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Noncommutative algebraic geometry
I: Monomial equations with a single variable

Zlil Sela

This paper is the first in a sequence on the structure of sets of solutions to systems
of equations over a free associative algebra. We start by constructing a Makanin–
Razborov diagram that encodes all the homogeneous solutions to a homogeneous
monomial system of equations. Then we analyze the set of solutions to monomial
systems of equations with a single variable.

Algebraic geometry studies the structure of sets of solutions to systems of
equations usually over fields or commutative rings. The developments and the con-
siderable abstraction that currently exist in the study of varieties over commutative
rings still resists application to the study of varieties over nonabelian rings or over
other nonabelian algebraic structures.

Since 1960 ring theorists such as P. M. Cohn [1971], G. M. Bergman [1969] and
others have tried to study varieties over nonabelian rings, notably free associative
algebras (and other free rings). However, the pathologies that they tackled and the
lack of unique factorization that they study in detail [Cohn 1971, Chapters 3–4]
prevented any attempt to prove or even speculate what can be the structure of
varieties over free associative algebras.

In this sequence of papers we suggest studying varieties over free associative
algebras using techniques and analogies of structural results from the study of vari-
eties over free groups and semigroups. Over free groups and semigroups geometric
techniques as well as low-dimensional topology play an essential role in the structure
of varieties. These include Makanin’s algorithm for solving equations, Razborov’s
analysis of sets of solutions over a free group, the concepts and techniques that
were used to construct and analyze the JSJ decomposition, and the applicability of
the JSJ machinery to study varieties over free groups and semigroups [Sela 2001;
2016]. Our main goal is to demonstrate that these techniques and concepts can be
modified to be applicable over free associative algebras as well.

Furthermore, we believe that the concepts and techniques that proved to be
successful over free groups and semigroups can be adapted to analyze varieties over
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734 ZLIL SELA

free objects in other noncommutative and at least “partially” associative algebraic
structures. In that respect, we hope that it will be possible to use or even axiomatize
the properties of varieties over the free objects in these algebraic structures, in order
to set dividing lines between noncommutative algebraic structures, in analogy with
classification theory (of first-order theories) in model theory [Shelah 1990].

We start the analysis of systems of equations over a free associative algebra
with what we call monomial systems of equations. These are systems of equations
over a free associative algebra in which every polynomial in the system contains
two monomials. In Section 1 we analyze the case of homogeneous solutions to
homogeneous monomial systems of equations. In this case it is possible to apply the
techniques that were used in analyzing varieties over free semigroups [Sela 2016],
and associate a Makanin–Razborov diagram that encodes all the homogeneous
solutions to a homogeneous monomial system of equations.

In Section 2 we introduce limit algebras, which are a natural analogue of a
limit group, and prove that such algebras are always embedded in (limit) division
algebras (in analogy with the embeddings of limit semigroups in limit groups, that
we termed limit pairs in [Sela 2016]). The automorphism (modular) groups of these
division algebras are what is needed in the sequel in order to modify and shorten
solutions to monomial systems of equations.

In Section 3 we present a combinatorial approach to (cases of) the celebrated
Bergman’s centralizer theorem [1969]. Finally, in the fourth section we use this
combinatorial approach to analyze the set of solutions to a monomial system of
equations with a single variable. The results that we obtain are analogous to the well
known structure of the set of solutions to systems of equations with a single variable
over a free group or semigroup. We prove all our results under the assumption that
the top homogeneous parts of the coefficients in the equations are monomials with
no periodicity, in order to simplify our arguments, but we believe that eventually
this assumption can be dropped.

In the next paper in the sequence we use the techniques that are presented in
this paper to analyze monomial systems of equations that have more than a single
variable, but have no quadratic (or surface) parts. In the third paper in the sequence
we analyze the quadratic parts of monomial systems of equations. Eventually, we
hope to use our analysis of sets of solutions to monomial systems of equations to
the analysis of general varieties.

1. Homogeneous solutions of monomial equations

For simplicity, we will always assume that the free algebras that we consider are
over the field with two elements GF2. Let FA be a free associative algebra over GF2:
FA = GF2⟨a1, . . . , ak⟩. In order to study the structure of general varieties over the



NONCOMMUTATIVE ALGEBRAIC GEOMETRY, I 735

associative algebra FA, we start with varieties that are defined by monomial systems
of equations. A system of equations 8 is called monomial if it is defined using a
finite set of unknowns x1, . . . , xn , and a finite set of equations

u1(c1, . . . , cℓ, x1, . . . , xn) = v1(c1, . . . , cℓ, x1, . . . , xn),

...

us(c1, . . . , cℓ, x1, . . . , xn) = vs(c1, . . . , cℓ, x1, . . . , xn),

where the words ui and vi are monomials in the free algebra generated by the
variables x1, . . . , xn and coefficients c1, . . . , cℓ from the algebra FA, i.e., a word in
the free semigroup generated by these elements (note that the coefficients c1, . . . , cℓ

are general elements and not necessarily monomials). A monomial system of
equations is called homogeneous if all the coefficients c1, . . . , cℓ in the system are
homogeneous elements in the free associative algebra FA.

We start by analyzing all the homogeneous solutions of a homogeneous monomial
system, i.e., all the assignments of homogeneous elements in FA to the variables
x1, . . . , xn such that the equalities in a homogeneous monomial system of equations
are valid.

Let x0
1 , . . . , x0

n be a homogeneous solution of the monomial system 8. Substitut-
ing the elements x0

1 , . . . , x0
n in the monomials ui and vi , 1 ≤ i ≤ s, we get a finite

set of equalities in the free algebra FA. Since all the elements that appear in each of
these equalities are homogeneous, for each index i we can associate a segment Ji

of length that is equal to the degree of ui and vi after the substitution of x0
1 , . . . , x0

n .
We further add notation on the segment Ji for the beginnings and the ends of each
of the elements x0

1 , . . . , x0
n and the coefficients c1, . . . , cℓ of the system.

With the segments J1, . . . , Js , and the notation for the beginnings and ends of
x0

1 , . . . , x0
n and c1, . . . , cℓ, we can naturally associate a generalized equation as in

[Makanin 1977; Casals-Ruiz and Kazachkov 2011], or alternatively a band complex
(bands are added for different appearances of the same variable) as it appears in
[Bestvina and Feighn 1995]. All the lengths that appear in the band complex are
integers, so the band complex must be simplicial. Note that all the operations that
are used in the Rips machine, or in the Makanin procedure, to transfer the original
complex into a standard band complex are valid in our context, i.e., it is possible to
cut the elements x0

1 , . . . , x0
n and c1, . . . , cℓ and represent them as multiplication of

new elements according to the operations that are performed in modifying the band
complexes (or the generalized equation) along the procedure.

To clarify the applicability of the Makanin moves, one can look at the band
complex or the corresponding Makanin generalized equation differently. Given
the homogeneous solution x0

1 , . . . , x0
n , and substituting it in the homogeneous

monomial system of equations, we can naturally associate with each side of a
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monomial equation a homogeneous tree. Since each of the trees is composed from
homogeneous elements, there are no cancellations between paths (monomials) in
each separate tree, so the monomial equation implies that the homogeneous trees
that are associated with the two sides of the equation are identical.

Now, the identical trees that are associated with the two sides of a monomial
equation admit two product structures that are associated with the two sides of the
equation. Therefore, the tree that is associated with a monomial equation admits a
product structure which is the common refinement of the product structure coming
from the two sides of the equation. Each band in the band complex, or alternatively
each pair of bases in the Makanin generalized equation that is associated with the
system, indicates that a certain part in this refined product structure of the tree that
is associated with one monomial equation is identical to another part in the product
structure of a tree that is associated with another (possibly the same) monomial
equation. Alternatively, homogeneous elements in a free associative algebra have
the unique factorization property. Hence, given two factorizations of a homogeneous
element, there is a common refinement of the two factorizations.

Furthermore, each of the basic Makanin moves that can be performed on general-
ized equations can be performed in an identical way on the homogeneous trees that
are associated with homogeneous monomial equations using their refined product
structure. This means that the entire Makanin process to analyze solutions to
systems of equations over a free semigroup, which is composed from sequences of
basic moves, can be applied to the product structures of homogeneous trees that are
associated with homogeneous monomial systems of equations.

The ability to apply the Makanin basic moves to the generalized equation or
the band complex that is associated with a homogeneous system of monomial
equations implies that it is possible to associate with such a system of equations
a Makanin–Razborov diagram, using the construction of such a diagram for a
system of equations over a free semigroup as it appears in [Sela 2016]. As in a free
semigroup, the constructed diagram encodes all the homogeneous solutions to the
homogeneous system of equations in the free algebra FA.

Let G8 be the semigroup that is generated by copies of x1, . . . , xn and the
coefficients c1, . . . , cℓ modulo the relations

ui (c1, . . . , cℓ, x1, . . . , xn) = vi (c1, . . . , cℓ, x1, . . . , xn)

for 1 ≤ i ≤ s, where the monomials ui and vi are interpreted as words in a free
semigroup. With a (homogeneous) solution of the system 8 it is possible to
associate a homomorphism from G8 into the free semigroup that is generated by a
free generating set of FA.

Conversely, given a semigroup homomorphism of G8 into a free semigroup that
fits with a decomposition of the constants c1, . . . , cℓ into a product of homogeneous
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elements (there are finitely many possible ways to represent each of the coefficients
c1, . . . , cℓ as such a product), it is possible to associate with such a product a family
of solutions of the systems 8.

Therefore, the study of homogeneous solutions of a homogeneous monomial
system of equations over an associative free algebra is reduced to the study of a
collection of semigroup homomorphisms from a given f.g. semigroup into a free
semigroup. By [Sela 2016] with this collection of semigroup homomorphisms it is
possible to associate canonically a finite collection of pairs (S1, L1), . . . , (Sm, Lm),
where each of the groups L j is a limit group, and each of the semigroups S j is a
f.g. subsemigroup that generates L j . Furthermore, with G8 and its collection of
homomorphisms it is possible to associate (noncanonically) a Makanin–Razborov
diagram that encodes all its homomorphisms into free semigroups. By our ob-
servation, this Makanin–Razborov diagram of pairs encodes all the homogeneous
solutions of the system 8 in the algebra FA.

Theorem 1.1. With a homogeneous monomial system of equations over the free
associative algebra FA it is possible to associate (noncanonically) a Makanin–
Razborov diagram that encodes all its homogeneous solutions.

As a corollary of the encoding of homogeneous solutions of a system of homo-
geneous monomial equations by pairs of limit groups and their subsemigroups we
get the following.

Corollary 1.2. The collections of sets of homogeneous solutions to homogeneous
monomial systems of equations is Noetherian, i.e., every descending sequence of
such sets terminates after a finite time.

Proof. Follows immediately from the descending chain condition for limit groups
[Sela 2001], or the Noetherianity of varieties over free groups and semigroups
[Guba 1986]. □

Theorem 1.1 associates a Makanin–Razborov diagram with the set of homoge-
neous solutions to a homogeneous monomial systems of equations. Our main goal in
this sequence of papers is to associate a Makanin–Razborov diagram with the set of
(not necessarily homogeneous) solutions of a general monomial system of equations,
at least in the minimal rank case, i.e., in the case in which the Makanin–Razborov
diagram that is associated with the homogeneous system that is associated with top
homogeneous part of the nonhomogeneous system contains no free products.

2. Limit algebras, their division algebras and modular groups

The construction of the Makanin–Razborov diagram of a system of equations over a
free group uses extensively the (modular) automorphism groups of the limit groups
that are associated with its nodes. These modular groups, defined in [Sela 2001,
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Definition 5.2], enable one to proceed from a limit group to maximal shortening
quotients of it that are always proper quotients.

The semigroups that appear in the construction of the Makanin–Razborov diagram
of a system of equations over a free semigroup do not have a large automorphism
group in general, e.g., a finitely generated free semigroup has a finite automorphism
group. Hence, to study homomorphisms from a given f.g. semigroup S to the free
semigroup FSk we did the following in [Sela 2016].

Given a f.g. semigroup S we can naturally associate a group with it. Given
a presentation of S as a semigroup, we set the f.g. group Gr(S) to be the group
with the presentation of S interpreted as a presentation of a group. Clearly, the
semigroup S is naturally mapped to the group Gr(S) and the image of S in Gr(S)

generates Gr(S). We set ηS : S → Gr(S) to be this natural homomorphism of
semigroups.

The free semigroup FSk naturally embeds into a free group Fk . By the construc-
tion of the group Gr(S), every homomorphism of semigroups h : S → FSk extends
to a unique homomorphism of groups hG : Gr(S) → Fk such that h = hG ◦ ηS .

By construction, every homomorphism (of semigroups) h : S → FSk extends
to a homomorphism (of groups) hG : Gr(S) → Fk . Therefore, the study of the
structure of Hom(S, FSk) is equivalent to the study of the structure of the collection
of homomorphisms of groups Hom(Gr(S), Fk) that restrict to homomorphisms of
(the semigroup) S into the free semigroup (the positive cone) FSk .

By (canonically) associating a finite collection of maximal limit quotients with
the set of homomorphisms Hom(Gr(S), Fk) that restrict to (semigroup) homomor-
phisms from S to FSk , we are able to (canonically) replace the pair (S, Gr(S))

with a finite collection of limit quotients (S1, L1), . . . , (Sm, Lm), where each of the
groups L i is a limit group. Limit groups have rich modular groups, and these are
later used to proceed to the next levels of the Makanin–Razborov diagram of the
given system of equations over the free semigroup FSk .

In studying sets of solutions to systems of equations over a free associative
algebra, we need to study homomorphisms: h : A → FAk , where A is a f.p. algebra
and FAk is the free associative algebra of rank k. As in the case of groups and
semigroups, to study such homomorphisms we pass to convergent sequences of
homomorphisms {hn : A→FAk}, and look at the limit algebras LA that are associated
with such convergent sequences. Algebras, and in particular limit algebras, have
automorphisms, but these are not the automorphisms that will be needed in the
sequel to modify and shorten homomorphisms.

By a classical construction of [Malcev 1948; Neumann 1949], and by differ-
ent constructions of Amitsur [1966] and others, the free associative algebra FAk

can be embedded into a division algebra Div(FAk) (note that there are various
different division algebras into which FAk embeds). Given a convergent sequence
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{hn : A → FAk} with an associated limit algebra LA, it is straightforward to get
an embedding LA → Div(LA), where Div(LA) is a division algebra that is also
obtained from the convergent sequence and from the embedding FAk → Div(FAk).

In the sequel we will use (a subgroup of) the group of automorphisms of the divi-
sion algebra Div(LA) in order to modify (shorten) the homomorphisms h : A → FAk

that we need to study. These will be the modular groups that are associated with
limit algebras that appear along the nodes of the Makanin–Razborov diagrams of
the given systems of equations over the free associative algebra FAk .

An important example is (a special case of) what we call surface (or quadratic)
algebra:

SA = ⟨x1, . . . , xn | x1 · · · xn = xσ(1) · · · xσ(n)⟩

for an appropriate permutation σ ∈ Sn . Such a surface algebra is a limit algebra.
Hence, it is embedded in a division algebra Div(SA). For appropriate convergent
sequences, the modular group of Div(SA) contains the automorphism group of
a corresponding surface. Therefore, we call the modular group of Div(SA) the
Bergman modular group of a surface algebra, since it contains (or is generated by)
generalized Dehn twists that are inspired by Bergman’s centralizer theorem [1969].
These modular groups generalize the mapping class groups of surfaces; they will
be defined in the sequel, and they play an essential role in constructing Makanin–
Razborov diagrams for monomial systems of equations over a free associative
algebra.

3. A combinatorial approach to Bergman’s theorem

In the first section we studied homogeneous solutions to homogeneous monomial
systems of equations. In this section we start the study of nonhomogeneous solutions
to arbitrary monomial systems of equations. We start by studying the centralizers of
elements in a free associative algebra, i.e., we give combinatorial proof to Bergman’s
theorem, and then use these techniques to study related systems of equations. We
start with the following theorem, which can be proved easily by a direct induction,
but we also present a proof that uses techniques that we will use in the sequel.

Theorem 3.1. Let u ∈ FA be an element for which its top degree homogeneous
part is a monomial, and suppose that this top degree monomial has no nontrivial
roots. Then the centralizer of u in FA is precisely the elements in the (one variable)
algebra that is generated by u.

Proof. Suppose that x is a (nontrivial) element that satisfies xu = ux . By our
analysis of homogeneous elements, the top degree homogeneous part of x must
be a monomial which is a power of the top degree monomial in u. Hence, the top
degree monomial of x has to be identical to the top degree monomial of um for
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some m. Therefore, deg(x + um) < deg(x) and u(x + um) = (x + um)u, so the
theorem follows by induction on the degree of x . □

For later applications we present a different proof.

Proof. First, note that xu = ux if and only if x(u + 1) = (u + 1)x . Hence, we
may assume that the monomials in u do not include the one corresponding to the
identity.

In the sequel we denote by Gm the (additive) abelian group that is generated by all
the monomials of degree at most m in FA. Given x, y ∈ FA, we write x = y mod Gm

if x and y have the same monomials of degree bigger than m. If x ∈ FA, we say
that a monomial w is a monomial of codegree m in x if deg(w)+ m = deg(x), and
w is in the support of x (i.e., w appears in writing x as a sum of monomials).

Lemma 3.2. Suppose that deg(u) ≥ 2, the top degree homogeneous part of u is
a monomial and has no periodicity, and that deg(x) ≥ 2 deg(u). There exists an
element w ∈ FA, such that

x = uw = wu mod Gdeg(x)−2,

ux = xu = uwu mod Gdeg(ux)−2.

Proof. We analyze the codegree 1 monomials in the two sides of the equation
xu = ux . Let u0, x0 be the top monomials, and let u1, x1 be the codegree 1 element
in u, x . Clearly, x0u1 + x1u0 is the codegree 1 element in xu, and u0x1 + u1x0 is
the codegree 1 element in ux .

Suppose that there are no cancellations between the codegree 1 monomials (that
are obtained using the distributive law) in each of the two sides of the equation. In
that case, since u0 was assumed to have no periodicity, monomials in x0u1 cannot
be monomials in u1x0, since otherwise x0 overlaps with itself in a shift of a single
place, and x0 has a period which is u0 that has degree at least 2 by the assumption
of the lemma. Hence, monomials in x0u1 have to be monomials in u0x1. Similarly,
monomials in u1x0 have to be monomials in x1u0.

Hence, if x0 = um
0 and w0 = um−1

0 , then from the right side of the equation
xu = ux , x1 = u1w0 +u0ŵ1. From the left side of the equation, x1 = w0u1 + ŵ2u0.
So if we consider elements of codegree at most 1, x = uw1 = w2u. From the
equation xu = ux , we get that for elements of codegree at most 1, uw1u = uw2u,
so u(w1 − w2)u=0, so w1 = w2, and x = wu = uw, for elements of codegree at
most 1 (for some element w of degree deg(w) = deg(x) − deg(u)).

Suppose that there are cancellations between codegree 1 monomials in the left-
hand side xu. In that case monomials in x0u1 cancel with monomials in x1u0. Let
v1 be the codegree 1 suffix of u0, and y1 be the unique monomial in x1 for which
x0v1 = y1u0. In that case y1 = u0w̃. Hence, the monomial y1 has a product structure
which is similar with the other codegree 1 monomials in x1. Therefore, as in the
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previous case, when analyzing monomials of codegree at most 1 in x , x can be
described both as w1u and uw2 (from the two sides of the equation), and the same
argument that was used in case there are no cancellations works. □

We continue the proof of Theorem 3.1, by iteratively uncovering the homogeneous
parts in an element x that is in the centralizer of u from top to bottom. Since
x = t1u mod Gdeg(x)−2, if deg(x)≥2 deg(u), it follows that xu = t1u2 and ux =ut1u
mod Gdeg(xu)−2. Hence, if deg(t1) ≥ 2 deg(u), then t1 = t2u = ut2 mod Gdeg(t1)−2.
Applying these arguments iteratively we get that x = tum mod Gdeg(x)−2, for some
t that satisfies deg(t) = deg(u).

Therefore, xu = tumu = ux = utum mod Gdeg(xu)−2, which means that tu = ut
mod Gdeg(tu)−2 and deg(t) = deg(u).

In this case, in which tu = ut and det(t) = deg(u), the top degree monomials
of t and u are identical, and we denote this monomial u0. Suppose that s, v are
monomials of codegree 1 in either t or u, and suppose that su0 = u0v. In that case
v is the suffix of u0 and s is the prefix of u0. Since u0 is not a proper power, vu0

cannot be presented as u0w for any codegree 1 monomial w, and u0s cannot be
presented as wu0 for any codegree 1 monomial w.

Hence, if s, v are codegree 1 monomials in either t or u, and su0 = u0v, then both
u0s and vu0 can be presented uniquely in each of the two products tu and ut , which
implies that s and v must be codegree 1 monomials in both u and t . Therefore, the
codegree 1 monomials of t and u must be identical, so t = u mod Gdeg(t)−2, and
x = um+1 mod Gdeg(x)−2 for some nonnegative integer m.

We use (a finite) induction and assume that x = um+1 mod Gdeg(x)−c, for some
positive integer c < deg(u), i.e., we assume that the equality holds for all the
monomials in x and u of codegree smaller than c. To complete the proof of the
theorem, we need to prove the same equality for all the monomials of codegree at
most c.

By the inductive hypothesis, x = um+1 mod Gdeg(x)−c. Hence, x = xc−1 + v,
where xc−1 is the sum of all the monomials of codegree smaller than c in x and
deg(v) ≤ deg(x) − c. Furthermore, xc−1 is precisely the sum of all the monomials
of codegree smaller than c in um+1.

Let uc−1 be the sum of the monomials of codegree less than c in u. We set
sc to be the sum of all the monomials of codegree c in um+1

c−1 . By construction,
uc−1(xc−1 + sc) = (xc−1 + sc)uc−1 = um+2

c−1 mod Gdeg(xu)−(c+1), i.e., the monomials
of codegree at most c are identical for the three different products.

Recall that x = xc−1 + v, where deg(v) ≤ deg(x)− c. We set x = xc−1 + sc + r ,
where deg(sc) = deg(x) − c and deg(r) ≤ deg(x) − c. Let qc be the sum of the
monomials of codegree c in u. Then

ux = (uc−1+qc)(xc−1+sc+r)= xu = (xc−1+sc+r)(uc−1+qc) mod Gdeg(xu)−(c+1).
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Since uc−1(xc−1 + sc) = (xc−1 + sc)uc−1 mod Gdeg(xu)−(c+1), it follows that

utopr + qcxtop = rutop + xtopqc mod Gdeg(xu)−(c+1),

where u0 and x0 are the top monomials in u and x in correspondence. Therefore,
all these monomials are products of a top degree monomial with a codegree c
monomial, and these can be broken precisely as in the codegree 1 case, assuming
deg(x) ≥ 2 deg(u).

We are left with the case in which deg(x) = deg(u). In that case we write
u = uc−1 + qc and x = uc−1 + rc mod Gdeg(x)−(c+1), where qc and rc are the
codegree c monomials in u and x in correspondence. Since the contributions of
products of monomials of codegree smaller than c in xu and in ux are identical,
we need to look only at the equation u0rc + qcx0 = x0qc + rcu0 for the monomials
of codegree c, where x0 = u0 are identical monomials. By the argument that was
used in the codegree 1 case (when deg(x) = deg(u)), it follows that qc = rc, and
the general step of the induction is proved.

So far we may conclude that x = um+1 mod Gdeg(x)−deg(u). Thus, x +um+1 com-
mutes with u and deg(x + um+1) ≤ deg(x) − deg(u), and the theorem follows. □

So far we assumed that the top homogeneous element of u is a monomial and
that its top monomial doesn’t have a proper root. We continue by allowing u to be
a proper power.

Theorem 3.3. Let u ∈ FA be an element for which its top degree homogeneous part
is a monomial, and suppose that u = p(v) and the top degree monomial of v does
not have a proper root. Then the centralizer of u in FA is precisely the elements in
the algebra that are generated by v.

Proof. Suppose that x is a (nontrivial) element that satisfies xp(v) = p(v)x . First,
note that like Theorem 3.1, Theorem 3.3 can be proved easily by replacing x by
x + vm for an appropriate m such that deg(x + vm) < deg(x) and (x + vm)p(v) =

p(v)(x + vm). However, as in the proof of Theorem 3.1 and for future purposes,
we prefer to present a different proof. For that proof we assume that deg(v) > 1.

As in Theorem 3.1, by our analysis of homogeneous elements, the top degree
homogeneous part of x must be a monomial, which is a power of the top degree
monomial in v.

As in the proof of Theorem 3.1, if deg(x) > deg(u), then the arguments that were
used in the proof of Lemma 3.2, which remain valid under the assumptions of the
theorem, enable us to analyze the codegree 1 monomials in x . In that case, as in the
proof of Theorem 3.1, there exists an element t1 that contains a top degree monomial
and a homogeneous part of codegree 1 such that x = ut1 and x = t1u mod Gdeg(x)−2.

Applying these arguments iteratively, as in the proof of Theorem 3.1, we get
that x = tum mod Gdeg(x)−2 for some t that satisfies deg(t) ≤ deg(u), which means
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that tu = ut mod Gdeg(tu)−2. In particular, the top degree monomial of t must be a
power of the top degree monomial of v.

In case deg(t) ≤ deg(u) mod Gdeg(tu)−2, we apply the same argument that we
used in case deg(t) = deg(u) in the proof of Theorem 3.1. By these arguments, if
u = vb mod Gdeg(u)−2, then t = vs mod Gdeg(t)−2, where s is an integer, 1 ≤ s ≤ b.
This implies that x = vℓ mod Gdeg(x)−2 for some positive integer ℓ.

We continue in the same way as we did in proving Theorem 3.1. We use (a
finite) induction and assume that x = vℓ mod Gdeg(x)−c for some positive integer
c < deg(v), i.e., we assume that the equality holds for all the monomials in x and
vℓ of codegree smaller than c. To complete the proof of the theorem, we need to
prove the same equality for all the monomials of codegree at most c.

By the inductive hypothesis, x = vℓ mod Gdeg(x)−c. Hence, x = xc−1 + h,
where xc−1 is the sum of all the monomials of codegree smaller than c in x and
deg(h) ≤ deg(x)− c. Furthermore, xc−1 is precisely the sum of all the monomials
of codegree smaller than c in vℓ.

Let uc−1 be the sum of the monomials of codegree less than c in u, and let vc−1

be the sum of the monomials of codegree less than c in v. We set sc to be the sum
of all the monomials of codegree c in vℓ

c−1.
We have u = p(v), so we set dc to be the sum of all the codegree c monomials

in p(vc−1). By construction: (uc−1 + dc)(xc−1 + sc) = (xc−1 + sc)(uc−1 + dc) =

(vc−1)
ℓ+b mod Gdeg(ux)−(c+1), i.e., the monomials of codegree at most c are identi-

cal for the three different products.
Recall x = xc−1 +h, where deg(h) ≤ deg(x)−c. We set x = xc−1 +sc +r , where

deg(sc) = deg(x)−c and deg(r) ≤ deg(x)−c. Similarly, we set u = uc−1 +dc +q ,
where deg(q) ≤ deg(u) − c. Then

ux = (uc−1 + dc + q)(xc−1 + sc + r)

= xu = (xc−1 + sc + r)(uc−1 + dc + q) mod Gdeg(xu)−(c+1).

Since (uc−1 + dc)(xc−1 + sc) = (xc−1 + sc)(uc−1 + dc) modulo the same group, it
follows that utopr + qx0 = ru0 + x0q mod Gdeg(xu)−(c+1), where u0 and x0 are the
top monomials in u and x in correspondence. Therefore, all these monomials are
products of a top degree monomial with a codegree c monomial, and these can be
broken precisely as in the codegree 1 case, assuming deg(x) > deg(u).

As in the codegree 1 case, we are left with the case in which deg(x) ≤ deg(u).
In that case we write u = uc−1 + dc + qc and x = xc−1 + sc + rc as above. By the
same argument that was used in that case in analyzing the codegree 1 monomials,
the monomials of codegree c in x that are contained in rc are precisely the mono-
mials of codegree c in vℓ

+ sc, and the induction follows for c ≤ deg(v). Hence,
x = vℓ mod Gdeg(x)−deg(v). Since both x and vℓ commute with u, the sum x + vℓ

commutes with u, and deg(x + vℓ) < deg(x), the theorem follows. □
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It is possible to use the techniques that we used in this section to analyze central-
izers of general elements with monomial top homogeneous part, and centralizers of
general elements, but we won’t need to apply these techniques in this generality in
the sequel, so we omit these generalizations.

4. Equations with a single variable

In the previous section we gave combinatorial proofs to special cases of Bergman’s
theorem on the structure of centralizers in free associative algebras. Such combina-
torial proofs are needed in order to study the set of solutions to related systems of
equations that play a central role in understanding the set of solutions to a general
monomial system of equations.

In this section we study the set of solutions to monomial systems of equations
with a single variable. As will be demonstrated in the next paper in this sequence, the
techniques that are used in this section play an essential role in studying monomial
equations with no quadratic nor free parts. Note that in the general analysis of
the set of homogeneous solutions to the homogeneous system of equations that
is associated with the top level of a monomial system of equations, the Makanin–
Razborov diagram of such a homogeneous system of equations, as it appears in the
first section of this paper (that is based on [Sela 2016]), may contain quadratic and
free parts.

Recall that over free groups and semigroups equations with a single variable
were analyzed in [Lorenc 1963; Appel 1968] long before the analysis of general
systems of equations. The approach that we use combines the technique and results
for studying equations with a single variable over a free group and semigroup with
the combinatorial approach that we used in analyzing centralizers.

Lemma 4.1. Let u, v ∈ FA and suppose that the top homogeneous parts of u and v

are monomials with no periodicity (i.e., the top monomials in u and v contain no
subword α2 for some nontrivial word α).

If the equation ux = xv has a nontrivial solution, then the set of solutions to
the equation ux = xv is a set {wp(v)}, where uw = wv and p is an arbitrary
polynomial in a single variable. Furthermore, the element w, which is the solution
of minimal degree of the equation, is unique.

Proof. Recall that in a free semigroup, if u and v are nontrivial and have no periodic-
ity, then the set of solutions to the equation ux = xv is {w0v

m
= umw0}, where w0 is

a fixed element, m is an arbitrary nonnegative integer, and length(w0) ≤ length(u).
Also, note that since we assumed that the top homogeneous parts of u and v

are monomials, then the homogeneous equation that is associated with the highest
degree parts in u, x, v implies that the highest degree part of x is a monomial that
satisfies the same equation in the corresponding free semigroup.
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The set of solutions of the equation ux = xv is a linear subspace of FA. If w1

and w2 are solutions to the equation ux = xv, and they are of the same degree, then
their top homogeneous monomials are identical. Hence, w1 +w2, which is also a
solution of that equation, has strictly smaller degree than w1 and w2. Therefore,
if the equation ux = xv has a solution, then it has a unique solution of minimal
degree that we denote w.

If x0 is an arbitrary solution of ux = xv, then there exists some nonnegative
integer b such that wvb and x0 have the same top monomial. Since both x0 and
wvb are solutions of the equation ux = xv, the sum x0 +wvb is a solution of this
equation and deg(x0 + wvb) < deg(x0). Hence, the proof of the lemma follows by
induction on the degree of the solution x0. □

Unlike the case of free groups or semigroups, the equation ux = xv may have a
solution, and still it can be that there are no solutions with deg(x)≤deg(u)=deg(v).

Let t , µ, and ρ be arbitrary elements in the algebra FA. Let w = tµtρtµt ,
v = (ρtµ+µtρtµ)t and u = t (µtρ +µtρtµ). Then uw = wv, and in general there
is no element y ∈ FA such that deg(y) ≤ deg(u) = deg(v) and uy = yv.

To bound the degree of a minimal degree solution we need the following lemma.

Lemma 4.2. Let FA be the free associative algebra over GF2 that is freely generated
by k elements. Let u, v ∈ FA be as in Lemma 4.1, and suppose that the equation
ux = xv has a nontrivial solution. Then there exists a solution w, uw = wv, with
deg(w) ≤ deg(u) · (kdeg(u)

+ 2).

Proof. Suppose that x1 ̸= 0 satisfies ux1 = x1v. If deg(x1) ≤ deg(u) · (kdeg(u)
+ 2)

the lemma follows. Hence, we may assume that deg(x1) > deg(u) · (kdeg(u)
+ 2).

We use the analysis that was applied in analyzing centralizers in the previous
section. By the analysis of homogeneous elements, the top degree homogeneous
part of x1 must be a monomial. Let u0, v0, and x0 be the top monomials of u, v,
and x1. Then they must satisfy u0x0 = x0v0. Therefore, there exists a monomial z0

such that x0 = u0z0 = z0v0.
As in analyzing centralizers, we continue the analysis of x1 by analyzing its

codegree 1 monomials. We examine the codegree 1 monomials in the products
ux1 and x1v. By the proof of Lemma 3.2 we get an element z such that x1 = zv =

uz mod Gdeg(x1)−2.
We continue iteratively by analyzing products of codegree 2 in the equality

ux1 = x1v, using the equality x1 = uz = zv for the top and codegree 1 parts.
Note that monomials of codegree 2 in the equality ux1 = x1v that are products

of monomials of codegree 0 and 1 of u, v and z, that correspond to codegree 1
monomials of u and v and codegree 1 monomials of x1 (from the two sides of the
equation), cancel in pairs. The other codegree 2 monomials in the two sides of the
equation are products that are obtained as one of the following:
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(1) A product of a codegree 1 monomial of x1 with a codegree 1 monomial of v.

(2) A product of a codegree 1 monomial of u with a codegree 1 monomial of x1.
In parts (1) and (2) we need to consider only monomials that do not cancel as
products of top and codegree 1 monomials of u, v and z from the two sides of
the equation.

(3) A product of a codegree 2 monomial of x1 with the top monomial of v.

(4) A product of the top monomial of u with a codegree 2 monomial of x1.

(5) A product of a codegree 2 monomial of u with the top monomial of x1.

(6) A product of the top monomial of x1 with a codegree 2 monomial of v.

Note that because of the equation, for each codegree 2 monomial in the products
in the two sides of the equation, either 2, 4 or all 6 options occur. However, because
the top monomials of u and v have no periodicity, possibilities (5) and (6) cannot
occur together, so only 2 or 4 possibilities can occur.

Suppose that (1) occurs for some codegree 2 monomial. In that case we can
assume that the codegree 1 monomial of x1 is a product of the top monomial in u
with a codegree 1 monomial of z, since otherwise such a product cancels with a
product of type (2) by our analysis of codegree 1 products.

If in addition to (1) only (2) occurs for that codegree 2 monomial, we add a
codegree 2 monomial to z that is obtained from the given codegree 2 monomial
in the product by cutting a prefix which is equal to the top monomial of u, and a
suffix which is the top monomial of v.

If only (3) occurs (in addition to (1)) for the given codegree 2 monomial, we
also add a codegree 2 monomial to z that is identical to the one we added in case
only (1) and (2) occur. If only (4) occurs, we do not add anything. If (5) occurs we
add a codegree 2 monomial to z (the same codegree 2 monomial as in the previous
cases).

If (6) occurs, we do not add anything.
Suppose that (2) occurs for some codegree 2 monomial. In that case we can

assume that the codegree 1 monomial of x1 is a product of a codegree 1 monomial
of z with the top monomial of v. Hence, this can be dealt with precisely as what
we did in (1).

Suppose that (3) occurs. If in addition only (4) occurs, we add a codegree 2
monomial to z. If only (5) occurs, we do not add anything. If only (6) occurs, we
add a codegree 2 monomial to z. Suppose that (4) occurs. This can be dealt with
precisely as the case in which (3) occurs. Again, since the top monomials of u and
v do not have periodicity, (5) and (6) cannot occur together. Hence, we are only
left with cases in which four of the possibilities occur.
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Suppose that (1) and (2) occur for some codegree 2 monomial. In this case
we can assume that (1) occurs as a product of a codegree 1 monomial of z and a
codegree 1 of v, and (2) as a product of a codegree 1 monomial of u and codegree
1 monomial of z (otherwise (1) and (2) cancel from our analysis of codegree 1
monomials in x1). If in addition only (3) and (4) occur, we do not add anything. If
(3) and (5) occur, we add a codegree 2 monomial to z. If (3) and (6) occur, we do
not add anything. The cases in which in addition to (1) and (2), cases (4) and (5)
occur or cases (4) and (6) occur, are symmetric to (3) and (5) or (3) and (6).

Suppose that (1) occurs and (2) does not. Again, we may assume that in (1), it is
a product of a codegree 1 monomial of z with a codegree 1 monomial of v. If in
addition (3), (4) and (5) occur, we do not add anything. If (3), (4) and (6) occur,
then we add a codegree 2 monomial to z. The case in which (1) does not occur and
(2) occurs is symmetric.

After possibly adding codegree 2 monomials to z, the equation that was valid
for codegree 1 products is now valid for codegree 2 products, i.e., x1 = uz =

zv mod Gdeg(x1)−3.
We continue iteratively to construct the element z by adding higher codegree

monomials, so that the constructed element z satisfies the equation x1 = uz = zv for
products of higher and higher codegree. Suppose that x1 = uz = zv mod Gdeg(x1)−d ,
i.e., that the equation holds for all the products of codegree at most d − 1, where d
is a positive integer with d ≤ deg(u). We iteratively add codegree d monomials to
z so that the equalities hold for all codegree d products as well.

As in analyzing codegree 2 products, products of codegree d that include mono-
mials of codegree smaller than d of u, v and z that correspond to smaller codegree
monomials of x1 (from the two sides of the equation) cancel in pairs.

The various cases are straightforward generalizations of the cases in analyzing
codegree 2 products. Suppose that a codegree d product can be presented as either

(1) an odd number of products of the top monomial of u with codegree mi mono-
mials of z and codegree ℓi monomials of v, for some subset of tuples (mi , ℓi ),
where mi + ℓi = d and mi , ℓi are positive integers, for every index i ;

(2) an odd number of products of codegree s j monomials of u with codegree t j

monomials of z and with the top monomial of v, for some subset of tuples
(s j , t j ), where s j + t j = d and s j , t j are positive integers, for every index j ;

(3) a product of a codegree d monomial of x1 with the top monomial of v;

(4) a product of the top monomial of u with a codegree d monomial of x1;

(5) a product of a codegree d monomial of u with the top monomial of x1;

(6) a product of the top monomial of x1 with a codegree d monomial of v.
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Note that since we assumed that the top monomials of u and v do not have
periodicity, cases (5) and (6) cannot occur together unless d = deg(u) = deg(v). In
case both (5) and (6) occur for d = deg(u), it must be that both u and v contain
the constant monomial 1. We have ux1 = x1v if and only if (u + 1)x1 = x1(v + 1).
Hence, in case both u and v contain the constant monomial 1, we replace them by
u + 1 and v + 1. This does not change the set of solutions, and after the change,
cases (5) and (6) do not occur together for all 2 ≤ d ≤ deg(u).

The analysis of codegree d products, according to the various possibilities of
subsets of the six cases, is identical to the analysis that was used to analyze codegree
2 products. According to the analysis we decide what codegree d monomials to
add to the element z.

After possibly adding these codegree d monomials to z, the equation that was
valid for all products up to codegree d − 1 is now valid for codegree d products,
i.e., x1 = uz = zv mod Gdeg(x1)−(d+1).

Finally, we get an element z that satisfies x1 = uz = zv mod Gdeg(x1)−deg(u)−1.
After possibly changing the elements u and v so that not both of them contain

the constant monomial 1, we continue the analysis of codegree d products in the
two sides of the equation ux1 = x1v, for all d , deg(u)+ 1 ≤ d ≤ deg(x1)− deg(u),
precisely as we analyzed codegree d products for 2 ≤ d ≤ deg(u), and iteratively
add codegree d monomials to the element z. Finally, we get an element z that
satisfies x1 = uz = zv mod Gdeg(u)−1, i.e., the equalities hold for all products up to
degree deg(u) = deg(v).

We continue by looking at the equality uz = zv mod Gdeg(u)−1. Repeating the
same argument we can find an element z2 such that z = uz2 = z2v mod Gdeg(u)−1.
Continuing inductively, we get an element zr+1 such that

zr = uzr+1 = zr+1v mod Gdeg(u)−1.

We are working over the free associative algebra FAk , i.e., the algebra is over GF2

and it is freely generated by k elements. Hence, Gdeg(u)−1 as a vector space over
GF2 has dimension bounded by kdeg(u). Therefore, there exist elements of distinct
degrees {sm | m = 1, . . . , kdeg(u)

+1} (that are the elements zr that were constructed
iteratively from a given long solution) such that deg(sm) ≤ (1 + m) deg(u) and
usm = smv mod Gdeg(u)−1.

By a simple pigeonhole argument, there exists a subcollection of the indices
1 ≤ i1 < · · · < i f ≤ kdeg(u)

+ 1 such that s = si1 + · · ·+ si f and us = sv. Hence, s
is a solution of the given equation, and deg(s) ≤ deg(u) · (2 + kdeg(u)). □

So far we assumed that the top degree elements of u and v are monomials that
are not proper powers. First, we omit the periodicity assumption, and allow the top
degree monomials of u and v to have nontrivial roots.
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Lemma 4.3. With the notation of Lemma 4.2, let u, v ∈ FA and suppose that the
top homogeneous parts of u and v are monomials. Suppose that the top degree
monomial of u has nontrivial roots of degree bounded by q.

Suppose that the equation ux = xv has a nontrivial solution. Then there exists
elements w1, . . . , wd , 1 ≤ d ≤ q, such that the set of solutions to the equation
ux = xv is a set of the form {w1 p1(v) + · · · + wd pd(v)}, where uwi = wiv and
p1, . . . , pd are arbitrary polynomials in v.

Proof. Let u0 and v0 be the top monomials of u and v, and let x0 be the top
monomial of a solution x . Let t0 be a primitive root of v0. Then there exists some
fixed element s0, deg(s0) < deg(t0), such that x0 = s0tm

0 for some nonnegative
integer m. Note that the element s0 is fixed and does not depend on the solution x ,
since we assumed that u0 and v0 are proper powers of t0, which is primitive, and if
s0 is not fixed, t0 must have a proper root.

Suppose that tq
0 = v0. The top monomial of a solution x is of the form x0 = s0tm

0 ,
so we can divide the solutions x1 according to the residue classes of the nonpositive
integers m modulo q. For each residue class for which there is a solution, we
fix one of the shortest solutions in the class. We denote these shortest solutions,
w1, . . . , wd , for some d, 1 ≤ d ≤ q .

Let x be a solution. x must be in the same class as one of the fixed shortest solu-
tions wi . Hence, for some nonnegative integer b, both x and wiv

b are solutions and
they have the same top monomial. Therefore, if x ̸=wi , x +wiv

b is a nontrivial solu-
tion and deg(x+wiv

b)<deg(x). By a finite induction, x =w1 p1(v)+· · ·+wd pd(v)

for some polynomials p1, . . . , pd . □

So far we analyzed the equation ux = xv. We use similar methods to analyze
the more general equation u1xu2 = v1xv2.

Theorem 4.4. Let u1, u2, v1, v2 ∈ FA and suppose that the top homogeneous parts
of ui and vi are monomials with no periodicity (i.e., the top monomials in ui and vi

contain no subwords α2 for some nontrivial word α), and that deg(u1) > deg(v1).
Suppose that the equation u1xu2 = v1xv2 has a solution of degree bigger

than 2(deg(u1) + deg(v2))
2.

(1) There exist elements s, t ∈ FA such that u1 = v1s and v2 = tu2.

(2) An element x ∈ FA is a solution to the equation u1xu2 = v1xv2 if and only if it
is a solution of the equation sx = xt.

Proof. First, note that if (1) is true and x satisfies u1xu2 = v1xv2, then we have
v1sxu2 = v1xtu2. Hence, sx = xt . Conversely, every solution of the equation
sx = xt satisfies u1xu2 = v1xv2, so (2) is true.

As we did in analyzing centralizers and analyzing the equation ux = xv, we
analyze the homogeneous parts in x and in ui and vi going from top to bottom.
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Let u0
i and v0

i , i = 1, 2, be the top monomials in ui and vi . Let x1 be a solution of
the equation u1xu2 = v1xv2, and suppose that deg(x1) > max(deg(u1), deg(v2))+

2(deg(u1) − deg(v1)). By our analysis of homogeneous solutions, the top homoge-
neous part of the solution x1 must be a monomial as well, which we denote x0.

Since u0
1x0u0

2 = v0
1 x0v

0
2 , there exists monomials s0, t0, deg(s0) = deg(t0), such

that u0
1 = v0

1s0, v0
2 = t0u0

2 and x0 = f0tb
0 = sb

0 e0, for some positive integer b, and
deg( f0) = deg(e0) < deg(s0).

We continue by analyzing monomials of codegree 1 in ui , vi and x1. By the
same analysis that was used in analyzing centralizers and in Lemma 4.2, there exist
elements s, t with top monomials s0 and t0, and an element w with top monomial
w0, w0t0 = s0w0 = x0, such that

(i) u1 = v1s mod Gdeg(u1)−2.

(ii) v2 = tu2 mod Gdeg(v2)−2.

(iii) x1 = sw = wt mod Gdeg(x1)−2.

By iteratively applying the same construction, the above three equalities imply
that w = sm f = etm mod Gdeg(w)−2, for some positive integer m and elements e, f
with deg(s) ≤ deg(e) = deg( f ) < 2 deg(s).

We continue by analyzing products of codegree 2. First, note that as in analyzing
centralizers, if we look at codegree 2 products that involve only top monomials
and codegree 1 monomials from s, t , ui , vi and w such that the products restrict to
codegree 0 or 1 monomials of x1, ui and vi , then such codegree 2 products cancel
in pairs from the two sides of the equation.

We further look at codegree 2 products that contain a codegree 1 monomial of u2.
If the codegree 2 product contains the top monomial of t , then such a codegree
2 product cancels with a corresponding codegree 2 product from the other side
of the equation, since all the corresponding monomials of ui , vi and x1 (from the
two sides of the equation) are either codegree 0 or codegree 1. Hence, we look at
codegree 2 products that contain codegree 1 monomials of t and u2, and, therefore,
top monomials of u1 and w. Such a codegree 2 product, which is a product of the
top monomial of u1, a codegree 1 monomial of x1 and a codegree 1 monomial of
u2, cancels with either

(1) a product of the top monomial of v1, the top monomial of x1 and a codegree 2
monomial of v2;

(2) a product of the top monomial of v1, a codegree 1 monomial of x1 and a
codegree 1 monomial of v2;

(3) a product of the top monomial of v1, a codegree 2 monomial of x1 and the top
monomial of v2;
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(4) a product of the top monomial of u1, a codegree 2 monomial of x1 and the top
monomial of u2;

(5) a product of the top monomial of u1, the top monomial of x1 and a codegree 2
monomial of u2;

(6) a product of a codegree 1 monomial of u1, a codegree 1 monomial of x1 and
the top monomial of u2.

If the given codegree 2 product cancels only with a product of type (1) we don’t
add anything to w nor to t . Suppose that the given codegree 2 product cancels only
with a product of type (2). If the codegree 1 monomial of v2 equals the product
of the top monomial of t with a codegree 1 monomial of u2, then the codegree 2
product of type (2) cancels with a codegree 2 product from the other side of the
equation that contains only codegree 0 and 1 monomials of u1, x1 and u2. Hence,
in case (2) we can assume that the codegree 1 monomial of v2 is a product of a
codegree 1 monomial of t with the top monomial of u2. In that case we add a
codegree 2 monomial to t and leave w unchanged.

If the given codegree 2 product cancels only with a codegree 2 product of type (3),
we add a codegree 2 monomial to t and a codegree 2 monomial to w. If the given
codegree 2 product cancels only with a product of type (4) we add a codegree 2
monomial to t . In case the given product cancels only with a codegree 2 product of
type (5) we don’t add anything (apart from the codegree 2 monomial of u2). If it
cancels only with a codegree product of type (6) we add a codegree 2 monomial to
t and a codegree 2 monomial to w.

Because the top monomial of v2 does not have periodicity, a product of type (5)
cannot cancel with a product of type (3) nor (6). Hence, if five possibilities occur
in addition to the given one, it must be (1)–(4) and (6). In that case, we do not add
anything.

Hence, the only left possibilities are a collection of products of three different
types that cancel with the given codegree 2 product. We list the various possibilities
for the collections of codegree 2 products of three different types that cancel with
the given codegree 2 product and indicate what we add in each possibility:

(i) Products (1)–(3) cancel. We add a codegree 2 monomial to w, apart from
an existing codegree 2 monomial of v2 (that is equal to the products of the
codegree 1 monomials of t and u2 in the given codegree 2 product).

(ii) Products (1), (2) and (4) cancel. In that case we don’t add anything to w and t .
A monomial of codegree 2 already appears in v2, and is equal to the product
of the given codegree 1 monomials of t and u2.

(iii) Products (1), (2) and (5) cancel. We add a codegree 2 monomial to t , in
addition to the codegree 2 monomials that already appear in u2 and v2.
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(iv) Products (1), (2) and (6) cancel. Product (1) cancels with the given codegree 2
product. We add a codegree 2 monomial to w.

(v) Products (1), (3) and (4) cancel. We add a codegree 2 monomial to w, and the
existing codegree 2 monomial to v2.

(vi) Products (1), (3) and (6) cancel. Products (3) and (6) cancel, so this is identical
to the case that only (1) occurs in addition to the given codegree 2 product.

(vii) Products (2), (3) and (4) cancel. We add a codegree 2 monomial to w and a
codegree 2 monomial to t .

(viii) Products (2), (3) and (6) cancel. Like (vi), (3) and (6) cancel.

(ix) Products (1), (4) and (5) cancel. We add a codegree 2 monomial to t , and the
existing codegree 2 monomials to u2 and v2.

(x) Products (1), (4) and (6) cancel. Product (1) cancels with the given codegree 2
product. We add a codegree 2 monomial to w.

(xi) Products (2), (4) and (5) cancel. We just add the existing codegree 2 monomial
to u2.

(xii) Products (2), (4) and (6) cancel. Like (vi), (2) and (4) cancel.

(xiii) Products (3), (4) and (6) cancel. Like (vi), (3) and (6) cancel.

So far we analyze codegree 2 products that cancel with a given codegree 2 product
that is a product of the top monomial of u1 and w and codegree 1 monomials of
t and u2. The same analysis is valid for codegree 2 products that cancel with a
codegree 2 product of type (1), and the analogous cases from the left side of the
equation.

We continue by analyzing case (2), i.e., those codegree 2 products that cancel
with a given codegree 2 product of the top monomial of v1, a codegree 1 monomial
of x1 that is a product of the top monomial of s and a codegree 1 monomial of w,
and a codegree 1 monomial of v2 that is equal to a product of a codegree 1 monomial
of t with the top monomial of u2. Such a given codegree 2 product can cancel with
either

(1) a product of the top monomial of v1, a codegree 2 monomial of x1 and the top
monomial of v2;

(2) a product of the top monomial of v1, the top monomial of x1 and a codegree 2
monomial of v2;

(3) a product of the top monomial of u1, a codegree 2 monomial of x1 and the top
monomial of u2;

(4) a product of the top monomial of u1, the top monomial of x1 and a codegree 2
monomial of u2;
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(5) a product of the top monomial of u1, a codegree 1 monomial of x1 and a
codegree 1 monomial of u2;

(6) a product of a codegree 1 monomial of u1, which is a product of the top
monomial of v1 with a codegree 1 monomial of s, with a codegree 1 monomial
of x1, which is the product of a codegree 1 monomial of w with the top
monomial of t , and with the top monomial of u2.

If the given codegree 2 product equals only to a codegree 2 product of type (1),
we add a codegree 2 monomial to w. If it equals only to a codegree 2 product of
type (2), we add a codegree 2 monomial to t , apart from the existing codegree 2
monomial of v2. If it equals only to a codegree 2 product of type (3), we do not add
anything. If it equals only to a codegree 2 product of type (4) we add a codegree 2
monomial to t , apart from the existing codegree 2 monomial of u2. We analyzed
case (5) with all the codegree 2 products that it cancels with previously. If it equals
only to a product of type (6) we add a codegree 2 monomial to w.

Case (5) was analyzed previously, so we can assume it does not occur. A codegree
2 product of types (1) or (6) cannot cancel with a codegree 2 product of type (4).
A monomial of type (5) that cancels with a monomial of type (6) is a product of
lower codegree monomials of ui , vi and x1 from the two sides of the equation, so
we omit this case. Hence, there are 5 cases left:

(i) Products (1), (2) and (3) cancel with the given codegree 2 product. In that case
we add a codegree 2 monomial to w and a codegree 2 monomial to t , apart
from the existing codegree 2 monomial of v2.

(ii) Products (1), (2) and (6) cancel. We add a codegree 2 monomial to t .

(iii) Products (1), (3) and (6) cancel. In that case we do not add anything.

(iv) Products (2), (3) and (4) cancel. In that case we only add the already existing
codegree 2 monomials of u2 and v2.

(v) Products (2), (3) and (6) cancel. We add a codegree 2 monomial to w and t .

Codegree 2 products that contain codegree 1 monomials of v1 or u1 are treated
exactly in the same way. Hence, we are left with sets of codegree 2 products that
cancel, and each of these codegree 2 products is a product of top monomials with
codegree 2 monomials of one of the ui , vi or x1. These are analyzed precisely as
they are treated in the proof of Theorem 4.4 and in analyzing codegree 1 products,
and in each such cancellation codegree 2 monomials may be added to either s, t
or w, apart from existing codegree 2 monomials of ui and vi . Finally, we (possibly)
added codegree 2 monomials to s, w and t , such that

(i) u1 = v1s mod Gdeg(u1)−3.

(ii) v2 = tu2 mod Gdeg(v2)−3.
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(iii) x1 = sw = wt mod Gdeg(x1)−3.

We continue iteratively with products with higher codegree. Let

d = min(deg(v1), deg(u2), deg(u1) − deg(v1)).

Let r ≤ d − 1 and suppose that we added codegree r monomials to s, w and t such
that the equations above hold for all products of codegree bounded by r − 1.

We analyze codegree r products in the same way we analyzed codegree 2 products.
First, note that if a codegree r product is a product of monomials of ui , vi , s, t
and w that correspond to products of monomials of codegree smaller than r of ui ,
vi and x1 from the two sides of the equation, then such codegree r products cancel
in pairs.

Suppose that a codegree r product is a product of the top monomials of u1 and w,
and monomials of codegree qi of t and codegree mi of u2, such that qi + mi = r
and qi , mi are positive integers, and there are odd number of such pairs (qi , mi ).
We treat this case in the same way we treated the case of a codegree 2 product that
includes a codegree 1 monomial of t and a codegree 1 monomial of u2. This odd
set of codegree r products (that are all equal) cancels with either

(1) a product of the top monomial of v1, the top monomial of x1 and a codegree r
monomial of v2;

(2) an odd set of codegree r products of the top monomial of v1, codegree e j

monomial of x1 and codegree p j monomial of v2, for some positive set of pairs
(e j , p j ) that satisfy e j + p j = r , and such that the codegree p j monomial of
v2 is a product of a codegree p j monomial of t with the top monomial of u2;

(3) a product of the top monomial of v1, a codegree r monomial of x1 and the top
monomial of v2;

(4) a product of the top monomial of u1, a codegree r monomial of x1 and the top
monomial of u2;

(5) a product of the top monomial of u1, the top monomial of x1 and a codegree r
monomial of u2;

(6) an odd set of codegree r products of a codegree a j monomial of u1 and a
codegree b j monomial of x1 with the top monomial of u2, for some positive
set of pairs (a j , b j ) that satisfy a j + b j = r , and such that the codegree a j

monomial of u1 is a product of the top monomial of v1 and a codegree a j

monomial of s.

The treatment of the various cases is identical to what we did in analyzing code-
gree 2 products (cases (i)–(xiii)), just that instead of adding codegree 2 monomials to
the various elements we add codegree r monomials. The other cases of codegree r
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products are treated exactly as we treated codegree 2 products. Therefore, we
constructed elements s, t, w for which

(i) u1 = v1s mod Gdeg(u1)−d .

(ii) v2 = tu2 mod Gdeg(v2)−d .

(iii) x1 = sw = wt mod Gdeg(x1)−d .

We divide the continuation according to the minimum between deg(v1), deg(u2)

and deg(u1) − deg(v1). First we assume that

d = min
(
deg(v1), deg(u2), deg(u1) − deg(v1)

)
= deg(u1) − deg(v1).

In analyzing codegree d products, there are special codegree d products that we
need to single out and treat separately, as they may involve cancellations between
codegree d products that contain codegree d monomials of u1 or v1 and those that
contain codegree d monomials of u2 or v2.

As in analyzing smaller codegree products, note that codegree d products that are
products of smaller codegree monomials of the ui , vi , s, w and t , and correspond
to smaller codegree monomials of ui , vi and x1 from the two sides of the equation
cancel in pairs.

We continue by analyzing codegree d products that are products of top degree
monomials of u1 and w, codegree qi monomials of t and codegree mi monomials
of u2, such that qi and mi are positive and qi + mi = d, there are odd number of
such pairs (qi , mi ), and the product of these monomials of t and u2 is not equal
to u0

2, the top monomial of u2.
Such codegree d products are analyzed exactly in the same way they were

analyzed in codegree r products for r <d . Similarly, we analyze codegree d products
that are obtained an odd number of times as the product of the top monomials of v1

and s1, a codegree e j monomial of w and a codegree p j monomial of v2, such that
the product of a codegree e j monomial of w and a codegree p j monomial of v2 is
not w0u0

2, i.e., the product of the top monomials of w and u2.
In a similar way we analyze codegree d products that are products of smaller

codegree monomials of u1 and w and the top monomials of t and u2, and products
of smaller codegree monomials of v1 and s and the top monomials of w and v2,
assuming the products of these smaller degree monomials are not equal to v0

1w0 or
to v0

1 .
We continue by analyzing canceling pairs of codegree d products that are products

of top monomials of vi , ui and x1, with one codegree d monomial of these elements,
such that this codegree d monomial of u1 is not v0

1 , the codegree d monomial of x1

is not w0 and the codegree d monomial of v2 is not u0
2. These codegree d products

are analyzed in the same way they were analyzed for smaller codegree products.
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We are left with codegree d products that are either

(1) a product of a codegree d monomial of u1 that is equal to v0
1 , with top mono-

mials of x1 and u2;

(2) a product of the top monomial of v1 with top monomials of x1 and a codegree
d monomial of v2 that is equal to u0

2;

(3) a product of the top monomial of u1 with a codegree d monomial of x1 that is
equal to the top monomial of w, with the top monomial of u2;

(4) a product of the top monomial of v1 with a codegree d monomial of x1 that is
equal to the top monomial of w, with the top monomial of v2;

(5) an odd set of codegree d products of the top monomial of v1, codegree e j

monomial of x1 and codegree p j monomial of v2, for some positive pairs
(e j , p j ) that satisfy e j + p j = d , such that the monomial of x1 is a product of
the top monomial of s with a codegree e j monomial of w, and the product of
each codegree e j monomial of x1 with a codegree p j monomial of v2 is equal
to w0v

0
2 (the product of the top monomials of w and v2);

(6) an odd set of codegree d products of the top monomial of u1, codegree qi

monomials of x1 that are products of the top monomial of w with a codegree
qi monomial of t , with codegrees mi monomials of u2, for some positive set of
pairs (qi , mi ) that satisfy qi + mi = d , such that the product of each codegree
qi monomial of t with a codegree mi monomial of u2 is equal to u0

2;

(7) an odd set of codegree d products of codegree fi monomials of u1 and codegree
gi monomials of x1 with the top monomial of u2, for some positive pairs ( fi , gi )

that satisfy fi +gi = d , such that the monomial of x1 is a product of a codegree
gi monomial of w with the top monomial of t , and the product of each codegree
fi monomial of u1 with a codegree gi monomial of x1 is equal to u0

1w0 (the
product of the top monomials of u1 and w);

(8) an odd set of codegree d products of codegree h j monomials of v1 and codegree
k j monomials of x1 that are products of a codegree k j monomial of s with
the top monomial of w, with the top monomial of v2, for some positive pairs
(h j , k j ) that satisfy h j + k j = d, such that the product of each codegree h j

monomial of v1 with a codegree k j monomial of s is equal to v0
1 .

First note that (3) exists if and only if (4) exists and they cancel each other. If
(3) and (4) are the only existing possibilities, we add a codegree d monomial to w,
which is the codegree d prefix or suffix of the top monomial of w. Also note that
if cases (1) or (2) exist, codegree d monomials that already appear in u1 or v2 are
added to them. Suppose that only two of the possibilities (1), (2) and (5)–(8) exist,
possibly in addition to (3) and (4). We go over the various alternatives:
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(i) If only (1) and (2) exist, we add the constant element 1 to s and t , and the
codegree d prefix of w0 to w, where w0 is the top monomial of w. If (3) and
(4) exists as well, we only add 1 to s and t .

(ii) If only (5) and (6) exist, we just add 1 to t . If (3) and (4) exist as well, we
add the codegree d prefix of w0 to w. The case in which only (7) and (8)
exist is identical.

(iii) If only (5) and (8) exist, we add 1 to s and the codegree d prefix of w0 to w.
If (3) and (4) exist as well, we only add 1 to s. The case in which only (6)
and (7) exist is treated identically.

(iv) If only (5) and (7) exist, we add the codegree d prefix of w0 to w. If (3) and
(4) exist as well, we do not add anything to any of the variables.

(v) If only (6) and (8) exist, we add 1 to s and t and the codegree d prefix of w0

to w. If (3) and (4) exist as well, we only add 1 to s and t .

(vi) If only (1) and (8) exist, we add 1 to s and the codegree d prefix of w0 to w.
If (3) and (4) exist as well, we only add 1 to s.

(vii) If only (1) and (7) exist, we do the same as in (v), adding 1 to s and the
codegree d prefix of w0 to w. If (3) and (4) exist as well, we only add 1 to s.

(viii) If only (1) and (6) exist, we add 1 to s and t , and the codegree d prefix of w0

to w. If (3) and (4) exist as well, we only add 1 to s and t .

(ix) If only (1) and (5) exist, we add 1 to s and the codegree d prefix of w0 to w.
If (3) and (4) exist as well, we only add 1 to s.

The cases in which only case (2) and one of the cases (5)–(8) exist are treated
according to cases (vi)–(ix). Suppose that exactly four of the cases (1), (2) and
(5)–(8) exist, possibly in addition to (3) and (4). We go over the alternatives:

(i) If only (1), (2), (5) and (6) exist, we add 1 to s and the codegree d prefix of
w0 to w. If (3) and (4) exist as well, we just add 1 to s. The case in which
only (1), (2), (7) and (8) exist is identical.

(ii) If only (1), (2), (5) and (8) exist, we add 1 to t . If (3) and (4) exist as well,
we add 1 to t and the codegree d prefix of w0 to w. The case in which only
(1), (2), (6) and (7) exist is identical.

(iii) If only (1), (2), (5) and (7) exist, we add 1 to s and t . If (3) and (4) exist as
well, we add 1 to s and t and the codegree d prefix of w0 to w.

(iv) If only (1), (2), (6) and (8) exist, we do not change any of the variables. If
(3) and (4) exist as well, we add the codegree d prefix of w0 to w.

(v) If only (5), (6), (7) and (8) exist, we add 1 to s and t . If (3) and (4) exist as
well, we add 1 to s and t and the codegree d prefix of w0 to w.
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(vi) If only (1), (5), (6) and (7) exist, we add 1 to s and t . If (3) and (4) exist as
well, we add 1 to s and t and the codegree d prefix of w0 to w.

(vii) If only (1), (5), (6) and (8) exist, we add 1 to t . If (3) and (4) exist as well,
we add 1 to t and the codegree d prefix of w0 to w.

(viii) If only (1), (5), (7) and (8) exist, we add the codegree d prefix of w0 to w. If
(3) and (4) exist as well, we do not add anything to any of the variables.

(ix) If only (1), (6), (7) and (8) exist, we add 1 to t and the codegree d prefix of
w0 to w. If (3) and (4) exist as well, we just add 1 to t .

The cases in which only case (2) and three of the cases (5)–(8) exist are treated
according to cases (vi)–(ix). Suppose that cases (1), (2) and (5)–(8) exist. In that
case we add the codegree d prefix of w0 to w. If cases (3) and (4) exist as well, we
do not add anything to any of the variables.

This completes the analysis of codegree d products. We continue with the
analysis of codegree d+1 products. First, as in analyzing smaller codegree products,
codegree d + 1 products that are products of smaller codegree monomials of ui , vi ,
s, t , w, that correspond to products of smaller degree monomials of ui , vi and x1

from the two sides of the equation, cancel in pairs.

Lemma 4.5. Suppose that a codegree d +1 product is a product of the top monomi-
als of u1 and w, and monomials of codegree q of t and codegree m of u2, such that
q ≥ 0, m > 0 and q + m = d + 1. Such a codegree d + 1 product cannot be

(1) a product of the top monomial of v1, a codegree e monomial of x1 and a
codegree f monomial of v2, for e > 0 and f ≥ 0, that satisfy e + f = d + 1,
and the codegree f monomial of v2 is a product of a codegree f monomial of
t with the top monomial u0

2 of u2;

(2) a product of the top monomial of u1, a codegree d + 1 monomial of x1 and the
top monomial of u2.

Proof. If such a codegree d + 1 product can be presented as a product in the forms
(1) or (2), u0

2 has a prefix which is a suffix of t0. Hence, v0
2 has nontrivial periodicity

that contradicts our assumptions. □

Suppose that a codegree d + 1 product can be presented as a product of the top
monomials of u1 and w, and monomials of codegrees qi of t and codegree mi of u2,
such that qi ≥ 0, mi > 0 and qi + mi = d + 1, and there are an odd number of such
pairs (qi , mi ).

By Lemma 4.5, the same codegree d + 1 product is the product of the top
monomial of v1, the top monomial of x1 and a codegree d + 1 monomial of v2.

Furthermore, by the same argument that was used in the proof of Lemma 4.5, if
a codegree d + 1 product is the product of the top monomials of v1 and x1 and a
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codegree d + 1 monomial of v2, then it must be the product of an odd number of
products of the top monomials of u1 and w, and monomials of codegrees qi of t
and codegrees mi of u2, such that qi ≥ 0, mi > 0 and qi + mi = d + 1.

Lemma 4.6. Suppose that a codegree d + 1 product can be presented in an odd
number of ways as products of the top monomial of v1, a codegree e j monomial
of x1, which is the product of the top monomial of s with a codegree e j monomial
of w, and a codegree f j monomial of v2, for positive e j and f j and e j + f j = d +1,
and the codegree f j monomials of v2 are products of codegree f j monomials of t
with the top monomial u0

2 of u2.

(1) Suppose that this codegree d +1 product cannot be presented in an odd number
of ways as products of a codegree g j monomial of u1, and a codegree h j

monomial of x1 with the top monomial of u2, where the codegree h j monomial
of x1 is a codegree h j monomial of w with the top monomial of t , for positive
g j and h j and g j + h j = d + 1, and the codegree g j monomials of u1 are
products of v0

1 with codegree g j monomials of t .
Then the same codegree d + 1 product is either the product of the top

monomial of u1, a codegree d +1 monomial of x1, and the top monomial of u2,
or the product of the top monomial of v1, a codegree d +1 monomial of x1 and
the top monomial of v2, and exactly one of the two occurs.

(2) Suppose that this codegree d + 1 product can be presented in an odd number
of ways as products of a codegree g j monomial of u1, and a codegree h j

monomial of x1 with the top monomial of u2, and the codegree h j monomial of
x1 is a codegree h j monomial of w with the top monomial of t , for positive g j

and h j and g j +h j = d +1, and the codegree g j monomials of u1 are products
of v0

1 with codegree g j monomials of t .
Then either the same codegree d + 1 product is both the product of the top

monomial of u1, a codegree d +1 monomial of x1, and the top monomial of u2,
and the product of the top monomial of v1, a codegree d + 1 monomial of x1

and the top monomial of v2, or none of these two possibilities occur.

Proof. Such a codegree d + 1 product does not cancel only with the product of
monomials of codegree less than d of ui , vi and x1, from the two sides of the
equation. By Lemma 4.5 such codegree d + 1 products cannot be equal to the
following products:

(1) top degree monomials of u1 and w with monomials of t and u2;

(2) top degree monomials of v1 and x1 and a codegree d + 1 monomial of v2;

(3) monomials of v1 and s with top degree monomials of w and v2;

(4) codegree d + 1 monomials of u1 with top degree monomials of x1 and of u2.
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Therefore, such a codegree d + 1 product must be equal to an odd number of
products in the forms that are listed in the statement of the lemma. □

Lemmas 4.5 and 4.6 enable us to treat codegree d + 1 products in a similar way
to the analysis of codegree r products for r < d .

Suppose that a codegree d + 1 product is obtained in an odd number of ways as
the product of the top monomials of u1 and x1 with a codegree qi monomial of t ,
and a codegree mi monomial of u2, such that qi ≥ 0, mi > 0 and qi + mi = d + 1.
By Lemma 4.5, such a product must be equal to a product of the top monomials of
v1 and x1 and a codegree d + 1 monomial of v2.

An analogous conclusion holds if a codegree d +1 product is obtained in an odd
number of ways as the product of a codegree mi monomial of v1 with a codegree qi

of s with the top monomials of x1 and v2, such that qi ≥0, mi >0 and qi +mi =d+1.
Suppose that a codegree d + 1 product can be presented in an odd number of

ways as products of the top monomial of v1, a codegree e j monomial of x1, which
is the product of the top monomial of s with a codegree e j monomial of w, and a
codegree f j monomial of v2, for positive e j and f j and e j + p j = d + 1, and the
codegree f j monomials of v2 are products of codegree f j monomials of t with the
top monomial u0

2 of u2.
Suppose that this codegree d + 1 product cannot be presented in an odd number

of ways as products of a codegree g j monomial of u1, and a codegree h j monomial
of x1, which is a codegree h j monomial of w with the top monomial of t , for
positive g j and h j and g j + h j = d + 1, and the codegree g j monomials of u1 are
products of v0

1 with codegree g j monomials of t .
If the same codegree d + 1 product is the product of the top monomial of u1,

a codegree d + 1 monomial of x1, and the top monomial of u2, we do not add
anything. If it is the product of the top monomial of v1, a codegree d +1 monomial
of x1 and the top monomial of v2, we add a codegree d + 1 monomial to w.

Suppose that this codegree d + 1 product can be presented in an odd number of
ways as products of a codegree g j monomial of u1, and a codegree h j monomial
of x1, which is a codegree h j monomial of w with the top monomial of t , for
positive g j and h j and g j + h j = d + 1, and the codegree g j monomials of u1 are
products of v0

1 with codegree g j monomials of t .
If the same codegree d +1 product is both the product of the top monomial of u1,

a codegree d + 1 monomial of x1, and the top monomial of u2, and the product of
the top monomial of v1, a codegree d + 1 monomial of x1 and the top monomial
of v2, then we do not add anything. If none of these two possibilities occur, we add
a codegree d + 1 monomial to w (by Lemma 4.6 either both or none occur).

Suppose that a codegree d + 1 product can be presented only as the product of
the top monomial of u1, a codegree d + 1 monomial of x1 and the top monomial
of u2, and as the product of the top monomial of v1, a codegree d + 1 monomial
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of x1, and the top monomial of v2. In that case we add a codegree d + 1 monomial
to w.

This concludes the analysis of codegree d +1 products. The analysis of codegree
d +r products, r < d , is identical to the analysis of codegree d +1 products. Hence,
we (possibly) finally add codegree d +r monomials to w, and the existing codegree
d + r monomials to ui and vi for 1 ≤ r < d , and do not change s and t , such that

(i) u1 = v1s mod Gdeg(u1)−2d .

(ii) v2 = tu2 mod Gdeg(v2)−2d .

(iii) x1 = sw = wt mod Gdeg(x1)−2d .

In analyzing codegree 2d products, as in analyzing codegree d products, there are
special codegree 2d monomials that we need to single out and treat separately, as
they may involve cancellations between codegree 2d products that contain codegree
d or 2d monomials of u1 or v1 and those that contain codegree d or 2d monomials
of u2 or v2.

As in analyzing smaller codegree products, note that codegree 2d products that
are products of smaller codegree monomials of the ui , vi , s, w and t , and correspond
to smaller codegree monomials of ui , vi and x1 from the two sides of the equation
cancel in pairs.

As in analyzing codegree d products, we continue by analyzing codegree 2d
products that are products of top degree monomials of u1 and w, codegree qi

monomials of t and codegree mi monomials of u2, such that qi + mi = 2d, there
are an odd number of such pairs (qi , mi ), and the product of these monomials of t
and u2 is not equal to a codegree d suffix of u0

2, the top monomial of u2 (which is
a codegree 2d suffix of v2

0 , the top monomial of v2). Such codegree 2d products
must cancel with the product of the top monomials of v1 and x1 and a codegree
2d monomial of v2. In this case we only add the already existing codegree 2d
monomial to v2.

Similarly, we analyze codegree 2d products that are obtained in an odd number
of ways as the product of the top monomials of v1 and s1, a codegree e j monomial
of w and a codegree p j monomial of v2, such that the product of a codegree e j

monomial of w and a codegree p j monomial of v2 does not have a suffix which is
the codegree d suffix of u0

2. We analyze codegree 2d products that contain similar
monomials of v1, u1 and x1 in a similar way.

Suppose that a codegree 2d product is obtained in an odd number of ways as
the product of the top monomials of u1 and x1, a codegree qi monomial of t and a
codegree mi monomial of u2, such that qi and mi are positive and qi +mi = 2d , and
the product of the monomial of t and the monomial of u2 is a codegree d monomial
of u0

2.
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Because we assumed that the coefficients do not have any periodicity, such a
codegree 2d product must cancel with either a product of the top monomials of u1

and x1 and a codegree 2d monomial of u2, or a product of the top monomials of v1

and x1 and a codegree 2d monomial of v2. In both of these cases we only add the
already existing codegree 2d monomials to u2 or v2.

If x1 contains a monomial that is equal to the 2d prefix (or suffix) of x0
1 , then the

codegree 2d product that contains the top monomials of the ui and this codegree
2d monomial of x1 cancels with the codegree 2d product of the top monomials of
the vi with that codegree 2d monomial of x1.

As in analyzing codegree d products, we continue by analyzing canceling pairs
of codegree 2d products that are products of top monomials of vi , ui and x1, with
one codegree 2d monomials of these elements, such that this codegree 2d monomial
of u1 is not the codegree d prefix of v0

1 , the codegree 2d monomial of x1 is not the
codegree d prefix (or suffix) of w0, and the codegree 2d monomial of v2 is not the
codegree d suffix of u0

2. These codegree 2d products are analyzed in the same way
they were analyzed for smaller codegree products.

We are left with codegree 2d products that are either

(1) a product of the top monomial of u1 with a codegree 2d monomial of x1 that
is equal to a codegree d prefix (or suffix) of the top monomial of w with the
top monomial of u2;

(2) a product of the top monomial of v1 with a codegree 2d monomial of x1 that is
equal to the codegree d prefix of the top monomial of w with the top monomial
of v2;

(3) an odd set of codegree 2d products of the top monomial of v1, codegree e j

monomial of x1 and codegree p j monomial of v2, for some positive pairs
(e j , p j ) that satisfy e j + p j = 2d , such that the codegree e j monomial of x1 is
the product of the top monomial of s with a codegree e j monomial of w, and
the product of each codegree e j monomial of x1 with a codegree p j monomial
of v2 is equal to the product of a codegree d prefix of w0 with v0

2 ;

(4) an odd set of codegree 2d products of codegree fi monomials of u1 and
codegree gi monomials of x1 with the top monomial of u2, for some positive
pairs ( fi , gi ) that satisfy fi + gi = 2d, such that the codegree gi monomial
of x1 is the product of a codegree gi monomial of w with the top monomial
of t , and the product of each codegree fi monomial of u1 with a codegree gi

monomial of x1 is equal to the product of u0
1 with the codegree d prefix of w0.

Note that (1) exists if and only if (2) exists and they cancel each other. If (1) and
(2) are the only existing possibilities, we add a codegree 2d monomial to w, which
is the codegree d prefix or suffix of the top monomial of w.
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If only possibilities (3) and (4) exist, we add the codegree 2d prefix of w0 to w.
If (1)–(4) do all exist, w remains unchanged.

This completes the analysis of codegree 2d products. Codegree 2d + r products,
for 1 ≤ r < d, are treated in the same way we treated codegree d + r products.
Codegree 3d products are treated in the same we treated 2d products, and so
on. Finally, in case d = deg(u1) − deg(v1) = deg(v2) − deg(u2), we obtained the
conclusion of the theorem.

Suppose that d = min(deg(v1), deg(u2), deg(u1) − deg(v1)) = deg(v1). In that
case we continue the analysis of codegree r homogeneous parts in ui , vi and x1,
d ≤ r < deg(u1)− deg(v1), precisely as we analyzed the codegree r homogeneous
parts for 1 ≤ r ≤ d − 1. For r = deg(u1) − deg(v1), we use the same analy-
sis that we apply for codegree d products in case d = deg(u1) − deg(v1). For
r > deg(u1)− deg(v1), we continue the analysis of codegree r homogeneous parts
according to the analysis of codegree higher than d in case d = deg(u1) − deg(v1).
The analysis in the case d = min(deg(v1), deg(u2), deg(u1) − deg(v1)) = deg(u2)

is identical. □

Theorem 4.4 reduces the analysis of solutions to the equation u1xu2 = v1xv2

to the equation xt = sx , in case the equation u1xu2 = v1xv2 has a long enough
solution, and the coefficients have no periodicity. The same techniques allow one
to reduce a general equation with one variable, in case the coefficients have no
periodicity.

Theorem 4.7. Let FA be the free associative algebra over GF2 that is freely gen-
erated by k elements. Let u1, . . . , un, v1, . . . , vn ∈ FA and suppose that the top
homogeneous parts of ui and vi are monomials with no periodicity, and that for at
least one index i , 1 ≤ i ≤ n, ui ̸= vi . Suppose that the equation

u1xu2xu3 · · · un−1xun = v1xv2xv3 · · · vn−1xvn

has a solution x1 of degree bigger than 2(deg(u1) + · · · + deg(un))
2.

By Section 1, the top homogeneous part of the solution x1 has to be a monomial x0
1 ,

and x0
1 has to satisfy an equation in a free semigroup

u0
1x0

1u0
2x0

1u0
3 · · · u0

n−1x0
1u0

n = v0
1 x0

1v0
2 x0

1v0
3 · · · v0

n−1x0
1v0

n,

where u0
i and v0

i are the top monomials in ui and vi . Every solution of this equation
is semiperiodic, i.e., has to be of the form r0w

m
0 , where length(r0) < length(w0)

and w0 is primitive. We say that w0 is the period of x0, and we further assume that
length(w0) > 1.

Suppose further that deg(ui ), deg(vi ) > length(w0) for every i = 1, . . . , n, and
that the period of the top monomial of x1 contains no periodicity, and that in
addition the top monomials from the two sides of the equation that are obtained



764 ZLIL SELA

from the two sides of the equation after substituting the solution x1, contain no
periodicity except the one in the top monomial of x1 (this translates to a condition
on the coefficients ui and vi , 1 ≤ i ≤ n, in the equation).

Then there exist some elements s, t ∈ FA, deg(s) = deg(t) ≤ max deg(ui ), such
that

(1) every solution of the equation sx = xt is a solution of the given equation;

(2) every solution x2 of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2) + 2(deg(u1) + · · · + deg(un))
2

is a solution of the equation sx = xt.

Proof. Let x1 be a solution of the given equation that satisfies

deg(x1) > 2(deg(u1) + · · · + deg(un)).

We start by looking at the top homogeneous part of x1, which we denote x0
1 . Clearly

x0
1 satisfies the homogeneous equation

u0
1x0

1u0
2x0

1u0
3 · · · u0

n−1x0
1u0

n = v0
1 x0

1v0
2 x0

1v0
3 · · · v0

n−1x0
1v0

n,

where u0
i and v0

i are the top monomials in ui and vi .
We start the analysis of the given equation under the assumption that there exists

an index i for which deg(ui ) ̸= deg(vi ). In that case there is a shift between the
appearances of some of the (homogeneous) elements x0

1 in the two sides of the
(homogeneous) equation. Let i1 be the first index i for which deg(ui ) ̸= deg(vi ).
The next appearances of x0

1 in the two sides of the equation must have a shift of
|deg(ui1)−deg(vi1)|. Since the top homogeneous parts of ui and vi are monomials,
it follows that the top homogeneous part of x1 is a monomial as well. We keep the
notation x0

1 for the top monomial of x1.
Let d be the minimum positive shift between pairs of appearances of x0

1 in the
top degree equation. Then x0

1 = e0(t0)b
= (s0)

b f0, for some elements t0, s0 in the
semigroup generated by the free generators a1, . . . , ak of the algebra FA. Note that
deg(s0) = deg(t0) = d, e0 is a prefix of s0 and suffix of t0 and f0 is a suffix of t0
and prefix of s0. Since the top monomial u0

i and v0
i have no periodicity, t0 and s0

have no periodicity as well.
Since we assumed that the length of x0

1 is bigger than the sum of the lengths of the
degrees deg(ui ), an appearance of x0

1 in the product that is associated with the top
monomial in the left side of the equation overlaps with the corresponding appearance
of x0

1 in the right side of the equation, and may overlap with the previous or the
next appearance of x0

1 of the right side of the equation as well. Our assumptions
that deg(ui ), deg(vi ) > d together with the assumption that the coefficients have no
periodicity imply that an appearance of x0

1 in the product that is associated with the
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top monomial in one side of the equation may overlap only with the corresponding
appearance of x0

1 in the other side of the equation (and not with the previous or the
next one).

Let 1 ≤ i1 < · · · < iℓ ≤ n − 1 be the indices for which there is a (nontrivial) shift
between the appearances of x0

1 in the two sides of the equation. Let 1 ≤ j1 < · · · <

jn−1−ℓ ≤ n − 1 be the complementary indices, i.e., those indices for which there is
no shift between the corresponding appearances of the monomials x0

1 in the two
sides of the equation.

We start by analyzing the codegree 1 monomials in the products that are associated
with the two sides of the equation. We further assumed that the length of the period
in x0

1 , i.e., d = |deg(ui1) − deg(vi1)| > 1. Note that any codegree 1 monomial in
the two products is a product of top monomials with a single codegree 1 monomial
from one of the ui , vi or one of the appearances of x1.

Suppose that i1 > 1. Then x0
1 is quasiperiodic (or rather a fractional power), its

period is of length at least 2 and x0
1 contains at least 2 periods. Hence, a codegree 1

product that contains a codegree 1 monomial of u1 can cancel with either a codegree
1 product that contains a codegree 1 monomial in v1 or a codegree 1 product that
contains a codegree 1 monomial in the first appearance of x1.

If the two canceling codegree 1 products contain codegree monomials of u1

and v1, then these two codegree 1 monomials must be equal. Otherwise, the
codegree 1 product that contains a codegree 1 monomial of u1 cancels with a
codegree 1 product that contains a codegree 1 monomial of the first appearance
of x1. Now, this last codegree 1 monomial appears in the other side of the equation
as well, and it can cancel only with a codegree 1 product that contains a codegree 1
monomial of v1 that must be identical to the codegree 1 monomial of u1 that we
started with. Therefore, the codegree 1 homogeneous parts of v1 and u1 are equal.
Continuing with the same argument iteratively, the codegree 1 homogeneous parts
of the elements ui and vi are equal for all i < i1 and i > iℓ.

Let js be one of the indices for which there is no shift between the corresponding
appearances of x0

1 in the two sides of the equation. We look at the codegree 1
products in the two sides of the equation. Each such codegree 1 product is a product
of a single codegree 1 monomial from a single appearance of x0

1 or exactly one
of the coefficients ui or vi , with top degree monomials. Note that the codegree 1
products that involve codegree 1 monomials of the js appearance of x1 in the two
sides of the equation (and top degree monomials from all the coefficients and the
other appearances of x1), are precisely the same codegree 1 products in the two
sides of the equation. Hence, these do cancel. All the other codegree 1 products
in the two sides of the equation contain x0

1 in the js appearance of x1. Since x0
1 is

periodic, and the length of the period is bigger than 1, a codegree 1 product that
includes a codegree 1 monomial to the left of the js appearance of x1 cannot be
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equal to a codegree 1 product that contains a codegree 1 monomial to the right of
the js appearance of x1.

Therefore, the left codegree 1 products (with respect to the js appearance of x1)
from the two sides of the equation have to cancel and the right codegree 1 products
have to cancel as well. In particular, if for some index i , both the i − 1 and the i
appearances of x1 in the two sides of the equation have no shift, then ui and vi have
the same codegree 1 homogeneous parts.

At this point we need to examine the appearances of the variables x1 in which
there is a shift between the two sides of the equation, i.e., in places i1, . . . , iℓ, and
the coefficients ui and vi that are connected to these appearances. To do that we
break the appearances of the variables x1, and the coefficients ui , vi in the two sides
of the equations into regions (or intervals).

We look at the top monomial in the two sides of the equation. For each index
i we add a breakpoint at the left point of the pair ui , vi , and to the right of that
pair. We denote the variable that is associated with the region (interval) between
the right point of the pair ui , vi and the left point of the pair ui+1, vi+1 by wi . The
top monomial of wi is a prefix or a suffix of the top monomial x0

1 of x1. We denote
by qi the variable that is associated with the region between wi−1 and wi . Note that
the region that is associated with qi contains the support of ui and vi . If the region
that is associated with qi contains the right part of the i − 1 appearance of x1, we
denote the variable that is associated with that right part by ti−1. If it contains the
left part of the i appearance of x1, we denote the variable that is associated with
that left part by si .

As in our previous arguments, we intend to break the solution x1, so that
x1 = siwi = wi ti , whenever the variables wi , si , ti are defined and in appropriate
abelian (quotient) groups. Furthermore, each of the elements qi can be broken ac-
cording to the two sides of the equation. Hence, we intend to show that qi = ti−1ui si ,
or qi = ti−1ui , or qi = ui si , or qi = ui , and correspondingly for the elements vi

(instead of the ui ), depending on the way the elements qi are broken in the two
sides of the equation.

Because of the periodicity of x0
1 , and since we assume that the length of the

period of x0
1 is bigger than 1, a codegree 1 product that contains a codegree 1

monomial of vi cannot cancel with a codegree 1 product that contains a codegree 1
monomial in vi ′ or ui ′ for i ̸= i ′, and likewise for the ui .

Suppose that qi = vi = ti−1ui si for the top monomials. In that case two codegree
1 products that contain codegree 1 monomials of the i − 1 and i appearances of x1

that are both from the vi side, or both from the ui side, cannot cancel. Furthermore,
two codegree 1 products that cancel and belong to the two sides of the equation
cannot contain codegree 1 monomials from both appearances i − 1 and i of x1.
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Hence, in that case a pair of canceling codegree 1 products may be either

(1) codegree 1 monomials of the same appearance of x1 from the two sides of the
equation;

(2) a codegree 1 monomial of either the i or i −1 appearance of x1 for one product,
and a codegree 1 monomial of ui for the second product;

(3) a codegree 1 monomial of either the i or i −1 appearance of x1 for one product,
and a codegree 1 monomial of vi for the second product;

(4) a codegree 1 monomial of ui in one product, and a codegree 1 monomial of vi

in the second product.

If case (1) occurs we add a codegree 1 monomial to wi or wi−1 (depending on
the appearance of x1). In case (2) we add a codegree 1 monomial to ti−1 or si , and
the existing one to ui . In case (3) we add the existing codegree 1 monomial to vi

and a codegree 1 monomial to ti−1 or si (depending on the appearance of x1). In
case (4) we add only the existing codegree 1 monomials to vi and ui .

Suppose that qi = ti−1vi = ui si for the top monomials. Two codegree 1 products
that contain codegree 1 monomials of the i − 1 and i appearances of x1 from the
same side of the equation cannot be equal. Furthermore, a codegree 1 product that
contains a codegree 1 monomial of the i − 1 appearance of x1 in the ui side cannot
cancel with a codegree 1 product that contains a codegree 1 monomial in the i
appearance of x1 from the vi side. Since we assumed that deg(ui ), deg(vi ) > d , and
the coefficients have no periodicity, a codegree 1 product that contains a codegree 1
monomial of the i −1 appearance of x1 in the vi side cannot cancel with a codegree
1 product that contains a codegree 1 monomial in the i appearance of x1 from the
ui side.

Like in the case qi = vi = ti−1ui si , in that case a pair of canceling codegree 1
products may be either

(1) codegree 1 monomials of the same appearance of x1 from the two sides of the
equation;

(2) a codegree 1 monomial of either the i or i −1 appearance of x1 for one product,
and a codegree 1 monomial of ui for the second product;

(3) a codegree 1 monomial of either the i or i −1 appearance of x1 for one product,
and a codegree 1 monomial of vi for the second product;

(4) a codegree 1 monomial of ui in one product, and a codegree 1 monomial of vi

in the second product.

If case (1) occurs we add a codegree 1 monomial to wi or wi−1 (depending on the
appearance of x1). In case (2), if a codegree 1 of the i − 1 appearance of x1 is part
of the canceling pair, we add a codegree 1 monomial to wi−1 (only if the codegree 1
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product is from the ui side of the equation), a codegree 1 monomial to ti−1, and the
existing codegree 1 monomial to ui . If a codegree 1 of the i appearance of x1 is
part of the cancelling pair, we add a codegree 1 monomial to si , and the existing
codegree 1 monomial to ui . In case (3) we do the equivalent additions for vi , wi ,
ti−1 and si . In case (4) we just add the codegree 1 existing monomials to ui and vi .

So far we have constructed elements wi , ti and si such that the equations x1 =wi ti ,
x1 = siwi , qi = ui si or qi = ti−1ui , or qi = ti−1ui si or qi = ui (and correspondingly
for the vi ) hold for products of codegree at most 1. We continue by analyzing
products of codegree r , r < d , assuming that we analyzed all the products of smaller
codegree, constructed the elements wi , si and ti , and they satisfy the last equations
for products of codegree at most r − 1.

We analyze codegree r products in a similar way to their analysis in the proof of
Theorem 4.4. First, note that if a codegree r product is a product of monomials of
ui , vi , si , ti and wi that correspond to products of monomials of codegree smaller
than r of ui , vi and all the appearances of x1 from the two sides of the equation,
then such codegree r products cancel in pairs.

Let i be an index for which deg(ui ) = deg(vi ), and there is no shift between the
i − 1 and i appearances of x1. By our analysis of codegree 1 monomials, the top
monomials, and the codegree 1 homogeneous parts of ui and vi are identical. Code-
gree r products from one side of the equation that contain codegree r monomials
of the i or i − 1 appearances of x1 cancel with corresponding codegree r products
from the other side of the equation. Hence, a codegree r product that contains a
codegree r monomial of ui can cancel only with a codegree r product that contains
a codegree r monomial of vi . Therefore, the codegree r homogeneous part of ui is
identical to the codegree r homogeneous part of vi . Furthermore, for the purpose
of analyzing codegree r products, the given equation can be broken into finitely
many equations by taking out such pairs of coefficients ui , vi , and the appearances
of the solution x1 that are adjacent to them.

Suppose that for some index i there is no shift between the appearances of
x1 in the two sides of the equation. In that case codegree r products that contain
codegree r monomials of the i appearance of x1 from one side of the equation cancel
with codegree r products that contain codegree r monomials of that i appearance
of x1 from the other side of the equation. Hence, for the purpose of analyzing
codegree r products, the given equation breaks into several equations, by taking
out all the appearances of x1 that have no shift. Therefore, for the continuation of
the analysis of codegree r products, we may assume that there are no appearances
of x1 with no shift.

Since we assumed that the equation does not contain appearances of x1 in the
two sides of the equation with no shift between them, the analysis of codegree r
products that contain positive codegree monomials of either u1 or v1, or positive
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codegree monomials of either un or vn , is identical to the analysis of codegree r
monomials in Theorem 4.4, i.e., in the equation u1xu2 = v1xv2. Hence, we only
need to analyze codegree r products that contain positive codegree monomials from
some element qi = ui si = ti−1vi or from an element qi = ti−1ui si = vi .

Let qi = ui si = ti−1vi . Since ui and vi have no periodicity, a codegree r product
that contains a codegree r monomial of x1 in its i − 1 appearance cannot cancel
with a codegree r from the same side of the equation that contains a codegree r
monomial of x1 in its i appearance. Furthermore, a codegree r product that contains
a codegree r monomial of x1 in its i −1 appearance from the ui side of the equation,
cannot cancel with a codegree r product that contains a codegree r monomial of x1

in its i appearance from the vi side of the equation.
Suppose that a codegree r product can be expressed as products of codegree q j

monomials of ti−1 and codegree m j monomials of vi with top monomials of the
other elements in the vi side of the equation such that q j ≥ 0 and m j is positive
and q j + m j = r , in an odd number of ways. Such codegree r products can cancel
with either

(1) an odd number of products of codegree f j monomials of ui and codegree g j

monomials of si with top monomials of the other elements in the ui side of
the equation, such that g j ≥ 0 and f j is positive and f j + g j = r ;

(2) a product of a codegree r monomial of x1 in its i − 1 appearance with other
top monomials in the vi side of the equation;

(3) a product of a codegree r monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(4) a product of a codegree r monomial of x1 in its i − 1 appearance with other
top monomials in the ui side of the equation;

(5) a product of a codegree r monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(6) an odd number of products of a codegree b j monomial of wi−1 with a codegree
a j monomial of ti−1 for positive a j , b j , a j + b j = r , with top monomials of
the other elements from the vi side;

(7) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = r , with top monomials of the
other elements from the ui side.

If only case (1) occurs we don’t add anything to any of the elements except
the existing codegree r monomials of ui and vi . If only case (2) occurs we add a
codegree r monomial to ti−1. If only case (3) occurs we add a codegree r monomial
to wi and a codegree r monomial to si . If only case (4) occurs we add a codegree
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r monomial to wi−1 and to ti−1. If only case (5) occurs we add a codegree r
monomial to si .

Cases (2) and (3) cannot occur together, nor cases (4) and (5), nor cases (3)
and (4). If only cases (1), (2) and (4) occur, we add a codegree r monomial to wi−1.
If only cases (1), (2) and (5) occur, we add codegree r monomials to ti−1 and si . If
only (1), (3) and (5) occur, we add a codegree r monomial to wi .

We still need to treat cases (6) and (7). Note that the existence of these cases
means that codegree r products, which were supposed to exist given the smaller
codegree monomials of the various elements, may or may not exist, depending on
the existence of codegree r monomials in the various appearances of the element x1.
Also, note that case (6) cannot occur with case (3), and case (7) cannot occur with
case (4).

If only case (6) appears, we add a codegree r monomial to ti−1. If only case (7)
appears we add a codegree r monomial to si . If only cases (1), (2) and (6) appear,
we do not add anything. If only cases (1), (2) and (7) appear, we add a codegree r
monomial to ti−1 and to si . If only (1), (3) and (7) appear, we do not add anything.
If only (1), (4) and (6) appear, we add a codegree r monomial to wi−1. If only (1),
(5) and (6) appear, we add codegree r monomials to ti−1 and to si . If only (1), (5)
and (7) appear, we don’t add anything.

If only (2), (4) and (6) appear, we add codegree r monomials to wi−1 and to ti−1.
If only (2), (5) and (6) appear, we add a codegree r monomial to si . If only (2),
(5) and (7) appear, we add a codegree r monomial to ti−1. If only (3), (5) and (7)
appear, we add codegree r monomials to wi and to si .

If only (1), (6) and (7) appear, we add codegree r monomials to ti−1 and to si . If
only (2), (6) and (7) appear, we add a codegree r monomial to si . If only (5), (6)
and (7) appear, we add a codegree r monomial to ti−1. If only (1), (2), (5), (6) and
(7) appear, we do not add anything.

The case in which the codegree r product is a product of case (1) is dealt with in
a symmetric way. Hence, suppose that the codegree r product is not a product of
case (1) and cannot be expressed in an odd number of ways as products of codegree
q j monomials of ti−1 and codegree m j monomials of vi with top monomials of the
other elements in the vi side of the equation, such that q j ≥ 0 and m j is positive
and q j + m j = r .

If only (2) and (4) appear, we add a codegree r monomial to wi−1. If only (2)
and (5) appear, we add codegree r monomials to ti−1 and si . If only (2) and (6)
appear, we do not add anything. If only (2) and (7) appear, we add codegree r
monomials to ti−1 and si . If only (3) and (5) appear, we add a codegree r monomial
to wi . If only (3) and (7) appear, we add a codegree r monomial to wi . If only (4)
and (6) appear, we add a codegree r monomial to wi−1. If only (5) and (6) appear,
we add codegree r monomials to ti−1 and si . If only (5) and (7) appear, we do not
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add anything. If only (6) and (7) appear, we add codegree r monomials to ti−1

and si . Finally, if (2), (5), (6) and (7) appear, we do not add anything.
As in the proof of Theorem 4.4, it can still be that a codegree r product is of

type (7) and can also be presented in an odd number of ways as products of a
codegree b j monomial of wi with a codegree a j monomial of ti for positive a j , b j ,
a j + b j = r , with top monomials of the other elements from the vi side.

In that case it can either be presented only in these two forms or also in both
forms (3) and (5). If it can be presented in forms (3) and (5) we do not add anything.
If it cannot we add a codegree r monomial to wi .

This concludes the construction of the elements si , ti , wi for codegree r products
that involve qi = ui si = ti−1vi . Suppose that qi = vi = ti−1ui si . Since ui and vi

have no periodicity, a codegree r product that contains a codegree r monomial of
x1 in its i − 1 appearance cannot cancel with a codegree r product that contains a
codegree r monomial of x1 in its i appearance.

Suppose that a codegree r product can be expressed as products of codegree q j

monomials of ti−1, codegree m j monomials of ui and codegree p j monomials of
si with top monomials of the other elements in the ui side of the equation, such
that q j , m j , p j ≥ 0, either m j > 0 or q j , p j > 0, and q j + m j + p j = r , in an odd
number of ways. Such codegree r products can cancel with either

(1) a product of a codegree r monomial of vi with other top monomials;

(2) a product of a codegree r monomial of x1 in its i − 1 appearance with other
top monomials in the ui side of the equation;

(3) a product of a codegree r monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(4) a product of a codegree r monomial of x1 in its i − 1 appearance with other
top monomials in the vi side of the equation;

(5) a product of a codegree r monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(6) an odd number of products of a codegree b j monomial of wi−1 with a codegree
a j monomial of ti−1 for positive a j , b j , a j + b j = r , with top monomials of
the other elements from the ui side;

(7) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = r , with top monomials of the
other elements from the ui side.

According to the various cases, we add monomials to the variables ti , si , wi , in
a similar way to what we did in case qi = ui si = ti−1vi . If only case (1) occurs we
don’t add anything to any of the elements except the existing codegree r monomials
of ui and vi . If only case (2) occurs we add a codegree r monomial to ti−1. If only
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case (3) occurs we add a codegree r monomial to si . If only case (4) occurs we
add a codegree r monomial to wi−1 and to ti−1. If only case (5) occurs we add a
codegree r monomials to wi and to si .

Cases (2) and (3) cannot occur together, nor cases (4) and (5), nor cases (3)
and (4), nor (2) and (5). If only cases (1), (2) and (4) occur, we add a codegree r
monomial to wi−1. If only (1), (3) and (5) occur, we add a codegree r monomial
to wi .

As in the case in which qi = ui si = ti−1vi , the existence of cases (6) and (7)
means that codegree r products that were supposed to exist given the smaller
codegree monomials of the various elements, may or may not exist, depending on
the existence of codegree r monomials in the various appearances of the element x1.
Also, note that case (6) cannot occur with cases (3) or (5), and case (7) cannot occur
with cases (2) or (4).

If only case (6) appears, we add a codegree r monomial to ti−1. If only case (7)
appears we add a codegree r monomial to si . If only cases (1), (2) and (6) appear,
we do not add anything. If only (1), (3) and (7) appear, we do not add anything. If
only (1), (4) and (6) appear, we add a codegree r monomial to wi−1. If only (1),
(5) and (7) appear, we add a codegree r monomial to wi .

If only (2), (4) and (6) appear, we add codegree r monomials to wi−1 and to ti−1.
If only (3), (5) and (7) appear, we add codegree r monomials to wi and to si .

The case in which case (1) occurs is dealt with in an analogous way. Hence,
suppose that the codegree r product is not a product of case (1) and cannot be
expressed in an odd number of ways as products of codegree q j monomials of ti−1,
codegree m j monomials of ui and codegree p j monomials of si with top monomials
of the other elements in the ui side of the equation, such that q j , m j , p j ≥ 0, either
m j is positive or both q j , p j are positive and q j + m j + p j = r .

If only (2) and (4) appear, we add a codegree r monomial to wi−1. If only (2) and
(6) appear, we do not add anything. If only (3) and (5) appear, we add a codegree r
monomial to wi . If only (3) and (7) appear, we do not add anything. If only (4)
and (6) appear, we add a codegree r monomial to wi−1. If only (5) and (7) appear,
we add a codegree r monomial to wi .

It can still be that a codegree r product is of type (7) and can also be presented
in an odd number of ways as products of a codegree b j monomial of wi with a
codegree a j monomial of ti for positive a j , b j , a j + b j = r , with top monomials of
the other elements from the vi side. We treat this case precisely as we treated it in
the case qi = ui si = ti−1vi .

This concludes the construction of the elements si , ti , wi for codegree r products
when r < d. The elements wi , ti , and si that we constructed so far satisfy the
equations x1 = wi ti , x1 = siwi , qi = ui si or qi = ti−1ui , or qi = ti−1ui si or qi = ui

(and correspondingly for the vi ) for products of codegree smaller than d.
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To continue we need to analyze products of codegree d and higher. For presen-
tation purposes we start this analysis under the additional assumption that all the
appearances of x1 in the two sides of the equation have nontrivial shifts, i.e., the
appearances of the top monomial of the solution x0

1 in the two sides of the equality
for the top monomials are shifted. This assumption enables us to analyze the higher
codegree products using the arguments that were used in the proof of Theorem 4.4
and in analyzing smaller codegree products. Afterwards we drop this assumption.

As in Theorem 4.4, in analyzing codegree d products, there are special codegree
d products that we need to single out and treat separately, as they may involve
cancellations between codegree d products that contain codegree d monomials of
ui or vi and those that contain codegree d monomials of ui+1 or vi+1.

As in analyzing smaller codegree products, note that codegree d products that are
products of smaller codegree monomials of the ui , vi , si , wi and ti , and correspond
to smaller codegree monomials of ui , vi and x1 from the two sides of the equation
cancel in pairs.

In analyzing codegree r products for r < d, there is no interaction between
elements in qi and q j for i ̸= j . As in the proof of Theorem 4.4, in analyzing
codegree d products such interaction may happen if i and j are consecutive indices.
Hence, in analyzing codegree d products we need to go over the various possibilities
for qi and qi+1.

Suppose that qi = ui si = ti−1vi . Suppose that a codegree d product can be
expressed as products of codegree q j monomials of ti−1 and codegree m j monomials
of vi with top monomials of the other elements in the vi side of the equation, such
that q j ≥ 0 and m j is positive and q j +m j = d , in an odd number of ways. If the qi

part of such a product is not equal to u0
i nor to v0

i (the top monomials of ui and vi ),
such codegree r products are analyzed exactly in the same way they were analyzed
in codegree r products for r < d .

We have u0
i ̸= v0

i because we assumed that the top monomials of the coefficients
have no periodicity. If the qi part of such a product equals v0

i , the codegree d product
may be equal to a codegree d product that contains positive codegree monomials
in qi−1. If the qi part of such a product equals u0

i , the codegree d product may be
equal to a codegree d product that contains positive codegree monomials in qi+1.

Suppose that the qi part of the codegree d product equals u0
i . Suppose further that

qi+1 = ui+1si+1 = tivi+1. In that case such a codegree d product can cancel with
codegree d products that are either a subset of those analyzed for products of smaller
codegree, or products that include positive codegree monomials of qi+1:

(1) an odd number of products of codegree f j monomials of ui and codegree g j

monomials of si with top monomials of the other elements in the ui side of
the equation, such that g j ≥ 0 and f j is positive and f j + g j = d;
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(2) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(3) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(4) an odd number of products of codegree q j monomials of ti and codegree m j

monomials of vi+1 with top monomials of the other elements in the vi side
of the equation, such that q j ≥ 0 and m j is positive and the product of the
monomial of ti with the monomial of vi+1 is v0

i+1;

(5) an odd number of products of codegree f j monomials of ui+1 and codegree
g j monomials of si+1 with top monomials of the other elements in the ui side
of the equation, such that g j ≥ 0 and f j is positive and the product of the
monomial of ui+1 with the monomial of si+1 is v0

i+1;

(6) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = d , with top monomials of the
other elements from the ui side;

(7) an odd number of products of a codegree b j monomial of wi with a codegree
a j monomial of ti for positive a j , b j , a j + b j = d , with top monomials of the
other elements from the vi side.

Note that case (2) occurs if and only if case (3) occurs. If only one of the cases (1)
or (6) occurs, we treat them as they were treated in analyzing codegree r products
for r < d. If only case (4) or only case (5) occurs we add 1 (the identity) to si

and ti , and the codegree d prefix of w0
i to wi . If only case (7) occurs we add 1 to si

and the codegree d prefix of w0
i to wi .

If only cases (1)–(3) occur, or only cases (2), (3) and (6) occur, we treat them
as they were treated for codegree r products, r < d. If only cases (2) and (3) in
addition to one of the cases (4) or (5) occur, we add 1 to si and ti . If only cases
(2), (3) and (7) occur, we add 1 to si . If only (1), (4) and (5) occur, we don’t add
anything. If only (1), (6) and one of (4) or (5) occur, we add 1 to ti and the codegree
d prefix of w0

i to wi . If only (1), (7) and one of (4) or (5) occur, we add 1 to ti .
If only (1), (6) and (7) occur, we add the codegree d prefix of w0

i to wi . If only
(6), (7) and one of (4) or (5) occur, we add 1 to si and ti and the codegree d prefix
of w0

i to wi . If only (4), (5) and (6) occur, we add 1 to si . If only (4), (5) and (7)
occur, we add 1 to si and the codegree d prefix of w0

i to wi .
If only (1)–(5) occur, we add the codegree d prefix of w0

i to wi . If only (1)–(3)
and (6)–(7) occur, we do not add anything. If only (1)–(3), (6) and one of (4) or (5)
occur, we add 1 to ti . If only (1)–(3), (7) and one of (4) or (5) occur, we add 1 to ti
and the codegree d prefix of w0

i to wi . If only (1) and (4)–(7) occur, we add the
codegree d prefix of w0

i to wi .
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If only (2)–(6) occur, we add 1 to si and the prefix of codegree d of w0
i to wi . If

only (2)–(5) and (7) occur, we add 1 to si . If only (2)–(3), (6)–(7) and one of (4)
or (5) occur, we add 1 to si and ti and the codegree d prefix of w0

i to wi . If all the
possibilities (1)–(7) occur, we do not add anything.

Suppose that a codegree d product can be expressed as a product in case (1), and
cannot be expressed as products of codegree q j monomials of ti−1 and codegree
m j monomials of vi with top monomials of the other elements in the vi side of the
equation, such that q j ≥ 0 and m j is positive and the qi part of the product is u0

i in
an even number (possibly none) ways. In that case the analysis of such a product
and the monomials that are added to the elements ti , si and wi are analogous to the
analysis described above.

Suppose that such a codegree d product cannot be expressed as a product in
case (1), but it can be expressed as a product in case (6). If only (6) and (7) occur,
we add the codegree d prefix of w0

i to wi . If only (6) and one of (4) or (5) occur,
we add 1 to ti and the prefix of codegree d of w0

i to wi . If only (4)–(7) occur, we
add the codegree d prefix of w0

i to wi . If only (2)–(3) and (6)–(7) occur, we do not
add anything. If only (2)–(3), (6) and one of (4) or (5) occur, we add 1 to ti . If only
(2)–(7) occur, we do not add anything.

This concludes the analysis of such codegree d products in the case that qi+1 =

ui+1si+1 = tivi+1. Suppose that qi+1 = ui+1 = tivi+1si+1. As before, such a
codegree d product can cancel with codegree d products that are either a subset
of the ones that were analyzed for products of smaller codegree, or products that
include positive codegree monomials of qi+1:

(1) an odd number of products of codegree f j monomials of ui and codegree g j

monomials of si with top monomials of the other elements in the ui side of
the equation, such that g j ≥ 0 and f j is positive and f j + g j = d;

(2) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(3) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(4) an odd number of products of codegree q j monomials of ti , codegree m j

monomials of vi+1 and codegree p j monomials of si+1 with top monomials
of the other elements in the vi side of the equation, such that q j , m j , p j ≥ 0,
either m j > 0 or q j , p j > 0, and q j + m j + p j = d, and the product of the
corresponding monomials of ti , vi+1 and si+1 is the codegree d suffix of u0

i+1;

(5) a product of a monomial of ui+1, which is the codegree d suffix of u0
i+1, with

the top monomials of the all the other elements from the ui side of the equation;
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(6) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = d , with top monomials of the
other elements from the ui side;

(7) an odd number of products of a codegree b j monomial of wi with a codegree
a j monomial of ti for positive a j , b j , a j + b j = d , with top monomials of the
other elements from the vi side.

Analyzing the various possibilities in this case is identical to the case qi+1 =

ui+1si+1 = tivi+1.
Recall that we assumed that qi = ui si = ti−1vi . In addition suppose that a

codegree d product can be expressed as products of codegree f j monomials of
ui and codegree g j monomials of si with top monomials of the other elements in
the ui side of the equation, such that f j ≥ 0 and g j is positive and f j + g j = d,
in an odd number of ways, and such that the product of the monomial of ui with
the monomial of si is v0

i . In that case, the codegree d product may be equal to
a codegree d product that contains positive codegree monomials in qi−1. Such a
codegree d product can cancel with codegree d products that are either a subset
of the ones that were analyzed for products of smaller codegree, or products that
include positive codegree monomials of qi−1:

(1) an odd number of products of codegree q j monomials of ti−1 and codegree
m j monomials of vi with top monomials of the other elements in the vi side
of the equation, such that q j ≥ 0 and m j is positive and q j + m j = d;

(2) a product of a codegree d monomial of x1 in its i − 1 appearance with other
top monomials in the ui side of the equation;

(3) a product of a codegree d monomial of x1 in its i − 1 appearance with other
top monomials in the vi side of the equation;

(4) an odd number of products of codegree f j monomials of ui−1 and codegree
g j monomials of si−1 with top monomials of the other elements in the ui side
of the equation, such that g j ≥ 0 and f j is positive and the product of the
monomial of ui−1 with the monomial of si−1 is u0

i−1;

(5) an odd number of products of q j monomials of ti−2 and codegree m j mono-
mials of vi−1 with top monomials of the other elements in the vi side of the
equation, such that q j ≥ 0 and m j is positive and the product of the monomial
of ti−2 with the monomial of vi−1 is u0

i−1;

(6) an odd number of products of a codegree c j monomial of wi−1 with a codegree
h j monomial of ti−1 for positive c j , h j , c j + h j = d, with top monomials of
the other elements from the vi side;
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(7) an odd number of products of a codegree a j monomial of si−1 with a codegree
b j monomial of wi−1 for positive a j , b j , a j + b j = d , with top monomials of
the other elements from the ui side.

The analysis of this case is identical to the case in which the qi part of a codegree
d product is v0

i , and there is a possible cancellation with codegree d products that
contain positive codegree monomials of qi+1. An identical analysis applies also
when qi−1 = vi−1 = ti−2ui−1si−1.

Suppose that qi = ui = ti−1vi si and qi+1 = vi+1 = ti ui+1si+1. Suppose that a
codegree d product can be presented in an odd number of ways as products of
codegree q j monomials of ti−1, codegree m j monomials of vi and codegree p j

monomials of si with top monomials of the other elements in the vi side of the
equation, such that q j , m j , p j ≥0, either m j >0 or q j , p j >0, and q j +m j + p j =d ,
and the product of the corresponding monomials of ti−1, vi and si is the codegree
d prefix of u0

i .
Such a codegree d product can cancel with codegree d products that are either a

subset of the ones that were analyzed for products of smaller codegree, or products
that include positive codegree monomials of qi+1:

(1) a product of a monomial of ui which is the codegree d prefix of u0
i with the

top monomials of all the other elements from the ui side of the equation;

(2) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the vi side of the equation;

(3) a product of a codegree d monomial of x1 in its i appearance with other top
monomials in the ui side of the equation;

(4) a product of a monomial of vi+1 which is the codegree d suffix of v0
i+1 with the

top monomials of the all the other elements from the vi side of the equation;

(5) an odd number of products of codegree q j monomials of ti , codegree m j

monomials of ui+1 and codegree p j monomials of si+1 with top monomials
of the other elements in the ui side of the equation, such that q j , m j , p j ≥ 0,
either m j > 0 or q j , p j > 0, and q j + m j + p j = d, and the product of the
corresponding monomials of ti , vi+1 and si+1 is the codegree d suffix of v0

i+1;

(6) an odd number of products of a codegree c j monomial of wi with a codegree
h j monomial of si for positive c j , h j , c j + h j = d , with top monomials of the
other elements from the vi side;

(7) an odd number of products of a codegree b j monomial of wi with a codegree
a j monomial of ti for positive a j , b j , a j + b j = d , with top monomials of the
other elements from the ui side.
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Analyzing the various possibilities in this case is identical to the case qi =

ti−1vi = ui si . The analysis of the remaining case, in which qi = ui = ti−1vi si and
qi−1 = vi−1 = ti−2ui−1si−1, is identical to the previous cases as well.

This concludes the construction of the elements si , ti , wi for codegree r products
when r ≤ d , in case all the pairs of appearances of the top monomial of the solution
x1 in the two sides of the equation have nontrivial shifts. The elements wi , ti and si

that we constructed so far satisfy the equations x1 = wi ti , x1 = siwi , qi = ui si or
qi = ti−1ui , or qi = ti−1ui si or qi = ui (and correspondingly for the vi ) for products
of codegree smaller or equal to d .

As in the proof of Theorem 4.4, we continue with the analysis of codegree d + r
products for r < d . First, as in analyzing smaller codegree products, codegree d +r
products that are products of smaller codegree monomials of ui , vi , si , ti and wi ,
that correspond to products of smaller codegree monomials of ui , vi and x1 (in all
its appearances) from the two sides of the equation, cancel in pairs. We start with
two lemmas that are the analogues of Lemmas 4.5 and 4.6.

Lemma 4.8. Suppose that a codegree d + r product can be presented both as

(1) a product of a codegree h monomial of si with a codegree c monomial of wi ,
for positive c, h, c + h = d + r , with top monomials of the other elements from
the ui side;

(2) a product of a codegree b monomial of wi with a codegree a monomial of ti
for positive a, b, a + b = d + r , with top monomials of the other elements from
the vi side.

Such a codegree d + r product may only be presented as a product of smaller
codegree monomials or (only) in one of the following two products:

(i) a product of a codegree d + r monomial of x1 in its i appearance with other
top monomials in the vi side of the equation;

(ii) a product of a codegree d + r monomial of x1 in its i appearance with other
top monomials in the ui side of the equation.

Proof. In case it can be presented as another product of a codegree d + r monomial
with top degree monomials, either the top monomial of si or the top monomial of ti
overlap with themselves with a cyclic shift. Hence they must be periodic, a contra-
diction to the assumption that the coefficients do not have nontrivial periodicity. □

Lemma 4.9. With the notation of Lemma 4.8, if a codegree d + r product can be
presented in an odd number of ways as a product in the form (1) and in an even
number of ways as a product of form (2), then such a product can be presented
precisely in one of the forms (i) or (ii). If a codegree d + r product can be presented
precisely in one of the forms (i) or (ii), then it can be presented precisely in one of
the forms (1) or (2) in an odd number of ways.
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If a codegree d + r product can be presented in an odd number of ways in both
forms (1) and (2), then it can either be presented in both forms (i) and (ii) or in
neither of them. If a codegree d + r product can be presented in both forms (i) and
(ii) then it can either be presented in both forms (1) or (2) in an odd number of
ways, or in both of them in an even number of ways.

Proof. If a codegree d + r product can be presented in both forms (1) and (2) (odd
or even number of times), the conclusion follows from Lemma 4.8. Suppose that it
can be presented in an odd number of ways in form (1) and none in form (2). If it
can also be presented as a codegree d + r product that involves positive codegree
monomials of u j , v j , s j , t j or x j , for j > i , the top monomial of ui+1 must have
nontrivial periodicity, a contradiction. If it can be also presented as a codegree
d + r product from the ui sides of the equation that involves monomials of positive
codegree monomials of u j , s j , t j or x j , for j < i , the top monomial of ui must
have nontrivial periodicity, a contradiction.

Suppose that the given codegree d +r product can also be presented as a product
of either

(1) a codegree q of ti−1 and a codegree m of vi with other top monomials from
the vi side of the equation;

(2) a codegree f of ui and a codegree g of si with other top monomials from the
ui side of the equation;

(3) a codegree d + r product from the vi side of the equation that involves mono-
mials of positive codegree monomials of v j , s j , t j or x j for j < i .

In all these cases the suffix of length r of the top monomial of ui is identical to
the prefix of length r of the period of x . If r ≤ deg(vi ) − d, then vi has nontrivial
periodicity, a contradiction. Otherwise, the top monomial in the two sides of the
equation contains periodicity that is not part of the periodicity of the solution x , a
contradiction to our assumptions. □

Suppose that qi = ui si = ti−1vi , and let r be an integer, 0 < r < d . By Lemma 4.9
if a codegree d + r product can be presented in an odd number of ways in the form
(1) of Lemma 4.8 then either

(1) it can be also presented in an odd number of ways as in form (2) of Lemma 4.8
and either in both forms (i) and (ii) in Lemma 4.8 or in neither of them;

(2) it can be presented in an even or no ways in form (2) of Lemma 4.8, and it
can also be presented precisely in one of the forms (i) or (ii) in Lemma 4.8.

By Lemma 4.9, if a codegree d + r product can be presented in form (i) of
Lemma 4.8, and in even or no ways in forms (1) or (2) of that lemma, then it can
also be presented in form (ii) of Lemma 4.8.
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Hence, if a codegree d + r product can be presented in an odd number of ways
in one of the forms (1), (2), (i) or (ii), then the appearances of the codegree d + r
products in these forms cancel in pairs. If it appears in an odd number of ways in
forms (1) and (2), and in forms (i) and (ii), we do not add anything. If it appears in
an odd number of ways in forms (1) and (2) and not in the forms (i) nor (ii), we
add a codegree d + r monomial to wi . If it appears in an odd number of ways in
the form (1), in an even number of or no ways in the form (2), and appears in the
form (i) we add a codegree d + r monomial to wi . If it appears in an odd number
of ways in the form (1), in an even number of or no ways in the form (2), and in the
form (ii), we do not add anything. If it appears in an even number of or no ways
in the forms (1) and (2), and in both form (i) and (ii), we add a codegree d + r
monomial to wi .

Therefore, if a codegree d + r product can be presented in an odd number of
ways as products of codegree q j monomials of ti−1 and codegree m j monomials of
vi with top monomials of the other elements in the vi side of the equation, such
that q j ≥ 0 and m j is positive and q j + m j = d + r , then it must be presented in
an odd number of ways as products of codegree f j monomials of ui and codegree
g j monomials of si with top monomials of the other elements in the ui side of the
equation, such that g j ≥ 0 and f j is positive and f j + g j = r .

This concludes the construction of the elements si , ti , wi in case qi = ti−1vi =ui si

(note that the elements si , ti did not change), to ensure that the equalities they are
supposed to satisfy hold for products up to codegree d + r .

Suppose that qi =ui = ti−1vi si . Lemmas 4.8 and 4.9 and their proofs remain valid
in this case. Hence, a codegree d +r product can be expressed in an odd number of
ways as products of codegree q j monomials of ti−1, codegree m j monomials of vi ,
and codegree p j monomials of si with top monomials of the other elements in the
vi side of the equation, such that q j , m j , p j ≥ 0, either m j > 0 or q j , p j > 0, and
q j + m j + p j = d + r , if and only if it is equal to a codegree d + r monomial of ui .

This concludes our treatment of codegree d + r products for r < d . We continue
by analyzing codegree 2d products. Lemmas 4.8 and 4.9 remain valid for codegree
2d products. Hence, the analysis of codegree 2d products is identical to the analysis
of codegree d + r products for r < d . The analysis of higher codegree products, for
codegree up to twice the maximal degree of the elements ui , vi , is identical as well.

Hence, in case deg(ui ), deg(vi ) > d and all the appearances of the elements x1 in
the two sides of the equation have nontrivial shifts, we finally constructed elements
si , ti , wi that satisfy the equations

(i) qi = ui si = ti−1vi or qi = vi = ti−1ui si or with exchanging the appearances
of ui and vi in the second equation;

(ii) x1 = siwi = wi ti mod Gdeg(x1)−2(deg(si )).
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Therefore, s1 and tn−1 are uniquely defined, and (given x1) w1 and wn−1 are
uniquely defined mod Gdeg(w1)−2(deg(si )). Hence, t1 and s2 are uniquely defined,
and w2 is uniquely defined mod Gdeg(w2)−2(deg(si )). Continuing iteratively, all the
elements si , ti are uniquely defined, and the elements wi are uniquely defined
mod Gdeg(wi )−2(deg(si )).

Since siwi = wi ti , it follows that si x1 = x1ti mod Gdeg(si x1)−2(deg(si )). This
implies that for every pair i, j , 1 ≤ i, j ≤ n, we have (si + s j )x1 = x1(ti + t j )

mod Gdeg(si x1)−2(deg(si )), so for every pair i, j either si = s j and ti = t j or si = s j +1
and ti = t j + 1.

Since every pair (si , ti ) is either (s1, t1) or (s1 + 1, t1 + 1), it follows that every
element x̂ that satisfies s1 x̂ = x̂ t1 is a solution of the given equation. It remains
to prove that every long enough solution of the given equation is a solution of the
equation s1x = xt1.

Let x2 be a solution of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2) + (2(deg(u1) + · · · + deg(un))
2.

By continuing the analysis of higher codegree monomials of the solution x2, we get
that there exist elements wi such that for every index i , 1 ≤ i ≤ n, we have siwi =

wi ti = x2 mod Gdeg(s1)−1. By the argument that was used to prove Lemma 4.2, it
follows that there exists a solution x̂ to the equation s1x = xt1.

Note that x2 satisfies s1x2 = x2t1 mod G2 deg(s1)−1. Hence, there exists an ele-
ment x̂2 which is a solution of the equation s1x = xt1, and x2 + x̂2 = r , where
deg(r) ≤ 2 + kdeg(s1)+2.

Suppose the given equation is v1xv2xv3 = u1xu2xu3, where deg(v1) < deg(u1)

and deg(v2) = deg(u2). In this case, u1 = v1s1, t1u2 = v1s2 and v3 = t2u3. Hence,
(x̂2 + r)v2(x̂2 + r)t2 = s1(x̂2 + r)u2(x̂2 + r). Since x̂2 is a solution to the equation
s1x = xt1, it is a solution to the given equation. Therefore

x̂2v2r t2 + rv2 x̂2t2 = s1 x̂2u2r + s1ru2 x̂2 mod Gdeg(rv2r t2).

Hence
x̂2(v2r t2 + t1u2r) = (rv2s2 + s1ru2)x̂2 mod Gdeg(rv2r t2).

Since s1 x̂2 = x̂2t1 it follows that for any polynomial p, p(s1)x̂2 = x̂2 p(t1). This im-
plies v2r t2 + t1u2r = p(t1) and rv2s2 + s1ru2 = p(s1) mod Gdeg(v2r t2)+deg(r)−deg(x2)

for the same polynomial p.
We have t1u2 = v2s2, so v2(r t2 + s2r) = p(t1) mod Gdeg(v2r t2)+deg(r)−deg(x2).

By our assumption on deg(x2) it follows that v2(r t2 + s2r) = p(t1). Similarly,
(r t1 + s1r)u2 = p(s1). Hence, p(s1) is either 0 or its leading term is of degree at
least 2.

Since (s1, t1) equals (s2, t2) or (s2 + 1, t2 + 1), we get that v2(r t1 + s1r)u2 =

v2 p(t1) = p(s1)u2. We look at the leading term in the two sides of the last equality.
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Since we assumed that the top monomials of u2 and v2 are not periodic, the top
monomial of u2 must be βs0, and the top monomial of v2 must be t0β, where β

is a prefix of t0 and a suffix of s0. Hence, t0 = βα and s0 = αβ. But this is a
contradiction, since we assumed that the periodicity in the top monomials in the two
sides of the given equation is contained in the solution x2. Therefore, s1r + r t1 = 0,
so r is a solution of the equation s1x = xt1, which means that x2 = x̂2 + r is a
solution to s1x = xt1 as well.

If the equation is u1xu2xu3=v1xv2xv3, and deg(v1)>deg(u1), deg(v3)>deg(u3),
then by the same arguments we get that r (the remainder) has to satisfy the equation

(r t1 + s1r)v2s2 x̂2 = x̂2t1v2(r t2 + s2r).

That implies that if r t1 + s1r ̸= 0, u2 must contain periodicity, a contradiction to
our assumptions. Therefore, r t1 + s1r = 0, and both r and x2 are solutions of the
equations s1x = xt1.

Suppose that the length of the equation is bigger. Then x2 is a long solu-
tion, and x2 = x̂2 + r , where x̂2 is a solution of the equation s1x = xt1, and
deg(r) ≤ 2 + kdeg(s)+2. In that case we get the equality

(x̂2 +r)v2(x̂2 +r)v3 · · · vn−1(x̂2 +r)tn−1 = s1(x̂2 +r)u2(x̂2 +r)u3 · · · un−1(x̂2 +r),

and since x̂2 is a solution of the equation s1x = xt1, we get the equality

rv2 x̂2v3 · · · vn−1 x̂2tn−1 + · · · + x̂2v2 x̂2v3 · · · x̂2vn−1r tn−1

= s1ru2 x̂2u3 · · · un−1 x̂2 + · · · + s1 x̂2u2 x̂2u3 · · · x̂2un−1r mod Gm2,

where m1 = deg(s1 x̂2u2 x̂2u3 · · · x̂2un−1r), and m2 = m1 − deg(x̂2) + deg(r).
That implies the equality

(s1r + r t1)u2 x̂2u3 · · · un−1 x̂2 + x̂2v2(s2r + r t2)u3 x̂2u4 · · · x̂2un

+ x̂2v2 · · · x̂2vn−2(sn−2r + r tn−2)un−1 x̂2un

+ x̂2v2 · · · x̂2vn−1(sn−1r + r tn−1) = 0 mod Gm2 .

Suppose that there exists an index j , 1 ≤ j ≤ n − 1, for which s jr + r t j ̸= 0.
We set j0 to be the minimal index for which s jr + r t j has maximal degree. We
look at the top degree homogeneous part in s j0r + r t j0 . The monomials in this
homogeneous part of s j0r + r t j0 contribute to top degree monomials in the j0-th
product in the sum above. These top degree monomials cancel with top degree
monomials from other summands that contain part of the top monomial of x̂2 in
place of the top monomial of s j0r + r t j0 . Hence, the top degree homogeneous part
of s j0r + r t j0 has to be a monomial as well.

Furthermore, as for an equation of length 3, this cancellation of the top monomials
implies that the top monomials of u j0 and v j0 contain parts of the top monomial
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of x̂2, that by our assumption is bigger than the length of the period of the top
monomial of x̂2. Hence, as for equation of length 3, when we substitute x̂2 in
the equation, the top monomial has periodicity that is not contained in one of
the appearances of x̂2, a contradiction to one of the assumptions of Theorem 4.7.
Therefore, for every j , s jr + r t j = 0, so r is a solution of the equation s1x = xt1,
and so is x2.

This concludes the proof of Theorem 4.7 in case all the appearances of the top
monomial of a solution x1 in the two monomials that are the top products in the
two sides of the given equation have nontrivial shifts. We still need to complete the
proof in the cases in which there are appearances of the top monomial of a solution
x1 with zero shifts.

Lemma 4.10. Let u1, u2, v1, v2 ∈ FA satisfy u1 ̸= v1, deg(ui ) = deg(vi ), i = 1, 2,
and suppose that the top homogeneous parts of ui and vi are monomials (for i =1, 2)
with no nontrivial periodicity. Then, if there exists a solution x1 to the equation
u1xu2 = v1xv2, and deg(x1) > 2(deg(u1) + deg(u2)), then there exist elements
s, t ∈ FA such that x is a solution of the equation u1xu2 = v1xv2 if and only if it is
a solution of the equation sx = xt.

Proof. The top monomials of u1 and v1, and of u2 and v2, have to be equal. We set
u1 = v1 + µ1, v2 = u2 + µ2, deg(µ1) < deg(v1) and deg(µ2) < deg(u2). Hence,
(v1 + µ1)xu2 = v1x(u2 + µ2), which implies µ1xu2 = v1xµ2. Since the top
homogeneous parts of v1 and u2 are monomials with no periodicity, so are the top
homogeneous parts of µ1 and µ2. Since deg(µ1) < deg(v1) and deg(µ2) < deg(v2),
the conclusion of the lemma follows from Theorem 4.4. □

Proposition 4.11. Let u1, u2, u3, v1, v2, v3 ∈ FA satisfy u1 ̸= v1, u3 ̸= v3, deg(ui )=

deg(vi ), i = 1, 2, 3, and suppose that the top homogeneous parts of ui and vi are
monomials (for i = 1, 2, 3) with no nontrivial periodicity. Then, if there exists a
solution x1 to the equation u1xu2xu3 = v1xv2xv3, and the only nontrivial period-
icity in the top monomials of the two sides of the equation is contained in the top
monomials of the solution x1, and deg(x1) > 2(deg(u1)+ deg(u2)+ deg(u3)), then
there exist elements s, t ∈ FA such that up to a swap between the u’s and the v’s:

(1) There exists µ1 for which u1 = µ1(s + 1) and v1 = µ1s.

(2) There exists µ2 and τ2 for which tµ2 = τ2s. Furthermore, u2 = τ2(s + 1) and
v2 = (t + 1)µ2.

(3) There exists µ3 for which u3 = tµ3 and v3 = (t + 1)µ3.

As in the conclusion of Theorem 4.7, every solution of the equation sx = xt is a
solution of the given equation u1xu2xu3 = v1xv2xv3. Every solution x2 of the given
equation u1xu2xu3 = v1xv2xv3 for which deg(x2) > 2(2 + kdeg(s1)+2

+ deg(u1) +

deg(u2) + deg(u3)) is a solution of the equation sx = xt.
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Proof. The top homogeneous parts of the ui and vi are monomials, and the equation
forces these monomials to be equal. Hence, vi = ui +ρi , where deg(ρi ) < deg(ui ),
i = 1, 2, 3. Let ρ0

i be the top homogeneous part in ρi . We start the proof by
arguing that the top homogeneous part of a solution x1 with deg(x1) > 2(deg(u1)+

deg(u2) + deg(u3)) has to be a monomial as well.
Suppose that deg(ρ1) < max(deg(ρ2), deg(ρ3)). In that case the top homo-

geneous parts have to satisfy ρ0
2 x0

1v0
3 = u0

2x0
1ρ0

3 . Since u0
2 and v0

3 are mono-
mials, it follows that x0

1 is a monomial, and so are ρ0
2 and ρ0

3 . If deg(ρ0
1) ≥

max(deg(ρ0
2), deg(ρ0

3)), then ρ0
1 has to be a monomial. This forces x0

1 to be a
monomial as well.

We look at the highest degree for which for some index i , ui ̸= vi . This cannot
occur for a single index i . If u2 = v2 at that highest degree, then the top monomial in
u2 (and v2) must have periodicity, a contradiction to our assumptions. Let d be the
codegree of that degree, and suppose that up to this codegree u3 = v3. In that case,
the equation for codegree d products reduces to the equation u1xu2 = v1xv2. If we
set ui = vi + µi , i = 1, 2, 3, then for the codegree d products, we get the equation
µ1xu2 = v1xµ2. This implies that the top part of µ1 and µ2 are monomials that are
the codegree d prefix and suffix of the top monomials of v1 and v2 in correspondence,
and that the top monomial of x1 has a period of length d .

In that case, it must be that u3 = v3 for all the homogeneous parts of codegree less
than 2d , and hence, µ1xu2 = v1xµ2 for all the products up to codegree d . Therefore,
there exists an element s, and an element t , such that v1 = u1 = µ1s mod Gdeg(u1)−d

and v2 = u2 = tµ2 mod Gdeg(u2)−d .
Since u3 = v3 for all the homogeneous parts of codegree less than 2d , and the top

monomial of u3 (and v3) do not have nontrivial periodicity, it follows that u3 = v3.
Hence, µ1xu2 = v1xµ2, and the conclusion follows from Theorem 4.4 in this case
(note that in the statement of the proposition we assumed that ui ̸= vi , i = 1, 3).

Suppose that for the codegree d homogeneous parts ui ̸= vi for i = 1, 2, 3. In
that case, we get the equation

(v1 + µ1)xu2xu3 = v1xv2x(u3 + µ3),

and ui = vi , i = 1, 2, 3, for all the homogeneous parts of codegree smaller than d.
Hence, the top homogeneous parts of µ1 and µ3 are monomials, which are the code-
gree d prefix and suffix of the top monomials of u1 and u3 in correspondence. The
top monomial of x1 (the given solution to the given equation) has to be quasiperiodic
(or rather fractional periodic), with a period of length d . Furthermore, v2 = b2 +µ2

and u2 = b2 + τ2 mod Gdeg(u2)−(d+1), where the top homogeneous parts of µ2 and
τ2 are the codegree d prefix and suffix of the top monomial of u2 (and v2).

We continue by looking at products of codegree d + 1. Every such product that
contains monomials in ui that appear also in vi , for i = 1, 2, 3, cancels with a
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similar product from the other side of the equation. Hence, to analyze cancellations,
we need to consider codegree d +1 products that contain monomials from µ1 or µ3,
or monomials of codegree d and d + 1 of u2 and v2 that do not appear in both.

Suppose that a codegree d + 1 product contains a codegree d + 1 monomial
from µ1, i.e., a codegree d + 1 monomial in u1 that is not in v1. Such a codegree
d + 1 product must contain the top monomial of x1 in its two appearances, and the
top monomial of u2 and u3. Since the top monomial of v1 doesn’t have nontrivial
periodicity, such a codegree d + 1 product cannot cancel with a codegree d + 1
product that contains the top monomial of v1 (since otherwise the suffix of the
top monomial of v1 equals a shift by 1 of itself, which implies that the suffix of
v1 contains periodicity). Therefore, a codegree d + 1 product that cancels with it
must contain a codegree 1 monomial of either u1 or v1, or the top monomial of µ1.
Since the top monomial of v2 contains no periodicity, if this codegree d +1 product
contains a codegree 1 monomial of u1 or v1 it must contain the top monomial of µ2.
Hence, this codegree d + 1 product has to be from the vi side of the equation,
and the codegree d + 1 monomial of µ1 is the codegree d prefix of a codegree 1
monomial in v1, times the (prefix) period of the top monomial of x1, which is the
degree d suffix of v1. If such a codegree d + 1 product cancels with a codegree
d +1 product that contains the top monomial of µ1, then it must contain a codegree
1 monomial of x1.

By the techniques that we used in the proofs of Theorem 4.4 and in the first part
of Theorem 4.7, there exists an element s1, deg(s1) = d, with a top monomial µ1,
such that µ1s1 = u1 = v1 mod Gdeg(u1)−2.

Suppose that a codegree d + 1 product contains a codegree d + 1 monomial of
u2 or v2. Since the top monomial of u2 (and v2) contains no periodicity, such a
product can cancel only with either

(1) a codegree d + 1 product that contains a codegree 1 monomial of u2 or v2 and
the top monomial of either µ1 or µ3;

(2) a codegree d +1 product that contains the top monomial of µ2, and a codegree
1 monomial in the second appearance of x1, and the top monomial of µ1,
the top monomial of u2, and the same codegree 1 monomial in the second
appearance of x1;

(3) a codegree d +1 product that contains the top monomial of τ2, and a codegree
1 monomial in the first appearance of x1, and the top monomial of µ3, the top
monomial of v2, and the same codegree 1 monomial in the first appearance
of x1.

Note that the two products that appear in possibilities (2) and (3) cancel each
other. Hence, a codegree d + 1 product that contains a codegree d + 1 product that
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appears in u2 or v2, but not both, must cancel with a unique codegree d +1 product
that is described in (1).

Suppose that a codegree d + 1 product contains the top monomial of µ1 and
a codegree 1 monomial of u2. Since the top monomial of u2 (and v2) has no
periodicity, it can cancel only with a codegree d + 1 product that contains either

(1) a codegree 1 monomial of v2 and the top monomial of µ3;

(2) a codegree d + 1 monomial of u2 or v2;

(3) a codegree 1 monomial of the first appearance of x1 and the top monomial
of µ2.

Similarly, suppose that a codegree d + 1 product contains the top monomial of
µ3 and a codegree 1 monomial of v2. It can cancel only with a codegree d + 1
product that contains either

(1) a codegree 1 monomial of u2 and the top monomial of µ1;

(2) a codegree d + 1 monomial of u2 or v2;

(3) a codegree 1 monomial of the second appearance of x1 and the top monomial
of τ2.

Furthermore, a codegree d +1 product that contains the top monomial of µ2 cannot
cancel with a codegree d + 1 product that contains the top monomial of τ2.

Hence, we can look at the collection of codegree d + 1 products that contain the
top monomial of µ1 and the entire collection of codegree 1 monomials of u2. Each
such product cancels with precisely one product that contains either a codegree
d +1 monomial of u2 or v2, or a codegree 1 monomial of the first appearance of x1

and the top monomial of µ2, or a codegree 1 monomial of v2 and the top monomial
of µ3. A similar statement holds for codegree d +1 products that contain a codegree
1 monomial of v2 and the top monomial of µ3.

Therefore, there exist elements t1, s2, b, w1, w2, τ2, µ2 such that

(1) t1µ2 = v2 and τ2s2 = v2 mod Gdeg(u2)−2, deg(s2) = deg(t1) = d .

(2) b + τ2 = u2 and b + µ2 = v2 mod Gdeg(u2)−(d+2).

(3) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−2.

We continue by induction for 1 ≤ r ≤ d, and assume that for r < d there exist
elements t1, s2, b, w1, w2, τ2, µ2 such that the equalities that were true for the top
2 homogeneous parts and codegree d and codegree d + 1 monomials hold for the
top r monomials, and for codegree d + r − 1 monomials,

(1) t1µ2 = v2 and τ2s2 = v2 mod Gdeg(u2)−r , deg(s2) = deg(t1) = d .

(2) b + τ2 = u2 and b + µ2 = v2 mod Gdeg(u2)−(d+r).

(3) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−r .
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We continue by studying codegree d +r products. All such products that involve
only monomials of codegree less than d of the ui , vi , 1 ≤ i ≤ 3, cancel in pairs. All
such products that involve only monomials of codegree less than d + r of the ui , vi ,
1 ≤ i ≤ 3, and codegree less than r of x1 (in its two appearances from both sides of
the equation) cancel in pairs by the induction hypothesis.

Hence, to analyze the structure of u1 and v1 (and hence, of µ1 and s1) we only
need to consider codegree d + r products that contain

(i) a codegree d + r monomial of u1 that does not appear in v1 and vice versa;

(ii) a codegree r monomial of v1 and the top monomial of µ2;

(iii) a codegree d + q j monomial of µ1, q j < r , and a codegree r − q j monomial
of the first appearance of x1;

(iv) a codegree p j monomial of v1, p j < r , and a codegree r − p j monomial of
the first appearance of x1 and the top monomial of µ2.

A product of type (iv) that cancels with products of type (i) or (ii) must cancel
with a corresponding product of type (iii) by our induction hypothesis. A product
of type (iii) that cancels with a product of type (i) or (ii) and in which q j is positive,
and the codegree r − q j monomial of the first appearance of x1 is obtained as a
product of a codegree r − m j monomial of s1 with a codegree m j − q j monomial
of w1, for q j < m j < r , cancels with a product of type (iv).

Therefore, to analyze the structure of u1, v1, s1 and w1, we consider only those
codegree d + r products that can be presented either in form (i) or (ii), that we
denote (1) and (2) in the sequel, or in the form

(3) a product of the top monomial of µ1, and a codegree r monomial of the first
appearance of x1.

A codegree d + r product that can be presented in one of the forms (1)–(3) can
cancel with either

(4) an odd number of products of a codegree d + q j monomial of µ1, 0 < q j < r ,
and a codegree r − q j monomial of the first appearance of x1;

(5) an odd number of products of a codegree d + q j monomial of µ1, 0 < q j < r ,
and a product of a codegree r − q j monomial of s1 with the top monomial
of w1;

(6) an odd number of products of a codegree d + q j monomial of µ1, q j < r ,
and a product of a codegree r − m j monomial of s1 with a codegree m j − q j

monomial of w1, where q j < m j < r ;

(7) an odd number of products of a codegree p j monomial of v1, 0 < p j < r , and a
codegree r − p j monomial of the first appearance of x1 and the top monomial
of µ2;
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(8) a product of the top monomial of v1, a codegree r monomial of the first
appearance of x1 and the top monomial of µ2;

(9) an odd number of products of a codegree p j monomial of v1, 0 < p j < r , and
a codegree m j monomial of the first appearance of x1, 0 < m j , p j + m j < r
and a codegree d + r − p j − m j monomial of µ2;

(10) an odd number of products of a codegree d + q j monomial of µ1, a codegree
m j monomial of the first appearance of x1, 0 < m j , q j +m j < r , and a codegree
r − m j − q j monomial of u2.

If (1) or (2) occur, (8) cannot occur, and (6) occurs if and only if (7) occurs as
well. If (1) occurs, (3) cannot occur. Suppose that (1) occurs. If in addition only
(2) occurs, we add a codegree d + r monomial to µ1. If in addition to (1) only (4)
and (5) occur, we also add a codegree d + r monomial to µ1. If in addition to (1)
only (5), (6) and (7) occur, we add a codegree d + r monomial to µ1. If (1) occurs,
(9) and (10) cannot occur.

Suppose that (2) occurs. If in addition only (3) occurs (and in addition possibly
(4), (6) and (7)) we add a codegree r monomial to s1. If in addition to (2) only (4)
and (5) occur, we do not add anything. If in addition to (2) only (5), (6) and (7)
occur, we do the same. If (2) occurs, (8)–(10) cannot occur.

Suppose that (3) occurs. The codegree r monomial of x1 cannot be presented
both as a product of the top monomial of s1 with a codegree r monomial of w1, and
as a codegree r monomial of s1 with the top monomial of w1. We look at all the
possible ways to present the codegree r monomial of x1 as a product of a codegree
q j monomial of s1 with a codegree r − q j monomial of w1, for 0 < q j < r . If the
number of such products is odd we don’t add anything. If the number is even, we
either add a codegree r monomial to s1 or a codegree r monomial to w1 (but not
both). The validity of this addition of a codegree r monomial to either s1 or w1

can be verified by going over the possible cancellation of the given codegree d + r
product with all the other possible forms of such a product.

This concludes the adaptation of s1, µ1 and w1 to include codegree r monomials.
The same adaptation works for t2, µ3 and w2. It is still left to analyze u2 and v2

in order to add codegree r monomials to µ2 and τ2 such that the equalities that by
induction hold for the top codegree r − 1 parts of these elements will hold for the
top codegree r part.

To analyze the structure of u2 and v2 (and hence, of µ2, τ2, t1 and s2) we start
by observing the following:

(i) The codegree d + r products that contain either a positive codegree monomial
of u1 or a positive codegree monomial of the first appearance of x1, a codegree
d + q j monomial of τ2, q j < r , a monomial of the second appearance of x1,
and a monomial of u3, cancel with codegree d + r products that contain either
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a positive codegree monomial of v1 or a positive codegree monomial of the
first appearance of x1, a codegree p j monomial of v2, p j < r , a monomial of
the second appearance of x1, and a monomial of µ3.

(ii) The codegree d +r products that contain a monomial of v1, a monomial of the
first appearance of x1, a codegree d + q j monomial of µ2, q j < r , and either
a positive codegree monomial of the second appearance of x1, or a positive
codegree monomial of v3, cancel with codegree d + r products that contain
a monomial of µ1, a monomial of the first appearance of x1, a codegree p j

monomial of u2, p j < r , either a positive codegree monomial of the second
appearance of x1, or a positive codegree monomial of u3.

Hence, to analyze the structure of u2 and v2 we only need to consider codegree
d + r products that contain

(i) a codegree d + r monomial of u2 or of v2;

(ii) the top monomial of µ1 and a codegree r monomial of u2 or a codegree r
monomial of v2 and the top monomial of µ3;

(iii) a codegree d + q j monomial of τ2, q j < r , and a codegree r − q j monomial
of the second appearance of x1 or a codegree r − q j of the first appearance of
x1 and a codegree d + q j monomial of µ2, q j < r ;

(iv) the top monomial of µ1, a codegree r − p j monomial of the first appearance
of x1 and a codegree p j monomial of u2, p j < r , or a codegree p j monomial
of v2, p j < r and a codegree r − p j monomial of the second appearance of x1

and the top monomial of µ3.

If there are two products of codegree d + r of type (i), they cancel each other,
and we can ignore them in analyzing codegree d +r products. Therefore, to analyze
the structure of u2, v2, s2, t1, µ2 and τ2, we consider only those codegree d + r
products that can be presented either in form (i) or (ii), that we denote (1) and (2)
in the sequel, or in codegree d + r products in the form

(3) a product of the top monomial of τ2, and a codegree r monomial of the second
appearance of x1;

(4) a codegree r monomial of the first appearance of x1, and the top monomial
of µ2;

(5) an odd number of products of a codegree d + q j monomial of τ2, 0 < q j < r ,
and a codegree r − q j monomial of the second appearance of x1;

(6) an odd number of products of a codegree d + q j monomial of τ2, 0 < q j < r ,
and a product of a codegree r − q j monomial of s2 with the top monomial
of w2;
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(7) an odd number of products of a codegree d + q j monomial of τ2, q j < r ,
and a product of a codegree r − m j monomial of s2 with a codegree m j − q j

monomial of w2, where q j < m j < r ;

(8) an odd number of products of a codegree p j monomial of v2, 0 < p j < r ,
and a codegree r − p j monomial of the second appearance of x1 and the top
monomial of µ3;

(9) a product of the top monomial of v2, a codegree r monomial of the second
appearance of x1 and the top monomial of µ3.

And similarly, from the other sides of the equation,

(10) an odd number of products of a codegree r−q j monomial of the first appearance
of x1, and a codegree d + q j monomial of µ2, 0 < q j < r ;

(11) an odd number of products of the top monomial of w1, a codegree r − q j

monomial of t1, and a codegree d + q j monomial of µ2, 0 < q j < r ;

(12) an odd number of products of a codegree m j −q j monomial of w1, a codegree
r −m j monomial of t1, a codegree d+q j monomial of µ2, q j < r , q j < m j < r ;

(13) an odd number of products of the top monomial of µ1, a codegree r − p j

monomial of the first appearance of x1, and a codegree p j monomial of u2,
0 < p j < r ;

(14) a product of the top monomial of µ1, a codegree r monomial of the first
appearance of x1, and the top monomial of u2.

Suppose that (1) occurs. If only one of the possibilities in (2) occurs, we add
a codegree d + r monomial to µ2 or τ2, depending which of the two possibilities
in (2) occurs. If (1) occurs, (3) and (4) cannot occur. If in addition to (1) only (5)
occurs, then (6) or (7) must occur and not both. If only (5) and (6) occur, we add
a codegree d + r monomial to τ2. If in addition to (1), (5) and (7) occur, then (8)
must occur as well, and hence at least an additional possibility must occur. If in
addition to (1), (8) occurs, then (5) and (7) must occur as well, so an additional
possibility must occur. If (1) occurs, (9) cannot occur. The possibilities (10)–(14)
are parallel to (5)–(9) and are dealt with accordingly.

Suppose that (1) and the two possibilities in (2) occur. If in addition only (5) and
(6) occur, we add a codegree d + r monomial only to µ2, and if only (10) and (11)
occur, we add a codegree d + r monomial to τ2. Suppose that (1) and only one of
the products in the form (2) occur, without loss of generality the product from the
vi side, i.e., the one that contains µ3. If in addition (5), (6), (10) and (11) occur, we
add a codegree d + r monomial to µ2.

Suppose that one of the possibilities in (2) occurs, without loss of generality
the one from the vi side. If the only additional product that cancels with it is also
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a product in form (2) from the ui side of the equation, we add a codegree d + r
monomial to both τ2 and µ2. If in addition to the form (2) only possibility (3)
occurs, we add a codegree r monomial to s2. Form (4) cannot occur. If only (5)
and (6) occur, we do not add anything. If (5) and (7) occur, (8) must occur as well.
Form (9) cannot occur. If in addition (10) and (11) occur, we add a codegree d + r
monomial to both τ2 and µ2. If only (3), (5), (6), (10) and (11) occur, we add a
codegree r monomial to s2, and a codegree d + r monomial to both µ2 and τ2.

Suppose that the two possibilities in part (2) occur. In that case (3) cannot occur.
If in addition (5), (6), (11) and (12) occur, we do not add anything. Suppose that (3)
occurs. In that case (4) cannot occur. If in addition only (5) and (6) occur, we add a
codegree r monomial to s2. If in addition to (3) only (9) occurs, we add a codegree
r monomial to w2. If (3) occurs, then (10)–(14) cannot occur. If (4) occurs the
analysis is analogous to the case in which (3) occurs.

Suppose that (5) and (6) occur. In that case (9) cannot occur. If (10) and (11)
occur as well, we add a codegree d + r monomial to both τ2 and µ2.

This concludes our treatment of codegree d + r products for r < d. So far we
proved that

(1) µ1s1 = u1 = v1 mod Gdeg(u1)−d , deg(s1) = d , u1 = v1 + µ1 mod Gdeg(u1)−2d .

(2) t1µ2 = v2 and τ2s2 = v2 mod Gdeg(u2)−d , deg(s2) = deg(t1) = d, deg(µ2) =

deg(τ2) = deg(u2) − d .

(3) b2 + τ2 = u2 and b2 + µ2 = v2 mod Gdeg(u2)−(2d).

(4) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−d .

We continue by analyzing codegree 2d products. The analysis of codegree 2d
products is similar to the analysis of codegree d + r products for r < d. In their
analysis we use the following observations:

(i) All the codegree 2d products that contain monomials of codegree smaller than
d from the elements ui , vi and x in its two appearances cancel in pairs.

(ii) All the codegree 2d products that contain a monomial of codegree bigger
than d , from b1, b2 or b3, cancel in pairs.

Hence, we need to analyze only those codegree 2d products that contain mono-
mials from either µ1, µ2, τ2, µ3, or monomials of codegree d from b1, b2, b3. To
analyze the elements u1, v1, b1, µ1, s1 and w1, we need to analyze codegree 2d
products that contain one of the following:

(i) a codegree 2d monomial of u1 that does not appear in v1 and vice versa;

(ii) a codegree d monomial of v1 and the top monomial of µ2;

(iii) a codegree d + q j monomial of µ1, q j < d , and a codegree d − q j monomial
of the first appearance of x1;
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(iv) a codegree p j monomial of v1, p j < d, and a codegree d − p j monomial of
the first appearance of x1 and the top monomial of µ2.

(v) Note that the codegree 2d product that contains the top monomials of µ1 and
τ2 cancels with the product that contains the top monomials of µ2 and µ3. Also
the codegree 2d products that contain a codegree d monomial of u1 which is
from b1 (i.e., also a monomial of v1), and the top monomial of τ2, cancel with
the products that contain the same codegree d monomial from v1, and the top
monomial of µ3.

Because of (v), the analysis of codegree 2d monomials of u1 and v1 is identical
to the analysis of codegree d + r monomials of these elements. This concludes
the construction of the element s1, and adds codegree 2d monomials to µ1, and
codegree d monomials to w1. The analysis of the elements u3, v3, b3, µ3 and w2 is
identical.

We continue by analyzing the codegree 2d monomials in u2, v2, τ2 and µ2. The
observations (i) and (ii) that we used in analyzing the codegree d + r monomials
of these elements for r < d remain valid for codegree 2d monomials. In addition
by part (v) in the analysis of codegree 2d monomials of u1 and v1, it follows that
the codegree 2d product that contains the top monomials of µ1 and τ2 cancels
with the product that contains the top monomials of µ2 and µ3. Hence, the rest of
the analysis of codegree 2d monomials of u2 and v2 is identical to the analysis of
codegree d + r monomials of these elements for r < d .

We continue by analyzing higher codegree products and monomials. We assume
inductively for r > 0 that

(1) µ1(s1 +1) = u1 and µ1s1 = v1 mod Gdeg(u1)−(d+r), deg(s1) = d , u1 = v1 +µ1

mod Gdeg(u1)−(2d+r).

(2) (t1+1)µ2 = v2, τ2(s2+1)= u2 and t1µ2 = τ2s2 mod Gdeg(u2)−(d+r), deg(s2)=

deg(t1) = d, deg(µ2) = deg(τ2) = deg(u2) − d .

(3) b2 + τ2 = u2 and b2 + µ2 = v2 mod Gdeg(u2)−(2d+r).

(4) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−(d+r).

And we continue by analyzing codegree 2d + r products. The analysis is similar
to the analysis of codegree d + r and codegree 2d products. We use the following
observations:

(i) All the codegree 2d + r products that contain monomials of ui , vi , i = 1, 2, 3,
that are all of codegree smaller than d cancel in pairs. In particular, all the
codegree 2d + r products that contain a monomial of x of codegree bigger
than d + r , in one of its two appearances, cancel in pairs.

(ii) All the codegree 2d + r products that contain monomials from all b1, b2 and
b3 cancel in pairs.
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(iii) A codegree 2d + r product that contains a monomial from µ1 of codegree
more than d, and a monomial from the first appearance of x , such that the
sum of their codegrees is less than 2d + r , an element from b2 and an element
from b3, cancels with a product that contains an element from b1, an element
from the first appearance of x , an element from µ2 and the same element
from b3. The same holds for products that contain monomials from b1, b2 and
µ3 with parallel restrictions.

(iv) A codegree 2d + r product that contains a monomial from b1, a monomial
from τ2 of codegree bigger than d , and a monomial from b3, such that the sum
of the codegrees of the monomial from τ2 and the monomial from the second
appearance of x is smaller than 2d +r , cancels with a product that contains the
same monomials of b1 and the first appearance of x , a monomial from b2 and
a monomial from µ3. The same holds for products that contain monomials
from b1, µ2 and b3 with parallel restrictions.

(v) A codegree 2d + r product that contains a monomial from µ1 of codegree
bigger than d, a monomial from τ2, and a monomial from b3, cancels with
a product that contains a monomial from b1, a monomial from µ2, and a
monomial from µ3. The same holds for products that contain monomials from
b1, µ2 and µ3 with parallel restrictions.

Hence, like in the analysis of codegree 2d products, to analyze the elements
u1, v1, b1, µ1 and w1, we need to analyze codegree 2d + r products that contain
one of the following:

(i) a codegree 2d + r monomial of u1 that does not appear in v1 and vice versa;

(ii) a codegree d + r monomial of v1 (which is a monomial of b1) and the top
monomial of µ2;

(iii) a codegree d + q j monomial of µ1, q j < d + r , and a codegree d + r − q j

monomial of the first appearance of x1;

(iv) a codegree p j monomial of v1 (which is a monomial of b1), p j < d + r , and
a codegree d + r − p j monomial of the first appearance of x1 and the top
monomial of µ2.

Hence, the analysis of codegree 2d + r monomials of u1 and v1 is identical to
the analysis of codegree d + r and 2d monomials of these elements. Note that in
analyzing products of codegree greater than 2d + r , the element s1 is already fixed,
and we only add codegree 2d + r monomials to µ1 and b1, and codegree d + r
monomials to w1. The analysis of the elements u3, v3, b3, µ3 and w2 is identical.

We continue by analyzing the codegree 2d monomials in u2, v2, τ2 and µ2. The
observations (i)–(v) that we used in analyzing the codegree 2d +r monomials of b1

and µ1 imply that analyzing codegree 2d + r monomials of b2, τ2 and µ2 is similar
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to the analysis of the codegree d + r monomials of these elements. Hence, we can
finally deduce that

(1) µ1(s1 + 1) = u1 and µ1s1 = v1, deg(s1) = d and u1 = v1 + µ1.

(2) (t1 + 1)µ2 = v2, τ2(s2 + 1) = u2 and t1µ2 = τ2s2, deg(s2) = deg(t1) = d and
deg(µ2) = deg(τ2) = deg(u2) − d.

(3) b2 + τ2 = u2 and b2 + µ2 = v2.

(4) x1 = s1w1 = w1t1 = s2w2 = w2t2 mod Gdeg(x1)−deg(u1u2u3).

This proves the structure of the coefficients in the statement of Proposition 4.11.
Suppose that there exists a solution x2 to the given equation, and

deg(x2) > 2(2 + kdeg(s)+2
+ deg(u1) + deg(u2) + deg(u3)).

As in the analysis of the same equation in case there are shifts between the ap-
pearances of the element x2, we can continue the analysis of higher codegree
monomials of the solution x2, and get that there exist elements wi , i = 1, 2, that
satisfy siwi = wi ti = x1 mod Gdeg(s1)−1. By the argument that was used to prove
Lemma 4.2, it follows that there exists a solution x̂ to the equations si x = xti ,
i = 1, 2.

The element x2 satisfies s1x2 = x2t1 mod G2 deg(s1)−1. Hence, there exists an
element x̂2, which is a solution of the equation s1x = xt1, and x2 + x̂2 = r , where
deg(r) ≤ 2 + kdeg(s1)+2.

Also, x2 is a solution to the equation v1xv2xv3 = u1xu2xu3, where v1 = τ1s1,
u1 = τ1(s1 + 1), v2 = (t1 + 1)µ2, u2 = τ2(s2 + 1), v3 = (t2 + 1)µ3, u3 = t2µ3, and
τ2s2 = t1µ2. Hence

τ1(s1 +1)(x̂2 +r)τ2(s2 +1)(x̂2 +r)t2µ3 = τ1s1(x̂2 +r)(t1 +1)µ2(x̂2 +r)(t2 +1)µ3.

Therefore

(s1 + 1)rτ2(s2 + 1)x̂2t2 + (s1 + 1)x̂2τ2(s2 + 1)r t2
= s1r(t1 + 1)µ2 x̂2(t2 + 1) + s1 x̂2(t1 + 1)µ2r(t2 + 1) mod Gdeg(s1rτ2s2r t2).

Since s1 x̂2 = x̂2t1, this implies

((s1 + 1)rτ2(s2 + 1)s2 + s1r(t1 + 1)µ2(s2 + 1))x̂2

= x̂2((t1 + 1)τ2(s2 + 1)r t2 + t1(t1 + 1)µ2r(t2 + 1)) mod Gdeg(s1rτ2s2r t2).

Therefore,

(s1 + 1)rτ2(s2 + 1)s2 + s1r(t1 + 1)µ2(s2 + 1) = p(s1),

(t1 + 1)τ2(s2 + 1)r t2 + t1(t1 + 1)µ2r(t2 + 1) = p(t1)

for some polynomial p.
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This implies that rτ2s2 + s1rµ2 is a polynomial in s1, and τ2r t2 + t1µ2r is a
polynomial in t1. Hence, (r t1 + s1r)µ2 is a polynomial in s1, and τ2(r t2 + s2r) is a
polynomial in t1.

Since we assumed that the top monomials of the coefficient do not contain
periodicity, it cannot be that the top monomials of τ2 and µ2 are equal, and equal
to the top monomials of t1 and s1. Hence, r t1 + s1r = r t2 + s2r ̸= 1.

If deg(τ2) = deg(s1), then the top monomials of s1 and t1 are equal, and the top
monomials of u2 and v2 have periodicity, a contradiction. The top monomial of τ2

has no periodicity, so deg(τ2) < 2 deg(s1). If deg(τ2) > deg(s1), then necessarily
the top monomials of u2 and v2 contain periodicity, a contradiction.

Suppose that deg(τ2) < deg(s1). If the top monomial of τ2 is the same as the top
monomial of µ2, then the top monomials of the two sides of the equation contain
periodicity, a contradiction. If the top monomials of µ2 and τ2 are distinct, then the
top monomials of u2 and v2 contain periodicity, a contradiction.

Therefore, r t1 + s1r = 0, so r is a solution of the equation s1x = xt1 and so is
x2 = x̂2 + r , and the conclusion of Proposition 4.11 follows. □

Proposition 4.11 and its proof enable us to prove Theorem 4.7 in case there are
no shifts, i.e., in case the degrees of the elements ui , vi satisfy deg(ui ) = deg(vi )

for all indices i .

Proposition 4.12. Let u1, . . . , un, v1, . . . , vn ∈ FA, where FA is the free associative
algebra over GF2 that is generated by k elements, and suppose that the equation

u1xu2xu3 · · · un−1xun = v1xv2xv3 · · · vn−1xvn

has a solution x1 of degree bigger than 2(deg(u1)+· · ·+deg(un))
2. Suppose further

that

(1) For every index i , 1 ≤ i ≤ n, deg(ui ) = deg(vi ).

(2) The top homogeneous parts of ui and vi are monomials with no periodicity.

(3) For some index i , ui ̸= vi .

(4) All the periodicity in the top monomials that are associated with the top
monomials of the two sides of the equation after substituting the solution x1 is
contained in the periodicity of the top monomial of the solution x1.

Then there exist some elements s, t ∈ FA, deg(s) = deg(t) < min deg(ui ), such
that

(1) Every solution of the equation sx = xt is a solution of the given equation.

(2) Every solution x2 of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2
+ deg(u1) + · · · + deg(un))

is also a solution of the equation sx = xt.
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(3) For every index i , 1 ≤ i ≤ r , for which ui ̸= vi , there exist elements τi , µi such
that the elements ui , vi are either τi (si + 1) or (ti−1 + 1)µi or τi si or ti−1µi ,
where the elements si are either s or s + 1, and the elements ti are either t or
t + 1, and ti−1µi = τi si .

Proof. The proof of the structure of the coefficients is similar to the proof of
Proposition 4.11. Given the structure of the coefficients, it is clear that every
solution of the equation sx = xt is a solution of the given equation. It is left to
prove that every long enough solution of the given equation is a solution of the
equation sx = xt .

Suppose that x2 is a solution of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2
+ deg(u1) + · · · + deg(un)).

By the argument that we used in Proposition 4.11, it follows that the equation
sx = xt has a solution, and that x2 = x̂2 + r , where x̂2 is a solution to the equation
sx = xt , and deg(r) ≤ 2 + kdeg(s)+2.

In that case we get the equality

τ1(s1 + 1)(x̂2 + r)τ2(s2 + 1)(x̂2 + r) · · · τn−1(sn−1 + 1)(x̂2 + r)tn−1µn

= τ1s1(x̂2 + r)(t1 + 1)µ2(x̂2 + r) · · · (tn−2 + 1)µn−1(x̂2 + r)(tn−1 + 1)µn,

and since x̂2 is a solution of the equation s1x = xt1, we get the equality

(s1 + 1)rτ2(s2 + 1)x̂2 · · · τn−1(sn−1 + 1)x̂2tn−1

+ · · · + (s1 + 1)x̂2τ2(s2 + 1)x̂2 · · · τn−1(sn−1 + 1)r tn−1

= s1r(t1 + 1)µ2 x̂2 · · · (tn−2 + 1)µn−1 x̂2(tn−1 + 1)

+ · · · + s1 x̂2(t1 + 1)µ2 x̂2 · · · (tn−2 + 1)µn−1r(tn−1 + 1) mod Gm2,

where
m1 = deg((s1 + 1)rτ2(s2 + 1)x̂2 · · · τn−1(sn−1 + 1)x̂2tn−1)

and m2 = m1 − deg(x̂2) + deg(r).
By the same argument that we used in the proof of Proposition 4.11, since the top

monomials of the coefficients ui , vi , i = 1, . . . , n, do not have periodicity, and since
the top monomial in the two sides of the equation after substituting the solution x2

has no periodicity, except the one that is contained in the appearances of the top
monomial of x2, it follows that for some i , 1 ≤ i ≤ n − 1, sir = r ti . Hence, r is
a solution to the equation, sx = xt , and so is x2 = x̂2 + r , since both x̂2 and r are
solutions to this equation. □

At this point we need to consider equations in which some of the appearances of
the elements x are shifted, and some are not.
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Lemma 4.13. Let u1, u2, u3, v1, v2, v3 ∈ FA satisfy u1 ̸= v1, deg(u1) = deg(v1),
deg(u2) > deg(v2), deg(v3) > deg(u3), where FA is the free associative algebra
over GF2 that is generated by k elements.

Suppose that the top homogeneous parts of ui and vi are monomials (for
i = 1, 2, 3) with no nontrivial periodicity. If there exists a solution x1 to the
equation u1xu2xu3 = v1xv2xv3, and the only nontrivial periodicity in the top
monomials of the two sides of the equation after substituting x1 is contained in the
top monomial of the solution x1 (this translates to a condition on the top monomials
of the coefficients), and deg(x1) > 2(deg(u1)+deg(u2)+deg(u3))

2, then there exist
elements s, t ∈ FA, such that either

(1) There exists µ1 for which u1 = µ1(s + 1) and v1 = µ1s.

(2) There exist µ2 and s2, t2 for which (t +1)µ2 = v2 and tµ2s2 = u2. Furthermore,
v3 = t2u3 and the pair (s2, t2) is either (s, t) or (s + 1, t + 1).

or

(1) There exists µ1 for which u1 = µ1s and v1 = µ1(s + 1).

(2) There exist µ2 and s2, t2 for which (t +1)µ2 = u2 and v2s2 = tµ2. Furthermore,
v3 = t2u3 and the pair (s2, t2) is either (s, t) or (s + 1, t + 1).

As in the conclusion of Theorem 4.7, every solution of the equation sx = xt is
a solution of the given equation u1xu2xu3 = v1xv2xv3. Every solution x2 of the
given equation u1xu2xu3 = v1xv2xv3 that satisfies

deg(x2) > 2(2 + kdeg(s1)+2
+ deg(u1) + deg(u2) + deg(u3))

is also a solution of the equation sx = xt.

Proof. The proof is similar to the proof of Proposition 4.11. □

At this point we can complete the proof of Theorem 4.7. We already analyzed
the case in which there are nontrivial shifts between (the top monomials of) pairs
of appearances of the variable x in the two sides of the equation. Propositions 4.11
and 4.12 analyze the case in which there are no shifts between pairs of appearances
of the variable x in the two sides of the equation, and Lemma 4.13 analyzes the
case n = 3 in which there is a pair with no shift and a pair with a shift.

By the techniques that were used in proving Proposition 4.11 and in analyz-
ing the case in which there are nontrivial shifts between pairs of appearances of
the variable x , if there is a pair of coefficients, ui , vi such that ui = vi and the
i − 1 (hence, also the i-th) pair of appearances of the variable x has no shift,
then the equation breaks into two equations, the first contains the coefficients
u1, . . . , ui−1, v1, . . . , vi−1, and the second contains the coefficients ui+1, . . . , un ,
vi+1, . . . , vn . Therefore, in the sequel we may assume that there is no such pair of
coefficients ui , vi .
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Then there exist some elements s, t ∈ FA, deg(s) = deg(t) < min deg(ui ), and
elements s1, . . . , sn−1, t1, . . . , tn−1, such that

(1) For every index i , the pair (si , ti ) is either (s, t) or (s + 1, t + 1).

(2) For every pair of coefficients, ui , vi for which the two pairs of appearances of
the variable x from the two sides of the pair of coefficients have no nontrivial
shift, either ui = vi or there exist elements τi and µi such that either ui = τi si

and vi = τi (si + 1) (or vice versa), or ui = ti−1µi and vi = (ti−1 + 1)µi (or
vice versa), or ui = (ti−1 + 1)µi and vi = τi (si + 1) (or vice versa).

(3) If deg(u1) = deg(v1), either u1 = v1 or there exists τ1 such that u1 = τ1s1 and
v1 = τ1(s1 + 1) (or vice versa). If deg(un) = deg(vn), either un = vn or there
exists an element µn such that un = tn−1µn and vn = (tn−1 + 1)µn (or vice
versa).

(4) For every pair ui , vi for which the two pairs of appearances of the variable x
from the two sides of the pair of coefficients have nontrivial shifts, ui si = ti−1vi

(or vice versa), or ui = ti−1vi si (or vice versa).

(5) If deg(u1) ̸= deg(v1), then u1 = v1s1 or vice versa. If deg(un) ̸= deg(vn), then
un = tn−1vn or vice versa.

(6) Suppose that deg(ui ) ̸= deg(vi ), 1 < i < n, there is no shift between the i − 1
appearances of the variable x , and there is a nontrivial shift between the i-th
appearances of the variable x from the two sides of the equation. Then either
ui si = vi or vice versa, in which case the original equation can be broken into
two equations, the first contains the first i − 1 pairs of coefficients, and the
second contains the last n + 1 − i pairs of coefficients, or vi = (ti−1 + 1)µi

and ui si = ti−1µi (or vice versa), or ui = (ti−1 + 1)µi and vi = ti−1µi si (or
vice versa).

(7) Suppose that deg(ui ) ̸= deg(vi ), 1 < i < n, there is no shift between the i-th
appearances of the variable x , and there is a nontrivial shift between the i − 1
appearances of the variable x from the two sides of the equation. Then either
ti−1ui = vi or vice versa, in which case the original equation can be broken into
two equations, the first contains the first i pairs of coefficients, and the second
contains the last n − i pairs of coefficients, or vi = τi (si + 1) and ti−1ui = τi si

(or vice versa), or ui = τi (si + 1) and vi = ti−1τi si (or vice versa).

This description of the coefficients in a general equation with one variable, in
which the coefficients have no periodicity, and the top homogeneous parts of the
coefficients are monomials, finally implies:

(1) Every solution of the equation sx = xt is a solution of the given equation.
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(2) Every solution x2 of the given equation that satisfies

deg(x2) > 2(2 + kdeg(s)+2
+ deg(u1) + · · · + deg(un))

is also a solution of the equation sx = xt .

The proof of (1) follows from the structure of the coefficients, and the proof of
(2) follows by the argument that was used to prove (2) for the case in which there
are no shifts between the various appearances of the top monomial of the solution
x2 in the two sides of the given equation in Proposition 4.12.

This concludes the proof of Theorem 4.7. □
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When does ℵ1-categoricity imply ω-stability?
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For an ℵ1-categorical atomic class, we clarify the space of types over the unique
model of size ℵ1. Using these results, we prove that if such a class has a model
of size ℶ+

1 then it is ω-stable.

1. Introduction

Our principal result is:

Theorem 1.1. If an atomic class At is ℵ1-categorical and has a model of size (2ℵ0)+,
then At is ω-stable.

This result springs from several related problems in the study of Lω1,ω: the role
of ℶω1 , the possible necessity of the weak continuum hypothesis, the absoluteness
of ℵ1-categoricity.

For first order logic, Morley [1965] proved, en route to his categoricity theorem,
that an ℵ1-categorical first order theory is ω-stable (né totally transcendental).
The existence of a saturated Ehrenfeucht–Mostowski model of cardinality ℵ1 that
is generated by a well-ordered set of indiscernibles is crucial to the proof. The
construction of such indiscernibles via the Erdős–Rado theorem and Ehrenfeucht–
Mostowski models is tied closely to the existence of “large” (i.e., of size ℶω1)
models of the theory.

The compactness of first order logic yields the full upward Löwenheim–Skolem–
Tarski (LST) theory for Lω,ω: if ψ has an infinite model it has arbitrarily large
models. But for Lω1,ω, the LST-theorem replaces “an infinite model” by “a model
of size ℶω1 .” The proof proceeds by using iterations of the Erdős–Rado theorem to
find infinite sets of indiscernibles and to transfer size via Ehrenfeucht–Mostowski
models.
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By an atomic class we mean the atomic models (i.e., each finite sequence in
each model realizes a principal type over the empty set) of a complete theory in
a countable first order language. Every complete sentence in Lω1,ω defines such
a class because Chang’s theorem translates the sentence to a first order theory
omitting types and the language can be expanded to make all realized types atomic
[Baldwin 2009, Chapter 6].

Shelah calls an atomic class excellent if it satisfies an n-amalgamation property
for all n and structures of arbitrary cardinality. Shelah [1983a; 1983b] proved in
ZFC: If an atomic class K is excellent and has an uncountable model then

(1) it has models of arbitrarily large cardinality;

(2) if it is categorical in one uncountable power it is categorical in all uncountable
powers.

He also obtained a partial converse; under the very weak generalized continuum
hypothesis (2ℵn < 2ℵn+1 for n < ω): an atomic class K that has at least one
uncountable model and is categorical in ℵn for each n <ω is excellent. Thus under
VWGCH the “Hanf number” for existence and for categorical atomic classes is
reduced from ℶω1 to ℵω.

This raises the question. Does an ℵ1-categorical atomic class have arbitrarily
large models? Shelah [1975] showed it has a model in ℵ2.

For the authors, work on this problem began by searching for sentences of Lω1,ω

for which ℵ1-categoricity can be altered by forcing.1 The third author proposed an
example, but the first author objected to the proof and the second author proved in
ZFC that the putative example was not ℵ1-categorical.

In a series of papers the authors show that ℵ1categorical atomic classes (or even
simply < 2ℵ1 atomic models in ℵ1) exhibit some “superstable-like” behavior. In
[Baldwin et al. 2016] we introduced the appropriate notion of an algebraic type
for atomic classes, pseudoalgebraic (Definition 3.2.2) and proved there that for an
atomic class with < 2ℵ1 models in ℵ1 the pseudoalgebraic types were dense. This
is analogous to every nonalgebraic formula being extendible to a weakly minimal
formula in a superstable theory. In [Laskowski and Shelah 2019] it is shown that an
atomic class with few models in ℵ1 is “pcl-small”, i.e., there are few types over the
pseudoclosure of any finite set (which is a weakening of ω-stability) and here we
show that ℵ1 categoricity and the existence of an atomic model of size ℶ+

1 implies
ω-stability.

The search for weakened conditions for ω-stability is partially motivated by
asking whether the absoluteness of ℵ1-categoricity for first order logic (given by

1For sentences of Lω1,ω(Q), such sentences exist; see [Shelah 1987, §6], expounded as [Baldwin
2009, §17]. A non-ω-stable sentence with no models above the continuum is given, where ℵ1-
categoricity fails under CH but holds under Martin’s axiom.
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the equivalence to ω-stable and no two-cardinal model) extends to atomic classes.
Baldwin [2012] proved that either arbitrarily large models (ℶω1) or ω-stability suf-
fices for such an absolute characterization. Our main theorem reduces the ℶω1 to ℶ+

1 .
In Section 2 we investigate constrained types over models and investigate their

relation to ℵ1-categoricity and ω-stability. The notion of a constrained type is just
a renaming; a type p ∈ S(M) is constrained just if it does not split over a finite
subset. Such a type is definable in the standard use in model theory — the existence
of a schema such that for all m ∈ M , φ(x,m) ∈ p ↔ dφ(x,m). In Sections 2.2
and 2.3.1 we introduce “constrained” and limit types (over models) and investigate
them under the assumption of ℵ1-categoricity. From this, we prove the main theorem.
However, our results in Section 2.2 depend on a major hypothesis, the existence of
an uncountable model in which every limit type is constrained. In Section 3 we
pay back our debt. By proving Theorem 2.3.2, we show the existence of a model
of size ℵ1 in which every limit type is constrained, using only the existence of an
uncountable model. Although the proof there uses forcing, by appealing to the
absoluteness given by Keisler’s model existence theorem for sentences of Lω1,ω(Q),
the result is really a theorem of ZFC.

2. Constrained types, ℵ1-categoricity and ω-stability

Throughout this article, T denotes a complete theory in a countable language
for which there is an uncountable atomic model. At denotes the class of atomic
models of T . In everything that follows, we only consider atomic sets, i.e., sets
for which every finite tuple is isolated by a complete formula. Throughout, M, N
denote atomic models and A, B atomic sets. We write a, b for finite atomic tuples,
and x, y, z denote finite tuples of variables.

We repeatedly use the fact that the countable atomic model M is unique up to
isomorphism. Vaught [1961] showed the existence of an uncountable atomic model
is equivalent to the countable atomic model having a proper elementary extension.
The only types we consider are either over an atomic model or are over a finite
subset of a model. In either case, we only consider types realized in atomic sets.

For general background see [Baldwin 2009] and more specifically [Baldwin et al.
2016].

2.1. Constrained types and filtrations.

Definition 2.1.1. Fix a countable complete theory T with monster model M.
At = AtT denotes the collection of atomic models of T .

(1) For M ∈ At , Sat(M) is the collection of p(x) ∈ S(M) such that if a ∈ M
realizes p, Ma is an atomic set.

(2) At is ω-stable if for every/some countable M ∈ At, Sat(M) is countable.
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The reader is cautioned that the definition of ω-stability is not equivalent to
the classical notion (i.e., S(M) countable) but within the context of atomic sets,
this revised notion of ω-stability plays an analogous role. The spaces Sat(M) are
typically not compact. However, if M is countable, then Sat(M) is a Gδ subset of
the full Stone space S(M), and thus is a Polish space. In particular, if At is not
ω-stable, then Sat(M) contains a perfect set.

Definition 2.1.2. (1) A type p ∈ Sat(M) splits over F ⊆ M if there exist
tuples b, b′

⊆ M and a formula φ(x, y) such that tp(b/F) = tp(b′/F), but
φ(x, b)∧ ¬φ(x, b′) ∈ p.

(2) We call p ∈ Sat(M) constrained if p does not split over some finite F ⊆ M
and unconstrained if p splits over every finite subset of M .

(3) For any atomic model M , let CM := {p ∈ Sat(M) : p is constrained}. We
say At has only constrained types if Sat(N )= CN for every atomic model N .

We use the term constrained in place of “does not split over a finite subset” for
its brevity, which is useful in subsequent definitions.

Remark 2.1.3. The concepts in clauses (2) and (3) above give a method of proving
that an atomic class is ω-stable. We show At is ω-stable holds if and only if both

(a) CM is countable for some/every countable atomic M and

(b) At has only constrained types.

Right to left is well-known: ω-stability immediately implies (a) and the deduc-
tion of (b) is standard [Baldwin 2009, Lemma 20.8]. Under the assumption of
ℵ1-categoricity, Theorem 2.2.1 gives (a) and Theorem 2.4.4 gives three equiva-
lents of (b). However, the short proof of Theorem 2.4.4 makes crucial use of
Theorem 2.3.2, whose lengthy proof is relegated to Section 3.

The constrained types p ∈ CM are those that have a defining scheme over a
uniform finite set of parameters, i.e., if p ∈ Sat(M) does not split over a, then for
every parameter-free φ(x, y), there is an a-definable formula dp xφ(x, y) such that
for any b ∈ M | y|, φ(x, b) ∈ p if and only if M |H dp xφ(x, b). We record three
easy facts about extensions and restrictions of types.

Lemma 2.1.4. (1) If M is a countable atomic model and p ∈ Sat(M) then p is
realized in an atomic extension of M.

(2) For any atomic models M ⪯ N and A ⊆ M is finite, then for any q ∈ Sat(N )
that does not split over A, the restriction q↾M does not split over A; and any
p ∈ Sat(M) that does not split over A has a unique nonsplitting extension
q ∈ Sat(N ).
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(3) If some atomic N has an unconstrained p ∈ Sat(N ), then for every countable
A ⊆ N , there is a countable M ⪯ N with A ⊆ M for which the restriction p↾M

is unconstrained.

(4) At has only constrained types if and only if Sat(M) = CM for every/some
countable atomic model M.

Proof. (1) Suppose a realizes p in the monster model M ⪰ M . M need not be
atomic, but M ∪ {a} is a countable atomic subset. Since every atomic model N
is ω-homogeneous, a “forth construction” shows that for every countable atomic
S ⊆ M, there is an (M, N )-elementary map f : S → N . Thus there is an atomic
M ′

⪰ M containing a.

(2) The first statement is immediate. For the second, given p(x) ∈ Sat(M) non-
splitting over A, put

q(x) :=
{
φ(x,b) : b∈ N | y|,φ(x,b′)∈ p for some b′

∈ M with tp(b′/A)= tp(b/A)
}

(3) We construct M ⪯ N as the union of an increasing elementaryω-chain Mn ⪯ N of
countable, elementary substructures of N with A ⊆ M0 and, for each n ∈ω, p↾Mn+1

splits over every finite F ⊆ Mn . It follows that M∗
:=

⋃
{Mn : n ∈ω} is as required.

(4) Left to right is immediate. For the converse, assume there is some atomic
N with an unconstrained type p ∈ Sat(N ). By (2) there is a countable M ⪯ N
with p↾M unconstrained. □

Much of the paper concerns analyzing atomic models N of size ℵ1. It is useful
to consider any such N as a direct limit of a family of countable, atomic submodels.

Definition 2.1.5. For a model N of size ℵ1, a filtration of N is a continuous,
increasing sequence (Mα : α ∈ ω1) of countable, elementary substructures with
N =

⋃
α∈ω1

Mα.

When N is atomic, then in any filtration (Mα : α ∈ ω1) of N , each of the
countable models are isomorphic. As well, any two filtrations (Mα : α ∈ ω1) and
(M ′

α : α ∈ ω1) agree on a club. Thus, for any given countable M ⪯ N , we have that
{α ∈ ω1 : M ⪯ Mα and Mα = M ′

α} is club as well.

2.2. ℵ1-categoricity implies CM is countable. Throughout this subsection, At is
an atomic class that admits an uncountable model and M denotes a fixed copy of
the countable atomic model. We aim to count the set

CM = {p ∈ Sat(M) : p is constrained}.

Theorem 2.2.5 yields the main result of the subsection:

Theorem 2.2.1. If At is ℵ1-categorical, then CM is countable for every/some
countable atomic model M.
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As M is countable, the natural action of Aut(M) on the set M induces an action
of Aut(M) on Sat(M). When M is atomic, a useful characterization of p ∈ CM is:
CM consists of those elements of Sat(M) whose orbits are countable. However, for
the results in this section we only require the easy half of this statement.

Lemma 2.2.2. Suppose p ∈ CM and M ′ is any countable, atomic model. Then:

(1) {π(p) : π : M → M ′ an isomorphism} is a countable set of constrained types
in Sat(M ′).

(2) There is a countable atomic M∗
≻ M ′ realizing π(p) for every isomorphism

π : M → M ′.

Proof. (1) Choose a finite A ⊆ M over which p does not split. As M ′ is countable,
A has only countably many images under isomorphisms π : M → M ′, and it follows
immediately from nonsplitting that if π1, π2 : M → M ′ are isomorphisms satisfying
π1(a)= π2(a) for each a ∈ A, then π1(p)= π2(p).

(2) Using (1), let {qi : i < γ ≤ ω} ⊆ Sat(M ′) be the set of all images of p under
isomorphisms π : M → M ′. We recursively construct an increasing sequence of
countable models {Mi : i < γ } with M0 = M ′ and, for each i < γ , Mi contains a
realization of q j for every j < i . Supposing i < γ and Mi has been defined, let
q∗

i ∈ Sat(Mi ) be the unique ([Baldwin 2009, Theorem 19.9]) nonsplitting extension
of qi ∈ Sat(M ′). Then letting di realize q∗

i , let Mi+1 ∈ At be an elementary extension
of Mi containing Mi ∪ {di }. Then

⋃
i<ω Mi works. □

Definition 2.2.3. Suppose (Mβ : β < ω1) is a filtration of some N ∈ At of size ℵ1.
For each β < ω1, let

RβN := {p ∈ CM : π(p) is realized in N for every isomorphism π : M → Mβ}

and let RN := {p ∈ CM : p ∈ RβN for a stationary set of β ∈ ω1}.

As any two filtrations of N agree on a club, it follows that RN is independent
of the choice of filtration of N . Similarly, RN is an isomorphism invariant, i.e., if
N ∼= N ′ are each atomic models of size ℵ1, then RN = RN ′ . We record two facts
about RN .

Lemma 2.2.4. (1) For any N ∈ At of size ℵ1, |RN | ≤ ℵ1.

(2) For any p ∈ CM there is some N ∈ At of size ℵ1 such that p ∈ RN .

Proof. (1) Choose any sequence ⟨pi : i ∈ ω2⟩ from RN and we will show that
pi = p j for some distinct i, j . Fix a filtration (Mα) of N . We shrink the sequence
in two stages. First, for each i < ω2, let α(i) ∈ ω1 be least such that pi ∈ Rα(i)N . By
pigeonhole and reindexing we may assume α(i)= α∗ for all i , i.e., each pi ∈ Rα

∗

N .
Now fix any isomorphism π : M → Mα∗ . By definition of Rα

∗

N , π(pi ) is realized
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in N for every pi . But, as |N | = ℵ1, there is c∗
∈ N realizing both π(pi ) and π(p j )

for some distinct i, j . Thus, π(pi )= π(p j ), hence pi = p j .

(2) Fix p ∈ CM . Using Lemma 2.2.2(2) at each level, construct a continuous,
increasing elementary sequence Mα of countable atomic models such that, for
every α < ω1, π(p) is realized in Mα+1 for every isomorphism π : M → Mα . Put
N :=

⋃
α<ω1

Mα. Then (Mα) is a filtration of N and p ∈ RαN for every α < ω1.
Thus, p ∈ RN . □

We are now able to prove the theorem below, which clearly implies Theorem 2.2.1.

Theorem 2.2.5. If CM is uncountable, then I (At,ℵ1)= 2ℵ1 .

Proof. It is easily verified that CM is an Fσ subset of the Polish space Sat(M), so
on general grounds, CM is either countable or else it contains a perfect set.

Our proof is nonuniform, depending on the relative sizes of 2ℵ0 and 2ℵ1 . First,
under weak CH, i.e., 2ℵ0 < 2ℵ1 then combining arguments of Keisler [1970] and
Shelah [Baldwin 2009, Theorem 18.16] shows if I (At,ℵ1) ̸= 2ℵ1 , then At is
ω-stable, so Sat(M) is countable. As CM ⊆ Sat(M), CM is countable as well.

On the other hand, assume 2ℵ0 = 2ℵ1 , so in particular WCH fails. Under this
assumption, we will prove that if CM is uncountable, then I (At,ℵ1)= 2ℵ0 , which
equals 2ℵ1 under our cardinal hypotheses for this case. Indeed, choose representa-
tives {Ni : i ∈ κ} for the isomorphism classes of atomic models of size ℵ1. If CM is
uncountable, then as noted the first sentence of the proof, CM contains a perfect set
and so |CM | = 2ℵ0 . But by Lemma 2.2.4, CM ⊆

⋃
{RNi : i ∈ κ} and |RNi | ≤ ℵ1 for

each i ∈ κ . As we are assuming 2ℵ0 > ℵ1, we conclude κ ≥ 2ℵ0 , as required. □

2.3. Limit types and ℵ1-categoricity.

Definition 2.3.1. A type p ∈ Sat(N ) is a limit type if the restriction p↾M is realized
in N for every countable M ⪯ N .

Trivially, for every N , every type in Sat(N ) realized in N is a limit type. Since
we allow M = N in the definition of a limit type, if M is countable, then the only
limit types in Sat(M) are those realized in M .

Also, if (Mα : α ∈ ω1) is a filtration of N , then a type p ∈ Sat(N ) is a limit type
if and only if N realizes p↾Mα

for cofinally many α.
The long proof of the following crucial theorem is relegated to Section 3. Note

that there are no additional assumptions on At, other than the existence of an
uncountable, atomic model.

Theorem 2.3.2. If At admits an uncountable, atomic model, then there is some
N ∈ At with |N | = ℵ1 for which every limit type in Sat(N ) is constrained.

Here, we sharpen this result under the additional assumption of ℵ1-categoricity.
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Corollary 2.3.3. If At is ℵ1-categorical and N ∈ At has size ℵ1, then for every
p ∈ Sat(N ), ∈ CN ↔ p ∈ {limit types in Sat(N )}.

Proof. The hard direction of the equality is Theorem 2.3.2. For the converse, by
the assumption of ℵ1-categoricity it suffices to construct some N ∈ At of size ℵ1

for which every p ∈ CN is a limit type. For this, first note that for every countable
atomic M , since CM is countable by Theorem 2.2.1, iterating Lemma 2.1.4(1)
ω times yields a countable atomic M ′

⪰ M that realizes every p ∈ CM . Using
this, construct a strictly increasing, continuous elementary chain (Mα : α ∈ ω1) of
countable, atomic models such that for each α ∈ ω1, Mα+1 realizes every p ∈ CMα

.
Put N :=

⋃
α∈ω1

Mα. We claim that every p ∈ CN is a limit type. So fix p ∈ CN

and choose any countable M ⪯ N . Choose a finite A ⊆ N for which p does not
split over A and choose α ∈ ω1 so that M ∪ A ⊆ Mα. By Lemma 2.1.4(2), p↾Mα

is constrained, hence it is realized in Mα+1 ⊆ N . As any such realization in N
realizes p↾M , p is a limit type. □

2.4. Characterizing ω-stability. In this subsection, we first derive Lemma 2.4.3 that
gives three consequences of ω-stability in terms of the behavior of constrained types.
Then, taking Theorem 2.3.2 as a black box (proved in Section 3), Theorem 2.4.4
shows that each of these conditions is equivalent to ω-stability under the assumption
of ℵ1-categoricity. Finally, Theorem 2.4.5 asserts that the existence of a model in ℶ+

1
and ℵ1-categoricity implies condition (1) of Theorem 2.4.4 and thus ω-stability.

Definition 2.4.1. • A proper constrained pair is a pair N ⪵ N ′ of atomic models
such that tp(c/N ) is constrained for every tuple c ∈ N ′.

• A proper relatively ℵ1-saturated pair is a proper pair N ⪵ N ′ such that, for
every countable M ⪯ N , every type p ∈ S(M) realized in N ′ is realized in N .

Note that in (2), both models must be uncountable, whereas (1) makes sense for
countable models as well. Of course, in (2) it would be equivalent to say that “every
type over every countable set A ⊆ N that is realized in N ′ is realized in N ,” but we
choose the definition above to conform with our convention about only looking at
types over models.

Lemma 2.4.2. Let At be any atomic class.

(1) If both (M,M ′) and (M ′,M ′′) are constrained pairs, then (M,M ′′) is a con-
strained pair as well.

(2) If (M,M ′) is a constrained pair of countable atomic models, then there is
an uncountable N with a filtration (Mα : α ∈ ω1) such that (Mα, N ) is a
constrained pair for every α ∈ ω1.
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Proof. (1) Choose any c ∈ M ′′. As (M ′,M ′′) is a constrained pair, choose b ∈ M ′

such that tp(c/M ′) does not split over b. As (M,M ′) is a constrained pair, choose
a ∈ M such that tp(b/M) does not split over a. We claim that tp(cb/M) does not
split over a, which clearly suffices. To see this, choose any m1,m2 from M such
that tp(m1a)= tp(m2a). By nonsplitting, this implies tp(m1ab)= tp(m2ab). Now
both m1a and m2a are from M ′, hence tp(m1abc)= tp(m2abc) as tp(c/M ′) does
not split over b.

(2) As M is a countable atomic model that is the lower part of a constrained pair, so
is any other countable, atomic model. Thus, we can form a continuous, increasing
chain (Mα : α ∈ ω1) of countable atomic models with (Mα,Mα+1) a constrained
pair for each α. This chain is a filtration of the atomic N :=

⋃
{Mα : α ∈ ω1}. That

each (Mα, N ) is a constrained pair follows from (1). □

We record the following consequences of ω-stability in atomic classes. It is
noteworthy that ℵ1-categoricity plays no role in Lemma 2.4.3, and without ad-
ditional assumptions, none of these imply ω-stability. However, following this,
with Theorem 2.4.4 we see that when coupled with ℵ1-categoricity, each of these
conditions implies ω-stability.

Lemma 2.4.3. Suppose At is an ω-stable atomic class that admits an uncountable
atomic model. Then

(1) At has only constrained types;

(2) At has a proper constrained pair; and

(3) At has a proper, relatively ℵ1-saturated pair.

Proof. (1) For an ω-stable atomic class, one can define ([Baldwin 2009, Defini-
tion 19.1]) a splitting rank on types p ∈ Sat(N ) for any model N such that ([Baldwin
2009, Theorem 19.8]): for any atomic model N and any p ∈ Sat(N ), then choosing
φ(x, a) ∈ p to be a complete formula of smallest rank, p does not split over a.
That is, p is constrained.

(2) Choose any countable, atomic model M . Since At admits an uncountable atomic
model, there is a countable, proper, atomic elementary extension M ′

≻ M . By (1),
tp(c/M) is constrained for every c ∈ M ′, hence (M,M ′) is a proper constrained pair.

(3) We first argue that there is an atomically saturated model N of size ℵ1. That is,
for every countable M ⪯ N , N realizes every p ∈ Sat(M). The existence of an un-
countable, atomically saturated N is easy. Using Lemma 2.4.3(1) all types for At are
constrained. Then, using Lemma 2.1.4(1) and (2) as in the proof of Corollary 2.3.3,
build a union of a continuous elementary chain (Mα : α ∈ ω1) of countable atomic
models with the property that for each α < ω1, Mα+1 realizes every p ∈ Sat(Mα).
The existence of such an Mα+1 is immediate since Sat(Mα) is countable and every
p ∈ Sat(Mα) can be realized in some countable, atomic elementary extension.



810 JOHN T. BALDWIN, MICHAEL C. LASKOWSKI AND SAHARON SHELAH

Now, given an atomically saturated model N of size ℵ1, recall that if At is
ω-stable, then every model of size ℵ1 has a proper atomic extension N ′; see, e.g.,
the proof of 19.26 of [Baldwin 2009]. But then (N , N ′) is a proper, relatively
ℵ1-saturated pair. □

Given Theorem 2.2.1 and Corollary 2.3.3 (the latter depending on the promised
Theorem 2.3.2), we give short proofs of our main results.

Theorem 2.4.4. The following are equivalent for an ℵ1-categorical atomic class At:

(1) At has a proper, relatively ℵ1-saturated pair.

(2) At has a proper constrained pair.

(3) At has only constrained types.

(4) At is ω-stable.

Proof. We will show (1)⇒ (2)⇒ (3)⇒ (4), which in light of Lemma 2.4.3 suffices.

(1)⇒ (2): Suppose (M∗,M∗∗) is a proper, relatively ℵ1-saturated pair of atomic
models, and by way of contradiction suppose that (M∗,M∗∗) is not a proper
constrained pair. Choose c ∈ M∗∗ such that p := tp(c/M∗) is unconstrained.
Then, by iterating Lemma 2.1.4(3), we construct a continuous, elementary chain
(Mα : α ∈ ω1) of countable, elementary substructures of M∗ such that, for every
α ∈ ω1, p↾Mα

is unconstrained, but is realized in Mα+1. To accomplish this, by
Lemma 2.1.4(3), choose a countable M0 ⪯ M∗ such that p↾M0 is unconstrained. At
countable limits, take unions. Finally, given a countable Mα ⪯ M∗, by relative ℵ1-
saturation choose cα ∈ M∗ realizing p↾Mα

and then apply Lemma 2.1.4(3) to the set
Mα∪{cα} to get Mα+1 ⪯ M∗ with p↾Mα+1 unconstrained. Let N :=

⋃
{Mα :α ∈ω1}.

Then N has size ℵ1 and the type p↾N is an unconstrained limit type, contradicting
ℵ1-categoricity by Corollary 2.3.3.

(2)⇒ (3): Assume that (N ∗, N ∗∗) is a proper constrained pair (of any cardinality).
By an easy Löwenheim–Skolem argument (in the pair language) there is a proper
constrained pair (M,M ′) of countable atomic models. By Lemma 2.4.2(2), there is
an atomic model N of size ℵ1 with a filtration (Mα : α ∈ ω1) such that (Mα, N ) is
a constrained pair for every α ∈ ω1.

Now, by way of contradiction, assume (3) fails. By Lemma 2.1.4(4), Sat(M)
contains an unconstrained type for every countable atomic model M . Thus, for
any such M , there is a countable atomic M ′

≻ M containing a realization of
an unconstrained type. By iterating this ω1 times, we construct a continuous,
elementary chain (M ′

α : α ∈ ω1) for which M ′

α+1 contains a realization of an
unconstrained type in Sat(M ′

α). Let N ′
:=

⋃
{M ′

α : α ∈ ω1}. Note that (M ′
α, N ′)

is never a constrained pair. But this contradicts ℵ1-categoricity: If f : N → N ′

were an isomorphism, then there would be (club many) α ∈ ω1 such that f ↾Mα
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maps Mα onto M ′
α , hence maps the pair (Mα, N ) onto (M ′

α, N ′). As the former is
a constrained pair, while the latter is not, we obtain a contradiction.

(3) ⇒ (4): Assume At has only constrained types and let M be any countable,
atomic model. This means that Sat(M)=CM . However, as At is ℵ1-categorical, CM

is countable by Theorem 2.2.1. Thus, Sat(M) is countable, which is the definition
of At being ω-stable. □

With this result in hand, it is easy to deduce the main theorem. This is the
only use of the existence of a model in ℶ+

1 . We imitate the classical proof that for
every κ ≥ |L|, every L-theory with an infinite model has a κ+-saturated model of
size 2κ , to prove clause (1) of Theorem 2.4.4 and thus deduce ω-stability.

Theorem 2.4.5. If an atomic class At is ℵ1-categorical and has a model of size
(2ℵ0)+, then At is ω-stable.

Proof. Let M∗∗ be an atomic model of size (2ℵ0)+. We construct a relatively
ℵ1-saturated elementary substructure M∗

⪯ M∗∗ of size 2ℵ0 as the union of a
continuous chain (Nα : α ∈ ω1) of elementary substructures of M∗∗, each of
size 2ℵ0 , where, for each α < ω1 and each of the 2ℵ0 countable M ⪯ Nα, Nα+1

realizes each of the at most 2ℵ0 p ∈ S(M) that is realized in M∗∗. ω-stability is
immediate from (1)⇒ (4) in Theorem 2.4.4. □

3. Paying our debt

The whole of this section is aimed at proving Theorem 2.3.2: If a countable
theory T has an uncountable atomic model, then it has one in which every limit type
is constrained.2 The proof relies heavily on Keisler’s completeness theorem that
implies “model existence” of sentences of Lω1,ω(Q) is absolute between forcing
extensions. In the first subsection, we explicitly give an Lω1,ω(Q) sentence 9∗ in
a countable language extending the language of T such that in any set-theoretic
universe, 9∗ has a model of size ℵ1 if and only if there is an atomic model of
size ℵ1 with every limit type constrained.

The second subsection describes family of striated formulas [Baldwin et al.
2016]. Such formulas are used to describe a c.c.c. forcing notion (P,≤) in the third
subsection. There, we prove that (P,≤) forces the existence of an atomic model of
size ℵ1 with every limit type constrained. Thus, we conclude that 9∗ has a model
of size ℵ1 in a c.c.c. forcing extension, so by the absoluteness described above, V

has a model of 9∗ of size ℵ1, yielding our requested model.

2By the correspondence described in the introduction, it follows immediately that any com-
plete Lω1,ω-sentence with an uncountable model has an uncountable model with every limit type
constrained.
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3.1. Finding a requisite sentence 9∗ of Lω1,ω( Q). This subsection is devoted to
proving the following proposition.

Proposition 3.1.1. Let T be a first order L-theory for a countable language with
an uncountable model in At, the class of atomic models. There is a sentence
9∗

∈ (L∗)ω1,ω(Q) in an expanded (but still countable) language L∗
⊇ L for which

the following are equivalent:

(1) There is a model N ∗
|H9∗.

(2) There is an atomic model N |H T of size ℵ1 such that every limit type of N is
constrained.

Whereas the L-reduct of any N ∗
|H9∗ will satisfy (2), it is noteworthy that in

proving (2)⇒ (1), the model N ∗
|H9∗ we produce is not necessarily an expansion

of a given N witnessing (2).
The relevant 9∗ is defined in Definition 3.1.6. As we will be interested in

arbitrary models of a sentence and because “is a well ordering” is not expressible
in Lω,ω(Q), we need to generalize the notion of a filtration.

Definition 3.1.2. A linear order (I,≤) is ω1-like if it has cardinality ℵ1, but, letting
pred(i) denote { j ∈ I : j < i}, for every i ∈ I , | pred(i)| ⩽ ℵ0.

If N is any set and (I,≤) is ω1-like, then an (I,≤)-scale is a surjective function
f : N → I such that f −1(i) is countable for every i ∈ I .

If f : N → I is a scale, put Ai := f −1(pred(i)) for every i ∈ I , and note that
each Ai is countable.

Observe that “being an ω1-like linear order” is expressible by a sentence of
Lω1,ω(Q)— the point is that any uncountable linear order (I,≤) for which pred(i)
is countable for every i ∈ I has both size and cofinality ℵ1. Similarly, if an
uncountable set N has an (I,≤)-scale, then N must have size ℵ1.

We consider the sets (Ai : i ∈ I ) to be a surrogate for a filtration of N ; Ai

replaces Mα . We now define a tree order on types over certain countable subsets of
a model with cardinality ℵ1 of T .

Definition 3.1.3. Fix T, N as in Proposition 3.1.1. Suppose (I,≤) is an ω1-like
linear order and f : N → I is a scale.

(1) Define an equivalence relation E f on (N × I ) as (a, i)E f (b, j) if and only
if i = j and tp(a/Ai ) = tp(b/Ai ). Thus each equivalence class corresponds
to a type.

(2) Define a strict partial order ≺ f on (N × I )/E f as: [(a, i)] ≺ f [(b, j)] if
and only if i <I j ; tp(a/Ai ) = tp(b/Ai ); and tp(b/A j ) splits over every
finite F ⊆ Ai .

(3) A ≺ f -chain is a sequence of types linearly ordered by ≺ f (hence splitting).
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It is evident that ((N × I )/E f ,≺ f ) is tree-like in that the ≺ f -predecessors
of every E f -class are linearly ordered by ≺ f . Moreover, since (I,≤) is ω1-like,
every E f -class has only countably many ≺ f -predecessors.

Lemma 3.1.4. Let N be any atomic model of size ℵ1, (I,≤) be ω1-like, f : N → I
be any scale and I , E f , Ai , and ≺ f be as in Definition 3.1.3. The following are
equivalent:
(1) There exists an f such that T f = ((N × I )/E f ,≺ f ) has an uncountable

≺ f -chain.

(2) Some limit type in Sat(N ) is unconstrained.

(3) For every f , T f = ((N × I )/E f ,≺ f ) has an uncountable ≺ f -chain.

Proof. (3) ⇒ (1) is immediate. For (1) ⇒ (2), suppose for some f , C ⊆ T f is
an uncountable ≺ f -chain. As [(a, i)] ≺ f [(b, j)] implies i < j and since (I,≤)
is ω1-like, π2(C) := {i ∈ I : ∃a ∈ N [(a, i)] ∈ C} is cofinal in I . Therefore⋃

{Ai : i ∈ π2(C)} = N . Also, as [(a, i)] ≺ f [(b, j)] implies tp(a/Ai )= tp(b/Ai ),
there is a unique p ∈ Sat(N ) defined as p :=

⋃
{tp(a/Ai ) : (a, i)∈ C}. Furthermore,

as tp(b/A j ) splits over every finite F ⊆ Ai , it follows that p is unconstrained.
Recalling Definition 2.3.1(2), it remains to show that p is a limit type. Choose a
filtration M = (Mα) of N and argue that p↾Mα

is realized in N for every α ∈ ω1.
Given α ∈ ω1, choose i ∈ π2(C) such that Mα ⊆ Ai . Then each a ∈ N for which
(a, i) ∈ C realizes p↾Ai and hence realizes p↾Mα

. So p is a limit type.

(2)⇒ (3). Suppose N has an unconstrained limit type p ∈ Sat(N ) and fix a scale f .
Also choose a filtration (Mα : α ∈ ω1) of N . To construct an uncountable chain T f

we repeatedly use the following claim.

Claim 3.1.5. For every countable B ⊆ N there is i ∈ I such that

• B ⊆ Ai ;

• p↾Ai is realized; and

• p↾Ai splits over every finite F ⊆ B.

Proof. Given a countable B ⊆ N , since p ∈ Sat(N ) splits over every finite F ⊆ N ,
there is a countable B∗

⊇ B such that p↾B∗ splits over every finite F ⊆ B. Now
choose i ∈ I such that B∗

⊆ Ai and then choose α ∈ω1 such that Ai ⊆ Mα . Since p
is a limit type, choose c ∈ N realizing p↾Mα

and hence p↾Ai . □

Iterating Claim 3.1.5 ω1 times yields a strictly increasing sequence (iα : α ∈ ω1)

from (I,≤) and (cα : α ∈ ω1) from N , where at each stage α, we take B =⋃
{Aiβ :β <α}. It follows directly from the definition of ≺ f that (cβ, iβ)≺ f (cα, iα)

whenever β < α, so ((N × I )/E,≺ f ) has an uncountable chain. □

With Lemma 3.1.4 in hand, we now define the sentence 9∗ described in
Proposition 3.1.1.
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Definition 3.1.6. Let L∗
:= L ∪ {I,≤I , f, E,≺ f } ∪ {Q,≤Q, H} and let 9∗ be a

set of Lω1,ω(Q)-axioms ensuring that, for any N ∗
|H9∗,

(1) the L-reduct N of N ∗ is an atomic model of T (as well, N denotes the universe
of N ∗);

(2) N is uncountable;

(3) I ⊆ N and (I,≤I ) is an ω1-like linear order;

(4) f : N → I is a scale; (recall: Ai := f −1(pred(i)));

(5) E ⊆ N × I satisfies (a, i)E(b, j) if and only if i = j and tpL(a/Ai ) =

tpL(b/Ai );

(6) for all [(a, i)], [(b, j)] ∈ (N × I )/E , [(ai )] ≺ f [(b, j)] if and only if i < j ,
tpL(a/Ai )= tpL(b/Ai ), and tpL(b/A j ) splits over every finite F ⊆ Ai ;

(7) Q ⊆ N and (Q,≤Q) is a countable model of DLO;

(8) H : N × I → Q satisfies: For all (a, i), (b, j),
(a) if (a, i)E(b, j) then H(a, i)= H(b, j); and
(b) if [(a, i)] ≺ f [(b, j)], then H(a, i) <Q H(b, j).

We verify that this sentence 9∗ works for Proposition 3.1.1.

Proof of Proposition 3.1.1. For (1)⇒ (2) assume N ∗
|H 9∗ and let N be the L-

reduct of N ∗. Then (I,≤) is an ω1-ordering and f : N → I is a scale, so |N | = ℵ1.
Moreover, as the ordering on (Q,≤) forbids a strictly increasing ω1 sequence, the
existence of the function H forbids T = ((N × I )/E,≺ f ) having an uncountable
≺ f -chain. Thus, by Lemma 3.1.4, every limit type in Sat(N ) is constrained.

The converse is more involved. Assume we are given N ∈ At of size ℵ1 with
every limit type in Sat(N ) constrained. Under this assumption, with the help of
Lemma 3.1.7 we will show that a model N ∗

|H9∗ can be found in some generic
extension V[G] of V by a c.c.c. forcing extension. Once we have that, it follows by
the absoluteness gleaned from Keisler’s model existence theorem for sentences of
Lω1,ω(Q) that a model of 9∗ exists in V, giving Proposition 3.1.1(1).

So, given N as in Proposition 3.1.1(2), choose arbitrary subsets I,Q ⊆ N of
cardinality ℵ1,ℵ0, respectively and choose orderings ≤I and ≤Q as required by 9∗.
Fix an arbitrary scale f : N → I and interpret E and ≺ f as required. Since N
has every limit type constrained, it follows from Lemma 3.1.4 that ≺ f has no
uncountable chains.

It only remains to find a function H : N × I → Q as requested by 9∗. For
this, we turn to forcing, and invoke the following general lemma,3 taking X to be
(N × I/E) and ≺ to be ≺ f .

3The statement of Lemma 3.1.7 is reminiscent of how one specializes Aronszajn trees by forcing,
and the ideas of the proof can be found in Section 2 of [Baumgartner 1970].
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Lemma 3.1.7. Suppose (X,≺) is any strict partial order satisfying

(1) |X | = ℵ1;

(2) for every a ∈ X , the induced suborder (pred(a),≺) is a countable linear order;
and

(3) (X,≺) has no uncountable chain.

Then there is a c.c.c. forcing (P,≤) such that in any generic V[G] there is a function
H : X → Q such that if a ≺ b, then H(a) <Q H(b).

Proof. The partial order (P,≤) is simply the set of all finite approximations of such
an H . That is, P is the set of all functions h : X0 → Q with X0 ⊆ X finite such that
for all a, b ∈ X0, if a ≺ b, then h(a)<Q h(b), ordered by inclusion, i.e., (♯) h ≤ h′ if
and only if h ⊆ h′. It is easily checked that this forcing will produce (in V[G]) a total
function H : X → Q as desired. The nontrivial part is showing that (P,≤) has the
c.c.c. For this, choose any uncountable set Y ={hα :α∈ω1}⊆P and assume, by way
of contradiction, that hα∪hβ ̸∈ P for distinct α, β ∈ω1. By passing to a subset of Y ,
we may assume |dom(hα)| = n for some fixed n ∈ω and we argue by contradiction.
If n = 1, i.e., dom(hα)= {aα}, then by passing to a further subset, there is a single
m∗

∈ Q such that hα(aα)= m∗ for every α. The only way we could have hα∪hβ ̸∈ P

would be if aα, aβ were distinct, but ≺-comparable. But then C = {aα : α ∈ ω1}

would be an uncountable chain in (X,≺), contradicting our assumption.
So, assume n> 1 and we have proved (c.c.c.) for all n′< n. To ease notation, enu-

merate the universe X with order typeω1. For each α, write dom(hα)= (aα1 , . . . , aαn )
in increasing order, subject to this enumeration. By the 1-system lemma, there is
an uncountable subset and a root r such that dom(hα)∩ dom(hβ)= r for all distinct
pairs α, β. If r ̸= ∅, we can apply our inductive hypothesis to the family of sets
{dom(hα)\r :α∈ω1}, so we may assume r =∅, i.e., the domains {dom(hα) :α∈ω1}

are pairwise disjoint. Again, passing to a subsequence, we may assume that with
respect to the global enumeration of X aαn < aβ1 for all α < β. Additionally, we
may assume there are {m1, . . . ,mn} ⊆ Q such that hα(aαi ) = mi for all α ∈ ω1

and i ∈ {1, . . . , n}.
Now fix α < β. In order for hα ∪ hβ to not be in P, there must be some

p(α, β), q(α, β) ∈ {1, . . . , n} such that aαp(α,β) and aβq(α,β) are ≺-comparable. As
a bookkeeping device, fix a uniform4 ultrafilter U on ω1.

Thus, for any α ∈ ω1, there is some Sα ∈ U , some p(α), q(α) ∈ {1, . . . , n}

such that, by (♯), for every β ∈ Sα, aαp(α) and aβq(α) are ≺-comparable. However,
since pred(aαp(α)) was assumed to be countable, there is S∗

α ⊆ Sα , S∗
α ∈ U such that

aαp(α) ≺ aβq(α) for all β ∈ S∗
α.

4That is, every Y ∈ U has cardinality ℵ1. Equivalently, U contains all of the cocountable sub-
sets of ω1.
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Similarly, there is some S ∈U and some p∗, q∗
∈{1, . . . , n} such that for all α∈ S

and for all β ∈ S∗
α we have aαp∗ ≺ aβq∗ . We obtain our contradiction by showing that

C = {aαp∗ : α ∈ S}

is an uncountable chain in (X,≺). Since U is uniform, C is uncountable. To get
comparability, choose any α, γ ∈ S. As S∗

α, S∗
γ ∈ U , there is β ∈ S∗

α ∩ S∗
γ . It follows

that aαp∗ ≺ aβq∗ and aγp∗ ≺ aβq∗ . From our assumptions on (X,≺), (pred(aβq∗),≺) is
a linear order, so aαp∗ and aγp∗ are ≺-comparable. □

3.2. Extendible and striated formulas. Throughout this section, we work with the
atomic models of a complete, first order theory T in a countable language that has
an uncountable atomic model. We expound model theoretic properties needed in
the forcing construction of Section 3.3.

Remark 3.2.1. In this section we work with complete formulas θ(w), usually with
a prescribed partition of the free variables. Regardless of the partition, for any
subsequence v ⊆ w, we use the notation θ↾v to denote the complete formula in the
variables v that is equivalent to ∃uθ(v, u), where u = (w \ v).

Definition 3.2.2. (1) A complete formula φ(x, a) is pseudoalgebraic5 if for
some/any countable M with a ∈ M and any N ⪶ M , φ(N , a)= φ(M, a).

(2) b ∈ pcl(a,M), written b ∈ pcl(a), if and only if b ∈ N for every N ⪯ M
with a ⊆ N .

(3) A complete formula θ(z; x) is extendible if there is a pair M ⪯ N of countable,
atomic models and b ⊆ M , a ⊆ N \ M such that N |H θ(b, a).

Note that an atomic class has an uncountable model if and only if it has a
non-pseudoalgebraic type.

The definition of an extendible formula depends on the partition of its free
variables. As we require extendible formulas to be complete, they are not preserved
under adjunction of dummy variables. If lg(x)= 1, then θ(z, x) being extendible
is equivalent to it being complete, with θ(z, x) not pseudoalgebraic. Much of the
utility of the notion is given by the following fact.

Fact 3.2.3. (1) If θ(z; x) is extendible, then for any countable, atomic M and any
b ∈ M lg(z) and a ∈ M lg(x) such that M |H θ(b, a), there is M0 ⪯ M such that
b ⊆ M0 and a ⊆ M \ M0.

(2) If θ(z; x) is extendible and z′
⊆ z and x′

⊆ x, then the restriction θ↾z′;x′ is
extendible as well.

(3) Any complete formula θ(z; x) is extendible if and only if θ↾z,xi is not pseudo-
algebraic for every xi ∈ x.

5The careful distinctions of pseudoalgebraicity “in a model” of [Baldwin et al. 2016] are avoided
because we have assumed there is an uncountable atomic model.
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Proof. (1) As θ(z; x) is extendible, choose countable atomic models M ′
⪯ N ′,

b′
⊆ M and a′

⊆ N ′
\ M ′ such that N ′

|H θ(b′, a′). As θ(z; x) is complete, there is
an isomorphism f : N ′

→ M with f (b′)= b and f (a′)= a. Then M0 := f (M ′)

is as desired.

(2) This follows easily from the proof of (1).

(3) Left to right follows easily from (2). We prove the converse by induction on lg(x).
For lg(x)= 1 this is immediate, so assume this holds when lg(x)= n. Choose a
complete θ(z; x, xn) such that lg(x)= n and θ↾z,xi is non-pseudoalgebraic for each
i ≤ n. Choose any countable, atomic N and b, a, an from N so that N |H θ(b, a, an).
By (1), it suffices to find some M0 ⪯ N with b ⊆ M0 and aan ⊆ N \ M0. To obtain
this, since ∃xnθ(z; x, xn) is extendible by (2), (1) implies there is M ⪯ N with
b ⊆ M and a ⊆ N \ M . Thus, if an ∈ N \ M , we can take M0 := M and we are done.
If not, then as ban ⊆ M we can apply (1) to M and the extendible ∃xθ(z; x, xn) to
get M0 ⪯ M with b ⊆ M0 and an ∈ M \ M0. □

Next, we consider the “transitive closure” of extendibility.

Definition 3.2.4. An n-striated formula is a complete formula θ( y0, . . . , yn−1)

whose free variables are partitioned into n pieces such that, for every i < n, letting
z = ( y0, . . . , yi ) and x = ( yi , . . . , yn−1), we have θ(z, x) extendible.

A striated formula is an n-striated formula for some n.
A realization of an n-striated formula θ( y0, . . . , yn−1) is an n-chain M0 ⪯ M1 ⪯

Mn−1 of countable, atomic models, together with tuples a0, . . . , an−1 with a0 ⊆ M0

and ai ⊆ Mi \ Mi−1 for every 0< i < n such that Mn−1 |H θ(a0, . . . , an−1).

Iterating Fact 3.2.3, we see that a partitioned complete formula θ( y0, . . . , yn−1)

is n-striated if and only if for some countable atomic M and some (a0, . . . , an−1)

from M with M |H θ(a0, . . . , an−1), there are M0 ⪯ M1 ⪯ · · · ⪯ Mn−2 ⪯ M with
a0 ⊆ M0, ai ⊆ Mi \ Mi−1 for 0< i < n − 2 and an−1 ∩ Mn−2 = ∅.

Using this characterization, if θ( y0, . . . , yn−1) is n-striated and we modify the
partition of θ by fusing together two adjacent tuples, then the resulting partition
yields an (n − 1)-striated formula. Going forward, we have the following amalga-
mation property for striated formulas.

Lemma 3.2.5. Suppose α(z, x1, . . . , xn) and β(z, y1, . . . , ym) are striated and α↾z
is equivalent to β↾z. Then there is a striatedψ(z, x1, . . . , xn, y1, . . . , ym) extending
α(z, x1, . . . , xn)∧β(z, y1, . . . , ym).

Proof. Choose an (n +1)-chain M0 ⪯ M1 ⪯ · · · ⪯ Mn and b, a1, . . . , an realizing α
(so b ⊆ M0 and ai ⊆ Mi \ Mi−1 for each i) and choose similarly an (m + 1)-chain
N0 ⪯ N1 ⪯ · · · ⪯ Nm and c, d1, . . . , dm realizing β. As α↾z is equivalent to β↾z,
there is an isomorphism f : N0 → Mn with f (c) = b. Choose Mn+m ⪰ Mn for
which there is an isomorphism f ∗

: Nm → Mn+m extending f . Now, for i ≤ m put
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Mn+i := f ∗(Ni ). (Note this is compatible with our previous placements.) Also, for
each 1 ≤ i ≤ m, put an+i := f ∗(di ). Finally, put ψ(z, x1, . . . , xn, y1, . . . , ym) :=

tp(b, a1, . . . , an+m). Then the (n + m + 1)-chain M0 ⪯ · · · ⪯ Mn+m , together with
b, a1, . . . , an+m witness that ψ is striated. □

3.3. The forcing. We continue our assumption that we have a fixed complete
theory T in a countable language with an uncountable atomic model. We fix
an ω1-like dense linear order (I,≤) with least element 0 and fix a continuous,
increasing (necessarily cofinal) sequence ⟨Jα :α ∈ω1⟩ of initial segments of I . Also,
fix a set X = {xt,m : t ∈ I,m ∈ ω} of distinct variable symbols and, for each α ∈ ω1,
let Xα = {xt,m : t ∈ Jα,m ∈ω}. Our forcing below will describe a complete diagram
in the variables X corresponding to an atomic model N of size ℵ1 and the countable
substructures Nα corresponding to the variables Xα will be a filtration of N .

Definition 3.3.1. The forcing (P,≤) consists of all conditions

p =
(
u p, ℓ(p), {kp,i : i < ℓ(p)}, θp( y0, . . . , yℓ(p)−1)

)
satisfying the following properties:

(1) u p is a finite subset {s0, . . . , sℓ(p)−1} ⊆ I . We always write the elements of u p

in ascending order.

(2) ℓ(p)= |u p|.

(3) If u p ̸= ∅, then 0 ∈ u p.

(4) Each kp,i ∈ ω and denotes lg( yi ) in θp.

(5) θp( y0, . . . , yℓ(p)−1) is an ℓ(p)-striated formula, where each yi =(xsi , j : j<kp,i )

is the initial segment of the si -th row of X of length kp,i .

The ordering on P is natural, i.e., p ≤P q if and only if u p ⊆ uq , the free variables
of θp are contained in the free variables of θq and θq ⊢ θp.

We remark that the effect of requiring 0∈u p whenever u p is nonempty is to ensure
that if θp entails “xαi , j ∈ pcl(∅)”, then αi = 0. That is, in the generic model we
construct, all pseudoalgebraic complete types of singletons will be contained in M0.

It is easily verified that (P,≤) is c.c.c. (See [Baldwin et al. 2016, Claim 4.3.7]
for a verification of this in an extremely similar setting.) As well, (P,≤) is highly
homogeneous. In particular, we record the following facts, with (1) following
from (I,≤) being dense and ω1-like.

Fact 3.3.2. (1) For all α < ω1 and for all finite u1, u2 ⊆ I \ Jα with |u1| = |u2|

and min(I \ Jα) (if it exists) ̸∈ u1 ∪ u2, then there is an order isomorphism
σ ∈ Aut(I,≤) with σ(u1)= u2 and σ ↾Jα = id.

(2) Any order isomorphism σ ∈Aut(I,≤) induces both a permutation σ ′
∈Sym(X)

given by σ ′(xt,m)= xσ(t),m and an automorphism σ ∗
∈ Aut(P,≤) given by

σ ∗(p)=
(
σ(u p), ℓp, {kp,i : i < ℓ(p)}, θp(σ

′( y0), . . . , σ
′( yℓ(p)−1))

)
.
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We record three additional density conditions about (P,≤) whose verifications
depend on the following fact.

Lemma 3.3.3. Suppose δ(x) is a non-pseudoalgebraic 1-type. Then for every
countable atomic N and every e ⊆ N , there are M ⪯ N and c ∈ N \ M such that
e ⊆ M and N |H δ(c).

Proof. From the definition of (non)-pseudoalgebraicity, fix countable atomic
M∗

⪯ N ∗ and c∗
∈ N ∗

\M∗ with N ∗
|H δ(c∗). Choose any isomorphism f : N → M∗

and put e∗
:= f (e). Now, choose an isomorphism g : N ∗

→ N with g(e∗)= e. Put
M := g(M∗) and c := g(c∗). Then e ⊆ M , c ∈ N \ M , and N |H δ(c). □

The forcing is surjective in the sense that for every condition p and every variable
there is an extension of p that includes the variable.

Lemma 3.3.4 (surjective). For every p ∈ P and xt,m ∈ X , there is q ∈ P, q ≥ p
with xq = xp ∪ {xt,m}.

Proof. We may assume that p ̸=0 and that xt,m ̸∈ xp. Choose M0 ⪯ M1 ⪯· · ·⪯ Mn−1

and e0 . . . en−1 realizing θp (so e0 ⊆ M0, ei ⊆ Mi \ Mi−1 for 0 < i < n and
Mn−1 |H θ(e0, . . . , en−1)).

We first handle the case where m = 0. In this case, it must be that t ̸∈ u p.
Choose j maximal such that s j < t . Apply Lemma 3.3.3 to M j and e0 . . . e j

to get M∗

j ⪯ M j and c ∈ M j \ M∗

j with M j |H δ(c) and e0 . . . , e j ⊆ M∗

j . Now
let f : M j → M∗

j be an isomorphism fixing e0 . . . , e j pointwise. Then the type
tp(e0, . . . , e j , c, e j+1, . . . , en−1) and the (n+1)-chain f (M0)⪯ . . . f (M j )⪯ M j ⪯

M j+1 ⪯ . . .Mn−1 describes an (n +1)-striated formula θ . Let q ∈ P be the element
with xq = xp ∪ {xt,0} with θq(xq) being the complete formula generating this type.

If m > 0, then we apply the previous case to ensure that xt,0 ∈ xp. Say t = s j ,
the j-th element of u p. But then, given any e0, . . . , en−1 and M0 ⪯ · · · ⪯ Mn−1

realizing θp, extend xp,t to include xt,m by making each “new” element of e j equal
to the element e j,0 ∈ M j . □

The notational issue in what follows is the placement of free variables. For p ∈ P,
there is an explicit ordering to the variables xp occurring in θ(xp), but when we
consider extensions φ(v, xp), we do not want to specify where the vi ’s fit in the
sequence. Recall Definition 3.3.1(5).

Lemma 3.3.5 (Henkin). Suppose p ∈ P and θp(xp) ⊢ ∃vφ(v, xp). Then there is
q ∈ P, q ≥ p for which the variables in (xq \ xp) consist of a realization of φ(v, xp)

(in some order). Moreover, if p ̸= 0, then can be chosen with uq = u p.

Proof. Arguing by induction, we may assume v = {v} is a singleton, and we
may further assume that φ(v, xp) describes a complete type. Let e0, . . . , en−1 and
M0 ⪯ · · · ⪯ Mn−1 witness the truth and striation of θp and choose any b ∈ Mn−1
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such that Mn−1 |H φ(b, ep). Let j ≤ n − 1 be least such that b ∈ M j . (Note that
if φ(v, xp) ⊢ ‘v ∈ pcl(∅)′, then we must have j = 0.) Let xq = xp ∪ {xs j ,kp, j }.
Then, letting e∗

j = e j b, we have a striation e0, . . . , e j−1, e∗

j , e j+1, . . . , en−1 using
the same n-chain of models M0 ⪯ . . .Mn−1. Put

θq(xq) := tp(e0, . . . , e j−1, e∗

j , e j+1, . . . , en−1).

Then q ∈ P and q ≥ p. □

Lemma 3.3.6. Suppose p, q, r ∈ P with p ≤ q , p ≤ r , xq ∩ xr = xp, and for some
t ∈ I , uq ⊆ I<t and (ur \ u p) ⊆ I>t . Suppose further that there are M ⪯ N and
a, b, c with b∩ c = a, b ⊆ M , and (c\ a)⊆ N \ M with N |H θp(a)∧ θq(b)∧ θr (c).
Then there is r∗

∈ P, r∗
≥ q , r∗

≥ r with xr∗ = xq ∪ xr and θr∗ = tp(b, (c \ a)).

Proof. Arguing by induction, we may additionally assume that ur = u p ∪ {s∗
}

for some single s∗ > t . That is, xq \ xp lies on a single level of X . Since q ∈ P,
there is a striation of b = b0, b1, . . . , bn−1 induced by the rows of xq . As b ⊆ M ,
we can find an n-chain M0 ⪯ Mn−1 of models with Mn−1 = M , b0 ⊆ M0 and
bi ⊆ Mi ⊆ Mi−1 for all 0< i < n. As (c\ a)⊆ N \ M and as (xq \ xp) consists of a
single row (and since s∗ > t) it follows that the (n + 1)-tuple b0, . . . , bn−1, (c \ a)
is realized in the (n + 1)-chain M0 ⪯ · · · ⪯ M ⪯ N . Choose xr∗ = xq ∪ xr and put
θr∗ = tp(b0, . . . , bn−1, (c \ a)). Then r∗

∈ P and both r∗
≥ q , r∗

≥ r hold. □

Armed with these lemmas, we can now prove the main fact about the forcing
(P,≤) and the generic model

∼
N of T . For general forcing notation see [Kunen

1980]. However, note that contrary to Kunen, we use the convention that p ⩽ q
means q is a stronger condition, carrying more information.

Notation 3.3.7. In what follows, when dealing with L-formulas, we will use the
letters u, v,w, possibly with decorations to denote free variables. By contrast,
tuples denoted by x, y, z denote finite tuples from X . Thus, for example, η(v, z)
has free variables v, and z is a fixed tuple from X .

We first establish that (P,≤) forces an uncountable atomic model of T . This
initial lemma only uses the surjective and Henkin density conditions (Lemmas 3.3.4
and 3.3.5). More details of this initial construction can be found in [Baldwin et al.
2016, §4.4].

Lemma 3.3.8. There are P-names
∼
N and

∼
Nα for each α ∈ ω1 such that

(P,≤) ⊩ “
∼
N ∈ At, |

∼
N| = ℵ1, and (

∼
Nα : α ∈ ω1) is a filtration of

∼
N”.

Proof. For every n-ary atomic L-formula φ(u), choose a P-name
∼
φ such that, for

every generic subset G ⊆ P (recalling Remark 3.2.1),

∼
φ[G] = {x ∈ Xn

: T + θp↾x ⊢ φ(x) for some p ∈ G}.
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In particular, for the atomic formula of equality, we have a P-name
∼
E representing

“equality” on X2. As each θp is consistent with T , it follows that (P,≤) forces
that

∼
E is an L-congruence. Choose a P-name

∼
N representing L-structure whose

universe is the quotient X/
∼
E and whose atomic formulas are interpreted as

∼
φ, and

choose P-names
∼
Nα for the substructure with universe Xα/∼

E.
Continuing, for every L-formula ψ(u) (with quantifiers) choose a P-name

∼
ψ

analogously to
∼
φ. Using the Henkin density conditions, a straightforward induction

on the quantifier complexity of ψ shows that for every x ∈ Xn and generic G ⊆ P,

V[G] |H “
∼
N |H ψ(x/

∼
E)” ⇐⇒ x ∈

∼
ψ[G]

and similarly for each
∼
Nα . From this, it follows that (P,≤) forces that each

∼
Nα ⪯

∼
N.

As each θp is a (consistent) complete formula with respect to T , (P,≤) also forces
that

∼
N is an atomic model of T . Finally, since each θp is a striated formula, we see

that (P,≤) also forces
∼
Nα+1 properly extends

∼
Nα, hence forces |

∼
N| = ℵ1. □

It remains to show that (P,≤) forces that
∼
N has every limit type constrained.

For this, we note a consequence of splitting inside an atomic model.

Remark 3.3.9. Suppose M ⪯ N are atomic, a ∈ M , b ∈ N , but tp(b/M) splits
over a. Then, letting θ(u) isolate the complete type of a and θ ′(w, u) isolate the
complete type of ba, there must be a complete formula η(v, u) ⊢ θ(u) and two
contradictory complete formulas δ1(w, v, u) and δ2(w, v, u), each extending the
(incomplete) formula η(v, u)∧ θ ′(w, u).

Proposition 3.3.10. (P,≤) forces every limit type in Sat(∼N) to be constrained.

Proof. To ease notation, in what follows write ψ in place of the more cumbersome
∼
ψ

throughout the argument. Call a function b : ω1 →
∼
N a limit sequence if, for all

α ≤ β, tp(b(α)/
∼
Nα)= tp(b(β)/

∼
Nα). Now, if (P,≤) does not force that every limit

type is constrained, then there is some p∗
∈ P and some P-name

∼
b and some club

C ⊆ ω1 such that

p∗ ⊩
∼
b is a limit sequence with tp(

∼
b(α)/

∼
Nα) unconstrained for every α ∈ C .

(Since (P,≤) is c.c.c. we can find such a club in V.)
For each α ∈ C , choose pα ∈ P, pα ≥ p∗ and x∗

α ∈ X such that

pα ⊩ ∼
b(α)= x∗

α.

We will eventually reach a contradiction by finding some q∗
≥ p∗ and some α < β

from C such that

q∗ ⊩ tp(x∗

α/Nα) ̸= tp(x∗

β/Nα)
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contradicting that p∗ ⊩
∼
b is a limit sequence. By a routine 1-system argument,

find a “root” p0 ∈ P, some γ ∗
∈ ω1, and a stationary set S ⊆ C satisfying

• p0 ≤ pα for all α ∈ S;

• u p0 ⊆ Jγ ∗ (first paragraph of Section 3.3); and

• for all α < β in S,
– xpα ∩ Xγ ∗ = xp0 ;
– max(u pα ) <min(u pβ \ u p0);
– lg(pα)= lg(pβ) and kpα = kpβ ; and
– the formulas θpα and θpβ have the same syntactic shape (one formula can

be obtained from the other by substituting the free variables).

Note that we do not require p0 ≥ p∗. As notation, we write z for xp0 and note that
z ⊆ Xγ ∗ . Now fix, for the remainder of the argument, some α <β from S. To obtain
our desired contradiction, we first concentrate on pα. Write θpα ( y, z) and note
that y is disjoint from Xγ ∗ . We apply Remark 3.3.9, noting that pα ⊩ tp(x∗

α/∼Nα)
splits over z. Choose a complete formula η(v, z) implying θp0(z) and contradictory
complete formulas δ1(x∗

α, v, z) and δ2(x∗
α, v, z), each extending η(v, z)∧θ∗

pα (x
∗
α, z),

where θ∗
pα is the restriction of the compete formula θpα ( y, z).

By Henkin, choose q0 ∈ P, q0 ≥ p0 with uq0 ⊆ Jα and θq0(z′, z) := η(z′, z).
Next, we use Lemma 3.3.6 twice. In both cases we start with p0 ≤ q0 and p0 ≤ pα .
Our first application gives r1

α ∈ P extending both q0 and pα with θr1
α
( y, z′, z) ⊢

δ1(x∗
α, z′, z). The second application gives r2

α ∈ P, also extending both q0 and pα
with θr2

α
( y, z′, z) ⊢ δ2(x∗

α, z′, z).
Next, we use the fact that the forcing (P,≤) is highly homogeneous. Due to the

similarity of pα and pβ found by the 1-system argument and described in the third
bullet point just above, Fact 3.3.2 gives an automorphism σ of (P,≤) sending pα
to pβ , fixing q0. Put r2

β := σ(r2
α). We now apply Lemma 3.2.5 to q0 ≤ r1

α and
q0 ≤ r2

β to get q∗
∈ P with q∗

≥ r1
α and q∗

≥ r2
β . However, this is impossible, as

q∗ ⊩ δ1(x∗

α, z′, z)∧ δ2(x∗

β, z′, z),

contradicting p∗ ⊩ tp(x∗
α/∼Nα) = tp(x∗

β/∼Nα) since δ1 and δ2 were chosen to be
contradictory. □

Proof of Theorem 2.3.2. Theorem 2.3.2 follows easily from Propositions 3.1.1
and 3.3.10 and Keisler’s model existence result for Lω1,ω(Q). In particular, in
some c.c.c. forcing extension V[G], by Proposition 3.3.10, there is an uncount-
able atomic model of T with every limit type constrained. Hence, by (2)⇒ (1)
of Proposition 3.1.1, there is a model of 9∗ in V[G]. By the absoluteness of
model existence from Keisler’s theorem, there is also a model of 9∗ in V. Hence,
by (1)⇒ (2) of Proposition 3.1.1, we obtain the existence of an atomic model of T
in V such that all limit types are constrained. □
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A New Kim’s Lemma

Alex Kruckman and Nicholas Ramsey

Kim’s Lemma is a key ingredient in the theory of forking independence in simple
theories. It asserts that if a formula divides, then it divides along every Morley
sequence in type of the parameters. Variants of Kim’s Lemma have formed
the core of the theories of independence in two orthogonal generalizations of
simplicity — namely, the classes of NTP2 and NSOP1 theories. We introduce
a new variant of Kim’s Lemma that simultaneously generalizes the NTP2 and
NSOP1 variants. We explore examples and nonexamples in which this lemma
holds, discuss implications with syntactic properties of theories, and ask several
questions.
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1. Introduction

The simple theories are a class of first-order theories which admit a structure theory
built upon a good notion of independence. Nonforking independence was introduced
by Shelah [1990] in the context of classification theory for stable theories, but was
later shown to be meaningful in a broad class of unstable theories. Shelah’s charac-
terization [1980] of simple theories in terms of their saturation spectra, together
with Hrushovski’s work [2002] on bounded PAC structures and structures of finite
S1-rank, and the work of Cherlin and Hrushovski [2003] on quasi-finite theories,
all made use of a circle of ideas concerning independence and amalgamation.
These ideas were subsequently distilled and consolidated into the core results of
simplicity theory by Kim [1998] and Kim and Pillay [1997], organized around
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the good behavior of nonforking independence in this setting. A key ingredient in
this theory is a result known as Kim’s Lemma, which establishes that, in a simple
theory, a formula ϕ(x; b) divides over a set A if and only if ϕ(x; b) divides along
every Morley sequence over A in tp(b/A). Kim’s lemma says that dividing is
always witnessed by “generic” indiscernible sequences and changes the existential
quantifier in the definition of dividing (“there is an A-indiscernible sequence such
that. . . ”) into a universal one (“for every Morley sequence over A. . . ”). Kim [2001]
later showed that Kim’s lemma characterizes the simple theories.

More recent developments have highlighted the centrality of Kim’s lemma to
the theory of nonforking independence and its generalizations. In particular, the
theories of independence in NTP2 and NSOP1 theories are based on two orthogonal
generalizations of Kim’s lemma.1 For NTP2 theories, the equivalence between
dividing and dividing along all generic sequences is preserved, but this equivalence
requires a stronger notion of genericity. More specifically, Chernikov and Kaplan
[2012] showed that, in an NTP2 theory, a formula ϕ(x; b) divides over a model M
if and only if ϕ(x; b) divides along Morley sequences for every strictly M-invariant
type extending tp(b/M). This variant of Kim’s lemma was shown to characterize
NTP2 theories in [Chernikov 2014].

On the other hand, in NSOP1 theories, the equivalence between dividing and
dividing along generic sequences no longer holds in general. Nonetheless, at the
generic scale, there is an analogue of Kim’s lemma: a formula ϕ(x; b) divides
along some generic sequence in tp(b/M) over a model M if and only if it divides
along every such sequence. More precisely, Kaplan and the second-named author
introduced Kim-dividing, which is defined so that a formula ϕ(x; b) Kim-divides
over a model M if ϕ(x; b) divides along some Morley sequence for a global M-
invariant type extending tp(b/M). It was shown in [Kaplan and Ramsey 2020] that,
in an NSOP1 theory, ϕ(x; b) Kim-divides over M if and only if it divides along
Morley sequences for every global M-invariant type extending tp(b/M) and that,
moreover, this variant of Kim’s lemma characterizes NSOP1 theories.

We introduce a “New Kim’s Lemma” that simultaneously generalizes the Kim’s
Lemmas for NTP2 and NSOP1 theories. The starting point is an observation about
the broom lemma of Chernikov and Kaplan [2012]. This lemma is the key step
in showing that, in NTP2 theories, types over models always have global strict
invariant extensions, which generate the generic sequences needed to get a Kim’s
lemma for NTP2 theories. However, an inspection of the proof shows that this
fact really bundles together two separate statements. The first is that in NTP2

1As a consequence of Mutchnik’s work [2022b], we now know that the properties NSOP1, NSOP2,
and NTP1 are equivalent at the level of theories. In this paper, we primarily refer to NSOP1 theories
(rather than to NSOP2 or NTP1 theories), since the notion of Kim-independence was originally
developed in [Kaplan and Ramsey 2020] under this hypothesis.
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theories, Kim-dividing and forking independence coincide over models. The second
is that, in any theory whatsoever, types over models extend to global Kim-strict
invariant types, where Kim-strictness relaxes the nonforking independence condition
required for strictness to one that only requires non-Kim-forking; see Theorem 2.26
below.

The statement of New Kim’s Lemma, then, suggests itself (see Definition 3.7
below): a formula ϕ(x; b) Kim-divides over a model M if and only if it divides
along Morley sequences for every Kim-strictly M-invariant type extending tp(b/M).
This variant of Kim’s Lemma coincides with the Chernikov–Kaplan Kim’s Lemma
in NTP2 theories (since there, Kim-forking agrees with forking over models, and
hence Kim-strict invariant types are strict invariant), and coincides with the Kaplan–
Ramsey Kim’s Lemma in NSOP1 theories (since there, Kim-independence is sym-
metric, so invariant types are automatically Kim-strict).

In Section 3, we survey the Kim’s lemmas of the past and introduce our New
Kim’s Lemma. We also observe that New Kim’s Lemma implies that Kim-forking
equals Kim-dividing at the level of formulas. In Section 4, we show that our variant
of Kim’s Lemma holds in some examples of interest, including parametrized dense
linear orders and the two-sorted theory of an infinite dimensional vector space over
a real closed field with a bilinear form which is alternating and nondegenerate
or symmetric and positive-definite. Our choice of examples is motivated by the
idea that structures obtained by “generically putting together” NTP2 and NSOP1

behavior should satisfy New Kim’s Lemma. We show, however, that New Kim’s
Lemma does not hold in the generic triangle-free graph, suggesting that it could
serve as a meaningful dividing line among theories.

In Section 5, we try to relate New Kim’s Lemma to syntactic properties of
formulas. Our approach here reverses the usual order of explanation in neostability
theory, which typically begins with a syntactic property (e.g., the tree property,
SOP1, TP2) and then tries to establish a structure theory for theories without
this property. In contrast, we are starting with a structural feature and trying to
find a way of characterizing it syntactically. We introduce a new combinatorial
configuration, which we provisionally call the bizarre tree property (BTP). The
class of NBTP theories (those without BTP) contains both NTP2 and NSOP1, and
all NBTP theories satisfy New Kim’s Lemma. However, we do not obtain an exact
characterization.

The antichain tree property (ATP), which was introduced in [Ahn and Kim
2024] and developed in [Ahn et al. 2023], is another combinatorial configuration
generalizing TP2 and SOP1. We observe that NBTP implies NATP. But it is not
clear whether there is an implication in either direction between NATP and New
Kim’s Lemma, or whether NBTP and NATP are equivalent. Figure 1 summarizes
the state of affairs.
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Figure 1. The current state of known implications.

While this paper was in preparation, two closely related preprints appeared:

• Kim and Lee [2023] establish a different variant of Kim’s Lemma for NATP
theories. Similarly to our work here, they do not prove that this Kim’s Lemma
characterizes NATP. In the context of NATP, they also study dividing along
coheir sequences which are Kim-strict in the sense of this paper.

• Hanson [2023] studies a number of variants of Kim’s Lemma which are related
to ours. In particular, he succeeds in characterizing the class of NCTP theories
by means of a variant of Kim’s Lemma. Here CTP is the comb tree property
(which was introduced by Mutchnik [2022b] under the name ω-DCTP2). The
class of NCTP theories contains the NBTP theories and its contained in the
NATP theories.

At the moment, the NATP theories are the class beyond NSOP1 and NTP2 with
the most developed syntactic theory; it would be very satisfying if these three
approaches coincide. We conclude in Section 6 with several questions on where
the theory might go from here.

2. Preliminaries

Throughout, T is a complete L-theory and M |H T is a monster model. As usual,
all tuples come from M, all sets are small subsets of M, and all models are small
elementary submodels of M.

When α is an ordinal, we view the set α<ω of all finite sequences from α as a
tree, with the tree partial order denoted by ⊴. The root of the tree is the empty
sequence ⟨ ⟩. For ρ ∈ αω and i <ω, ρ | i ∈ α<ω is the restriction of ρ to i . We write
η⌢ν for concatenation of sequences. We write η⊥ ν when η and ν are incomparable
in the tree order. An antichain is a set of pairwise incomparable elements.

2A. Tree properties. We will begin by recalling the definitions of a number of
tree properties and the known implications between them. The following three
tree properties were introduced by Shelah [1990] under different names as part
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of his analysis of forking in stable theories.2 He introduced the “tree property”
terminology in [Shelah 1980] and Kim [2001] subsequently dubbed the latter two
as TP1 and TP2.

Definition 2.1. Let ϕ(x; y) be a formula:

(1) We say ϕ(x; y) has the tree property (TP) if there is k <ω and a tree of tuples
(aη)η∈ω<ω satisfying the following conditions:

(a) For all ρ ∈ ωω, {ϕ(x; aρ | i ) : i < ω} is consistent.
(b) For all η ∈ ω<ω, {ϕ(x; aη⌢⟨ j⟩) : j < ω} is k-inconsistent.

(2) We say ϕ(x; y) has the tree property of the first kind (TP1) if there is a tree of
tuples (aη)η∈ω<ω satisfying the following conditions:

(a) For all ρ ∈ ωω, {ϕ(x; aρ | i ) : i < ω} is consistent.
(b) For all η, ν ∈ ω<ω, if η ⊥ ν, then {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

(3) We say ϕ(x; y) has the tree property of the second kind (TP2) if there is k <ω
and an array (ai, j )i, j<ω satisfying the following conditions:

(a) For all f : ω→ ω, {ϕ(x; ai, f (i)) : i < ω} is consistent.
(b) For all i < ω, {ϕ(x; ai, j ) : j < ω} is k-inconsistent.

(4) We say T is NTP (NTP1, NTP2) if no formula has TP (TP1, TP2, respectively)
modulo T . An NTP theory is also called a simple theory.

The next property was introduced by Džamonja and Shelah [2004].

Definition 2.2. [Dz̆amonja and Shelah 2004, Definition 2.2] We say ϕ(x; y) has
the 1-strong order property (SOP1) if there is a tree of tuples (aη)η∈2<ω satisfying
the following conditions:

• For all ρ ∈ 2ω, the set of formulas {ϕ(x; aρ | i ) : i < ω} is consistent.

• For all ν, η ∈ 2<ω, if ν⌢⟨0⟩ ⊴ η then {ϕ(x; aη), ϕ(x; aν⌢⟨1⟩)} is inconsistent.

T is NSOP1 if no formula has SOP1 modulo T .

Our last property was introduced much more recently by Ahn and Kim [2024].

Definition 2.3. [Ahn and Kim 2024, Definition 4.1] We say ϕ(x; y) has the an-
tichain tree property (ATP) if there is a tree of tuples (aη)η∈2<ω satisfying the
following conditions:

(1) If X ⊆ 2<ω is an antichain, then {ϕ(x; aη) : η ∈ X} is consistent.

(2) If η ⊴ ν ∈ 2<ω, then {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

T is NATP if no formula has ATP modulo T .

2TP, TP1, and TP2 were first introduced under the rather cumbersome labels κcdt(T ) = ∞,
κsct(T )= ∞, and κinp(T )= ∞, respectively.
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Figure 2. A summary of known implications.

Fact 2.4. Here is a summary of the known implications, which are depicted in
Figure 2:

(1) The simple theories are the intersection of the NTP1 and NTP2 theories, i.e.,
T is simple if no formula has TP1 or TP2 modulo T [Shelah 1990, Theo-
rem III.7.11].

(2) A theory T is NSOP1 if and only if it is NTP1 [Mutchnik 2022b, Theorem 1.6].3

(3) The NATP theories (properly) contain both the NTP1 and NTP2 theories [Ahn
and Kim 2024, Propositions 4.4 and 4.6].

2B. Forking and dividing. In this section, we introduce a number of refinements
of Shelah’s notions of forking and dividing, based on the idea that, when a formula
divides, it can be useful to study which indiscernible sequences it divides along.

Definition 2.5. Suppose ϕ(x; b) is a formula, C is a set, and I = (bi )i<ω is a C-
indiscernible sequence in tp(b/C) (meaning that bi realizes tp(b/C) for all i < ω).
We say that ϕ divides along I (over C) if {ϕ(x; bi ) : i < ω} is inconsistent.

Definition 2.6. Suppose ϕ(x; b) is a formula and C is a set:

(1) We say ϕ(x; b) divides over C if it divides along some C-indiscernible sequence
in tp(b/C).

(2) We say ϕ(x; b) forks over C if there are formulas (ψi (x; ci ))i<n with n < ω
such that ϕ(x; b) |H

∨
i<n ψi (x; ci ) and each ψi (x; ci ) divides over C .

(3) The notation a |⌣
d
C

b means that tp(a/Cb) contains no formula that divides
over C and, similarly, a |⌣

f
A

b means that tp(a/Cb) contains no formula that
forks over A.

3The theorem as stated in [Mutchnik 2022b] says that every NSOP2 theory is NSOP1. Prior to the
appearance of this result, it was well-known that NSOP1 implies NSOP2 and NSOP2 is equivalent to
NTP1, see, e.g., [Kim and Kim 2011].
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We will be primarily concerned with extremely “generic” sequences, i.e., Morley
sequences for global invariant types.

Definition 2.7. A global partial type π(x) is a consistent set of formulas over M.
A global type is a global partial type which is complete. For a set C , we say the
global partial type π(x) is C-invariant if, for all formulas ϕ(x; y), if b ≡C b′, then
ϕ(x; b) ∈ π if and only if ϕ(x; b′) ∈ π .

An important class of examples of global C-invariant types are the types that
are finitely satisfiable in C . In any theory T , if M |H T , every type over M has a
global extension which is finitely satisfiable in M (and therefore M-invariant). See
Remark 2.9 below.

Over a general set C , there may be no global C-invariant types whatsoever. For
this reason, when we want to work with invariant types (such as in the definition of
Kim-dividing below), we usually work over a model.

Definition 2.8. Suppose M |H T :

(1) We write a |⌣
i
M

b if tp(a/Mb) extends to a global M-invariant type.

(2) We write a |⌣
u
M

b if tp(a/Mb) extends to a global type finitely satisfiable
in M .

Remark 2.9. The u superscript comes from “ultrafilter”, since global M-finitely
satisfiable types all arise from the following construction: if p(x) ∈ Sx(M), then
{ϕ(M) : ϕ(x) ∈ p} ⊆ P(M x) generates a filter on M x . If D is an ultrafilter on M x

extending this filter, then

Av(D,M)= {ϕ(x) ∈ L(M) : ϕ(M) ∈ D}

is a global type extending p which is finitely satisfiable in M . We write Av(D, B)
for Av(D,M) restricted to parameters coming from B.

Definition 2.10. If q is a global C-invariant type, then a Morley sequence over C
for q is a sequence (ai )i<ω such that ai |H q|Ca<i for all i < ω.

Fact 2.11. By invariance, every Morley sequence over C for q is C-indiscernible.
Furthermore, for a fixed global C-invariant type q extending tp(b/C), if ϕ(x; b)
divides along some Morley sequence over C for q, then it divides along every
Morley sequence over C for q.

Definition 2.12. Suppose ϕ(x; b) is a formula and M is a model:

(1) We say ϕ(x; b) Kim-divides over M if it divides along a Morley sequence over
M for some global M-invariant type extending tp(b/M).

(2) We say ϕ(x; b) Kim-forks over M if there are formulas (ψi (x; ci ))i<n with
n < ω such that ϕ(x; b) |H

∨
i<n ψi (x; ci ) and each ψi (x; ci ) Kim-divides

over M .
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(3) The notation a |⌣
K d
M

b means that tp(a/Mb) contains no formula that Kim-
divides over M and, similarly, a |⌣

K
M

b means that tp(a/Mb) contains no
formula that Kim-forks over M .

Kim-independence was introduced by Kaplan and Ramsey [2020], in the context
of NSOP1 theories. They showed that if T is NSOP1, then Kim-forking is equivalent
to Kim-dividing, and |⌣

K satisfies many of the good properties of |⌣
f in simple

theories. The definition of Kim-dividing was inspired by an earlier suggestion of
Kim [2009] for studying independence in NTP1 theories.

Remark 2.13. In a general theory, Kim-dividing as we have defined it is not always
preserved under adding dummy parameters. That is, suppose ϕ(x; y) is a formula,
and write ϕ̂(x; y, z) for the same formula consider in a larger variable context by
appending unused variables z. It is possible that there are tuples b and c such
that ϕ(x; b) Kim-divides over M but ϕ̂(x; b, c) does not Kim-divide over M . The
reason is that |⌣

i does not satisfy left-extension in general. More explicitly, if q(y)
is a global M-invariant type extending tp(b/M) (and witnessing the Kim-dividing
of ϕ(x; b)), there may be no global M-invariant type r(y, z) extending both q(y)
and tp(bc/M). Hanson [2023, Appendix C] has produced an explicit example of
this behavior.

As a result, we have to be careful about parameters when working with Kim-
dividing in arbitrary theories. For example, if ϕ(x; b) Kim-forks, we cannot assume
in general that the witnessing Kim-dividing formulas (ψi (x; ci ))i<n have the same
tuple of parameters. This will cause us some trouble in Section 2C below.

All this suggests to us that our definition of Kim-dividing may not be the “right”
one outside of the context of NSOP1 theories. If T is NSOP1, then a formula
Kim-divides over a model M if and only if it Kim-divides along a coheir sequence
over M (a Morley sequence for a global type finitely satisfiable in M). And if
Kim-dividing were defined as dividing along a coheir sequence, then the issue
with dummy parameters would not arise, since |⌣

u always satisfies left-extension.
However, focusing only on coheir sequences seems potentially too restrictive, and
the definition of Kim-dividing in terms of invariant Morley sequences is well-
established, so we retain it for this paper.

The diagram below depicts the implications between the notions of independence
defined in this section:

a |⌣
u
M

b // a |⌣
i
M

b // a |⌣
f
M

b //

��

a |⌣
K
M

b

��

a |⌣
d
M

b // a |⌣
K d
M

b
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Fact 2.14 [Chernikov and Kaplan 2012; Adler 2014]. In NTP2 theories, a formula
ϕ(x; b) divides over a model M if and only if it Kim-divides over M . Further,
forking and dividing coincide over models. So when T is NTP2, |⌣

f
M

= |⌣
d
M

=

|⌣
K
M

= |⌣
K d
M

.

It is a fact that simple theories are characterized by symmetry of |⌣
f [Kim

2001, Theorem 2.4]. So in a simple theory, if p is a global M-invariant type
and a realizes p|M B , then B |⌣

f
M

a (since a |⌣
i
M

B implies a |⌣
f
M

B and |⌣
f is

symmetric). Outside of the simple context, it can be useful to consider invariant
types which always satisfy this instance of symmetry. These “strict” invariant types
play an important role in Chernikov and Kaplan’s analysis [2012] of forking in
NTP2 theories.

Similarly, NSOP1 theories are characterized by symmetry of |⌣
K , so it makes

sense in our context to consider “Kim-strict” invariant types, which are the analogue
of strict invariant types for Kim-forking.

Definition 2.15. Suppose p ∈ S(M) is a global M-invariant type:

(1) We say p is a strict invariant type over M when, for any set B, if a |H p|M B ,
then B |⌣

f
M

a.

(2) We say p is a Kim-strict invariant type over M when, for any set B, if a |H p|M B ,
then B |⌣

K
M

a.

(3) A formula ϕ(x; b) strictly divides over M if it divides along a Morley sequence
for some global strictly M-invariant type extending tp(b/M).

(4) A formula ϕ(x; b) Kim-strictly divides over M if it divides along a Morley
sequence for some global Kim-strictly M-invariant type extending tp(b/M).

Finally, for each of the variants of dividing defined above, we can also con-
sider changing the quantifier from dividing along some to dividing along every
indiscernible sequence of the appropriate kind.

Definition 2.16. We say a formula ϕ(x; b) universally Kim-divides over M if
it divides along Morley sequences for every global M-invariant type extending
tp(b/M).4 Similarly, we say ϕ(x; b) universally strictly divides over M if it divides
along Morley sequences for every global strict M-invariant type extending tp(b/M),
and we say ϕ(x; b) universally Kim-strictly divides over M if it divides along
Morley sequences for every global Kim-strict M-invariant type extending tp(b/M).

Remark 2.17. For completeness, we could say a formula ϕ(x; b) universally
divides over C if it divides along every C-indiscernible sequence in tp(b/C). Note,

4Universal Kim-dividing is called “strong Kim-dividing” in [Kaplan et al. 2019] and “Conant-
dividing” in [Mutchnik 2022a].
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however, that since the constant sequence with bi = b for all i is C-indiscernible, a
universally dividing formula is inconsistent.

2C. The broom lemma. It is clear that universal Kim-dividing implies Kim-
dividing, since every type over a model M extends to a global M-invariant type
(see Remark 2.9). However, it is not so clear that universal (Kim-)strict dividing
implies (Kim-)strict dividing.

Chernikov and Kaplan [2012] proved that in an NTP2 theory, every type over a
model M extends to a global strictly M-invariant type, using a device they called
the broom lemma. It turns out that their argument applies to all theories, if we
replace strict invariance with Kim-strict invariance.

A key step in the Chernikov–Kaplan argument is that forking implies quasi-
dividing in the sense of the following definition.

Definition 2.18. A formula ϕ(x; b) quasi-divides over M if the conjunction of
finitely many conjugates of ϕ(x; b) over M is inconsistent. That is, if there exist
(bi )i<k with k <ω and bi ≡M b for all i < k such that

∧
i<k ϕ(x; bi ) is inconsistent.

Remark 2.19. We could say that ϕ(x; b) quasi-forks over M if there are formulas
(ψi (x; ci ))i<n with n < ω such that ϕ(x; b) |H

∨
i<n ψi (x; ci ) and each ψi (x; ci )

quasi-divides over M . It is worth noting that a |⌣
i
M

b if and only if tp(a/Mb)
contains no formula which quasi-forks. But we will not make use of this fact.

The original broom lemma argument from [Chernikov and Kaplan 2012] does
not appear to generalize directly to our context. But Adler [2014] used a variant of
the broom lemma, which he called the vacuum cleaner lemma, to give a simplified
proof of some of the Chernikov–Kaplan results on NTP2 theories. Adler’s proof
[2014, Lemma 3] goes through verbatim to prove the following result, in the context
of an arbitrary theory T .

Lemma 2.20 (vacuum cleaner for Kim-dividing). Let π(x) be an M-invariant
partial type and suppose

π(x) |H ψ(x; b)∨
∨
i<n

ϕi (x; c),

where b |⌣
i
M

c and each ϕi (x; c) Kim-divides over M. Then π(x) |H ψ(x; b).5

Corollary 2.21. Suppose θ(x; b) |H
∨

i<n ϕi (x; c), where each ϕi (x; c)Kim-divides
over M. Then θ(x; b) quasi-divides over M.

Proof. Let π(x) = {θ(x; b′) : b′
≡M b} and let ψ be ⊥. By Lemma 2.20, π(x) is

inconsistent, so, by compactness, θ(x; b) quasi-divides. □

5A similar modified broom lemma played a key role in Mutchnik’s proof [2022b] of the equivalence
of NSOP1 and NSOP2.
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Corollary 2.21 seems to say that Kim-forking formulas quasi-divide. But, as noted
in Remark 2.13 above, we cannot assume in general that in the finite disjunction∨

i<n ϕi (x; ci ) witnessing Kim-forking, all of the Kim-dividing formulas have the
same tuple of parameters c. Unfortunately, this assumption seems crucial in Adler’s
proof of the vacuum cleaner lemma. As in Remark 2.13, this would not be an issue
if we defined Kim-dividing in terms of dividing along coheir sequences.

Nevertheless, it is true in general that Kim-forking formulas quasi-divide. We
present an alternative proof, based on an idea due to Hanson.

Lemma 2.22. Let ϕ(x; b) be a formula. Suppose that the conjunction of finitely
many conjugates of ϕ(x; b) over M entails a formula which quasi-divides over M.
Then ϕ(x; b) quasi-divides over M.

Proof. By hypothesis, there exist (bi )i<k with bi ≡M b for all i < k such that∧
i<k ϕ(x; bi ) |H ψ(x; c), and ψ(x; c) quasi-divides over M . Then there exist

(c j ) j<n with c j ≡M c for all j < n such that
∧

j<n ψ(x; c j ) is inconsistent.
For each j < n, pick (bi, j )i<k such that b0, j · · · b(k−1), j c j ≡M b0 · · · bk−1c. Then∧

j<n

∧
i<k

ϕ(x; bi, j ) |H

∧
j<n

ψ(x; c j ).

For all i < k and j < n, bi, j ≡M bi ≡M b, so this is a finite conjunction of conjugates
of ϕ(x; b) over M which is inconsistent. □

Lemma 2.23. Suppose ϕ(x; b) Kim-divides over M. Then for any (bi )i<ℓ such that
bi ≡M b for all i < ℓ,

∨
i<ℓ ϕ(x; bi ) quasi-divides over M.

Proof. Write 8(x; b) for the formula
∨

i<ℓ ϕ(x; bi ). Our goal is to show that
8(x; b) quasi-divides. Let q(y) be a global M-invariant type extending tp(b/M)
and witnessing that ϕ(x; b) Kim-divides over M . Let k be such that, if (b′

i )i<ω is a
Morley sequence for q over M , {ϕ(x; b′

i ) : i < k} is inconsistent.
Write ℓ≤m

∗
for the set of functions η : n → ℓ with 0 < n ≤ m, that is, ℓ≤m

∗
=

ℓ≤m
\ {⟨ ⟩}. We will prove by induction that for all m ≤ k, we can find (bη)η∈ℓ≤m

∗

such that:

(1) For each ρ ∈ ℓm , (bρ, bρ|m−1, . . . , bρ|1) begins a Morley sequence in q over M .

(2) For each η ∈ ℓ<m , writing b′
η for the tuple (bη⌢⟨i⟩)i<ℓ, we have b′

η ≡M b.

In the base case, when m = 0, ℓ≤m
∗

is empty, and the conditions are satisfied
vacuously.

For the inductive step, suppose we are given F0 = (bη)η∈ℓ≤m
∗

satisfying the
conditions, with m < k. Let b′′

0 realize q|M F0 . By condition (1), we now have that
for each ρ ∈ ℓm , (bρ, bρ|m−1, . . . , bρ|1, b′′

0) begins a Morley sequence in q over M .
Since b′′

0 ≡M b0, we can pick (b′′

i )0<i<ℓ so that (b′′

i )i<ℓ ≡M b. Now, for each
0< i < ℓ, pick Fi so that Fi b′′

i ≡M F0b′′

0 . Reindex so that we have a forest indexed
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by ℓ≤(m+1)
∗ , with (b′′

i )i<ℓ as the “bottom layer” b′

⟨ ⟩
. This completes the inductive

construction.
Now we have (bη)η∈ℓ≤k

∗
satisfying (1) and (2). Observe that∧

η∈ℓ<k

∨
i<ℓ

ϕ(x; bη⌢⟨i⟩) |H

∨
ρ∈ℓk

∧
1≤i≤k

ϕ(x; bρ|i ).

By (1), for each ρ ∈ ℓk ,
∧

1≤i≤k ϕ(x; bρ|i ) is inconsistent. Thus the left-hand side,
which is

∧
η∈ℓ<k 8(x; b′

η), is inconsistent. By (2), this shows that 8(x; b) quasi-
divides over M . □

Lemma 2.24. Suppose (ϕi (x; bi ))i<n are formulas, each of which Kim-divides over
M. For each i < n, let θi (x; ci ) be a disjunction of finitely many conjugates of
ϕi (x; bi ). Then

∨
i<n θi (x; ci ) quasi-divides over M.

Proof. By induction on n. When n = 0, the disjunction is ⊥, which quasi-divides
over M . For the inductive step, we consider

∨
i<n+1 θi (x; ci ). Now θn(x; cn) is a

disjunction of finitely many conjugates of ϕn(x; bn). By Lemma 2.23, θn(x; cn)

quasi-divides over M , so there are (cnj ) j<k with cnj ≡M cn for all j < k such that∧
j<k θn(x; cnj ) is inconsistent.
For each j < k, pick (ci j )i<n such that c0 j · · · cnj ≡M c0 · · · cn . Consider the

conjunction ∧
j<k

∨
i<n+1

θi (x; ci j ).

Whenever this formula is true, there must be some j < k such that some disjunct
θi (x; ci j ) with i ̸= n is true, since

∧
j<k θn(x; cnj ) is inconsistent. Thus∧

j<k

∨
i<n+1

θi (x; ci j ) |H

∨
i<n

∨
j<k

θi (x; ci j ).

Since each formula
∨

j<k θi (x; ci j ) is a disjunction of finitely many conjugates of
ϕi (x; bi ), by induction

∨
i<n

∨
j<k θi (x; ci j ) quasi-divides over M . By Lemma 2.22,∨

i<n+1 θi (x; ci j ) quasi-divides over M . □

Corollary 2.25. Every formula which Kim-forks over M quasi-divides over M.

Proof. Suppose ϕ(x; b) Kim-forks over M . Then ϕ(x; b) |H
∨

i<n ψi (x; ci ) such
that each ψi (x; ci ) Kim-divides over M . By Lemma 2.24 (taking each θi to be
ψi (x; ci )),

∨
i<n ψ(x; ci ) quasi-divides over M , and hence so does ϕ(x; b) by

Lemma 2.22. □

Theorem 2.26. Every type over M |H T has a Kim-strict M-invariant global
extension.
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Proof. Given p(x)= tp(a/M), consider the following collection of formulas:

p(x)∪ {ψ(x; c)↔ ψ(x; c′) : c ≡M c′
} ∪ {¬ϕ(x; b) : ϕ(a; y) Kim-forks over M}.

We must show that this is a consistent partial type. Suppose not; then, by compact-
ness,

p(x)∪ {ψ(x; c)↔ ψ(x; c′) : c ≡M c′
} |H ϕ(x; b),

for some formula ϕ(x; y) such that ϕ(a; y) Kim-forks over M .
By Corollary 2.25, there are (ai )i<m such that ai ≡M a for all i < m and

{ϕ(ai , y) : i <m} is inconsistent. Let r(x0, . . . , xm−1) be a global M-invariant type
extending tp(a0, . . . , am−1/M), and for j < m, let r(x j ) be the restriction of r to
formulas with free variables from x j . Then each r(x j ) is a global M-invariant type
extending p(x j ), so r(x j ) |H ϕ(x j , b). Thus,

r(x0, . . . , xm−1) |H

∧
j<m

ϕ(x j ; b),

and therefore ∃y
∧

j<m ϕ(x j , y) ∈ r . This contradicts the fact that r extends
tp(a0, . . . , am−1/M). □

Corollary 2.27. If ϕ(x; b) universally Kim-strictly divides over M , then it Kim-
strictly divides over M.

Proof. By Theorem 2.26, tp(b/M) has a Kim-strict M-invariant global extension
q(y). Since ϕ(x; b) universally Kim-strictly divides over M , it divides along Morley
sequences for q . Thus, it Kim-strictly divides over M . □

Note that the only properties of Kim-forking used in the proof of Theorem 2.26
are (a) that the Kim-forking formulas form an ideal (i.e., they are closed under finite
disjunctions), and (b) that every Kim-forking formula quasi-divides. In unpublished
work, Hanson has shown that there is a largest M-invariant ideal which contains only
quasi-dividing formulas, called the “fracturing” ideal. The proof of Theorem 2.26
works just as well to show that tp(a/M) extends to a global M-invariant extension
containing no formula ϕ(x; b) such that ϕ(a; y) fractures.

Remark 2.28. Chernikov and Kaplan [2012, Subsection 5.1] present an example,
due to Martin Ziegler, of a theory T in which there is a model M |H T and a type
over M with no global extension that is strict invariant over M . This shows that,
in general, Theorem 2.26 cannot be improved to establish the existence of global
strict invariant types over models in arbitrary theories.

We conclude this section with a diagram showing the implications between the
various notions of dividing (over models) introduced in Section 2B. All implications
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hold in an arbitrary theory, except for the implication from universally strictly
divides to strictly divides, which requires NTP2:

divides universally divides

��

Kim-divides

OO

universally Kim-divides

��

Kim-strictly divides

OO

universally Kim-strictly dividesoo

��

strictly divides

OO

universally strictly divides(NTP2)oo

3. A diversity of Kim’s lemmas

In this section, we survey the characterizations of simplicity, NSOP1, and NTP2

by Kim’s Lemmas, and we introduce our new Kim’s Lemma. We begin with the
original Kim’s Lemma in the context of simple theories.

Theorem 3.1 [Kim 1998, Proposition 2.1; 2001, Theorem 2.4]. The following are
equivalent:

(1) T is simple.

(2) For all sets C , if a formula ϕ(x; b) divides over C , then it divides along every
|⌣

f -Morley sequence over C.

In this paper, we are primarily interested in Morley sequences for global invariant
types over models (rather than |⌣

f -Morley sequences over arbitrary sets), so we
are led to consider the following variant of (2):

(3) For all models M , if a formula ϕ(x; b) divides over M , then it universally
Kim-divides over M .

Note that (3) is a weakening of (2), since it restricts to the special case of models,
and since every Morley sequence for a global M-invariant type is a |⌣

f -Morley
sequence over M . But (3) is still strong enough to characterize simplicity.

The equivalence of (1) and (3) has not (to our knowledge) appeared explicitly
in the literature, but it does follow directly from facts in the literature. We have
already observed that (1) implies (2) and (2) implies (3). Conversely, (3) implies,
in particular, that Kim-dividing implies universal Kim-dividing, so T is NSOP1 (by
the Kim’s Lemma for NSOP1 theories, Theorem 3.3 below). Thus T is an NSOP1

theory in which dividing and Kim-dividing coincide over models, so T is simple
by [Kaplan and Ramsey 2020, Proposition 8.4].
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For the reader’s convenience, and to give an indication of the typical flavor of
arguments relating variants of Kim’s Lemma to combinatorial configurations like
the tree property, we will also give a self-contained proof of the equivalence of (1)
and (3).

Proof. (1)=⇒(3). Suppose (3) fails, so there is a model M |H T , a formula ϕ(x; b)
that divides over M , and a global M-invariant type q ⊇ tp(b/M) such that ϕ(x; b)
does not divide along Morley sequences over M for q. Let (bi )i<ω be an M-
indiscernible sequence in tp(b/M) such that {ϕ(x; bi ) : i < ω} is inconsistent (and
hence k-inconsistent for some k). By induction, we will build for each n < ω, a
tree (cη)η∈ω≤n satisfying the following:

• For all η ∈ ω<n , (cη⌢⟨i⟩)i<ω ≡M (bi )i<ω.

• For all ν ∈ ωn , (cν, cν | (n−1), . . . , cν | 0) begins a Morley sequence in q over M .

For n = 0, we define c⟨ ⟩ = b. The conditions are trivially satisfied.
For the inductive step, we are given a tree (cη,0)η∈ω≤n . Since c⟨ ⟩,0 |H q|M , we

have c⟨ ⟩,0 ≡M b, and there is a sequence (c⟨ ⟩,i )i<ω beginning with c⟨ ⟩,0 such that
(c⟨ ⟩,i )i<ω≡M (bi )i<ω. For each i , c⟨ ⟩,i ≡M c⟨ ⟩,0, so we can choose a tree (cη,i )η∈ω≤n

with root c⟨ ⟩,i such that (cη,0)η∈ω≤n ≡M (cη,i )η∈ω≤n . Let c⟨ ⟩ be a realization of
q|M{cη,i :η∈ω≤n,i<ω}. Then we reindex to define a tree (cη)η∈ω≤n+1 by setting c⟨i⟩⌢η =

cη,i for all i < ω and η ∈ ω≤n .
Note that, for each n, the tree (cη)η∈ω≤n that we constructed has the following

properties. First, for each η ∈ ω<n , {ϕ(x; cη⌢⟨i⟩) : i < ω} is k-inconsistent, by the
first bullet point above. Secondly, for all ν ∈ ωn , {ϕ(x; cν | ℓ) : ℓ≤ n} is consistent,
by the second bullet point and our assumption on q . By compactness, ϕ(x; y) has
TP, and T is not simple.

(3)=⇒(1) Suppose T has TP witnessed by ϕ(x; y), k < ω, and (aη)η∈ω<ω . Fix a
Skolemization T Sk of T . The same data shows that ϕ(x; y) has TP modulo T Sk.

By compactness, we can obtain a tree (aη)η∈κ<ω , where κ > 2|T |, and which
satisfies the obvious extensions of the defining conditions of the tree property.

We build an array (bi, j )i, j<ω and ρ ∈ κω with the following properties (in T Sk):

• bi,0 = aρ | (i+1) for all i < ω (and therefore {ϕ(x; bi,0) : i < ω} is consistent).

• For all i < ω, {ϕ(x; bi, j ) : j < ω} is k-inconsistent.

• For all i < ω, (bi, j ) j<ω is indiscernible over (bℓ,0)ℓ<i .

We proceed by recursion on i . Given ρ | n and (bi, j )i<n, j<ω, let η = ρ | n,
and consider the sequence (aη⌢⟨α⟩)α<κ . By the conditions on κ , we can find a
subsequence I = (aη⌢⟨α j ⟩) j<ω such that each aη⌢⟨α j ⟩ satisfies the same complete
type p(y) over (bi,0)i<n . Let (bn, j ) j<ω be a sequence which is indiscernible and
locally based on I over (bi,0)i<n (i.e., realizes the Ehrenfeucht–Mostowski type
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of I over (bi,0)i<n). It follows that each bn, j satisfies p(y), so we can assume
that bn,0 = aη⌢⟨α0⟩ and let ρ(n) = α0. It also follows that {ϕ(x; bn, j ) : j < ω} is
k-inconsistent. This completes the construction.

For each i <ω, let bi = (bi, j ) j<ω, and let J = (bi )i<ω. Let J ′
= (b′

i )i<ω+ω be a
sequence which is indiscernible and locally based on J (over ∅). Writing each b′

i
as (b′

i, j ) j<ω, we retain consistency of {ϕ(x; b′

i,0) : i < ω+ω}, k-inconsistency of
{ϕ(x; b′

i, j ) : j <ω} for all i <ω+ω, and indiscernibility of (b′

i, j ) j<ω over (b′

ℓ,0)ℓ<i

for all i < ω+ω.
Let M be the Skolem hull of (b′

i,0)i<ω. By indiscernibility, tp(b′

ω,0/M(b′

i,0)i>ω) is
finitely satisfiable in M and therefore extends to a global M-finitely satisfiable (and
therefore M-invariant) type q . Moreover, by indiscernibility, b′

ω+i,0 |H q|M(b′

n,0)n>ω+i

for all i , which shows that for all n, (b′

ω+n,0, . . . , b′

ω,0) begins a Morley sequence
for q over M . By construction, {ϕ(x; b′

ω+i,0) : i < ω} is consistent, so ϕ(x; b′

ω,0)

does not divide along Morley sequences for q over M . However, ϕ(x; b′

ω,0) does
divide along the M-indiscernible sequence b′

ω.
Taking the reduct back to T , the restriction q|L of q to L-formulas is still finitely

satisfiable in M , Morley sequences in q are also Morley sequences in q|L , and
the M-indiscernible sequence b′

ω remains M-indiscernible in the reduct. Thus
ϕ(x; b′

ω,0) divides but does not universally Kim-divide with respect to T , and (3)
fails. □

Example 3.2. Let TE be the theory of an equivalence relation E with infinitely
many classes, each of which is infinite. TE is a simple theory (in fact, it is ω-stable).
Let M |H TE , and let b be an element of M in an equivalence class which is not
represented in M . There are three types of M-indiscernible sequence (bi )i<ω in
tp(b/M): (a) constant sequences, in which bi = b j for all i, j < ω, (b) sequences
contained in one equivalence class, in which bi ̸= b j but bi Eb j for all i ̸= j , and
(c) sequences that move across equivalence classes, in which ¬bi Eb j for all i ̸= j .

The formula x Eb divides along sequences of type (c), but not along sequences
of type (a) or (b). Is there a general explanation for this behavior? Kim’s Lemma
gives the answer: the dividing formula x Eb universally Kim-divides, and every
Morley sequence for a global M-invariant type extending tp(b/M) has type (c).

Indeed, if q(y) is a global M-invariant type extending tp(b/M), we will show
that q cannot contain the formula yEc for any c ∈ M. If cEm for some m ∈ M ,
then since ¬yEm ∈ tp(b/M), ¬yEc ∈ q. And if the equivalence class of c is
not represented in M , then letting c′ be another element inequivalent to c whose
equivalence class is not represented in M , q cannot contain both yEc and yEc′,
but tp(c/M)= tp(c′/M), so by invariance q does not contain yEc. It follows that
a Morley sequence for q has type (c).

Next, we turn to the Kim’s Lemma characterization of NSOP1 theories.
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Theorem 3.3 [Kaplan and Ramsey 2020, Theorem 3.16]. The following are equiv-
alent:

(1) T is NSOP1.

(2) For all models M , if a formula ϕ(x; b) Kim-divides over M , then it universally
Kim-divides over M.

Example 3.4. T ∗

feq, the generic theory of parametrized equivalence relations, is
NSOP1 and has TP2. It is the complete theory of the Fraïssé limit of the Fraïssé
class Kfeq. The language has two sorts, O and P , and one ternary relation yEx z,
where the subscript x has type P and y and z have type O . A finite structure A is
in Kfeq if for all a ∈ P(A), Ea defines an equivalence relation on O(A).

Let M |H T ∗

feq, let c ∈ P(M) \ P(M), and let b ∈ O(M) such that the Ec-class
of b is not represented in O(M). The formula x Ecb divides over M , along any
M-indiscernible sequence (bi , ci )i<ω such that ci = c for all i and ¬bi Ecb j for
all i ̸= j . But if p(y, z) is a global M-invariant type extending tp(bc/M) and
I = (bi , ci )i<ω is a Morley sequence for p, then ci ̸= c j for all i ̸= j , and x Ecb
does not divide along I . Indeed, by compactness and the genericity properties of the
Fraïssé limit, if (ci )i<ω is any sequence of pairwise distinct elements of P(M), and
Ci is an Eci class for each i < ω, then we can find a ∈ O(M) such that a ∈ Ci for
all i ∈ ω. It follows that x Ecb does not Kim-divide, and hence does not universally
Kim-divide, so the Kim’s Lemma for simple theories fails in T ∗

feq.
Now let m ∈ P(M), and let b′

∈ O(M) such that the Em-class of b′ is not
represented in O(M). Then the formula x Emb′ Kim-divides over M , and, as
predicted by the Kim’s Lemma for NSOP1 theories, it universally Kim-divides
over M . Indeed, if p(y, z) is any global M-invariant type extending tp(b′m/M),
and I = (bi ,mi )i<ω is a Morley sequence for p, then mi = m for all i ∈ ω and
(bi )i<ω is an indiscernible sequence of type (c) for Em , according to the terminology
in Example 3.2. Thus x Emb′ divides along I .

Finally, we turn to the Kim’s Lemma characterization of NTP2 theories.

Theorem 3.5 [Chernikov and Kaplan 2012, Lemma 3.14; Chernikov 2014, Theo-
rem 4.9]. The following are equivalent:

(1) T is NTP2.

(2) For all models M , if a formula ϕ(x; b) divides over M , then it universally
Kim-strictly divides over M.

Note that the notion of Kim-strict dividing does not appear in [Chernikov and
Kaplan 2012] or [Chernikov 2014]. Instead, Chernikov and Kaplan prove that (1)
is equivalent to (3):

(3) For all models M , if a formula ϕ(x; b) divides over M , then it universally
strictly divides over M .
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But since Kim-strict invariant types coincide with strict invariant types in NTP2

theories (by Fact 2.14), and universal Kim-strict dividing implies universal strict
dividing in arbitrary theories, it follows immediately that (1), (2), and (3) are all
equivalent. We have chosen to focus on Kim-strict dividing because it behaves
better outside of the NTP2 context (by Theorem 2.26 and Remark 2.28).

Example 3.6. DLO, the theory of dense linear orders without endpoints, is NTP2

(in fact, it is NIP) and has SOP1 (in fact, it has SOP). Let M |H DLO, and b < c
be two elements in M \ M living in the same cut in M (so there is no m ∈ M with
b < m < c). Now q(y, z)= tp(bc/M) has three global M-invariant extensions. By
quantifier elimination, each is determined by the order relations between y and z
and the elements d ∈ M living in the same cut in M as b and c:

(1) Let q1 be the global type containing d < y < z for all such d. A Morley
sequence (bi , ci )i<ω for q1 has

b0 < c0 < b1 < c1 < b2 < c2 < · · · .

(2) Let q2 be the global type containing y < z < d for all such d. A Morley
sequence (bi , ci )i<ω for q2 has

· · ·< b2 < c2 < b1 < c1 < b0 < c0.

(3) Let q3 be the global type containing y < d < z for all such d. A Morley
sequence (bi , ci )i<ω for q3 has

· · ·< b2 < b1 < b0 < c0 < c1 < c2 < · · · .

The formula b < x < c divides along Morley sequences for q1 and q2, but not
along Morley sequences for q3. This shows that the Kim’s Lemma for NSOP1

theories fails in DLO: Kim-dividing does not imply universal Kim-dividing. But
the Kim’s Lemma for NTP2 theories explains which Morley sequences we should
expect a dividing formula to divide along. Indeed, the dividing formula b < x < c
universally Kim-strictly divides, and we will show that q1 and q2 are Kim-strict,
while q3 is not.

Suppose A ⊆ M, and suppose b′c′
|H qi |M A for some i ∈ {1, 2, 3}. If i = 1 or 2,

then there is no a ∈ A such that b < a < c, and it follows that A |⌣
K
M

b′c′. So q1

and q2 are Kim-strict.
On the other hand, if i = 3, and if A contains an element a living in the same cut

in M and b and c, then b′ < a < c′. Thus tp(A/Mb′c′) contains the Kim-dividing
formula b′ < x < c′, and A ̸ |⌣

K
M

b′c′. So q3 is not Kim-strict.

We can now fill in the diagram from the end of Section 2 with the implications
coming from the variants of Kim’s Lemma which hold in various contexts, as well
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as our New Kim’s Lemma:

divides

simple

''NTP2

��

universally divides

��

Kim-divides

OO

NSOP1 //

New Kim’s Lemma

''

universally Kim-divides

��

Kim-strictly divides

OO

universally Kim-strictly dividesoo

Definition 3.7. T satisfies New Kim’s Lemma if for all models M , if a formula
ϕ(x; b) Kim-divides over M , then it universally Kim-strictly divides over M .

We will give some examples and nonexamples of New Kim’s Lemma in the next
section. For now, let us observe a simple consequence. Variants of Kim’s Lemma
allow us to prove that the relevant notions of forking and dividing coincide, and the
usual proof works here as well.

Proposition 3.8. Suppose T satisfies New Kim’s Lemma and M |H T . Then a
formula ϕ(x; b) Kim-forks over M if and only if it Kim-divides over M.

Proof. Kim-dividing implies Kim-forking by definition. So suppose ϕ(x; b) Kim-
forks over M . Then ϕ(x; b) |H

∨
j<n ψ j (x; c j ), where each ψ j (x; c j ) Kim-divides

over M .
By Theorem 2.26, let q(y, z1, . . . , zn) be a global Kim-strict invariant type ex-

tending tp(bc0 · · · cn−1/M), and let I = (bi , ci
0, . . . , ci

n−1)i<ω be a Morley sequence
for q over M .

For all j < n, I j = (ci
j )i<ω is also a Morley sequence over M for a global Kim-

strict invariant type, namely the restriction of q to formulas in the single variable
z j . By New Kim’s Lemma, ψ j (x; c j ) divides along I j .

Suppose for contradiction that ϕ(x; b) does not divide along I∗ = (bi )i<ω. Then
there exists a satisfying {ϕ(x; bi ) : i < ω}. For each i < ω, since bi ci

0 · · · ci
n−1 ≡M

bc0 · · · cn−1, there exists j < n such that |Hψ j (a; ci
j ). By the pigeonhole principle,

there is some j < n such that for infinitely many i < ω, a satisfies ψ j (x; ci
j ). This

contradicts the fact that ψ j (x; c j ) divides along I j . Thus ϕ(x; b) divides along I∗.
Since I∗ is a Morley sequence over M for the restriction of q to formulas in the
single variable y, ϕ(x; b) Kim-divides over M . □
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4. Examples

4A. Parametrized linear orders. In this section, we introduce the theory DLOp of
parametrized dense linear orders without endpoints, and we show that it satisfies
New Kim’s Lemma. The choice of this example is motivated by the examples
in Section 3: DLOp is to DLO (Example 3.6) as T ∗

feq (Example 3.4) is to TE

(Example 3.2).
The language L has two sorts, O and P , and one ternary relation y <x z, where

the subscript x has type P and y and z have type O . For an L-structure A, we write
AP and AO for the two sorts. Let L< be the language {<}, where < is a binary
relation. Given a ∈ AP , we write Aa for the L<-structure (AO , <a).

Let K be the class of all finite structures A such that for all a ∈ AP , <a is a linear
order on AO . This is a special case of the parametrization construction introduced in
[Chernikov and Ramsey 2016, Section 6.3], applied to the class of finite linear orders.
By [loc. cit., Lemma 6.3], K is a Fraïssé class with disjoint amalgamation. Let
DLOp be the theory of its Fraïssé limit. By disjoint amalgamation, DLOp has trivial
acl. By [loc. cit., Lemma 6.4], if M |H DLOp, then for all m ∈ MP , Mm |H DLO.

If C ⊆ MO and ϕ(x) is an L<-formula with parameters in C , then, for each
m ∈ MP , we write ϕm(x) for the L-formula obtained by replacing each instance
of < with <m . Likewise, if q(x) is a partial L<-type over C , we write qm(x) for
{ϕm(x) : ϕ(x) ∈ q}. Note that qm(x) is a partial L-type over Cm.

Fact 4.1 [Chernikov and Ramsey 2016, Lemma 6.5]. Suppose C ⊆ MO , (bi )i∈I

is a family of distinct elements of MP , and for each i ∈ I , pi (x) is a consistent
nonalgebraic L<-type over C in Mbi . Then

⋃
i∈I pi

bi
(x) is a consistent partial

L-type over C(bi )i∈I .

Recall that a coheir sequence over A is a Morley sequence for a global type
finitely satisfiable in A. The following lemma is a general fact that is easy and
well-known.

Lemma 4.2. Suppose M |H T and I = (ai )i<ω is a coheir sequence over M. Then
given any b, there exists (bi )i<ω such that (ai , bi )i<ω is a coheir sequence over M
and tp(ai bi/M)= tp(a0b/M) for all i < ω.

Proof. Suppose (ai )i<ω is a coheir sequence for the global M-finitely satisfiable
type p(x). Let N be an |M |

+-saturated model containing M . Let a∗ realize p | N ,
so a∗

|⌣
u
M

N . By left extension for |⌣
u , we can find b∗ such that tp(a∗b∗/M)=

tp(a0b/M) and such that a∗b∗
|⌣

u
M

N . By saturation of N , tp(a∗b∗/N ) has a unique
global M-invariant extension q(x, y), which is finitely satisfiable in M . Likewise,
p(x) ⊆ q(x, y), since the restriction of q to formulas in context x is the unique
global M-invariant extension of tp(a∗/N ) = p | N . Let (a∗

i b∗

i )i<ω be a Morley
sequence for q over M . Since (a∗

i )i<ω and (ai )i<ω are both Morley sequences for
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p over M , there is an automorphism σ of M over M such that σ(a∗

i )= ai for all i .
Let bi = σ(b∗

i ). □

Lemma 4.3. Let M |H DLOp. Then A |⌣
K d
M

B if and only if

(1) A ∩ B ⊆ M , and

(2) for every m ∈ MP , and for all b <m a <m b′ with a ∈ AO \ MO and b, b′
∈

BO \ MO , there exists m′
∈ MO such that b <m m′ <m b′ (i.e., b and b′ live in

different <m-cuts in MO ).

Condition (2) in the statement of Lemma 4.3 can be more succinctly stated as:
for every m ∈ MP , AO |⌣

f
MO

BO in the L<-structure Mm . Nevertheless, we will
prove and use the more concrete characterization.

Proof. Suppose A |⌣
K d
M

B. In any theory, A |⌣
K d
M

B implies A ∩ B ⊆ M , so we
have (1). For (2), assume for contradiction that b <m a <m b′, with m ∈ MP ,
a ∈ AO \ MO , and b, b′

∈ BO \ MO , and b and b′ live in the same <m-cut in MO ,
i.e., there is no m′

∈ MO such that b <m m′ <m b′.
We will find a global type q(y, y′) extending tp(bb′/M) and finitely satisfiable

in M , such that the formula ϕ(x; b, b′) : b <m x <m b′ divides along Morley
sequences for q over M . We may assume that the set C = {c ∈ MO | c <m b}

is nonempty and has no greatest element. The other case, when the set D =

{d ∈ MO | b <m d} is nonempty and has no least element, is symmetrical.
Consider the filter on M yy′

O generated by

{ψ(M) : ψ(y, y′) ∈ tp(bb′/M)} ∪ {(e, e′) | e′
∈ C}.

By quantifier elimination, a set Y in this filter contains the intersection of:

(1) {(e, e′) | e′
∈ C},

(2) A set {(e, e′) | c <m e <m e′ <m d} for some c ∈ C and d /∈ C , or {(e, e′) |

c <m e <m e′
} for some c ∈ C , and

(3) finitely many nonempty sets in M yy′

O , each defined in terms of an order <m′

for m′
̸= m in MP .

Since C has no greatest element, we can pick some c′
∈ C with c <m c′. Then

replacing (1) and (2) in the intersection with {(e, e′) | c <m e <m e′ <m c′
}, the

intersection of these sets is nonempty, by the extension axioms for the Fraïssé limit,
and contained in Y . Thus the filter is proper and extends to an ultrafilter D.

Let q = Av(D,M). Suppose I = (bi , b′

i )i<ω is a Morley sequence for q over M .
Since each bi realizes tp(b/M),

{(e, e′) ∈ M yy′

O | e′ <m bi } = {(e, e′) ∈ M yy′

O | e′
∈ C} ∈ D.

So bi+1 <m b′

i+1 <m bi for all i < ω. Thus the <m-intervals (bi , b′

i ) are pairwise
disjoint, and b <m x <m b′ divides along I .
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Let b∗ be a tuple enumerating B \ {b, b′
}. By Lemma 4.2, there exists (b∗

i )i<ω

such that J = (bi , b′

i , b∗

i )i<ω is a coheir sequence over M and tp(bi , b′

i , b∗

i ) =

tp(b, b′, b∗)= tp(B/M) for all i < ω. The formula b <m x <m b′ is contained in
tp(A/M B) and divides along J , which contradicts A |⌣

K d
M

B.
Conversely, suppose conditions (1) and (2) hold. We may assume that A is disjoint

from M (and hence also from B, by (1)), since (A \ M) |⌣
K d
M

B implies A |⌣
K d
M

B.
Let p(x, x ′, y)= tp(AB/M), where x enumerates AO , x ′ enumerates AP , and

y enumerates B. Let (Bi )i<ω be a Morley sequence for a global M-invariant type
extending tp(B/M). Let C = M ∪

⋃
i<ω Bi . It suffices to show that q(x, x ′) =⋃

i<ω p(x, x ′, Bi ) is a consistent partial type over C .
Let qO(x) be the subset of q that only mentions the variables x (those of type

O). For each c ∈ CP , let qc(x) be set of atomic and negated atomic formulas in
qO(x) involving the relation <c. Then there is a partial L<-type qc(x) over CO in
Mc such that (qc)c is equivalent to qc. We will show that each qc(x) is consistent.

If c /∈ M , then since the Bi are pairwise disjoint over M , there is a unique i < ω
such that c ∈ (Bi )P . Then qc(x) is contained in p(x, x ′, Bi ), which is consistent,
and hence qc(x) is consistent as well.

Suppose c ∈ M , and assume for contradiction that qc(x) is inconsistent. By
compactness and density of Mc, there is some variable z from x and some bi ∈ Bi

and b′

j ∈ B j for i, j <ω such that bi ≤ b′

j in Mc, but qc(x) entails b′

j < z < bi . Let
b and b′ be the elements of B corresponding to bi and b′

j , respectively, and let a
be the element of A corresponding to the variable z. Then b′ < a < b, so by (2)
there is some m′

∈ MO such that b′ < m′ < b in Mc. But since Bi ≡M B j ≡M B,
b′

j < m′ < bi , contradicting bi ≤ b′

j .
Since A is disjoint from B, each type qc(x) is nonalgebraic, so by Fact 4.1,⋃
c∈CP

qc(x) is consistent. By quantifier elimination, qO(x) is consistent.
Let A′ realize qO(x). It remains to show that q(A′, x ′) is consistent. Each

variable in x ′ is of type P . Since each atomic formula contains at most one variable
of type P , it suffices to show that for each variable z in x ′, the set r(z) of all atomic
and negated atomic formulas from q(A′, x ′) involving the relation <z is consistent.

The type r(z) specifies a linear order on A′MO , which extends to a linear order
on A′MO(Bi )O for all i < ω. Using the amalgamation property for linear orders,
we can find a linear order on A′CO extending each of the given linear orders. By
compactness and the extension axioms for the Fraïssé limit, we can find c ∈ MP

such that <c induces this linear order on A′CO . This completes the proof. □

Theorem 4.4. DLOp satisfies the New Kim’s Lemma.

Proof. Suppose ϕ(x; b) Kim-divides over M |H T . To show that ϕ(x; b) universally
Kim-strictly divides, let p(y) be a global Kim-strict M-invariant type extending
tp(b/M), and let I = (bn)n<ω be a Morley sequence for p. Suppose for contradiction
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that {ϕ(x; bn) : n < ω} is consistent, realized by a. By Ramsey’s theorem, com-
pactness, and an automorphism, we may assume that (bn)n<ω is Ma-indiscernible.
Now it suffices to show that a |⌣

K d
M

b0, since this will contradict the fact that the
Kim-dividing formula ϕ(x; b0) is in tp(a/Mb0).

Let A be the set enumerated by a, and let Bn be the set enumerated by bn for all
n. Since B1 |⌣

i
M

B0, B1 ∩ B0 ⊆ M . If c ∈ A ∩ B0, then since AB0 ≡M AB1, also
c ∈ B1, so c ∈ M . Thus A ∩ B0 ⊆ M .

Now suppose m ∈ MP and d0<m c<m d ′

0, with c ∈ AO \MO and d0, d ′

0 ∈ (B0)O \

MO . Suppose for contradiction that there is no m′
∈ MO such that d0 <m m′ <m d ′

0.
Let d1 and d ′

1 be the elements of (B1)O corresponding to d0 and d ′

0 in (B0)O . Since
B1 ≡M A B0, d1 <m c <m d ′

1, and there is no m′
∈ MO such that d1 <m m′ <m d ′

1.
Since p is Kim-strict, B0 |⌣

K d
M

B1 and B1 |⌣
K d
M

B0. By Lemma 4.3, d0, d ′

0, d1,
and d ′

1 are distinct, neither d0 nor d ′

0 are in the <m-interval (d1, d ′

1), and neither d1

nor d ′

1 are in the <m-interval (d0, d ′

0). It follows that the <m-intervals (d0, d ′

0) and
(d1, d ′

1) are disjoint. This contradicts the fact that c is in both of them.
So there is m′

∈ MO such that d0 <m m′ <m d ′

0. By Lemma 4.3, A |⌣
K d
M

B0. □

4B. Bilinear forms over real closed fields. Let T RCF
∞

be the two-sorted theory of
an infinite-dimensional vector space over a real closed field with a bilinear form,
which is assumed to be either alternating and nondegenerate, or symmetric and
positive-definite. This is really two theories, one for each type of bilinear form, but
our arguments are identical in both cases so we will not notationally distinguish
them. The language has a sort V for the vector space, equipped with the language
of abelian groups, a sort R for the real closed field of scalars, equipped with the
language of ordered rings, a function symbol · : R×V → V for scalar multiplication,
and a function symbol [−,−]: V × V → R for the bilinear form.

By [Granger 1999], T RCF
∞

is the model companion of the theory of a vector space
over a real closed field with an alternating (or symmetric and positive-definite)
bilinear form. By [Dobrowolski 2023], this theory additionally has quantifier-
elimination in an expanded language, containing, for each n, a predicate In on V n ,
such that In(v1, . . . , vn) holds if and only if v1, . . . , vn are linearly independent, as
well as (n+1)-ary “coordinate functions” Fn,i : V n+1

→ R for each 1 ≤ i ≤ n. These
functions are which are interpreted so that, if v1, . . . , vn are linearly independent
and w =

∑n
i=1 αivi , then Fn,i (v̄, w)= αi , and Fn,i (v̄, w)= 0 otherwise.

When A is a subset of M |H T RCF
∞

, we write AR for the elements of the field sort
and AV for the elements of the vector space sort.

Remark 4.5. As a consequence of quantifier elimination and elementary linear
algebra, the field sort R is stably embedded. More precisely, suppose C is a
substructure of M. If ϕ(x) is a formula with parameters from C such that every
variable is in the field sort R, then ϕ(x) is equivalent to a formula ψ(x) in the
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language of ordered rings with parameters from CR . Consequently, for any tuple a
from MR and any substructure C , tpRCF(a/CR) entails tp(a/C).

If W is a set of vectors, we write ⟨W ⟩ for the linear span of W with scalars from
the field MR (so ⟨W ⟩ is a large set). By dim(W ), we mean the dimension of ⟨W ⟩

as a vector space over MR .
Suppose A, B, and C are substructures of M. We write A |⌣

RCF
C

B to mean that
AR and BR are forking-independent over CR in the reduct of MR to a model of
RCF. We write A |⌣

V
C

B to mean ⟨AV ⟩ ∩ ⟨BV ⟩ ⊆ ⟨CV ⟩. Our goal is to show that
T RCF

∞
satisfies New Kim’s Lemma, which will involve characterizing |⌣

K d in this
theory in terms of |⌣

RCF and |⌣
V . The argument is the analogue of [Kaplan and

Ramsey 2020, Proposition 9.37] (incorporating the corrections of [Dobrowolski
2023, Proposition 8.12]). A similar characterization of Kim-independence in the
theory of a bilinear form on a vector space over an NSOP1 field occurs in [Bossut
2023].

We begin with another general lemma which, in conjunction with Lemma 4.2,
will allow us to upgrade a coheir sequence in tpRCF(BR/MR) in RCF to a coheir
sequence in tp(B/M) in T RCF

∞
.

Lemma 4.6. Suppose L ⊆ L ′ are languages, T ′ is an L ′-theory and T = T ′ ↾ L. If
A ⊆ B and I = (ci )i<ω is a coheir sequence over A in T , then there is I ′

|H tpL(I/A)
which is a coheir sequence in T ′ over B.

Proof. If (ci )i<ω is a coheir sequence over A in T , there is some ultrafilter D
on An , where n is the length of c0, such that I is a Morley sequence over A in the
global A-finitely satisfiable type AvL(D,M). To see this, stretch I to (ci )i<ω+1 and
observe that the family of sets {ϕ(A; c<ω) : ϕ(x; c<ω) ∈ tp(cω/Ac<ω)} ⊆ P(An)

generates a filter and hence extends to an ultrafilter D. It is easily checked that this
D works. Let E be the ultrafilter on Bn induced by D, i.e., a subset X ⊆ Bn satisfies
X ∈ E if and only if X ∩ An

∈ D. Then we can take I ′ to be Morley over B in the
global B-finitely satisfiable type AvL ′(E,M). □

Lemma 4.7. If M |H T RCF
∞

and A |⌣
K d
M

B, then A |⌣
RCF
M

B.

Proof. Because RCF is an NTP2 theory, any dividing formula divides along some
coheir sequence by [Chernikov and Kaplan 2012, Lemma 3.12]. So if A ̸ |⌣

RCF
M

B,
then there is a formula ϕ(x; b) in tpRCF(AR/MR BR) and a coheir sequence I = (Bi )

over MR in tpRCF(BR/MR) such that ϕ(x; b) divides along I . By Lemmas 4.6
and 4.2, there is a coheir sequence I ′

= (B ′

i )i<ω over M in tp(B/M) such that
((B ′

i )R)i<ω ≡
RCF
MR

I . Then ϕ(x; b) divides along I ′, and A ̸ |⌣
K d
M

B. □

Lemma 4.8. Suppose M |H T RCF
∞

:

(1) If A |⌣
u
M

B, then A |⌣
V
M

B.
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(2) If (Bi )i<ω is a |⌣
V
M

-independent sequence (i.e., Bi |⌣
V
M

B0 · · · Bi−1 for all
i <ω), and there exists A′ such that A′Bi ≡M AB for all i <ω, then A |⌣

V
M

B.

(3) If A |⌣
K d
M

B, then A |⌣
V
M

B.

Proof. Suppose that A ̸ |⌣
V
M

B. Then ⟨AV ⟩ ∩ ⟨BV ⟩ ̸⊆ ⟨MV ⟩, so there exists a vector
v, a finite linearly independent tuple a from AV , and a finite linearly independent
tuple b from BV such that v ∈ ⟨a⟩ ∩ ⟨b⟩ and v /∈ ⟨MV ⟩. Let C = ⟨b⟩ ∩ ⟨MV ⟩, and
note that C is a subspace of the finite-dimensional space ⟨b⟩. Let c be a finite basis
for C . Note that the formula ϕ(x; b, c):

∃w(I|a|(x)∧ ¬I|a|+1(x, w)∧ ¬I|b|+1(b, w)∧ I|c|+1(c, w)),

which asserts that x is linearly independent and ⟨x⟩ ∩ ⟨b⟩ ̸⊆ ⟨c⟩, is in tp(a/Mb).
With the above notation set, we now prove (1) and (2).

For (1), assume for contradiction that A |⌣
u
M

B. Since tp(a/Mb) is finitely
satisfiable in M , there is some a′

∈ MV satisfying ϕ(a′
; b, c). Let w′ be the

witness to the existential quantifier. Then w′
∈ ⟨a′

⟩ ⊆ ⟨MV ⟩ and w′
∈ ⟨b⟩, so

w′
∈ ⟨b⟩ ∩ ⟨MV ⟩ = C . But w′ /∈ ⟨c⟩, contradiction.
For (2), assume for contradiction that there exists a |⌣

V
M

-independent sequence
(Bi )i<ω and A′ such that A′Bi ≡M AB for all i <ω. Let (bi )i<ω be the restriction of
this sequence to the tuples bi from Bi corresponding to the tuple b in B, and let a′ be
the tuple from A′ corresponding to the tuple a in A. Let k = dim(⟨a′

⟩)=|a′
|, and let

v0, . . . , vk be such that vi ∈ ⟨a′
⟩∩⟨bi ⟩\⟨c⟩ for all i < k+1. Since these k+1 vectors

are all in ⟨a′
⟩, they are not linearly independent, and we can write one of them, say v j ,

as a linear combination of v0, . . . , v j−1. Then v j ∈ ⟨b j ⟩∩ ⟨b0, . . . , b j−1⟩ \ ⟨c⟩. But
since b j |⌣

V
M

b0 · · · b j−1, ⟨b j ⟩∩ ⟨b0, . . . , b j−1⟩ ⊆ ⟨b j ⟩∩ ⟨MV ⟩ = ⟨c⟩, contradiction.
For (3), let (Bi )i<ω be a coheir sequence in tp(B/M). Since A |⌣

K d
M

B, by
compactness there exists A′ such that A′Bi ≡M AB for all i < ω. By (1), (Bi )i<ω

is a |⌣
V
M

-independent sequence, and by (2), A |⌣
V
M

B. □

Theorem 4.9. If M |H T RCF
∞

, A = acl(AM), B = acl(B M), then A |⌣
K d
M

B if and
only if A |⌣

RCF
M

B and A |⌣
V
M

B.

Proof. One direction is Lemmas 4.7 and 4.8(3).
In the other direction, suppose that A |⌣

RCF
M

B and A |⌣
V
M

B. Let (Bi )i<ω be a
Morley sequence over M for a global M-invariant type extending tp(B/M). Since
A |⌣

RCF
M

B, we can find A′

R such that A′

R(Bi )R ≡
RCF
MR

AR BR for all i < ω. By
Remark 4.5, A′

R Bi ≡M AR B for all i < ω. Let R̃ be the field (acl(A′

R(Bi )i<ω))R .
Let m̄ = (mi )i<α be a tuple from MV which is a basis of ⟨MV ⟩. Choose ā =

(ai )i<β from AV such that ām̄ is a basis of ⟨AV ⟩ and choose bi = (bi, j ) j<γ from
(Bi )V such that m̄bi is a basis of ⟨(Bi )V ⟩. Since (Bi )i<ω is a |⌣

i
M

-independent
sequence, by Lemma 4.8(3) it is also a |⌣

V
M

-independent sequence. Thus m̄ and



850 ALEX KRUCKMAN AND NICHOLAS RAMSEY

(bi )i<ω are linearly independent. Let Ṽ = ⟨m̄(bi )i<ω⟩R̃ , the vector space over R̃
spanned by this basis. Note that, unlike ⟨m̄(bi )i<ω⟩, this is a small set, and it
contains (Bi )i<ω, since R̃ contains the values of the coordinate functions Fn,i on
tuples from (Bi )i<ω. Let Ñ be the substructure of M with ÑR = R̃ and ÑV = Ṽ .
Note that if we give the symbols θn and Fn,i their intended interpretations in Ñ ,
they agree with the interpretations of these symbols in M.

Let ā′
= (a′

i )i<β be a tuple of new vectors (not in MV ) of the same length as ā.
Let W be the R̃-vector space extending Ṽ with basis ā′, m̄, and (bi )i<ω. We build a
structure N extending Ñ with NR = ÑR = R̃ and NV = W . The field structure and
vector space structure have been determined, so it remains to define the bilinear
form [ − ,− ]

N . To do this, it suffices to define the form on every pair of basis
vectors for W such that at least one comes from ā′, and extend linearly.

For all i < α, i ′ < β, j ′ < β, j < ω, and k < γ , set

[a′

i ′, a′

j ′]
N

= [ai ′, a j ′]
M, [a′

i ′,mi ]
N

= [ai ′,mi ]
M, [a′

i ′, b j,k]
N

= [ai , b0,k]
M.

These conditions uniquely determine a bilinear form on all pairs of vectors from W ,
which is alternating or symmetric and positive-definite, as required by T RCF

∞
. We

can extend the language to include the θn and Fn,i in the natural way, and the
interpretations of these symbols agree with those on Ñ , since ÑR = NR .

Now we can embed N into M over Ñ . Let A′

V be the image under this embedding
of the subset of N corresponding to AV , and let A′

= (A′

R, A′

V ). It follows by
construction and quantifier elimination that A′Bi ≡M AB for all i < ω. Thus
A |⌣

K d
M

B. □

Theorem 4.10. The theory T RCF
∞

satisfies New Kim’s Lemma.

Proof. Let M |H T RCF
∞

and suppose ϕ(x; b) Kim-divides over M . Let I = (bi )i<ω

be a Morley sequence over M for a global Kim-strict M-invariant type q(y) ⊇

tp(b/M). We would like to show that ϕ(x; bi ) divides along I . Assume, towards
contradiction, that there exists a realizing {ϕ(x; bi ) : i <ω}. By Ramsey’s theorem,
compactness, and an automorphism, we may assume that (bi )i<ω is indiscernible
over A = acl(Ma). For each i <ω, let Bi = acl(Mbi ), with each Bi enumerated in
such a way that (Bi )i<ω remains indiscernible over A.

Since (bi )i<ω is a |⌣
i
M

-independent sequence, it is a |⌣
K
M

-independent sequence,
and thus (Bi )i<ω is a |⌣

K
M

-independent sequence. By Lemma 4.8(3), (Bi )i<ω is a
|⌣

V
M

-independent sequence, and since ABi ≡M AB0 for all i < ω, A |⌣
V
M

B0 by
Lemma 4.8(2).

We now claim that ((Bi )R)i<ω is a (Kim-)strict Morley sequence over MR in
RCF. Let N be an |M |

+-saturated model containing M and (Bi )i<ω. Let bω realize
q|N , and let Bω = acl(Mbω). Since (bi )i≤ω is a Morley sequence over M , and
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hence M-indiscernible, and (Bi )i<ω is M-indiscernible, we can enumerate Bω in
such a way that (Bi )i≤ω remains M-indiscernible.

Since q is Kim-strict, bω |⌣
K
M

N and N |⌣
K
M

bω, so Bω |⌣
K
M

N and N |⌣
K
M

Bω,
and hence Bω |⌣

RCF
M

N and N |⌣
RCF
M

Bω, by Theorem 4.9. Since RCF is an NIP the-
ory, |⌣

i
M

= |⌣
f
M

in RCF; see [Simon 2015, Corollary 5.22]. Thus tpRCF((Bω)R/NR)

extends to a global MR-invariant type q∗ which is strict over MR in RCF. Indeed,
suppose for contradiction that CR ⊆ MR , B ′

R |H q∗|NRCR , and CR ̸ |⌣
f
MR

B ′

R in RCF.
Then c ̸ |⌣

f
MR

B ′

R for some finite tuple c from CR , whose type over MR is realized by
c′

∈ NR . Then c′
̸ |⌣

f
MR

B ′

R in RCF by invariance of q∗, contradicting N |⌣
RCF
M

Bω.
By M-indiscernibility of (Bi )i≤ω, (Bi )R |H q∗|MR(B<i )R for all i , so ((Bi )R)i<ω

is a strict Morley sequence over MR in RCF. Since ((Bi )R)i<ω is AR-indiscernible,
it follows that A |⌣

RCF
M

B0 by the NTP2 Kim’s Lemma (Theorem 3.5).
Since A |⌣

RCF
M

B0 and A |⌣
V
M

B0, by Theorem 4.9, A |⌣
K d
M

B0. This contradicts
the fact that tp(A/M B0) contains the formula ϕ(x; b0), which Kim-divides over M ,
since b0 ≡M b. □

4C. Nonexample: the Henson graph. The Henson graph, or generic triangle-free
graph, is the Fraïssé limit of the class of finite triangle-free graphs. Its complete
theory T△ is SOP3 and NSOP4. Conant [2017] analyzed forking and dividing in
T△ in detail. We will use the following characterization of |⌣

f .

Fact 4.11 [Conant 2017, Theorem 5.3]. Suppose that A and B are sets in M |H T△

and M |H T△. Then A |⌣
f
M

B if and only if A ∩ B ⊆ M and for all a ∈ A and
b ̸= c ∈ B \ M , if a Rb and a Rc, then there exists m ∈ M such that m Rb and m Rc.

We will show that a very weak variant of Kim’s Lemma fails in T△: strict dividing
does not imply universal strict dividing. Since strict dividing implies Kim-dividing
and universal Kim-strict dividing implies universal strict dividing, it follows that
T△ fails to satisfy New Kim’s Lemma.

Theorem 4.12. Modulo T△, there is a formula which strictly divides but does not
universally strictly divide. Thus T△ does not satisfy New Kim’s Lemma.

Proof. Let M |H T . Let b and c be elements of M \ M with ¬bRc, such that b
has a single neighbor in M , call it m, and c has no neighbors in M .6 Consider the
formula ϕ(x; b, c) : x Rb ∧ x Rc. It suffices to find two strict global M-invariant
types p(y, z) and q(y, z) extending tp(b, c/M) such that ϕ(x; b, c) divides along
Morley sequences for p but does not divide along Morley sequences for q .

Let p(y, z) extend tp(bc/M) by including, for each d ∈ M \ M , y ̸= d, z ̸= d
and ¬y Rd. Additionally, include z Rd if d |H tp(b/M) and ¬z Rd otherwise. We
claim this defines a consistent partial type. Any inconsistency would come from a

6Really, all we will use is that the set of neighbors of b in M is nonempty and disjoint from the set
of neighbors of c in M .
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triangle involving the variables and elements of M. Such a triangle cannot contain
y, since ¬y Rz and y has an edge to exactly one element of M, namely m. Since z
only has edges to realizations of tp(b/M), any triangle containing z contains two
realizations of tp(b/M). But no two realizations of tp(b/M) are adjacent, since
they are both adjacent to m.

By quantifier elimination, this partial type determines a complete M-invariant
type over M. Letting I = (bi , ci )i<ω be a Morley sequence for p over M , ϕ(x; b, c)
divides along I , since {ϕ(x; b1, c1), ϕ(x; b2, c2)} entails {x Rb1, x Rc2}, and b1 Rc2.

Now let q(y, z) extend tp(bc/M) by including, for each d ∈ M \ M , y ̸= d,
z ̸= d, ¬y Rd, and ¬z Rd. This defines a consistent partial type, since the only
edge from a variable to an element of M is the single edge from y to m. Again, by
quantifier elimination, this determines a complete M-invariant type over M. And
if J = (bi , ci )i<ω is a Morley sequence for q over M , then ϕ(x; b, c) does not
divide along J . Indeed, since there are no edges among the vertices {bi , ci : i < ω},
{ϕ(x; bi , ci ) : i < ω} does not induce any triangles.

It remains to show that both p and q are strict. Let A ⊆ M, b0, c0 |H p|M A, and
b1, c1 |H q|M A. We would like to show that for i ∈ {0, 1}, A |⌣

f
M

bi ci . In each case,
A ∩ {bi , ci } = ∅ ⊆ M , and there is no a ∈ A such that a Rbi and a Rci (since bi is
not adjacent to any element of A \ M , and ci is not adjacent to any element of M).
By Fact 4.11, A |⌣

f
M

bi ci . □

5. Syntax

In this section, we isolate a tree property, provisionally called BTP, which general-
izes TP2 and SOP1, and we show that NBTP theories satisfy New Kim’s Lemma.
We also show that NBTP theories are NATP. We have not succeeded in proving
that New Kim’s Lemma characterizes NBTP theories.

For ordinals α, β ≤ ω, write α<β∗ for the forest obtained by removing the root
from α<β :

• A left-leaning path in α<β∗ is a sequence (λn) such that if λn = η⌢⟨i⟩, then
η⌢⟨ j⟩ ◁ λn+1 for some j ≤ i .

• A right-veering path in α<β∗ is a sequence (ρn) such that if ρn = η⌢⟨i⟩, then
η⌢⟨ j⟩ ⊴ ρn+1 for some j > i .

Note that to get to the next element in a left-leaning path, one optionally moves
leftward to a sibling and then moves strictly upward to a descendent, while in a
right-veering path, one moves strictly rightward to a sibling, and then optionally
moves upward to a descendent.

Definition 5.1. A formula ϕ(x; y) has k-BTP (k-bizarre tree property) with k < ω
if there exists a forest of tuples (aη)η∈ω<ω∗

satisfying the following conditions:
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• For every left-leaning path (λn)n<ω, {ϕ(x; aλn ) : n < ω} is consistent.

• For every right-veering path (ρn)n∈ω, {ϕ(x; aρn ) : n < ω} is k-inconsistent.

A theory T has BTP if there is some formula ϕ(x; y) and some k < ω such that
ϕ has k-BTP. Otherwise, T is NBTP.

Theorem 5.2. Suppose T is NBTP. Then T satisfies New Kim’s Lemma.

Proof. We prove the contrapositive. If New Kim’s Lemma fails, then we have a
formula ϕ(x; b), a model M |H T , and global M-invariant types p(y) and q(y)
extending tp(b/M) such that p(y) is Kim-strict and ϕ(x; b) divides along Morley
sequences for q but not along Morley sequences for p. Fix k < ω such that if
(bi )i<ω is a Morley sequence for q , then {ϕ(x; bi ) : i < ω} is k-inconsistent.

For arbitrary m and n in ω, we will build a finite forest (aη)η∈m<n
∗

such that:

• For every left-leaning path (λi )1≤i≤ℓ in m<n
∗

, (aλℓ, . . . , aλ1) starts a Morley
sequence for p over M , and hence {ϕ(x; aλi ) : 1 ≤ i ≤ ℓ} is consistent.

• For every right-veering path (ρi )1≤i≤ℓ in m<n
∗

, (aρℓ, . . . , aρ1) starts a Morley
sequence for q over M , and hence {ϕ(x; aλi ) : 1 ≤ i ≤ ℓ} is k-inconsistent.

By compactness, this will suffice to show that ϕ(x; y) has k-BTP.
Fix m < ω with m > 0, and proceed by induction on n. The base cases n = 0

and n = 1 are trivial, since m<n
∗

is empty.
Suppose we are given F0 = (aη)η∈m<n

∗
satisfying the induction hypothesis. Let

b0 realize p|M F0 . Since p is Kim-strict, F0 |⌣
K
M

b0. Let r(z, y)= tp(F0b0/M).
By induction on 1 ≤ ℓ≤ m, we now find (bi , Fi )i<ℓ such that:

(1) Fi ≡M F0 for all i < ℓ.

(2) bi realizes p|M F j if i ≤ j .

(3) (bi , bi+1, . . . , bℓ−1) starts a Morley sequence in q over M F j if i > j .

In the base case ℓ= 1, b0 and F0 satisfy the conditions.
Given (bi , Fi )i<ℓ satisfying (1)–(3) for ℓ<m, let bℓ realize q|M(bi ,Fi )i<ℓ . Then (3)

is satisfied for ℓ+1. Since r(z, b0)= tp(F0/Mb0) does not Kim-divide over M and
(bi )i<ℓ+1 starts a Morley sequence for a global M-invariant type,

⋃
i<ℓ+1 r(z, bi )

is consistent. Let Fℓ realize this type. Then (1) is satisfied for ℓ+ 1. Now since
r(F0, z)= tp(b0/M F0)= p|M F0 , p is M-invariant, and Fℓ ≡M F0, we have, for all
i < ℓ+ 1, tp(bi/M Fℓ)= r(Fℓ, z)= p|M Fℓ , and thus (2) is satisfied for ℓ+ 1.

Having constructed (bi , Fi )i<m , we reindex to define the forest (a′
η)η∈m<n+1

∗
.

By (1), we can write Fi = (ai
η)η∈m<n

∗
, and each Fi satisfies the induction hypothesis.

Set a′

⟨i⟩ = bm−i−1, and a′

⟨i⟩⌢η = am−i−1
η . Note that the reindexing by (m − i − 1)

means that our sequence (bi , Fi )i<m proceeds leftward in the new forest.
A left-leaning path in the new forest begins with at most one element bi at the

bottom level and is followed by some left-leaning path in F j with i ≤ j . By (2)
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and induction, the reverse sequence starts a Morley sequence for p over M . A
right-veering path in the new forest may begin with elements bi1, . . . , biℓ at the
bottom level, with i1 > · · ·> iℓ, and is followed by a right-veering path in some F j

with iℓ > j . By (3) and induction, the reverse sequence starts a Morley sequence
for q over M . □

We now situate NBTP relative to the other tree properties.

Proposition 5.3. If T is NTP2, then T is NBTP.

Proof. Assume ϕ(x; y) has k-BTP, witnessed by (aη)η∈ω<ω∗
. Consider the array

(bi, j )i, j<ω with bi, j = a(0i )⌢⟨ j⟩, where 0i denotes the string of length i consisting
of all 0’s.

For all f : ω→ ω, the sequence (λi )i<ω with λi = (0i )⌢⟨ f (i)⟩ is a left-leaning
path. So {ϕ(x; bi, f (i)) : i < ω} = {ϕ(x; aλi ) : i < ω} is consistent.

For all i < ω, the sequence (ρ j ) j<ω with ρ j = (0i )⌢⟨ j⟩ is a right-veering path.
So {ϕ(x; bi, j ) : j < ω} = {ϕ(x; aρ j ) : j < ω} is k-inconsistent.

Thus ϕ(x; y) has TP2. □

When k > 2, a witness to k-BTP does not directly contain a witness to SOP1,
but rather a variant of SOP1 with k-inconsistency instead of 2-inconsistency. So
for the implication from NSOP1 to NBTP, we will use the following alternative
characterization of SOP1 from [Kaplan and Ramsey 2020].

Fact 5.4 [Kaplan and Ramsey 2020, Proposition 2.4]. T has SOP1 if and only if
there exists k < ω and an array (ci, j )i<ω, j<2 such that:

• cn,0 ≡(ci, j )i<n, j<2 cn,1 for all n < ω.

• {ϕ(x; ci,0) : i < ω} is consistent.

• {ϕ(x; ci,1) : i < ω} is k-inconsistent.

Proposition 5.5. If T is NSOP1, then T is NBTP.

Proof. Assume ϕ(x; y) has k-BTP, witnessed by (aη)η∈ω<ω∗
. Consider the binary

subtree (bη)η∈2<ω with bη = a⟨0⟩⌢η. This tree does not witness SOP1, but it does
have the following properties, which will be sufficient to obtain SOP1:

• For any ρ ∈ 2ω, {ϕ(x; bρ | n) : n < ω} is consistent (since the corresponding
sequence in our original forest is a left-leaning path).

• For any µ1, . . . , µk ∈ 2<ω such that µ⌢i ⟨1⟩ ⊴ µi+1 for all 1 ≤ i < k,
{ϕ(x; bµ⌢i ⟨0⟩) : 1 ≤ i ≤ k} is inconsistent (since the corresponding sequence in
our original forest is a right-veering path of length k).

By compactness, we can obtain a tree (bη)η∈2<κ , where κ > |Sy(T )|, which
satisfies the obvious extensions of the two properties above.
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Following the proof of [Chernikov and Ramsey 2016, Proposition 5.2], we define
(ηi , νi )i<ω in 2<κ by recursion. Given (ηi , νi )i<n (and setting η−1 =⟨ ⟩ when n = 0),
let µα = ηn−1

⌢(1α)⌢⟨0⟩ for all α <κ . Since κ > |Sy(T )|, there are α <β <κ such
that bµα and bµβ have the same type over (bηi , bνi )i<n . Let νn = µα and ηn = µβ .
Directly from the construction, we have the following properties:

(1) bηn ≡(bηi ,bνi )i<n bνn for all n.

(2) If i < j , then ηi ◁ η j , ν j .

(3) For all i , (ηi ∧ νi )
⌢

⟨1⟩ ⊴ ηi and (ηi ∧ νi )
⌢

⟨0⟩ = νi .

Now, in the statement of Fact 5.4, set ci,0 = bηi and ci,1 = bνi for all i < ω.
We have cn,0 ≡(ci, j )i<n, j<2 cn,1 by (1). Since (ηi )i<ω is a chain in 2<κ by (2),
{ϕ(x; ci,0) : i < ω} = {ϕ(x; bηi ) : i < ω} is consistent. And setting µi = (ηi ∧ νi )

for all i , note that by (2) and (3), νi = µ⌢i ⟨0⟩, and µ⌢i ⟨1⟩ ⊴ ηi ⊴ (η j ∧ ν j ) = µ j

when i < j . So {ϕ(x; ci,1) : i <ω} = {ϕ(x; bµ⌢i ⟨0⟩) : i <ω} is k-inconsistent. Thus
T has SOP1. □

Proposition 5.6. If T is NBTP, then T is NATP.

Proof. Assume ϕ(x; y) has ATP, witnessed by (aη)η∈2<ω .
Define a map e : ω<ω → 2<ω by recursion on the length of the input sequence:

e(⟨ ⟩)= ⟨ ⟩,

e(η⌢⟨i⟩)= e(η)⌢⟨0⟩
⌢(12i ).

Note that if η ⊴ ν, then e(η)⊴ e(ν).
Now define f : ω<ω → 2<ω by f (η)= e(η)⌢⟨1⟩, and consider the tree (bη)η∈ω<ω∗

with bη = a f (η).
If (λn)n<ω is a left-leaning path, we claim that { f (λn) : n < ω} is an antichain

in 2<ω, and hence {ϕ(x; bλn ) : n < ω} = {ϕ(x; a f (λn )) : n < ω} is consistent.
So fix n < m in ω. Writing λn = η⌢⟨i⟩, we have η⌢⟨ j⟩ ◁ λn+1 for some j ≤ i .

Now if η⌢⟨ j⟩ ◁ ν, then also η⌢⟨ j⟩ ◁ ν ′ whenever ν ′ is a descendent of ν or a
descendent of a leftward sibling of ν. Since (n+1)≤ m, it follows that η⌢⟨ j⟩◁ λm .
Let j ′ < ω be such that η⌢⟨ j⟩⌢⟨ j ′

⟩ ⊴ λm .
Now f (λn)= e(η⌢⟨i⟩)⌢⟨1⟩ = e(η)⌢⟨0⟩

⌢(12i+1). On the other hand, f (λm)=

e(λm)
⌢

⟨1⟩ has as an initial segment e(η⌢⟨ j⟩⌢⟨ j ′
⟩)= e(η)⌢⟨0⟩

⌢(12 j )⌢⟨0⟩
⌢(12 j ′

).
Since 2i + 1 ̸= 2 j , f (λn)⊥ f (λm), as desired.

If (ρn)n<ω is a right-veering path, we claim that f (ρn)⊴ f (ρn+1) for all n < ω.
From this, it follows that the values { f (ρn) : n < ω} are pairwise comparable, and
hence {ϕ(x; bρn ) : n < ω} = {ϕ(x; a f (ρn)) : n < ω} is 2-inconsistent.
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So fix n < ω. Writing ρn = η⌢⟨i⟩, we have η⌢⟨ j⟩ ⊴ ρn+1 for some j > i .
Now f (ρn)= e(η⌢⟨i⟩)⌢⟨1⟩ = e(η)⌢⟨0⟩

⌢(12i+1). On the other hand, f (ρn+1)=

e(ρn+1)
⌢

⟨1⟩ has as an initial segment e(η⌢⟨ j⟩)= e(η)⌢⟨0⟩
⌢(12 j ). Since 2i +1<

2 j , f (ρn)⊴ f (ρn+1), as desired.
Thus ϕ(x; y) has 2-BTP. □

6. Questions

We have left open several natural directions for future work. In our view, the main
problem is to find a syntactic characterization of the theories satisfying New Kim’s
Lemma. We have shown that NBTP implies New Kim’s Lemma, but it is open
whether this implication reverses. No implication in either direction is known
between New Kim’s Lemma and NATP. In light of Hanson’s preprint [Hanson
2023], we are also interested in the relationship between New Kim’s Lemma and
the property NCTP explored there.

Question 6.1. Is New Kim’s Lemma equivalent to one or more of the syntactic
properties NATP, NBTP, or NCTP?

However, it is conceivable that there simply is no syntactic property that char-
acterizes New Kim’s Lemma. One way of making this precise is to recall the
following very general definition, due to Shelah.

Definition 6.2 [Shelah 2000, Definition 5.17]. • For n < ω, an n-code (for a
partial type) is a pair A = (A+, A−) of disjoint subsets of [n] = {0, . . . , n −1}.
Given a formula ϕ(x; y) and tuples a0, . . . , an−1 ∈ My , the partial type coded
by A = (A+, A−) is

qA(x)= {ϕ(x; ai ) : i ∈ A+} ∪ {¬ϕ(x; ai ) : i ∈ A−}.

• For n < ω, an n-pattern (of consistency and inconsistency) is a pair (C, I )
of disjoint sets of n-codes. A finite pattern is an n-pattern for some n < ω.
We say that a formula ϕ(x; y) exhibits the n-pattern (C, I ) if there are tuples
a0, . . . , an−1 ∈ My such that for every code A ∈ C , qA(x) is consistent, and
for every code A ∈ I , qA(x) is inconsistent.

• A property of formulas P is definable by patterns if there is a set F of finite
patterns such that ϕ(x; y) has property P if and only if ϕ(x; y) exhibits every
pattern in F .

• A property Q of theories is definable by patterns if there is a property P of
formulas which is defined by patterns, and T has property Q if and only if
there is some formula ϕ(x; y) which has property P .7

7Shelah calls a property of theories which is definable by patterns “weakly simply high straight”.
This is a special case of a related notion that Shelah calls “straightly defined”.
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Each of the properties TP, TP1, TP2, SOP1, ATP, and BTP considered in this
paper are definable by patterns: let F consist of one pattern for each finite subset
of the infinite pattern of consistency and inconsistency defining the property, and
apply compactness.

Question 6.3. Is the class of theories in which New Kim’s Lemma fails definable
by patterns?

It would be nice to have a larger stock of examples of theories satisfying New
Kim’s Lemma. To this end, we would like it to be easier to check that New Kim’s
Lemma holds, and to have more constructions for producing theories satisfying
New Kim’s Lemma.

Question 6.4. Does it suffice to show that New Kim’s Lemma holds for formulas
in a single free variable to establish that it holds for all formulas?

The analogous fact is known for each of the properties NTP, NTP1, NTP2,
NSOP1, and NATP: to prove that a theory has one of these properties, it suffices
to check that no formula ϕ(x; y) has the corresponding property, where x is a
single variable. These arguments typically push against the syntactic definition of
the property, so it is hard to envision what a solution to this question might look
like without first resolving Question 6.3. In light of this, it makes sense to ask
Question 6.4 with New Kim’s Lemma replaced by NBTP.

The theory DLOp examined in Section 4A is a special case of a general construc-
tion, developed in [Chernikov and Ramsey 2016], for “parametrizing” arbitrary
Fraïssé limits with disjoint amalgamation. As shown in [loc. cit., Corollary 6.3], the
parametrization of a Fraïssé limit with a simple theory is always NSOP1. It seems
likely that the arguments in Section 4A generalize to provide a positive answer to
the following question.

Question 6.5. Suppose K is a Fraïssé class with disjoint amalgamation, and let Kpfc

be the parametrized version of K, as defined in [loc. cit., Section 6.3]. Let T and
Tpfc be the theories of the Fraïssé limits of K and Kpfc, respectively. If T satisfies
New Kim’s Lemma (or if T is NTP2), does Tpfc satisfy New Kim’s Lemma?

There is a theme in the literature that “generic constructions” (i.e., those involving
taking a model companion) often produce properly NSOP1 theories. For example,
interpolative fusion, introduced in [Kruckman et al. 2021], is a general method
for “generically putting together” multiple theories over a common reduct. Tran,
Walsberg, and Kruckman [Kruckman et al. 2022] showed that the interpolative
fusion of stable theories over a stable base theory is always NSOP1 (and, under mild
hypotheses, the interpolative fusion of NSOP1 theories over a stable base theory is
always NSOP1).
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If theories satisfying New Kim’s Lemma are to generalize NSOP1 theories in
an analogous way to how NTP2 theories generalize simple theories, and how NIP
theories generalize stable theories, then the following seems like a reasonable
conjecture.

Question 6.6. Does the interpolative fusion of NIP theories over a stable base
theory always satisfy New Kim’s Lemma?

Questions 6.5 and 6.6 are also meaningful with New Kim’s Lemma replaced by
NBTP.

Finally, since the Kim’s Lemma surveyed in Section 3 form the cornerstones
of the theories of independence in simple, NSOP1, and NTP2 theories, one might
hope that a satisfying theory of Kim-independence, generalizing the theory of |⌣

f

in NTP2 theories and of |⌣
K in NSOP1 theories, could be developed on the basis

of New Kim’s Lemma. A natural first step would be the chain condition.

Definition 6.7. We say |⌣
K satisfies the chain condition over models if whenever

M |H T , a |⌣
K
M

b, and I = (bi )i<ω is a Morley sequence for a global M-invariant
type extending tp(b/M), there exists a′ such that a′bi ≡M ab for all i < ω, I is
Ma′-indiscernible, and a′

|⌣
K
M

I .

Question 6.8. If T satisfies New Kim’s Lemma, does |⌣
K satisfy the chain condi-

tion over models?

One motivation for this question is that |⌣
f satisfies the chain condition over

models in NTP2 theories, see [Ben Yaacov and Chernikov 2014, Theorem 2.9] (and
the chain condition is the key step in the proof of the variant of the independence
theorem for NTP2 theories in that paper). The proof of the chain condition in
[loc. cit.] uses both the Kim’s Lemma for NTP2 theories and the syntactic definition
of NTP2. So here again, if Question 6.8 has a positive answer, it may be necessary
to first resolve Question 6.3.
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Sparse graphs and the fixed points on type spaces property

Rob Sullivan

We examine the topological dynamics of the automorphism groups of ω-
categorical sparse graphs resulting from Hrushovski constructions. Specifically,
we consider the fixed points on type spaces property, which a structure M has if,
for all n ∈ N, every Aut(M)-subflow of the space Sn(M) of n-types has a fixed
point. Extending a result of Evans, Hubička and Nešetřil, we show that there
exists an ω-categorical structure M , resulting from a Hrushovski construction,
such that no ω-categorical expansion of M has the fixed points on type spaces
property.

1. Introduction

The paper [Evans et al. 2019] is concerned with the topological dynamics of
the automorphism groups of sparse graphs, in the context of the Kechris–Pestov–
Todorčević correspondence [Kechris et al. 2005]. One of the key results of [Evans
et al. 2019] is the following:

Theorem [Evans et al. 2019, Theorem 1.2]. There exists an ω-categorical structure
M such that no ω-categorical expansion has an extremely amenable automorphism
group.

We recall that, for a Hausdorff topological group G, a G-flow is a continuous
action of G on a nonempty compact Hausdorff space X , and we say that G is
extremely amenable if every G-flow has a G-fixed point.

In this paper, we show that the above result holds even in the context of a more
restricted class of flows: subflows of type spaces. Let M be a relational structure.
Following [Meir and Sullivan 2023], we say that M has the fixed points on type
spaces property (FPT), if, for each n ∈N+, every subflow of Sn(M) has an Aut(M)-
fixed point, where Sn(M) denotes the Stone space of n-types with parameters from
M and the action is given by translation of parameters in formulae. This property
is studied in depth in [loc. cit.], and may be thought of as a restriction of extreme
amenability to a subclass of flows which occur naturally in a model-theoretic context.

This project formed the first part of the PhD of the author at Imperial College London, under the
supervision of professor David Evans.
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The main result of this paper is as follows.

Theorem 5.1. There is an ω-categorical structure M such that no ω-categorical
expansion has FPT , the fixed points on type spaces property.

The structure M appearing in both these results is a particular type of ω-
categorical sparse graph known as an ω-categorical Hrushovski construction (first
introduced in [Hrushovski 1988] — a clear introductory exposition may be found in
[Evans 2013]). A graph A is k-sparse if for all finite B ⊆ A, the number of edges
of B is at most k times the number of vertices of B.

The proof strategy for Theorem 5.1 is as follows. A central fact in the analysis
of sparse graphs is that a graph is k-sparse if and only if it is k-orientable: its
edges may be directed so that each vertex has at most k out-edges. This fact is well
known to graph theorists [Nash-Williams 1964], and the proof is by Hall’s marriage
theorem (see Proposition 2.6).

For any k-sparse graph M , the space Or(M) of k-orientations of M (with the
subspace topology from 2M2

) gives an Aut(M)-flow (Lemma 2.8). As in [Evans et al.
2019], we specialize to the case k= 2 (results generalize straightforwardly to any k).
Theorem 1.2 of [loc. cit.], the result of Evans, Hubička and Nešetřil mentioned
above, then immediately results from the following, using the Ryll–Nardzewski
theorem:

Proposition 5.2 (adapted from [Evans et al. 2019, Theorem 3.7]). Let M be an
infinite 2-sparse graph in which all vertices have infinite degree. Let G = Aut(M).

Consider the G-flow G ↷ Or(M). If H ≤ G fixes a 2-orientation of M , then H
has infinitely many orbits on M2.

To prove Theorem 5.1, we also use the above result. Letting M be the ω-
categorical Hrushovski construction detailed in Section 3, we define a notion of
when a 1-type encodes an orientation of M . We then define an Aut(M)-flow
morphism u : S1(M)→ 2M2

which sends each orientation-encoding 1-type to the
orientation it encodes. Let M ′ be an expansion of M with FPT, and let H =Aut(M ′).
Then H must fix a point in the subflow of orientation-encoding 1-types, so fixes an
orientation. We then use Proposition 5.2 to see that H has infinitely many orbits on
M2, so H is not oligmorphic, and therefore by the Ryll–Nardzewski theorem we
see that M ′ is not ω-categorical. Thus M has no ω-categorical expansion with FPT.

2. Background

In this section, we present the sufficient background material on topological dy-
namics, sparse graphs and Fraïssé classes with distinguished substructures (“strong
Fraïssé classes”) in order to be able to construct the ω-categorical examples of
sparse graphs (ω-categorical Hrushovski constructions) given in Section 3.



SPARSE GRAPHS AND THE FIXED POINTS ON TYPE SPACES PROPERTY 863

We assume that the reader is familiar with the classical Fraïssé theory, the
pointwise convergence topology on automorphism groups of first-order structures
and the Ryll–Nardzewski theorem. (The background for these three topics can be
found in [Hodges 1993, Chapter 7] and [Evans 2013, Sections 1–2].)

The background material in this section has been mostly adapted from [Evans
et al. 2019] and [Evans 2013].

All first-order languages considered in this article will be countable and relational.

2A. Topological dynamics. A central object of study in topological dynamics is
the following (see [Auslander 1988] for a thorough background):

Definition 2.1. A G-flow is a continuous action G ↷ X of a Hausdorff topological
group G on a nonempty compact Hausdorff topological space X .

We will often simply write X to refer to the G-flow G ↷ X when this is clear
from context. Given a G-flow on X , G · x , the orbit closure of a point x ∈ X , is
a G-invariant compact subset of X . In general, a nonempty compact G-invariant
subset Y ⊆ X defines a subflow by restricting the G-action to Y .

Let X, Y be G-flows. A G-flow morphism X→Y is a continuous map α : X→Y
such that α(g · x)= g ·α(x) (this property is called G-equivariance). A surjective
G-flow morphism X → Y is called a factor of X , and we will also say that Y
is a factor of X when the morphism is contextually implied. Bijective G-flow
morphisms are isomorphisms, as they are between compact Hausdorff spaces.

2B. Graphs. We work with graphs in first-order logic as follows. Let L be a first-
order language consisting of a single binary relation symbol E . A graph consists
of an L-structure (A, E A) where the binary relation E A

⊆ A2 is symmetric and
irreflexive. We call A the vertex set, and write E A for the set of unordered pairs
{a, b} such that (a, b) ∈ E A. We call E A the edge set, and this will usually be
the relevant set we work with in this paper, following the usual graph-theoretic
definition of a graph — rather than the symmetric set E A of ordered pairs, which
we only introduce for the sake of first-order structure formalism. We will usually
just write A to denote the graph (A, E A) when this is clear from context. We will
often write ∼ instead of E in formulae to indicate adjacency.

By the above definition, here we only work with simple graphs: graphs having
no loops on a single vertex or multiple edges between two vertices.

Definition 2.2. Let (A, E A) be a graph. A set ρ A
⊆ A2 is an orientation of (A, E A)

if

• ρ A
⊆ E A;

• for each (x, y) ∈ E A, exactly one of (x, y), (y, x) is in ρ A.
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We may visualize the above definition as follows: an orientation of a graph
consists of a direction for each edge.

Note that the above definition implies that ρ A contains no directed loops or
directed 2-cycles. We will refer to (A, E A, ρ A) as an oriented graph.

Definition 2.3. Let (A, E A, ρ A) be an oriented graph.
If (x, y) ∈ ρ A, we refer to (x, y) as an out-edge of x and as an in-edge of y. We

call y an out-vertex of x , and x an in-vertex of y.
The out-neighborhood N

+
(x) of x consists of the out-vertices of x . The in-

neighborhood N–(x) of x consists of the in-vertices of x . The out-degree d
+
(x) of

x is defined to be d
+
(x) = |N

+
(x)|, and the in-degree d–(x) of x is defined to be

d–(x)= |N–(x)|.

When we refer to a subgraph of a graph, or an oriented subgraph of an oriented
graph, we mean a substructure in the model-theoretic sense. For graph theorists,
these substructures would usually be referred to as induced subgraphs.

(We use the full notation for structures in this section for clarity, but henceforth
we will usually denote graphs (A, E A) by A, and oriented graphs (A, E A, ρ A) by
A or (A, ρ A).)

2C. Sparse graphs.

Definition 2.4. Let k ∈ N+. A graph A is k-sparse if for all B ⊆fin . A, we have
|EB | ≤ k|B|.

Definition 2.5. Let (A, ρ A) be an oriented graph. Let k ∈ N+. We call ρ A a
k-orientation if for x ∈ A, we have d

+
(x)≤ k. We refer to (A, ρ A) as a k-oriented

graph.
If an undirected graph A has a k-orientation, we say it is k-orientable.

The following proposition is well-known to graph theorists [Nash-Williams
1964], and will be a key tool here. We present the proof as it is relatively brief.

Proposition 2.6 [Evans et al. 2019, Theorem 3.4]. Let A be a countable graph.
Then A is k-orientable if and only if it is k-sparse.

Proof.⇒: straightforward.

⇐: We prove the statement for finite A, and then the statement for countably
infinite A follows by a straightforward Kőnig’s lemma argument. We wish to
produce a k-orientation of A, and to do this we must direct each edge. We will
use Hall’s marriage theorem [Bollobás 1998, III.3], which for the convenience of
the reader we briefly restate: for a finite bipartite graph B with left set X and right
set Y , there is an X -saturated matching if and only if |W | ≤ |NB(W )| for W ⊆ X .
(Here NB(W ) denotes the neighborhood of W in B.)



SPARSE GRAPHS AND THE FIXED POINTS ON TYPE SPACES PROPERTY 865

Form a bipartite graph B with left set E A and right set A× [k], and place an
edge between e ∈ E A and (x, i) ∈ A×[k] if x ∈ e. Given a left-saturated matching,
if e is matched to (x, i), we orient e outwards from x , and this gives a k-orientation
of A.

To see that a left-saturated matching exists, take W ⊆ E A. Let V be the set of
vertices of the edges which lie in W . Then |NB(W )| = k|V |, and as A is k-sparse,
we have that k|V | ≥ |EA(V )|, where EA(V ) is the set of edges in A whose vertices
lie in V . As |EA(V )| ≥ |W |, by Hall’s marriage theorem there exists a left-saturated
matching of the bipartite graph B. □

For presentational simplicity, we will work with k = 2. Our results generalize
straightforwardly for k > 2.

Note. In this paper, we may occasionally say “oriented graph” to in fact mean
“2-oriented graph”. We will try to avoid this in general, but when this does occur
the meaning will be clear from context.

Definition 2.7. Let M be a 2-sparse graph. We let Or(M) ⊆ 2M2
denote the

topological space of 2-orientations of M , where the topology is given by the
subspace topology from the Cantor space 2M2

.

Lemma 2.8. Let M be a 2-sparse graph. Then Or(M) is an Aut(M)-flow with the
natural action

g · ρ = {(gx, gy) : (x, y) ∈ ρ}.

Proof. By Proposition 2.6, we see that Or(M) is nonempty, and it is immediate
that Or(M) is Aut(M)-invariant. It therefore remains to show that Or(M) is closed
in 2M2

: if σ ∈ 2M2
is not a 2-orientation, then this is witnessed on a finite set, so

2M2
\Or(M) is open. □

2D. Graph predimension. One way to characterize 2-sparsity is in terms of a
particular notion of graph predimension.

Definition 2.9. Let A be a finite graph. We define the predimension δ(A) of A to
be δ(A)= 2|A| − |E A|.

For B ⊆ A, we define the relative predimension of A over B to be δ(A/B) =

δ(A)− δ(B).

We immediately see that, for A a finite graph, A is 2-sparse if and only if for all
B ⊆ A we have δ(B)≥ 0.

2E. Strong classes. For the ω-categorical Hrushovski constructions in Section 3,
we will need to take a class of sparse graphs where we only consider particular
distinguished embeddings between structures in the class, and for this we require
the definition below. In the subsequent section, we will construct Fraïssé classes
where we only permit these distinguished embeddings between finite structures.
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Definition 2.10. Let K be a class of finite L-structures closed under isomorphisms.
Let S ⊆ Emb(K) be a class of embeddings between structures in K satisfying that

(S1) S contains all isomorphisms;

(S2) S is closed under composition;

(S3) if f : A→ C is in S and f (A)⊆ B ⊆ C with B ∈K, then f : A→ B is in S.

Then we call (K,S) a strong class, and call the elements of S strong embeddings.
(This is originally due to Hrushovski [1988]. An accessible exposition of strong

classes is in [Evans 2013, Section 3].)
If A, B ∈ K, A ⊆ B and the inclusion map ι : A ↪→ B is in S, then we write

A ≤ B and say A is a strong substructure of B. We then have that

(L1) ≤ is reflexive;

(L2) ≤ is transitive;

(L3) if A ≤ C and A ⊆ B ⊆ C with B ∈ K, then A ≤ B.

We will often write (K,≤) instead of (K,S), and we will refer to the elements
of S as ≤-embeddings.

If (K,≤) is a strong class (i.e., S satisfies (S1), (S2), (S3)), then we have that
for f : A→ B in S, if X ≤ A, then f (X)≤ B.

Definition 2.11. Suppose (K,≤) is a strong class. Let A0 ≤ A1 ≤ · · · be an
increasing ≤-chain of structures in K, and let M =

⋃
i∈N Ai . Let A ⊆fin . M .

Then we write A ≤ M , and say that A is a strong substructure of M , or that A is
≤-closed in M , to mean that there is some Ai (i ∈ N) with A ≤ Ai .

Given A ∈ K and an embedding f : A→ M , we will likewise say that f is a
≤-embedding if f (A)≤ M .

The above definition is independent of the choice of≤-chain. To see this, suppose
M is also the union of the elements of an increasing ≤-chain B0 ≤ B1 ≤ · · · of
K-structures. Take any Ai (i ∈N). Then Ai ⊆ B j for some j ∈N, and B j ⊆ Ak for
some k ≥ i . As Ai ≤ Ak , by (L3) we have Ai ≤ B j .

Let g ∈ Aut(M). Take a pair Ai ≤ A j (i < j). Then g|A j : A j → g A j is an
isomorphism, so g|A j ∈ S, and so g Ai ≤ g A j . Thus M is also the union of the
increasing ≤-chain g A0 ≤ g A1 ≤ · · · . So if A ≤ M , then g A ≤ M : that is, all
g ∈ Aut(M) preserve ≤.

2F. Fraïssé theory for strong classes. We now develop an analogue of the classical
Fraïssé theory for strong classes. We omit the proofs and state the relevant material
as a series of definitions and lemmas. (For the classical Fraïssé theory, originally
developed in [Fraïssé 1954], see [Hodges 1993, Chapter 7], and for a more complete
treatment of Fraïssé theory for strong classes, see [Evans 2013, Section 3].)
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Definition 2.12. Let (K,≤) be a strong class of L-structures.

• (K,≤) has the joint embedding property (JEP) if for A0, A1 ∈ K, there is
B ∈ K with ≤-embeddings f0 : A0→ B, f1 : A1→ B.

• (K,≤) has the amalgamation property (AP) if, for any pair of ≤-embeddings
B0

f0
←− A f1

−→ B1, there exists C ∈ K and a pair of ≤-embeddings B0
g0
−→

C g1
←− B1 such that g0 ◦ f0 = g1 ◦ f1.

• For A, B0, B1 ∈ K with A ≤ B0, B1, the free amalgam C of B0, B1 over A is
the L-structure C whose domain is the disjoint union of B0, B1 over A and
whose relations RC are exactly the unions RB0 ∪ RB1 of the relations RB0, RB1

on B0, B1 (for R a relation symbol in L). If for all L-structures A, B0, B1 ∈K
with A ≤ B0, B1 we have that the free amalgam C of B0, B1 over A is in K
with B0, B1 ≤ C , then we say that (K,≤) is a free amalgamation class.

We will usually not mention the distinguished class of embeddings in our termi-
nology, as it will be clear from context and the fact that we are working with strong
classes. For instance, we say that (K,≤) has the amalgamation property, even
though perhaps more strictly we should say that (K,≤) has the ≤-amalgamation
property.

In the following definitions and lemmas, let (K,≤) be a strong class, and let M
be the union of an increasing ≤-chain A1 ≤ A2 ≤ · · · of finite structures in (K,≤).

Definition 2.13. The ≤-age of M , written Age≤(M), is the class of A ∈ K such
that there is a ≤-embedding A→ M .

The class (Age≤(M),≤) is a ≤-hereditary strong subclass of (K,≤), and it has
the ≤-joint embedding property.

Definition 2.14. M has the ≤-extension property if for all A, B ∈ Age≤(M) and
≤-embeddings f : A→ M, g : A→ B, there exists a ≤-embedding h : B→ M
with h ◦ g = f .

M is ≤-ultrahomogeneous if each isomorphism f : A→ A′ between strong
substructures A, A′ of M extends to an automorphism of M .

(Again, when it is clear from context, we will often omit the ≤- prefix and just
say that M has the extension property or is ultrahomogeneous.)

Lemma 2.15. Let M ′ also be a union of an increasing ≤-chain in K. Suppose
M, M ′ have the same ≤-age and both have the ≤-extension property. Then M, M ′

are isomorphic.

Lemma 2.16. M is ≤-ultrahomogeneous if and only if M has the ≤-extension
property.

Lemma 2.17. Suppose M is ≤-ultrahomogeneous. Then the class (Age≤(M),≤)

has the amalgamation property.
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Definition 2.18. Let (K,≤) be a strong class. We say that (K,≤) is an amalgama-
tion class or Fraïssé class if (K ≤) contains countably many isomorphism types,
contains structures of arbitrarily large finite size, and has the joint embedding and
amalgamation properties.

Theorem 2.19 (Fraïssé–Hrushovski). Let (K,≤) be an amalgamation class. Then
there is a structure M which is a union of an increasing ≤-chain in K such that M
is ≤-ultrahomogeneous and Age≤(M) = K, and M is unique up to isomorphism
amongst structures with these properties.

We call this structure the Fraïssé limit or generic structure of K.

3. ω-categorical sparse graphs

The material in this section is based on [Evans et al. 2019] and the unpublished notes
[Evans 2013], with some minor modifications, and constitutes further background
required for Section 5.

We now construct an amalgamation class of sparse graphs whose Fraïssé limit is
ω-categorical. Specifically, this will be a version of the ω-categorical Hrushovski
construction MF , first seen in [Hrushovski 1988]. We will do this by defining a
notion of closure (i.e., a particular notion of strong substructure), d-closure, which
will be uniformly bounded. The relevance of this can be seen in the lemma below.

Lemma 3.1 [Evans et al. 2019, Remark 2.8]. Let (K,≤) be an amalgamation class
such that for each n ∈ N, (K,≤) has only finitely many isomorphism classes of
structures of size n. Suppose there is a function h : N→ N such that for B ∈ K and
A ⊆ B with |A| ≤ n, there exists A ⊆ C ≤ B with |C | ≤ h(n).

Then the Fraïssé limit M of (K,≤) is ω-categorical.

(The function h will be a uniform bound on the size of ≤-closures.)

Proof. By the Ryll–Nardzewski theorem, it suffices to show that, for n ≥ 1, Aut(M)

has finitely many orbits on Mn . Take n ≥ 1. As there are only finitely many
isomorphism types of structures of size ≤ h(n) in K and M is ≤-ultrahomogeneous,
we have that Aut(M) has finitely many orbits on {c̄ ∈ Mh(n)

: c̄ ≤ M}. We can
extend any ā ∈ Mn to an element of this set (note that in ordered tuples, we can
have repeats of elements). If ā, ā′ are not in the same orbit, then nor will their
extensions be, so we are done. □

Definition 3.2. Let C>0 be the class of finite graphs A such that for nonempty
B ⊆ A, we have δ(B) > 0.

We note that for A ∈ C>0, if A′ ⊆ A then A′ ∈ C>0.

Definition 3.3. Take A, B ∈ C>0 with A ⊆ B. We say that A is d-closed in B,
written A ≤d B, if for all A ⊊ C ⊆ B, we have δ(A) < δ(C).
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Lemma 3.4 (submodularity [Evans 2013, Lemma 3.7]). Let A be a finite graph,
and let B, C ⊆ A. Then we have that

δ(B ∪C)≤ δ(B)+ δ(C)− δ(B ∩C).

We have equality if and only if EB∪C = EB ∪ EC , i.e., B, C are freely amalgamated
over B ∩C in A.

The proof of the above lemma is straightforward. We now prove some basic
properties of ≤d .

Lemma 3.5 [Evans 2013, Lemma 3.10]. Let B ∈ C>0. Then:

(1) A ≤d B, X ⊆ B ⇒ A∩ X ≤d X.

(2) A ≤d C ≤d B ⇒ A ≤d B.

(3) A1, A2 ≤d B ⇒ A1 ∩ A2 ≤d B.

Proof. (1) Take A∩ X ⊊ Y ⊆ X . Note that A∩ Y = A∩ X . By submodularity,

δ(A∪ Y )≤ δ(A)+ δ(Y )− δ(A∩ Y )= δ(A)+ δ(Y )− δ(A∩ X),

so δ(Y )−δ(A∩ X)≥ δ(A∪Y )−δ(A) > 0, using the fact that A ⊊ A∪Y ⊆ B.

(2) We may assume A ̸= C . Take A ⊊ X ⊆ B. By (1) applied to C ≤d B and
X ⊆ B, we have C ∩ X ≤d X . Also we have A ⊆ C ∩ X ⊆ C . So, as A ≤d C ,
we have δ(A) < δ(X).

(3) By (1), A1 ∩ A2 ≤d A1. Then use (2). □

For B ∈ C>0, by part (3) of the previous lemma we see that for A ⊆ B we
have that

⋂
A⊆A′≤d B A′ ≤d B, so we can define the d-closure of A in B as this

intersection, written cldB(A).

Lemma 3.6 [Evans 2013, Lemma 3.12]. Let B ∈ C>0 and let A ⊆ B. Then
δ(A)≥ δ(cldB(A)).

Proof. Amongst all A ⊆ X ⊆ B, consider those for which δ(X) is smallest, and
then out of these choose a C of greatest size. By the first stage of selection, we
have δ(C)≤ δ(A), and by the second stage, if C ⊊ D ⊆ B then δ(C) < δ(D), so
C ≤d B. So cldB(A)⊆ C ⊆ B, and as cldB(A)≤d B, we have δ(cldB(A))≤ δ(C). □

Lemma 3.7 [Evans 2013, Lemma 3.15]. (C>0,≤d) is a free amalgamation class.

Proof. It only remains to check the free amalgamation property (which implies JEP).
We prove a stronger claim. Given A, B1, B2 ∈ C>0 such that A ≤d B1 and A ⊆ B2,
with B1, B2 ⊆ E , where E is the free amalgam of B1, B2 over A, we claim that
B2 ≤d E . Once we have the claim, note that ∅≤d B2 ≤d E implies that E ∈ C>0.
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Take B2 ⊊ X ⊆ E . Then letting Y = X ∩ B1, we have Y ⊋ A and X = B2 ∪ Y ,
and X is the free amalgam of B2, Y over A. So

δ(X)= δ(B2 ∪ Y )= δ(B2)+ δ(Y )− δ(A),

and so, as A ≤d B1,

δ(X)− δ(B2)= δ(Y )− δ(A) > 0. □

The Fraïssé limit M>0 of (C>0,≤d) is not ω-categorical, as for A ⊆fin . M>0,
there is no uniform bound on |cld(A)| in terms of |A|.

To construct ω-categorical examples, as mentioned at the start of this section,
we consider subclasses of C>0 in which d-closure is uniformly bounded.

Definition 3.8. Let F : R≥0→ R≥0 be a continuous, strictly increasing function
with F(0)= 0 and F(x)→∞ as x→∞. We define

CF := {B ∈ C>0 : δ(A)≥ F(|A|) for all A ⊆ B}.

Note that if B ∈ CF and C ⊆ B, then C ∈ CF .

Lemma 3.9 [Evans 2013, Theorem 3.19; Evans et al. 2019, Theorem 4.14].

(1) For B ∈ CF , A ⊆ B, we have |cldB(A)| ≤ F−1(2|A|).

(2) If (CF ,≤d) is an amalgamation class, then its Fraïssé limit MF is ω-categorical.

Proof. (1) From Lemma 3.6 and the fact that cldB(A)∈ CF , we have F(|cldB(A)|)≤

δ(cldB(A))≤ δ(A)≤ 2|A|.

(2) This follows from Lemma 3.1. □

Definition 3.10. Suppose that (CF ,≤d) is an amalgamation class, and write MF

for its Fraïssé limit.
For A ⊆ MF with A infinite, we say that A ≤d MF if A∩ X ≤d X for all finite

X ⊆ MF .
(Note that if A is finite, then A ≤d MF if and only if A∩ X ≤d X for all finite

X ⊆ MF , by part (1) of Lemma 3.5, so this definition is consistent.)
Similarly we define cldMF

(A) as the smallest≤d -closed subset of MF containing A.
(This is well-defined: intersections of ≤d -closed subsets of MF are ≤d -closed, by
part (2) of Lemma 3.5.)

Let A be a graph, possibly infinite, which is embeddable in MF . We say that an
embedding f : A→ MF is a ≤d -embedding if f (A)≤d MF .

We now describe a method for constructing the control function F to ensure that
(CF ,≤d) is a free amalgamation class.

Lemma 3.11 (adapted from [Evans 2013, Example 3.20; Evans et al. 2019, Ex-
ample 4.15]). Let n ∈ N. Let F be as in Definition 3.8, and assume additionally
that
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• F is piecewise smooth;

• its right derivative F ′ is decreasing;

• F ′(x)≤ 1/x for x > n;

• for A, B1, B2 ∈ CF with A≤d B1, B2 and |B1|< n, |B2|< n, the free amalgam
of B1, B2 over A lies in CF .

Then (CF ,≤d) is a free amalgamation class.

Proof. Let A, B1, B2 ∈ CF , with A ≤d B1, B2. We may assume |B1| ≥ n and
|B1| ≥ |B2|. Let E be the free amalgam of B1, B2 over A. By Lemma 3.7, E ∈ C>0

and B1, B2 ≤d E . We need to show that E ∈ CF . Assuming E ̸= B1, B2, we have
A ̸= B1, B2. Suppose X ⊆ E : we need to show that δ(X) ≥ F(|X |). As X is the
free amalgam of B1∩ X , B2∩ X over A∩ X and as A∩ X ≤d Bi ∩ X , it suffices to
check just for X = E .

We have that

δ(E)= δ(B1)+ δ(B2)− δ(A)= δ(B1)+ (|B2| − |A|)
δ(B2)− δ(A)

|B2| − |A|
.

As |B1| ≥ |B2| and as A ≤d B1 with A ̸= B1, we have

δ(B2)− δ(A)

|B2| − |A|
≥

1
|B1|

.

So
δ(E)≥ δ(B1)+

|B2| − |A|
|B1|

≥ F(|B1|)+
|B2| − |A|
|B1|

,

and as the conditions on F ensure that F(x + y)≤ F(x)+ y/x for x ≥ n, we have

δ(E)≥ F(|B1| + |B2| − |A|)= F(|E |). □

4. The fixed points on type spaces property (FPT)

The following is folklore:

Lemma 4.1. Let M be an L-structure, and let G = Aut(M) with the pointwise
convergence topology. Then, for each n ≥ 1, G acts continuously on the Stone space
Sn(M) of n-types with parameters in M , with the action given by

g · p(x̄)= {φ(x̄, gm̄) : φ(x̄, m̄) ∈ p(x̄)}.

That is, G ↷ Sn(M) with the action defined above is a G-flow.

See [Meir and Sullivan 2023, Lemma 4.1] for a proof. (The proof is relatively
straightforward and follows via a compactness argument.)

Note that we define the action of G on L(M)-formulae as

g ·φ(x̄, m̄)= φ(x̄, gm̄).
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Definition 4.2 [Meir and Sullivan 2023, Definition 4.2]. Let M be an L-structure
and let G = Aut(M). We say that M has the fixed points on type spaces property
(FPT) if every subflow of G ↷ Sn(M), n ≥ 1, has a fixed point.

Note that FPT is equivalent to every orbit closure G · p(x̄) in Sn(M) having a
fixed point.

The below lemma will play a key role in the proof of Theorem 5.1. (See
Section 2A for the definition of a factor.)

Lemma 4.3. Let M be an L-structure and let G = Aut(M). Suppose that M has
FPT. Then every subflow of each factor of G ↷ Sn(M), n ≥ 1, has a fixed point.

The proof is straightforward.

5. An ω-categorical structure such that no ω-categorical expansion has FPT

We will now discuss the main result of this paper, which is new.

Theorem 5.1. There is an ω-categorical structure M such that no ω-categorical
expansion has FPT , the fixed points on type spaces property.

The ω-categorical structure M in the above theorem will be a particular case of
the 2-sparse graph MF , the ω-categorical Hrushovski construction from Section 3.

The proof will depend on the following key result from [Evans et al. 2019]:

Proposition 5.2 [Evans et al. 2019, Theorem 3.7]. Let M be an infinite 2-sparse
graph in which all vertices have infinite degree. Let G = Aut(M), and let H ≤ G.

Consider the G-flow G ↷ Or(M). If H fixes a 2-orientation of M , then H has
infinitely many orbits on M2.

Before giving the details of the proof of Theorem 5.1, we first give an informal
general outline.

The informal overview of the proof is as follows. Let G = Aut(M). For each
orientation τ ∈ Or(M), we will define a notion of when a 1-type p(x) ∈ S1(M)

encodes τ (see Figure 1), and we will have an associated “decoding” G-morphism
u : S1(M)→ 2M2

sending each orientation-encoding 1-type back to the orientation
it encodes. We will show that each orientation has a 1-type encoding it, and thus u
contains Or(M) in its image. Now, let M ′ be an expansion of M with FPT, and let
H denote its automorphism group. There is an H -factor map w : S1(M ′)→ S1(M)

given by the restriction map, and so composing with u we see that Or(M) is an
H -subflow of a factor of S1(M ′). Thus, by Lemma 4.3, as M ′ has FPT, H fixes an
orientation of M . Therefore, by Proposition 5.2, H will have infinitely many orbits
on M2, and thus by the Ryll–Nardzewski theorem M ′ cannot be ω-categorical.

We now start the formal details of the proof of Theorem 5.1, which proceeds in
three parts.
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Part 1: specify the control function. We begin with a description of the control
function F and properties of the class CF used to produce the structure M for
Theorem 5.1. It will become clearer in later steps why we take control functions
satisfying the below conditions.

Lemma 5.3. Let F be a control function for the class CF satisfying the conditions
of Definition 3.8, and additionally assume that

• F is piecewise smooth, and its right derivative F ′(x) is decreasing;

• F(1)= 2, F(2)= 3;

• F ′(x)≤ 2/(8x + 1) for x ≥ 2, where F ′ denotes the right derivative.

Then

(1) CF contains a point and an edge, and points and edges are d-closed in elements
of CF ;

(2) (CF ,≤d) is a free amalgamation class;

(3) each vertex of MF has infinite degree (where MF is the Fraïssé limit of
(CF ,≤d));

(4) if a0a1 · · · an−1 is a path, then a0a1 · · · an−1 ∈ CF ;

(5) F(4) < 4, F(5) < 4, F(6) < 4;

(6) if abcd is a 4-cycle, then abcd ∈ CF .

Proof. (1) As F(1) = 2, if x is a point then δ({x}) = 2 = F(|{x}|), so {x} ∈ CF .
If ab is an edge, then δ(ab) = 3 = F(2), so ab ∈ CF . As F is strictly increasing,
points and edges are d-closed in elements of CF .

(2) Take A, B1, B2 ∈ CF with A ≤d B1, B2. Then as F ′(x) ≤ 2/(8x + 1) < 1/x
for x ≥ 2, by Lemma 3.11 we need only check the case |B1|, |B2| ≤ 1, and
the only nontrivial case is where A = ∅: if b1, b2 are nonadjacent points then
δ({b1, b2})= 4 > F(2). So (CF ,≤d) is a free amalgamation class.

(3) Let k ≥ 1. Let ax ∈ CF be an edge. The point a is d-closed in ax , and so by
taking the free amalgamation of k copies ax1, . . . , axk of ax over a, we have that
the star graph Sk is in CF (where Sk is the complete bipartite graph K1,k). Using
the ≤d -extension property of MF , this implies that each vertex of MF has infinite
degree.

(4) Proceed by induction, and obtain a0 · · · an−1 ∈ CF by the free amalgamation of
a0 · · · an−2 and an−2an−1 over an−2.

(5) F is strictly increasing, and so it suffices to show F(6) < 4. F(6) ≤ F(2)+∫ 6
2 2/(8x + 1) dx = 3+ 1

4 log(49)− 1
4 log(17) < 4.
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(6) Let abcd ⊆ MF be a 4-cycle. Then δ(abcd) = 4 > F(4). For C ⊊ abcd, C
either consists of a path of length 2, an edge, two nonadjacent points or a single
point. All of these lie in CF . □

Throughout the rest of the proof of Theorem 5.1 in Section 5, we will assume F
is a control function satisfying the conditions of Lemma 5.3, and we write M =MF .
The first three conditions of the above lemma are relatively standard; the fourth
condition is the one that is particularly specific to our example, constituting a mild
additional restriction on F .

Note that control functions satisfying the conditions of the above lemma do
indeed exist: for example, take F piecewise linear with F(0) = 0, F(1) = 2,
F(2)= 3, and then for x ≥ 2 define F(x)= 1

4 log(8x + 1)+ 3− 1
4 log(17).

Part 2: types encoding orientations, the encoding lemma, and its use in proving
the main theorem. Given an orientation τ ∈ Or(M), we will define a particular
notion of when a 1-type encodes τ .

We write L for the language of graphs (so M is an L-structure).

Definition 5.4. For a, b∈M , we define the label formula f (x, a, b) in the language
L(M) (with constants from M and free variable x) to be:

f (x, a, b)≡ (x ̸= a ∧ x ̸= b∧ a ̸= b∧ a ∼ b)∧

(∃ l1, l2, l3, l4)

((∧
i< j

li ̸= l j

)
∧

(∧
i

li ̸= x ∧ li ̸= a ∧ li ̸= b
)
∧

(x ∼ l1 ∧ l1 ∼ l2 ∧ l2 ∼ l3 ∧ l3 ∼ l4 ∧ l4 ∼ l1 ∧ l2 ∼ a ∧ l4 ∼ a ∧ l3 ∼ b)

)
.

(See Figure 1.)
Let τ ∈ Or(M), and let p(x) ∈ S1(M). We say that p(x) encodes τ if p(x)

contains the following set of formulae:

{ f (x, a, b) : (a, b) ∈ τ } ∪ {¬ f (x, a, b) : (a, b) ∈ M2
\ τ }.

Informally, p(x) encodes τ if, for every pair (a, b) ∈ M2, we have that (a, b) ∈

τ if and only if a, b are adjacent and (a, b) has a “label structure” L(a,b) =

{x, l(a,b)
1 , l(a,b)

2 , l(a,b)
3 , l(a,b)

4 } attached to it, where all label structures intersect exactly
in the “head vertex” x . See Figure 1 for an example of this (where p(x) has been
realized as a point c).

We define the decoding map u : S1(M)→ 2M2
by

u(p(x))= {(a, b) ∈ M2
: f (x, a, b) ∈ p(x)}.

(Note that we will often use subset notation when formally we in fact mean the
characteristic function of that subset within M2.)
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c

a b a′
b′

l(a,b)
1

l(a,b)
2 l(a,b)

3

l(a,b)
4 l(a

′,b′)
1

l(a
′,b′)

2 l(a
′,b′)

3

l(a
′,b′)

4

MF

Figure 1. Encoding an orientation using label structures.

It is immediate that if p(x) encodes τ , then u(p(x))= τ .

The proof of the following is straightforward.

Lemma 5.5. The map u is a G-flow morphism.

Now we turn to the key result used in the proof of Theorem 5.1, which we call
the encoding lemma:

Lemma 5.6. For each orientation τ ∈ Or(M), there exists a type p(x) ∈ S1(M)

encoding τ . Thus Or(M) is a subflow of the image of the decoding map u.

Before proving Lemma 5.6, whose proof involves a significant amount of techni-
cal work, we show how to use it to prove Theorem 5.1.

Proof of Theorem 5.1 given Lemma 5.6. Let M ′ be an expansion of M with FPT.
Let H = Aut(M).

We have a surjective H -flow morphism w : S1(M ′)→ S1(M) given by restriction,
i.e.,

w(p(x))= {ϕ(x) ∈ p(x) : ϕ(x) is a formula in the language L(M)}.

We have that u : S1(M)→ 2M2
is a G-flow morphism, and Or(M) is a G-subflow

of 2M2
contained in the image of u. By considering u as an H -flow morphism to its
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image, we have that u ◦w is an H -factor of S1(M ′) with Or(M) as a subflow of its
image. As M ′ has FPT, by Lemma 4.3 we see that H fixes an orientation on M . By
Proposition 5.2, H has infinitely many orbits on M2, and so is not oligomorphic.
Therefore M ′ is not ω-categorical, by the Ryll–Nardzewski theorem. □

Part 3: the proof of the encoding lemma. We now prove Lemma 5.6. This forms
the bulk of the technical work in this paper.

Let τ ∈ Or(M). To show that there exists a type encoding τ , it suffices to show
that the set of formulae

3(x)= { f (x, a, b) : (a, b) ∈ τ } ∪ {¬ f (x, a, b) : (a, b) ∈ M2
\ τ }

is finitely satisfiable in M itself: this implies via compactness that there exists a
type p(x) ∈ S1(M) containing this set of formulae.

Again, before beginning the proof of Lemma 5.6 we provide a brief informal
overview. In order to show the finite satisfiability of 3(x), we will take a finite
d-closed substructure A of M and show that the set 3A(x) is satisfiable in M , where
3A(x) consists of the formulae in 3(x) with parameters only from A. We will
construct a graph B with head vertex c of label structures over A (as in Figure 1)
such that A ≤d B and B ∈ CF . Therefore in fact we may assume A ≤d B ≤d M ,
using the ≤d-extension property. We will then show that the only label structures
in M over any pair of elements of A can be found in B, using the fact that B is
d-closed in M , and thus we have that M |H3A(c).

We now begin the formal proof. Let A ≤d M be finite. We define a graph B as

• B includes A as a substructure;

• add a new vertex c to B, with c /∈ A;

• for (a, b) ∈ τ |A (i.e., the edge ab is oriented from a to b in the orientation τ

and ab is an edge of A), add to B four new vertices l(a,b)
1 , l(a,b)

2 , l(a,b)
3 , l(a,b)

4
and new edges

cl(a,b)
1 , l(a,b)

1 l(a,b)
2 , l(a,b)

2 l(a,b)
3 , l(a,b)

3 l(a,b)
4 , l(a,b)

4 l(a,b)
1

and add two edges l(a,b)
2 a, l(a,b)

4 a (to the “start vertex” a) and one edge l(a,b)
3 b

(to the “end vertex” b).

For (a, b) ∈ τ |A, let L(a,b) = {c, l(a,b)
1 , l(a,b)

2 , l(a,b)
3 , l(a,b)

4 }. Informally, each
(a, b) ∈ τ |A has its orientation labeled by L(a,b).

We have that
B = A∪

⋃
(a,b)∈τ |A

L(a,b)

and the L(a,b) intersect only in c. We will show that A ≤d B and B ∈ CF .
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It is recommended that the reader consult Figure 1 during the technical lemmas
in this part of the proof.

Lemma 5.7. We have A ≤d B.

Proof. For A ⊊ C ⊆ B, we need to show δ(C) > δ(A).
First consider the case where A consists of a single edge ab, with (a, b) ∈ τ

(recall that we chose the control function F so that edges are always d-closed). Then,
suppressing subscripts for notational convenience, we have B={c, l1, l2, l3, l4, a, b}.
We calculate the relative predimension of some A ⊊ C ⊆ B in the table below.

C \ A δ(C/A)

l2 1
l3 1
l4 1

l1, l2 2
l1, l4 2
l2, l3 1
l3, l4 1
c, l1 3

l1, l2, l3 2
l1, l2, l4 2
l1, l3, l4 2
l2, l3, l4 1

l1, l2, l3, l4 1
c, l1, l2, l3, l4 2

The remaining cases result from free amalgamations over A, and so also have
positive predimension (as if two graphs X, Y are freely amalgamated over Z , then
δ((X ∪Y )/Z)= δ(X/Z)+δ(Y/Z)). The remaining cases are where C \ A is equal
to {l1}, {c}, {l1, l3}, {l2, l4} or {c} ∪ X , where X ⊆ {l2, l3, l4}.

Now consider the general case of finite A ≤d M . Given A ⊊ C ⊆ B, the vertices
of C consist of A together with subsets J(a,b) of L(a,b) for each (a, b) ∈ τ |A. For
(a, b) ∈ τ |A, let J ′(a,b) = J(a,b) ∪ A.

If c /∈ C , then the J ′(a,b) are freely amalgamated over A, and so from the single-
edge case we see that δ(C/A) > 0.

We now consider the case where c ∈ C . If l(a,b)
1 /∈ J(a,b) for all (a, b) ∈ τ |A, then

C consists of a vertex c with no neighbors together with a free amalgamation over
A of each of the J ′(a,b) \ {c}, for (a, b) ∈ τ |A. So, from the single-edge case and the
fact that δ({c})= 2, we have that δ(C/A) > 0.

If c ∈ C and there exists (a′, b′) ∈ τ |A with l(a
′,b′)

1 ∈ J(a′,b′), then C is the free
amalgam over A of each of the J ′(a,b)\{c} for which l(a,b)

1 /∈ J(a,b) (where (a, b)∈τ |A),
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together with ⋃
{J ′(a,b) : (a, b) ∈ τ |A, l(a,b)

1 ∈ J(a,b)}.

Therefore we need only consider the case where l(a,b)
1 ∈ J(a,b) for all (a, b) ∈ τ |A.

The single-edge calculation shows that δ(J(a,b) \ {c}/A) ≥ 1 for each J(a,b), and
these J ′(a,b) \ {c} are freely amalgamated over A. Each addition of an edge cl(a,b)

1
reduces the predimension by one, but the single addition of the vertex c adds two
to the predimension, so in total δ(C/A) > 0. □

Lemma 5.8. For (a, b) ∈ τ |A, we have that the substructures of B given by
{a, b, l(a,b)

1 , l(a,b)
2 , l(a,b)

3 , l(a,b)
4 } and L(a,b) lie in CF .

Proof. We write l1, l2, l3, l4, suppressing superscripts.
To show that {a, b, l1, l2, l3, l4} ∈ CF , we consider each subset C ⊆

{a, b, l1, l2, l3, l4} and show that δ(C) ≥ F(|C |). To speed up the process
of checking each subset C , in the below table we show that certain subsets
C ⊆ {a, b, l1, l2, l3, l4} lie in CF , and therefore every C ′ ⊆ C must satisfy
δ(C ′)≥ F(|C ′|).

C proof that C ∈ CF

l1l2l3l4, l2l3ab, l3l4ab, l1l2l4a, l2l3l4a C is a 4-cycle
l1l2l3ab free amalgam of l2l3ab, l1l2 over l2

l1l3l4ab free amalgam of l3l4ab, l1l4 over l4

l1l2l4ab free amalgam of l1l2l4a, ab over a
l1l2l3l4b free amalgam of l1l2l3l4, l3b over l3

We now check the remaining subsets C ⊆ {a, b, l1, l2, l3, l4} by directly calculat-
ing the predimension:

C δ(C) F(|C |)

l2l3l4ab 4 F(5) < 4
l1l2l3l4a 4 F(5) < 4

l1l2l3l4ab 4 F(6) < 4

We have now shown that {a, b, l1, l2, l3, l4} ∈ CF . For the second part of the
lemma, we obtain L(a,b)∈CF via the free amalgam of L(a,b) and cl1 over l1 (recalling
that we have defined our control function F so that points are always d-closed). □

Lemma 5.9. We have that B ∈ CF .

Proof. We have to show that δ(C)≥ F(|C |) for C ⊆ B. The vertices of C consist
of C ∩ A together with subsets J(a,b) of L(a,b) for each (a, b) ∈ τ |A (some of these
J(a,b) may be empty). For (a, b) ∈ τ |A, let J ′(a,b) = J(a,b) ∪ (C ∩ A).

First we consider the case where c /∈ C . C is then the free amalgam of the
J ′(a,b) (where (a, b) ∈ τ |A) over C ∩ A. Given that CF is a free amalgamation
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class and C ∩ A ≤d C , it therefore suffices to show that J ′(a,b) ∈ CF for (a, b) ∈

τ |A. Fix (a, b) ∈ τ |A. To show that J ′(a,b) ∈ CF , as J ′(a,b) is a free amalgam of
J(a,b) ∪ ({a, b} ∩C) and C ∩ A ∈ CF over {a, b} ∩C ∈ CF , it suffices to show that
J(a,b) ∪ ({a, b} ∩C) lies in CF , and we have already checked this in Lemma 5.8.

Now we consider the case where c ∈ C . If l(a,b)
1 /∈ J(a,b) for each (a, b) ∈ τ |A,

then C consists of a vertex c with no neighbors together with the free amalgam
over C ∩ A of each J ′(a,b) \ {c}, and so we are done by the first case in the previous
paragraph. Otherwise, C is the free amalgam over C ∩ A of⋃

{J ′(a,b) : l
(a,b)
1 ∈ J(a,b), (a, b) ∈ τ |A}

with each J ′(a,b) \ {c} for which l(a,b)
1 /∈ J(a,b), and so using the first case considered

above we may reduce to the case where each nonempty J(a,b) contains l(a,b)
1 .

Similarly, we may exclude the case where C contains sets J(a,b) for which
J(a,b) = {c, l(a,b)

1 , l(a,b)
3 }, as C is the free amalgam over C ∩ A of⋃
{J ′(a,b) : (a, b) ∈ τ |A, J(a,b) ̸= {c, l(a,b)

1 , l(a,b)
3 }} ∪⋃

{{c, l(a,b)
1 } ∪ (C ∩ A) : J(a,b) = {c, l(a,b)

1 , l(a,b)
3 }}

with each {l(a,b)
3 } ∪ (C ∩ A) (which lies in CF by Lemma 5.8) for which J(a,b)

= {c, l(a,b)
1 , l(a,b)

3 }. We may likewise freely amalgamate over c to exclude the cases
where C contains sets J(a,b) for which J(a,b) = {c, l(a,b)

1 }, or for which J(a,b) is any
subset of L(a,b) but we have a, b /∈ C ∩ A.

So, the case remaining is where C consists of C ∩ A together with sets J(a,b)

containing c, l(a,b)
1 and at least one of l(a,b)

2 , l(a,b)
4 , where each J(a,b) has some edge

to C ∩ A. We need to show that δ(C)≥ F(|C |).
We now calculate the relative predimension over A ∪ {c} of each remaining

possible J(a,b)∪X , X ⊆ {a, b}, in the following table, where we label each structure
as Yi , 1≤ i ≤ 11:

J(a,b) ∪ X label δ(J(a,b) ∪ X/A∪ {c})

cl1l2a Y1 1
cl1l4a Y2 1

cl1l2l3a Y3 2
cl1l2l3b Y4 2

cl1l2l3ab Y5 1
cl1l3l4a Y6 2
cl1l3l4b Y7 2

cl1l3l4ab Y8 1
cl1l2l3l4a Y9 1
cl1l2l3l4b Y10 2

cl1l2l3l4ab Y11 0
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We write ki for how many times Yi occurs in C . We also write δi = δ(Yi/A∪{c}).
Let λi = |{l1, l2, l3, l4} ∩ Yi |.

Then, recalling that the vertex c also adds 2 to the predimension, we have that

δ(C)=
∑

1≤i≤11

δi ki + 2+ δ(C ∩ A).

Now,

F(|C |)= F
(

1+ |C ∩ A| +
∑

1≤i≤11

λi ki

)

≤ F
(

1+ |C ∩ A| + 4
∑

1≤i≤11

ki

)

= F
(

1+ |C ∩ A| + 4(k4+ k7+ k10)+ 4
∑

i≤11,i /∈{4,7,10}

ki

)
.

As τ |C∩A is a 2-orientation, we have that each a ∈ C ∩ A can have at most two
label structures with a as the starting vertex (i.e., with edges to a from l2, l4), and
so ∑

i≤11,i /∈{4,7,10}

ki ≤ 2|C ∩ A|.

So

F(|C |)≤ F(8|C ∩ A| + 4(k4+ k7+ k10)+ 1+ |C ∩ A|).

As F(u + v) ≤ F(u)+ vF ′(u) and F ′(x) ≤ 2
8x+1 for x ≥ 2, we have that if

|C ∩ A| ≥ 2, then

F(|C |)≤ F(|C ∩ A|)+
2

8|C ∩ A| + 1
(8|C ∩ A| + 4(k4+ k7+ k10)+ 1)

< F(|C ∩ A|)+ 2+ k4+ k7+ k10

≤ δ(C).

If |C ∩ A| = 1, then

F(|C |)≤ F(1+ |C ∩ A|)+ (8|C ∩ A| + 4(k4+ k7+ k10))F ′(1+ |C ∩ A|)

= 3+ 2
8·2+1(8|C ∩ A| + 4(k4+ k7+ k10))

< 4+ 8
17(k4+ k7+ k10)

≤ δ(C)

(as δ(C ∩ A)= 2). □



SPARSE GRAPHS AND THE FIXED POINTS ON TYPE SPACES PROPERTY 881

Lemma 5.10. Let τ ∈ Or(M). Then the set of formulae

3(x)= { f (x, a, b) : (a, b) ∈ τ } ∪ {¬ f (x, a, b) : (a, b) ∈ M2
\ τ }

is finitely satisfiable in M.

Proof. Let A ≤d M be finite, and let

8A(x)= { f (x, a, b) : (a, b) ∈ τ |A}, 9A(x)= {¬ f (x, a, b) : (a, b) ∈ A2
\ τ }.

Let 3A(x)=8A(x)∪9A(x). We will show that 3A(x) is satisfiable in M .
Let B ⊇ A be as constructed previously, with distinguished head vertex c. As

A ≤d B (Lemma 5.7) and B ∈ CF (Lemma 5.9), we may use the ≤d-extension
property of M to assume that A ≤d B ≤d M .

It is immediate from the construction of B that B |H8A(c) and hence M |H8A(c),
as for each (a, b) ∈ τ |A, there is a label structure L(a,b) attached.

We now show that M |H9A(c). It suffices to show that for (a, b) ∈ A2, if M |H
f (c, a, b) then the li , 1≤ i ≤ 4, that f (c, a, b) specifies must lie in cldM({a, b, c})
and therefore in B, as B ≤d M . We show that {l1, l2, l3, l4} ⊆ cldM({a, b, c}) in the
table below.

X/Y δ(X/Y )

l1, l2, l3, l4/a, b, c 0
l1, l2, l3/ l4, a, b, c −1
l1, l2, l4/ l3, a, b, c −1
l1, l3, l4/ l2, a, b, c −1
l2, l3, l4/ l1, a, b, c −1
l1, l2/ l3, l4, a, b, c −1
l1, l3/ l2, l4, a, b, c −2
l1, l4/ l2, l3, a, b, c −1
l2, l3/ l1, l4, a, b, c −1
l2, l4/ l1, l3, a, b, c −2
l3, l4/ l1, l2, a, b, c −1
l1/ l2, l3, l4, a, b, c −1
l2/ l1, l3, l4, a, b, c −1
l3/ l1, l2, l4, a, b, c −1
l4/ l1, l2, l3, a, b, c −1

This completes the proof of Lemma 5.10. □

The above lemma implies, via compactness, that there exists a type p(x) con-
taining the set { f (x, a, b) : (a, b) ∈ τ } ∪ {¬ f (x, a, b) : (a, b) ∈ M2

\ τ }, and thus
p(x) encodes τ . This completes the proof of the encoding lemma (Lemma 5.6),
and therefore the proof of Theorem 5.1.
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Correction to the article
Kim-independence in positive logic

Jan Dobrowolski and Mark Kamsma

Volume 1:1 (2022), 55–113

The proof of the independence theorem for Kim-independence in positive thick
NSOP1 theories by Dobrowolski and Kamsma (Model Theory 1 (2022), 55–113)
contains a gap. The theorem is still true, and in this corrigendum we give a
different proof.

1. Introduction

The proof of the independence theorem for Kim-independence in thick NSOP1

theories [Dobrowolski and Kamsma 2022, Theorem 7.7] contains a gap. Every-
thing in that proof is fine up to the point where it is argued how the theorem
follows from what is called “Claim 2” (at the bottom of page 88). By compactness,
an M-indiscernible sequence (gi hi g′

i h
′

i g
′′

i h′′

i )i∈Z is extracted from the data from
Claim 2. However, it may be that the properties (h′′

i g′′

i+1)i∈Z |H (q ′
|z0,y)

⊗Z
|M and

hi gi+1 ≡Mh>i g>i+1h′′

>i g′′

i+1
h′′

i g′′

i+1 are not carried over.
The theorem, as stated, is still true, and in this corrigendum we give a different

proof. We assume familiarity with [Dobrowolski and Kamsma 2022].

2. Technical tools

We reformulate the chain condition in a form that will be useful to us.

Lemma 2.1 (chain condition). Let T be a thick NSOP1 theory. Suppose that
a |⌣

K
M

b and that (bi )i<ω is a Morley sequence in some global M-Ls-invariant type
with b0 = b. Then, writing p(x, b) = tp(a/Mb), we have that⋃

i<ω

p(x, bi )

does not Kim-divide over M.
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Proof. Let q(x) be the global M-Ls-invariant type in which (bi )i<ω is a Morley
sequence. As a |⌣

K
M

b we have by [Dobrowolski and Kamsma 2022, Proposi-
tion 4.2] that there is an Ma-indiscernible (b′

i )i<ω |H q⊗ω
|M with b′

0 = b. So we
have (b′

i )i<ω ≡M (bi )i<ω and we let a∗ be such that a(b′

i )i<ω ≡M a∗(bi )i<ω. Then
(bi )i<ω is Ma∗-indiscernible, and so a∗

|⌣
K
M

(bi )i<ω by [loc. cit., Lemma 6.1]. We
conclude by noting that a∗bi ≡M a∗b0 ≡M ab′

0 = ab for all i < ω. □

Proposition 2.2 (being Ls-invariant is type-definable). Let T be a thick theory. Let
C be some parameter set and let N ⊇ C be (2|C |+λT )+-saturated (possibly N is the
monster). Define 6(x) to be the following partial type over N⋃

{dC(xb, xb′) ≤ 2 : b, b′
∈ N are finite tuples such that dC(b, b′) ≤ 1}.

Then a type q(x) over N is C-Ls-invariant if and only if 6(α) for α |H q.

Proof. Let q(x) be a C-Ls-invariant type over N and let α |Hq . Let b, b′
∈ N be finite

tuples such that dC(b, b′) ≤ 1. Then there is a C-indiscernible sequence (bi )i<ω

with b0b1 = bb′, which we may assume to be in N by saturation. Using saturation
again, we find a λT -saturated C ⊆ M ⊆ N such that (bi )i<ω is M-indiscernible.
In particular this means that bM ≡

Ls
C b′M and so αbM ≡

Ls
C αb′M . It follows that

αb ≡
Ls
M αb′ and thus by our choice of M we get dC(αb, αb′) ≤ 2. As b, b′ were

arbitrary, we conclude that |H 6(α).
For the other direction we let q(x) be a type over N such that for α |H q we have

|H 6(α). Now let d, d ′
∈ N be (potentially infinite tuples) such that d ≡

Ls
C d ′. Let

n < ω be such that dC(d, d ′) ≤ n, we claim that dC(αd, αd ′) ≤ 2n, which implies
the required αd ≡

Ls
C αd ′. By thickness we have that the condition dC(αd, αd ′) ≤ 2n

is given by⋃
{dC(αb, αb′) ≤ 2n : b ⊆ d and b′

⊆ d ′ are finite matching tuples}.

So we have reduced the problem to the case where d and d ′ are finite. By saturation
then there are d = d0, d1, . . . , dn = d ′ in N such that dC(di , di+1) ≤ 1 for all
0 ≤ i < n. By assumption we thus have that dC(αdi , αdi+1) ≤ 2 for all 0 ≤ i < n.
We conclude that dC(αd, αd ′) ≤ 2n, as required. □

Proposition 2.3 (extending Ls-invariant types). Let T be a thick theory. Let N ⊇ C
be (2|C |+λT )+-saturated. Suppose that p(x) = tp(a/N ) is a C-Ls-invariant type,
then p(x) extends to a unique global C-Ls-invariant type q(x).

Proof. Let 6(x) be the global partial type from Proposition 2.2 expressing C-Ls-
invariance. We will show that p(x) ∪ 6(x) is finitely satisfiable. So let ϕ(x, e) ∈

p(x), where e is a tuple of parameters from N , and let 60(x) ⊆ 6(x) be finite. Let
b1, . . . , bn and b′

1, . . . , b′
n be the finite tuples that occur in 60(x), so dC(bi , b′

i ) ≤ 1
for all 1 ≤ i ≤ n. By saturation of N we find d1, . . . , dn, d ′

1, . . . , d ′
n ∈ N such that
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d1 · · · dnd ′

1 · · · d ′
n ≡Ce b1 · · · bnb′

1 · · · b′
n . So for all 1 ≤ i ≤ n we have dC(di , d ′

i ) ≤ 1,
and hence dC(adi , ad ′

i ) ≤ 2 by Proposition 2.2 applied to p(x). Now let a∗ be such
that ad1 · · · dnd ′

1 · · · d ′
n ≡Ce a∗b1 · · · bnb′

1 · · · b′
n . Then by construction we have that

|H ϕ(a∗, e) and |H 60(a∗), which proves finite satisfiability of p(x) ∪ 6(x). By
compactness we then find a realisation α of p(x)∪6(x), so that q(x) = tp(α/M) is
our desired C-Ls-invariant type. The uniqueness claim follows from [Dobrowolski
and Kamsma 2022, Fact 7.6]. □

We recall from [loc. cit., Definition 3.12] that a |⌣
i Ls
C

b means that tp(a/Cb)

extends to a global C-Ls-invariant type.

Proposition 2.4. Let T be a thick theory. If (ai )i<ω is a C-indiscernible sequence
such that ai |⌣

i Ls
C

a<i for all i <ω then (ai )i<ω is a Morley sequence in some global
C-Ls-invariant type.

Proof. By compactness we find aω such that (ai )i≤ω is C-indiscernible. Set p(x) =

tp(aω/Ca<ω) and let 6(x) be the global partial type from Proposition 2.2. We
claim that p(x) ∪ 6(x) is consistent. Indeed, for any finite p′(x) ⊆ p(x) there
is some i < ω so that p′(x) only contains parameters in Ca<i , and so |H p′(ai )

by C-indiscernibility. As ai |⌣
i Ls
C

a<i we then have that p′(x) extends to a global
C-Ls-invariant type q ′(x), and any realisation of q ′(x) will then be a realisation of
p′(x) ∪ 6(x). So p(x) ∪ 6(x) is finitely satisfiable and hence consistent.

Let α∗ be a realisation of p(x) ∪ 6(x) and set q∗(x) = tp(α∗/M), so q∗(x) is
global C-Ls-invariant. Let a∗

≡
Ls
Ca<ω

α∗, then there is f ∈ Aut(M/Ca<ω) such
that f (a∗) = aω. Set q = f (q∗), so q(x) is global C-Ls-invariant by [loc. cit.,
Lemma 3.8(i)] with p(x) ⊆ q(x) and, letting α be a realisation of q, we have
α ≡

Ls
Ca<ω

aω.
For any i < ω we thus have ai ≡

Ls
Ca<i

aω ≡
Ls
Ca<i

α. We therefore have a<i |H q⊗i
|C

for all i < ω and so (ai )i<ω |H q⊗ω
|C . So (ai )i<ω is the automorphic image over C

of a Morley sequence over C , hence it is itself a Morley sequence in a (potentially
different) global C-Ls-invariant type. □

3. Spread out trees

We recall various definitions concerning trees and trees of parameters (which we will
from now on also simply call trees) from [Kaplan and Ramsey 2020]. In particular,
we will work with the ill-founded trees Tα from [loc. cit., Definition 5.1] and we
use the same notation, so we assume familiarity with those definitions. We refer to
[Kamsma 2024] for the definitions and terminology involving s-indiscernibility, str-
indiscernibility and generalised EM-types. We slightly adjust [Kaplan and Ramsey
2020, Definition 5.7] to fit our situation.
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Definition 3.1. Let (aη)η∈Tα
be a tree and let M be an e.c. model:

(i) We call (aη)η∈Tα
spread out over M if for all η ∈ Tα with dom(η) = [β +1, α)

for some β < α, there is a global M-Ls-invariant type qη ⊇ tp(a⊵η⌢⟨0⟩/M)

such that (a⊵η⌢⟨i⟩)i<ω is a Morley sequence in qη over M .

(ii) A Morley tree over M is an str-indiscernible and spread out tree over M .

(iii) A tree Morley sequence over M is a branch in an infinite height Morley tree
over M .

Lemma 3.2. Suppose that (ai )i<ω is a tree Morley sequence over M :

(i) If bi ⊆ ai for each i < ω, of matching length and position, then (bi )i<ω is a
tree Morley sequence over M.

(ii) Fix 1 ≤ n < ω and define di = (ani , . . . , ani+n−1) for all i < ω. Then (di )i<ω

is a tree Morley sequence over M.

Proof. This is essentially [Kaplan and Ramsey 2020, Lemma 5.9], but we work
with slightly different definitions, so we go through the proof here. Part (i) is
clear, because being a Morley tree is preserved under taking subtuples. For (ii)
we let (bη)η∈Tω

be a Morley tree such that (ai )i<ω is a branch in (bη)η∈Tω
. We

may assume that (ai )i<ω is the branch indexed by the constant zero functions. We
define j : Tω → Tω so that for η ∈ Tω with dom(η) = [k, ω) we have dom( j (η)) =

[nk + n − 1, ω) and

j (η)(m) =

{
η((m − (n − 1))/n) if n | (m − (n − 1)),

0 otherwise,

for all m ∈ [nk + n − 1, ω). We define (cη)η∈Tω
by cη = (b j (η), . . . , b j (η)⌢⟨0⟩n−1).

This corresponds to the n-fold elongation of (bη)η∈Tω
from [Chernikov and Ramsey

2016]. One then straightforwardly verifies that (cη)η∈Tω
is a Morley tree over M ,

so (cζi )i<ω is a tree Morley sequence over M . For i < ω we have

cζi = (bζni+n−1, . . . , bζni ) = (ani+n−1, . . . , ani ),

so by reversing the order of the tuples we see that (di )i<ω is a tree Morley sequence
over M . □

Lemma 3.3 (Kim’s lemma for tree Morley sequences). Let T be a thick NSOP1

theory. Let M be an e.c. model and let 6(x, b) be a partial type over M. Then the
following are equivalent:

(i) 6(x, b) Kim-divides over M.

(ii) For some tree Morley sequence (bi )i<ω over M with b0 = b we have that⋃
i<ω 6(x, bi ) is inconsistent.
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(iii) For every tree Morley sequence (bi )i<ω over M with b0 = b we have that⋃
i<ω 6(x, bi ) is inconsistent.

Proof. This is [Kaplan and Ramsey 2020, Corollary 5.14], whose proof is re-
ally found in [loc. cit., Proposition 5.13]. Our setting requires some minor extra
verifications, which we will do below, but the proof is essentially the same.

Given the existence of tree Morley sequences starting with b (Lemma 3.10), the
equivalence of these three statements reduces to proving that for any tree Morley
sequence (bi )i<ω over M with b0 = b we have that 6(x, b) Kim-divides if and only
if

⋃
i<ω 6(x, bi ) is inconsistent.

Let (cη)η∈Tω
be a Morley tree over M such that (bi )i<ω is a branch in that tree,

which we may assume to be the constant zero branch. For i < ω define ηi ∈ Tω to
be the function with domain [i, ω) such that

ηi ( j) =

{
1 if i = j,
0 otherwise.

By str-indiscernibility, the sequences (cζi )i<ω and (cηi )i<ω are M-indiscernible. We
claim that (cηi )i<ω is a Morley sequence over M in a global M-Ls-invariant type.
Indeed, because (cη)η∈Tω

is spread out over M we have that cηi |⌣
i Ls
M

(cη j ) j<i for
all i < ω. So the claim follows from Proposition 2.4. By str-indiscernibility we
also have for all i < ω that cζi , cηi starts an M(cζ j , cη j ) j>i -indiscernible sequence.
So since T is NSOP1 we can apply [Dobrowolski and Kamsma 2022, Lemma 5.10]
to conclude that

⋃
i<ω 6(x, cζi ) is inconsistent if and only if

⋃
i<ω 6(x, cηi ) is

inconsistent. The former is just
⋃

i<ω 6(x, bi ), and the latter is inconsistent if
and only if 6(x, b) Kim-divides by Kim’s lemma for NSOP1 theories [loc. cit.,
Proposition 4.4], which concludes the proof. □

Fact 3.4 (tree modelling theorems). Let T be a thick theory:

(i) Let (aη)η∈Tα
be a tree of tuples and let C be any set of parameters, then there

is a tree (bη)η∈Tα
that is s-indiscernible over C and EMs-based on (aη)η∈Tα

over C.

(ii) Let C be any parameter set, κ any cardinal, and let λ = ℶ(2|T |+|C |+κ )+ . Given
any tree (aη)η∈Tλ

of κ-tuples that is s-indiscernible over C , there is a tree
(bη)η∈Tω

that is str-indiscernible over C str-based on (aη)η∈Tλ
over C. The

latter means that for any finite tuple η̄ ∈ Tω there is ν̄ ∈ Tλ such that η̄ and ν̄

have the same str-quantifier-free type and bη̄ ≡C aν̄ .

Proof. Part (i) is [Kamsma 2024, Theorem 4.6], which is essentially just compactness
applied to [Dobrowolski and Kamsma 2022, Proposition 5.8]. Part (ii) is [Kamsma
2024, Theorem 4.8], which is technically stated for well-founded trees, but its proof
applies to the ill-founded trees we are interested in here. □
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Lemma 3.5. Let T be a thick theory. Suppose that (aη)η∈Tα
is s-indiscernible and

spread out over M and that (bη)η∈Tω
is str-based on (aη)η∈Tα

over M , then (bη)η∈Tω

is spread out over M.

Proof. Let η ∈ Tω, we have to show that (b⊵η⌢⟨i⟩)i<ω is a Morley sequence in
some global M-Ls-invariant type. We claim that b⊵η⌢⟨i⟩ |⌣

i Ls
M

(b⊵η⌢⟨ j⟩) j<i for
all i < ω. This is indeed enough, because (b⊵η⌢⟨i⟩)i<ω is M-indiscernible by
str-indiscernibility over M , and so the result follows by Proposition 2.4.

We prove the claim by showing that for all i < ω and all finite b ⊆ b⊵η⌢⟨i⟩ and
b′

⊆ (b⊵η⌢⟨ j⟩) j<i we have b |⌣
i Ls
M

b′, which is enough by Proposition 2.2. Let
ν̄i1, . . . , ν̄in be finite tuples in Tω such that i1 < · · · < in < ω and

∧
ν̄ik ⊵η⌢

⟨ik⟩ for
all 1 ≤ k ≤ n. By str-basing there are γ, µ̄i1, . . . , µ̄in in Tα such that γ µ̄i1 · · · µ̄in has
the same str-quantifier-free type as ην̄i1 · · · ν̄in and bηbν̄i1

· · · bν̄in
≡M aγ aµ̄i1

· · · aµ̄in
.

We now have reduced the problem to showing that aµ̄in
|⌣

i Ls
M

aµ̄i1
· · · aµ̄in−1

. As
γ ◁

∧
µ̄in , there must be some m < ω such that

∧
µ̄in ⊵ γ ⌢

⟨m⟩. Furthermore,
we have for every 1 ≤ k < n that γ ◁

∧
µ̄ik and

∧
µ̄ik <lex

∧
µ̄in , and so∧

µ̄ik ⊵ γ ⌢
⟨ j⟩ for some j < m. Because (aη)η∈Tα

is spread out over M we
have a⊵γ ⌢⟨m⟩ |⌣

i Ls
M

(a⊵γ ⌢⟨ j⟩) j<m , and so aµ̄in
|⌣

i Ls
M

aµ̄i1
· · · aµ̄in−1

, as required. □

Corollary 3.6. Let T be a thick theory, and let C be some parameter set and κ

some cardinal. Set λ = ℶ
(2κ+2λT +|C |

)+
. Given a tree (aη)η∈Tλ

of κ-tupes that is
s-indiscernible and spread out over C , there is a Morley tree (bη)η∈Tω

over C that
is str-Ls-based on (aη)η∈Tλ

over C. The latter means that for any finite tuple η̄ ∈ Tω

there is ν̄ ∈ Tλ such that η̄ and ν̄ have the same str-quantifier-free type and bη̄ ≡
Ls
C aν̄ .

Proof. By [Dobrowolski and Kamsma 2022, Fact 2.12] there is λT -saturated M ⊇ C
with |M | ≤ 2λT +|C |. As κ + |T | + |M | ≤ κ + |T | + 2λT +|C |

= κ + 2λT +|C |, we can
use Fact 3.4(ii) to find a tree (bη)η∈Tω

that is str-indiscernible over M and str-based
on (aη)η∈Tλ

over M . In particular (bη)η∈Tω
is str-based on (aη)η∈Tλ

over C , so it is
spread out over C by Lemma 3.5 and hence it is a Morley tree over C . Finally, by
str-basing, we have that for any finite tuple η̄ ∈ Tω there is ν̄ ∈ Tλ such that η̄ and
ν̄ have the same str-quantifier-free type and bη̄ ≡M aν̄ . By our choice of M this
implies bη̄ ≡

Ls
C aν̄ , as required. □

The following key lemma in constructing spread out trees is due to N. Ramsey,
for which we take terminology from [Chernikov et al. 2023, Definition 1.14].

Definition 3.7. We call a sequence of trees ((ai
η)η∈Tα

)i<ω mutually s-indiscernible
over C if (ai

η)η∈Tα
is s-indiscernible over C((a j

η )η∈Tα
) j ̸=i, j<ω for all i < ω.

Lemma 3.8. Let T be a thick theory and let (aη)η∈Tα
be a tree that is s-indiscernible

over M. Then there is a Morley sequence ((ai
η)η∈Tα

)i<ω in some global M-Ls-
invariant type with (a0

η)η∈Tα
= (aη)η∈Tα

that is mutually s-indiscernible over M.
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Proof. Let q((xη)η∈Tα
) ⊇ tp((aη)η∈Tα

/M) be a global M-Ls-invariant type. Let
N ⊇ M be (2|M |+λT )+-saturated, and let (a′

η)η∈Tα
|H q|N . Apply the s-modelling

theorem (Fact 3.4(i)) to find a tree (a′′
η)η∈Tα

that is s-indiscernible over N and
EMs-based on (a′

η)η∈Tα
over N .

Claim 3.8.1. The type tp((a′′
η)η∈Tα

/N ) is M-Ls-invariant.

Proof of claim. By Proposition 2.2 it is enough to show that for any finite b, b′
∈ N

with dM(b, b′) ≤ 1 we have dM((xη)η∈Tα
b, (xη)η∈Tα

b′) ≤ 2 ⊆ tp((a′′
η)η∈Tα

/N ). By
thickness we have that dM((xη)η∈Tα

b, (xη)η∈Tα
b′) ≤ 2 is given by⋃

{dM(xη̄b, xη̄b′) ≤ 2 : η̄ is a finite tuple in Tα}.

Let η̄ be any finite tuple in Tα . For any ν̄ that has the same s-quantifier-free type as
η̄ we have that dM(xν̄b, xν̄b′) ≤ 2 ⊆ tp((a′

η)η∈Tα
/N ) by Proposition 2.2, because

tp((a′
η)η∈Tα

/N ) = q|N is M-Ls-invariant. We thus see that dM(xη̄b, xη̄b′) ≤ 2 ⊆

EMs((a′
η)η∈Tα

/N ) ⊆ tp((a′′
η)η∈Tα

/N ), which concludes the proof of the claim. □

By Claim 3.8.1, Proposition 2.3 and our choice of N there is a unique global M-
Ls-invariant type q ′′((xη)η∈Tα

) ⊇ tp((a′′
η)η∈Tα

/N ). Let ((bi
η)η∈Tα

)i<ω be a Morley
sequence in q ′′ over N .

Claim 3.8.2. The sequence (bi
η)η∈Tα

is mutually s-indiscernible over N.

Proof of claim. Fix i < ω. We prove by induction on k ≥ i that (bi
η)η∈Tα

is

s-indiscernible over N ((b j
η)η∈Tα

) j ̸=i, j<k .
For the base case k = i we need to prove that (bi

η)η∈Tα
is s-indiscernible over

N ((b j
η)η∈Tα

) j<i . Let η̄, ν̄ ∈ Tα be finite tuples with the same s-quantifier-free
type. As (bi

η)η∈Tα
≡N (a′′

η)η∈Tα
, we have that it is s-indiscernible over N . So

there is a single type (after renaming variables) p(y) = tp(bi
η̄/N ) = tp(bi

ν̄/N ),
which is M-Ls-invariant by Claim 3.8.1. Since q ′′(xη̄) and q ′′(xν̄) are both global
M-Ls-invariant extensions of p(y) we have that q ′′(xη̄) = q ′′(xν̄), after renaming
variables. By construction bi

η̄ |H q ′′(xη̄)|N ((b j
η)η∈Tα ) j<i

and bi
ν̄ |H q ′′(xν̄)|N ((b j

η)η∈Tα ) j<i
,

so bi
η̄ ≡N ((b j

η)η∈Tα ) j<i
bi

ν̄ follows, as required.
For the successor step we have k > i and we assume that (bi

η)η∈Tα
is s-indiscernible

over N ((b j
η)η∈Tα

) j ̸=i, j<k . Let η̄, ν̄ ∈ Tα be finite tuples with the same s-quantifier-
free type. By the induction hypothesis we have

bi
η̄ ≡

Ls
N ((b j

η)η∈Tα ) j ̸=i, j<k
bi

ν̄,

where we get equivalence of Lascar-strong types instead of just normal types from
s-indiscernibility; see e.g., [Kamsma 2024, Proposition 4.5]. As (bk

η)η∈Tα
realises

an M-Ls-invariant type over N ((b j
η)η∈Tα

) j<k and N ⊇ M we get

(bk
η)η∈Tα

bi
η̄ ≡

Ls
N ((b j

η)η∈Tα ) j ̸=i, j<k
(bk

η)η∈Tα
bi

ν̄,

which completes the induction step and thus the proof of the claim. □
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We have (b0
η)η∈Tα

≡M (a′′
η)η∈Tα

≡M (a′
η)η∈Tα

≡M (aη)η∈Tα
, where the middle

equality of types follows because (a′
η)η∈Tα

is s-indiscernible over M and so its
EMs-type over M is maximal (i.e., is the same as its type over M) and (a′′

η)η∈Tα

is in particular EMs-based on (a′
η)η∈Tα

over M . So by an automorphism we find
((ai

η)η∈Tα
)i<ω ≡M ((bi

η)η∈Tα
)i<ω, with (a0

η)η∈Tα
= (aη)η∈Tα

, which is then as re-
quired by construction of ((bi

η)η∈Tα
)i<ω and Claim 3.8.2. □

Remark 3.9. Lemma 3.8 is in fact a missing ingredient in [Kaplan and Ramsey
2020], in particular in the inductive steps in their Lemmas 5.11 and 6.4. There they
replace some spread out tree A by an s-indiscernible tree B locally based on A
(in our terminology: EMs-based). However, this process might not preserve the
property of being spread out. By replacing the inductive step by Lemma 3.8, the
argument can be fixed.

In existing work on Kim-independence over arbitrary sets there is the same issue,
as discussed in [Chernikov et al. 2023, page 7]. This can be fixed in a similar
manner: [loc. cit., Lemma 1.15] is a variant of Lemma 3.8 over arbitrary sets (in
full first-order logic), and can then be used in the inductive steps in the same way.

We also remark that this is not an issue in [Dobrowolski and Kamsma 2022],
because the proofs there make use of a different notion called “q-spread-out”. The
point of this notion is that it is type-definable, so it can be captured by the EMs-type.
The gap in the proof of the Independence Theorem that this corrigendum addresses
is of a different nature.

The following lemma illustrates the use of Lemma 3.8 and completes the proof
of Lemma 3.3.

Lemma 3.10. Let T be a thick theory. For any a and M there is a tree Morley
sequence (ai )i<ω over M with a0 = a.

Proof. Let λ be the cardinal from Corollary 3.6, where M and |a| take the respective
roles of C and κ there. By induction on α ≤ λ we will construct trees (aα

η )η∈Tα
,

such that:

(1) For all η ∈ Tα we have aα
η ≡M a.

(2) The tree (aα
η )η∈Tα

is spread out and s-indiscernible over M .

(3) For all β < α we have aα
ιβα(η) = aβ

η for all η ∈ Tβ .

We start by setting a0
∅ = a. For a limit stage ℓ, we set aℓ

ιβℓ(η) = aβ
η , where β ranges

over all ordinals < ℓ and η ranges over all elements in Tβ . This is well-defined
by property (3), and properties (1) and (2) follow immediately from the induction
hypothesis.

For the successor step we suppose (aα
η )η∈Tα

has been constructed. By Lemma 3.8
we find a Morley sequence ((aα

η,i )η∈Tα
)i<ω in some global M-Ls-invariant type
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with (aα
η,0)η∈Tα

= (aα
η )η∈Tα

that is mutually s-indiscernible over M . Define a tree
(bη)η∈Tα+1 by setting b∅ = a and b⟨i⟩⌢η = aα

η,i for all η ∈ Tα and i < ω. The
EMs-type of (bη)η∈Tα+1 over M satisfies the following properties:

(i) It contains tp((bη)η∈Tα+1\{∅}/M). This is because (b⊵⟨i⟩)i<ω forms an M-
indiscernible sequence of trees that is mutually s-indiscernible over M .

(ii) The EMs-type specifies that the type of the root is tp(a/M).

We apply Fact 3.4(i) to find an s-indiscernible tree (aα+1
η )η∈Tα+1 over M that is

EMs-based over M on (bη)η∈Tα+1 . By an automorphism and (i) we may assume
that aα+1

⟨i⟩⌢η = b⟨i⟩⌢η = aα
η,i for all η ∈ Tα and i < ω, and so (3) is satisfied. This then

also implies that (2) is satisfied and (1) is satisfied by (ii), completing the inductive
construction.

We thus have constructed a tree (aλ
η)η∈Tλ

that is spread out and s-indiscernible
over M with aλ

η ≡M a for all η ∈ Tλ. We can now apply Corollary 3.6 to find a
Morley tree (aη)η∈Tω

that is str-Ls-based on (aλ
η)η∈Tλ

over M . In particular aη ≡M a
for all η ∈ Tω, and so by an automorphism we may assume aζ0 = a. Then setting
ai = aζi for all i < ω we obtain the required tree Morley sequence (ai )i<ω. □

4. The independence theorem

We now give a new proof of the independence theorem [Dobrowolski and Kamsma
2022, Theorem 7.7]. The statement remains exactly the same. The proof is essen-
tially that of [Kaplan and Ramsey 2020, Theorem 6.5], with Lemma 3.8 mixed
in.

Lemma 4.1. Let T be a thick NSOP1 theory. Suppose that a |⌣
K
M

b and fix some
cardinal κ . Suppose that q(x, y) = tp(N/M) is a global M-Ls-invariant type such
that q|x extends Lstp(b/M), where N ⊇ M is ℶω(λT +|Mab|+|Tκ |)-saturated and
the x variable matches b. If (bη)η∈Tα

, with α ≤ κ , is a tree that is spread out over
M , such that for all η ∈ Tα we have bη ≡

Ls
M b and bη |H (q|x)|Mb▷η

, then, writing
p(x, b) = tp(a/Mb), ⋃

η∈Tα

p(x, bη)

does not Kim-divide over M.

Proof. We follow the proof of [Kaplan and Ramsey 2020, Lemma 6.2], replacing
their use of [loc. cit., Proposition 6.1] by [Dobrowolski and Kamsma 2022, Propo-
sition 7.5]. The proof is by induction on α. For α = 0 there is nothing to do, and
limit stages follow from the induction hypothesis by finite character. Now suppose
that (bη)η∈Tα+1 is as in the statement. By the induction hypothesis we have that⋃

η⊵⟨0⟩

p(x, bη)
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does not Kim-divide over M . Because (bη)η∈Tα+1 is spread out we have that
(b⊵⟨i⟩)i<ω is a Morley sequence in some global M-Ls-invariant type. By the
chain condition Lemma 2.1 we then have that⋃

i<ω

⋃
η⊵⟨i⟩

p(x, bη)

does not Kim-divide over M . At the same time we have b∅ |H (q|x)|Mb▷∅ and so
by our assumptions on q we have b∅ |⌣

∗

M
b▷∅; see [Dobrowolski and Kamsma

2022, Definition 7.3]. Using that p(x, b∅) does not Kim-divide (because a |⌣
K
M

b),
we can apply the weak independence theorem [loc. cit., Proposition 7.5] to see that

p(x, b∅) ∪

⋃
i<ω

⋃
η⊵⟨i⟩

p(x, bη)

does not Kim-divide (here we implicitly used the assumption that bη ≡
Ls
M b for all

η ∈ Tα+1). Unfolding definitions, this is exactly saying that⋃
η∈Tα+1

p(x, bη),

does not Kim-divide, completing the induction step and thereby the proof. □

Lemma 4.2 (zig-zag lemma). Let T be a thick NSOP1 theory. Suppose that b |⌣
K
M

c.
Then there is a global M-Ls-invariant type q(x, y) = tp(N/M), where N ⊇ M is
some ℶω(λT +|Mbc|)-saturated model and q|x extends tp(b/M), and a tree Morley
sequence (bi , ci )i<ω over M such that:

(i) If i ≤ j then bi c j ≡M bc.

(ii) If i > j then bi |H (q|x)|Mc j .

Proof. We basically verify that the proof of [Kaplan and Ramsey 2020, Lemma 6.4]
goes through, while fixing a gap by mixing in a use of Lemma 3.8 (see also
Remark 3.9).

Let λ be the cardinal from Corollary 3.6, where the C and κ are M and |bc|
respectively. Let N ⊇ Mb be ℶω(|Tλ|)-saturated (note that |Tλ| ≥ λT +|Mbc|). Let
q(x, y) be a global M-Ls-invariant extension of Lstp(N/M), where the x variable
matches b. In particular, for β |Hq|x we have β ≡

Ls
M b. We write p(z, b)= tp(c/Mb).

By induction on α ≤ λ we will construct trees (bα
η , cα

η )η∈Tα
, such that:

(1) For all η ∈ Tα we have bα
η |H (q|x)|Mbα

▷ηcα
▷η

and bη ≡
Ls
M b.

(2) For all η ∈ Tα we have cα
η |H

⋃
ν⊵η p(z, bα

ν ).

(3) The tree (bα
η , cα

η )η∈Tα
is spread out and s-indiscernible over M .

(4) For all β < α we have bα
ιβα(η)c

α
ιβα(η) = bβ

η cβ
η for all η ∈ Tβ .
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We start by setting b0
∅c0

∅ = bc. For a limit stage ℓ, we set bℓ
ιβℓ(η)c

ℓ
ιβℓ(η) = bβ

η cβ
η ,

where β ranges over all ordinals < ℓ and η ranges over all elements in Tβ . This is
well-defined by property (4), and properties (1)–(3) then follow immediately from
the induction hypothesis.

For the successor step we suppose (bα
η , cα

η )η∈Tα
has been constructed. Using

Lemma 3.8 we find a Morley sequence ((bα
η,i , cα

η,i )η∈Tα
)i<ω in some global M-Ls-

invariant type with (bα
η,0, cα

η,0)η∈Tα
= (bα

η , cα
η )η∈Tα

that is mutually s-indiscernible
over M . Define a tree (dη, eη)η∈Tα+1 by setting d⟨i⟩⌢ηe⟨i⟩⌢η = bα

η,i c
α
η,i for all η ∈ Tα

and i < ω. This leaves us to define d∅ and e∅. Let β |H q|x and pick d∅ such that

d∅ ≡
Ls
Md▷∅e▷∅

β.

We can then apply Lemma 4.1 to the tree (dη)η∈Tα+1 to see that⋃
η∈Tα+1

p(z, dη)

does not Kim-divide over M . In particular, this set is consistent and so we can let
e∅ be a realisation of this set. The EMs-type of (dη, eη)η∈Tα+1 over M satisfies the
following properties:

(i) It contains tp((dη, eη)η∈Tα+1\{∅}/M). This is because (d⊵⟨i⟩, e⊵⟨i⟩)i<ω forms
an M-indiscernible sequence sequence of trees that is mutually s-indiscernible
over M .

(ii) It contains the type r(x∅, (xη)η▷∅, (zη)η▷∅) = tp(d∅, d▷∅, e▷∅/M), and note
that by construction r(x, d▷∅, e▷∅/M) = (q|x)|Md▷∅e▷∅ . Indeed, let η̄ and ν̄

be two finite tuples in Tα+1 with the same s-quantifier free type that do not
contain the root. Then we have dη̄eη̄ ≡

Ls
M dν̄eν̄ , see (i) for the justification. The

claim then follows from M-Ls-invariance of q .

(iii) It captures that d∅≡
Ls
M d⟨i⟩ for all i <ω. By construction we have dM(d∅, d⟨0⟩)≤

n for some n < ω, so dM(d∅, d⟨i⟩) ≤ n + 1 for all i < ω. By thickness
dM(x∅, x⟨i⟩) ≤ n + 1 is type-definable over M , and this partial type is thus
contained in the EMs-type.

(iv) It captures that e∅ |H
⋃

ν⊵∅ p(z, dν).

We apply Fact 3.4(i) to find an s-indiscernible tree (bα+1
η , cα+1

η )η∈Tα+1 over M that is
EMs-based over M on (dη, eη)η∈Tα+1 . By an automorphism and (i) we may assume
that bα+1

⟨i⟩⌢ηcα+1
⟨i⟩⌢η = d⟨i⟩⌢ηe⟨i⟩⌢η = bα

η,i c
α
η,i for all η ∈ Tα and i < ω, and so (4) is

satisfied. This then also implies that (3) is satisfied. Finally, (1) is satisfied because
of (ii) and (iii) and (2) is satisfied because of (iv), in both cases combined with the
induction hypothesis. This completes the inductive construction.

We thus have constructed a tree (bλ
η, cλ

η)η∈Tλ
satisfying (1)–(3). We now apply

Corollary 3.6 to find a Morley tree (bη, cη)η∈Tω
over M str-Ls-based on (bλ

η, cλ
η)η∈Tλ
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over M . Property (2) is clearly preserved under str-Ls-basing. To see that property
(1) is preserved under str-Ls-basing we show that, for any η ∈ Tω and finite tuple ν̄

in Tω, we have bη |H (q|x)|Mbν̄cν̄
. Indeed, by str-Ls-basing we find γ, µ̄ ∈ Tω such

that γ µ̄ has the same str-quantifier-free type as ην̄ and bηbν̄cν̄ ≡
Ls
M bλ

γ bλ
µ̄cλ

µ̄. Let
β |H q|x , then we have by M-Ls-invariance of q|x that

bηbν̄cν̄ ≡
Ls
M bλ

γ bλ
µ̄cλ

µ̄ ≡ βbλ
µ̄cλ

µ̄ ≡
Ls
M βbν̄cν̄,

as required. So setting (bi , ci ) = (bζi , cζi ) for all i < ω we find our desired tree
Morley sequence. □

Theorem 4.3 (independence theorem). Let T be a thick NSOP1 theory. Suppose
that a ≡

Ls
M a′, a |⌣

K
M

b, a′
|⌣

K
M

c and b |⌣
K
M

c. Then there is a′′ with a′′
≡

Ls
Mb a,

a′′
≡

Ls
Mc a′ and a′′

|⌣
K
M

bc.

Proof. We now have all the tools in place to follow the proof of [Kaplan and Ramsey
2020, Theorem 6.5]. To get our conclusion about Lascar strong types, we apply
the same trick as at the start of [Dobrowolski and Kamsma 2022, Theorem 7.7]:
as described there we may assume b and c to enumerate λT -saturated e.c. models
containing M . So we have reduced our goal to proving that, for p0(x, b)= tp(a/Mb)

and p1(x, c) = tp(a′/Mc), the partial type p0(x, b)∪ p1(x, c) does not Kim-divide
over M .

Let (bi , ci )i<ω and q(x, y) be as in Lemma 4.2, and we may assume b1c1 = bc.
Let a′′ be such that a′′c0 ≡

Ls
M a′c, which can be done because c = c1 ≡

Ls
M c0.

We then have a ≡
Ls
M a′′ as well as a |⌣

K
M

b1, a′′
|⌣

K
M

c0 and b1 |⌣
∗

M
c0, because

b1 |H (q|x)|Mc0 , so by [Dobrowolski and Kamsma 2022, Proposition 7.5] we have
that p0(x, b1) ∪ p1(x, c0) does not Kim-divide over M . Since (bi , ci )i<ω is a
tree Morley sequence over M , we can apply both parts of Lemma 3.2 to see that
(b2i+1, c2i )i<ω is a tree Morley sequence over M . Hence by Kim’s lemma for tree
Morley sequences (Lemma 3.3) we have that⋃

i<ω

p0(x, b2i+1) ∪ p1(x, c2i )

is consistent. Thus ⋃
i<ω

p0(x, b2i+1) ∪ p1(x, c2i+2)

is consistent, as this is contained in the above set. Again, by Lemma 3.2, we have
that (b2i+1, c2i+2)i<ω is a tree Morley sequence over M . Since b1c2 ≡M bc we
thus have by Kim’s lemma for tree Morley sequences (Lemma 3.3) again that
p0(x, b) ∪ p1(x, c) does not Kim-divide over M , which finishes the proof. □
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