, b) = tp(a/Mb), we have that⋃

i<ω

p(x, bi )

does not Kim-divide over M.
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Proof. Let q(x) be the global M-Ls-invariant type in which (bi )i<ω is a Morley
sequence. As a |⌣

K
M

b we have by [Dobrowolski and Kamsma 2022, Proposi-
tion 4.2] that there is an Ma-indiscernible (b′

i )i<ω |H q⊗ω
|M with b′

0 = b. So we
have (b′

i )i<ω ≡M (bi )i<ω and we let a∗ be such that a(b′

i )i<ω ≡M a∗(bi )i<ω. Then
(bi )i<ω is Ma∗-indiscernible, and so a∗

|⌣
K
M

(bi )i<ω by [loc. cit., Lemma 6.1]. We
conclude by noting that a∗bi ≡M a∗b0 ≡M ab′

0 = ab for all i < ω. □

Proposition 2.2 (being Ls-invariant is type-definable). Let T be a thick theory. Let
C be some parameter set and let N ⊇ C be (2|C |+λT )+-saturated (possibly N is the
monster). Define 6(x) to be the following partial type over N⋃

{dC(xb, xb′) ≤ 2 : b, b′
∈ N are finite tuples such that dC(b, b′) ≤ 1}.

Then a type q(x) over N is C-Ls-invariant if and only if 6(α) for α |H q.

Proof. Let q(x) be a C-Ls-invariant type over N and let α |Hq . Let b, b′
∈ N be finite

tuples such that dC(b, b′) ≤ 1. Then there is a C-indiscernible sequence (bi )i<ω

with b0b1 = bb′, which we may assume to be in N by saturation. Using saturation
again, we find a λT -saturated C ⊆ M ⊆ N such that (bi )i<ω is M-indiscernible.
In particular this means that bM ≡

Ls
C b′M and so αbM ≡

Ls
C αb′M . It follows that

αb ≡
Ls
M αb′ and thus by our choice of M we get dC(αb, αb′) ≤ 2. As b, b′ were

arbitrary, we conclude that |H 6(α).
For the other direction we let q(x) be a type over N such that for α |H q we have

|H 6(α). Now let d, d ′
∈ N be (potentially infinite tuples) such that d ≡

Ls
C d ′. Let

n < ω be such that dC(d, d ′) ≤ n, we claim that dC(αd, αd ′) ≤ 2n, which implies
the required αd ≡

Ls
C αd ′. By thickness we have that the condition dC(αd, αd ′) ≤ 2n

is given by⋃
{dC(αb, αb′) ≤ 2n : b ⊆ d and b′

⊆ d ′ are finite matching tuples}.

So we have reduced the problem to the case where d and d ′ are finite. By saturation
then there are d = d0, d1, . . . , dn = d ′ in N such that dC(di , di+1) ≤ 1 for all
0 ≤ i < n. By assumption we thus have that dC(αdi , αdi+1) ≤ 2 for all 0 ≤ i < n.
We conclude that dC(αd, αd ′) ≤ 2n, as required. □

Proposition 2.3 (extending Ls-invariant types). Let T be a thick theory. Let N ⊇ C
be (2|C |+λT )+-saturated. Suppose that p(x) = tp(a/N ) is a C-Ls-invariant type,
then p(x) extends to a unique global C-Ls-invariant type q(x).

Proof. Let 6(x) be the global partial type from Proposition 2.2 expressing C-Ls-
invariance. We will show that p(x) ∪ 6(x) is finitely satisfiable. So let ϕ(x, e) ∈

p(x), where e is a tuple of parameters from N , and let 60(x) ⊆ 6(x) be finite. Let
b1, . . . , bn and b′

1, . . . , b′
n be the finite tuples that occur in 60(x), so dC(bi , b′

i ) ≤ 1
for all 1 ≤ i ≤ n. By saturation of N we find d1, . . . , dn, d ′

1, . . . , d ′
n ∈ N such that
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d1 · · · dnd ′

1 · · · d ′
n ≡Ce b1 · · · bnb′

1 · · · b′
n . So for all 1 ≤ i ≤ n we have dC(di , d ′

i ) ≤ 1,
and hence dC(adi , ad ′

i ) ≤ 2 by Proposition 2.2 applied to p(x). Now let a∗ be such
that ad1 · · · dnd ′

1 · · · d ′
n ≡Ce a∗b1 · · · bnb′

1 · · · b′
n . Then by construction we have that

|H ϕ(a∗, e) and |H 60(a∗), which proves finite satisfiability of p(x) ∪ 6(x). By
compactness we then find a realisation α of p(x)∪6(x), so that q(x) = tp(α/M) is
our desired C-Ls-invariant type. The uniqueness claim follows from [Dobrowolski
and Kamsma 2022, Fact 7.6]. □

We recall from [loc. cit., Definition 3.12] that a |⌣
i Ls
C

b means that tp(a/Cb)

extends to a global C-Ls-invariant type.

Proposition 2.4. Let T be a thick theory. If (ai )i<ω is a C-indiscernible sequence
such that ai |⌣

i Ls
C

a<i for all i <ω then (ai )i<ω is a Morley sequence in some global
C-Ls-invariant type.

Proof. By compactness we find aω such that (ai )i≤ω is C-indiscernible. Set p(x) =

tp(aω/Ca<ω) and let 6(x) be the global partial type from Proposition 2.2. We
claim that p(x) ∪ 6(x) is consistent. Indeed, for any finite p′(x) ⊆ p(x) there
is some i < ω so that p′(x) only contains parameters in Ca<i , and so |H p′(ai )

by C-indiscernibility. As ai |⌣
i Ls
C

a<i we then have that p′(x) extends to a global
C-Ls-invariant type q ′(x), and any realisation of q ′(x) will then be a realisation of
p′(x) ∪ 6(x). So p(x) ∪ 6(x) is finitely satisfiable and hence consistent.

Let α∗ be a realisation of p(x) ∪ 6(x) and set q∗(x) = tp(α∗/M), so q∗(x) is
global C-Ls-invariant. Let a∗

≡
Ls
Ca<ω

α∗, then there is f ∈ Aut(M/Ca<ω) such
that f (a∗) = aω. Set q = f (q∗), so q(x) is global C-Ls-invariant by [loc. cit.,
Lemma 3.8(i)] with p(x) ⊆ q(x) and, letting α be a realisation of q, we have
α ≡

Ls
Ca<ω

aω.
For any i < ω we thus have ai ≡

Ls
Ca<i

aω ≡
Ls
Ca<i

α. We therefore have a<i |H q⊗i
|C

for all i < ω and so (ai )i<ω |H q⊗ω
|C . So (ai )i<ω is the automorphic image over C

of a Morley sequence over C , hence it is itself a Morley sequence in a (potentially
different) global C-Ls-invariant type. □

3. Spread out trees

We recall various definitions concerning trees and trees of parameters (which we will
from now on also simply call trees) from [Kaplan and Ramsey 2020]. In particular,
we will work with the ill-founded trees Tα from [loc. cit., Definition 5.1] and we
use the same notation, so we assume familiarity with those definitions. We refer to
[Kamsma 2024] for the definitions and terminology involving s-indiscernibility, str-
indiscernibility and generalised EM-types. We slightly adjust [Kaplan and Ramsey
2020, Definition 5.7] to fit our situation.
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Definition 3.1. Let (aη)η∈Tα
be a tree and let M be an e.c. model:

(i) We call (aη)η∈Tα
spread out over M if for all η ∈ Tα with dom(η) = [β +1, α)

for some β < α, there is a global M-Ls-invariant type qη ⊇ tp(a⊵η⌢⟨0⟩/M)

such that (a⊵η⌢⟨i⟩)i<ω is a Morley sequence in qη over M .

(ii) A Morley tree over M is an str-indiscernible and spread out tree over M .

(iii) A tree Morley sequence over M is a branch in an infinite height Morley tree
over M .

Lemma 3.2. Suppose that (ai )i<ω is a tree Morley sequence over M :

(i) If bi ⊆ ai for each i < ω, of matching length and position, then (bi )i<ω is a
tree Morley sequence over M.

(ii) Fix 1 ≤ n < ω and define di = (ani , . . . , ani+n−1) for all i < ω. Then (di )i<ω

is a tree Morley sequence over M.

Proof. This is essentially [Kaplan and Ramsey 2020, Lemma 5.9], but we work
with slightly different definitions, so we go through the proof here. Part (i) is
clear, because being a Morley tree is preserved under taking subtuples. For (ii)
we let (bη)η∈Tω

be a Morley tree such that (ai )i<ω is a branch in (bη)η∈Tω
. We

may assume that (ai )i<ω is the branch indexed by the constant zero functions. We
define j : Tω → Tω so that for η ∈ Tω with dom(η) = [k, ω) we have dom( j (η)) =

[nk + n − 1, ω) and

j (η)(m) =

{
η((m − (n − 1))/n) if n | (m − (n − 1)),

0 otherwise,

for all m ∈ [nk + n − 1, ω). We define (cη)η∈Tω
by cη = (b j (η), . . . , b j (η)⌢⟨0⟩n−1).

This corresponds to the n-fold elongation of (bη)η∈Tω
from [Chernikov and Ramsey

2016]. One then straightforwardly verifies that (cη)η∈Tω
is a Morley tree over M ,

so (cζi )i<ω is a tree Morley sequence over M . For i < ω we have

cζi = (bζni+n−1, . . . , bζni ) = (ani+n−1, . . . , ani ),

so by reversing the order of the tuples we see that (di )i<ω is a tree Morley sequence
over M . □

Lemma 3.3 (Kim’s lemma for tree Morley sequences). Let T be a thick NSOP1

theory. Let M be an e.c. model and let 6(x, b) be a partial type over M. Then the
following are equivalent:

(i) 6(x, b) Kim-divides over M.

(ii) For some tree Morley sequence (bi )i<ω over M with b0 = b we have that⋃
i<ω 6(x, bi ) is inconsistent.
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(iii) For every tree Morley sequence (bi )i<ω over M with b0 = b we have that⋃
i<ω 6(x, bi ) is inconsistent.

Proof. This is [Kaplan and Ramsey 2020, Corollary 5.14], whose proof is re-
ally found in [loc. cit., Proposition 5.13]. Our setting requires some minor extra
verifications, which we will do below, but the proof is essentially the same.

Given the existence of tree Morley sequences starting with b (Lemma 3.10), the
equivalence of these three statements reduces to proving that for any tree Morley
sequence (bi )i<ω over M with b0 = b we have that 6(x, b) Kim-divides if and only
if

⋃
i<ω 6(x, bi ) is inconsistent.

Let (cη)η∈Tω
be a Morley tree over M such that (bi )i<ω is a branch in that tree,

which we may assume to be the constant zero branch. For i < ω define ηi ∈ Tω to
be the function with domain [i, ω) such that

ηi ( j) =

{
1 if i = j,
0 otherwise.

By str-indiscernibility, the sequences (cζi )i<ω and (cηi )i<ω are M-indiscernible. We
claim that (cηi )i<ω is a Morley sequence over M in a global M-Ls-invariant type.
Indeed, because (cη)η∈Tω

is spread out over M we have that cηi |⌣
i Ls
M

(cη j ) j<i for
all i < ω. So the claim follows from Proposition 2.4. By str-indiscernibility we
also have for all i < ω that cζi , cηi starts an M(cζ j , cη j ) j>i -indiscernible sequence.
So since T is NSOP1 we can apply [Dobrowolski and Kamsma 2022, Lemma 5.10]
to conclude that

⋃
i<ω 6(x, cζi ) is inconsistent if and only if

⋃
i<ω 6(x, cηi ) is

inconsistent. The former is just
⋃

i<ω 6(x, bi ), and the latter is inconsistent if
and only if 6(x, b) Kim-divides by Kim’s lemma for NSOP1 theories [loc. cit.,
Proposition 4.4], which concludes the proof. □

Fact 3.4 (tree modelling theorems). Let T be a thick theory:

(i) Let (aη)η∈Tα
be a tree of tuples and let C be any set of parameters, then there

is a tree (bη)η∈Tα
that is s-indiscernible over C and EMs-based on (aη)η∈Tα

over C.

(ii) Let C be any parameter set, κ any cardinal, and let λ = ℶ(2|T |+|C |+κ )+ . Given
any tree (aη)η∈Tλ

of κ-tuples that is s-indiscernible over C , there is a tree
(bη)η∈Tω

that is str-indiscernible over C str-based on (aη)η∈Tλ
over C. The

latter means that for any finite tuple η̄ ∈ Tω there is ν̄ ∈ Tλ such that η̄ and ν̄

have the same str-quantifier-free type and bη̄ ≡C aν̄ .

Proof. Part (i) is [Kamsma 2024, Theorem 4.6], which is essentially just compactness
applied to [Dobrowolski and Kamsma 2022, Proposition 5.8]. Part (ii) is [Kamsma
2024, Theorem 4.8], which is technically stated for well-founded trees, but its proof
applies to the ill-founded trees we are interested in here. □
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Lemma 3.5. Let T be a thick theory. Suppose that (aη)η∈Tα
is s-indiscernible and

spread out over M and that (bη)η∈Tω
is str-based on (aη)η∈Tα

over M , then (bη)η∈Tω

is spread out over M.

Proof. Let η ∈ Tω, we have to show that (b⊵η⌢⟨i⟩)i<ω is a Morley sequence in
some global M-Ls-invariant type. We claim that b⊵η⌢⟨i⟩ |⌣

i Ls
M

(b⊵η⌢⟨ j⟩) j<i for
all i < ω. This is indeed enough, because (b⊵η⌢⟨i⟩)i<ω is M-indiscernible by
str-indiscernibility over M , and so the result follows by Proposition 2.4.

We prove the claim by showing that for all i < ω and all finite b ⊆ b⊵η⌢⟨i⟩ and
b′

⊆ (b⊵η⌢⟨ j⟩) j<i we have b |⌣
i Ls
M

b′, which is enough by Proposition 2.2. Let
ν̄i1, . . . , ν̄in be finite tuples in Tω such that i1 < · · · < in < ω and

∧
ν̄ik ⊵η⌢

⟨ik⟩ for
all 1 ≤ k ≤ n. By str-basing there are γ, µ̄i1, . . . , µ̄in in Tα such that γ µ̄i1 · · · µ̄in has
the same str-quantifier-free type as ην̄i1 · · · ν̄in and bηbν̄i1

· · · bν̄in
≡M aγ aµ̄i1

· · · aµ̄in
.

We now have reduced the problem to showing that aµ̄in
|⌣

i Ls
M

aµ̄i1
· · · aµ̄in−1

. As
γ ◁

∧
µ̄in , there must be some m < ω such that

∧
µ̄in ⊵ γ ⌢

⟨m⟩. Furthermore,
we have for every 1 ≤ k < n that γ ◁

∧
µ̄ik and

∧
µ̄ik <lex

∧
µ̄in , and so∧

µ̄ik ⊵ γ ⌢
⟨ j⟩ for some j < m. Because (aη)η∈Tα

is spread out over M we
have a⊵γ ⌢⟨m⟩ |⌣

i Ls
M

(a⊵γ ⌢⟨ j⟩) j<m , and so aµ̄in
|⌣

i Ls
M

aµ̄i1
· · · aµ̄in−1

, as required. □

Corollary 3.6. Let T be a thick theory, and let C be some parameter set and κ

some cardinal. Set λ = ℶ
(2κ+2λT +|C |

)+
. Given a tree (aη)η∈Tλ

of κ-tupes that is
s-indiscernible and spread out over C , there is a Morley tree (bη)η∈Tω

over C that
is str-Ls-based on (aη)η∈Tλ

over C. The latter means that for any finite tuple η̄ ∈ Tω

there is ν̄ ∈ Tλ such that η̄ and ν̄ have the same str-quantifier-free type and bη̄ ≡
Ls
C aν̄ .

Proof. By [Dobrowolski and Kamsma 2022, Fact 2.12] there is λT -saturated M ⊇ C
with |M | ≤ 2λT +|C |. As κ + |T | + |M | ≤ κ + |T | + 2λT +|C |

= κ + 2λT +|C |, we can
use Fact 3.4(ii) to find a tree (bη)η∈Tω

that is str-indiscernible over M and str-based
on (aη)η∈Tλ

over M . In particular (bη)η∈Tω
is str-based on (aη)η∈Tλ

over C , so it is
spread out over C by Lemma 3.5 and hence it is a Morley tree over C . Finally, by
str-basing, we have that for any finite tuple η̄ ∈ Tω there is ν̄ ∈ Tλ such that η̄ and
ν̄ have the same str-quantifier-free type and bη̄ ≡M aν̄ . By our choice of M this
implies bη̄ ≡

Ls
C aν̄ , as required. □

The following key lemma in constructing spread out trees is due to N. Ramsey,
for which we take terminology from [Chernikov et al. 2023, Definition 1.14].

Definition 3.7. We call a sequence of trees ((ai
η)η∈Tα

)i<ω mutually s-indiscernible
over C if (ai

η)η∈Tα
is s-indiscernible over C((a j

η )η∈Tα
) j ̸=i, j<ω for all i < ω.

Lemma 3.8. Let T be a thick theory and let (aη)η∈Tα
be a tree that is s-indiscernible

over M. Then there is a Morley sequence ((ai
η)η∈Tα

)i<ω in some global M-Ls-
invariant type with (a0

η)η∈Tα
= (aη)η∈Tα

that is mutually s-indiscernible over M.
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Proof. Let q((xη)η∈Tα
) ⊇ tp((aη)η∈Tα

/M) be a global M-Ls-invariant type. Let
N ⊇ M be (2|M |+λT )+-saturated, and let (a′

η)η∈Tα
|H q|N . Apply the s-modelling

theorem (Fact 3.4(i)) to find a tree (a′′
η)η∈Tα

that is s-indiscernible over N and
EMs-based on (a′

η)η∈Tα
over N .

Claim 3.8.1. The type tp((a′′
η)η∈Tα

/N ) is M-Ls-invariant.

Proof of claim. By Proposition 2.2 it is enough to show that for any finite b, b′
∈ N

with dM(b, b′) ≤ 1 we have dM((xη)η∈Tα
b, (xη)η∈Tα

b′) ≤ 2 ⊆ tp((a′′
η)η∈Tα

/N ). By
thickness we have that dM((xη)η∈Tα

b, (xη)η∈Tα
b′) ≤ 2 is given by⋃

{dM(xη̄b, xη̄b′) ≤ 2 : η̄ is a finite tuple in Tα}.

Let η̄ be any finite tuple in Tα . For any ν̄ that has the same s-quantifier-free type as
η̄ we have that dM(xν̄b, xν̄b′) ≤ 2 ⊆ tp((a′

η)η∈Tα
/N ) by Proposition 2.2, because

tp((a′
η)η∈Tα

/N ) = q|N is M-Ls-invariant. We thus see that dM(xη̄b, xη̄b′) ≤ 2 ⊆

EMs((a′
η)η∈Tα

/N ) ⊆ tp((a′′
η)η∈Tα

/N ), which concludes the proof of the claim. □

By Claim 3.8.1, Proposition 2.3 and our choice of N there is a unique global M-
Ls-invariant type q ′′((xη)η∈Tα

) ⊇ tp((a′′
η)η∈Tα

/N ). Let ((bi
η)η∈Tα

)i<ω be a Morley
sequence in q ′′ over N .

Claim 3.8.2. The sequence (bi
η)η∈Tα

is mutually s-indiscernible over N.

Proof of claim. Fix i < ω. We prove by induction on k ≥ i that (bi
η)η∈Tα

is

s-indiscernible over N ((b j
η)η∈Tα

) j ̸=i, j<k .
For the base case k = i we need to prove that (bi

η)η∈Tα
is s-indiscernible over

N ((b j
η)η∈Tα

) j<i . Let η̄, ν̄ ∈ Tα be finite tuples with the same s-quantifier-free
type. As (bi

η)η∈Tα
≡N (a′′

η)η∈Tα
, we have that it is s-indiscernible over N . So

there is a single type (after renaming variables) p(y) = tp(bi
η̄/N ) = tp(bi

ν̄/N ),
which is M-Ls-invariant by Claim 3.8.1. Since q ′′(xη̄) and q ′′(xν̄) are both global
M-Ls-invariant extensions of p(y) we have that q ′′(xη̄) = q ′′(xν̄), after renaming
variables. By construction bi

η̄ |H q ′′(xη̄)|N ((b j
η)η∈Tα ) j<i

and bi
ν̄ |H q ′′(xν̄)|N ((b j

η)η∈Tα ) j<i
,

so bi
η̄ ≡N ((b j

η)η∈Tα ) j<i
bi

ν̄ follows, as required.
For the successor step we have k > i and we assume that (bi

η)η∈Tα
is s-indiscernible

over N ((b j
η)η∈Tα

) j ̸=i, j<k . Let η̄, ν̄ ∈ Tα be finite tuples with the same s-quantifier-
free type. By the induction hypothesis we have

bi
η̄ ≡

Ls
N ((b j

η)η∈Tα ) j ̸=i, j<k
bi

ν̄,

where we get equivalence of Lascar-strong types instead of just normal types from
s-indiscernibility; see e.g., [Kamsma 2024, Proposition 4.5]. As (bk

η)η∈Tα
realises

an M-Ls-invariant type over N ((b j
η)η∈Tα

) j<k and N ⊇ M we get

(bk
η)η∈Tα

bi
η̄ ≡

Ls
N ((b j

η)η∈Tα ) j ̸=i, j<k
(bk

η)η∈Tα
bi

ν̄,

which completes the induction step and thus the proof of the claim. □



890 JAN DOBROWOLSKI AND MARK KAMSMA

We have (b0
η)η∈Tα

≡M (a′′
η)η∈Tα

≡M (a′
η)η∈Tα

≡M (aη)η∈Tα
, where the middle

equality of types follows because (a′
η)η∈Tα

is s-indiscernible over M and so its
EMs-type over M is maximal (i.e., is the same as its type over M) and (a′′

η)η∈Tα

is in particular EMs-based on (a′
η)η∈Tα

over M . So by an automorphism we find
((ai

η)η∈Tα
)i<ω ≡M ((bi

η)η∈Tα
)i<ω, with (a0

η)η∈Tα
= (aη)η∈Tα

, which is then as re-
quired by construction of ((bi

η)η∈Tα
)i<ω and Claim 3.8.2. □

Remark 3.9. Lemma 3.8 is in fact a missing ingredient in [Kaplan and Ramsey
2020], in particular in the inductive steps in their Lemmas 5.11 and 6.4. There they
replace some spread out tree A by an s-indiscernible tree B locally based on A
(in our terminology: EMs-based). However, this process might not preserve the
property of being spread out. By replacing the inductive step by Lemma 3.8, the
argument can be fixed.

In existing work on Kim-independence over arbitrary sets there is the same issue,
as discussed in [Chernikov et al. 2023, page 7]. This can be fixed in a similar
manner: [loc. cit., Lemma 1.15] is a variant of Lemma 3.8 over arbitrary sets (in
full first-order logic), and can then be used in the inductive steps in the same way.

We also remark that this is not an issue in [Dobrowolski and Kamsma 2022],
because the proofs there make use of a different notion called “q-spread-out”. The
point of this notion is that it is type-definable, so it can be captured by the EMs-type.
The gap in the proof of the Independence Theorem that this corrigendum addresses
is of a different nature.

The following lemma illustrates the use of Lemma 3.8 and completes the proof
of Lemma 3.3.

Lemma 3.10. Let T be a thick theory. For any a and M there is a tree Morley
sequence (ai )i<ω over M with a0 = a.

Proof. Let λ be the cardinal from Corollary 3.6, where M and |a| take the respective
roles of C and κ there. By induction on α ≤ λ we will construct trees (aα

η )η∈Tα
,

such that:

(1) For all η ∈ Tα we have aα
η ≡M a.

(2) The tree (aα
η )η∈Tα

is spread out and s-indiscernible over M .

(3) For all β < α we have aα
ιβα(η) = aβ

η for all η ∈ Tβ .

We start by setting a0
∅ = a. For a limit stage ℓ, we set aℓ

ιβℓ(η) = aβ
η , where β ranges

over all ordinals < ℓ and η ranges over all elements in Tβ . This is well-defined
by property (3), and properties (1) and (2) follow immediately from the induction
hypothesis.

For the successor step we suppose (aα
η )η∈Tα

has been constructed. By Lemma 3.8
we find a Morley sequence ((aα

η,i )η∈Tα
)i<ω in some global M-Ls-invariant type
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with (aα
η,0)η∈Tα

= (aα
η )η∈Tα

that is mutually s-indiscernible over M . Define a tree
(bη)η∈Tα+1 by setting b∅ = a and b⟨i⟩⌢η = aα

η,i for all η ∈ Tα and i < ω. The
EMs-type of (bη)η∈Tα+1 over M satisfies the following properties:

(i) It contains tp((bη)η∈Tα+1\{∅}/M). This is because (b⊵⟨i⟩)i<ω forms an M-
indiscernible sequence of trees that is mutually s-indiscernible over M .

(ii) The EMs-type specifies that the type of the root is tp(a/M).

We apply Fact 3.4(i) to find an s-indiscernible tree (aα+1
η )η∈Tα+1 over M that is

EMs-based over M on (bη)η∈Tα+1 . By an automorphism and (i) we may assume
that aα+1

⟨i⟩⌢η = b⟨i⟩⌢η = aα
η,i for all η ∈ Tα and i < ω, and so (3) is satisfied. This then

also implies that (2) is satisfied and (1) is satisfied by (ii), completing the inductive
construction.

We thus have constructed a tree (aλ
η)η∈Tλ

that is spread out and s-indiscernible
over M with aλ

η ≡M a for all η ∈ Tλ. We can now apply Corollary 3.6 to find a
Morley tree (aη)η∈Tω

that is str-Ls-based on (aλ
η)η∈Tλ

over M . In particular aη ≡M a
for all η ∈ Tω, and so by an automorphism we may assume aζ0 = a. Then setting
ai = aζi for all i < ω we obtain the required tree Morley sequence (ai )i<ω. □

4. The independence theorem

We now give a new proof of the independence theorem [Dobrowolski and Kamsma
2022, Theorem 7.7]. The statement remains exactly the same. The proof is essen-
tially that of [Kaplan and Ramsey 2020, Theorem 6.5], with Lemma 3.8 mixed
in.

Lemma 4.1. Let T be a thick NSOP1 theory. Suppose that a |⌣
K
M

b and fix some
cardinal κ . Suppose that q(x, y) = tp(N/M) is a global M-Ls-invariant type such
that q|x extends Lstp(b/M), where N ⊇ M is ℶω(λT +|Mab|+|Tκ |)-saturated and
the x variable matches b. If (bη)η∈Tα

, with α ≤ κ , is a tree that is spread out over
M , such that for all η ∈ Tα we have bη ≡

Ls
M b and bη |H (q|x)|Mb▷η

, then, writing
p(x, b) = tp(a/Mb), ⋃

η∈Tα

p(x, bη)

does not Kim-divide over M.

Proof. We follow the proof of [Kaplan and Ramsey 2020, Lemma 6.2], replacing
their use of [loc. cit., Proposition 6.1] by [Dobrowolski and Kamsma 2022, Propo-
sition 7.5]. The proof is by induction on α. For α = 0 there is nothing to do, and
limit stages follow from the induction hypothesis by finite character. Now suppose
that (bη)η∈Tα+1 is as in the statement. By the induction hypothesis we have that⋃

η⊵⟨0⟩

p(x, bη)
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does not Kim-divide over M . Because (bη)η∈Tα+1 is spread out we have that
(b⊵⟨i⟩)i<ω is a Morley sequence in some global M-Ls-invariant type. By the
chain condition Lemma 2.1 we then have that⋃

i<ω

⋃
η⊵⟨i⟩

p(x, bη)

does not Kim-divide over M . At the same time we have b∅ |H (q|x)|Mb▷∅ and so
by our assumptions on q we have b∅ |⌣

∗

M
b▷∅; see [Dobrowolski and Kamsma

2022, Definition 7.3]. Using that p(x, b∅) does not Kim-divide (because a |⌣
K
M

b),
we can apply the weak independence theorem [loc. cit., Proposition 7.5] to see that

p(x, b∅) ∪

⋃
i<ω

⋃
η⊵⟨i⟩

p(x, bη)

does not Kim-divide (here we implicitly used the assumption that bη ≡
Ls
M b for all

η ∈ Tα+1). Unfolding definitions, this is exactly saying that⋃
η∈Tα+1

p(x, bη),

does not Kim-divide, completing the induction step and thereby the proof. □

Lemma 4.2 (zig-zag lemma). Let T be a thick NSOP1 theory. Suppose that b |⌣
K
M

c.
Then there is a global M-Ls-invariant type q(x, y) = tp(N/M), where N ⊇ M is
some ℶω(λT +|Mbc|)-saturated model and q|x extends tp(b/M), and a tree Morley
sequence (bi , ci )i<ω over M such that:

(i) If i ≤ j then bi c j ≡M bc.

(ii) If i > j then bi |H (q|x)|Mc j .

Proof. We basically verify that the proof of [Kaplan and Ramsey 2020, Lemma 6.4]
goes through, while fixing a gap by mixing in a use of Lemma 3.8 (see also
Remark 3.9).

Let λ be the cardinal from Corollary 3.6, where the C and κ are M and |bc|
respectively. Let N ⊇ Mb be ℶω(|Tλ|)-saturated (note that |Tλ| ≥ λT +|Mbc|). Let
q(x, y) be a global M-Ls-invariant extension of Lstp(N/M), where the x variable
matches b. In particular, for β |Hq|x we have β ≡

Ls
M b. We write p(z, b)= tp(c/Mb).

By induction on α ≤ λ we will construct trees (bα
η , cα

η )η∈Tα
, such that:

(1) For all η ∈ Tα we have bα
η |H (q|x)|Mbα

▷ηcα
▷η

and bη ≡
Ls
M b.

(2) For all η ∈ Tα we have cα
η |H

⋃
ν⊵η p(z, bα

ν ).

(3) The tree (bα
η , cα

η )η∈Tα
is spread out and s-indiscernible over M .

(4) For all β < α we have bα
ιβα(η)c

α
ιβα(η) = bβ

η cβ
η for all η ∈ Tβ .
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We start by setting b0
∅c0

∅ = bc. For a limit stage ℓ, we set bℓ
ιβℓ(η)c

ℓ
ιβℓ(η) = bβ

η cβ
η ,

where β ranges over all ordinals < ℓ and η ranges over all elements in Tβ . This is
well-defined by property (4), and properties (1)–(3) then follow immediately from
the induction hypothesis.

For the successor step we suppose (bα
η , cα

η )η∈Tα
has been constructed. Using

Lemma 3.8 we find a Morley sequence ((bα
η,i , cα

η,i )η∈Tα
)i<ω in some global M-Ls-

invariant type with (bα
η,0, cα

η,0)η∈Tα
= (bα

η , cα
η )η∈Tα

that is mutually s-indiscernible
over M . Define a tree (dη, eη)η∈Tα+1 by setting d⟨i⟩⌢ηe⟨i⟩⌢η = bα

η,i c
α
η,i for all η ∈ Tα

and i < ω. This leaves us to define d∅ and e∅. Let β |H q|x and pick d∅ such that

d∅ ≡
Ls
Md▷∅e▷∅

β.

We can then apply Lemma 4.1 to the tree (dη)η∈Tα+1 to see that⋃
η∈Tα+1

p(z, dη)

does not Kim-divide over M . In particular, this set is consistent and so we can let
e∅ be a realisation of this set. The EMs-type of (dη, eη)η∈Tα+1 over M satisfies the
following properties:

(i) It contains tp((dη, eη)η∈Tα+1\{∅}/M). This is because (d⊵⟨i⟩, e⊵⟨i⟩)i<ω forms
an M-indiscernible sequence sequence of trees that is mutually s-indiscernible
over M .

(ii) It contains the type r(x∅, (xη)η▷∅, (zη)η▷∅) = tp(d∅, d▷∅, e▷∅/M), and note
that by construction r(x, d▷∅, e▷∅/M) = (q|x)|Md▷∅e▷∅ . Indeed, let η̄ and ν̄

be two finite tuples in Tα+1 with the same s-quantifier free type that do not
contain the root. Then we have dη̄eη̄ ≡

Ls
M dν̄eν̄ , see (i) for the justification. The

claim then follows from M-Ls-invariance of q .

(iii) It captures that d∅≡
Ls
M d⟨i⟩ for all i <ω. By construction we have dM(d∅, d⟨0⟩)≤

n for some n < ω, so dM(d∅, d⟨i⟩) ≤ n + 1 for all i < ω. By thickness
dM(x∅, x⟨i⟩) ≤ n + 1 is type-definable over M , and this partial type is thus
contained in the EMs-type.

(iv) It captures that e∅ |H
⋃

ν⊵∅ p(z, dν).

We apply Fact 3.4(i) to find an s-indiscernible tree (bα+1
η , cα+1

η )η∈Tα+1 over M that is
EMs-based over M on (dη, eη)η∈Tα+1 . By an automorphism and (i) we may assume
that bα+1

⟨i⟩⌢ηcα+1
⟨i⟩⌢η = d⟨i⟩⌢ηe⟨i⟩⌢η = bα

η,i c
α
η,i for all η ∈ Tα and i < ω, and so (4) is

satisfied. This then also implies that (3) is satisfied. Finally, (1) is satisfied because
of (ii) and (iii) and (2) is satisfied because of (iv), in both cases combined with the
induction hypothesis. This completes the inductive construction.

We thus have constructed a tree (bλ
η, cλ

η)η∈Tλ
satisfying (1)–(3). We now apply

Corollary 3.6 to find a Morley tree (bη, cη)η∈Tω
over M str-Ls-based on (bλ

η, cλ
η)η∈Tλ
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over M . Property (2) is clearly preserved under str-Ls-basing. To see that property
(1) is preserved under str-Ls-basing we show that, for any η ∈ Tω and finite tuple ν̄

in Tω, we have bη |H (q|x)|Mbν̄cν̄
. Indeed, by str-Ls-basing we find γ, µ̄ ∈ Tω such

that γ µ̄ has the same str-quantifier-free type as ην̄ and bηbν̄cν̄ ≡
Ls
M bλ

γ bλ
µ̄cλ

µ̄. Let
β |H q|x , then we have by M-Ls-invariance of q|x that

bηbν̄cν̄ ≡
Ls
M bλ

γ bλ
µ̄cλ

µ̄ ≡ βbλ
µ̄cλ

µ̄ ≡
Ls
M βbν̄cν̄,

as required. So setting (bi , ci ) = (bζi , cζi ) for all i < ω we find our desired tree
Morley sequence. □

Theorem 4.3 (independence theorem). Let T be a thick NSOP1 theory. Suppose
that a ≡

Ls
M a′, a |⌣

K
M

b, a′
|⌣

K
M

c and b |⌣
K
M

c. Then there is a′′ with a′′
≡

Ls
Mb a,

a′′
≡

Ls
Mc a′ and a′′

|⌣
K
M

bc.

Proof. We now have all the tools in place to follow the proof of [Kaplan and Ramsey
2020, Theorem 6.5]. To get our conclusion about Lascar strong types, we apply
the same trick as at the start of [Dobrowolski and Kamsma 2022, Theorem 7.7]:
as described there we may assume b and c to enumerate λT -saturated e.c. models
containing M . So we have reduced our goal to proving that, for p0(x, b)= tp(a/Mb)

and p1(x, c) = tp(a′/Mc), the partial type p0(x, b)∪ p1(x, c) does not Kim-divide
over M .

Let (bi , ci )i<ω and q(x, y) be as in Lemma 4.2, and we may assume b1c1 = bc.
Let a′′ be such that a′′c0 ≡

Ls
M a′c, which can be done because c = c1 ≡

Ls
M c0.

We then have a ≡
Ls
M a′′ as well as a |⌣

K
M

b1, a′′
|⌣

K
M

c0 and b1 |⌣
∗

M
c0, because

b1 |H (q|x)|Mc0 , so by [Dobrowolski and Kamsma 2022, Proposition 7.5] we have
that p0(x, b1) ∪ p1(x, c0) does not Kim-divide over M . Since (bi , ci )i<ω is a
tree Morley sequence over M , we can apply both parts of Lemma 3.2 to see that
(b2i+1, c2i )i<ω is a tree Morley sequence over M . Hence by Kim’s lemma for tree
Morley sequences (Lemma 3.3) we have that⋃

i<ω

p0(x, b2i+1) ∪ p1(x, c2i )

is consistent. Thus ⋃
i<ω

p0(x, b2i+1) ∪ p1(x, c2i+2)

is consistent, as this is contained in the above set. Again, by Lemma 3.2, we have
that (b2i+1, c2i+2)i<ω is a tree Morley sequence over M . Since b1c2 ≡M bc we
thus have by Kim’s lemma for tree Morley sequences (Lemma 3.3) again that
p0(x, b) ∪ p1(x, c) does not Kim-divide over M , which finishes the proof. □
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