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Preface

The Algorithmic Number Theory Symposium (ANTS), held biennially since
1994, is the premier international forum for research in computational number the-
ory. ANTS is devoted to algorithmic aspects of number theory, including elemen-
tary, algebraic, and analytic number theory, the geometry of numbers, arithmetic
algebraic geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the tenth ANTS meeting, held July 9–13,
2012 at the University of California, San Diego. The scientific program of ANTS X
consisted of 5 invited lectures, 25 contributed talks, a poster session, and a rump
session. The invited speakers were Manjul Bhargava (Princeton University), Nils
Bruin (Simon Fraser University), Wen-Ching Winnie Li (Pennsylvania State Uni-
versity), Nils-Peter Skoruppa (Universität Siegen), and Andrew Sutherland (Mas-
sachusetts Institute of Technology). Extended abstracts of the presentations of
Bruin and Sutherland are included in this volume.

The contributed talks were presentations of papers chosen through a competitive
review process. Each of the 55 papers submitted for consideration was reviewed
by at least three members of the program committee, often with input from one or
more external reviewers as well. Revised and edited versions of the 25 accepted
papers are included in this volume.

At each ANTS since 2006, the Number Theory Foundation has sponsored the
Selfridge Prize, an award for the best contributed paper, as judged by the program
committee. The Selfridge Prize for ANTS X was awarded to Andrew Sutherland
for his paper On the evaluation of modular polynomials.

Abstracts of all presentations (including invited presentations and posters), PDF
slides of many presentations, and the versions of the contributed papers that were
presented at the conference can be found on the conference web site:

http://math.ucsd.edu/~kedlaya/ants10/

For each of the previous ANTS conferences, the proceedings volume was pro-
duced before the meeting and was available at the meeting. This publication time-
line allowed for very little editing and did not permit authors to revise their papers
to incorporate insights gained from discussions during the conference. Following a
suggestion raised in previous years, the ANTS X organizing committee decided to
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http://msp.org/obs
http://dx.doi.org/10.2140/obs.2013.1-1
http://dx.doi.org/10.2140/obs.2013.1.7
http://msp.org
http://math.ucsd.edu/~kedlaya/ants10/


viii EVERETT W. HOWE AND KIRAN S. KEDLAYA

produce the proceedings volume after the conference. The committee also decided
to switch publishers; we are proud to note that this volume is the inaugural volume
of the Open Book Series of Mathematical Sciences Publishers.

A word about bibliographic references: The editors tried their best to find online
versions of the references that are cited in the ANTS papers. If you are reading a
PDF version of one of the papers in this volume, and if one of its references has
a title that is colored blue, then the title is a hyperlink to an online copy of the
reference. If you are reading a printed copy of an ANTS paper, the hyperlinks will
unfortunately no longer work. However, there are still ways to find online versions
of cited references. For example, the AMS Digital Mathematics Registry includes
a useful list of journal archives:

http://www.ams.org/dmr/JournalList.html

For some of the ANTS references that appear in journals that are not on the AMS
list, the editors were nevertheless able to track down online versions. For these
references, we spell out the URL of the paper in the bibliographic entry.

The editors are grateful to the authors of the papers in this volume for their
flexibility and graciousness during the editing process. The editors are equally
grateful to Silvio Levy and Alex Scorpan, our contacts at Mathematical Sciences
Publishers, for their flexibility and graciousness. We hope that the reader will find
the value added by the editing to be sufficient recompense for the extra year’s wait
for the volume to appear.

Everett Howe and Kiran Kedlaya
San Diego, November 2013

Local organizing committee.

Alina Bucur University of California, San Diego
Joe Buhler Center for Communications Research, La Jolla
Dan Gordon Center for Communications Research, La Jolla
Everett Howe Center for Communications Research, La Jolla
Kiran Kedlaya University of California, San Diego
Kristin Lauter Microsoft Research

Program committee.

Dan Bernstein University of Illinois, Chicago
Alina Bucur University of California, San Diego
Joe Buhler Center for Communications Research, La Jolla
Henri Cohen Université de Bordeaux 1
Chantal David Concordia University
Steven Galbraith University of Auckland

http://www.ams.org/dmr/JournalList.html
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Deterministic elliptic curve primality proving
for a special sequence of numbers

Alexander Abatzoglou, Alice Silverberg,
Andrew V. Sutherland, and Angela Wong

We give a deterministic algorithm that very quickly proves the primality or com-
positeness of the integers N in a certain sequence, using an elliptic curve E=Q

with complex multiplication by the ring of integers of Q.
p
�7/. The algorithm

uses O.logN/ arithmetic operations in the ring Z=NZ, implying a bit complex-
ity that is quasiquadratic in logN . Notably, neither of the classical “N � 1” or
“N C1” primality tests apply to the integers in our sequence. We discuss how this
algorithm may be applied, in combination with sieving techniques, to efficiently
search for very large primes. This has allowed us to prove the primality of several
integers with more than 100,000 decimal digits, the largest of which has more
than a million bits in its binary representation. At the time it was found, it was
the largest proven prime N for which no significant partial factorization of N � 1
or N C 1 is known (as of final submission it was second largest).

1. Introduction

With the celebrated result of Agrawal, Kayal, and Saxena [3], one can now un-
equivocally determine the primality or compositeness of any integer in determinis-
tic polynomial time. With the improvements of Lenstra and Pomerance [27], the
AKS algorithm runs in zO.n6/ time, where n is the size of the integer to be tested
(in bits). However, it has long been known that for certain special sequences of
integers, one can do much better. The two most famous examples are the Fermat
numbers Fk D 22

k

C 1, to which one may apply Pépin’s criterion [35], and the
Mersenne numbers Mp D 2p � 1, which are subject to the Lucas-Lehmer test [24].
In both cases, the corresponding algorithms are deterministic and run in zO.n2/
time.

MSC2010: primary 11Y11; secondary 11G05, 14K22.
Keywords: primality, elliptic curves, complex multiplication.
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2 A. ABATZOGLOU, A. SILVERBERG, A. V. SUTHERLAND, AND A. WONG

In fact, every prime admits a proof of its primality that can be verified by a
deterministic algorithm in zO.n2/ time. Pomerance shows in [36] that for every
prime p > 31 there exists an elliptic curve E=Fp with an Fp-rational point P of
order 2r > .p1=4 C 1/2, which allows one to establish the primality of p using
just r elliptic curve group operations. Elliptic curves play a key role in Pomer-
ance’s proof; the best analogous result using classical primality certificates yields
an zO.n3/ time bound (see [38], and compare [9, Theorem 4.1.9]).

The difficulty in applying Pomerance’s result lies in finding the pair .E; P /, a
task for which no efficient method is currently known. Rather than searching for
suitable pairs .E; P /, we instead fix a finite set of curves Ea=Q, each equipped
with a known rational point Pa of infinite order. To each positive integer k we
associate one of the curves Ea and define an integer Jk for which we give a neces-
sary and sufficient condition for primality: Jk is prime if and only if the reduction
of Pa in Ea.Fp/ has order 2kC1 for every prime p dividing Jk . Of course p D Jk
when Jk is prime, but this condition can easily be checked without knowing the
prime factorization of Jk . This yields a deterministic algorithm that runs in zO.n2/
time (see Algorithm 5.1).

Our results extend the methods used by Gross [20], Denomme and Savin [11],
Tsumura [44], and Gurevich and Kunyavskiı̆ [22], all of which fit within a gen-
eral framework laid out by Chudnovsky and Chudnovsky in [8] for determining
the primality of integers in special sequences using elliptic curves with complex
multiplication (CM). The elliptic curves that we use lie in the family of quadratic
twists defined by the equations

Ea W y
2
D x3� 35a2x� 98a3; (1)

for squarefree integers a such that Ea.Q/ has positive rank. Each curve has good
reduction outside of 2, 7, and the prime divisors of a, and has CM by ZŒ˛�, where

˛ D
1C
p
�7

2
:

For each curve Ea, we fix a point Pa 2Ea.Q/ of infinite order with Pa 62 2Ea.Q/.
For each positive integer k, let

jk D 1C 2˛
k
2 ZŒ˛�;

Jk D jkjk D 1C 2.˛
k
C˛k/C 2kC2 2 N:

The integer sequence Jk satisfies the linear recurrence relation

JkC4 D 4JkC3� 7JkC2C 8JkC1� 4Jk;

with initial values J1 D J2 D 11, J3 D 23, and J4 D 67. Then (by Lemma 4.5) Jk
is composite for k � 0 .mod 8/ and for k � 6 .mod 24/. To each other value of
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k we assign a squarefree integer a, based on the congruence class of k .mod 72/,
as listed in Table 1. Our choice of a is based on two criteria. First, it ensures
that when Jk is prime, the Frobenius endomorphism of Ea mod Jk corresponds
to complex multiplication by jk (rather than �jk) and

Ea.Z=JkZ/' Z=2Z�Z=2kC1Z:

Second, it implies that when Jk is prime, the reduction of the point Pa has order
2kC1 in E.Z=JkZ/. The second condition is actually stronger than necessary (in
general, one only needs Pa to have order greater than 2k=2C1), but it simplifies
matters. Note that choosing a sequence of the form jk D 1C ƒk means that
Ea.ZŒ˛�=.jk//' ZŒ˛�=ƒk , whenever Jk is prime and jk is the Frobenius endo-
morphism of Ea mod Jk (see Lemma 4.6).

We prove in Theorem 4.1 that the integer Jk is prime if and only if the point Pa
has order 2kC1 on “Ea mod Jk”. More precisely, we prove that if one applies
the standard formulas for the elliptic curve group law to compute scalar multiples
Qi D 2

iPa using projective coordinates Qi D Œxi ; yi ; zi � in the ring Z=JkZ, then
Jk is prime if and only if gcd.Jk; zk/D 1 and zkC1 D 0. This allows us to deter-
mine whether Jk is prime or composite using O.k/ operations in the ring Z=JkZ,
yielding a bit complexity of O.k2 log k log log k/ D zO.k2/ (see Proposition 5.2
for a more precise bound).

We note that, unlike the Fermat numbers, the Mersenne numbers, and many
similar numbers of a special form, the integers Jk are not amenable to any of the
classical “N � 1” or “N C 1” type primality tests (or combined tests) that are
typically used to find very large primes (indeed, the 500 largest primes currently
listed in [7] all have the shape abn˙ 1 for some small integers a and b).

In combination with a sieving approach described in Section 5, we have used
our algorithm to determine the primality of Jk for all k � 1:2� 106. The prime
values of Jk are listed in Table 4. At the time it was found, the prime J1;111;930,
which has 334,725 decimal digits, was the largest proven prime N for which no
significant partial factorization of either N � 1 or N C 1 was known [1]. On July
4, 2012 it was superseded by a 377,922 digit prime found by David Broadhurst
[6] for which no significant factorization of N � 1 or N C 1 is known; Broadhurst
constructed an ECPP primality proof for this prime, but it is not a Pomerance proof.

Generalizations have been suggested to the settings of higher-dimensional abelian
varieties with complex multiplication, algebraic tori, and group schemes by Chud-
novsky and Chudnovsky [8], Gross [20], and Gurevich and Kunyavskiı̆ [21], re-
spectively. In the PhD theses of the first and fourth authors, and in a forthcoming
paper, we are extending the results in this paper to a more general framework. In
that paper we will also explain why, when restricting to elliptic curves over Q, this
method requires curves with CM by Q.

p
�D/ with D D 1, 2, 3, or 7.
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2. Relation to prior work

In [8], Chudnovsky and Chudnovsky consider certain sequences of integers sk D
NormK=Q.1C ˛0˛

k
1 /, defined by algebraic integers ˛0 and ˛1 in an imaginary

quadratic field K D Q.
p
D/. They give sufficient conditions for the primality

of sk , using an elliptic curve E with CM by K. In our setting, D D �7, ˛0 D 2,
˛1D .1C

p
�7/=2, and Jk D sk . The key difference here is that we give necessary

and sufficient criteria for primality that can be efficiently checked by a deterministic
algorithm. This is achieved by carefully selecting the curves Ea=Q that we use,
so that in each case we are able to prove that the point Pa 2 Ea.Q/ reduces to a
point of maximal order 2kC1 on Ea mod Jk , whenever Jk is prime. Without such
a construction, we know of no way to obtain any nontrivial point on E mod sk in
deterministic polynomial time.

Our work is a direct extension of the techniques developed by Gross [20; 45],
Denomme and Savin [11], Tsumura [44], and Gurevich and Kunyavskiı̆ [22], who
use elliptic curves with CM by the ring of integers of Q.i/ or Q.

p
�3/ to test

the primality of Mersenne, Fermat, and related numbers. However, as noted by
Pomerance [37, §4], the integers considered in [11] can be proved prime using
classical methods that are more efficient and do not involve elliptic curves, and
the same applies to [20; 44; 45; 22]. But this is not the case for the sequence we
consider here.

3. Background and notation

3A. Elliptic curve primality proving. Primality proving algorithms based on el-
liptic curves have been proposed since the mid-1980s. Bosma [5] and Chudnovsky
and Chudnovsky [8] considered a setting similar to the one employed here, using
elliptic curves to prove the primality of numbers of a special form; Bosma proposed
the use of elliptic curves with complex multiplication by Q.i/ or Q.

p
�3/, while

Chudnovsky and Chudnovsky considered a wider range of elliptic curves and other
algebraic varieties. Goldwasser and Kilian [16; 17] gave the first general purpose el-
liptic curve primality proving algorithm, using randomly generated elliptic curves.
Atkin and Morain [4; 32] developed an improved version of the Goldwasser-Kilian
algorithm that uses the CM method to construct the elliptic curves used, rather than
generating them at random (it does rely on probabilistic methods for root-finding).
With asymptotic improvements due to Shallit, the Atkin-Morain algorithm has a
heuristic expected running time of zO.n4/, which makes it the method of choice for
general purpose primality proving [33]. Gordon [18] proposed a general purpose
compositeness test using supersingular reductions of CM elliptic curves over Q.

Throughout this paper, if E � P2 is an elliptic curve over Q, we shall write
points Œx; y; z� 2 E.Q/ so that x; y; z 2 Z and gcd.x; y; z/D 1, and we may use
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.x; y/ to denote the projective point Œx; y; 1�.
We say that a point P D Œx; y; z� 2 E.Q/ is zero mod N when N divides z;

otherwise P is nonzero mod N . Note that if P is zero mod N then P is zero
mod p for all primes p dividing N .

Definition 3.1. Given an elliptic curve E over Q, a point P D Œx; y; z� 2 E.Q/,
and N 2 Z, we say that P is strongly nonzero mod N if gcd.z;N /D 1.

If P is strongly nonzero mod N , then P is nonzero mod p for every prime p
dividing N , and if N is prime, then P is strongly nonzero mod N if and only if P
is nonzero mod N .

We rely on this fundamental result, which can be found in [16; 26; 17]:

Proposition 3.2. Let E=Q be an elliptic curve, let N be a positive integer prime
to disc.E/, let P 2 E.Q/, and let m> .N 1=4C 1/2. Suppose mP is zero mod N
and .m=q/P is strongly nonzero mod N for all primes q jm. Then N is prime.

To make practical use of Proposition 3.2, one needs to know the prime factor-
ization of m. For general elliptic curve primality proving this presents a challenge;
the algorithms of Goldwasser-Kilian and Atkin-Morain use different approaches
to ensure that m has an easy factorization, but both must then recursively construct
primality proofs for the primes q dividing m. In our restricted setting we effectively
fix the prime factorization of mD 2kC1 ahead of time.

Next we give a variant of Proposition 3.2 that replaces “strongly nonzero” with
“nonzero”, at the expense of m being a prime power with a larger lower bound.

Proposition 3.3. Let E=Q be an elliptic curve, let p be a prime, let N be an odd
positive integer prime to p disc.E/, and let P 2 E.Q/. Suppose b is a positive
integer such that pb > .

p
N=3 C 1/2 and pbP is zero mod N and pb�1P is

nonzero mod N . Then N is prime.

Proof. Since pb�1P is nonzero mod N , there are a prime divisor q of N and a
positive integer r such that qr exactly divides N and pb�1P is nonzero mod qr .
Let E1.Z=qrZ/ denote the kernel of the reduction map E.Z=qrZ/! E.Fq/. It
follows, for example, from [29, Theorem 4.1] that E1.Z=qrZ/ is a q-group. Let
P 0 2 E.Z=qrZ/ be the reduction of P mod qr and let P 00 be the image of P 0

in E.Fq/. If pb�1P 00 D 0 then pb�1P 0 2 E1.Z=qrZ/, so pb�1P 0 has order a
power of q. But by assumption it has order p, which is prime to N . This is a
contradiction, so P 00 has order pb . If N were composite, then q � N=3 since N
is odd, so by the Hasse bound,

pb � jE.Fq/j � .
p
qC 1/2 � .

p
N=3C 1/2;

contradicting the hypothesis that pb > .
p
N=3C 1/2. �
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3B. Complex multiplication and Frobenius endomorphism. For any number field
F , let OF denote its ring of integers. If E is an elliptic curve over a field K, and
�K is the space of holomorphic differentials on E over K, then �K is a one-
dimensional K-vector space, and there is a canonical ring homomorphism

EndK.E/! EndK.�/DK: (2)

Suppose now that E is an elliptic curve over an imaginary quadratic field K, and
that E has complex multiplication (CM) by OK , meaning that EndK.E/ ' OK .
Then the image of the map in (2) is OK . Let  W OK ! EndK.E/ denote the
inverse map. Suppose that p is a prime ideal of K at which E has good reduction
and let zE denote the reduction of E mod p. Then the composition

OK �!� EndK.E/ ,! EndOK=p.
zE/;

where the first map is  and the second is induced by reduction mod p, gives a
canonical embedding

OK ,! End. zE/: (3)

The Frobenius endomorphism of zE is .x; y/ 7! .xq; yq/ where q D NormK=Q.p/;
under the embedding in (3), the Frobenius endomorphism is the image of a partic-
ular generator � of the (principal) ideal p. By abuse of notation, we say that the
Frobenius endomorphism is � .

4. Main theorem

In this section we state and prove our main result, Theorem 4.1, which gives a
necessary and sufficient condition for the primality of the numbers Jk .

Fix a particular square root of �7 and let K DQ.
p
�7/. Let

˛ D
1C
p
�7

2
2 OK ;

and for each positive integer k, let

jk D 1C 2˛
k
2 ZŒ˛� and Jk D NormK=Q.jk/D jkjk 2 N:

Note that Jk is prime in Z if and only if jk is prime in OK . Note also that
NormK=Q.˛/D ˛˛ D 2.

Recall the family of elliptic curves Ea defined by (1). Lemma 4.5 below shows
that Jk is composite if k � 0 .mod 8/ or k � 6 .mod 24/, so we omit these cases
from our primality criterion. For each remaining value of k, Table 1 lists the
twisting parameter a and the point Pa 2 Ea.Q/ we associate to k. For each of
these a, the elliptic curve Ea has rank one over Q, and the point Pa is a generator
for Ea.Q/ modulo torsion.
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k a Pa

k � 0 or 2 .mod 3/ �1 .1; 8/

k � 4; 7; 13; 22 .mod 24/ �5 .15; 50/

k � 10 .mod 24/ �6 .21; 63/

k � 1; 19; 49; 67 .mod 72/ �17 .81; 440/

k � 25; 43 .mod 72/ �111 .�633; 12384/

Table 1. The twisting parameters a and points Pa.

Theorem 4.1. Fix k > 1 such that k 6� 0 .mod 8/ and k 6� 6 .mod 24/. Let Pa 2
Ea.Q/ be as in Table 1 (depending on k). The following are equivalent:

(i) 2kC1Pa is zero mod Jk and 2kPa is strongly nonzero mod Jk;

(ii) Jk is prime.

Remark 4.2. Applying Proposition 3.3 with N D Jk , p D 2, and b D kC 1, we
can add an equivalent condition in Theorem 4.1 as long as k � 6, namely:

(iii) 2kC1Pa is zero mod Jk and 2kPa is nonzero mod Jk .

We shall prove Theorem 4.1 via a series of lemmas, but let us first outline the
proof. One direction is easy: Since 2kC1 > .J 1=4

k
C 1/2 for all k > 1, if (i) holds

then so does (ii), by Proposition 3.2 (where the hypothesis gcd.Jk; disc.Ea//D 1
holds by Lemma 4.5 below).

Now fix a and Pa as in Table 1, and let zPa denote the reduction of Pa modulo jk .
We first compute a set Sa such that if k 2 Sa and jk is prime, then Ea.OK=.jk//'
OK=.2˛

k/ as OK-modules. We then compute a set Ta such that if k 2 Ta and jk
is prime, then zPa does not lie in ˛Ea.OK=.jk// if and only if k 2 Ta (note that
˛ 2 OK ,! End.Ea/). For k 2 Sa \Ta, the point zPa has order 2kC1 whenever Jk
is prime.

We now fill in the details. Many of the explicit calculations below were per-
formed with the assistance of the Sage computer algebra system [43].

4A. The linear recurrence sequence Jk. As noted in the introduction, the se-
quence Jk satisfies the linear recurrence relation

JkC4 D 4JkC3� 7JkC2C 8JkC1� 4Jk : (4)

We now prove this, and also note some periodic properties of this sequence. See
[12] or [28, Chapter 6] for basic properties of linear recurrence sequences.

Definition 4.3. We call a sequence ak (purely) periodic if there exists an integer m
such that ak D akCm for all k. The minimal such m is the period of the sequence.
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Lemma 4.4. The sequence Jk satisfies (4). If p is an odd prime and p� OK is a
prime ideal above .p/, then the sequence Jk mod p is periodic, with period equal
to the least common multiple of the orders of 2 and ˛ in .OK=p/�.

Proof. The characteristic polynomial of the linear recurrence in (4) is

f .x/D x4� 4x3C 7x2� 8xC 4D .x� 1/.x� 2/.x2� xC 2/;

whose roots are 1; 2; ˛, and ˛. It follows that the sequences 1k , 2k , ˛k , and ˛k ,
and any linear combination of these sequences, satisfy (4). Thus Jk satisfies (4).

One easily checks that the lemma is true for p D 7, so assume p ¤ 7. Let A be
the 4� 4 matrix with Ai;j D JiCj�1. Then detA D �212 � 7 is nonzero mod p,
hence its rows are linearly independent over Fp. It follows from Theorems 6.19
and 6.27 of [28] that the sequence Jk mod p is periodic, with period equal to the
lcm of the orders of the roots of f in F�p (which we note are distinct). These roots
all lie in OK=p' Fpd , where d 2 f1; 2g is the residue degree of p. Since ˛ D 2=˛,
the order of ˛ in .OK=p/� divides the lcm of the orders of 2 and ˛. The lemma
follows. �

When p is an odd prime, let mp denote the period of the sequence Jk mod p.
Lemma 4.4 implies that mp always divides p2� 1, and it divides p� 1 whenever
p splits in K.

Lemma 4.5.

(i) Jk is divisible by 3 if and only if k � 0 .mod 8/.

(ii) Jk is divisible by 5 if and only if k � 6 .mod 24/.

(iii) Jk � 2 .mod 7/ if k � 0 .mod 3/, and Jk � 4 .mod 7/ otherwise.

(iv) For k > 1, we have Jk � 3 .mod 8/ if k is even, and Jk � 7 .mod 8/ if k is
odd.

(v) Jk is divisible by 17 if and only if k � 54 .mod 144/.

(vi) Jk is not divisible by 37.

Proof. Lemma 4.4 allows us to compute the periods m3 D 8, m5 D 24, m7 D 3,
m17D 144, and m37D 36. It then suffices to check, for pD 3; 5; 17, and 37, when
Jk � 0 .mod p/ for 1 � k � mp, and to determine the values of Jk .mod 7/ for
1� k � 3.

It is easy to check that ˛k C ˛k � 3 .mod 4/ for odd k > 1, and ˛k C ˛k �
1 .mod 4/ otherwise. Since Jk D 1C 2.˛kC˛k/C 2kC2, we have (iv).

As an alternative proof for one direction of (i) and (ii), note that ˛ and ˛ each
has order 8 in .OK=.3//�. Hence if k � 0 .mod 8/, then Jk D 1C 2.˛kC˛k/C
2kC2 � 1 C 2.1 C 1/ C 1 � 0 .mod 3/. Similarly, ˛6 � 2 � ˛6 .mod 5/, so
Jk � 1C 2.4/C 1� 0 .mod 5/ when k � 6 .mod 24/. �
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4B. The set Sa. For each squarefree integer a we define the set of integers

Sa WD

�
k > 1 W

�
a

Jk

��
jk
p
�7

�
D 1

�
;

where
� �

denotes the (generalized) Jacobi symbol.
If jk is prime in OK , then the Frobenius endomorphism of Ea over the finite

field OK=.jk/ corresponds to either jk or �jk . For elliptic curves over Q with
complex multiplication, one can easily determine which is the case.

Lemma 4.6. Suppose a is a squarefree integer, k > 1, and jk is prime in OK .
Then:

(i) k 2 Sa if and only if the Frobenius endomorphism of Ea over the finite field
OK=.jk/ is jk;

(ii) if k 2 Sa, then Ea.OK=.jk//' OK=.2˛
k/ as OK-modules.

Proof. The elliptic curve Ea is the curve in Theorem 1 of [42, p. 1117], with
D D�7 and � D jk . By [42, p. 1135], the Frobenius endomorphism of Ea over
OK=.jk/ is �

a

Jk

��
jk
p
�7

�
jk 2 OK :

Part (i) then follows from the definition of Sa. For (ii), note that (i) implies that if
k 2 Sa, then

Ea.OK=.jk//' ker.jk � 1/D ker.2˛k/' OK=.2˛
k/;

which completes the proof. �

The next lemma follows directly from Lemma 4.5(iv).

Lemma 4.7. Let k > 1.

(i)
�
�1

Jk

�
D�1: (ii)

�
2

Jk

�
D

�
1 if k is odd;
�1 if k is even.

We now explicitly compute the sets Sa for the values of a used in Theorem 4.1.

Lemma 4.8. For a 2 f�1;�5;�6;�17;�111g the sets Sa are as in Table 2.

Proof. Since jk D 1C 2˛k , and ˛ � 4 .mod
p
�7/, and 23 � 1 .mod 7/, we have�

jk
p
�7

�
D

 
1C 22kC1

7

!
D

�
1 if k � 1 .mod 3/;
�1 if k � 0; 2 .mod 3/:

We now need to compute
�
a
Jk

�
for a D�1;�5;�6;�17, and �111. The case

a D �1 is given by Lemma 4.7(i). As in the proof of Lemma 4.5, applying
Lemma 4.4 to the odd primes p D 3; 5; 17; 37 that can divide a, we found that
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a m Sa D fk > 1 W k modm is as belowg

�1 3 0, 2
�5 24 0, 2, 4, 5, 7, 9, 12, 13, 16, 18, 21, 22, 23
�6 24 3, 7, 9, 10, 11, 12, 13, 17, 20, 22
�17 144 0, 1, 5, 7, 9, 10, 13, 14, 15, 18, 19, 20, 22, 23, 27, 30, 31,

33, 34, 36, 42, 43, 44, 45, 49, 50, 53, 56, 61, 62, 63, 66, 67,
68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 90, 91,
92, 93, 97, 99, 100, 104, 106, 108, 110, 111, 112, 114, 117,
118, 121, 122, 123, 125, 126, 128, 129, 133, 135, 136, 137,
138, 139, 141, 143

�111 72 2, 4, 6, 9, 14, 15, 18, 20, 22, 23, 25, 30, 33, 34, 35, 37, 38,
39, 41, 42, 43, 47, 49, 50, 52, 53, 54, 55, 57, 58, 63, 65, 66,
67, 68, 70

Table 2. The sets Sa.

the periods mp of the sequences Jk mod p are m3 D 8, m5 D 24, m17 D 144,
and m37 D 36. Since

�
�1
Jk

�
D �1, it follows from quadratic reciprocity that for

aD�5;�17, and �111, the period of the sequence
�
a
Jk

�
divides the least common

multiple of the periods mp for p dividing a. For a D �6, by Lemma 4.7(ii) the
period of

�
2
Jk

�
is 2, which already divides m3D 8. Since the period of the sequence� jkp

�7

�
is 3, we find the period m of

�
a
Jk

�� jkp
�7

�
listed in Table 2 by taking the least

common multiple of 3 and the mp for p dividing a. To compute Sa, it then suffices
to compute

�
a
Jk

�
and check when

�
a
Jk

�
D
� jkp
�7

�
, for 1 < k �mC 1. �

4C. The set Ta. We now define the sets Ta.

Definition 4.9. Let a be a squarefree integer, and suppose that P 2Ea.K/. Then
the field K.˛�1.P // has degree 1 or 2 over K, so it can be written in the form
K.
p
ıP / with ıP 2K. Let

TP WD

�
k > 1 W

�
ıP

jk

�
D�1

�
:

For the values of a listed in Table 1, let Ta D TPa and let ıa D ıPa .

Lemma 4.10. Suppose that k > 1, jk is prime in OK , and a is a squarefree integer.
Suppose that P 2 Ea.K/, and let zP denote the reduction of P mod jk . Then
zP 62 ˛Ea.OK=.jk// if and only if k 2 TP .

Proof. Let L D K.˛�1.P // D K.
/ for some 
 2 L such that 
2 D ıP . Fix
a Q 2 Ea.Q/ such that ˛Q D P . Since ker.˛/ � EaŒ2� � Ea.K/, we have
K.Q/ D L D K.
/. Fix a prime ideal p of L above .jk/, let F D OK=.jk/, let
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zQ 2 Ea.F/ be the reduction of Q mod p, and let z
 be the reduction of 
 mod p.
Then F. zQ/D F.z
/.

Now zP 2 ˛Ea.F/ if and only if zQ 2Ea.F/. By the above, this happens if and
only if z
 2 F, that is, if and only if ıP is a square modulo jk . �

Lemma 4.11. We can take

ı�1 D ˛; ı�5 D�5˛; ı�6 D�3
p
�7; ı�17 D ˛; ı�111 D�3:

Proof. The action of the endomorphism ˛ on the elliptic curve Ea and its reductions
is as follows (see Proposition II.2.3.1 of [41, p. 111]). For .x; y/ 2Ea, we have

˛.x; y/D 
2x2C a.7� s/xC a2.�7� 21s/

.�3C s/xC a.�7C 5s/
;
y
�
2x2C a.14� 2s/xC a2.28C 14s/

�
�.5C s/x2� a.42C 2s/x� a2.77� 7s/

!
;

where s D
p
�7. Solving for R in ˛RD Pa yields ıa in each case. �

Lemma 4.12. If k > 1 then
�
˛
jk

�
D�1.

Proof. Let M D K
�p
˛
�
. By the reciprocity law of global class field theory we

have Y
p

.jk;Mp=Kp/D 1;

where .jk;Mp=Kp/ is the norm residue symbol.
Let f .x/D x2� jk 2 OK˛ Œx�. For k > 1 we have

jf .1/j˛ D
ˇ̌
2˛k

ˇ̌
˛
D 2�.kC1/ < 2�2 D j4j˛ D

ˇ̌
f 0.1/2

ˇ̌
˛
;

and Hensel’s lemma implies that f .x/ has a root in OK˛ . Thus jk is a square in K˛
and .jk;M˛=K˛/D 1.

Identify K˛ with Q2. Applying Theorem 1 of [40, p. 20] with aD jk and bD ˛,
and using ˛5 D 5C ˛, gives .jk; ˛/ D �1, where .jk; ˛/ is the Hilbert symbol.
Thus jk 62 NormM˛=K˛ .M

�
˛ /, and therefore .jk;M˛=K˛/D�1.

If p is a prime ideal of OK that does not divide 2, then Mp=Kp is unramified.
By local class field theory we then have

.jk;Mp=Kp/D
�
˛

p

�ordp.jk/
:

Since jk is prime to 2, we have ord˛.jk/D ord˛.jk/D 0, henceY
p−2

.jk;Mp=Kp/D
Y
p−2

�
˛

p

�ordp.jk/
D

Y
all p

�
˛

p

�ordp.jk/
D

�
˛

jk

�
:
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Therefore

1D
Y
p

.jk;Mp=Kp/D
�
˛

jk

�
.jk;M˛=K˛/.jk;M˛=K˛/D�

�
˛

jk

�
;

as desired. �

Lemma 4.13. For a 2 f�1;�5;�6;�17;�111g the sets Ta are as follows:

T�1 D fk > 1g;

T�5 D fk > 1 W k � 3; 4; 7; 8; 11; 13; 14; 15; 16; 17; 20; 22 .mod 24/g;

T�6 D fk > 1 W k � 1; 5; 10; 12; 15; 19; 20; 21; 22; 23 .mod 24/g;

T�17 D fk > 1g;

T�111 D fk > 1 W k � 1; 2; 3; 6 .mod 8/g:

Proof. We apply Lemma 4.11 and the definition of Ta. Lemma 4.12 implies that
T�1D T�17D fk > 1g. For aD�6 we use quadratic reciprocity in quadratic fields
(see Theorem 8.15 of [25, p. 257]) to compute

�p
�7
jk

�
. For the remaining cases we

compute
�
�3
jk

�
D
�
�3
Jk

�
and

�
�5
jk

�
D
�
�5
Jk

�
as in the proof of Lemma 4.8, and apply�

˛
jk

�
D�1 from Lemma 4.12. �

4D. Proof of Theorem 4.1.

Lemma 4.14. Let a be a squarefree integer. Suppose that P 2Ea.K/, k 2Sa\TP ,
and jk is prime. Let zP denote the reduction of P mod jk . Then the annihilator of
zP in OK is divisible by ˛kC1.

Proof. We have Ea.OK=.jk//' OK=.2˛
k/D OK=.˛˛

kC1/, by Lemma 4.6(ii). It
then suffices to show zP 62 ˛Ea.OK=.jk//, which follows from Lemma 4.10. �

The congruence conditions for k in Table 1 come from taking Sa\Ta, excluding
the cases handled by Lemma 4.5, and adjusting to give disjoint sets.

We now prove Theorem 4.1. Suppose that k >1, k 6�0 .mod 8/, k 6�6 .mod 24/,
and Jk is prime. Let a and Pa be as listed in Table 1. Then k 2 Sa \ Ta. Let
zP denote the reduction of Pa mod jk . We have Ea.OK=.jk// ' OK=.2˛

k/

by Lemma 4.6(ii), and therefore the annihilator of zP in OK divides 2˛k . By
Lemma 4.14, the annihilator of zP in OK is divisible by ˛kC1. Since 2˛k di-
vides 2kC1 but ˛kC1 does not divide 2k , we must have 2kC1 zP D 0 and 2k zP ¤ 0.
Therefore 2kC1Pa is zero mod Jk and 2kPa is strongly nonzero mod Jk .

For the converse, note that disc.Ea/D�212 � 73 � a6, so Lemma 4.5 shows that
gcd.Jk; disc.Ea// D 1 if k 6� 0 .mod 8/ and k 6� 6 .mod 24/. We can therefore
apply Proposition 3.2 with mD 2kC1, noting that

2kC1 > ..3 � 2kC1/
1
4 C 1/2 > .J

1=4

k
C 1/2
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for all k > 2, and for kD 2 we have 2kC1D 8 > .111=4C1/2D .J 1=4
k
C1/2. This

proves Theorem 4.1.

Remark. As pointed out by Richard Pinch, Pa 2 2Ea.OK=.jk// if and only if all
x.Pa/� ei are squares mod jk , where Ea is y2 D

Q3
iD1.x� ei / and x.Pa/ is the

x-coordinate. We tested for divisibility by ˛ instead of by 2, to make it clearer how
this approach (as initiated by Gross in [20]) makes use of the OK-module structure
of Ea.OK=.jk//. Such an approach is useful for further generalizations.

5. Algorithm

A naïve implementation of Theorem 4.1 is entirely straightforward, but here we
describe a particularly efficient implementation and analyze its complexity. We
then discuss how the algorithm may be used in combination with sieving to search
for prime values of Jk , and give some computational results.

5A. Implementation. There are two features of the primality criterion given by
Theorem 4.1 worth noting. First, it is only necessary to perform the operation of
adding a point on the elliptic curve to itself (doubling), no general additions are
required. Second, testing whether a projective point P D Œx; y; z� is zero or strongly
nonzero modulo an integer Jk only involves the z-coordinate: P is zero mod Jk if
and only if Jk jz, and P is strongly nonzero mod Jk if and only if gcd.z; Jk/D 1.

To reduce the cost of doubling, we transform the curve

Ea W y2 D x3� 35a2x� 98a3

to the Montgomery form [31]

EA;B W By2 D x3CAx2C x:

Such a transformation is not possible over Q, but it can be done over Q.
p
�7/. In

general, one transforms a short Weierstrass equation y2 D f .x/D x3C a4xC a6
into Montgomery form by choosing a root 
 of f .x/ and setting B D .3
2 �

a4/
�1=2 and A D 3
B; see, for example, [34]. For the curve Ea, we choose


 D 1
2
.�7C

p
�7/a, yielding

AD
�15� 3

p
�7

8
and B D

7C 3
p
�7

56a
:

With this transformation, the point Pa D .x0; y0/ on Ea corresponds to the point
.B.x0� 
/; By0/ on the Montgomery curve EA;B , and is defined over Q.

p
�7/.

In order to apply this transformation modulo Jk , we need a square root of �7
in Z=JkZ. If Jk is prime and d D 7.JkC1/=4, then

d2 � 7.Jk�1/=2 � 7�

�
7

Jk

�
7��7 .mod Jk/;
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since Jk � 3 .mod 4/ and Jk � 2; 4 .mod 7/ is a quadratic residue modulo 7. If we
find that d2 6� �7 .mod Jk/, then we immediately know that Jk must be composite
and no further computation is required.

With the transformation to Montgomery form, the formulas for doubling a point
on Ea become particularly simple. If P D Œx1; y1; z1� is a projective point on EA;B
and 2P D Œx2; y2; z2�, we may determine Œx2; z2� from Œx1; z1� via

4x1z1 D .x1C z1/
2
� .x1� z1/

2; (5)

x2 D .x1C z1/
2.x1� z1/

2;

z2 D 4x1z1
�
.x1� z1/

2
CC.4x1z1/

�
;

where C D 1
4
.AC 2/ D 1

32
.1� 3

p
�7/. Note that C does not depend on P (or

even a), and may be precomputed. Thus doubling requires just 2 squarings, 3
multiplications, and 4 additions in Z=JkZ.

We now present the algorithm, which exploits the transformation of Ea into
Montgomery form. We assume that elements of Z=JkZ are uniquely represented
as integers in Œ0; Jk � 1�.

Algorithm 5.1.
Input: Positive integers k and Jk .

Output: True if Jk is prime and false if Jk is composite.

1. If k � 0 .mod 8/ or k � 6 .mod 24/ then return false.

2. Compute d D 7.JkC1/=4 mod Jk .

3. If d2 6� �7 .mod Jk/ then return false.

4. Determine a via Table 1, depending on k .mod 72/.

5. Compute r D .�7C d/a=2 mod Jk , B D .7C 3d/=.56a/ mod Jk , and C D
.1� 3d/=32 mod Jk .

6. Let x1 D B.x0� r/ mod Jk and z1 D 1, where Pa D .x0; y0/ is as in Table 1.

7. For i from 1 to kC 1, compute Œxi ; zi � from Œxi�1; zi�1� via (5).

8. If gcd.zk; Jk/D 1 and Jk jzkC1 then return true, otherwise return false.

The tests in step 1 rule out cases where Jk is divisible by 3 or 5, by Lemma 4.5;
Jk is then composite, since Jk > 5 for all k. This also ensures gcd.a; Jk/D 1 (see
Lemma 4.5), so the divisions in step 5 are all valid (Jk is never divisible by 2 or 7).
By Remark 4.2, for k � 6 the condition gcd.zk; Jk/D 1 in step 8 can be replaced
with zk 6� 0 mod Jk .

Proposition 5.2. Algorithm 5.1 performs 6k C o.k/ multiplications and 4k ad-
ditions in Z=JkZ. Its time complexity is O.k2 log k log log k/ and it uses O.k/
space.
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k step 2 step 7

210C 1 0.00 0.01
211C 1 0.00 0.02
212C 1 0.02 0.15
213C 1 0.15 0.91

k step 2 step 7

214C 1 0.88 5.50
215C 1 5.26 32.2
216C 1 27.5 183

k step 2 step 7

217C 1 133 983
218C 1 723 5010
219C 1 3310 23600
220C 1 13700 107000

Table 3. Timings for Algorithm 5.1 (CPU seconds on a 3.0 GHz AMD Phenom II 945).

Proof. Using standard techniques for fast exponentiation [46], step 2 uses kC o.k/
multiplications in Z=JkZ. Steps 5–6 perform O.1/ operations in Z=JkZ and step 7
uses 5k multiplications and 4k additions. The cost of the divisions in step 5 are
comparatively negligible, as is the cost of step 8. Multiplications (and additions) in
Z=JkZ have a bit complexity of O.M.k//, where M.k/ counts the bit operations
needed to multiply two k-bit integers [14, Theorem 9.8]. The bound on the time
complexity of Algorithm 5.1 then follows from the Schönhage-Strassen [39] bound:
M.k/ D O.k log k log log k/. The space complexity bound is immediate: The
algorithm only needs to keep track of two pairs Œxi ; zi � and Œxi�1; zi�1� at any one
time, and elements of Z=JkZ can be represented using O.k/ bits. �

Table 3 gives timings for Algorithm 5.1 when implemented using the gmp library
[19] for all integer arithmetic, including the gcd computations. We list the times for
step 2 and step 7 separately (the time spent on the other steps is negligible). In the
typical case, where Jk is composite, the algorithm is very likely1 to terminate in
step 2, which effectively determines whether Jk is a strong probable prime base �7,
as in [9, Algorithm 3.5.3]. To obtain representative timings at the values of k listed,
we temporarily modified the algorithm to skip step 2.

We note that the timings for step 7 are suboptimal due to the fact that we used
the gmp function mpz mod to perform modular reductions. A lower level imple-
mentation (using Montgomery reduction [30], for example) might improve these
timings by perhaps 20 or 30 percent.

We remark that Algorithm 5.1 can easily be augmented, at essentially no addi-
tional cost, to retain an intermediate point QD Œxs; ys; zs�, where s D kC 1� r is
chosen so that the order 2r ofQ is the least power of 2 greater than .J 1=4

k
C1/2. The

value of ys may be obtained as a square root of y2s D .x
3
s CAx

2
s zsCxsz

2
s /=.Bzs/

by computing .y2s /
.JkC1/=4. When Jk is prime, the algorithm can then output a

Pomerance-style certificate .EA;B ;Q; r; Jk/ for the primality of Jk . This certifi-
cate has the virtue that it can be verified using just 2:5kCO.1/ multiplications in
Z=JkZ, versus the 6kC o.k/ multiplications used by Algorithm 5.1, by checking
that the point Q has order 2r on the elliptic curve EA;B mod Jk .

1 Indeed, we have yet to encounter even a single Jk that is a strong pseudoprime base �7.
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5B. Searching for prime values of Jk. While one can directly apply Algorithm 5.1
to any particular Jk , when searching a large range 1� k � n for prime values of
Jk it is more efficient to first sieve the interval Œ1; n� to eliminate values of k for
which Jk cannot be prime.

For example, as noted in Lemma 4.5, if k � 0 .mod 8/ then Jk is divisible by 3.
More generally, for any small prime `, one can very quickly compute Jk mod `
for all k � n by applying the linear recurrence (4) for Jk , working modulo `. If
` <
p
n, then the sequence Jk mod ` will necessarily cycle, but in any case it takes

very little time to identify all the values of k � n for which Jk is divisible by `; the

k Jk a k Jk a k Jk a

2 11 �1 319 427...247 �5 17807 110...799 �1

3 23 �1 375 307...023 �1 18445 125...407 �5

4 67 �5 467 152...727 �1 19318 793...763 �5

5 151 �1 489 639...239 �1 26207 495...799 �1

7 487 �5 494 204...963 �1 27140 359...907 �1

9 2039 �1 543 115...143 �1 31324 116...867 �5

10 4211 �6 643 145...399 �17 36397 155...007 �5

17 524087 �1 684 321...531 �1 47294 327...963 �1

18 1046579 �1 725 706...551 �1 53849 583...567 �1

28 107...427 �5 1129 291...591 �17 83578 122...491 �6

38 109...043 �1 1428 297...011 �1 114730 593...411 �6

49 225...791 �17 2259 425...023 �1 132269 345...831 �1

53 360...711 �1 2734 415...123 �5 136539 864...023 �1

60 461...451 �1 2828 822...787 �1 147647 599...399 �1

63 368...943 �1 3148 175...227 �5 167068 120...027 �5

65 147...007 �1 3230 849...483 �1 167950 388...883 �5

77 604...191 �1 3779 156...127 �1 257298 104...179 �1

84 773...531 �1 5537 254...887 �1 342647 423...399 �1

87 618...703 �1 5759 171...279 �1 414349 120...207 �5

100 507...507 �5 7069 382...207 �5 418033 118...831 �17

109 259...207 �5 7189 508...207 �5 470053 451...407 �5

147 713...023 �1 7540 233...107 �5 475757 536...791 �1

170 598...611 �1 7729 183...591 �111 483244 347...667 �5

213 526...239 �1 9247 168...687 �5 680337 279...759 �1

235 220...519 �17 10484 398...747 �1 810653 295...711 �1

287 994...999 �1 15795 234...023 �1 857637 115...519 �1

1111930 767...411 �6

Table 4. Prime values of Jk � 2kC2 for k � 1:2� 106. The column labeled a
gives the value of the twisting factor.
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total time required is just zO.n log `/, versus zO.n2/ if one were to instead apply a
trial division by ` to each Jk .

We used this approach to sieve the interval Œ1; n� for those k for which Jk is
not divisible by any prime ` � L. Of course one still needs to consider Jk � L,
but this is a small set consisting of roughly log2L values, each of which can be
tested very quickly. With n D 106 and L D 235, sieving reduces the number of
potentially prime Jk by a factor of more than 10, leaving 93,707 integers Jk as
candidate primes to be tested with Algorithm 5.1. The prime values of Jk found
by the algorithm are listed in Table 4, along with the corresponding value of a.
As noted in the introduction, we have extended these results to n D 1:2 � 106,
finding one additional prime with k D 1,111,930, which is also listed in Table 4.
The data in Table 4 suggests that prime values of Jk may be more common than
prime values of Mersenne numbers Mn; there are 78 primes Jk with fewer than
one million bits, but only 33 Mersenne primes in this range. This can be at least
partly explained by the fact that Mn can be prime only when n is prime, whereas
the values of k for which Jk can be prime are not so severely constrained. By
analyzing these constraints in detail, it may be possible to give a heuristic estimate
for the density of primes in the sequence Jk , but we leave this to a future article.

Acknowledgments

We thank Daniel J. Bernstein, François Morain, Carl Pomerance, and Karl Rubin
for helpful conversations, and the organizers of ECC 2010, the First Abel Confer-
ence, and the AWM Anniversary Conference where useful discussions took place.
We thank the reviewers for helpful comments. We also thank Henri Cohen and
Richard Pinch for helpful comments given at ANTS-X.

This work was supported by the National Science Foundation under grants CNS-
0831004 and DMS-1115455.

References

[1] Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland, and Angela Wong, The Prime
Database: 21111932 C 2 � V.1; 2; 1111930/C 1, 2012. http://primes.utm.edu/en_US/primes/
page.php?id=106847

[2] ACM (ed.), Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing
(STOC ’86), New York, Association for Computing Machinery, 1986.

[3] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P, Ann. of Math. (2) 160
(2004), no. 2, 781–793. MR 2006a:11170

[4] A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math. Comp. 61 (1993),
no. 203, 29–68. MR 93m:11136

[5] Wieb Bosma, Primality testing with elliptic curves, Ph.D. thesis, Mathematisch Instituut, Uni-
versiteit van Amsterdam, 1985. http://www.math.ru.nl/~bosma/pubs/PRITwEC1985.pdf



18 A. ABATZOGLOU, A. SILVERBERG, A. V. SUTHERLAND, AND A. WONG

[6] David Broadhurst, The Prime Database: .935695 �2627694C3/2C .1123581 �2313839/2, 2012.
http://primes.utm.edu/en_US/primes/page.php?id=108157

[7] Chris Caldwell, The prime pages: prime number research, records, and resources, 2012. http://
primes.utm.edu/

[8] D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition in
formal groups and new primality and factorization tests, Adv. in Appl. Math. 7 (1986), no. 4,
385–434. MR 88h:11094

[9] Richard Crandall and Carl Pomerance, Prime numbers: A computational perspective, second
ed., Springer, New York, 2005. MR 2006a:11005

[10] Jean-Marie De Koninck and Claude Levesque (eds.), Théorie des nombres: Proceedings of the
International Conference held at the Université Laval, Quebec, July 5–18, 1987, Berlin, de
Gruyter, 1989. MR 90f:11002

[11] Robert Denomme and Gordan Savin, Elliptic curve primality tests for Fermat and related
primes, J. Number Theory 128 (2008), no. 8, 2398–2412. MR 2009c:11208

[12] Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence se-
quences, Mathematical Surveys and Monographs, no. 104, American Mathematical Society,
Providence, RI, 2003. MR 2004c:11015

[13] Victor G. Ganzha, Ernst W. Mayr, and Evgenii V. Vorozhtsov (eds.), Computer algebra in scien-
tific computing: Proceedings of the 9th International Workshop (CASC 2006) held in Chişinău,
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Imaginary quadratic fields with
isomorphic abelian Galois groups

Athanasios Angelakis and Peter Stevenhagen

In 1976, Onabe discovered that, in contrast to the Neukirch-Uchida results that
were proved around the same time, a number field K is not completely charac-
terized by its absolute abelian Galois group AK . The first examples of noniso-
morphic K having isomorphic AK were obtained on the basis of a classification
by Kubota of idele class character groups in terms of their infinite families of
Ulm invariants, and did not yield a description of AK . In this paper, we provide
a direct “computation” of the profinite group AK for imaginary quadratic K, and
use it to obtain many different K that all have the same minimal absolute abelian
Galois group.

1. Introduction

The absolute Galois group GK of a number field K is a large profinite group that
we cannot currently describe in very precise terms. This makes it impossible to
answer fundamental questions on GK , such as the inverse Galois problem over K.
Still, Neukirch [7] proved that normal number fields are completely characterized
by their absolute Galois groups: If GK1

and GK2
are isomorphic as topological

groups, then K1 and K2 are isomorphic number fields. The result was refined
by Ikeda, Iwasawa, and Uchida ([8], [9, Chapter XII, §2]), who disposed of the
restriction to normal number fields, and showed that every topological isomor-
phism GK1

�!� GK2
is actually induced by an inner automorphism of GQ. The

same statements hold if all absolute Galois groups are replaced by their maximal
prosolvable quotients.

It was discovered by Onabe [10] that the situation changes if one moves a further
step down from GK , to its maximal abelian quotient AK DGK=ŒGK ; GK �, which
is the Galois group AK DGal.Kab=K/ of the maximal abelian extension Kab of K.

MSC2010: primary 11R37; secondary 20K35.
Keywords: absolute Galois group, class field theory, group extensions.
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Even though the Hilbert problem of explicitly generating Kab for general number
fields K is still open after more than a century, the group AK can be described by
class field theory, as a quotient of the idele class group of K.

Kubota [5] studied the group XK of continuous characters on AK , and expressed
the structure of the p-primary parts of this countable abelian torsion group in terms
of an infinite number of so-called Ulm invariants. It had been shown by Kaplansky
[4, Theorem 14] that such invariants determine the isomorphism type of a count-
able reduced abelian torsion group. Onabe computed the Ulm invariants of XK
explicitly for a number of small imaginary quadratic fields K, and concluded from
this that there exist nonisomorphic imaginary quadratic fields K and K 0 for which
the absolute abelian Galois groups AK and AK0 are isomorphic as profinite groups.
This may even happen in cases where K and K 0 have different class numbers, but
the explicit example K DQ.

p
�2/, K 0 DQ.

p
�5/ of this that occurs in Onabe’s

main theorem [10, Theorem 2] is incorrect. This is because the value of the finite
Ulm invariants in [5, Theorem 4] is incorrect for the prime 2 in case the ground field
is a special number field in the sense of our Lemma 3.2. As it happens, Q.

p
�5/

and the exceptional field Q.
p
�2/ do have different Ulm invariants at 2. The nature

of Kubota’s error is similar to an error in Grunwald’s theorem that was corrected
by a theorem of Wang occurring in Kubota’s paper [5, Theorem 1]. It is related to
the noncyclic nature of the 2-power cyclotomic extension Q�Q.�21/.

In this paper, we obtain Onabe’s corrected results by a direct class field theoretic
approach that completely avoids Kubota’s dualization and the machinery of Ulm
invariants. We show that the imaginary quadratic fields K ¤Q.

p
�2/ that are said

to be of ‘type A’ in [10] share a minimal absolute abelian Galois group that can be
described completely explicitly as

AK D yZ
2
�

Y
n�1

Z=nZ:

The numerical data that we present suggest that these fields are in fact very common
among imaginary quadratic fields: More than 97% of the 2356 fields of odd prime
class number hK D p < 100 are of this nature. We believe (Conjecture 7.1) that
there are actually infinitely many K for which AK is the minimal group above.
Our belief is supported by certain reasonable assumptions on the average splitting
behavior of exact sequences of abelian groups, and these assumptions are tested
numerically in the final section of the paper.

2. Galois groups as yZ-modules

The profinite abelian Galois groups that we study in this paper naturally come with
a topology for which the identity has a basis of open neighborhoods that are open
subgroups of finite index. This implies that they are not simply Z-modules, but that
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the exponentiation in these groups with ordinary integers extends to exponentiation
with elements of the profinite completion yZ D lim

 �n
Z=nZ of Z. By the Chinese

remainder theorem, we have a decomposition of the profinite ring yZD
Q
p Zp into

a product of rings of p-adic integers, with the index p ranging over all primes.
As yZ-modules, our Galois groups decompose correspondingly as a product of pro-
p-groups.

It is instructive to look first at the yZ-module structure of the absolute abelian
Galois group AQ of Q, which we know very explicitly by the Kronecker-Weber
theorem. This theorem states that Qab is the maximal cyclotomic extension of Q,
and that an element � 2AQ acts on the roots of unity that generate Qab by exponen-
tiation. More precisely, we have �.�/D �u for all roots of unity, with u a uniquely
defined element in the unit group yZ� of the ring yZ. This yields the well-known
isomorphism AQ D Gal.Qab=Q/Š yZ� D

Q
p Z�p .

For odd p, the group Z�p consists of a finite torsion subgroup Tp of .p� 1/-st
roots of unity, and we have an isomorphism

Z�p D Tp � .1CpZp/Š Tp �Zp

because 1C pZp is a free Zp-module generated by 1C p. For p D 2 the same
is true with T2 D f˙1g and 1C 4Z2 the free Z2-module generated by 1C 4D 5.
Taking the product over all p, we obtain

AQ Š TQ � yZ; (1)

with TQ D
Q
p Tp the product of the torsion subgroups Tp �Q�p of the multiplica-

tive groups of the completions Qp of Q. More canonically, TQ is the closure of the
torsion subgroup of AQ D Gal.Qab=Q/, and AQ=TQ is a free yZ-module of rank 1.
The invariant field of TQ inside Qab is the unique yZ-extension of Q.

Even though it looks at first sight as if the isomorphism type of TQ depends on
the properties of prime numbers, one should realize that in an infinite product of
finite cyclic groups, the Chinese remainder theorem allows us to rearrange factors
in many different ways. One has for instance a noncanonical isomorphism

TQ D

Y
p

Tp Š
Y
n�1

Z=nZ; (2)

as both of these products, when written as a countable product of cyclic groups
of prime power order, have an infinite number of factors Z=`kZ for each prime
power `k . Note that, for the product

Q
p Tp of cyclic groups of order p � 1 (for

p¤ 2), this statement is not completely trivial: It follows from the existence, by the
well-known theorem of Dirichlet, of infinitely many primes p that are congruent
to 1 mod `k , but not to 1 mod `kC1.
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Now suppose that K is an arbitrary number field, with ring of integers O. By
class field theory,AK is the quotient of the idele class groupCKD

�Q0
p�1K

�
p

�
=K�

ofK by the connected component of the identity. In the case of imaginary quadratic
fields K, this connected component is the subgroup K�1 D C� � CK coming from
the unique infinite prime of K, and in this case the Artin isomorphism for the
absolute abelian Galois group AK of K reads

AK D yK
�=K� D

�Y
p

0

K�p

�
=K�: (3)

Here yK� D
Q0

pK
�
p is the group of finite ideles of K, that is, the restricted direct

product of the groups K�p at the finite primes p of K, taken with respect to the unit
groups O�p of the local rings of integers. For the purposes of this paper, which tries
to describe AK as a profinite abelian group, it is convenient to treat the isomorphism
for AK in (3) as an identity — as we have written it down.

The expression (3) is somewhat more involved than the corresponding identity
AQ D yZ

� for the rational number field, but we will show in Lemma 3.2 that the
inertial part of AK , that is, the subgroup UK � AK generated by all inertia groups
O�p � CK , admits a description very similar to (1).

Denote by yOD
Q

p Op the profinite completion of the ring of integers O of K. In
the case that K is imaginary quadratic, the inertial part of AK takes the form

UK D
�Y

p

O�p

�
=O� D yO�=�K ; (4)

since the unit group O� of O is then equal to the group �K of roots of unity in K.
Apart from the quadratic fields of discriminant �3 and �4, which have 6 and 4
roots of unity, respectively, we always have �K D f˙1g, and (4) can be viewed as
the analogue for K of the group yZ� D AQ.

In the next section, we determine the structure of the group yO�=�K . As the
approach works for any number field, we will not assume that K is imaginary
quadratic until the very end of that section.

3. Structure of the inertial part

Let K be any number field, and yOD
Q

p Op the profinite completion of its ring of
integers. Denote by Tp � O�p the subgroup of local roots of unity in K�p , and put

TK D
Y
p

Tp �

Y
p

O�p D yO
�: (5)

The analogue of (1) for K is the following.
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Lemma 3.1. The closure of the torsion subgroup of yO� is equal to TK , and yO�=TK
is a free yZ-module of rank ŒK WQ�. Less canonically, we have an isomorphism

yO� Š TK � yZ
ŒKWQ�:

Proof. As the finite torsion subgroup Tp � O�p is closed in O�p , the first statement
follows from the definition of the product topology on yO� D

Q
p O�p .

Reduction modulo p in the local unit group O�p gives rise to an exact sequence

1 �! 1C p �! O�p �! k�p �! 1

that can be split by mapping the elements of the unit group k�p of the residue class
field to their Teichmüller representatives in O�p . These form the cyclic group of
order #k�p D Np� 1 in Tp consisting of the elements of order coprime to p D
char.kp/. The kernel of reduction 1C p is by [3, one-unit theorem, p. 231] a
finitely generated Zp-module of free rank ŒKp WQp� having a finite torsion group
consisting of roots of unity in Tp of p-power order. Combining these facts, we find
that O�p=Tp is free over Zp of rank ŒKp W Qp� or, less canonically, that we have a
local isomorphism

O�p Š Tp �Z
ŒKpWQp�
p

for each prime p. Taking the product over all p, and using the fact that the sum
of the local degrees at p equals the global degree ŒK W Q�, we obtain the desired
global conclusion. �

In order to derive a characterization of TK D
Q

p Tp for arbitrary number fieldsK
similar to (2), we observe that we have an exact divisibility `k k #Tp of the order
of Tp by a prime power `k if and only if the local field Kp at p contains a primitive
`k-th root of unity, but not a primitive `kC1-th root of unity. We may reword this
as: The prime p splits completely in the cyclotomic extension K �K.�`k /, but not
in the cyclotomic extension K �K.�`kC1/. If such p exist at all for `k , then there
are infinitely many of them, by the Chebotarev density theorem.

Thus, TK can be written as a product of groups .Z=`kZ/Z DMap.Z;Z=`kZ/

that are themselves countable products of cyclic groups of order `k . The prime
powers `k > 1 that occur for K are all but those for which we have an equality

K.�`k /DK.�`kC1/:

For K DQ all prime powers `k occur, but for general K, there are finitely many
prime powers that may disappear. This is due to the fact that the infinite cyclotomic
extension Q�Q.�`1/ with group Z�

`
can partially “collapse” over K.
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To describe the exceptional prime powers `k that disappear for K, we consider,
for ` an odd prime, the number

w.`/D wK.`/D #�`1 .K.�`//

of `-power roots of unity in the field K.�`/. For almost all `, this number equals `,
and we call ` exceptional for K if it is divisible by `2. Note that no odd exceptional
prime numbers exist for imaginary quadratic fields K.

For the prime `D 2, we consider instead the number

w.2/D wK.2/D #�21 .K.�4//

of 2-power roots in K.�4/ D K.i/. If K contains i D �4, or if w.2/ is divisible
by 8, we call 2 exceptional for K. Note that the only imaginary quadratic fields K
for which 2 is exceptional are Q.i/ and Q.

p
�2/.

The number w.K/ of exceptional roots of unity for K is now defined as

w.K/D
Y

` exceptional

w.`/:

Note that w.K/ refers to roots of unity that may or may not be contained in K
itself, and that every prime ` dividing w.K/ occurs with exponent at least 2. The
prime powers `k > 1 that do not occur when TK is written as a direct product of
groups .Z=`kZ/Z are the strict divisors of w.`/ at exceptional primes `, with the
exceptional prime `D 2 giving rise to a special case.

Lemma 3.2. Let K be a number field, and w D w.K/ its number of exceptional
roots of unity. Then we have a noncanonical isomorphism of profinite groups

TK D
Y
p

Tp Š

Y
n�1

Z=nwZ;

except when 2 is exceptional for K and i D �4 is not contained in K. In this special
case, we have

TK D
Y
p

Tp Š

Y
n�1

.Z=2Z�Z=nwZ/:

The group TK is isomorphic to the group TQ in (2) if and only if we have w D 1.

Proof. If ` is odd, the tower of field extensions

K.�`/�K.�`2/� � � � �K.�`k /�K.�`kC1/� � � �

is a Z`-extension, and the steps K.�`k /�K.�`kC1/ with k � 1 in this tower that
are equalities are exactly those for which `kC1 divides w.`/.

Similarly, the tower of field extensions

K.�4/�K.�8/� � � � �K.�2k /�K.�2kC1/� � � �
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is a Z2-extension in which the steps K.�2k /�K.�2kC1/ with k � 2 that are equal-
ities are exactly those for which 2kC1 divides w.2/. The extension K DK.�2/�
K.�4/ that we have in the remaining case k D 1 is an equality if and only if K
contains i D �4.

Thus, a prime power `k > 2 that does not occur when TK is written as a product
of groups .Z=`kZ/Z is the same as a strict divisor `k > 2 of w.`/ at an exceptional
prime `. The special prime power `k D 2 does not occur if and only if i D �4 is
in K. Note that in this case, 2 is by definition exceptional for K.

It is clear that replacing the group
Q
n�1 Z=nZ from (2) by

Q
n�1 Z=nwZ has

the effect of removing cyclic summands of order `k with `kC1 j w, and this shows
that the groups given in the Lemma are indeed isomorphic to TK . Only for w D 1
we obtain the group TQ in which all prime powers `k arise. �

Lemmas 3.1 and 3.2 tell us what yO� looks like as a yZ-module. In particular, it
shows that the dependence on K is limited to the degree ŒK WQ�, which is reflected
in the rank of the free yZ-part of yO�, and the nature of the exceptional roots of unity
for K. For the group yO�=�K , the same is true, but the proof requires an extra
argument, and the following lemma.

Lemma 3.3. There are infinitely many primes p of K for which we have

gcd.#�K ; #Tp=#�K/D 1:

Proof. For every prime power `k > 1 that exactly divides #�K , the extension
K D K.�`k / � K.�`kC1/ is a cyclic extension of prime degree `. For different
prime powers `k k #�K , we get different extensions, so infinitely many primes p

of K are inert in all of them. For such p, we have gcd.#�K ; #Tp=#�K/D 1. �

Lemma 3.4. We have a noncanonical isomorphism TK=�K Š TK .

Proof. Pick a prime p0 of K that satisfies the conditions of Lemma 3.3. Then �K
embeds as a direct summand in Tp0

, and we can write Tp0
Š �K � Tp0

=�K as a
product of two cyclic groups of coprime order. It follows that the natural exact
sequence

1 �!
Y

p¤p0

Tp �! TK=�K �! Tp0
=�K �! 1

can be split using the composed map Tp0
=�K!Tp0

!TK!TK=�K . This makes
TK=�K isomorphic to the product of

Q
p¤p0

Tp and a cyclic group for which the
order is a product of prime powers that already “occur” infinitely often in TK . Thus
TK=�K is isomorphic to a product of exactly the same groups .Z=`kZ/Z that occur
in TK , and therefore isomorphic to TK itself. �

For imaginary quadratic K, where yO�=�K constitutes the inertial part UK of AK
from (4), we summarize the results of this section in the following way.
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Theorem 3.5. Let K be an imaginary quadratic field. Then the subgroup TK=�K
of UK is a direct summand of UK . For K ¤Q.i/;Q.

p
�2/, we have isomorphisms

UK D yO
�=�K Š yZ

2
� .TK=�K/Š yZ

2
�

1Y
nD1

Z=nZ

of profinite groups.

For K equal to Q.i/ or Q.
p
�2/, the prime 2 is exceptional for K, and the groups

TK=�K Š TK are different as they do not have cyclic summands of order 2 and 4,
respectively.

4. Extensions of Galois groups

In the previous section, all results could easily be stated and proved for arbitrary
number fields. From now on, K will denote an imaginary quadratic field. In order
to describe the full group AK from (3), we consider the exact sequence

1 �! UK D yO
�=�K �! AK D yK

�=K�
 
�!ClK �! 1 (6)

that describes the class group ClK of K in idelic terms. Here  maps the class
of the finite idele .xp/p 2 yK

� to the class of its associated ideal
Q

p pep , with
ep D ordp xp.

The sequence (6) shows that UK is an open subgroup of AK of index equal to the
class number hK of K. In view of Theorem 3.5, this immediately yields Onabe’s
discovery that different K can have the same absolute abelian Galois group.

Theorem 4.1. An imaginary quadratic number field K ¤Q.i/;Q.
p
�2/ of class

number 1 has absolute abelian Galois group isomorphic to

G D yZ2 �
Y
n�1

Z=nZ:

In Onabe’s paper [10, §5], the group G, which is not explicitly given but charac-
terized by its infinitely many Ulm invariants, is referred to as ‘of type A’. We
will refer to G as the minimal Galois group, as every absolute abelian Galois
group of an imaginary quadratic field K ¤ Q.i/;Q.

p
�2/ contains a subgroup

isomorphic to G. We will show that there are actually many more K having this
absolute abelian Galois group than the seven fields K of class number 1 to which
the preceding theorem applies.

Now take for K any imaginary quadratic field of class number hK > 1. Then
Theorem 3.5 and the sequence (6) show that AK is an abelian group extension of
ClK by the minimal Galois group G from Theorem 4.1. If the extension (6) were
split, we would find that AK is isomorphic to G �ClK ŠG; but it turns out that
splitting at this level never occurs for nontrivial ClK , in the following strong sense.
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Theorem 4.2. For every imaginary quadratic field K of class number hK > 1, the
sequence (6) is totally nonsplit; that is, there is no nontrivial subgroup C � ClK
for which the associated subextension 1! UK !  �1ŒC �! C ! 1 is split.

Proof. Suppose there is a non-trivial subgroup C � ClK over which the exten-
sion (6) splits, and pick Œa� 2 C of prime order p. Then there exists an element�

.xp/p modK�
�
2  �1.Œa�/� AK D yK

�=K�

of order p. In other words, there exists ˛ 2K� such that we have xpp D ˛ 2K�p for
all p, and such that ˛ generates the ideal ap. But this implies by [1, Chapter IX,
Theorem 1] that ˛ is a p-th power in K�, and hence that a is a principal ideal.
Contradiction. �

At first sight, Theorem 4.2 seems to indicate that in the case hK > 1, the
group AK will not be isomorphic to the minimal Galois group G Š UK . However,
finite abelian groups requiring no more than k generators do allow extensions by
free yZ-modules of finite rank k that are again free of rank k, just like they do with
free Z-modules in the classical setting of finitely generated abelian groups. The
standard example for k D 1 is the extension

1 �! yZ
�p
�! yZ �! Z=pZ �! 1

for an integer p ¤ 0, prime or not. Applying to this the functor Hom.�;M/ for a
multiplicatively written yZ-module M , we obtain an isomorphism

M=Mp
�!� Ext.Z=pZ;M/ (7)

by the Hom-Ext-sequence from homological algebra [6]. We will use it in Section 5.

Lemma 4.3. Let B be a finite abelian group, F a free yZ-module of finite rank k,
and

1 �! F �!E �! B �! 1

an exact sequence of yZ-modules. Then E is free of rank k if and only if this se-
quence is totally nonsplit.

Proof. One may reduce the statement to the familiar case of modules over principal
ideal domains by writing yZD

Q
p Zp, and consider the individual p-parts of the

sequence. As a matter of convention, note that in the degenerate case where B is
the trivial group, there are no nontrivial subgroups C �B over which the sequence
splits, making the sequence by definition totally nonsplit. �

In order to apply the preceding lemma, we replace the extension (6) by the
pushout under the quotient map UK D yO�=�K ! UK=TK D yO

�=TK from UK to
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its maximal yZ-free quotient. This yields the exact sequence of yZ-modules

1 �! yO�=TK �! yK�=.K� �TK/ �! ClK �! 1 (8)

in which ClK is finite and yO�=TK is free of rank 2 over yZ by Lemma 3.1.

Theorem 4.4. Let K be an imaginary quadratic field of class number hK > 1,
and suppose the sequence (8) is totally nonsplit. Then the absolute abelian Galois
group of K is the minimal group G occurring in Theorem 4.1.

Proof. If the extension (8) is totally nonsplit, then yK�=.K� �TK/ is free of rank 2
over yZ by Lemma 4.3. In this case the exact sequence of yZ-modules

1 �! TK=�K �! AK D yK
�=K� �! yK�=.K� �TK/ �! 1

is split, and AK is isomorphic to UK DG D yZ2 � .TK=�K/. �

Remark. We will use Theorem 4.4 in this paper to find many imaginary quadratic
fields K having the same minimal absolute abelian Galois group G. It is how-
ever interesting to note that this is the only way in which this can be done, as
Theorem 4.4 actually admits a converse: If the absolute abelian Galois group of
an imaginary quadratic field K of class number hK > 1 is the minimal group G,
then the sequence (8) is totally nonsplit. The proof, which we do not include in
this paper, will be given in the forthcoming doctoral thesis of the first author.

It is instructive to see what all the preceding extensions of Galois groups amount
to in terms of field extensions. The diagram of fields in Figure 1 lists all subfields
of the extension K �Kab corresponding to the various subgroups we considered
in analyzing the structure of AK D Gal.Kab=K/.

We denote by H the Hilbert class field of K. This is the maximal totally unram-
ified abelian extension of K, and it is finite over K with group ClK . The inertial
part of AK is the Galois group UK D Gal.Kab=H/, which is isomorphic to G for
all imaginary quadratic fields K ¤Q.i/;Q.

p
�2/. The fundamental sequence (6)

corresponds to the tower of fields

K �H �Kab:

By Theorem 3.5, the invariant field L of the closure TK=�K of the torsion subgroup
of UK is an extension of H with group yZ2. The tower of field extensions

K �H � L

corresponds to the exact sequence of Galois groups (8).
We define L0 as the “maximal yZ-extension” of K, that is, as the compositum of

the Zp-extensions of K for all primes p. As is well-known, an imaginary quadratic
field admits two independent Zp-extensions for each prime p, so F D Gal.L0=K/
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Kab

UKDG

AK

TK=�K
T0

L

yZ2

L0
yZ2

F

H

ClKL0\H

K

Figure 1. The structure of AKDGal.Kab=K/.

is a free yZ-module of rank 2, and L0 is the invariant field under the closure T0
of the torsion subgroup of AK . The image of the restriction map T0 ! ClK is
the maximal subgroup of ClK over which (8) splits. The invariant subfield of H
corresponding to it is the intersection L0 \H . The totally nonsplit case occurs
when H is contained in L0, leading to L0 \H D H and L0 D L. In this case
Gal.L=K/DGal.L0=K/ is itself a free yZ-module of rank 2, andAK is an extension
of yZ2 by TK=�K that is isomorphic to G.

5. Finding minimal Galois groups

In order to use Theorem 4.4 and find imaginary quadratic K for which the absolute
abelian Galois group AK is the minimal group G from Theorem 4.1, we need an
algorithm that can effectively determine, on input K, whether the sequence of yZ-
modules

(8) 1 �! yO�=TK �! yK�=.K� �TK/ �! ClK �! 1

from Section 4 is totally nonsplit. This means that for every ideal class Œa� 2 ClK
of prime order, the subextension EŒa� of (8) lying over the subgroup hŒa�i � ClK
is nonsplit.
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Any profinite abelian group M is a module over yZD
Q
p Zp , and can be written

accordingly as a productM D
Q
pMp of p-primary parts, whereMpDM˝yZ Zp is

a pro-p-group and Zp-module. In the same way, an exact sequence of yZ-modules
is a “product” of exact sequences for their p-primary parts, and splitting over a
group of prime order p only involves p-primary parts for that p.

For the free yZ-module M D yO�=TK in (8), we write Tp for the torsion subgroup
of O�p D .O˝Z Zp/

� D
Q

pjp O�p . Then the p-primary part of M is the pro-p-group

Mp D O�p=Tp D
Y
pjp

.O�p=Tp/Š Z2p: (9)

In order to verify the hypothesis of Theorem 4.4, we need to check that the exten-
sion EŒa� has nontrivial class in Ext.hŒa�i;M/ for all Œa� 2 ClK of prime order p.
We can do this by verifying in each case that the element ofM=MpDMp=M

p
p cor-

responding to it under the isomorphism (7) is nontrivial. This yields the following
theorem.

Theorem 5.1. Let K be an imaginary quadratic field, and define for each prime
number p dividing hK the homomorphism

�p W ClK Œp� �! O�p=Tp.O
�
p/
p

that sends the class of a p-torsion ideal a coprime to p to the class of a generator
of the ideal ap. Then (8) is totally nonsplit if and only if all maps �p are injective.

Proof. Under the isomorphism (7), the class of the extension

1 �!M �!E
f
�!Z=pZ �! 1

in Ext.Z=pZ;M/ corresponds by [6, Chapter III, Proposition 1.1] to the residue
class of the element

.f �1.1 mod pZ//p 2M=Mp:

In the case of EŒa�, we apply this to M D yO�=TK , and choose the identification
Z=pZD hŒa�i under which 1 mod pZ is the inverse of Œa�. Then f �1.1 mod pZ/

is the residue class in yK�=.K� �TK/ of any finite idele x 2 yK� that is mapped to
ideal class of a�1 under the map  from (6).

We pick a in its ideal class coprime to p, and take for x D .xp/p an idele that
locally generates a�1 at all p. If ˛ 2K� generates ap , then xp˛ is an idele in yO�

that lies in the same class modulo K� as xp, and its image

.f �1.1 mod pZ//p D xp D xp˛ 2M=Mp
DMp=M

p
p D O�p=Tp.O

�
p/
p

corresponds to the class of EŒa� in Ext.hŒa�i;O�=TK/. As the idele x D .xp/p
has components xp 2 O�p at p j p by the choice of a, we see that this image in
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Mp=M
p
p D O�p=Tp.O

�
p/
p is the element �p.Œa�/ we defined. The map �p is clearly

a homomorphism, and we want it to assume nontrivial values on the elements of
order p in ClK Œp�, for each prime p dividing hK . The result follows. �

Remark. In Theorem 5.1, it is not really necessary to restrict to representing ideals
a that are coprime to p. One may take K�p=Tp.K

�
p /
p as the target space of �p to

accommodate all a, with Kp DK˝Z Zp , and observe that the image of �p is in the
subgroup O�p=Tp.O

�
p/
p, as the valuations of ap at the primes over p are divisible

by p.

Remark. It is possible to prove Theorem 5.1 without explicit reference to homo-
logical algebra. What the proof shows is that, in order to lift an ideal class of
arbitrary order n under (8), it is necessary and sufficient that its n-th power is
generated by an element ˛ that is locally everywhere a n-th power up to multipli-
cation by local roots of unity. This extra leeway in comparison with the situation in
Theorem 4.2 makes it into an interesting splitting problem for the group extensions
involved, as this condition on ˛ may or may not be satisfied. Note that at primes
outside n, the divisibility of the valuation of ˛ by n automatically implies the local
condition.

In Onabe’s paper, which assumes throughout that ClK itself is a cyclic group of
prime order, the same criterion is obtained from an analysis of the Ulm invariants
occurring in Kubota’s setup [5].

Our Theorem 5.1 itself does not assume any restriction on ClK , but its use in
finding K with minimal absolute Galois group G does imply certain restrictions on
the structure of ClK . The most obvious implication of the injectivity of the map �p
in the theorem is a bound on the p-rank of ClK , which is defined as the dimension
of the group ClK =ClpK as an Fp-vector space.

Corollary 5.2. If ClK has p-rank at least 3 for some p, then the sequence (8)
splits over a subgroup of ClK of order p.

Proof. It follows from the isomorphism in (9) that the image of �p lies in a group
that is isomorphic to .Z=pZ/2. If ClK has p-rank at least 3, then �p will not be
injective. Now apply Theorem 5.1. �

As numerical computations in uncountable yZ-modules such as yK�=.K� � TK/
can only be performed with finite precision, it is not immediately obvious that the
splitting type of an idelic extension as (8) can be found by a finite computation.
The maps �p in Theorem 5.1 however are linear maps between finite-dimensional
Fp-vector spaces that lend themselves very well to explicit computations. One just
needs some standard algebraic number theory to compute these spaces explicitly.
A high-level description of an algorithm that determines whether the extension (8)
is totally nonsplit is then easily written down.
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Algorithm 5.3.
Input: An imaginary quadratic number field K.

Output: No if the extension (8) for K is not totally nonsplit, yes otherwise.

1. Compute the class group ClK of K. If ClK has p-rank at least 3 for some p,
output no and stop.

2. For each prime p dividing hK , compute n 2 f1; 2g O-ideals coprime to p such
that their classes in ClK generate ClK Œp�, and generators x1 up to xn for their
p-th powers. Check whether x1 is trivial in O�p=Tp.O

�
p/
p . If it is, output no and

stop. If nD 2, check whether x2 is trivial in O�p=Tp � hx1i � .O
�
p/
p . If it is, output

no and stop.

3. If all primes p j hK are dealt with without stopping, output yes and stop.

Step 1 is a standard task in computational algebraic number theory. For imag-
inary quadratic fields, it is often implemented in terms of binary quadratic forms,
and particularly easy. From an explicit presentation of the group, it is also standard
to find the global elements x1 and, if needed, x2. The rest of Step 2 takes place
in a finite group, and this means that we only compute in the rings Op up to small
precision. For instance, computations in Z�p=Tp.Z

�
p/
p amount to computations

modulo p2 for odd p, and modulo p3 for p D 2.

6. Splitting behavior at 2

The splitting behavior of the sequence (8) depends strongly on the structure of
the p-primary parts of ClK at the primes p j hK . In view of Theorem 5.1 and
Corollary 5.2, fields with cyclic class groups and few small primes dividing hK
appear to be more likely to have minimal Galois group G. In Section 7, we will
provide numerical data to examine the average splitting behavior.

For odd primes p, class groups of p-rank at least 3 arising in Corollary 5.2 are
very rare, at least numerically and according to the Cohen-Lenstra heuristics. At
the prime 2, the situation is a bit different, as the 2-torsion subgroup of ClK admits
a classical explicit description going back to Gauss. Roughly speaking, his theorem
on ambiguous ideal classes states that ClK Œ2� is an F2-vector space generated by
the classes of the primes p of K lying over the rational primes that ramify in
Q�K, subject to a single relation coming from the principal ideal .

p
DK/. Thus,

the 2-rank of ClK for a discriminant with t distinct prime divisors equals t � 1.
In view of Corollary 5.2, our method to construct K with absolute abelian Galois
group G does not apply if the discriminant DK of K has more than 3 distinct prime
divisors.

If �DK is a prime number, then hK is odd, and there is nothing to check at the
prime 2.
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For DK with two distinct prime divisors, the 2-rank of ClK equals 1, and we
can replace the computation at p D 2 in Algorithm 5.3 by something that is much
simpler.

Theorem 6.1. Let K be an imaginary quadratic field with even class number, and
suppose that its 2-class group is cyclic. Then the sequence (8) is nonsplit over
ClK Œ2� if and only if the discriminant DK of K is of one of the following types:

(1) DK D�pq for primes p ��q � 5 mod 8;

(2) DK D�4p for a prime p � 5 mod 8;

(3) DK D�8p for a prime p �˙3 mod 8.

Proof. If K has a nontrivial cyclic 2-class group, then DK � 0; 1 mod 4 is divisible
by exactly two different primes.

If DK is odd, we have DK D�pq for primes p � 1 mod 4 and q � 3 mod 4,
and the ramified primes p and q of K are in the unique ideal class of order 2 in ClK .
Their squares are ideals generated by the integers p and �q that become squares
in the genus field F D Q.

p
p;
p
�q/ of K, which is a quadratic extension of K

with group C2 �C2 over Q that is locally unramified at 2.
If we have DK � 5 mod 8, then 2 is inert in Q�K, and 2 splits in K �F . This

means that K and F have isomorphic completions at their primes over 2, and that
p and �q are local squares at 2. In this case �2 is the trivial map in Theorem 5.1,
and is not injective.

If we have D� 1 mod 8 then 2 splits in Q�K. In the case p��q� 1 mod 8
the integers p and �q are squares in Z�2 , and �2 is again the trivial map. In the
other case p��q � 5 mod 8, the generators p and �q are nonsquares in Z�2 , also
up to multiplication by elements in T2 D f˙1g. In this case �2 is injective.

IfDK is even, we either haveDKD�4p for a prime p�1 mod 4 orDKD�8p
for an odd prime p. In the case DK D�4p the ramified prime over 2 is in the ideal
class of order 2. For p � 1 mod 8, the local field Q2.

p
�p/ D Q2.i/ contains

a square root of 2i , and �2 is not injective. For p � 5 mod 8, the local field
Q2.
p
�p/ D Q2.

p
3/ does not contain a square root of ˙2, and �2 is injective.

In the case DK D �8p the ramified primes over both 2 and p are in the ideal
class of order 2. For p �˙1 mod 8 the generator ˙p is a local square at 2. For
p �˙3 mod 8 it is not. �

In the case where the 2-rank of ClK exceeds 1, the situation is even simpler.

Theorem 6.2. Let K be an imaginary quadratic field for which the 2-class group
is noncyclic. Then the map �2 in Theorem 5.1 is not injective.

Proof. As every 2-torsion element in ClK is the class of a ramified prime p, its
square can be generated by a rational prime number. This implies that the image
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of �2 is contained in the cyclic subgroup

Z�2=f˙1g.Z
�
2/
2
� yO�=T2.yO

�/2

of order 2. Thus �2 is not injective if ClK has noncyclic 2-part. �

In view of Theorem 4.4 and the remark following it, imaginary quadratic fields
K for which AK is the minimal Galois group from Theorem 4.1 can only be
found among those K for which �DK is prime, or in the infinite families from
Theorem 6.1. In the next section, we will find many of such K.

7. Computational results

In Onabe’s paper [10], only cyclic class groups ClK of prime order p � 7 are con-
sidered. In this case there are just 2 types of splitting behavior for the extension (8),
and Onabe provides a list of the first fewK with hK Dp� 7, together with the type
of splitting they represent. For hK D 2 the list is in accordance with Theorem 6.1.
In the cases hk D 3 and hK D 5 there are only 2 split examples against 10 and 7
nonsplit examples, and for hK D 7 no nonsplit examples are found. This suggests
that �p is rather likely to be injective for increasing values of hK D p.

This belief is confirmed if we extend Onabe’s list by including all imaginary
quadraticK of odd prime class number hKDp<100. By the work of Watkins [11],
we now know, much more precisely than Onabe did, what the exact list of fields
with given small class number looks like. The extended list, with the 65 out of 2356
cases in which the extension (8) splits mentioned explicitly, is given in Table 1.

As the nonsplit types give rise to fields K having the minimal group G as its
absolute Galois group, one is inevitably led to the following conjecture.

Conjecture 7.1. There are infinitely many imaginary quadratic fields K for which
the absolute abelian Galois group is isomorphic to

G D yZ2 �
Y
n�1

Z=nZ:

The numerical evidence may be strong, but we do not even have a theorem
that there are infinitely many prime numbers that occur as the class number of an
imaginary quadratic field. And even if we had, we have no theorem telling us what
the distribution between split and nonsplit will be.

From Table 1, one easily gets the impression that among all K with hK D p,
the fraction for which the sequence (8) splits is about 1=p. In particular, assuming
infinitely many imaginary quadratic fields to have prime class number, we would
expect 100% of these fields to have the minimal absolute abelian Galois group G.

If we fix the class number hK D p, the list of K will be finite, making it impos-
sible to study the average distribution of the splitting behavior over ClK Œp�. For
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p #fK W hK D pg #Nonsplit �DK for split K

2 18 8 35; 51; 91; 115; 123; 187; 235; 267; 403; 427

3 16 13 107; 331; 643

5 25 19 347; 443; 739; 1051; 1123; 1723

7 31 27 859; 1163; 2707; 5107

11 41 36 9403; 5179; 2027; 10987; 13267

13 37 34 1667; 2963; 11923

17 45 41 383; 8539; 16699; 25243

19 47 43 4327; 17299; 17539; 17683

23 68 65 2411; 9587; 21163

29 83 80 47563; 74827; 110947

31 73 70 9203; 12923; 46867

37 85 83 20011; 28283

41 109 106 14887; 21487; 96763

43 106 105 42683

47 107 107 —
53 114 114 —
59 128 126 125731; 166363

61 132 131 101483

67 120 119 652723

71 150 150 —
73 119 117 358747; 597403

79 175 174 64303

83 150 150 —
89 192 189 48779; 165587; 348883

97 185 184 130051

Table 1. Splitting types for fields K with hK D p < 100. The second column
gives the number of imaginary quadratic fields with class number p; the third
column gives the number of such fields for which the sequence (8) does not split;
and the fourth column gives �DK for the fields K for which (8) splits.

this reason, we computed the average splitting behavior over ClK Œp� for the set Sp
of imaginary quadratic fields K for which the class number has a single factor p.

More precisely, Table 2 lists, for the first Np imaginary quadratic fields K 2 Sp
of absolute discriminant jDK j> Bp, the fraction fp of K for which the sequence
(8) is split over ClK Œp�. We started counting for absolute discriminants exceeding
Bp to avoid the influence that using many very small discriminants may have on
observing the asymptotic behavior. Numerically, the values for p � fp � 1 in the
table show that the fraction fp is indeed close to 1=p.

For the first three odd primes, we also looked at the distribution of the splitting
over the three kinds of local behavior in K of the prime p (split, inert or ramified)
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p Np Bp p �fp

3 300 107 0.960
5 500 107 0.930
7 700 107 0.960

11 1100 107 0.990
13 1300 107 1.070
17 1700 107 0.920
19 1900 107 1.000
23 2300 107 1.030
29 2900 106 1.000
31 3100 106 0.970
37 3700 106 0.930
41 4100 106 1.060

p Np Bp p �fp

43 2150 106 1.080
47 470 107 0.900
53 530 105 1.000
59 590 106 0.900
61 1830 105 0.933
67 670 106 0.900
71 1000 105 1.136
73 3650 105 0.900
79 1399 107 1.130
83 1660 106 1.000
89 890 105 1.100
97 970 108 1.100

Table 2. Splitting fractions at p for hK divisible by p < 100. For the given
values of p, Np , and Bp , we consider the first Np imaginary quadratic fields K
with jDK j > Bp and whose class numbers are divisible by a single factor of p.
The fourth column gives the value of p � fp , where fp is the fraction of these
fields for which the sequence (8) is split over ClK Œp�.

and concluded that, at least numerically, there is no clearly visible influence; see
Table 3.

p Np Bp p �fp Split Inert Ramified

3 300 107 0.960 0.925 0.947 1.025
5 500 107 0.930 0.833 0.990 1.022
7 700 107 0.960 0.972 0.963 0.897

Table 3. Splitting fractions at p according to local behavior at p. The first four
columns are as in Table 2. The remaining columns give the values of p times the
quantity analogous to fp , where we further limit our attention to fields in which
p has the prescribed splitting behavior.

We further did a few computations that confirmed the natural hypothesis that the
splitting behaviors at different primes p and q that both divide the class number
once are independent of each other.
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Iterated Coleman integration
for hyperelliptic curves

Jennifer S. Balakrishnan

The Coleman integral is a p-adic line integral. Double Coleman integrals on
elliptic curves appear in Kim’s nonabelian Chabauty method, the first numerical
examples of which were given by the author, Kedlaya, and Kim. This paper
describes the algorithms used to produce those examples, as well as techniques
to compute higher iterated integrals on hyperelliptic curves, building on previous
joint work with Bradshaw and Kedlaya.

1. Introduction

In a series of papers in the 1980s, Coleman gave a p-adic theory of integration on
the projective line [8], then on curves and abelian varieties [9; 7]. This integration
theory relies on locally defined antiderivatives that are extended analytically by the
principle of Frobenius equivariance. In joint work with Bradshaw and Kedlaya [1],
we made this construction explicit and gave algorithms to compute single Coleman
integrals for hyperelliptic curves.

Having algorithms to compute Coleman integrals allows one to compute p-adic
regulators in K-theory [8; 7], carry out the method of Chabauty-Coleman for
finding rational points on higher genus curves [15], and utilize Kim’s nonabelian
analogue of the Chabauty method [14].

Kim’s method, in the case of rank-1 elliptic curves, allows one to find integral
points via the computation of double Coleman integrals. Indeed, Coleman’s theory
of integration is not limited to single integrals; it gives rise to an entire class of

MSC2010: primary 11S80; secondary 11Y35, 11Y50.
Keywords: Coleman integration, p-adic integration, iterated Coleman integration, hyperelliptic

curves, nonabelian Chabauty, integral points.
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locally analytic functions, the Coleman functions, on which antidifferentiation is
well-defined. In other words, one can define iterated p-adic integrals [4; 8]Z Q

P

�n � � � �1

which behave formally like iterated path integralsZ 1

0

Z t1

0

� � �

Z tn�1

0

fn.tn/ � � � f1.t1/ dtn � � � dt1:

Let us fix some notation. Let C be a genus-g hyperelliptic curve over an unram-
ified extension K of Qp having good reduction. Let k D Fq denote its residue field,
where q D pm. We will assume that C is given by a model of the form y2 D f .x/,
where f is a monic separable polynomial with degf D 2gC 1.

Our methods for computing iterated integrals are similar in spirit to those de-
tailed in [1]. We begin with algorithms for tiny iterated integrals, use Frobenius
equivariance to write down a linear system yielding the values of integrals between
points in different residue disks, and, if needed, use basic properties of integration
to correct endpoints. We begin with some basic properties of iterated path integrals.

2. Iterated path integrals

We follow the convention of Kim [14] and define our integrals as follows:Z Q

P

�1�2 � � ��n�1�n WD

Z Q

P

�1.R1/

Z R1

P

�2.R2/ � � �

Z Rn�2

P

�n�1.Rn�1/

Z Rn�1

P

�n;

for a collection of dummy parameters R1; : : : ; Rn�1 and 1-forms �1; : : : ; �n.
We begin by recalling some key formal properties satisfied by iterated path in-

tegrals [6].

Proposition 2.1. Let �1; : : : ; �n be 1-forms, holomorphic at points P;Q on C .
Then:

(1)
R P
P �1�2 � � � �n D 0,

(2)
P

all permutations �
RQ
P !�.i1/!�.i2/ � � �!�.in/ D

Qn
jD1

RQ
P !ij ,

(3)
RQ
P !i1 � � �!in D .�1/

n
R P
Q !in � � �!i1 .

As an easy corollary of Proposition 2.1(2), we have:

Corollary 2.2. For a 1-form !i and points P;Q as before,Z Q

P

!i !i � � �!i D
1

nŠ

�Z Q

P

!i

�n
:
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When possible, we will use this to write an iterated integral in terms of a single
integral.

3. p-adic cohomology

We briefly recall some p-adic cohomology from [12], necessary for formulating
the integration algorithms.

Let C 0 be the affine curve obtained by deleting the Weierstrass points from C ,
and let ADKŒx; y; z�=.y2� f .x/; yz � 1/ be the coordinate ring of C 0. Let A�

denote the Monsky-Washnitzer weak completion of A; it is the ring consisting of
infinite sums of the form

1X
iD�1

Bi .x/

yi
; Bi .x/ 2KŒx�; degBi � 2g;

further subject to the condition that vp.Bi .x// grows faster than a linear function
of i as i !˙1. We make a ring out of these using the relation y2 D f .x/.

These functions are holomorphic on the space over which we integrate, so we
consider odd 1-forms written as

! D g.x; y/
dx

2y
; g.x; y/ 2 A�:

Any such differential can be written as

! D dF C c0!0C � � �C c2g�1!2g�1; (1)

with F 2 A�; ci 2K, and

!i D x
i dx

2y
.i D 0; : : : ; 2g� 1/:

Namely, the set of differentials f!ig
2g�1
iD0 forms a basis of the odd part of the

de Rham cohomology of A�, which we denote as H 1
dR
.C 0/�.

One computes the p-power Frobenius action �� on H 1
dR
.C 0/� as follows:

� Let �K denote the unique automorphism lifting Frobenius from Fq to K. Ex-
tend �K to A� by setting

�.x/D xp;

�.y/D yp
�
1C

�.f /.xp/�f .x/p

f .x/p

�1
2

D yp
1X
iD0

�
1
2

i

�
.�.f /.xp/�f .x/p/i

y2pi
:
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� Use the relations

y2 D f .x/;

d.xiyj /D
�
2ixi�1yjC1C jxif 0.x/yj�1

� dx
2y

to reduce large powers of x and large (in absolute value) powers of y to write
��.!/ in the form (1).

This reduction process is known as Kedlaya’s algorithm [12], and we will repeat-
edly use this algorithm to reduce iterated integrals involving ! 2 A� dx

2y
to iterated

integrals in terms of basis elements !i .

4. Integrals: lemmas

Recall that we use Kedlaya’s algorithm to compute single Coleman integrals as
follows:

Algorithm 4.1 (Coleman integration in non-Weierstrass disks [1]).

Input: The basis differentials .!i /
2g�1
iD0 , points P;Q 2C.Cp/ in non-Weierstrass

residue disks, and a positive integer m such that the residue fields of P;Q
are contained in Fpm .

Output: The integrals
�RQ
P !i

�2g�1
iD0

.

1. Calculate the action of the m-th power of Frobenius on each basis element (see
Remark 4.2):

.�m/�!i D dhi C

2g�1X
jD0

Mij!j :

2. By a change of variables, we obtain

2g�1X
jD0

.M � I /ij

Z Q

P

!j D hi .P /� hi .Q/�

Z �m.P /

P

!i �

Z Q

�m.Q/

!i (2)

(the fundamental linear system). Since the eigenvalues of the matrix M are
algebraic integers of C-norm pm=2 ¤ 1 (see [12, §2]), the matrix M � I is
invertible, and we may solve (2) to obtain the integrals

RQ
P !i .

Remark 4.2. To compute the action of �m, first carry out Kedlaya’s algorithm to
write

��!i D dgi C

2g�1X
jD0

Bij!j :
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If we view h; g as column vectors and M;B as matrices, induction on m shows
that

hD �m�1.g/CB�m�2.g/C � � �CB�K.B/ � � ��
m�2
K .B/g;

M D B�K.B/ � � ��
m�1
K .B/:

Note, however, that when points P;Q 2 C.Cp/ are in the same residue disk, the
“tiny” Coleman integral between them can be computed using a local parametriza-
tion, just as in the case of a real-valued line integral. This is also true when the
integrals are iterated (see Section 5).

However, to compute general iterated integrals, we will need to employ the
analogue of “additivity in endpoints” to link integrals between different residue
disks. First, let us consider the case where we are breaking up the path by one
point.

Lemma 4.3. Let P;P 0;Q be points on C such that a path is to be taken from P

to Q via P 0. Let �1; : : : ; �n be a collection of 1-forms holomorphic at the points
P;P 0;Q. Then

Z Q

P

�1 � � � �n D

nX
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �n:

Proof. We proceed by induction. The case n D 1 is clear. Let us suppose the
statement holds for nD k. ThenZ Q

P

�1 � � � �kC1 D

�Z Q

P

�1 � � � �k

�
.R/

Z R

P

�kC1

D

� kX
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �k

�
.R/

Z R

P

�kC1:

Observe that the summand with i D k can be rewritten as�Z Q

P 0
�1 � � � �k

�
.R/

Z R

P

�kC1 D

�Z Q

P 0
�1 � � � �k

�
.R/

�Z P 0

P

�kC1C

Z R

P 0
�kC1

�
;

and that further, the terms with i < k give us

k�1X
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �kC1:
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Thus we haveZ Q

P

�1 � � � �kC1 D

k�1X
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �kC1

C

�Z Q

P 0
�1 � � � �k

��Z P 0

P

�kC1

�
C

Z Q

P 0
�1 � � � �kC1

D

kC1X
iD0

Z Q

P 0
�1 � � � �i

Z P 0

P

�iC1 � � � �kC1;

as desired. �

Applying Lemma 4.3 twice, we obtain a link between different residue disks:

Lemma 4.4 (Link lemma). Let points P;P 0;Q0;Q be on C such that a path is
to be taken from P to P 0 to Q0 to Q. Let �1; : : : ; �n be a collection of 1-forms
holomorphic at the points P;P 0;Q;Q0. ThenZ Q

P

�1 � � � �n D

nX
iD0

Z Q

Q0
�1 � � � �i

� nX
jDi

Z Q0

P 0
�iC1 � � � �j

Z P 0

P

�jC1 � � � �n

�
:

Below we record a specific case of the link lemma, which we shall use through-
out this paper.

Example 4.5 (Link lemma for double integrals). Suppose we have two differentials
�0; �1. ThenZ Q

P

�0�1 D

Z P 0

P

�0�1C

Z Q0

P 0
�0�1C

Z Q

Q0
�0�1C

Z P 0

P

�1

Z Q

P 0
�0C

Z Q0

P 0
�1

Z Q

Q0
�0:

5. Tiny iterated integrals

We begin with an algorithm to compute tiny iterated integrals.

Algorithm 5.1 (Tiny iterated integrals).

Input: Points P;Q 2 C.Cp/ in the same residue disk (neither equal to the point
at infinity) and differentials �1; : : : ; �n without poles in the disk of P .

Output: The integral
RQ
P �1�2 � � � �n.

1. Compute a parametrization
�
x.t/; y.t/

�
at P in terms of a local coordinate t .

2. For each k, write �k.x; y/ in terms of t : �k.t/ WD �k
�
x.t/; y.t/

�
.

3. Let InC1.t/ WD 1.



ITERATED COLEMAN INTEGRATION FOR HYPERELLIPTIC CURVES 47

4. Compute, for k D n; : : : ; 2, in descending order,

Ik.t/D

Z Rk�1

P

�kIkC1 D

Z t.Rk�1/

0

�k.u/IkC1.u/;

with Rk�1 in the disk of P .

5. Upon computing I2.t/, we arrive at the desired integral:Z Q

P

�1�2 � � � �n D I1.t/D

Z t.Q/

0

�1.u/I2.u/:

We show how we carry out Algorithm 5.1 for double integrals on an elliptic curve.

Example 5.2 (A tiny double integral). Let C be the elliptic curve

y2 D x.x� 1/.xC 9/;

let p D 7, and consider the points P D .9; 36/;QD �.P /, and

RD
�
aC x.P /;

p
f .aC x.P //

�
;

so that R is in the same disk as P and Q. Furthermore, let !0D dx
2y

and !1D x dx
2y

.

We compute the double integral
RQ
P !0!1.

First compute the local coordinates at P :

x.t/D 9C t CO.t20/

y.t/D 36C
21

4
t C

119

1152
t2�

65

55296
t3C

2219

95551488
t4�

7

509607936
t5CO.t6/:

Then setting I2 WD
R
x dx
2y

, and making it a definite integral, we have

I2j
R
P D

Z R

P

x
dx

2y

D

Z a

0

x.t/
dx.t/

2y.t/

D
1

8
a�

5

2304
a2C

91

995328
a3�

1121

191102976
a4C

22129

45864714240
a5

�
360185

7925422620672
a6C

36737231

7988826001637376
a7CO.a8/;

from which we arrive at

I D

Z x.Q/�x.P /

0

I2.a/
dx.R.a//

2y.R.a//

D 4 � 72C 5 � 73C 2 � 75C 4 � 76C 2 � 77CO.78/:
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6. Iterated integrals: linear system

As in the case of computing single integrals, to compute general iterated Cole-
man integrals, we use Kedlaya’s algorithm to calculate the action of Frobenius on
de Rham cohomology. This gives us a linear system that allows us to solve for all
.2g/n n-fold iterated integrals on basis differentials.

Theorem 6.1. Let P;Q 2 C.Cp/ be non-Weierstrass points such that the residue
fields of P;Q are contained in Fpm . Let M be the matrix of the action of the
m-th power of Frobenius on the basis differentials !0; : : : ; !2g�1. For constants
ci0;:::;in�1

computable in terms of .n� 1/-fold iterated integrals and n-fold tiny iter-
ated integrals, the n-fold iterated Coleman integrals on basis differentials between
P;Q can be computed via a linear system of the form0BB@

:::RQ
P !i0 � � �!in�1

:::

1CCAD �I.2g/n�.2g/n � .M t /˝n
��1

0BB@
:::

ci0���in�1

:::

1CCA :
Proof. By the link lemma (Lemma 4.4), we can reduce to the case where both P
and Q are Teichmüller points (points fixed by some power of �). Then we haveZ Q

P

!ii � � �!in D

Z �m.Q/

�m.P /

!ii � � �!in

D

Z Q

P

.�m/�.!ii � � �!in/

D

Z Q

P

.�m/�.!ii / � � � .�
m/�.!in/: (3)

Recall that given !0; : : : ; !2g�1 a basis for H 1
dR
.C 0/�, we have

.�m/�!i` D dfi` C

2g�1X
jD0

Mi`j!j :

Substituting this expression in for each factor of (3) and expanding yields the linear
system. �

To illustrate our methods, in the next section, we present a more explicit version
of this theorem, accompanied by algorithms, in the case of double integrals. We
show how these are used in Kim’s nonabelian Chabauty method in Section 8.
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7. Explicit double integrals

7A. The linear system for double integrals between Teichmüller points. In this
subsection, we make explicit one aspect of Theorem 6.1: We give an algorithm to
compute double integrals between Teichmüller points.

Algorithm 7.1 (Double Coleman integration between Teichmüller points).

Input: The basis differentials .!i /
2g�1
iD0 , Teichmüller points P;Q 2 C.Cp/ in

non-Weierstrass residue disks, and a positive integer m such that the
residue fields of P;Q are contained in Fpm .

Output: The double integrals
�RQ
P !i !j

�2g�1
i;jD0

.

1. Calculate the action of the m-th power of Frobenius on each basis element:

.�m/�!i D dfi C

2g�1X
jD0

Mij!j :

2. Use Algorithm 4.1 to compute the single Coleman integrals
RQ
P !j on all basis

differentials.

3. Use Step 2 and linearity to recover the other single Coleman integrals:Z Q

P

dfifk;

Z Q

P

2g�1X
jD0

Mij!jfk

for each i; k.

4. Use the results of the above two steps to write down, for each i; k, the constant

cik D

Z Q

P

dfi .R/.fk.R//�fk.P /
�
fi .Q/�fi .P /

�
C

Z Q

P

2g�1X
jD0

Mij!j .R/
�
fk.R/�fk.P /

�

Cfi .Q/

Z Q

P

2g�1X
jD0

Mkj!j �

Z Q

P

fi .R/

�2g�1X
jD0

Mkj!j .R/

�
:

5. Recover the double integrals (see Remark 7.2 below) via the linear system0BBBB@
RQ
P !0!0RQ
P !0!1
:::RQ

P !2g�1!2g�1

1CCCCAD .I4g2�4g2 � .M t /˝2/�1

0BBB@
c00
c01
:::

c2g�1;2g�1

1CCCA :
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Remark 7.2. We obtain the linear system in the following manner. Since P;Q
are Teichmüller, we haveZ Q

P

!i !k D

Z �m.Q/

�m.P /

!i !k D

Z Q

P

.�m/�.!i !k/: (4)

We begin by expanding the right side of (4).
Recall that given !0; : : : ; !2g�1 a basis for H 1

dR
.C 0/�, we have

.�m/�!i D dfi C

2g�1X
jD0

Mij!j :

Thus we haveZ Q

P

.�m/�.!i !k/

D

Z Q

P

.�m/�.!i /.�
m/�.!k/

D

Z Q

P

�
dfi C

2g�1X
jD0

Mij!j

��
dfkC

2g�1X
jD0

Mkj!j

�

D

Z Q

P

dfidfkC

�2g�1X
jD0

Mij!j

�
dfkC dfi

2g�1X
jD0

Mkj!j C

2g�1X
jD0

Mij!j

2g�1X
jD0

Mkj!j :

We expand the first three quantities separately. First, we haveZ Q

P

dfidfk D

Z Q

P

dfi .R/

Z R

P

dfk

D

Z Q

P

dfi .R/
�
fk.R/�fk.P /

�
D

Z Q

P

dfi .R/.fk.R//�fk.P /

Z Q

P

dfi .R/

D

Z Q

P

dfi .R/.fk.R//�fk.P /
�
fi .Q/�fi .P /

�
:

Next, we haveZ Q

P

�2g�1X
jD0

Mij!j

�
dfk D

Z Q

P

2g�1X
jD0

Mij!j .R/

Z R

P

dfk

D

Z Q

P

2g�1X
jD0

Mij!j .R/
�
fk.R/�fk.P /

�
:
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The third term (via integration by parts) is

Z Q

P

dfi

�2g�1X
jD0

Mkj!j

�

D

Z Q

P

dfi .R/

Z R

P

�2g�1X
jD0

Mkj!j

�

D fi .R/

Z R

P

�2g�1X
jD0

Mkj!j

�ˇ̌̌̌
ˇ
RDQ

RDP

�

Z Q

P

fi .R/

�2g�1X
jD0

Mkj!j .R/

�

D fi .Q/

Z Q

P

2g�1X
jD0

Mkj!j �

Z Q

P

fi .R/

�2g�1X
jD0

Mkj!j .R/

�
:

Denote the sum of these terms by cik; in other words,

cik D

Z Q

P

dfi .R/.fk.R//�fk.P /
�
fi .Q/�fi .P /

�
C

Z Q

P

2g�1X
jD0

Mij!j .R/
�
fk.R/�fk.P /

�

Cfi .Q/

Z Q

P

2g�1X
jD0

Mkj!j �

Z Q

P

fi .R/

�2g�1X
jD0

Mkj!j .R/

�
:

Then rearranging terms, our linear system reads0BBBB@
RQ
P !0!0RQ
P !0!1
:::RQ

P !2g�1!2g�1

1CCCCAD �I4g2�4g2 � .M t /˝2
��1

0BBB@
c00
c01
:::

c2g�1;2g�1

1CCCA :

7B. Linking double integrals. Let P 0 and Q0 be in the disks of P and Q, re-
spectively. Using the link lemma for double integrals (Example 4.5), we may link
double integrals between different residue disks:Z Q

P

!i !k

D

Z P 0

P

!i !kC

Z Q0

P 0
!i !kC

Z Q

Q0
!i !kC

Z P 0

P

!k

Z Q

P 0
!i C

Z Q0

P 0
!k

Z Q

Q0
!i :
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Algorithm 7.3 (Double Coleman integration using intermediary Teichmüller points).

Input: The basis differentials .!i /
2g�1
iD0 , points P;Q 2C.Cp/ in non-Weierstrass

residue disks.

Output: The double integrals �Z Q

P

!i !j

�2g�1
i;jD0

:

1. Compute Teichmüller points P 0;Q0 in the disks of P;Q, respectively.

2. Use Algorithm 4.1 to compute the single integrals
RQ
P !i ;

R P
P 0 !i ;

RQ0
Q !i for

all i .

3. Use Algorithm 5.1 to compute the tiny double integrals
R P
P 0 !i !k;

RQ
Q0 !i !k .

4. Use Algorithm 7.1 to compute the double integrals
˚RQ0
P 0 !i !j

	2g�1
i;jD0

.

5. Correct endpoints usingZ Q

P

!i !k

D

Z P 0

P

!i !kC

Z Q0

P 0
!i !kC

Z Q

Q0
!i !kC

Z P 0

P

!k

Z Q

P 0
!i C

Z Q0

P 0
!k

Z Q

Q0
!i :

7C.Without Teichmüller points.Alternatively, instead of finding Teichmüller points
and correcting endpoints, we can directly compute double integrals using a slightly
different linear system. Indeed, using the link lemma for double integrals, we take
�.P / and �.Q/ to be the points in the disks of P and Q, respectively, which givesZ Q

P

!i !k D

Z �.P /

P

!i !kC

Z �.Q/

�.P /

!i !kC

Z Q

�.Q/

!i !k

C

Z �.P /

P

!k

Z Q

�.P/

!i C

Z �.Q/

�.P /

!k

Z Q

�.Q/

!i : (5)

To write down a linear system without Teichmüller points, we begin as before,
withZ �.Q/

�.P /

!i !k D

Z Q

P

��.!i !k/D cikC

Z Q

P

�2g�1X
jD0

Aij!j

��2g�1X
jD0

Akj!j

�
: (6)

Putting together (5) and (6), we get
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:::RQ

P !i !k
:::

1CCAD �I4g2�4g2 � .M t /˝2
��1

�

0BBBBB@
:::

cik �
R P
�.P/ !i !k �

�RQ
P !i

��R P
�.P/ !k

�
�
�R �.Q/
Q !i

��R �.Q/
�.P /

!k
�
C
RQ
�.Q/

!i !k
:::

1CCCCCA : (7)

This gives us the following alternative to Algorithm 7.1.

Algorithm 7.4 (Double Coleman integration).

Input: The basis differentials .!i /
2g�1
iD0 , points P;Q2C.Qp/ in non-Weierstrass

residue disks or in Weierstrass disks in the region of convergence.

Output: The double integrals
�RQ
P !i !j

�2g�1
i;jD0

.

1. Use Algorithm 4.1 to compute the single integrals
RQ
P !i ;

R �.Q/
�.P /

!i for all i .

2. Use Algorithm 5.1 to compute
R P
�.P/ !i !k;

RQ
�.Q/

!i !k for all i; k

3. As in Step 4 of Algorithm 7.1, compute the constants cik for all i; k.

4. Recover the double integrals using the linear system (7).

Example 7.5. Let C be the genus-2 curve y2 D x5� x4C x3C x2� 2xC 1 and
let P D .1;�1/;QD .�1;�1/ and p D 7. We compute double integrals on basis
differentials: RQ

P !0!0 D 2 � 7
2C 73C 4 � 74CO.75/;RQ

P !0!1 D 7
2C 5 � 73C 3 � 74CO.75/;RQ

P !0!2 D 4 � 7C 5 � 7
2C 73CO.74/;RQ

P !0!3 D 7C 5 � 7
2C 3 � 74CO.75/;RQ

P !1!0 D 7
2C 6 � 73C 5 � 74CO.75/;RQ

P !1!1 D 4 � 7
2C 3 � 73CO.75/;RQ

P !1!2 D 5 � 7C 6 � 7
2C 2 � 73C 4 � 74CO.75/;RQ

P !1!3 D 2C 3 � 7C 7
2C 4 � 73CO.74/;RQ

P !2!0 D 7
2C 4 � 73CO.74/;RQ

P !2!1 D 4 � 7C 6 � 7
2C 4 � 73C 5 � 74CO.75/;RQ

P !2!2 D 2C 5 � 7C 3 � 7
2CO.73/;
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P !2!3 D 5C 2 � 7C 3 � 7

2CO.73/;RQ
P !3!0 D 3 � 7C 2 � 7

2C 5 � 73C 5 � 74CO.75/;RQ
P !3!1 D 5C 5 � 7C 7

2C 6 � 73CO.74/;RQ
P !3!2 D 6C 7C 5 � 7

2CO.73/;RQ
P !3!3 D 2C 6 � 7C 5 � 7

2CO.73/:

Example 7.6. Using the previous example, we verify the Fubini identityZ Q

P

!j !i C

Z Q

P

!i !j D

�Z Q

P

!i

��Z Q

P

!j

�
:

We have Z Q

P

!0 D 5 � 7C 2 � 7
2
C 5 � 73C 74C 4 � 75CO.76/;Z Q

P

!1 D 6 � 7C 6 � 7
2
C 2 � 73C 4 � 74C 3 � 75CO.76/;Z Q

P

!2 D 5C 5 � 7
3
C 6 � 74C 2 � 75CO.76/;Z Q

P

!3 D 5C 3 � 7C 4 � 7
2
C 3 � 73C 6 � 74C 2 � 75CO.76/:

We see, for example, thatZ Q

P

!0!1C

Z Q

P

!1!0 D 2 � 7
2
C 4 � 73C 2 � 74CO.75/D

�Z Q

P

!0

��Z Q

P

!1

�
Z Q

P

!2!3C

Z Q

P

!3!2 D 4C 4 � 7C 72CO.73/D

�Z Q

P

!2

��Z Q

P

!3

�
:

7D. Weierstrass points. Suppose one of P or Q is a finite Weierstrass point. Then
directly using the linear system as above fails, since the fi have essential singular-
ities at finite Weierstrass points. We remedy this as follows:

Proposition 7.7. Let Q be a non-Weierstrass point, P a finite Weierstrass point,
and S be a point in the residue disk of P , near the boundary. Then the integral
from P to Q can be computed as a sum of integrals:Z Q

P

!i !k D

Z S

P

!i !kC

Z Q

S

!i !kC

Z S

P

!k

Z Q

S

!i :

Proof. This follows from Lemma 4.3 in the case of nD 2, where P 0 D S . �
To compute tiny iterated integrals in a Weierstrass disk, we modify Algorithm 5.1

slightly:
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Algorithm 7.8 (Tiny iterated integral in a Weierstrass disk).

Input: A Weierstrass point P , the degree d of a totally ramified extension, and
basis differentials !i ; !j .

Output: The integralZ S

P

!i !j D

Z S

P

!i .R/

Z R

P

!j D

Z tD1

tD0

!i .R/

Z uDt

uD0

!j :

1. Compute local coordinates .x.u/; u/ at P .

2. Let aD p1=d . Rescale coordinates so that y WD au; x WD x.au/.

3. Compute I2.u/D
R
xj dx

2y
as a power series in u.

4. Compute the appropriate definite integral using the step above:Z S

R

xj
dx

2y
D

Z t

0

x.au/
a du

u
D I2.t/

(where RD .x.t/; t/). Call this definite integral (now a power series in t ) I2.

5. Now since RD .x.t/; t/, we have
R S
P !i !j D

R 1
0 x.t/

iI2
dx.t/
2t

.

Suppose P is a finite Weierstrass point. While one could compute the integralRQ
P !i !j directly using Algorithm 7.4 for all of the tiny double integrals (and

Algorithm 7.8 for the other double integrals), in practice, that approach is expen-
sive, as it requires the computation of several intermediate integrals with Frobenius
of points that are defined over ramified extensions. This, in turn, makes the requi-
site degree d extension for convergence quite large.

Instead, the key idea is to compute a local parametrization at the finite Weier-
strass point P and to use this to compute the indefinite integral

R �
P !i . Then to com-

pute integrals involving “boundary points,” one can simply evaluate this indefinite
integral at the appropriate points, instead of directly computing parametrizations,
and thus integrals, over a totally ramified extension of Qp. This idea is also used
to evaluate double integrals involving boundary points.

Algorithm 7.9 (Intermediary integrals for double integrals with a Weierstrass end-
point).

Input: A finite Weierstrass point P , a non-Weierstrass point Q, the degree d
of a totally ramified extension, the desired precision n of Qp, and basis
differentials !i ; !j .

Output: Necessary things for the eventual computation of
RQ
P !i !j .

1. Compute .x.t/; t/ local coordinates at P to precision nd .

2. Let S D .x.a/; a/, where aD p1=d .

3. Compute as a power series in t , I2.t/D
R
x.t/i dx.t/

y.t/
.
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4. Compute the definite integral
R S
P !i D I2.a/.

5. For all i < j , compute the definite integral
R S
P !i !j via Algorithm 5.1. Keep

the intermediary indefinite integral.

6. For all i D j , use the fact that
R S
P !i !j D

1
2

�R S
P !i

�2 to compute the double
integral in terms of the single integral.

7. For all i >j , use the fact that
R S
P !i !j D�

R S
P !j !iC

R S
P !i

R S
P !j to computeR S

P !i !j (instead of directly computing it as a double integral).

8. Compute
R �.S/
S !i D

R �.S/
P !i �

R S
P !i by the indefinite integral in Step 3. Use

this to deduce
R �.S/
S !i !j for i D j .

9. Use the indefinite integral in Step 5 to get
R �.S/
S !i !j for i < j .

10. Repeat the trick in Step 7 to get
R �.S/
S !i !j for i > j .

11. Compute
R �.Q/
Q !i and use it to deduce

R �.Q/
Q !i !j for i D j .

12. Compute
R �.Q/
Q !i !j for i < j .

13. Repeat the trick in Step 7 to get
R �.Q/
Q !i !j for i < j .

14. Use
RQ
S !i D

RQ
P !i �

R S
P !i to get

RQ
S !i .

Algorithm 7.10 (Double integrals from a Weierstrass endpoint).

Input: A finite Weierstrass point P , a non-Weierstrass point Q, and basis differ-
entials !i ; !j .

Output: The double integrals
RQ
P !i !j .

1. Compute all of the integrals as in Algorithm 7.9.

2. Compute double integrals
RQ
S !i !j using the terms in Step 1 as appropriate in

Algorithm 7.4. (See Remark 7.11 for an additional improvement to this step.)

3. Recover the double integrals
RQ
P !i !j D

R S
P !i !j C

RQ
S !i !j C

R S
P !j

RQ
S !i

by using additivity.

Remark 7.11. In the case of g D 1, the linear system only yields one double
integral not obtainable through single integrals. Indeed, for 0� i; j � 1, we haveZ Q

S

!i !i D
1

2

�Z Q

S

!i

�2
and

Z Q

S

!i !j D�

Z Q

S

!j !i C

Z Q

S

!i

Z Q

S

!j :

So it suffices to compute
RQ
S !0!1. Thus, rather than computing all of the con-

stants c00; c01; c10; c11 and their correction factors (see (7)), if we precompute the
two double integrals that are expressible in terms of single integrals, as well as the
product of single integrals that relates

RQ
S !1!0 to

RQ
S !0!1, it suffices to compute

c01 (and its correction factor) to solve for the other three constants and
RQ
S !0!1.
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In other words, the linear system in Algorithm 7.4 tells us that

�
I4�4� .M

t /˝2
�0BB@

:::RQ
P !i !k
:::

1CCAD
0BBBBB@

:::

cik �
R P
�.P/ !i !k �

�RQ
P !i

��R P
�.P/ !k

�
�
�R �.Q/
Q !i

��R �.Q/
�.P /

!k
�
C
RQ
�.Q/

!i !k
:::

1CCCCCA ;
which we write as

A

0BB@
i00
v01

s01� v01
i11

1CCAD
0BB@
x00
`01
x10
x11

1CCA ;
where the vector on the left consists of integrals (with i00D

RQ
S !0!0, i11D

RQ
S !1!1,

s01D
RQ
S !0

RQ
S !1 all computed), and the vector on the right consists of constants

(with `01 computed). So we solve for v01 WD
RQ
S !0!1; x00; x10; x11, since know-

ing v01 gives us the complete set of double integrals on basis differentials. While
this only gives a constant speedup in terms of complexity, in practice, this helps
when S is defined over a highly ramified extension of Qp.

As numerical checks, one may use the following corollaries of Proposition 7.7.

Corollary 7.12. For P;Q Weierstrass points and S a third point, we have additiv-
ity in endpoints:

RQ
P !i !j C

R S
Q !i !j D

R S
P !i !j .

Corollary 7.13. For P;Q Weierstrass points, we haveZ Q

P

!i !j C

Z Q

P

!j !i D 0:

It is worth noting that in general, unlike in the case of a single Coleman integral,
for P and Q both Weierstrass points, unless i D k, the double Coleman integralRQ
P !i !k is not necessarily 0. However, in the case of i D k, the integral can be

computed as
RQ
P !i !i D

1
2

�RQ
P !i

�2
D 0.

Example 7.14. Consider the curve y2 D x.x� 1/.xC 9/, over Q7, and the points
P1 D .1; 0/, P2 D .0; 0/, and QD .�1; 4/. We have0BBBBB@

RQ
P1
!0!0RQ

P1
!0!1RQ

P1
!1!0RQ

P1
!1!1

1CCCCCAD
0BB@
2 � 72C 5 � 73C 4 � 74C 3 � 75CO.76/

6 � 7C 5 � 72C 4 � 73C 6 � 74CO.76/

2 � 72C 3 � 73C 3 � 74C 75CO.76/

1C 5 � 7C 5 � 73C 4 � 74C 4 � 75CO.76/

1CCA
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and 0BBBBB@

RQ
P2
!0!0RQ

P2
!0!1RQ

P2
!1!0RQ

P2
!1!1

1CCCCCAD
0BB@

2 � 72C 5 � 73C 4 � 74C 3 � 75CO.76/

2 � 72C 73C 6 � 74C 5 � 75CO.76/

6 � 7C 5 � 72C 6 � 73C 3 � 74C 3 � 75CO.76/

1C 5 � 7C 5 � 73C 4 � 74C 4 � 75CO.76/

1CCA ;

from which we see that
R P2

P1
!0!1 ¤ 0 and likewise

R P2

P1
!1!0 ¤ 0.

8. Kim’s nonabelian Chabauty method

We now present the motivation for all of the algorithms thus far. Let C=Z be the
minimal regular model of an elliptic curve C=Q of analytic rank 1 with Tamagawa
numbers all 1. Let X D C� f1g and !0 D dx

2y
; !1 D

x dx
2y

. Taking a tangential
basepoint b at1 (or letting b be an integral 2-torsion point), we have the analytic
functions

log!0
.z/D

Z z

b

!0; D2.z/D

Z z

b

!0!1:

With this setup, we have:

Theorem 8.1 [2; 14]. Suppose P is a point of infinite order in C.Z/. Then
X.Z/� C.Zp/ is in the zero set of

f .z/ WD
�
log!0

.P /
�2
D2.z/�

�
log!0

.z/
�2
D2.P /:

Corollary 8.2 [2; 14]. The expression

D2.P /�
log!0

.P /
�2 (8)

is independent of the point P of infinite order in C.Z/.

Example 8.3. We revisit Example 1 in [2]. Let E be the rank-1 elliptic curve
y2D x3�1323xC3942, with minimal model E having Cremona label 65a1. Con-
sider the following points on E which are integral on E: b D .3; 0/, P D .39; 108/,
QD .�33;�108/, RD .147; 1728/. Using Algorithm 7.10, we compute the inte-
gralsZ P

b

!0!1 D 4 � 11C 4 � 11
2
C 7 � 113C 9 � 114C 5 � 116CO.117/;Z P

b

!0 D 4 � 11C 7 � 11
2
C 9 � 113C 3 � 114C 5 � 115C 7 � 116CO.117/;
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b

!0!1 D 4 � 11C 4 � 11
2
C 7 � 113C 9 � 114C 5 � 116CO.117/;Z Q

b

!0 D 7 � 11C 3 � 11
2
C 113C 7 � 114C 5 � 115C 3 � 116CO.117/;Z R

b

!0!1 D 5 � 11C 6 � 11
2
C 7 � 113C 5 � 114C 3 � 115C 9 � 116CO.117/;Z R

b

!0 D 3 � 11C 7 � 11
2
C 2 � 113C 3 � 114C 7 � 116CO.117/;

and we see that the ratio in Corollary 8.2 is constant on integral points:

D2.P /�
log!0

.P /
�2 D D2.Q/�

log!0
.Q/

�2 D D2.R/�
log!0

.R/
�2 ;

D 3 � 11�1C 6C 2 � 11C 10 � 112C 3 � 113C 5 � 114CO.115/:

However, for S D .103; 980/, which is not integral on E, we see thatZ S

b

!0!1 D 3 � 11C 10 � 11
2
C 4 � 113C 10 � 114C 7 � 115C 10 � 116CO.117/Z S

b

!0 D 11C 7 � 11
3
C 5 � 115CO.117/

D2.S/�
log!0

.S/
�2 D 3 � 11�1C 10C 6 � 11C 9 � 112C 8 � 113C 6 � 114CO.115/:

Example 8.4. We give a variation on Example 4 in [2]. Let E be the rank-1
elliptic curve y2 D x3� 16xC 16, with minimal model E having Cremona label
37a1. Letting P;Q be two fixed integral points on E, we can use the link lemma
to rewrite Theorem 8.1 so that the relevant double integral is no longer from a
tangential basepoint. Indeed, integral points z occur in the zero set of �Z z

b

!0

�2
�

�Z P

b

!0

�2!RQ
P !0!1C

RQ
P !0

R P
b !1�RQ

b
!0
�2
�
�R P
b !0

�2
�

�Z z

P

!0!1C

Z z

P

!0

Z P

b

!1

�
:

Slightly modifying Algorithm 7.4 to take as endpoint a parameter z (see [3, �7:2:2]
for more details), we can recover the integral points˚

.0;˙4/; .4;˙4/; .�4;˙4/; .8;˙20/; .24;˙116/
	
:

Remark 8.5. Note that in the classical Chabauty method, one can use the Jacobian
of the curve J to find the global constant of integration (see [5; 10]). In particular,
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the points on J form a Z-module and we have multiplication-by-n morphisms
Œn�WJ.Qp/! J.Qp/, which gives n

RQ
P ! D

R Œn�.Q/
Œn�.P /

!. By choosing n carefully,
we can ensure that Œn�P and Œn�Q both lie in the residue disk of the identity, and
pulling back to the curve, all integrals can be computed by tiny integrals. For
iterated integrals, we do not have appropriate endomorphisms available.
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Finding ECM-friendly curves
through a study of Galois properties

Razvan Barbulescu, Joppe W. Bos, Cyril Bouvier,
Thorsten Kleinjung, and Peter L. Montgomery

We prove some divisibility properties of the cardinality of elliptic curve groups
modulo primes. These proofs explain the good behavior of certain parameters
when using Montgomery or Edwards curves in the setting of the elliptic curve
method (ECM) for integer factorization. The ideas behind the proofs help us to
find new infinite families of elliptic curves with good division properties increas-
ing the success probability of ECM.

1. Introduction

The elliptic curve method (ECM) for integer factorization [22] is the asymptotically
fastest known method for finding relatively small factors p of large integers N . In
practice, ECM is used, on the one hand, to factor large integers. For instance, the
2011 ECM record is a 241-bit factor of 21181� 1 [12]. On the other hand, ECM
is used to factor many small (100- to 200-bit) integers as part of the number field
sieve [26; 21; 4], the most efficient general purpose integer factorization method.

Traditionally, the elliptic curve arithmetic used in ECM is implemented us-
ing Montgomery curves [23] (for example, in the widely used GMP-ECM soft-
ware [35]). Generalizing the work of Euler and Gauss, Edwards [15] introduced a
new normal form for elliptic curves which results in a fast realization of the elliptic
curve group operation in practice. These “Edwards curves” have been generalized
by Bernstein and Lange [9] for use in cryptography. Bernstein et al. [8] explored
the possibility of using these curves in the ECM setting. After Hisil et al. [18]
published a coordinate system which results in the fastest known realization of
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Keywords: elliptic curve method (ECM), Edwards curves, Montgomery curves, torsion properties,

Galois groups.
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curve arithmetic, a follow-up paper by Bernstein et al. [7] discusses the use of the
so-called “aD�1” twisted Edwards curves in ECM.

It is common to construct or search for curves which have favorable properties.
The success of ECM depends on the smoothness of the cardinality of the curve
considered modulo the unknown prime divisor p of N . This usually means con-
structing curves with large torsion group over Q or finding curves such that the
order of the elliptic curve, when considered modulo a family of primes, is always
divisible by an additional factor. Examples are the Suyama construction [32], the
curves proposed by Atkin and Morain [3], a translation of these techniques to Ed-
wards curves [8; 7], and a family of curves suitable for Cunningham numbers [13].

In this paper we study and prove divisibility properties of the cardinality of
elliptic curves over prime fields. We do this by studying properties of Galois groups
of torsion points using Chebotarev’s theorem [24]. Furthermore, we investigate
some elliptic curve parameters for which ECM finds exceptionally many primes in
practice, but which do not fit in any of the known cases of good torsion properties.
We prove this behavior and provide parametrizations for infinite families of elliptic
curves with these properties.

2. Galois properties of torsion points of elliptic curves

In this section we give a systematic way to compute the probability that the order of
a given elliptic curve reduced by an arbitrary prime is divisible by a certain prime
power.

2A. Torsion properties of elliptic curves.

Definition 2.1. Let K be a finite Galois extension of Q, let p be a prime, and
let p be a prime ideal of K above p with residue field kp. The decomposition
group Dec.p/ of p is the subgroup of Gal.K=Q/ that stabilizes p. Denote by ˛.p/

the canonical morphism from Dec.p/ to Gal.kp=Fp/ and let �p be the Frobenius
automorphism on the field kp. We define

Frobenius.p/D
S
pjp

.˛.p//�1.�p/:

We say that a set S of primes admits a natural density equal to ı, and we write
P.S/D ı, if

lim
N!1

#.S \….N//
#….N/

exists and equals ı, where ….N/ is the set of primes up to N . If event.p/ is a
property which can be defined for all primes except a finite set, when we write
P.event.p// we tacitly exclude the primes where event.p/ cannot be defined.
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Theorem 2.2 (Chebotarev, [24]). Let K be a finite Galois extension of Q. Let
H � Gal.K=Q/ be a conjugacy class. Then

P.Frobenius.p/DH/D
#H

# Gal.K=Q/
:

Before applying Chebotarev’s theorem to the case of elliptic curves we introduce
some notation. For every elliptic curve E over a field F and for all integers m� 2,
we let F.EŒm�/ denote the smallest extension of F over which all of the geometric
m-torsion points of E are rational. The next result is classical, but we present its
proof for the intuition it brings.

Proposition 2.3. For every integer m � 2 and elliptic curve E over a perfect
field F , the following hold:

(1) F.EŒm�/=F is a Galois extension.

(2) There is an injective morphism �m W Gal.F.EŒm�/=F / ,! Aut.E.F /Œm�/.

Proof. Since the addition law of E can be expressed by rational functions over F ,
there exist polynomials fm; gm 2 F ŒX; Y � such that the coordinates of the points
in E.F /Œm� are the solutions of the system .fm D 0; gm D 0/. Therefore F.EŒm�/
is the splitting field of ResX .fm; gm/ and ResY .fm; gm/ and in particular is Galois.
This proves statement (1).

For each � 2 Gal.F.EŒm�/=F / we denote by �m.�/ the function that sends
.x; y/ 2 E.F /Œm� to .�.x/; �.y//. Thanks to the discussion above, �m.�/ sends
points of E.F /Œm� to E.F /Œm�. Since the addition law can be expressed by rational
functions over F , for each � we have �m.�/ 2 Aut.E.F /Œm�/. One easily checks
that �m is a group morphism and its kernel is the identity, proving statement (2). �
Notation. Let E be an elliptic curve over Q and let m � 2 be an integer. We fix
generators for E.Q/Œm�, thereby inducing an isomorphism

 m W Aut.E.Q/Œm�/! GL2.Z=mZ/:

Let �m be the injection given by Proposition 2.3, and let �m W Gal.Q.EŒm�/=Q/!

GL2.Z=mZ/ be the injective morphism  m ı �m.
Let p be a prime such that E has good reduction at p and p − m. If k is

an extension field of Fp, we write E.k/ for the group of k-rational points on the
reduction of E modulo p. Let �.p/m be the injection of Gal.Fp.EŒm�/=Fp/ into
Aut.E.Fp/Œm�/ given by Proposition 2.3. By [29, Proposition VII.3.1] there is a
canonical isomorphism r

.p/
m from Aut.E.Q/Œm�/ to Aut.E.Fp/Œm�/ for each prime

ideal p over p.

Remark 2.4. Note that # Gal.Q.EŒm�/=Q/ is bounded by # GL2.Z=mZ/. For
every prime � we have # GL2.Z=�Z/D .� � 1/2.� C 1/� , and for every integer
k � 1 we have # GL2.Z=�kC1Z/D �4# GL2.Z=�kZ/.
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Notation. For all g 2 GL2.Z=mZ/ we put Fix.g/ D fv 2 .Z=mZ/2 j g.v/ D vg.
If C is a conjugacy class of elements of GL2.Z=mZ/, we let Fix.C / denote the
isomorphism class of the group Fix.g/, for some g 2 C ; this isomorphism class
does not depend on the choice of g. We use analogous notations for the fixed
groups of elements of, and conjugacy classes in, the groups Aut.E.Q/Œm�/ and
Aut.E.Fp/Œm�/.

Theorem 2.5. Let E be an elliptic curve over Q and let m� 2 be an integer. Put
K DQ.EŒm�/. Let T be a subgroup of Z=mZ�Z=mZ. Then:

(1) P
�
E.Fp/Œm�' T

�
D

#fg 2 �m.Gal.K=Q// j Fix.g/' T g
# Gal.K=Q/

.

(2) Let a and n be positive integers such that a � n and gcd.a; n/D 1, and let �n
be a primitive n-th root of unity. Put

Ga D f� 2 Gal.K.�n/=Q/ j �.�n/D �
a
ng:

Then

P
�
E.Fp/Œm�' T j p � a mod n

�
D

#f� 2Ga j Fix.�m.� jK//' T g
#Ga

:

Proof. Let p −m be a prime for which E has good reduction and let p be a prime
ideal of K over p. Let H denote the set f� 2 Gal.K=Q/ j Fix.�m.�//' T g. First
note thatE.Fp/Œm�DFix.�.p/m .�p//where �p is the Frobenius in Gal.Fp.EŒm�/=Fp/.
Since the diagram

Dec.p/ � � //

˛.p/

��

Gal.Q.EŒm�/=Q/
� � �m // Aut.E.Q/Œm�/

r
.p/
m

��
Gal.kp=Fp/

� // Gal.Fp.EŒm�/=Fp/
� � �

.p/
m // Aut.E.Fp/Œm�/

is commutative and since Frobenius.p/� Gal.K=Q/ is the conjugacy class gener-
ated by .˛.p//�1.�p/ we have E.Fp/Œm�' Fix.�m.Frobenius.p///.

Decompose H into a disjoint union of conjugacy classes C1; : : : ; CN . Then
Fix.�m.Frobenius.p///' T if and only if Frobenius.p/ is one of the Ci . Thanks
to Theorem 2.2 we obtain

P
�
E.Fp/Œm�' T

�
D

NX
iD1

P
�
Frobenius.p/D Ci

�
D

NX
iD1

#Ci
# Gal.K=Q/

D
#H

# Gal.K=Q/
:

This proves statement (1).
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Using similar arguments, we see that to prove statement (2) we have to evaluate

P
�
Frobenius.p/ 2 fC1; : : : ; CN g; p � a mod n

�
P.p � a mod n/

:

Let p be a prime and p a prime ideal as in the first part of the proof, and let P be a
prime ideal of K.�n/ lying over p. Furthermore let zC1; : : : ; zC zN be the conjugacy
classes of Gal.K.�n/=Q/ that are in the preimages of C1; : : : ; CN and whose ele-
ments � satisfy �.�n/D �an . Since Gal.K.�n/=Q/ maps �n to primitive n-th roots
of unity we have for � 2 .˛.P//�1.�P/ that �.�n/D �bn for some b. Together with
�.x/ � xp mod P this gives �bn � �

p
n mod P. If we exclude the finitely many

primes dividing the norms of �cn � 1 for c D 1; : : : ; n� 1 we obtain b � p mod n.
Since Frobenius.K.�n/; p/, the Frobenius conjugacy class for K.�n/, is the preim-
age of Frobenius.p/, the argument above gives

P
�
Frobenius.p/ 2 fC1; : : : ; CN g; p � a mod n

�
D P

�
Frobenius.K.�n/; p/ 2 f zC1; : : : ; zC zN g

�
:

Considering the denominator P.p � a mod n/ similarly completes the proof. �

Remark 2.6. Put K DQ.EŒm�/. If ŒK.�n/ WQ.�n/�D ŒK WQ�, then one has

P
�
E.Fp/Œm�' T j p � a mod n

�
D P

�
E.Fp/Œm�' T

�
for a coprime to n. Indeed, according to Galois theory,

Gal.K.�n/=Q/=Gal.K.�n/=K/' Gal.K=Q/

through � 7!� jK . Since ŒK.�n/ WQ.�n/�D ŒK WQ�, we have ŒK.�n/ WK�D'.n/ and
therefore each element � of Gal.K=Q/ extends in exactly one way to an element
of Gal.K.�n/=Q/ which satisfies �.�n/D �an . Note that for n 2 f3; 4g the condition
is equivalent to �n 62K.

The families constructed by Brier and Clavier [13], which were developed to
help factor integers N such that the n-th cyclotomic polynomial has roots modulo
all prime factors ofN , modify ŒK.�n/ WQ.�n/� by imposing a large torsion subgroup
over Q.�n/.

The following corollary is an important particular case of Theorem 2.5.

Corollary 2.7. Let E be an elliptic curve over Q and let � be a prime number. Put
K DQ.EŒ��/. Then

P
�
E.Fp/Œ��' Z=�Z

�
D

#fg 2 ��.Gal.K=Q// j det.g� Id/D 0; g ¤ Idg
# Gal.K=Q/

;

P
�
E.Fp/Œ��' Z=�Z�Z=�Z

�
D

1

# Gal.K=Q/
:
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� T d1 Ptheor.E1; �; T / d2 Ptheor.E2; �; T /

Pexper.E1; �; T / Pexper.E2; �; T /

3 Z=3Z�Z=3Z 48 1
48
� 0:02083 16 1

16
D 0:06250

0:02082 0:06245

3 Z=3Z 48 20
48
� 0:4167 16 4

16
D 0:2500

0:4165 0:2501

5 Z=5Z�Z=5Z 480 1
480
� 0:002083 32 1

32
D 0:03125

0:002091 0:03123

5 Z=5Z 480 114
480
� 0:2375 32 10

32
D 0:3125

0:2373 0:3125

Table 1. Theoretical and experimental values of P.E;�;T / WDP
�
E.Fp/Œ��'T

�
for the elliptic curves E1 and E2, for several primes � and groups T . The
theoretical values were obtained from Corollary 2.7, and the experimental values
were computed using all primes less than 225. The columns labeled d1 and d2
give the degrees of the number fields Q.E1Œ��/ and Q.E2Œ��/, respectively.

Example 2.8. We compute these probabilities for the curves E1 W y2D x3C5xC7
and E2 W y2 D x3 � 11x C 14 and the primes � D 3 and � D 5. Here E1 illus-
trates the generic case, whereas E2 has special Galois groups. One checks with
Sage [30] that ŒQ.E1Œ3�/ WQ�D 48. Since # GL2.Z=3Z/D 48, Proposition 2.3 tells
us that �3.Gal.Q.E1Œ3�/=Q//D GL2.Z=3Z/. The group GL2.Z=3Z/ contains 20
nonidentity elements having 1 as an eigenvalue. From Corollary 2.7 we find

P
�
E1.Fp/Œ3�' Z=3Z

�
D

20
48
; P

�
E1.Fp/Œ3�' Z=3Z�Z=3Z

�
D

1
48
:

We used the same method for all the probabilities displayed in Table 1, where we
compare them to experimental values.

Note that the relative difference between theoretical and experimental values
never exceeds 0:4%. It is interesting to observe that reducing the Galois group
does not necessarily increase the probabilities, as it is shown for � D 3.

2B. Effective computations of Q.EŒm�/ and �m.Gal.Q.EŒm�/=Q// for prime
powers. The main tools we use to compute Q.EŒm�/ and its Galois group are the
division polynomials, as defined below.

Definition 2.9. Let E W y2 D x3C axC b be an elliptic curve over Q and m� 2
an integer. The m-division polynomial Pm is the monic polynomial whose roots
are the x-coordinates of all the affine m-torsion points of E. We also define P new

m

to be the monic polynomial whose roots are the x-coordinates of the affine points
of order exactly m.
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Proposition 2.10. For all m � 2 the polynomials Pm and P new
m lie in QŒX�. Fur-

thermore, deg.Pm/D .m2C 2� 3�/=2, where � is the remainder of m modulo 2.

Proof. For a proof we refer to [29, Exercise III.3.7, pp. 105–106]. �

Note that one obtains different division polynomials for other shapes of elliptic
curves (Weierstrass, Montgomery, Edwards, and so on). Nevertheless, the Galois
group Gal.Q.EŒm�/=Q/ is independent of the model of E, and can be computed
with the division polynomials of Definition 2.9 because, in characteristic different
from 2 and 3, every curve can be written in short Weierstrass form.

One can compute Q.EŒ��/ for any prime � � 3 using the following method.

1. Make a first extension of Q through an irreducible factor of P� to obtain a
number field F1 where P� has a root ˛1.

2. Let f2.y/D y2� .˛31 C a˛1C b/ 2 F1Œy� and F2 be the splitting field of f2.
There is a �-torsion point M1 of E defined over F2. In F2, P� has .� �1/=2
trivial roots representing the x coordinates of the multiples of M1.

3. Let F3 be the extension of F2 defined by an irreducible factor of P� 2 F2Œx�
other than those corresponding to the trivial roots.

4. Let ˛2 be a new root of P� in F3. Let f4.y/D y2� .˛32Ca˛2C b/ 2 F3Œy�
and let F4 be the splitting field of f4. Then F4 contains all the �-torsion of E.

The case of prime powers �k with k � 2 is handled recursively. Having com-
puted Q.EŒ�k�1�/, we obtain Q.EŒ�k�/ by repeating the four steps above with
P new
�k instead of P� and by defining trivial roots to be the x-coordinates of the

points fP CM1 j P 2EŒ�
k�1�g.

In practice, we observe that in general P� ; f2; P
.F2/
� and f4 are irreducible,

where P .F2/
� is P� divided by the factors corresponding to the trivial roots. If this

is the case, then using the formula deg.P�/D .�2� 1/=2 from Proposition 2.10,
we find that the absolute degree of F4 is

�2� 1

2
� 2 �

�2��

2
� 2D .� � 1/2.� C 1/�:

By Remark 2.4, # GL2.Z=�Z/ is also equal to .� � 1/2.�C 1/� , so in general we
expect ��.Gal.Q.EŒ��/=Q// D GL2.Z=�Z/. Also, we observed that in general
the degree of the extension Q.EŒ�k�/=Q.EŒ�k�1�/ is �4.

The next theorem shows that the observations above are almost always true. It
is a restatement of items .1/ and .6/ from the introduction of [27].

Theorem 2.11 (Serre). Let E be an elliptic curve without complex multiplication.

(1) For all primes � the sequence of indices

ŒGL2.Z=�kZ/ W ��k .Gal.Q.EŒ�k�/=Q//� for k � 1
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is nondecreasing and bounded by a constant depending on E and � .

(2) For all primes � outside a finite set depending on E and for all k � 1,

��k .Gal.Q.EŒ�k�/=Q/D GL2.Z=�kZ/:

Definition 2.12. Put I.E; �; k/D ŒGL2.Z=�kZ/ W ��k .Gal.Q.EŒ�k�/=Q//�. If E
does not admit complex multiplication, we define Serre’s exponent to be the integer

n.E; �/Dminfn 2 Z>0 j 8k � n W I.E; �; kC 1/D I.E; �; k/g:

In [28] Serre showed that in some cases one can prove that I.E; �; k/ D 1

for all positive integers k. Indeed, Serre proved that the surjectivity of ��k (or
the equivalent equality I.E; �; k/ D 1) follows from the surjectivity of �� (or
the equivalent equality I.E; �; 1/ D 1) for all rational elliptic curves E without
complex multiplication and for all primes � � 5. In order to have the same kind
of results for � D 2 (respectively, � D 3) one has to suppose that �2, �4 and �8
are surjective (respectively, �3 and �9 are surjective).

Serre also conjectured that only a finite number of primes, not depending on the
curve E, can occur in the second point of Theorem 2.11. The current conjecture is
that for all rational elliptic curves without complex multiplication and all primes
� � 37, �� is surjective. Zywina [36] describes an algorithm that computes, for
a given E, the primes � for which �� is not surjective; Zywina has checked the
conjecture for all elliptic curves in Magma’s database (currently this covers curves
with conductor at most 140,000). For other recent progress on this conjecture of
Serre, see [11] and [10].

Remark 2.13. One application of Serre’s results is as follows. Experiments show
that if E is an elliptic curve over Q without complex multiplication, then E.Fp/ is
close to a cyclic group for almost all primes p, regardless of the rank of E over Q.
For a given bound B , computing

P.9� > B j Z=�Z�Z=�Z�E.Fp// (1)

goes beyond the scope of this paper. However, if � is a prime such that �� is
surjective, then Corollary 2.7 shows that

P.Z=�Z�Z=�Z�E.Fp//D
1

�.� C 1/.� � 1/2
:

This suggests that the probability in expression (1) should be O.1=B3/.

The method described above allows us to compute Q.EŒm�/ as an extension
tower. Then it is easy to obtain its absolute degree and a primitive element. Identify-
ing ��.Gal.Q.EŒm�/=Q// up to conjugacy is easy when there is only one subgroup
(up to conjugacy) of GL2.Z=mZ/ with the right order. When this is not the case
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we use fixed generators for E.Q/Œm� to check for each g 2GL2.Z=mZ/ whether g
gives rise to an automorphism on Q.EŒm�/. In practice, the bottleneck of this
method is the factorization of polynomials with coefficients over number fields.

A faster probabilistic algorithm for computing Gal.Q.EŒ��/=Q/ was proposed
by Sutherland [31]. This algorithm was not known by the authors at the time of
writing and would have helped to accelerate the computation of the examples.

2C. Divisibility by a prime power. It is well-known that, for a given prime � , the
cardinality of a randomly chosen elliptic curve over Fp has a larger probability of
being divisible by � than a randomly chosen integer of size p (see [22, Proposi-
tion 1.14, p. 660]). In this subsection we shall consider the analogous problem,
where instead of fixing p and varying E, we fix an E=Q and vary p.

Notation. Let � be a prime and let i , j , and k be nonnegative integers such that
i � j . We put

p�;k.i; j /D P
�
E.Fp/Œ�

k�' Z=� iZ�Z=�jZ
�
:

Let `�m be integers. When it is defined we write

p�;k.`;m j i; j /

D P
�
E.Fp/Œ�

kC1�' Z=�`Z�Z=�mZ
ˇ̌
E.Fp/Œ�

k�' Z=� iZ�Z=�jZ
�
:

When it is clear from the context, � is omitted.

Remark 2.14. Since for every integer m> 0 and every prime p coprime to m we
have E.Fp/Œm� � Z=mZ�Z=mZ, it follows that p�;k.i; j / D 0 for j > k. In
the case j < k, if p�;k.`;m j i; j / is defined, it equals 1 if .`;m/ D .i; j / and
equals 0 if .`;m/ ¤ .i; j /. Finally, for j D k, there are only three conditional
probabilities which can be nonzero: p�;k.i; k j i; k/, p�;k.i; k C 1 j i; k/, and
p�;k.kC 1; kC 1 j k; k/.

Theorem 2.15. Let � be a prime and E an elliptic curve over Q. If k is an in-
teger such that I.E; �; k C 1/ D I.E; �; k/ (for example, if E has no complex
multiplication and k � n.E; �/), then we have

p�;k.kC 1; kC 1 j k; k/D 1=�
4;

p�;k.k; kC 1 j k; k/D .� � 1/.� C 1/
2=�4; and

p�;k.i; kC 1 j i; k/D 1=� for 0� i < k:

Proof. Let M D .Z=�kZ/2. For all g 2 GL2.�M/, we consider the set

Lift.g/D
˚
h 2 GL2.M/

ˇ̌
hj�M D g

	
D
˚
gC�k�1

�
a
c
b
d

� ˇ̌
a; b; c; d 2 Z=�Z

	
;
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whose cardinality is �4. Since I.E; �; kC 1/D I.E; �; k/ we have

# Gal.Q.EŒ�k�/=Q/

# Gal.Q.EŒ�kC1�/=Q/
D

# GL2.Z=�kZ/

# GL2.Z=�kC1Z/
;

which equals 1=�4 by Remark 2.4. So for all g 2 ��k .Gal.Q.EŒ�k�/=Q//, we
have Lift.g/ � ��kC1.Gal.Q.EŒ�kC1�/=Q//. Thanks to Theorem 2.5, the proof
will follow if we count for each g the number of lifts with a given fixed group.

For g D Id 2 ��k .Gal.Q.EŒ�k�/=Q//, there is only one element of Lift.g/
fixing .Z=�kC1Z/2, so p�;k.kC 1; kC 1 j k; k/D 1=�4.

The element g D Id can be lifted in exactly �4� 1� # GL2.Z=�Z/ ways to an
element in GL2.Z=�kC1Z/ that fixes the �k-torsion and a point of order �kC1, but
not all the �kC1-torsion. Therefore p�;k.k; kC 1 j k; k/D .� � 1/.� C 1/2=�4.

Every element of GL2.Z=�kZ/ that fixes a line, but is not the identity, can be
lifted in exactly �3 ways to an element of GL2.Z=�kC1Z/ that fixes a line of
.Z=�kC1Z/2. This shows that p�;k.i; kC 1 j i; k/D �3=�4 D 1=� . �

The theorem below uses the information on Gal.Q.EŒ�n.E;�/�/=Q/ for a given
prime � in order to compute the probabilities of divisibility by any power of � .
It also gives a formula for the average �-adic valuation v� of #E.Fp/, which we
define as

v� D
X
k�1

k P
�
v�.#E.Fp//D k

�
;

where v� denotes �-adic valuation. We do not claim that v� is equal to

lim
x!1

1

#….x/

X
p�x

v�.#E.Fp//;

although we expect this to be true.

Notation. Let � be a prime. We set 
n.h/D �n
Ph
`D0 �

`pn.`; n/, and we define

ı.k/D

�
piC1.i C 1; i C 1/ if k D 2i C 1;

0 otherwise
and

Sk.h/D �
k

�
ı.k/C

bk=2cX
`Dh

pk�`.`; k� `/

�
:

Theorem 2.16. Let � be a prime, let E an elliptic curve over Q, and let n be a
positive integer such that I.E; �; k/ D I.E; �; n/ for all k � n (for example, a
curve without complex multiplication and n� n.E; �/). Then, for every k � 1,
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P
�
#E.Fp/� 0 mod �k

�
D

1

�k

8<:
Sk.0/ if 1� k � n;


n.k�n� 1/CSk.k�n/ if n < k � 2n;

n.n/Cpn.n; n/�

2n�1��4n�1�kpn.n; n/ if k > 2n:

Furthermore, v� is finite, and we have

v�D2

n�1X
`D1

p`.`;`/C
�

��1

n�1X
`D0

pn.`;n/C

n�2X
`D0

n�1X
iD`C1

pi .`;i/C
�.2�C1/

.��1/.�C1/
pn.n;n/:

Proof. Let k be a positive integer. Using Figure 1, one checks that

P
�
#E.Fp/� 0 mod �k

�
D

bk=2cX
`D0

pk�`.`; k� `/C ı.k/: (2)

Let c1 D 1=�4, c2 D .� � 1/.� C 1/2=�4, and c3 D 1=� . With these notations,
the situation can be illustrated by Figure 1. For j > n and ` < n, the probability
pj .`; j / is the product of the conditional probabilities of the unique path from
.`; j / to .`; n/ in the graph of Figure 1 times the probability pn.`; n/. For j > n
and `� n, the probability pj .`; j / is the product of the conditional probabilities
of the unique path from .`; j / to .n; n/ in the graph of Figure 1 times the proba-
bility pn.n; n/.

There are three cases that are to be treated separately: 1 � k � n, n < k � 2n
and k > 2n. For 1� k � n, the result follows from (2). Let us give the computation

c3 c3 c3

c3c3

c3

c3c3c3

c2

c2

c2

c1

c1

c1

0,0

1,1

0,1 0,2

1,2

2,2

π2i | #E(Fp)

π2i+1 | #E(Fp)

n = 2

Figure 1. The node with coordinates .i; j / represents the event
�
E.Fp/Œ�

j �'

Z=� iZ � Z=�jZ
�
. The arrows represent the conditional probabilities of

Theorem 2.15.
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in more detail for the case for k > 2n, with k D 2i :

P
�
#E.Fp/� 0 mod �2i

�
D

iX
`D0

p2i�`.`; 2i � `/C ı.2i/D

iX
`D0

p2i�`.`; 2i � `/

D

n�1X
`D0

p2i�`.`; 2i � `/C

i�1X
`Dn

p2i�`.`; 2i � `/Cpi .i; i/

D

n�1X
`D0

c2i�l�n3 pn.`; n/C

i�1X
`Dn

c2i�2l�13 c2c
l�n
1 pn.n; n/C c

i�n
1 pn.n; n/:

This leads to the desired formula. The case k > 2n odd and the case n < k � 2n
are treated similarly.

To prove the statements about v� , we note that P.#E.Fp/ � 0 mod �k/ is
O.1=�k/ as k !1. Thus, the sum defining v� is absolutely convergent, and
we are justified in rearranging terms to find

v� D
X
k�1

k P
�
v�.#E.Fp//D k

�
D

X
k�1

P
�
#E.Fp/� 0 mod �k

�
:

Substituting in our formulas for the summands in the last expression, we obtain
the formula for v� given in the theorem. �

Example 2.17. Let us compare the theoretical and experimental average valuation
of � D 2, � D 3 and � D 5 for the curves

E1 W y
2
D x3C 5xC 7 and E3 W y

2
D x3� 10875xC 526250;

which do not admit complex multiplication. (We exclude E2 in this example be-
cause it does have complex multiplication.) For E1, we apply Theorem 2.16 with
n D 1 and compute the necessary probabilities with Corollary 2.7 knowing that
the Galois groups are isomorphic to GL2.Z=�Z/. For E3, we apply Theorem 2.16
with nD 3 for � D 2 and nD 1 for � D 3 and � D 5, and compute the necessary
probabilities with Theorem 2.5 (when nD 3) and Corollary 2.7 (when nD 1). The
results are shown in Table 2.

In order to apply Theorem 2.16, one has to show that I.E; �; k/D I.E; �; n/
for all k � n (or n� n.E; �/ since E1 and E3 do not have complex multiplication).
For E1, we were able to prove that n.E; �/D 1 for � D 2, � D 3, and � D 5 by
using the remarks at the end of Section 2B. For E3, Andrew Sutherland computed
for us the Galois groups up to the 25-, 33-, and 52-torsion. These computations
lead us to believe that n.E3; 2/D 3, n.E3; 3/D 1, and n.E3; 5/D 1, but we have
been unable to prove that these values are correct; in particular, this means that the
theoretical probabilities for E3 given in Table 2 are conjectural.
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� n.E1; �/ v�;theor n.E3; �/ v�;theor

v�;exper v�;exper

2 1 14
9
� 1:556 3 895

576
� 1:554

1:555 1:554

3 1 87
128
� 0:680 1 39

32
� 1:219

0:679 1:218

5 1 695
2304
� 0:302 1 155

192
� 0:807

0:301 0:807

Table 2. Theoretical and experimental values of the average �-adic valuation
of #E1.Fp/ and #E3.Fp/, for � D 2; 3; 5. The theoretical values come from
Theorem 2.16, and the experimental values were computed using all primes less
than 225. The values of n.E3; �/ and those of v�;theor for E3 are conjectural.

3. Applications to some families of elliptic curves

As shown in the preceding section, changing the torsion properties is equivalent
to modifying the Galois group. One can view the imposition of rational torsion
points as a way of modifying the Galois group. In this section we change the Galois
group either by splitting the division polynomials or by imposing some equations
that directly modify the Galois group. With these ideas, we find new infinite ECM-
friendly families and we explain the properties of some known curves.

3A. Preliminaries on Montgomery and twisted Edwards curves. LetK be a field
whose characteristic is neither 2 nor 3.

Edwards curves. For a; d 2 K, with ad.a� d/ ¤ 0, the twisted Edwards curve
ax2Cy2D 1Cdx2y2 is denoted by Ea;d . The “aD�1” twisted Edwards curves
are denoted by Ed . In [8] completed twisted Edwards curves are defined by

Ea;d D
˚�
.X WZ/; .Y W T /

�
2 P1 �P1 j aX2T 2CY 2Z2 DZ2T 2C dX2Y 2

	
:

The completed points are the affine .x; y/ embedded into P1 � P1 by the map
.x; y/ 7! ..x W 1/; .y W 1//; see [8] for more information. We denote .1 W 0/ by1.

Figure 2 gives an overview of all the 2- and 4-torsion, as well as some of the
8-torsion points, on Ea;d , as specified in [8].

Montgomery curves and the Suyama family. Take A;B 2K with B.A2� 4/¤ 0.
The Montgomery curve By2 D x3CAx2C x associated to .A;B/ is denoted by
MA;B (see [23]) and its completion in P2 by MA;B .

Remark 3.1. If a; d; A;B 2K are such that d D .A� 2/=B and aD .AC 2/=B ,
then there is a birational map between Ea;d and MA;B given by�

.x W z/; .y W t /
�
7!
�
.t Cy/x W .t Cy/z W .t �y/x

�
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.0; 1/

.0;�1/

.˙
p
a�1; 0/

.x8;˙
p
ax8/

.˙
p
d�1;1/

.yx8;˙
p
d�1yx�18 /

.1;
q
a
d
/

.˙
p
�a�1 4

q
a
d
;˙ 4

q
a
d
/

.1;�
q
a
d
/

.˙
p
a�1 4

q
a
d
;˙i 4

q
a
d
/

1-torsion

2-torsion

4-torsion

8-torsion

Figure 2. An overview of all 1-, 2-, and 4-torsion and some 8-torsion points
on twisted Edwards curves. The x8 and yx8 in the 8-torsion points are such that
adx48 � 2ax

2
8 C 1D 0 and ad yx48 � 2d yx

2
8 C 1D 0.

(see [6]). Therefore MA;B and Ea;d have the same group structure over any field
where they are both defined, and in particular they have the same torsion prop-
erties. Any statement in twisted Edwards language can be easily translated into
Montgomery coordinates and vice versa.

A Montgomery curve for which there exist x3; y3; k; x1; y1 2Q such that8̂̂̂̂
<̂
ˆ̂̂:
P3.x3/D 0; By23 D x

3
3 CAx

2
3 C x3 (3-torsion point);

k D
y3

y1
; k2 D

x33 CAx
2
3 C x3

x31CAx
2
1C x1

(nontorsion point);

x1 D x
3
3 (Suyama equation)

(3)

is called a Suyama curve. As described in [32; 34], the solutions of (3) can be
parametrized by a rational value denoted � . For all � 2Qn

˚
0;˙1;˙3;˙5;˙5

3

	
,

the associated Suyama curve has positive rank and a rational point of order 3.

Remark 3.2. In the following, when we say that a twisted Edwards curve Ea;d
(or a Montgomery curve MA;B ) has good reduction modulo a prime p, we also
suppose that we have vp.a/D vp.d/D vp.a� d/D 0 (respectively, vp.A� 2/D
vp.AC 2/D vp.B/D 0 for a Montgomery curve). In this case the reduction map
is simply given by reducing the coefficients modulo p. The results below are also
true for primes of good reduction which do not satisfy these conditions, by slightly
modifying the statements and the proofs. Moreover, in ECM, if the conditions are
not satisfied, we immediately find the factor p.

3B. The generic Galois group of a family of curves. In the following, when we
talk about the Galois group of the m-torsion of a family of curves, we mean a group
isomorphic to the Galois group of the m-torsion for all curves of the family except
for a sparse set of curves (which can have a smaller Galois group).
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For example, let us consider the Galois group of the 2-torsion for the family
fEr W y

2 D x3C rx2Cx j r 2Q n f˙2gg. The Galois group of the 2-torsion of the
curve E W y2 D x3CAx2Cx over Q.A/ is Z=2Z. Hence, for most values of r the
Galois group is Z=2Z and for a sparse set of values the Galois group is the trivial
group. So, we say that the Galois group of the 2-torsion of this family is Z=2Z.

To our best knowledge, there is no implementation of an algorithm computing
Galois groups of polynomials with coefficients in a function field. Instead we can
compute the Galois group for every curve of the family, so we can guess the Galois
group of the family from a finite number of instantiations. In practice, we took a
dozen random curves in the family; if the Galois groups of the m-torsion for these
curves were all the same, we guessed that it was the Galois group of the m-torsion
of the family of curves.

3C. Study of the 2k-torsion of Montgomery and twisted Edwards curves. The
rational torsion of a Montgomery/twisted Edwards curve is Z=2Z but it is known
that 4 divides the order of the curve when reduced modulo any prime p [32]. The
following theorem gives more detail on the 2k-torsion.

Theorem 3.3. Let E D Ea;d be a twisted Edwards curve (respectively, a Mont-
gomery curve MA;B ) over Q. Let p be a prime such that E has good reduction
at p.

(1) Suppose p � 3 .mod 4/. If a=d (respectively, A2� 4) is a quadratic residue
modulo p, then E.Fp/Œ4�' Z=2Z�Z=4Z.

(2) Suppose p � 1 .mod 4/. If a (respectively, .AC 2/=B) is a quadratic residue
modulo p (in particular, if a D ˙1) and a=d (respectively, A2 � 4) is a
quadratic residue modulo p, then Z=2Z�Z=4Z�E.Fp/Œ4�.

(3) Suppose p � 1 .mod 4/. If a=d (respectively, A2 � 4) is a quadratic non-
residue modulo p and a�d (respectively, B) is a quadratic residue modulo p,
then E.Fp/Œ8�' Z=8Z.

Proof. Using Remark 3.1, it is enough to prove the results in the Edwards language,
which follow by some calculations using Figure 2. �

Theorem 3.3 suggests that by imposing equations on the parameters a and d
we can improve the torsion properties. The case where a=d is a square has been
studied in [8] for the family of Edwards curves with a D 1 and rational torsion
group Z=2Z� Z=8Z, and in [7] for the family with a D �1 and rational torsion
group Z=2Z�Z=4Z. Here we focus on two other equations:

9c 2Q; aD�c2 (AC 2D�Bc2 for Montgomery curves), (4)

9c 2Q; a� d D c2 (B D c2 for Montgomery curves). (5)
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The cardinality of the Galois group of the 4-torsion for generic Montgomery
curves is 16; this is reduced to 8 for the family of curves satisfying (4). Using
Theorem 2.5, we can compute the changes of probabilities due to this new Galois
group. For all curves satisfying (4) and all primes p � 1 .mod 4/, the probability
of having Z=2Z�Z=2Z as the 4-torsion group becomes 0 instead of 1

4
; the proba-

bilities of having Z=2Z�Z=4Z and Z=4Z�Z=4Z as the 4-torsion group become 1
4

instead of 1
8

.
The Galois group of the 8-torsion of the family of curves satisfying (5) has car-

dinality 128, instead of 256 for generic Montgomery curves. Using Theorem 2.5,
one can see that the probabilities of having an 8-torsion point are improved.

Using Theorem 2.16, one can show that for both families of curves — the family
satisfying (4) and the one satisfying (5) — the probability that the cardinality is
divisible by 8 increases from 5

8
to 3
4

, and the average valuation of 2 increase from
10
3

to 11
3

.

3D. Better twisted Edwards curves with torsion Z=2Z�Z=4Z using division poly-
nomials. In this section we search for curves such that some of the factors of the
division polynomials split; by doing so, we hope to change the Galois groups. As
an example we consider the family of a D �1 twisted Edwards curves Ed with
Z=2Z�Z=4Z-torsion; these curves are exactly the ones with d D �e4 (see [7]).
The technique might be used in any context.

Looking for subfamilies. For a generic d , the polynomial P new
8 splits into three

irreducible factors: two of degree 4 and one of degree 16. If one takes d D�e4,
the polynomial of degree 16 splits into three factors: two of degree 4, called P8;0
and P8;1, and one of degree 8, called P8;2. By trying to force one of these three
polynomials to split, we found four families, as shown in Table 3.

In all these families the generic average valuation of 2 is increased by 1
6

— rising
from 14

3
up to 29

6
— except for the family eD .g�g�1/=2, for which it is increased

by 2
3

, bringing it to the same valuation as for the family of twisted Edwards curves
with aD 1 and torsion isomorphic to Z=2Z�Z=8Z. Note that these four families
cover all the curves presented in the first three columns of [7, Table 3.1], except
the two curves with e D 26

7
and e D 19

8
, which have a generic Galois group for the

8-torsion.

The family e D .g � g�1/=2. In this section, we study in more detail the family
e D .g�g�1/=2. Using Theorem 2.5 one can prove that the group order modulo
all primes is divisible by 16. However, we give an alternative proof which is also of
independent interest. We need the following theorem which computes the 8-torsion
points that double to the 4-torsion points .˙ 4

p
�d�1;˙

4
p
�d�1/.
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Degrees of factors of Avg. 2-adic val. over p that are

Special form of e P8;0 P8;1 P8;2 1 mod 4 3 mod 4 all p

none 4 4 8 16=3 4 14=3

g2 4 4 4; 4 17=3 4 29=6

.2g2C 2gC 1/=.2gC 1/ 4 4 4; 4 17=3 4 29=6

g2=2 2; 2 4 8 17=3 4 29=6

.g�g�1/=2 2; 2 2; 2 8 17=3 5 16=3

Table 3. Averages, over different subsets of primes, of the 2-adic valuation of
#E.Fp/, for E in one of several subfamilies of twisted Edwards curves Ed with
torsion group isomorphic to Z=2Z�Z=4Z. The subfamilies all have d D �e4,
where e is further specialized according to the entries in the first column. The
second through fourth columns give the degrees of the factors of the polynomi-
als P8;i defined in the article. The fifth through seventh columns give the average
2-adic valuation of #E.Fp/ as p ranges through primes that are 1 modulo 4,
primes that are 3 modulo 4, and all primes, respectively.

Theorem 3.4. Let Ed be a twisted Edwards curve over Q with d D �e4, where
eD .g�g�1/=2 for some g2Qnf�1; 0; 1g. Let p>3 be a prime of good reduction.
If t 2 f1;�1g is such that tg.g� 1/.gC 1/ is a quadratic residue modulo p, then
the points .x; y/ 2Ed .Fp/ for which there is a w 2 f1;�1g such that

y D˙

s
4tg2�w

.g� tw/3.gC tw/
and x D˙gwy (6)

have order 8, and double to .˙e�1; te�1/.

Proof. For all points .x; y/ of order 8, neither x nor y is equal to 0 or1. Following
Theorem 2.10 of [8] we find that a point .x; y/ doubles to�
.2xy W 1C dx2y2/; .x2Cy2 W 1� dx2y2/

�
D
�
.2xy W �x2Cy2/; .x2Cy2 W 2� .�x2Cy2//

�
:

Let s; t 2 f1;�1g be such that .x; y/ doubles to .se�1; te�1/. Then

2xy

�x2Cy2
D
s

e
and

x2Cy2

2� .�x2Cy2/
D
t

e
:

From the first equality we obtain .x=y/2 C 2esx=y C e2 D 1C e2. Write e D
.g � g�1/=2, so that we obtain .x=y C se/2 D ..gC g�1/=2/2. It follows that
x=y 2 f˙g;˙1=gg, depending on the sign s and the sign after taking the square
root. This gives x2 DG2y2 with G2 2 fg2; g�2g.

From the second equality we obtain .e� t /x2C .eC t /y2D 2t , and substituting
x2 D G2y2 results in ..e � t /G2 C .e C t //y2 D 2t . This can be solved for y
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when 2t..e� t /G2C .eC t // is a quadratic residue modulo p. This is equivalent
to checking if either of

2t
�
.e� 1/g2C .eC 1/

�
D
t .g� 1/3.gC 1/

g
; (7)

2t
�
.e� 1/C .eC 1/g2

�
D
t .g� 1/.gC 1/3

g
(8)

is a quadratic residue modulo p. By assumption, tg.g� 1/.gC 1/ is a quadratic
residue modulo p. Hence, expressions (7) and (8) are both quadratic residues
modulo p. Solving for y and keeping track of all the signs results in the formulas
in (6). �

Corollary 3.5. Let E D Ed be a twisted Edwards curve over Q such that d D
�..g � g�1/=2/4 for some g 2 Q n f�1; 0; 1g, and let p > 3 be a prime of good
reduction. Then E.Q/ has torsion group isomorphic to Z=2Z � Z=4Z, and the
group order of E.Fp/ is divisible by 16.

Proof. The proof depends on the congruence class of p modulo 4.
If p � 1 .mod 4/ then �1 is a quadratic residue modulo p. Hence, the 4-torsion

points .˙i; 0/ exist (see Figure 2) and 16 j #E.Fp/.
If p � 3 .mod 4/ then �1 is a quadratic nonresidue modulo p. Then exactly

one of fg.g�1/.gC1/;�g.g�1/.gC1/g is a quadratic residue modulo p. Using
Theorem 3.4 it follows that the curve E.Fp/ has rational points of order 8, and
hence 16 j #E.Fp/. �

Corollary 3.5 explains the good behavior of the curve with d D �
�
77
36

�4 and
torsion group isomorphic to Z=2Z � Z=4Z found in [7]. This parameter can be
expressed as d D�

�
77
36

�4
D�..g�g�1/=2/4 for g D 9

2
and, therefore, the group

order is divisible by an additional factor of 2.

Corollary 3.6. Let g 2 Q n f�1; 0; 1g, let d D �..g � g�1/=2/4, and let p � 1
.mod 4/ be a prime of good reduction for the curve Ed . If g.g � 1/.gC 1/ is a
quadratic residue modulo p, then the group order of Ed .Fp/ is divisible by 32.

Proof. All 16 of the 4-torsion points are in Ed .Fp/ (see Figure 2). By Theorem 3.4
we have at least one 8-torsion point. Hence, 32 j #Ed .Fp/. �

We generated different values g 2Q by setting gD i
j

with 1� i < j � 200 such
that gcd.i; j / D 1. This resulted in 12,231 possible values for g, and Sage [30]
found 614 nontorsion points. As expected, we observed that they behave similarly
to the good curve found in [7].
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Parametrization. In [7] a “generating curve” is specified which parametrizes d and
the coordinates of the nontorsion points. Arithmetic on this generating curve can
be used to generate an infinite family of twisted Edwards curves with torsion group
isomorphic to Z=2Z�Z=4Z and with a nontorsion point. Using ideas from [13]
we found a parametrization that does not involve a generating curve, and hence
requires no curve arithmetic.

Theorem 3.7. Let t 2Q n f0;˙1;˙3;˙1=3g and set

e D
3.t2� 1/

8t
; d D�e4; x1 D

1

4e3C 3e
; y1 D

9t4� 2t2C 9

9t4� 9
:

Then the twisted Edwards curve �x2 C y2 D 1C dx2y2 has torsion subgroup
isomorphic to Z=2Z�Z=4Z, and .x1; y1/ is a nontorsion point.

Proof. Since t ¤ 0 and t ¤˙1, we see that e; d; x1 and y1 are nonzero rationals;
further, e ¤ ˙1 because t ¤ ˙3 and t ¤ ˙1=3, so d ¤ �1. Thus, the twisted
Edwards curves Ed is nonsingular, and its torsion subgroup is Z=2Z�Z=4Z be-
cause d D�e4. A calculation shows that the point .x1; y1/ is on the curve; it is
a nontorsion point because x1 … f0;1; e�1;�e�1g. �

This rational parametrization allowed us to impose additional conditions on the
parameter e. For the four families, except e D g2 which is treated below, the
parameter e is given by an elliptic curve of rank 0 over Q.

Corollary 3.8. Let P D .x; y/ be a nontorsion point on the rank-1 elliptic curve
y2 D x3 � 36x over Q. Let t D .xC 6/=.x � 6/ and let e be as in Theorem 3.7.
Then the curve E�e4 belongs to the family e D g2 and has positive rank over Q.

3E. Better Suyama curves by a direct change of the Galois group. In this sec-
tion we will present two families that change the Galois group of the 4- and 8-
torsion without modifying the factorization pattern of the 4- and 8-division poly-
nomial.

Suyama-11. Kruppa observed in [19] that among the Suyama curves, the one cor-
responding to � D 11 finds exceptionally many primes. Barbulescu [5] extended
this single example to an infinite family which we present in detail here.

Experiments show that the � D 11 curve differs from other Suyama curves only
by its probabilities to have a given 2k-torsion group when reduced modulo primes
p � 1 .mod 4/. The reason is that the � D 11 curve satisfies (4). Section 3C
illustrates the changes in probabilities of the � D 11 curve when compared to
curves which do not satisfy (4) and shows that (4) improves the average valuation
of 2 from 10

3
to 11

3
.

We will refer to the set of Suyama curves that satisfy (4) as Suyama-11. When
solving the system formed by Suyama’s system plus (4), we obtain an elliptic
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parametrization for � . Given a point .u; v/ on the curve

E�11
W v2 D u3�u2� 120uC 432;

the associated � is obtained as � D 5C 120=.u� 24/. The group E�11
.Q/ is

generated by the points P1 D .�6; 30/, P2 D .�12; 0/, and Q2 D .4; 0/ of orders
1, 2, and 2, respectively. We exclude 0, ˙P1, P2, Q2, P2CQ2, and Q2˙P1,
which are the points producing invalid values of � . The points ˙R, Q2 ˙ R
lead to isomorphic curves. Note that the � D 11 curve corresponds to the point
.44; 280/D P1CP2.

Edwards Z=6Z: Suyama-11 in disguise. In [7, §5] it is shown that the a D �1
twisted Edwards curves with Z=6Z-torsion over Q are precisely the curves Ed
with

d D �
16u3.u2�uC 1/

.u� 1/6.uC 1/2
(9)

where u is a rational parameter.1 In particular, according to [7, §5:3] one can
translate any Suyama curve into Edwards language and then impose the condition
that �a is a square to obtain curves of the a D�1 type. Finally, [7, §5:5] points
out that this family has exceptional torsion properties.

In order to understand the properties of this family, we translate it back into
Montgomery language using Remark 3.1. Thus, we are interested in Suyama
curves that satisfy the equation AC2D�Bc2 (the Montgomery equivalent for �a
being a square). This is the Suyama-11 family, so its torsion properties were ex-
plained on page 81. These two families have been discovered independently in [5]
and [7].

Suyama-9
4

. In experiments by Zimmermann, new Suyama curves with exceptional
torsion properties were discovered, such as � D 9

4
. Further experiments show that

their special properties are related to the 2k-torsion and exclusively concern primes
p � 1 .mod 4/. Indeed, the � D 9

4
curve with satisfies (5). Section 3C illustrates

the changes in probabilities of that curve when compared to curves which do not
satisfy (5), and shows that (5) improves the average valuation of 2 from 10

3
to 11

3
.

We refer to the set of Suyama curves satisfying (5) as Suyama-9
4

. When solving
the system formed by Suyama’s system together with (5), we obtain an elliptic
parametrization for � . Given a point .u; v/ on the curve

E�9=4
W v2 D u3� 5u;

the associated � is obtained as � D u. The group E�9=4
.Q/ is generated by the

points P1 D .�1; 2/ and P2 D .0; 0/ of orders1 and 2, respectively. We exclude

1In the proof of [7, Theorem 5.1], the fraction corresponding to (9) is missing a minus sign.
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the points 0, ˙P1, P2, and P2˙P1, which produce invalid values of � . If two
points in E�9=4

.Q/ differ by P2 they correspond to isomorphic curves. The curve
associated to � D 9

4
is obtained from the point

�
9
4
;�3

8

�
D Œ2�P1.

3F. Comparison. Table 4 gives a summary of all the families discussed in this
article. The theoretical average valuations were computed with Theorem 2.16,
Theorem 2.5, and Corollary 2.7, under some assumptions on Serre’s exponent (see
Example 2.17 for more information).

Note that, when we impose torsion points over Q, the average valuation does
not simply increase by 1, as can be seen in Table 4 for the average valuation of 3.

Family Curve n2 v2;theor n3 v3;theor
v2;exper v3;exper

Suyama � D 12 2 10
3
� 3:333 1 27

16
� 1:688

3:331 1:689

Suyama-11 � D 11 2 11
3
� 3:667 1 27

16
� 1:688

3:369 1:687

Suyama-9
4

� D 9
4

3 11
3
� 3:667 1 27

16
� 1:688

3:364 1:687

Z=2�Z=4Z eD 11 3 14
3
� 4:667 1� 87

128
� 0:680

(Twisted Edwards E�e4 ) 4:666 0:679

e D .g�g�1/=2 gD 9
2

3 16
3
� 5:333 1� 87

128
� 0:680

5:332 0:679

e D g2 gD 3 3 29
6
� 4:833 1� 87

128
� 0:680

4:833 0:680

e D g2=2 gD 9
2

3 29
6
� 4:833 1� 87

128
� 0:680

4:831 0:679

e D
2g2C2gC1

2gC1
gD 1 3 29

6
� 4:833 1� 87

128
� 0:680

4:833 0:679

Table 4. Theoretical and experimental values of v2 and v3 for sample curves
from the families discussed in this paper. The theoretical values come from
Theorem 2.16, and the experimental values were computed using all primes less
than 225. The columns labeled n2 and n3 give the values of n.E; 2/ and n.E; 3/.
The notation nD 1� means that the Galois group is isomorphic to GL2.Z=�Z/.
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4. Conclusion and further work

We have used Galois theory in order to analyze the torsion properties of ellip-
tic curves. We have determined the behavior of generic elliptic curves and ex-
plained the exceptional properties of some known curves (Edwards curves of tor-
sion Z=2Z�Z=4Z and Z=6Z). The new techniques suggested by the theoretical
study have helped us to find infinite families of curves having exceptional torsion
properties. We list some questions which were not addressed in this work:

� How does Serre’s work relate to the independence of the m- and m0-torsion
probabilities for coprime integers m and m0?

� Is there a model predicting the success probability of ECM from the probabil-
ities given in Theorem 2.16?

� Is it possible to effectively use the resolvent method [14] in order to compute
equations which improve the torsion properties?
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Two grumpy giants and a baby

Daniel J. Bernstein and Tanja Lange

Pollard’s rho algorithm, along with parallelized, vectorized, and negating vari-
ants, is the standard method to compute discrete logarithms in generic prime-
order groups. This paper presents two reasons that Pollard’s rho algorithm
is farther from optimality than generally believed. First, “higher-degree local
anticollisions” make the rho walk less random than the predictions made by
the conventional Brent-Pollard heuristic. Second, even a truly random walk
is suboptimal, because it suffers from “global anticollisions” that can at least
partially be avoided. For example, after .1:5C o.1//

p
` additions in a group of

order ` (without fast negation), the baby-step-giant-step method has probability
0:5625C o.1/ of finding a uniform random discrete logarithm; a truly random
walk would have probability 0:6753 : : :Co.1/; and this paper’s new two-grumpy-
giants-and-a-baby method has probability 0:71875C o.1/.

1. Introduction

Fix a prime `. The discrete-logarithm problem for a group G of order ` is the
problem of finding logg h, given a generator g of G and an element h of G. The
notation logg h means the unique s 2 Z=` such that h D gs , where G is written
multiplicatively.

The difficulty of finding discrete logarithms depends on G. For example, if G is
the additive group Z=` (encoded as bit strings representing f0; 1; : : : ; `� 1g in the
usual way), then logg h is simply h=g, which can be computed in polynomial time
using the extended Euclidean algorithm. As a more difficult example, consider the
case that p D 2`C 1 is prime and G is the order-` subgroup of the multiplicative
group F�p (again encoded in the usual way); index-calculus attacks then run in time
subexponential in p and thus in `. However, if G is the order-` subgroup of F�p
where p � 1 is a much larger multiple of `, then index-calculus attacks become

MSC2010: 11Y16.
Keywords: Pollard rho, baby-step giant-step, discrete logarithms, complexity.
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much slower in terms of `; the standard algorithms are then the baby-step-giant-
step method, using at most .2C o.1//

p
` multiplications in G, and the rho method,

which if tweaked carefully uses on average .
p
�=2Co.1//

p
` multiplications in G.

This paper focuses on generic discrete-logarithm algorithms such as the baby-
step-giant-step method and the rho method. “Generic” means that these algorithms
work for any order-` group G, using oracles to compute 1 2 G and to compute
a; b 7! ab for any a; b 2G. See Section 2 for a precise definition.

If G is an elliptic-curve group chosen according to standard criteria then the
best discrete-logarithm algorithms available are variants of the baby-step-giant-step
method and the rho method, taking advantage of the negligible cost of computing
inverses in G. There is a standard “inverting” (or “negating”) variant of the concept
of a generic algorithm, also discussed in Section 2. This paper emphasizes the
noninverting case, but all of the ideas can be adapted to the inverting case.

Measuring algorithm cost. The most fundamental metric for generic discrete-log-
arithm algorithms, and the metric used throughout this paper, is the probability
of discovering a uniform random discrete logarithm within m multiplications. By
appropriate integration over m one obtains the average number of multiplications
to find a discrete logarithm, the variance, and so on. We caution the reader that
comparing probabilities of two algorithms for one m can produce different results
from comparing averages, maxima, and so forth; for example, the rho method is
faster than baby-step-giant-step on average but much slower in the worst case.

One can interpret a uniform random discrete logarithm as logg h for a uniform
random pair .g; h/, or as logg h for a fixed g and a uniform random h. The follow-
ing trivial “worst-case-to-average-case reduction” shows that a worst-case discrete
logarithm is at most negligibly harder than a uniform random discrete logarithm:
One computes logg h as logg h0� r where h0D hgr for a uniform random r 2 Z=`.

There are many reasons that simply counting multiplications, the number m

above, does not adequately capture the cost of these algorithms:
� A multiplication count ignores overhead; that is, the costs of computations

other than multiplications. For example, the ongoing ECC2K-130 computa-
tion uses a very restricted set of Frobenius powers, sacrificing approximately
2% in the number of multiplications, because this reduces the overhead enough
to speed up the entire computation.

� A multiplication count ignores issues of memory usage. For some algorithms,
such as the baby-step-giant-step method, memory usage grows with

p
`, while

for others, such as the rho method, memory usage is constant (or near-constant).

� A multiplication count is blind to optimizations of the multiplication operation.
The question here is not simply how fast multiplication can be, but how mul-
tiplication algorithms interact with higher-level choices in these algorithms.
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For example, Cheon, Hong, and Kim in [10] showed how to look ahead one
step in the rho method for F�p and combine two multiplications into one at the
expense of very little overhead, although memory usage increases.

� A multiplication count ignores issues of parallelization. Pollard’s original rho
method is difficult to parallelize effectively, but “distinguished point” variants
of the rho method are heavily parallelizable with little overhead.

� A multiplication count ignores issues of vectorization. Modern processors
can operate on a vector of words in one clock cycle, but this requires that the
operation be the same across the entire vector. This issue was raised in a recent
discussion of whether the negation map on an elliptic curve can actually be
used to speed up the rho method, rather than merely to save multiplications;
see [6] and [3] for the two sides of the argument.

An improvement in multiplication counts does not necessarily indicate an improve-
ment in more sophisticated cost metrics. It is nevertheless reasonable to begin with
an analysis of multiplication counts, as is done in a large fraction of the literature;
followup analyses can then ask whether improved multiplication counts are still
achievable by algorithms optimized for other cost metrics.

Contents of this paper. Brent and Pollard in [7] identified a source of nonrandom-
ness in the rho method, and quantified the loss of success probability produced
by this nonrandomness, under plausible heuristic assumptions. The Brent-Pollard
nonrandomness (with various simplifications and in various special cases) has been
stated by many authors as the main deficiency in the rho method, and the rho
method has been the workhorse of large-scale discrete-logarithm computations.
There appears to be a widespread belief that, except for the Brent-Pollard non-
randomness, the rho method is the best conceivable generic discrete-logarithm
algorithm. Of course, the rho method can take more than 2

p
` multiplications

in the worst case while the baby-step-giant-step method is guaranteed to finish
within 2

p
` multiplications, but the rho method is believed to be the best way to

spend a significantly smaller number of multiplications.
This paper shows that there are actually at least two more steps separating the

rho method from optimality. First, the rho method is actually less random and
less successful than the Brent-Pollard prediction, because the rho method suffers
from a tower of what we call “local anticollisions”; Brent and Pollard account only
for “degree-1 local anticollisions”. Second, and more importantly, the rho method
would not be optimal even if it were perfectly random, because it continues to
suffer from what we call “global anticollisions”. We introduce a new “two grumpy
giants and a baby” algorithm that avoids many of these global anticollisions.

This new algorithm, like the original baby-step-giant-step algorithm, has low
overhead but high memory. We have not found a low-memory variant. This means
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that, for the moment, the algorithm is useful only for discrete-logarithm problems
small enough to fit into fast memory. The algorithm nevertheless challenges the
idea that the rho method is optimal for larger problems. The same approach might
also be useful for “implicit” discrete-logarithm problems in which rho-type itera-
tion is inapplicable, such as stage 2 of the p � 1 factorization method, but those
problems involve many overheads not considered in this paper.

Section 2 describes the general concept of anticollisions. Section 3 reviews
the Brent-Pollard nonrandomness. Section 4 discusses higher-degree anticollisions
in the rho method. Section 5 reports computations of optimal discrete-logarithm
algorithms for small `. Section 6 presents our new algorithm.

2. Anticollisions

This section introduces the concept of anticollisions in generic discrete-logarithm
algorithms. This section begins by reviewing one of the standard ways to define such
algorithms; readers familiar with the definition should still skim it to see our notation.

Generic discrete-logarithm algorithms. The standard way to formalize the idea
that a generic algorithm works for any order-` group G is to give the algorithm
access to an oracle that computes 1 2G and an oracle that computes the function
a; b 7! ab from G �G to G. The elements of G are encoded as a size-` set G of
strings.

An m-multiplication generic algorithm is one that calls the a; b 7! ab oracle
m times. The algorithm obtains 1 for free, and has g and h as inputs, so overall
it sees mC 3 group elements. We write w0 D 1, w1 D g, w2 D h, and wi for
i � 3 as the .i � 2/nd output of the a; b 7! ab oracle: In other words, wi D

wjwk for some j ; k 2 f0; 1; : : : ; i � 1g computed by the algorithm as functions of
w0; w1; : : : ; wi�1. These functions can also flip coins (that is, take as an additional
input a sequence b0; b1; : : : of uniform random bits that are independent of each
other, of g, of h, and so on.), but cannot make oracle calls.

The standard way to formalize the idea that a generic algorithm does not take
advantage of the structure of G is to hide this structure by randomizing it. For
example, one can take G as the additive group Z=`, and take G as the usual binary
representation of f0; 1; : : : ; `� 1g, but choose a uniform random injection from G

to G rather than the usual encoding. One defines the generic success probability
of a generic algorithm by averaging not only over logg h but also over the choices
of this injection.

To allow inverting algorithms one also allows free access to an oracle that com-
putes a 7! 1=a. Equivalently, one allows the algorithm to compute wi as either
wjwk or wj=wk , and one also provides 1=wi . Of course, one can simulate this
inversion oracle using approximately log2 ` calls to the multiplication oracle, since
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1=aD a`�1; an algorithm that uses only a small number of inversions can thus be
simulated at negligible cost without inversions.

Slopes. Each wi can be written as hxi gyi for a pair .xi ;yi/ 2 .Z=`/
2 trivially

computable by the algorithm. Specifically, w0 D 1 D hx0gy0 where .x0;y0/ D

.0; 0/; w1 D g D hx1gy1 where .x1;y1/ D .0; 1/; w2 D h D hx2gy2 where

.x2;y2/D .1; 0/; if wi is computed as wjwk then wi D hxi gyi where .xi ;yi/D

.xj ;yj /C .xk ;yk/; and if an inverting algorithm computes wi as wj=wk then
wi D hxi gyi where .xi ;yi/D .xj ;yj /� .xk ;yk/.

Normally these algorithms find logg h by finding collisions in the map

.x;y/ 7! hxgy

from .Z=`/2 to G. A collision hxi gyi D hxj gyj with .xi ;yi/¤ .xj ;yj / must have
xi ¤ xj (otherwise gyi D gyj so yi D yj since g generates G), so the negative
of the slope .yj �yi/=.xj �xi/ is exactly logg h. The discrete logarithms found
by w0; w1; : : : ; wmC2 are thus exactly the negatives of the .mC3/.mC2/=2 slopes
(excluding any infinite slopes) between the mC3 points .x0;y0/; : : : ; .xmC2;ymC2/

in .Z=`/2. The number of discrete logarithms found in this way is the number d

of distinct non-infinite slopes. The generic chance of encountering such a collision
is exactly d=`.

In the remaining cases, occurring with probability 1� d=`, these algorithms
simply guess logg h. The success chance of this guess is 0 if the guess matches one
of the negated slopes discussed above; otherwise the conditional success chance
of this guess is 1=.`� d/, so the success chance of this guess is 1=`. The overall
generic success chance of the algorithm is thus between d=` and .d C 1/=`, de-
pending on the strategy for this final guess. In the extreme case d D ` this guess
does not exist and the generic success chance is 1.

(Similar comments apply to inverting algorithms, but the bound on d is doubled,
because there are twice as many opportunities to find � logg h. Specifically, com-
paring wj to wi finds the slope .yj �yi/=.xj �xi/, while comparing wj to 1=wi

finds .yj Cyi/=.xj Cxi/.)
A similar model for generic discrete-logarithm algorithms was introduced by

Shoup in [23], along with the bound O.m2=`/ on the generic success probability
of m-multiplication algorithms. Nechaev in [15] three years earlier had proven
the collision-probability bound O.m2=`/ in a weaker model, where algorithms are
permitted only to remotely manipulate group elements without inspecting strings
representing the group elements. Nechaev’s model is equivalent to Shoup’s model
when one measures algorithm cost as the number of multiplications, but is more
restrictive than Shoup’s model in more sophisticated cost metrics; for example,
Nechaev’s model is unable to express the rho algorithm.
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Chateauneuf, Ling, and Stinson in [9] introduced the idea of counting distinct
slopes. They pointed out that the success probability of the baby-step-giant-step
method is a factor 2C o.1/ away from the obvious quantification of the Nechaev-
Shoup bound: m multiplications allow only m=2 baby steps and m=2 giant steps (if
m is even), producing .m=2C2/.m=2C1/�m2=4 slopes, while one can imagine
mC 3 points in .Z=`/2 potentially having as many as .mC 3/.mC 2/=2�m2=2

distinct slopes.
Computer searches reported in [9, Section 3] found for each ` < 100 a set of

only marginally more than
p

2` points with slopes covering Z=`. However, these
sets of points do not form addition chains, and as far as we can tell the shortest
addition chains for all of the constructions in [9] are worse than the baby-step-
giant-step method in the number of multiplications used. The cost model used in
[9] allows a; b 7! asbt as a single oracle call for any .s; t/; we view that cost model
as excessively simplified, and are skeptical that algorithms optimized for that cost
model will be of any use in practice.

Anticollisions. We use the word “anticollision” to refer to an appearance of a use-
less slope — a slope that cannot create a new collision because the same slope has
appeared before. Formally, an anticollision is a pair .i; j / with i > j such that
either

� xi D xj or

� .yj � yi/=.xj � xi/ equals .yj 0 � yi0/=.xj 0 � xi0/ for some pair .i 0; j 0/ lexi-
cographically smaller than .i; j / with i 0 > j 0.

The number of anticollisions is exactly the gap .mC 3/.mC 2/=2� d , where as
above d is the number of distinct non-infinite slopes. Our objective in this paper is
to understand why anticollisions occur in addition chains in .Z=`/2, and how these
anticollisions can be avoided.

In Section 3 we review a standard heuristic by Brent and Pollard that can be
viewed as identifying some anticollisions in the rho method, making the rho method
somewhat less effective than a truly random walk would be. In Section 4 we iden-
tify a larger set of anticollisions in the rho method, making the rho method even less
effective than predicted by Brent and Pollard. This difference is most noticeable
for rho walks that use a very small number of steps, such as hardware-optimized
walks or typical walks on equivalence classes modulo Frobenius on Koblitz curves.

It should be obvious that even a truly random walk produces a large number
of anticollisions when m grows to the scale of

p
`. In Section 6 we show that at

least a constant fraction of these anticollisions can be eliminated: We construct
an explicit and efficient addition chain with significantly fewer anticollisions, and
thus significantly higher success probability, than a truly random walk.
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3. Review of the Brent-Pollard nonrandomness

This section reviews the nonrandomness that Brent and Pollard pointed out in the
rho method. The literature contains three formulas for this nonrandomness, in
three different levels of generality, backed by two different heuristic arguments. As
discussed in Section 4, these heuristics account for “degree-1 local anticollisions”
but do not account for “higher-degree local anticollisions”.

The rho method. The rho method precomputes r distinct “steps”

s1; s2; : : : ; sr 2G �f1g

(as some initial w’s), and then moves from wi to wiC1 D wisj , where j is a
function of wi . Write pj for the probability that step sj is used.

We suppress standard details of efficient parallelization and collision detection
here, since our emphasis is on the success probability achieved after m multipli-
cations. Inserting each new group element into an appropriate data structure will
immediately recognize the first collision without consuming any multiplications.

The
p

V formula. Brent and Pollard in [7, Section 2] introduced the following
heuristic argument, concluding that if the values w0; : : : ; wm are distinct then
wmC1 collides with one of those values with probability approximately mV =`,
where V is defined below. This implies that the total chance of a collision within m

multiplications (that is, within w0; : : : ; wmC2) is approximately 1� .1�V =`/m
2=2,

which in turn implies that the average number of multiplications for a collision is
approximately

p
�=2
p
`=
p

V . For comparison, a truly random walk would have
V D 1.

This argument applies to a more general form of the rho method, in which some
function F is applied to wi to produce wiC1. The first collision might be unlucky
enough to involve w0, but otherwise it has the form wiC1 D wjC1 with wi ¤ wj ,
revealing a collision F.wi/D F.wj / in the function F . Applications vary in how
they construct F and in the use that they make of a collision.

Assume, heuristically, that the probability of wi matching any particular value
y is proportional to the number of preimages of y; in other words, assume that
PrŒwi D y�D #F�1.y/=`, where F�1.y/ means fx W F.x/D yg. This heuristic is
obviously wrong for w0, but this is a minor error in context; the heuristic seems
plausible for w1; : : : ; wm, which are each generated as outputs of F .

Assume that w0; : : : ; wm are distinct. Define X as the set of preimages of
w1; : : : ; wm, so that X is the disjoint union of F�1.w1/; : : : ;F

�1.wm/. Then
the expected size of X isX

x

PrŒx 2X �D
X

x

X
i

PrŒF.x/D wi �D
X

x

X
i

X
y

PrŒF.x/D y and wi D y�:



94 DANIEL J. BERNSTEIN AND TANJA LANGE

Assume, heuristically, that F.x/D y and wi D y are independent events. ThenX
x

PrŒx 2X �D
X

i

X
y

X
x

PrŒF.x/D y�PrŒwi D y�

D

X
i

X
y

#F�1.y/2=`

Dm
X

y

#F�1.y/2=`:

Define V as the variance over y of #F�1.y/. The average over y of #F�1.y/

is 1, so V D
�P

y #F�1.y/2=`
�
� 1, so the expected size of X is mV Cm. There

are m known elements w0; : : : ; wm�1 of X ; the expected number of elements of
X other than w0; : : : ; wm�1 is mV . By hypothesis wm is none of w0; : : : ; wm�1;
if wm were uniformly distributed subject to this constraint then it would have prob-
ability mV =.`�m/�mV =` of being in X and thus leading to a collision in the
next step.

The
q

1�
P

i p2
i

formula. As part of [1] we introduced the following streamlined
heuristic argument, concluding that the collision probability for wmC1 is approxi-
mately m.1�

P
i p2

i /=`. This implies that the average number of multiplications

for a collision is approximately
p
�=2
p
`=

q
1�

P
i p2

i .
Fix a group element v, and let w and w0 be two independent uniform random

elements. Consider the event that w and w0 both map to v but w ¤ w0. This
event occurs if there are distinct i; j such that the following three conditions hold
simultaneously:

� v D siw D sjw
0;

� si is chosen for w;

� sj is chosen for w0.

These conditions have probability 1=`2, pi , and pj respectively. Summing over
all .i; j / gives the overall probability�X

i¤j

pipj

�ı
`2
D

�X
i;j

pipj �

X
i

p2
i

�ı
`2
D

�
1�

X
i

p2
i

�ı
`2:

Hence the probability of an immediate collision from w and w0 is
�
1�

P
i p2

i

�
=`;

where we added over the ` choices of v.
After mC 3 group elements one has approximately m2=2 potentially colliding

pairs. If the inputs to the iteration function were independent uniformly distributed

random points then the probability of success would be 1�
�
1�
�
1�
P

i p2
i

�
=`
�m2=2

and the average number of iterations before a collision would be approximately
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�=2
p
`=
p

1�
P

i p2
i . The inputs to the iteration function in Pollard’s rho method

are not actually independent, but this has no obvious effect on the average number
of iterations.

Relating the two formulas. We originally obtained the formula
p

1�
P

i p2
i by

specializing and simplifying the Brent-Pollard
p

V formula as follows.
The potential preimages of y are y=s1;y=s2; : : : ;y=sr , which are actual preim-

ages with probabilities p1;p2; : : : ;pr respectively. A subset I of f1; 2; : : : ; rg
matches the set of indices of preimages with probability

�Q
i2I pi

��Q
i 62I .1�pi/

�
,

so the average of #F�1.y/2 isX
I

#I2
�Y

i2I

pi

��Y
i 62I

.1�pi/
�
:

It is easy to see that most monomials (for example, p1p2p3) have coefficient 0

in this sum; the only exceptions are linear monomials pi , which have coefficient
1, and quadratic monomials pipj with i < j , which have coefficient 2. The sum
therefore equalsX

i

pi C 2
X

i;j Wi<j

pipj D

X
i

pi C

�X
i

pi

�2
�

X
i

p2
i D 2�

X
i

p2
i :

Hence V D 1�
P

i p2
i .

The
p

1� 1=r formula. In traditional “adding walks” (credited to Lenstra in [20,
p. 66]; see also [21, p. 295] and [25]), each pi is 1=r , and

p
1�

P
i p2

i is
p

1� 1=r .
This

p
1� 1=r formula first appeared in [25], with credit to the subsequent paper

[4] by Blackburn and Murphy. The heuristic argument in [4] is the same as the
Brent-Pollard argument.

Case study: Koblitz curves. The
p

1�
P

i p2
i formula was first used to optimize

walks on Koblitz curves. These walks map a curve point W to W C'i.W /, where
' is the Frobenius map and i is chosen as a function of the Hamming weight of
the normal-basis representation of the x-coordinate of W . The Hamming weight
is not uniformly distributed, and any reasonable function of the Hamming weight
is also not uniformly distributed, so the

p
1� 1=r formula does not apply. Note

that these are “multiplying walks” rather than “adding walks” (if W D xiH CyiG

then W C 'i.W / D sixiH C siyiG for certain constants si 2 .Z=`/
�), but the

heuristics in this section are trivially adapted to this setting.
As a concrete example we repeat from [1] the analysis of our ongoing attack

on ECC2K-130. All Hamming weights of x-coordinates of group elements are
even, and experiments show that the distribution of even-weighted words of length
131 is close to the distribution of x-coordinates of group elements. Any iteration
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function defined in this way therefore inevitably introduces an extra factor to the
running time of

1=

q
1�

P
i

�
131
2i

�2
=2260 � 1:053211;

even if all 66 weights use different scalars si . We extract just 3 bits of weight
information, using only 8 different values for the scalars, to reduce the time per
iteration. The values are determined by HW.xPi

/=2 mod 8; the distribution ofP
i

�
131

16iC2j

�
for 0� j � 7 gives probabilities

0:1414; 0:1443; 0:1359; 0:1212; 0:1086; 0:1057; 0:1141; 0:1288;

giving a total increase of the number of iterations by a factor of 1:069993.

4. Higher-degree local anticollisions

Consider the rho method using r “steps” s1; s2; : : : ; sr 2 G, as in the previous
section. The method multiplies wi by one of these steps to obtain wiC1, multiplies
wiC1 by one of these steps to obtain wiC2, and so on.

Assume that the step wiC1=wi is different from the step wiC2=wiC1, but that
wiC1=wi is the same as an earlier step wjC2=wjC1, and that wiC2=wiC1 is the
same as the step wjC1=wj . There are anticollisions .iC1; jC2/ and .iC2; jC1/,
exactly the phenomenon discussed in the previous section: For example, wiC1 can-
not equal wjC2 unless wi equals wjC1. There is, however, also a local anticollision
.iC2; jC2/ not discussed in the previous section: wiC2 cannot equal wjC2 unless
wi equals wj . The point is that the ratio wiC2=wi is a product of two steps, and
the ratio wjC2=wj is a product of the same two steps in the opposite order.

We compute the heuristic impact of these “degree-2 local anticollisions”, to-
gether with the degree-1 local anticollisions of Section 3, as follows. Assume
for simplicity that 1, s1, s2, : : :, sr , s2

1
, s1s2, : : :, s1sr , s2

2
, : : :, s2sr , : : :, s2

r�1
,

sr�1sr , s2
r are distinct. Write F.w/ for the group element that w maps to. Fix

a group element v, and consider the event that two independent uniform random
group elements w;w0 have F.F.w//D v D F.F.w0// with no collisions among
w;w0;F.w/;F.w0/. This event occurs if there are i; i 0; j ; j 0 with sj ¤ sj 0 and
sj si ¤ sj 0si0 such that the following conditions hold simultaneously:

� v D sj siw D sj 0si0w
0;

� F.w/D siw;

� F.siw/D sj siw;

� F.w0/D si0w
0;

� F.si0w
0/D sj 0si0w

0.
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These conditions have probability 1=`2, pi , pj , pi0 , and pj 0 respectively. Given
the first condition, the remaining conditions are independent of each other, since
w D v=.sj si/, siw D v=sj , w0 D v=.sj 0si0/, and si0w

0 D v=sj 0 are distinct. This
event thus has probability

P
pipj pi0pj 0=`

2 where the sum is over all i; j ; i 0; j 0

with sj ¤ sj 0 and sj si ¤ sj 0si0 . The complement of the sum is over all i; j ; i 0; j 0

with sj D sj 0 or sj si D sj 0si0 — that is, with j D j 0 or with i 0 D j ¤ j 0 D i . The
complement is thusX

j

p2
j C

X
i;j Wi¤j

p2
i p2

j D

X
j

p2
j C

�X
j

p2
j

�2
�

X
j

p4
j ;

and the original sum is 1�
P

j p2
j �

�P
j p2

j

�2
C
P

j p4
j . Adding over all v gives

probability
�
1�

P
j p2

j �
�P

j p2
j

�2
C
P

j p4
j

�
=` of this type of two-step collision

between w and w0.
For example, if pi D 1=r for all i , then the degree-1-and-2 nonrandomness

factor is 1=
p

1� 1=r � 1=r2C 1=r3, whereas the Brent-Pollard (degree-1) non-
randomness factor is 1=

p
1� 1=r . These factors are noticeably different if r is

small.

Beyond degree 2. More generally, a “degree-k local anticollision” .i C k; j C k/

occurs when the product of k successive steps wiC1=wi , wiC2=wiC1, : : : matches
the product of k successive steps wjC1=wj , wjC2=wjC1, . . . , without a lower-
degree local anticollision occurring. We define a “degree-.k; k 0/ local anticollision”
.i C k; j C k 0/ similarly.

Given the vector .s1; s2; : : : ; sr /, one can straightforwardly compute the overall
heuristic effect of local anticollisions of degree at most k, by summing the products
pi1
� � �pik

pi0
1
� � �pi0

k
for which 1, si1

, si0
1
, si1

si2
, si0

1
si0

2
, : : : are distinct. Experiments

indicate that the largest contribution is usually from the smallest degrees.
We emphasize that the results depend on the vector .s1; s2; : : : ; sr /, because

generic commutative-group equations such as s1s2 D s2s1 are not the only mul-
tiplicative dependencies among s1; s2; : : : ; sr . One can check that s1; s2; : : : ; sr

have no nongeneric multiplicative dependencies of small degree (and modify them
to avoid such dependencies), but they always have medium-degree nongeneric mul-
tiplicative dependencies, including mixed-degree nongeneric multiplicative depen-
dencies.

If s1; s2; : : : ; sr have only generic dependencies of degree at most k then the sum
described above is expressible as a polynomial in the easily computed quantities
I2 D

P
j p2

j , I4 D
P

j p4
j , and so forth, by a simple inclusion-exclusion argument.

For example, the degree-1 nonrandomness factor is 1=
p

1� I2, as in Section 3; the
degree-�2 nonrandomness factor is 1=

p
1� I2� I2

2 C I4, as explained above; the
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degree-�3 nonrandomness factor is 1=
p

1� I2 � I2
2 C I4 � 3I3

2 C 7I2I4 � 4I6;
the degree-�4 nonrandomness factor is

1=
p

1�I2�I2
2CI4�3I3

2C7I2I4�4I6�13I4
2C53I2

2 I4�56I2I6�17I2
4C33I8I

and so on. In the uniform case these factors are

1=
p

1� 1=r ;

1=
p

1� 1=r � 1=r2
C 1=r3;

1=
p

1� 1=r � 1=r2
� 2=r3

C 7=r4
� 4=r5;

and so on.

Case study: r D 6. Hildebrand showed in [13] that almost every r -adding walk
(with pj D 1=r ) reaches a nearly uniform distribution in Z=` within O.`2=.r�1//

steps; in particular, within o.
p
`/ steps for r � 6. Implementors optimizing Pol-

lard’s rho method for hardware often want r to be as small as possible to minimize
overhead (the storage required for precomputed steps and the cost of accessing
that storage), and in light of Hildebrand’s result can reasonably choose r D 6. This
raises the question of how random a 6-adding walk is; perhaps it is better to take a
larger value of r , increasing overhead but reducing nonrandomness.

For r D 6, with p1 D p2 D p3 D p4 D p5 D p6 D 1=6 and generic s1; : : : ; s6,
the heuristic nonrandomness factors are given (to 6 decimal places) in Table 1.
These factors converge to approximately 1:129162 as the degree increases; see
Appendix A. Evidently the Brent-Pollard heuristic captures most of the impact of
local anticollisions for r D 6, but not all of the impact.

We tried 232 experiments for `D 1009. Each experiment generated 6 uniform
random steps s1; s2; : : : ; s6 (without enforcing distinctness, and without any con-
straints on higher-degree multiplicative dependencies), carried out a random walk
using s1; s2; : : : ; s6 with equal probability, and stopped at the first collision. The
average walk length was approximately 1:150076 times

p
�=2
p
`; note that this

Degree Factor Degree Factor Degree Factor

1 1:095445 � 6 1:123767 � 11 1:126654

� 2 1:110984 � 7 1:124696 � 12 1:126926

� 3 1:117208 � 8 1:125383 � 13 1:127151

� 4 1:120473 � 9 1:125909 � 14 1:127341

� 5 1:122452 � 10 1:126322 � 15 1:127503

Table 1. Approximate values of heuristic nonrandomness factors for the case
r D 6, with p1 D p2 D p3 D p4 D p5 D p6 D 1=6 and generic s1; : : : ; s6.
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` Factor Experiments

1009 1.150076 232

10007 1.147874 232

100003 1.141283 232

1000003 1.136122 232

10000019 1.132946 232

` Factor Experiments

100000007 1.131149 232

1000000007 1.130194 232

10000000019 1.129680 232

100000000003 1.129395 228

1000000000039 1.129326 226

Table 2. Observed average walk length until a collision, for a uniform random
walk in Z=` using 6 uniform random adding steps. “Factor” is the observed
average walk length divided by

p
�=2
p
`, rounded to 6 digits after the decimal

point. “Experiments” is the number of experiments carried out for `.

does not count the multiplications used to generate s1; s2; : : : ; s6. We then tried
several larger values of `; the resulting nonrandomness factors are shown in Table 2.
Our heuristics predict that these numbers will converge to approximately 1:129162

as `!1, rather than 1:095445.
Note that for small ` there is a larger chance of low-degree dependencies among

the steps si , so it is not a surprise that smaller values of ` have larger nonrandom-
ness factors. We do not know whether a quantitative analysis of this phenomenon
would predict the numbers shown in Table 2 for small `, or whether other phenom-
ena also play a role.

Case study: Koblitz curves, revisited. Consider again the ECC2K-130 walk intro-
duced in [1]. Here `D 680564733841876926932320129493409985129.

For 0� j �7 define ' as the Frobenius map on the ECC2K-130 curve, and define
sj 2 Z=` as 1C 196511074115861092422032515080945363956jC3. This walk
moves from P to P C'jC3.P /D sj P if the Hamming weight of the x-coordinate
of P is congruent to 2j modulo 16; this occurs with probability (almost exactly)
pj D

P
i

�
131

16iC2j

�
=2130.

The only small-degree multiplicative dependencies among s0; : : : ; s7 are generic
commutative-group equations such as s1s2 D s2s1. We already reported this in
[1, Section 2] to explain why the walk is highly unlikely to enter a short cycle.
We point out here that this has a larger effect, namely minimizing small-degree
anticollisions. We now analyze the impact of the small-degree anticollisions that
remain, those that arise from the generic commutative-group equations.

For degree 1 the nonrandomness factor is 1=
p

1� I2 � 1:069993. For degree
� 2 the nonrandomness factor is 1=

p
1� I2� I2

2 C I4 � 1:078620. For degree
� 3 it is 1=

p
1� I2� I2

2 � 3I3
2 C I4C 7I2I4� 4I6 � 1:081370. For degree � 4

it is � 1:082550.

Case study: Mixed walks. The same type of analysis also applies to “mixed walks”
combining noncommuting steps such as w 7! ws1, w 7! ws2, and w 7! w2.
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Degree Factor Degree Factor Degree Factor

1 1:224745 � 5 1:285444 � 8 1:293067

� 2 1:248075 � 6 1:288605 � 9 1:294325

� 3 1:269973 � 7 1:291514 � 10 1:295107

� 4 1:277533

Table 3. Approximate values of heuristic nonrandomness factors for the mixed walk
w 7! ws1, w 7! ws2, and w 7! w2, with generic s1 and s2 and equiprobable steps.

` Factor Experiments

1009 1.292381 241

10007 1.298240 241

100003 1.297896 240

1000003 1.297360 237

` Factor Experiments

10000019 1.297130 236

100000007 1.297071 232

1000000007 1.297020 232

10000000019 1.297018 232

Table 4. Observed average walk length until a collision, for a uniform random walk
in Z=` using 2 uniform random adding steps and 1 doubling step. Columns have
the same meaning as in Table 2.

A sequence of such steps maps w to a monomial such as w4s1s3
2

; we sum the
products pi1

� � �pik
pi0

1
� � �pi0

k
for which the monomials corresponding to . /, .i1/,

.i 0
1
/, .i1; i2/, .i 01; i

0
2
/, and so on, are distinct. The heuristic nonrandomness factor

for degree �k is the reciprocal of the square root of this sum.
For three equiprobable stepsw 7!ws1,w 7!ws2, andw 7!w2, with generic s1 and

s2, the heuristic nonrandomness factors are given (to 6 decimal places) in Table 3.
We tried experiments analogous to the 6-adding experiments described above.

Each experiment generated 2 uniform random group elements s1; s2, carried out
a random walk using w 7! ws1, w 7! ws2, and w 7! w2 starting from a uniform
random group element, and stopped at the first collision. Table 4 shows the result-
ing average walk lengths for various values of `. The dependence on ` is much
smaller here than it was in Table 2. The numerical data seems consistent with
the idea that the limit of the actual nonrandomness factors as `!1 matches the
limit of the degree-�k heuristic nonrandomness factors as k !1: somewhere
between 1:295 and 1:298, very far from the traditional degree-1 nonrandomness
factor

p
3=2� 1:224745.

For comparison, Teske in [25, Table 5] reported using 1:776
p
` multiplications

on average for 2000 experiments with the same type of walk. Teske’s cycle-
detection method cost a factor of approximately 1:13 in the number of multipli-
cations, according to [25, Section 2.2], so 1:776

p
` corresponds to an observed

nonrandomness factor of 1:776=.1:13
p
�=2/ � 1:254. This might seem notice-

ably different not just from 1:224745 but also from our 1:297. However, since the
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standard deviation of random-walk lengths is on the same scale as the average, it
is statistically unremarkable to see differences of a few percent after only 2000

experiments.

Optimizing asymptotics. It is frequently stated that the rho method, like a truly
random walk, finishes in .

p
�=2C o.1//

p
` multiplications on average.

However, the experimental results by Sattler and Schnorr [20, p. 76] and by
Teske [25] showed clearly that

p
�=2C o.1/ is not achieved by small values of r ,

and in particular by Pollard’s original rho method. The Brent-Pollard nonrandom-
ness, and in particular the

p
1� 1=r formula, indicates that

p
�=2C o.1/ is not

achieved by any bounded r ; one must have 1=r 2 o.1/, that is, r !1 as `!1.
On the other hand, if r grows too quickly then the cost of setting up r steps is
nonnegligible.

This analysis does not contradict
p
�=2C o.1/. However, it does indicate that

some care is required in the algorithm details, and that
p
�=2Co.1/ can be replaced

by
p
�=2CO.`�1=4/ but not by

p
�=2C o.`�1=4/.

To optimize the o.1/ one might try choosing steps that are particularly easy to
compute. For example, one might take s3 D s1s2, s4 D s2s3, and so on, where
s1; s2 are random. We point out, however, that such choices are particularly prone
to higher-degree anticollisions. We recommend taking into account not just the
number of steps and the number of multiplications required to precompute those
steps, but also the impact of higher-degree anticollisions.

5. Searching for better chains for small primes

If ` is small then by simply enumerating addition chains one can find generic
discrete-logarithm algorithms that use fewer multiplications than the rho method.

This section reports, for each small prime `, the results of two different computer
searches. One search greedily obtained as many slopes as it could after each multi-
plication, deferring anticollisions as long as possible. The other search minimized
the number of multiplications required to find an average slope. Chains found
by such searches are directly usable in discrete-logarithm computations for these
values of `; perhaps they also provide some indication of what one can hope to
achieve for much larger values of `. These searches also show that merely counting
the size of a slope cover, as in [9, Section 3], underestimates the cost of discrete-
logarithm algorithms, although one can hope that the gap becomes negligible as `
increases.

A continuing theme in this section is that the obvious quantification of the
Nechaev-Shoup bound is not tight. The bound says that an m-addition chain has
�.mC3/.mC2/=2 slopes; but there is actually a gap, increasing with m, between
.mC 3/.mC 2/=2 and the maximum number of slopes in an m-addition chain.
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This section explains part of this gap by identifying two types of anticollisions
that addition chains cannot avoid and stating an improved bound that accounts
for these anticollisions. However, the improved bound is still not tight for most
of these values of `, and for long chains the improved bound is only negligibly
stronger than the Nechaev-Shoup bound.

Greedy slopes. Define di as the number of distinct finite slopes among the points
.x0;y0/; .x1;y1/; .x2;y2/; : : : ; .xi ;yi/ in .Z=`/2. For example, the chain

.0; 0/; .0; 1/; .1; 0/; .0; 2/; .1; 2/; .1; 4/

in .Z=7/2 has .d0; d1; d2; d3; d4; d5/D .0; 0; 2; 3; 5; 7/: There are 2 distinct finite
slopes among .0; 0/, .0; 1/, .1; 0/; 3 distinct finite slopes among .0; 0/, .0; 1/, .1; 0/,
.0; 2/; 5 distinct finite slopes among .0; 0/, .0; 1/, .1; 0/, .0; 2/, .1; 2/; and 7 distinct
finite slopes among .0; 0/, .0; 1/, .1; 0/, .0; 2/, .1; 2/, .1; 4/.

For each prime ` < 128 we computed the lexicographically maximum sequence
.d0; d1; : : :/ for all infinite addition chains starting .0; 0/; .0; 1/; .1; 0/ in .Z=`/2.
These maxima, truncated to the first occurrence of `, are displayed in Table 5. For
example, Table 5 lists .0; 0; 2; 3; 5; 7/ for `D 7, indicating that the lexicographic
maximum is .0; 0; 2; 3; 5; 7; 7; 7; 7; 7; : : :/: One always has d0 D 0, d1 D 0, and
d2 D 2; the maximum possible d3 is 3; given d3 D 3, the maximum possible d4 is
5; given d3 D 3 and d4 D 5, the maximum possible d5 is 7.

This computation was not quite instantaneous, because it naturally ended up
computing all finite chains achieving the truncated maximum (and, along the way,
all chains achieving every prefix of the truncated maximum). There are, for ex-
ample, 5420 length-21 chains that match the .d0; d1; : : :/ shown in Table 5 for
`D 109.

Minimal weight. We also computed `-slope addition chains of minimal weight for
each prime ` < 48. Here “weight” means

P
i�1 i.di �di�1/. Dividing this weight

by ` produces the average, over all s 2 Z=`, of the number of multiplications (plus
2 to account for the inputs g and h) used to find slope s. It might make more
sense to compute .`� 1/-slope addition chains of minimal weight, since a generic
discrete-logarithm algorithm that finds `� 1 slopes also recognizes the remaining
slope by exclusion, but the gap becomes negligible as ` increases.

Lexicographically maximizing .d0; d1; : : :/, as in Table 5, does not always pro-
duce minimal-weight `-slope addition chains. For example, the chain

.0;0/; .0;1/; .1;0/; .0;2/; .0;3/; .1;3/; .1;6/; .2;12/; .2;14/; .2;16/; .3;17/; .4;28/

for `D29 has weight 210 with .d0; d1; : : :/D .0; 0; 2; 3; 4; 7; 10; 14; 19; 23; 27; 29/,
while chains achieving the lexicographic maximum in Table 5 have weight 211. We
similarly found weight 299 (compared to 300) for `D 37, weight 372 (compared
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` Weight d0 d1 : : :

2 4 0 0 2
3 7 0 0 2 3
5 15 0 0 2 3 5
7 25 0 0 2 3 5 7

11 50 0 0 2 3 5 7 10 11
13 64 0 0 2 3 5 7 10 13
17 96 0 0 2 3 5 7 10 14 16 17
19 113 0 0 2 3 5 7 10 14 17 19
23 148 0 0 2 3 5 7 10 14 19 22 23
29 211 0 0 2 3 5 7 10 14 19 23 26 28 29
31 230 0 0 2 3 5 7 10 14 19 23 28 31
37 300 0 0 2 3 5 7 10 14 19 23 29 33 36 37
41 347 0 0 2 3 5 7 10 14 19 24 29 34 39 41
43 375 0 0 2 3 5 7 10 14 19 24 29 34 38 42 43
47 425 0 0 2 3 5 7 10 14 19 24 30 35 40 44 47
53 510 0 0 2 3 5 7 10 14 19 24 30 36 41 45 50 52 53
59 596 0 0 2 3 5 7 10 14 19 24 30 36 42 48 52 57 58 59
61 631 0 0 2 3 5 7 10 14 19 24 30 35 42 48 52 56 59 61
67 727 0 0 2 3 5 7 10 14 19 24 30 36 41 47 53 59 63 66 67
71 788 0 0 2 3 5 7 10 14 19 24 30 36 42 48 54 60 66 70 71
73 815 0 0 2 3 5 7 10 14 19 24 30 36 43 50 56 62 67 71 73
79 919 0 0 2 3 5 7 10 14 19 24 30 37 43 49 57 64 69 73 76 79
83 978 0 0 2 3 5 7 10 14 19 24 30 37 44 51 59 65 72 77 80 83
89 1081 0 0 2 3 5 7 10 14 19 24 30 37 44 53 60 66 74 80 84 87 89
97 1224 0 0 2 3 5 7 10 14 19 24 30 37 44 51 61 69 78 83 88 92 96 97

101 1307 0 0 2 3 5 7 10 14 19 24 30 37 45 53 60 69 76 82 89 93 97 100 101
103 1351 0 0 2 3 5 7 10 14 19 24 30 37 45 52 60 67 74 83 89 94 98 102 103
107 1422 0 0 2 3 5 7 10 14 19 24 30 37 45 53 61 70 77 84 91 96 100 104 107
109 1466 0 0 2 3 5 7 10 14 19 24 30 37 44 52 60 68 77 84 91 98 102 106 108 109
113 1536 0 0 2 3 5 7 10 14 19 24 30 37 44 52 62 70 78 86 94 99 105 109 113
127 1806 0 0 2 3 5 7 10 14 19 24 30 37 45 53 63 73 84 92 98 105 112 118 122 126 127

Table 5. For each ` < 128, the lexicographically maximum .d0; d1; : : :/.
“Weight” means

P
i�1 i.di � di�1/.

to 375) for `D 43, and weight 423 (compared to 425) for `D 47. It is not clear
whether this gap becomes negligible as ` increases.

Some obstructions. We explain here two simple ways that anticollisions appear in
addition chains. Every addition chain produces at least a linear number of anticol-
lisions that follow these simple patterns.
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First, doubling a point .xj ;yj / produces two anticollisions: The slopes from
2.xj ;yj / to .xj ;yj / and to .0; 0/ are the same as the slope from .xj ;yj / to .0; 0/.
Doubling another point .xk ;yk/ produces three anticollisions: The slope from
2.xk ;yk/ to 2.xj ;yj / is the same as the slope from .xk ;yk/ to .xj ;yj /. A third
doubling produces four anticollisions, and so on; doubling n points produces a
total of n.nC 3/=2 anticollisions of this type.

Second, adding .xi ;yi/ to a distinct point .xj ;yj / produces two anticollisions:
The slopes from .xi ;yi/C .xj ;yj / to .xi ;yi/ and to .xj ;yj / are the same as the
slopes from .xj ;yj / and from .xi ;yi/ to .0; 0/. Subsequently adding the same
.xi ;yi/ to another point .xk ;yk/ produces three anticollisions: The slope from
.xi ;yi/C .xk ;yk/ to .xi ;yi/C .xj ;yj / is the same as the slope from .xk ;yk/ to
.xj ;yj /, exactly as in Section 3.

Applying these principles easily explains the initial pattern 0; 0; 2; 3; 5; 7 that
appears in Table 5. The first addition (whether or not a doubling) must produce
at least two anticollisions, and therefore produces at most one new slope to the
previous three points; this explains the 3. The second addition also produces at
least two anticollisions, and therefore at most two new slopes to the previous four
points; this explains the 5. One might think that the next step is 8, but having only
two anticollisions in each of the first three additions would imply that those three
additions include at most one doubling and no other reuse of summands, for a total
of at least five summands, while there are only four nonzero summands available
for the first three additions.

More generally, a chain of m� 2 nontrivial additions involves 2m inputs selected
from mC 1 nonzero points, so there must be at least m� 1 repetitions of inputs.
These repetitions produce at least m�2 occurrences of three anticollisions (one dou-
bling is free), on top of m occurrences of two anticollisions and one anticollision
for the infinite slope from .0; 0/ to .0; 1/, for a total of at least 3m�1 anticollisions,
and thus a total of at most .mC3/.mC2/=2� .3m�1/D .m2�mC8/=2 slopes.
This explains 5; 7; 10; 14; 19 in Table 5 but does not explain 24.

6. Two grumpy giants and a baby

This section presents the algorithm featured in the title of this paper. This algo-
rithm is, as the name suggests, a modification to the standard baby-step-giant-step
method. The modification increases the number of different slopes produced within
m multiplications, and for a typical range of m increases the number beyond the
effectiveness of the rho method.

In the baby-step-giant-step algorithm the baby steps compute hxi gyi for .xi ;yi/2

.0; 0/Cf0; 1; 2; : : : ; d
p
`eg.0; 1/ and the giant steps compute hxi gyi for .xi ;yi/ 2

.1; 0/Cf0; 1; 2; : : : ; b
p
`cg.0; d

p
`e/. The first observation is that the slopes within
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one type of step are constant; the second observation is that once all steps are
done all ` slopes appear. Our idea is to make the lines of fixed slope shorter;
that is, we introduce more players. Note that introducing a second baby is not
useful: Lines between the points in .x;y/Cf0; 1; 2; : : : ; d

p
`eg.0; 1/ and .0; 0/C

f0; 1; 2; : : : ; d
p
`eg.0; 1/ repeat each slope �

p
` times. We thus need to introduce

more giants to make progress.
The two-grumpy-giants-and-a-baby method is parametrized by a positive integer

n, normally proportional to
p
`; the reader should imagine n being approximately

0:5
p
`. The number of multiplications in the method is approximately 3n. Here is

the set of points .xi ;yi/ 2 .Z=`/
2 produced by the method:

Baby W .0; 0/Cf0; : : : ; n� 1g.0; 1/

Giant1 W .1; 0/Cf1; : : : ; ng.0; n/

Giant2 W .2; 0/�f1; : : : ; ng.0; nC 1/

The initial negation .0;�.nC 1// for Giant2 has negligible cost, approximately
log2 ` multiplications. Choosing n and nC 1 for the steps in the y direction for
the two giants gives a good coverage of slopes since n and nC 1 are coprime. The
grumpy giants make big steps (on the scale of

p
`) and quickly walk in opposite

directions away from each other. Luckily they are not minding the baby.
We now analyze the slopes covered by this method. Again it is not interesting to

look at the slopes among one type of points. The slope between a point .0; i/ in the
Baby set and a point .1; j n/ in the Giant1 set is j n� i ; this means that all slopes in
f1; : : : ; n2g are covered. The slope between .0; i/ in the Baby set and .2;�j .nC

1// in the Giant2 set is .�j .nC 1/� i/=2 2
˚
�n2� 2nC 1; : : : ;�n� 1

	
=2; there

are n2 distinct slopes here, almost exactly covering
˚
�n2� 2nC 1; : : : ;�n� 1

	
=2.

The slope between .1; i n/ in the Giant1 set and .2;�j .nC 1// in the Giant2 set is
�j .nC 1/� i n 2

˚
�2n2� n; : : : ;�2n� 1

	
; there are another n2 distinct slopes

here, covering about half the elements of
˚
�2n2� n; : : : ;�2n� 1

	
.

To summarize, there are three sets of n2 distinct slopes here, all between �2n2�

nC 1 and n2. One can hope for a total of 3n2 distinct slopes if ` > 3n2C n, but
this hope runs into two obstacles. The first obstacle is that the “odd” elements of˚
�n2� 2nC 1; : : : ;�n� 1

	
can bump into the other sets when computing .2i C

1/=2D iC .`C1/=2; but for ` 2 4n2CO.n/ this effect loses only O.n/ elements.
The second obstacle is that any Giant1–Giant2 slopes between .�n2� 2n/=2 and
.�n�2/=2 will bump into

˚
�n2� 2nC 1; : : : ;�n� 1

	
=2 for the “even” elements

of
˚
�n2� 2nC 1; : : : ;�n� 1

	
. This is approximately the rightmost 1=4 of the

Giant1–Giant2 interval, but only n2=8CO.n/ of the Giant1–Giant2 slopes are in
this interval. Overall there are 23n2=8CO.n/ distinct slopes, that is, .0:71875C

o.1//` distinct slopes.
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For comparison, the same .3C o.1//n multiplications allow the original baby-
step-giant-step method to compute .1:5C o.1//n baby steps and .1:5C o.1//n

giant steps, producing only .2:25C o.1//n2 D .0:5625C o.1//` distinct slopes.
The same number of multiplications in the rho method (with r 2 1=o.1/ differ-
ent steps, simulating a uniform random walk within a factor 1C o.1/) produces
.9C o.1//n2=2 D .1:125C o.1//` random slopes, and thus .1 � exp.1:125/C

o.1//`D .0:6753 : : :C o.1//` distinct slopes with overwhelming probability. We
have performed computer experiments to check each of these numbers.

Weighing the giants. We repeat a warning from Section 1: One algorithm can be
better than another after a particular number of multiplications but nevertheless
have worse average-case performance.

For example, the baby-step-giant-step method has two standard variants, which
we call the baby-steps-then-giant-steps method (introduced by Shanks in [22, pages
419–420]) and the interleaved-baby-step-giant-step method (introduced much later
by Pollard in [17, p. 439, top]). Both variants (with giant steps chosen to be of
size .1C o.1//

p
`) reach 100% success probability using .2C o.1//

p
` multi-

plications, while the rho method has a lower success probability for that number
of multiplications. Average-case performance tells a quite different story: The
baby-steps-then-giant-steps method uses .1:5C o.1//

p
` multiplications on aver-

age; the interleaved-baby-step-giant-step method is better, using .4=3Co.1//
p
`D

.1:3333 : : :C o.1//
p
` multiplications on average; the rho method (again with

1=r 2 o.1/) is best, using .
p
�=2C o.1//

p
`D .1:2533 : : :C o.1//

p
` multiplica-

tions on average.
Our analysis above shows that the two-grumpy-giants-and-a-baby method is

more effective than the rho method (and the baby-step-giant-step method) as a way
to use .1:5C o.1//

p
` multiplications. One might nevertheless guess that the rho

method has better average-case performance; for example, an anonymous referee
stated that the new method “presumably has worse average-case running time”.

Our computer experiments indicate that the (interleaved-)two-grumpy-giants-
and-a-baby method actually has better average-case running time than the rho
method. For example, for ` D 65537, we found a chain of weight 20644183 D

.1:23046 : : :/`1:5 with the two-grumpy-giants-and-a-baby method. Here we chose
n D 146, used (suboptimal) binary addition chains for .0; n/ and .0; `� n� 1/,
and then cycled between points .0; i/ and .1; i n/ and .2;�i.nC 1// until we had
` different slopes. For ` D 1000003 we found a chain of weight 1205458963 D

.1:20545 : : :/`1:5 in the same way with nD 558.

Variants. We have been exploring many variants of this algorithm. We have found
experimentally that a 4-giants algorithm (two in one direction, two in the other,
with computer-optimized shifts of the initial positions) outperforms this 2-giants
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algorithm for m�
p
`. We speculate that gradually increasing the number of giants

will produce an algorithm with .0:5C o.1//m2 distinct slopes, the best possible
result (automatically also optimizing the average number of multiplications, the
maximum, and so on), but it is not clear how to choose the shift distances properly.
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Appendix A. Computing limits of anticollision factors

This appendix shows, for each integer r > 3, a reasonably fast method to compute
the limit of the sequence of generic uniform heuristic nonrandomness factors

1=
p

1� 1=r ;

1=

q
1� 1=r � 1=r2C 1=r3;

1=

q
1� 1=r � 1=r2� 2=r3C 7=r4� 4=r5;

: : :

considered in Section 4. For example, these factors converge to approximately
1:129162 for r D 6.

We are indebted to Neil Sloane’s Online Encyclopedia of Integer Sequences [24]
for leading us to [5] (by a search for the integer 4229523740916 shown below),
and to Armin Straub for explaining how to use [2] and [18] to compute the sumP

k uk=r2k discussed here. Our contribution here is the connection described
below between anticollision factors and sums of squares of multinomials.

Review of sums of squares of multinomials. Define U D
P

i

P
j si=sj in the r -

variable function field Q.s1; : : : ; sr /, and define uk as the constant coefficient of
U k . Consider the problem of computing

P
k�0 uk=r2k .

Note that U k D
P

i1;:::;ik

P
j1;:::;jk

si1
� � � sik

=sj1
� � � sjk

, so uk is the number of
tuples .i1; : : : ; ik ; j1; : : : ; jk/ such that si1

� � � sik
=sj1
� � � sjk

D 1; that is, such that
.i1; : : : ; ik/ is a permutation of .j1; : : : ; jk/. The tuples counted here were named
“abelian squares” by Erdős in 1961, according to [19]; uk here is “fr .k/” in the
notation of [19].
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For example, u0 D 1; u1 D r ; and u2 D 2r2 � r , which one can partition into
counting 2r2� 2r tuples .i1; i2; j1; j2/ with i1 ¤ i2 and fi1; i2g D fj1; j2g, and r

tuples with i1 D i2 D j1 D j2. More generally, the number of ways for si1
� � � sik

to equal s
a1

1
� � � s

ar
r is the multinomial coefficient

�
k

a1;a2;:::;ar

�
, so

uk D

X
a1;a2;:::;ar W

a1Ca2C���CarDk

�
k

a1; a2; : : : ; ar

�2

D

X
m�0

�
r

m

� X
a1;a2;:::;amW

a1Ca2C���CamDk;
a1>0;a2>0;:::;am>0

�
k

a1; a2; : : : ; am

�2

:

Richmond and Rousseau, proving a conjecture of Ruehr, showed in [18] that
uk is asymptotically r2kCr=2=.4�k/.r�1/=2 as k!1. See also [19, Theorem 4]
for another proof. We conclude that

P
k uk=r2k converges for r > 3 (and not for

r D 3). For example, with r D 6, the ratio uk=r2k is asymptotically 63=.4�k/2:5,
so
P

k uk=r2k converges, and the tail
P

k>n uk=r2k is ‚.1=n1:5/.
This ‚ is not an explicit bound; [18] and [19] are not stated constructively. How-

ever, inspecting examples strongly suggests that .uk=r2k/=.r r=2=.4�k/.r�1/=2/

converges upwards to 1 as k!1, so it seems reasonably safe to hypothesize that
uk=r2k is at most 2r r=2=.4�k/.r�1/=2. This hypothesis implies that

X
k>n

uk

r2k
�

X
k>n

2r r=2

.4�k/.r�1/=2

<

Z 1
n

2r r=2

.4�k/.r�1/=2
dk

D
4r r=2

.4�/.r�1/=2.r � 3/n.r�3/=2
;

so to compute tight bounds on
P

k uk=r2k it suffices to compute
P

0�k�n uk=r2k

for a moderately large integer n.
One can easily use the multinomial formula above to compute, for example,

that u10 D 4229523740916 for r D 6, but if k and r are not very small then it is
much more efficient to compute uk from the generating function

P
k ukxk=k!2 D�P

k xk=k!2
�r in the power-series ring QŒŒx��. Barrucand in [2] pointed out this

formula for uk and explained how to use it to compute a recurrence for uk . For
r D 6 we simply computed the 6th power of

P
k xk=k!2 in QŒx�=x5001, obtaining

the exact values of uk for 0� k � 5000 and concluding that
P

0�k�5000 uk=6
2k �

1:275007093. This computation was fast enough that we did not bother to explore
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optimizations such as computing
�P

k xk=k!2
�r modulo various small primes or

analyzing the numerical stability of Barrucand’s recurrence.

Anticollision factors via sums of squares of multinomials. Define hk as the num-
ber of tuples .i1; i2; : : : ; ik ; j1; j2; : : : ; jk/ 2 f1; : : : ; rg

2k such that

si1
¤ sj1

; si1
si2
¤ sj1

sj2
; : : : ; and si1

si2
� � � sik

¤ sj1
sj2
� � � sjk

in the polynomial ring ZŒs1; : : : ; sr �. For example, h0 D 1; h1 D r2 � r ; and
h2 D r4� r3� r2C r .

The degree-�k generic uniform heuristic nonrandomness factor is 1=
p

hk=r2k .
The goal of this appendix is to compute limk!1 1=

p
hk=r2k .

Define Hk as the sum of quotients si1
� � � sik

=sj1
� � � sjk

over the same tuples
.i1; : : : ; ik ; j1; : : : ; jk/ counted by hk . For k � 1 the product

Hk�1U DHk�1

X
ik

X
jk

sik

sjk

is the sum of quotients si1
� � � sik

=sj1
� � � sjk

over the tuples .i1; : : : ; ik ; j1; : : : ; jk/

with

si1
¤ sj1

; si1
si2
¤ sj1

sj2
; : : : ; and si1

si2
� � � sik�1

¤ sj1
sj2
� � � sjk�1

:

These are the same as the tuples contributing to Hk , except for tuples having
si1

si2
� � � sik

D sj1
sj2
� � � sjk

. The product Hk�1U is therefore the same as Hk ,
except for its constant coefficient. The constant coefficient of Hk is 0, so Hk D

Hk�1U � ck where ck is the constant coefficient of Hk�1U .
By induction Hk DU k � c1U k�1� c2U k�2�� � �� ck . Recall that the constant

coefficient of U k is uk , so 0D uk � c1uk�1� c2uk�2� � � � � ck . In other words,
.1� c1x� c2x2� � � � /.1Cu1xCu2x2C � � � /D 1 in the power-series ring ZŒŒx��.
For the same reason, the product .1� c1x� � � � � ckxk/.1Cu1xC � � �Cukxk/ is
1� .c1uk C � � �C cku1/x

kC1� � � � � ckukx2k , so�
1�

c1

r2
� � � � �

ck

r2k

��
1C

u1

r2
C � � �C

uk

r2k

�
D 1� �k

where �k D .c1uk C � � �C cku1/=r2kC2C � � �C ckuk=r4k . The bounds

0� �k �
ukC1

r2kC2
C

ukC2

r2kC4
C � � �

show that �k ! 0 as k!1, so�
1�

c1

r2
�

c2

r4
� � � �

��
1C

u1

r2
C

u2

r4
C � � �

�
D 1:
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Mapping s1 7! 1, s2 7! 1, . . . , sr 7! 1 takes Hk to hk and takes U to r2, so
hk D hk�1r2� ck ; that is, hk=r2k D hk�1=r2k�2� ck=r2k . By induction,

hk

r2k
D 1�

c1

r2
�

c2

r4
� � � � �

ck

r2k
:

Hence

lim
k!1

hk

r2k
D 1�

c1

r2
�

c2

r4
� � � � D

1

1Cu1=r2Cu2=r4C � � �
:

The desired value limk!1 1=
p

hk=r2k is therefore the square root of the sumP
k uk=r2k computed above. In particular, for r D 6 we find

lim
k!1

1p
hk=r2k

� 1:129162:
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Improved techniques for computing the
ideal class group and a system of

fundamental units in number fields

Jean-François Biasse and Claus Fieker

We describe improvements to the subexponential methods for computing the
ideal class group, the regulator and a system of fundamental units in number
fields under the generalized Riemann hypothesis. We use sieving techniques
adapted from the number field sieve algorithm to derive relations between ele-
ments of the ideal class group, and p-adic approximations to manage the loss of
precision during the computation of units. These improvements are particularly
efficient for number fields of small degree for which a speedup of an order of
magnitude is achieved with respect to the standard methods.

1. Introduction

Let K D Q.�/ be a number field of degree n and discriminant �. In this paper,
we present improved fast methods for computing the structure of the ideal class
group of the maximal order OK of K, along with the regulator and a system of
fundamental units of OK .

Class group and unit group computation are two of the four principal tasks for
computational algebraic number theory postulated by Zassenhaus (together with
the computation of the ring of integers and the Galois group). In particular, they
occur in the resolution of Diophantine equations. For example, the Pell equation

T 2��U 2 D 1; T; U 2 Z;

boils down to finding the fundamental unit in a real quadratic number field of
discriminant � (see [26]). In addition, the Schäffer equation

y2 D 1kC 2kC � � �C .x� 1/k; k � 2;

MSC2000: primary 54C40, 14E20; secondary 46E25, 20C20.
Keywords: number fields, ideal class group, regulator, units, index calculus, subexponentiality.
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can be solved using solutions to the Pell equation [24]. Unit computations are
key ingredients in solving almost all Diophantine equations, for example when
solving Thue equations [8]. On the other hand, the computation of the ideal
class group Cl.OK/ of a number field K allows in particular to provide numerical
evidence in favor of unproven conjectures such as the heuristics of Cohen and
Lenstra [14] on the ideal class group of a quadratic number field, Littlewood’s
bounds [32] on L.1; �/, or Bach’s bound on the minimal bound B such that ideals
of norm lower than B generate the ideal class group. The class group enters also
into the computation of the Mordell-Weil group of elliptic curves with the descent
method, or the Brauer group computations for representation theory [16].

In 1968, Shanks [41; 42] proposed an algorithm relying on the baby-step giant-
step method to compute the structure of the class number and the regulator of a qua-
dratic number field in time O.j�j1=4C�/, or O.j�j1=5C�/ under the extended Rie-
mann hypothesis [30]. In 1985 Pohst and Zassenhaus [37] published an algorithm
that could determine the class group of arbitrary number fields. Then, a subexpo-
nential strategy for the computation of the group structure of the class group of
an imaginary quadratic field was described in 1989 by Hafner and McCurley [21].
The expected running time of this method is bounded by L�.1=2;

p
2C o.1//

where

L�.˛; ˇ/ WD e
ˇ.logj�j/˛.log logj�j/1�˛

:

Buchmann [11] generalized this result to the case of an arbitrary extension, the
heuristic complexity being valid for fixed degree n and � tending to infinity. In a
recent work [6], Biasse described an algorithm achieving the heuristic complexity
L�.1=3;O.1// for certain classes of number fields where both the discriminant
and the degree tend to infinity.

In parallel with theoretical improvements, considerable efforts have been in-
vested to make the implementations of the subexponential methods efficient. In
the quadratic case, Jacobson [25] described an algorithm based on the quadratic
sieve for deriving relations between elements of Cl.OK/. He successfully used it
for computing the class group and the fundamental unit of quadratic number fields.
His implementation contained some of the practical improvements described in
the context of factorization such as self-initialization and the single large prime
variant. This strategy was later improved by Biasse [7] who used a double large
prime variant and a dedicated Gaussian elimination technique. Attempts have been
made to generalize sieving techniques to general number fields [12; 34]. A variant
of the number field sieve was used for deriving relations in the class group of
cubic fields. On special classes of cubic number fields for which the regulator can
be precomputed, it allowed the computation of the ideal class group. Promising
timings were presented in [12; 34], for sizes of factor base that do not (to the best
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of our knowledge) certify the result under the generalized Riemann hypothesis.
In particular, a significant speedup was obtained over the standard random ideal
factorization method.

Our contribution. In this paper, we present an algorithm based on sieving tech-
niques adapted from recent implementations of the number field sieve [28] for
computing Cl.OK/ under the generalized Riemann hypothesis (GRH) for an ar-
bitrary number field K. We also describe a p-adic method for computing the
regulator and a system of fundamental units. We show that these methods allow a
significant improvement for number fields of low degree over the current state of
the art based on enumeration techniques.

2. Generalities on number fields

Let K be a number field of degree d . It has r1 � d real embeddings .�i /i�r1
and 2r2 complex embeddings .�i /r1<i�d coming as r2 pairs of conjugates, which
we number so that �iCr2 D �i for r1 < i � r1C r2. The field K is isomorphic
to OK ˝Q where OK denotes the ring of integers of K. We can embed K in
KR WD K ˝ R ' Rr1 � Cr2 ; and extend the �i to KR. Let T2 be the Hermitian
form on KR defined by T2.x; x0/ WD

P
i �i .x/�i .x

0/, and let kxk WD
p
T2.x; x/

be the corresponding L2-norm. Choose .˛i /i�d such that OK D
L
i Z˛i ; then

the discriminant of K is given by �D det2.T2.˛i ; j̨ //. The norm of an element
x 2K is defined as N.x/D

Q
i �i .x/.

Let I be the group of nonzero fractional ideals ofK and P�I is the subgroup of
principal fractional ideals. The norm of integral ideals is given by N.I / WD ŒOK W I �,
which extends to fractional ideals by N.I=J / WD N.I /=N.J /. The norm of a
principal ideal agrees with the norm of its generator: N.xOK/D jN.x/j.

The ideal class group of OK is defined by Cl.OK/ WD I=P. We denote by Œa�
the class of a fractional ideal a in Cl.OK/ and by h the cardinality of Cl.OK/.
Elements of I admit a unique decomposition as a power product of prime ideals
of OK (with possibly negative exponents). An element x 2 OK is said to be a unit if
.x/OK D OK , or equivalently if jN.x/j D 1. The units of OK form a multiplicative
group of the form

U D �� h
1i � � � � � h
ri;

where � is the torsion subgroup of U , r WD r1C r2 � 1 and the generators 
i of
the nontorsion part are called a system of fundamental units. The regulator is an
invariant of K which allows us to certify the calculation of Cl.OK/ and U . It is
defined as RD Vol.�/ where � is the lattice generated by vectors of the form

.c1 logj
i j1; : : : ; crC1 logj
i jrC1/;

with jxji WD j�i .x/j for i � r C 1, c1 D 1 for i � r1, ci D 2 otherwise.
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3. The subexponential strategy

The idea behind the algorithm of Buchmann [11] is to find a set of ideals B D

fp1; : : : ; pN g whose classes generate Cl.OK/, and then consider the surjective mor-
phism

Zn
' // I

� // Cl.OK/

.e1; : : : ; eN /
� // Q

i p
ei
i

� //
Q
i Œpi �

ei :

From the fundamental theorem of homomorphisms, the ideal class group satisfies
Cl.OK/' ZN=ker.� ı'/. Therefore, the knowledge of ker.� ı'/, which has the
structure of a Z-lattice, enables us to derive Cl.OK/. In the meantime, elements of
ker.'/ give us units as power-products of relations. From these units, we hope to
derive a system of fundamental units of OK . The subexponential strategy can be
broken down into three essential tasks: collecting relations, calculating the class
group and calculating the unit group. The subexponentiality is a consequence of a
careful choice of B .

3.1. Relation collection. A preliminary step to the relation collection is the choice
of a generating set BD fp1; : : : ; pN g of Cl.OK/. We choose the set of prime ideals
of norm bounded by an integer B . The use of the Minkowski bound certifies the
result unconditionally, but it causes the algorithm to take a time exponential in
the size of �. To achieve subexponentiality, many authors chose the bound of
Bach [2], who proved that under GRH, Cl.OK/ was generated by the classes of the
prime ideals p satisfying N.p/� 12.log j�j/2. Although asymptotically better, in
practice this bound can be larger than the one described by Belabas et al. [4] who
stated that under GRH, the class group is generated by the classes of the prime
ideals of norm bounded by B provided thatX
.m;p/WN.pm/�B

log N.p/

N.pm=2/

�
1�

log N.pm/

logB

�
>
1

2
logj�j � 1:9n� 0:785r1C

2:468nC 1:832r1

logB
:

In the rest of the paper, we assume that B is constructed with the bound of
Belabas et al. Indeed, Bach’s bound enlarges the dimensions of the matrices that
are processed during the computation of Cl.OK/, thus inducing a slow-down that
is not compensated by the fact that the relations are found more rapidly.

During the relation collection phase, we collect relations of the form

.�i /D p
ei;1
1 � � � p

ei;N
N ;

where �i 2K. We progressively build the matrix M WD .ei;j / 2 Zk�N where k is
the number of relations collected so far. Let ƒ� ker.� ı'/ be the lattice generated
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by the rows of M . Operations on the rows of M allow us to retrieve a basis
for ƒ and its determinant. To determine if ƒ has rank N , we perform operations
modulo a random wordsize prime p. In particular, the LU decomposition of M
modulo p allows us to identify the prime ideals that do not contribute to the rank
of ƒ. Additional relations involving these primes increase the rank of M , whose
rows eventually generate a finite index sublattice of ker.�/. To find this index, we
compute the Hermite normal form (HNF) of M , that is, we perform unimodular
operations encoded by U 2 GLk.Z/ such that

UM D

0BBBBBBBB@

h11 0 � � � 0
::: h22

: : :
:::

:::
:::

: : : 0

� � � � � hNN
��������������������������������������

.0/

1CCCCCCCCA
;

with 0� hij < hjj whenever j < i and hij D 0 whenever j > i . Once the HNF of
M is computed, adding new rows can be done very efficiently. In the meantime, the
product

Q
i hi;i gives us an indication on Œƒ W ker.� ı'/�, as we see in Section 3.3.

3.2. Class group computation. Given a matrix A 2 ZN�N whose rows generate
ker.� ı'/, unimodular transformations on both rows and columns of A yield the
structure of Cl.OK/. More precisely, for every nonsingular matrix A 2 ZN�N ,
there exist unimodular matrices U; V 2 ZN�N such that

S WD UAV D diag.d1; : : : ; dN /;

where diC1 j di for all i with 1� i < N . The matrix S is called the Smith normal
form (SNF) of A.

Theorem 1. If the rows ofA2ZN�N are a basis for ker.�ı'/ and diag.d1; : : : ;dN /
is the SNF of A, then

Cl.OK/' Z=d1Z� � � � �Z=dNZ:

Once enough relations have been found, the rows of M generate ker.� ı'/, and
the N nonzero rows of the HNF of M are a matrix A 2 ZN�N whose rows are
a basis for ker.� ı '/, and the SNF of A gives us Cl.OK/. However, finding the
structure of Cl.OK/ can also be done by computing the SNF of a matrix which is
in practice significantly smaller than A, namely the essential part of A. Indeed, for
each matrix H in HNF, there exists an index l such that hi;i D 1 for all i > l . The
upper left l � l submatrix of H is called its essential part. As the classes of pi
for i > l are generated by those of the pj , j � l , the SNF of the essential part of A
suffices to recover Cl.OK/.
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3.3. Regulator and fundamental units computation. Computing the regulator and
a system of fundamental units of K consists of finding kernel vectors of M . Indeed,
if X D .x1; : : : ; xk/ satisfies XM D 0, then we have�Q

i

�
xi
i

�
OK D OK :

In other words, 
 WD
Q
i�
xi
i is a unit. Every kernel vector X of M yields a unit,

and we want to compute the group generated by all those elements as well as the
regulator of this group, defined to be zero if the group is not of full rank. So far,
finding of relations between units is mostly done using real linear algebra (LLL),
the core problem here being the numerical instability of the matrices. This in
itself is a consequence of the well-known fact that units are very large in general:
Writing the fundamental unit of a real quadratic fields explicitly with the canon-
ical basis needs exponentially many digits while it is always possible to find a
product representation of size polynomial in logj�j (see [13; 43]). At the end
of the procedure, we verify that the assumption we made on the completeness of
the lattice of relations is true. To this end, we use an approximation of the Euler
product

hRD
j�j
p
j�j

2r1.2�/r2
lim
s!1

..s� 1/�K.s//;

where �K.s/D
P

a 1=N.a/s is the usual �-function associated to K and j�j is the
cardinality of �. Indeed, it allows us to derive a bound h� in polynomial time
under ERH that satisfies h� � hR < 2h�; see [3]. If the values det.�/ and det.ƒ/
do not satisfy this inequality, then we need to collect more relations.

4. Sieving techniques

In this section, we describe sieving techniques to derive relations in Cl.OK/ for gen-
eral number fields. This is a generalization of Jacobson’s results [25] for quadratic
number fields. Similar ideas were suggested in [12; 34] but the corresponding
algorithms were either not implemented or are no longer available for compari-
son. Here we provide numerical data illustrating the considerable impact of these
techniques for class group and unit group computation in the case of low degree
number fields.

Given a generating set BD fp1; : : : pN g for Cl.OK/, the usual method for deriv-
ing relations consists of computing random exponents Ee WD .e1; : : : ; eN /, ˛ 2 OK
and a reduced ideal IEe such that

pe11 � � � p
eN
N D .˛/IEe:
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Then, every time IEe is B-smooth (that is, is a power product of elements of B),
we obtain a relation. As the arithmetic of ideals is rather expensive when n > 2,
the relation search in the computer algebra software PARI [35] and versions 2:x
for x < 18 of Magma [9] consists of enumerating short elements of IEe via the
Fincke-Pohst method [18].

Our method consists of deriving relations from smooth values of polynomials,
thus avoiding the cost of the ideal arithmetic and of the ideal reduction. Our method
for finding smooth values is based on the recent development of the number field
sieve algorithm [28]. The use of trivial methods such as trial division for finding
smooth values of our polynomials would yield the same theoretical complexity, but
would be impractical for large discriminants. The most efficient implementation of
the enumeration-based strategy for finding relations is the one of PARI. Therefore,
in the following, we assess the impact of our sieving method by comparing its
performance with those of PARI.

4.1. Polynomial selection. Let a be a B-smooth ideal of OK . In this section, we
show how to provide polynomials P 2 ZŒX; Y � of degree n derived from a such
that every .x; y/ 2 Z2 such that P.x; y/ is B-smooth yields a relation. Note that
in theory, a can be any ideal, however, we obtained the best results by choosing
aD OK . Let ˛ and ˇ be two linearly independent elements of a. Then, we create
by interpolation a P˛;ˇ 2 ZŒX; Y � such that

P˛;ˇ .x; y/D N.x˛Cyˇ/ for all x; y 2 Z2:

Every time �x;y WD x˛C yˇ has a smooth norm, we add the relation correspond-
ing to the principal ideal .�x;y/ to the relation matrix. Before applying sieving
algorithms to P˛;ˇ to derive relations, we need to ensure that it is likely to yield
enough smooth values. Polynomial selection is an important part of the number
field sieve algorithm, and so it is in our algorithm. However, the specificities of
our context prevent us from directly adapting the methods of NFS for selecting
the sieving polynomial. First of all, we can afford to find relations with many
different choices of ˛ and ˇ, whereas the choice of a sieving polynomial in the
NFS algorithm is fixed. We require that our choices of ˛ and ˇ yield polynomials
with small coefficients, and that we have a sufficient randomization at the infinite
places to avoid drawing �x;y spanning the same subgroup of the unit group of OK .

To randomize the choice of ˛; ˇ, we consider random coefficients a1; : : : ; an2Rn

such that
P
i�n ai D 0. For every such n-tuple Ea, we define the embedding

 Ea W a! Rn; ˛ 7! .a1 logj˛j1; : : : ; an logj˛jn/:

For every choice of Ea, the set of elements of the form  Ea.˛/ for ˛ 2 a is a
lattice ƒEa of Rn for which we can find an LLL reduced basis for the norm



120 JEAN-FRANÇOIS BIASSE AND CLAUS FIEKER

T Ea2 W .x1; : : : ; xn/ 7! e2a1x21 C � � �C e
2anx2n:

For every choice of Ea, the first two vectors ˛; ˇ of an LLL reduced basis of ƒEa
are potential candidates for the creation of a polynomial yielding smooth values.
Every time we draw such a pair of elements of a, we need to make sure that they
do not generate the same Z-module as another pair previously used. To prevent
this from happening, every time we draw a pair ˛; ˇ by the previous method, we
express them in terms of the canonical Z-basis of OK . Thus, to every pair ˛; ˇ
corresponds the matrix M˛;ˇ 2 Z2�n of their coordinates. The HNF of M˛;ˇ

uniquely represents the Z-module spanned by .˛; ˇ/. Thus, to avoid duplicates,
we store a hash of the HNF of M˛;ˇ in a hash table every time we use a pair
.˛; ˇ/ to draw relations. We summarize the procedure of the selection of a sieving
polynomial in Algorithm 1.

Algorithm 1 (Polynomial selection).

Input: a, .A1; : : : ; An/, HashTable.
Output: Sieving polynomial P˛;ˇ corresponding to ˛; ˇ 2 a.
1: while a new ˛; ˇ has not been found do
2: Draw ja1j � A1; : : : ; janj � An at random such that a1C � � �C an D 0.
3: Let ˛ and ˇ be the first two elements of a LLL-reduced basis of ƒEa for

EaD .a1; : : : ; an/.
4: Compute the hash h˛;ˇ of the HNF of M˛;ˇ .
5: if h˛;ˇ … HashTable then
6: Compute by interpolation P˛;ˇ 2ZŒX; Y � with P˛;ˇ .x; y/DN.x˛Cyˇ/.
7: end if
8: end while
9: return ˛; ˇ; P˛;ˇ .

4.2. Line sieving. The quadratic sieve algorithm [39] used to derive smooth values
of a binary quadratic form generalizes to the case of polynomials of arbitrary degree.
Its design follows from the observation that if P 2 ZŒX; Y � is a polynomial of
degree n, then

p j P.rp; y0/ for all y0 2 Z D) p j P.rpC ip; y0/ for all i 2 Z: (1)

Given y0 2 Z, we wish to find the x 2 Œ�I=2; I=2� such that P.x; y0/ is B-smooth,
where B is the bound on the norm of the prime ideals in the factor base. Instead
of trying them all, we prefer to isolate a short list of good candidates that we
test by trial division. If p j P.x; y0/ for many p � B , then P.x; y0/ is likely
to be B-smooth. From (1), we know that once we have one root rp of P.X; y0/
mod p, then we can derive all the others by translation by .p; 0/. Line sieving
consists of initializing to zero an array S of length I whose cells represent the x 2



IMPROVED TECHNIQUES FOR NUMBER FIELD COMPUTATIONS 121

Œ�I=2; I=2�. Then, for each p�B , we compute the smallest roots xp 2 Œ�I=2; I=2�
of P.X; y0/ mod p and repeat

SŒxp� SŒxp�C logp; xp xpCp:

Then, whenever SŒx� � logP.x; y0/ for x 2 Œ�I=2; I=2�, the value P.x; y0/ is
likely to be B-smooth. We summarize this procedure in Algorithm 2.

Algorithm 2 (Line sieving).

Input: P 2ZŒX; Y �, I; B; y0 2 Z.
Output: Smooth values of P.X; y0/ in Œ�I=2; I=2�.
1: L ¿; SŒx� 0 for all x 2 Œ�I=2; I=2�.
2: for p � B do
3: Let xp be the smallest root of P.X; y0/ mod p in Œ�I=2; I=2�.
4: while rp � I=2 do
5: SŒxp� SŒxp�C logp, xp xpCp.
6: end while
7: end for
8: for x 2 Œ�I=2; I=2� do
9: if SŒx�� logP.x; y0/ then
10: If P.x; y0/ is B-smooth, L L[fxg.
11: end if
12: end for
13: return L.

4.3. Lattice sieving. Let P˛;ˇ .X; Y / 2 ZŒX; Y � be the sieving polynomial de-
scribed in Section 4.1, B the bound on the norm of the ideals in the factor base,
and I; J 2 Z>0. Every pair .x; y/ 2 Œ�I=2; I=2Œ� Œ1; J � such that P˛;ˇ .x; y/ is
B-smooth yields a relations. Therefore, one can repeat the line sieving operation
on P˛;ˇ .X; y0/ for every y0 2 Œ1; J �. This method is efficient when sieving with
primes p < I . but when the primes are significantly larger than I , the root compu-
tation at Step 3 of Algorithm 2 is often performed for nothing since there is a good
chance that none of the x 2 Œ�I=2; I=2Œ will be a root of P˛;ˇ .X; y0/ mod p. A
way around that is to have an array S of length IJ representing Œ�I=2; I=2Œ and
to fill it by line sieving methods for the primes p < I and by lattice sieving for the
other primes.

The lattice sieve was first described by Pollard [38]. Since then, it has been exten-
sively studied and improved in the past 15 years, and the most recent developments
of this methods yielded the factorization of RSA768 (see [28]). This strategy relies
on a one-time enumeration of roots of P˛;ˇ .X; Y / mod p in Œ�I=2; I=2Œ� Œ1; J �.
The entry x � IJ of the array S that we use to store the logarithmic contributions
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corresponds to the pair .i; j / 2 Œ�I=2; I=2Œ� Œ1; J � where

i D .x� I=2/ mod I; j D .x� i � I=2/=I:

As in the line sieving case, every entry of S is initialized to zero, and for every
p � B and every .i; j / 2 Œ�I=2; I=2Œ� Œ1; J � such that p j P˛;ˇ .i; j /, we want
to perform the operation SŒx� SŒx�C logp. Line sieving repeated on every
line j � J allows us to efficiently do this for p < I . For the others, we fol-
lowed the approach of [19], as it is done in [28] for the factorization of RSA768.
By [19, Proposition 1], we know that for every p such that we have a root rp
of P˛;ˇ .X; 1/ modulo p, there exists a basis f.a; b/; .c; d/g of the lattice spanned
by f.rp; 1/; .p; 0/g that satisfies

� b > 0 and d > 0;

� �I < a � 0� c < I ;

� c � a � I .

This basis is computed via an algorithm described in [19] that relies on the con-
tinued fraction expansion of rp. It satisfies p j P˛;ˇ .ia C jc; ib C jd/ for all
.i; j / 2 Z2. To fill the array S , we start from .i; j /D .0; 0/ which is a common
root modulo all primes. Then, by induction, we construct the next pair .i 0; j 0/ from
.i; j / by choosing

� .i; j /C .a; b/ if i � �a;

� .i; j /C .c; d/ if i < I � c;

� .i; j /C .a; b/C .c; d/ if I � c � i < �a.

4.4. Special-q. The sieving space Œ�I=2; I=2Œ�Œ1; J � only contains a limited num-
ber of pairs .i; j / yielding a smooth value. Enlarging I and J might cause its size to
rapidly exceed single precision. For a fixed prime q, the special-q strategy consists
of sieving with a polynomial Pq derived from the original sieving polynomial P
such that

8.i; j / 2 Œ�I=2; I=2Œ� Œ1; J �; 9.x; y/ 2 Z2; Pq.i; j /D P.x; y/;

8.i; j / 2 Œ�I=2; I=2Œ� Œ1; J �; q j Pq.i; j /:

This strategy was used by Pollard in his original paper [38] to sieve on the rational
side, but most current implementations use it on the algebraic side as well [28].
To create Pq for a given q, we need a root rq of P modulo q. Then, we find a
reduced basis .a0; b0/; .a1; b1/ of the lattice spanned by the vectors .q; 0/; .rq; 1/.
The polynomial Pq is then simply given by

Pq.i; j /D P.ia0C ja1; ib0C jb1/:
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The reduced basis is given by successive Gaussian reductions, as explained in [19].
Then, to sieve with a given polynomial P , we repeat the procedure described
in Section 4.3 for many different polynomials of the form Pq . Fortunately, once
the roots of P mod p for all p � B have been computed, it is possible to use these
values to compute the roots of Pq mod p for p � B . Indeed,

P.ia0C ja1; ib0C jb1/� 0 mod p

means that there is some root rp of P.X;1/ mod p such that rp�
ia0Cja1
ib0Cjb1

mod p.
This implies that we have Pq.r

q
p ; 1/� 0 mod p for

rqp �
i

j
��

a1� rpb1

a0� rpb0
mod p;

which gives us a root of Pq.X; 1/ mod p from .a0; b0/; .a1; b1/ and a root of
P.X; 1/ mod p. We summarize our procedure to derive relations from an ideal
a� OK in Algorithm 3.

Algorithm 3 (Sieving procedure).

Input: a� OK , BD fp j N.p/� Bg, I; J 2 Z>0.
1: Select ˛; ˇ 2 OK and a sieving polynomial P˛;ˇ with Algorithm 1.
2: For all p � B , compute the roots of P˛;ˇ .X; 1/ mod p.
3: for q � B do
4: Compute Pq and its roots modulo the p � B as in Section 4.4.
5: Let S be an array of size IJ initialized to 0.
6: for p � I do
7: Do SŒx� SŒx�C logp for each x representing .i; j / 2 Œ�I=2; I=2Œ�

Œ1; J � such that p jPq.i; j / by repeating Algorithm 2 for each line j � J .
8: end for
9: for p > I do
10: Calculate a basis f.a; b/; .c; d/g of the lattice of points in Œ�I=2; I=2Œ�

Œ1; J � that are roots of Pq.X; Y / mod p with the method of Section 4.3.
11: Do SŒx� SŒx�C logp for each x representing .i; j / 2 Œ�I=2; I=2Œ�

Œ1; J � such that p j Pq.i; j / by using the method of Section 4.3.
12: end for
13: end for
14: for x � IJ do
15: if SŒx�� logPq.i; j /, where x represent .i; j / 2 Œ�I=2; I=2Œ� Œ1; J � then
16: If logPq.i; j / is B-smooth, store the corresponding relation.
17: end if
18: end for
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4.5. Overall relation collection phase. A necessary condition to compute the class
group and the unit group is to produce a full-rank relation matrix M . Our sieving
methods allow us to derive relations in Cl.OK/ very rapidly, but it is hard to force a
given prime to occur in a relation. The best performance is obtained by sieving with
the trivial ideal OK . If we want to see a given prime ideal p j .p/ occur in a relation,
one can use the special-q with q D p, or sieve with the ideal p. However, even
after using those methods, some prime ideals still do not contribute to the rank
of M . Rather than sieving in random power-products involving missing primes,
one might prefer to switch to enumeration-based methods to complete the relation
search. To identify the primes that need to appear in a relation, we perform an LU
decomposition of the relation matrix modulo a random wordsize prime. We try to
produce enough relations with sieving so that the rank of M is 97% of #B. Then
we find additional relations with enumeration. We summarize this procedure:

Algorithm 4 (Full rank relation matrix computation).

Input: K, B .
Output: A full-rank relation matrix for the primes of norm bounded by B .
1: B fp j N.p/� Bg D fp1; : : : ; pN g.
2: Derive N relations by repeating Algorithm 3 with a D .1/. Let M be the

relation matrix.
3: Perform an LU decomposition of M and let EmptyList be the list of zero

columns.
4: for p 2 EmptyList do
5: Sieve with p, update M .
6: end for
7: Update EmptyList by updating the LU decomposition of M .
8: for p 2 EmptyList do
9: Find a relation involving p by enumerating short elements in random power-

products.
10: end for
11: return M .

To assess the advantage of sieving over enumeration techniques, we need to
isolate its contribution to the performances of the class group and unit group com-
putation. To do this, we used a modified version of the function bnfinit of the
computer algebra software PARI that accepts in input a list of precomputed rela-
tions. We interfaced via Sage this version of PARI with a development version of
Magma containing a function creating relations with the sieving algorithm. The
Magma function tries to create enough relations so that the rank of M is 97%
of #B and passes it to PARI which adds new relations with enumeration methods
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and calculates the class group and the unit group. We compared the performance
of this approach to the traditional bnfinit function of PARI. There are two main
reasons for using a hybrid version. The first one is that PARI’s implementation of
enumeration techniques is the most efficient. As these are necessary to finish the
creation of the relation matrix after calling the sieving algorithm, it is interesting
to see how the two perform together. Another reason for this choice is the fact that
many different algorithms contribute to the computation of the class group and the
unit group. In particular, we use time-consuming linear algebra methods such as
the HNF computation. Our methodology avoids the risk of seeing the influence of
the quality of the implementation of other algorithms occurring in the class group
and unit group computation.

We performed our computations on a 2.6 GHz Opteron with 4 GB of memory.
We used a branch of the development version 2.6.0 of PARI provided by Loïc
Grenié and the development version of Magma, interfaced via Sage 4.7.2. We
allocated 3 GB of memory to the computation made with PARI. For each size d ,
we drew at random 10 number fields with discriminant satisfying log2j�j D d . For
each discriminant, we computed the class group and the unit group with bnfinit,
which we refer to as the PARI method, and with the hybrid version which we refer
to as the PARI+Sieving method. The average timings, in CPU sec (rounded to
the nearest integer), are presented in Table 1. They illustrate the impact of sieving
methods for small degree number fields. It is very strong for number fields of
degree 3, 4, and 5, for which we often witness a speedup by a factor at least 10,
while it is rather moderate for degree-6 number fields, and negligible for number
fields of degree 7 and 8. Finding smooth values of a polynomial gets more difficult
when we increase its degree, but it is not the only reason why the impact of sieving
decreases with the degree. Indeed, for degree 6 number field, our sieving algorithm
still derives relations at a competitive pace, but there are many linear dependencies

n log2j�j PARI PARI+Sieving

3 120 76 11
3 140 694 66
3 160 6828 333
3 180 29807 2453

4 120 38 7
4 140 366 24
4 160 4266 175
4 180 31661 1201

n log2j�j PARI PARI+Sieving

5 120 33 18
5 140 295 64
5 160 3402 378
5 180 16048 2342

6 120 40 111
6 140 294 161
6 160 1709 1012
6 180 14549 8413

Table 1. Impact of sieving on class group and unit group computation of small
degree number fields. Timings in CPU-seconds.
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n Magma 2.18 PARI PARI+Sieving

20 0.7 0.5 0.2
30 6 5 3
40 22 44 66
45 128 271 556
50 170 593 1562
54 1453 1085 9251

Table 2. Impact of the quadratic sieve on computations in fields generated by a
root of X2C 4.10nC 1/. Timings in CPU-seconds.

whereas enumeration allows a more targeted search, thus avoiding linear depen-
dencies. To put these improvements into perspective, we show in Table 2 the
impact of Jacobson’s self-initializing quadratic sieve [25] which is implemented in
Magma 2.18. The timings for PARI and PARI+Sieving are derived under the same
setting as for Table 1. In addition, we added the performances of Magma 2.18
which uses different methods for linear algebra. Timings for the same series of
number fields were reported by Jacobson in [25, Table A.3] on a 296-MHz Sun
processor (for a fair comparison one has to take into account the verification time
since the timings of Table 1 and Table 2 correspond to a certification under GRH).

5. Computing the unit group

Assume that we have created a relation matrix .ei;j / corresponding to the relations

.�i /D p
ei;1
1 � � � p

ei;N
N :

Every kernel vector allows us to derive a unit of OK . Let ˇ1; : : : ; ˇk be a generating
set of the units created so far. We compute a new unit ˇ0, and we wish to find a
new minimal generating set for hˇ1; : : : ; ˇk; ˇi. Usually this is done by computing
(real) logarithms of the units followed by some approximate linear algebra to find
a (tentative) relation as well as the (tentative) new basis. This is then followed
by some verification of the relation to guarantee correctness, by using real based
computations. The difficulty comes from the fact that the entries in the real matrix
differ vastly in size — by several orders of magnitude — thus making it necessary
to work with a huge precision; in fact the precision is also subexponential in the
discriminant for guaranteed results.

Here, we propose to use p-adic logarithms instead. The key advantage comes
from the much better control of error propagation in the linear algebra: Unless
division by nonunits happens, linear algebra does not increase errors. However,
while the correctness is based on the unproven Leopoldt conjecture about the non-
vanishing of the p-adic regulator, this is not a problem in practice: Any relation
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found by the p-adic method can easily be verified unconditionally, thus a failure
of the algorithm would provide a counterexample to Leopoldt’s conjecture.

We start by choosing a prime p such that the p-adic splitting field Kp has moder-
ate degree; here we allow at most degree 2. In practice, we search for the smallest
prime p > 10000 such that the p-adic splitting field is unramified of degree � 2.
Then we have n embeddings �i WK!Kp, and we define a map Lp WK�!Knp
given by x 7! .log�i .x//i , where �i is the usual p-adic logarithm extended to Kp .
In order to estimate the necessary p-adic precision, we also need the usual real
logarithmic embedding, denoted by L WK�!RrC1. We are looking for a (rational)
solution .xi /i 2QkC1 to

P
xiLp.ˇi /D Lp.ˇ

0/. Using p-adic linear algebra we
will instead get a p-adic solution (or a proof that ˇ0 is independent). Using standard
rational reconstruction techniques, we derive the rational solution from the p-adic
one and then the integral relation between the units. In order to estimate the p-adic
precision, we bound numerator and denominator using Cramer’s rule and universal
lower bounds on the logarithms of units. The rational solution then also satisfiesP
xiL.ˇi /D L.ˇ

0/. Let .˛i /i be a basis for hˇ1; : : : ; ˇs; ˇ0i. By Cramer’s rule,

xi D det.Lp.ˇ1/; : : : ; Lp.ˇ0/; : : : ; Lp.ˇs//=det.Lp.ˇ1/; : : : ; Lp.ˇs//:

Since the (unknown) .˛i / form a basis, we see that

det.Lp.ˇ1/; : : : ; Lp.ˇ0/; : : : ; Lp.ˇs//=det.Lp.˛1/; : : : ; Lp.˛s//

is an integer and the same is true for L instead of Lp; thus we can write xi as a quo-
tient of integers. In either case, to make sense of the determinants, we will have to
select an appropriate number of rows to make the matrices square. To bound the in-
tegers, we make use of the Hadamard bound for det.L.ˇ1/; : : : ; L.ˇ0/; : : : ; L.ˇs//
and some universal lower bound for det.L.˛i //i . For the lower bound we use lower
bounds of logarithms of nontorsion units: kL.˛i /k2 � 21

128
.log d/=d2 (see [17,

3.5]), or, if the unit group has full rank, sD r D r1C r2�1, we use lower regulator
bounds, possibly coming from the Euler product. Having obtained bounds from the
real logarithm (L) with low precision, we calculate the p-adic precision required
to find xi using p-adic linear algebra and rational reconstruction. In the course
of the computation it can happen that the p-adic determinants (p-adic regulators)
have nontrivial valuation. In this case we have to restart the computation with
a correspondingly higher precision to account for the loss. Since the Leopoldt
conjecture has not been proved, we also need to verify the solution by computing
a low-precision estimate for



P xiL.ˇi / � L.ˇ
0/


 to compare it to the lower

bound used above.
From the relation xi we can easily obtain a presentation of the new basis ˛i in

terms of the ˇi , ˇ0. For optimization, we then proceed to compute a new basis z̨i
such that the real logarithms are (roughly) LLL-reduced. We note that we do not
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rely on any LLL estimates here, so any heuristic algorithm that aims at reducing
the apparent size will do. Since we do not have any LLL algorithm that will accept
real input (as opposed to rational), it is important that this does not influence the
correctness.

5.1. Advantages of the p-adic method. There are two core advantages of the p-
adic logarithms over the ordinary, complex, ones: First, the linear algebra problems
we need to solve in order to find dependencies or relations between units have a
much simpler error analysis. In fact, contrary to the complex case, it is possible
through the use of ring based operations to solve linear equations without any
additional loss of precision. This is very important in the context of unit computa-
tion since the matrices representing the image of L.˛/ are very badly conditioned
for classical numerical methods. The other advantage of the p-adic logarithms is
more subtle: If we assume Leopoldt’s conjecture to hold for the field(s) we are
interested in, then instead of doing linear algebra over R with a precision of say q
to find dependencies, it is sufficient to work with a real precision of q=2 and a
p-adic precision of q=2 as well. Thus, assuming classical multiplication, we gain
a factor of about 4 through the use of lower precision. Using fast multiplication
(in high precision), the gain is smaller but still noticeable. But the most important
advantage is the much easier precision control: Instead of complicated and very
delicate estimates for linear algebra problems, all we need are upper bounds on
linear combinations with integral coefficients — which are trivial to obtain.

We should also mention that one disadvantage of the p-adic method lies in the
total lack of control over the real size of the units, thus it needs to be paired with
a crude (and uncritical for correctness) size reduction algorithm. Also, it is (cur-
rently) not possible to avoid completely the use of complex (or real) logarithms, as
the p-adic method is not capable to proving a unit to be torsion without knowledge
of bounds on the real size.

5.2. Lower bound from Euler product. Suppose that, as in the class group algo-
rithm, we are given an approximation of the Euler product; that is, we have a real
number E such that 1=

p
2� hR=E �

p
2. After the relation matrix has full rank,

and assuming the factor base is large enough for correctness, we have an upper
bound for the class number, thus a lower bound for R. This lower bound will be
several orders of magnitude larger than the universal bounds available otherwise.

5.3. Saturation. After the initial steps of the algorithm, when the relation matrix
has full rank, we have a tentative class number h and a tentative regulator R. Ex-
perimentally, at this point, hR does not approximate the Euler product very well —
the product will be off by several orders of magnitude. However, after finding
one or two more relations, the product has the same size as the Euler product;
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it frequently even looks like only a factor of 2 is missing in either h or R. To
find the last missing relation can easily take more time than the entire previous
run, therefore we suggest using saturation methods instead. At this point in the
algorithm the relations define a subgroup U of the S -unit group US where S is the
factor basis. From the Euler product we know that the index .US WU/DW b is small,
let’s say b < B . For any prime p j b there is some u 2 US nU such that up 2 U .
Let us fix the prime p. For any prime ideal Q … S such that p j N.Q/� 1 we
can define the map �Q W U ! F�Q=.F

�
Q/
p mapping S-units into the multiplicative

group of the residue class field modulo p-th powers. The Chebotarev theorem [44]
guarantees that if u 2U is not a p-th power, there will be some Q such that �Q.u/
is nontrivial, that is, u is not a p-th power modulo Q. We now simply intersect
ker�Q for several Q until either the intersection is U p or it does not change for
five consecutive Q. We expect that any u 2 U=

T
ker�Q will have a p-th root

in US but not in U . Therefore vp D u is a new relation that will change hR by
p. Repeating this for all p < B until we cannot enlarge U any more we find the
missing relations. Similar techniques have been used a long time but were confined
to the unit group [45; 36]. This appears to be the first time that saturation has been
applied to the full relation lattice.

5.4. Representation. During the execution of the algorithm, all (S-)units are nat-
urally represented as power products of the relations coming from the sieving (or
the saturation). It is well known that the explicit representation of the units with
respect to a fixed basis for the field can require exponentially large coefficients, so it
is important to operate on the power products as much as possible. However, even
the exponent vectors constructed for the basis of the unit group, or the saturation,
will become huge, so we need to “size reduce” the power products. In particular,
this happens even if the resulting element is not too large. Using ideas of [13] for
compact representations and [22] for reduced divisors in function fields, we can
find a representation for those elements that depends only on the logarithmic size
(and the number field) rather than the execution path. For any prime p we can write
any unit uD

Q
r
ei
i D

Q
a
pi

i with elements such that the size of ai depends on the
discriminant and p only. The length of the product comes from L.u/. Furthermore,
in this presentation it is easy to test for p-th powers as only a0 needs to be tested
and this is a small element.

5.5. Example. To illustrate the power of the p-adic method, we look at a to-
tally real quartic field generated by a root of

x4C 17211x3C 5213x2� 176910463x� 4958:

The discriminant � of the maximal order has 38 digits. In the course of the com-
putation, we found 534 relations involving prime ideals of norm up to 3000 D
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0:4 log2j�j describing a trivial class group. We then searched for 5 further rela-
tions to obtain units ui (1� i � 5). As power products of the relations, the units
are given via exponent vectors ei with keik1 ranging between 1080 and 10160

and 20 < keik1=keik1 < 92. So, while not uniformly large, the exponents are
nonsparse, involving huge integers. Using a decimal precision of 170 digits, we
establish that the logarithms of the units are roughly kL.ui /k1 � 10160. The first
three units are indeed independent, giving a basis for a subgroup of full rank, the
fourth is then dependent. Choosing the prime p D 10337 we get Qp as a splitting
field. Using a p-adic precision of 245 digits (that is, working in Zp mod p245), we
compute the dependency for the fourth unit, involving exponents of around 10360.
The new unit group is then tentatively LLL reduced, producing a new basis where
the kL.zui /k1 are bounded by 107 only. The last unit then involves a much smaller
dependency, here the exponents are only around 1060.

Unfortunately, looking at the Euler product, the unit group is not complete.
However, the saturation technique outlined above takes 1 sec to determine that
the product of the three basis elements is (probably) a square. Finding a better
representation where the exponents are all powers of 2 takes less than 1 sec and
then we can enlarge the unit group easily.

Due to the implementation, the p-adic precision used was actually higher: Chang-
ing (increasing) precision is very computationally expensive, so we try to avoid this
and simply double the precision. We used a precision of 320 for the p-adics and
a maximal precision of 1000 for the real precision. The computation of the log is
the dominating part: We spent 50 sec or 90% of the total processing time here.

6. Conclusion

We introduced new techniques to enhance the performances of the subexponential
methods for computing the class group and the unit group of a number field. In
particular, sieving allows a speedup of an order of magnitude for number fields
of small degree. These techniques could be developed even further. Indeed, we
have not taken into account all the improvements to sieving techniques described
in the context of the number field sieve algorithm, such as large prime variations or
cache-friendly methods. It is also notable that fast techniques for deriving relations
in the class group of a small degree number field have applications in evaluating
isogenies between small genus curves via complex multiplication methods. Indeed,
in that case, evaluating isogenies between genus g curves involves relations in the
class group of a degree 2g number field.
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Conditionally bounding analytic ranks
of elliptic curves

Jonathan W. Bober

We describe a method for bounding the rank of an elliptic curve under the as-
sumptions of the Birch and Swinnerton-Dyer conjecture and the generalized
Riemann hypothesis. As an example, we compute, under these conjectures,
exact upper bounds for curves which are known to have rank at least as large
as 20; 21; 22; 23, and 24. For the known curve of rank at least 28, we get a
bound of 30.

1. Introduction

Determining the rank of an elliptic curve is a difficult problem, and there is cur-
rently no known unconditional algorithm for determining the rank of a given curve.
The basic method for rigorously determining the rank of a curve is to find an upper
bound for the rank by computing the size of some Selmer groups and to find a
lower bound for the rank by finding enough independent rational points. In theory,
if one continues this process long enough, and the Shafarevich-Tate group of the
curve is finite, the upper and lower bounds should eventually coincide and the rank
will be determined exactly.

In practice, things are not so simple. Finding points on the curve is sometimes
not too bad, but the upper bounds for the rank are more problematic. Even the
computation of the 2-Selmer rank is difficult, and it becomes prohibitively time-
consuming as the coefficients of the elliptic curve grow; it is easy to write down
a curve for which the state-of-the-art program for computing the 2-Selmer group,
John Cremona’s mwrank [5], will effectively take “forever.”

If one is willing to accept the Birch and Swinnerton-Dyer conjecture that the
rank of an elliptic curve is the same as the order of vanishing of its L-function
at the central point, then it is possible to use the L-function to get information

MSC2010: primary 11M41; secondary 14G10.
Keywords: elliptic curve, rank, L-function, explicit formula.
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about the rank. In fact, when the order of vanishing is between 0 and 3, it can
be possible to compute the L-function to enough precision and use some extra
information about the curve to determine the analytic rank exactly, as is done in
[3], for example. When the rank is larger than this, though, currently the best one
can do is determine that the first r derivatives of the L-function are very close to
0 and the .r C 1/-st is not, which will provide a very good guess for the rank and
a rigorous upper bound, assuming BSD.

This approach has its own problems, as it is much easier to write down a curve
of large conductor than it is to compute the L-function of such a curve. For exam-
ple, the known curve of rank at least 28 [8], which we will write down later, has
conductor N � 3:5� 10141, and current methods (such as those described in [19])
typically require summing on the order of

p
N terms to compute the central value

of the L-function. (It would take a computer about 1053 cpu-years just to add 1 to
itself 1070 times.)

We present here a third method which is rather effective at bounding the rank,
especially when the rank is large compared to the conductor, as long as one is
willing to assume both the Birch and Swinnerton-Dyer conjecture and the Riemann
Hypothesis for the L-function of the curve. This method is not completely new.
It is based on Mestre’s method [14] for (conditionally) bounding the rank of an
elliptic curve based only on its conductor, and it was used by Fermigier [9] to
study ranks of elliptic curves in certain families. However, it does not seem to
have gained much traction and does not seem to have been used much, if at all,
since.

The idea, in brief, is as follows. Take f .x/ to be a function such that f .0/D 1

and f .x/ � 0 for all real x. Then, assuming the Riemann hypothesis, the sumP
f .
 /, where 1=2C i
 runs over the nontrivial zeros of L.s;E/ (counted with

multiplicity), will be an upper bound for the analytic rank of E. Moreover, for
certain choices of f .x/ this sum may be efficiently evaluated using the explicit
formula for the L-function attached to E.

This method has recently been implemented by the author, and is available as
part of William Stein’s PSAGE [21] add-ons to Sage [22]. As an example of what it
can do, we will examine 6 curves known to have rather large rank. We denote these
curves by En, where the index n, taking the values 20; 21; 22; 23; 24; 28 represents
a known lower bound for the rank. We will write down these curves later (they are
all taken from A. Dujella’s website [6], and at the time of discovery each held the
record for the curve with largest number of known independent rational points).
The exact rank is not known for any of these curves. However, conditionally we
may claim:

Theorem 1.1. Assuming BSD and GRH, En has rank exactly n for nD 20; 21; 22,
23, and 24, while E28 has rank 28 or 30.
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Remark 1.2. Around the time that I was writing this paper, Andrew Booker and
Jo Dwyer were able to exactly compute the rank of E28, again assuming the Birch
and Swinnerton-Dyer conjecture and the Riemann Hypothesis for L.s;E28/. They
use the method described here, but by using the optimization procedure described
in Section 3 of [1] they are able to select a better test function as input to the explicit
formula, and they get a correspondingly better bound.

2. Bounding ranks

2A. The method. Let

L.s;E/D

1X
nD1

an

ns
D

Y
p

Lp.s;E/
�1

be the L-function of an elliptic curve, normalized so that the completed L-function
ƒ.s;E/ satisfies the functional equation ƒ.s;E/ D �ƒ.1� s;E/, and let cn be
defined by

�
L0.s;E/

L.s;E/
D

1X
nD1

cn

ns
:

More explicitly, if we define ˛.p/ and ˇ.p/ by

Lp.s;E/D .1�˛.p/p
�s/.1�ˇ.p/p�s/;

(note that ˛ and ˇ are only well defined up to permutation, and that at least one of
them will be 0 when p is a prime of bad reduction), then

cpm D
�
˛.p/mCˇ.p/m

�
log p;

and cn D 0 when n is not a prime power.
Our main tool will be the explicit formula for L.s;E/, which we state in a

friendly form in the following lemma.

Lemma 2.1. Suppose that f .z/ is an entire function with f .xC iy/� x�.1Cı/

for jyj< 1C �, for some � > 0, and that the Fourier transform of f

Of .y/D

Z 1
�1

f .x/e�2�ixydx

exists and is such that
1X

nD1

cn

n1=2
Of

�
log n

2�

�
converges absolutely. Then
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X



f .
 /D Of .0/
log N

2�
� Of .0/

log 2�

�
C

1

�
<

�Z 1
�1

� 0

�
.1C i t/f .t/dt

�
�

1

2�

1X
nD1

c.n/

n1=2

�
Of

�
log n

2�

�
C Of

�
�

log n

2�

��
; (1)

where 1=2C i
 runs over the nontrivial zeros of L.s;E/, where E is an elliptic
curve with conductor N .

Proof. A proof of the explicit formula in this form, or in a similar form, can be
found in various sources — for example, [11, Theorem 5.12] — so we give only a
brief sketch. The idea is to integrate the function

F.s/
L0.s;E/

L.s;E/
;

where F.1=2C is/D f .s/, on a vertical line to the right of the critical strip and,
in the reverse direction, on a vertical line to the left of the critical strip. By the
residue theorem, this integral will be equal to 2�

P

 f .
 /. One now applies the

functional equation to write the integral in the left half-plane as an integral in the
right half-plane.

The sum over the Fourier coefficients of f arises from shifting contours to the
region of absolute convergence and using the Dirichlet series for L0.s/=L.s/, while
the other terms arise from shifting the remaining integrals to the line <.s/D 1=2.

The conditions on f .z/ are exactly those needed to make sure that this process
can go through without trouble. Of course, it is also important that L.s;E/ is
entire and that it satisfies a functional equation [25; 24; 2]. �

A convenient function to use in an application of the explicit formula is

f .z/D f .zI�/D

�
sin.��z/

��z

�2

;

which has the simple Fourier transform

Of .xI�/D

�
1

�

��
1�

ˇ̌̌ x

�

ˇ̌̌ �
; jxj<�:

With this choice of f , Equation (1) takes the form

X



f .
 I�/D
log N

�2�
�

log 2�

��
C

1

�
<

�Z 1
�1

� 0

�
.1C i t/f .t I�/dt

�

�
1

��

X
p�exp.2��/

log p

b2��= log pcX
kD1

1

pk=2

�
˛.p/k Cˇ.p/k

� �
1�

k log p

2��

�
: (2)
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Since f .
 I�/� 0 as long as 
 is real, and f .0I�/D 1, Equation (2) will give
an upper bound for the order of vanishing of L.s;E/ at s D 1=2, as long as the
Riemann Hypothesis holds for L.s;E/. And if � is not too large, we can quickly
evaluate the right-hand side of Equation (2) to calculate this upper bound. It is also
worth noting that, assuming RH,

� lim
�!1

1

��

X
p�exp.2��/

log p

b2��= log pcX
kD1

1

pk=2

�
˛.p/k Cˇ.p/k

� �
1�

k log p

2��

�
D ordsD1=2L.s;E/

so that, in principle, we should be able to get as good a bound for the rank as we like
through this method. However, as the length of the prime sum grows exponentially
in �, this method quickly becomes infeasible once � gets a little larger than 4.

2B. Some curves. As an example, we examine 6 elliptic curves from Dujella’s
online tables. They are

E20Wy
2
Cxy D x3

� 431092980766333677958362095891166x

C 5156283555366643659035652799871176909391533088196;

E21Wy
2
CxyCy D x3

Cx2
� 215843772422443922015169952702159835x

� 19474361277787151947255961435459054151501792241320535;

E22Wy
2
CxyCy D x3

� 940299517776391362903023121165864x

C 10707363070719743033425295515449274534651125011362;

E23Wy
2
CxyCy D x3

� 19252966408674012828065964616418441723x

C 32685500727716376257923347071452044295907443056345614006;

E24Wy
2
CxyCy D x3

� 120039822036992245303534619191166796374x

C 504224992484910670010801799168082726759443756222911415116;

and

E28Wy
2
CxyCy D x3

�x2
�

�
20067762415575526585033208� 1030

C 209338542750930230312178956502

�
x

C

�
3448161179503055646703298569039072037485594� 1040

C 4359319180361266008296291939448732243429

�
:

Each En has n known independent rational points of infinite order, so has at
least rank n. (See [16; 17; 10; 12; 13; 8], or [6] for quick reference.) Using
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Curve log NE �
P

 f .
 I�/

log NE

2��

E20 170:09 2:0 21:70 13:54

E21 196:68 2:5 22:68 12:52

E22 182:72 2:0 23:71 14:54

E23 205:06 2:5 24:49 13:05

E24 219:93 2:5 25:57 14:00

E28 325:90 3:2 31:30 16:21

Table 1. Computed upper bounds for the ranks of some curves, along with a
heuristic guess of what these bounds should for a typical elliptic curve. The sum
over the zeros here is rounded up; other numbers are rounded to nearest.

the methods described above, we compute rank bounds for each of these curves.
These are listed in Table 1. The global root number can be computed for each
curve. (In Sage, E.root_number(), which uses PARI [18], will finish quickly for
E20, E21, and E22 and within a few hours for E23 and E24. For E28 it is best
to see the mailing list discussion which gives the factorization of the discriminant
[7].) In each case the root number agrees with the parity of the known number of
independent points, so to get a tight upper bound for the rank we only need to get
within 2 of the number of known independent points, and so the computation in
Table 1 gives the proof of Theorem 1.1.

2C. Curves of small conductor. For further testing, this method was also run on
all elliptic curves up with conductor below 180000 (from Cremona’s tables [4])
using �D 2:0, a computation which ran in under a day on a fast 8 core computer.
In this range there are 790677 isogeny classes of elliptic curves, and for all but
9882 isogeny classes it turns out that�P



f .
 I 2:0/

˘
D rank.E/I

in the remaining cases, �P


f .
 I 2:0/

˘
D rank.E/C 1;

so consideration of the root number of the curve gives the exact rank.

3. Further comments

3A. Some evidence towards BSD. There is a way in which these computations
can be seen as giving mild evidence in support of the Birch and Swinnerton-Dyer
conjecture. The upper bound computed for a curve E is the value of the sum
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 f .
 I�/, and as f .
 I�/ decays fairly rapidly as 
 grows, one does not expect

this sum to be very large for a typical elliptic curve.
To obtain a crude approximation to what we might expect the value of this sum

to be, consider that the local zero density of a typical L.s;E/ near the central point
is approximately 2�=log NE . Then, if the zeros are spaced uniformly at random
(an assumption that is not really correct, but is close enough to true for our crude
purposes), we might expect thatX




f .
;�/�
log NE

2�

Z 1
�1

f .t I�/dt D
log NE

2��
;

possibly with a small adjustment to take into account the parity of the rank. (More
precisely, we might expect that if we average this sum over all elliptic curves of
conductor close to NE , the answer will not be too far from this integral.) Thus,
when this sum is significantly larger than this estimate, it indicates an extreme
concentration of zeros near the central point. (It is also possible to arrive at more
refined version of this heuristic by considering the explicit formula. In such a
case, it is necessary to assume that the family of elliptic curves considered is large
enough that ap.E/ averages to zero for each p, and we notice that the integral of
the �-factor plays a small role as well.)

As some further small evidence for this heuristic, we note that the average of

4�

log N

X



f .
 I 2:0/

over all isogeny classes up to 180000 is approximately :9638. The small difference
from 1 should be accounted for by the �-factor, which tends to push zeros away
from the central point.

It should also be possible to refine this heuristic somewhat to make a guess as
to what the sum should be for a high rank curve by making the assumption that a
zero of high order at the central point will push other zeros away.

3B. Correctness tests. The method described here is simple enough that it is easy
to implement, which reduces the likeliness of bugs. It is still important to test it
where possible, however, in order to have more confidence in its correctness.

As described in Section 2C, this code was run on every isogeny class up to
conductor 180000, and the fact that the computed upper bound for the rank was
never too small gives some confidence that the computation was done correctly. As
a further test, one can also compute many zeros for the L-function of an elliptic
curve of small conductor, compute the sum over zeros directly, and verify that
it agrees with our explicit formula implementation. Table 2 lists some example
curves with small conductor for which this was done. The agreement there is
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� E # zeros Direct Equation (2) Difference

2.0 11a 200000 0:00270875 0:00269961 9:17� 10�6

15a 200000 0:00483749 0:00482836 9:13� 10�6

17a 200000 0:00559516 0:00558605 9:11� 10�6

37a 200000 1:00369174 1:00368272 9:01� 10�6

118a 200000 1:00636141 1:00635255 8:86� 10�6

389a 159650 2:00947449 2:00946618 8:30� 10�6

5077a 85520 3:01508240 3:01507647 5:92� 10�6

11197a 70950 3:02102728 3:02102250 4:77� 10�6

2.5 11a 200000 0:00172459 0:00172653 1:94� 10�6

15a 200000 0:00170962 0:00171159 1:96� 10�6

17a 200000 0:00250017 0:00250215 1:97� 10�6

37a 200000 1:00335149 1:00335352 2:03� 10�6

118a 200000 2:00585774 2:00586023 2:49� 10�6

389a 159650 3:00797500 3:00797902 4:02� 10�6

5077a 85520 1:00543612 1:00543825 2:14� 10�6

11197a 70950 3:01798029 3:01798504 4:75� 10�6

Table 2. Sum of f .
 I 2:0/ and f .
 I 2:5/ computed directly with many zeros
and using our implementation of (2). The curve labels correspond to isogeny
classes in Cremona’s tables [4] and the zeros were computed using Rubinstein’s
lcalc [20].

between 10�5 and 10�6, which is roughly the precision to which the integral in
the explicit formula was calculated, and is in line with what should be expected
using what is a fairly small number of zeros.
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We describe a tabulation of (conjecturally) modular elliptic curves over the field
Q.
p

5/ up to the first elliptic curve of rank 2. Using an efficient implementation
of an algorithm of Lassina Dembélé, we computed tables of Hilbert modular
forms of weight .2; 2/ over Q.

p
5/, and via a variety of methods we constructed

corresponding elliptic curves, including (again, conjecturally) all elliptic curves
over Q.

p
5/ that have conductor with norm less than or equal to 1831.

1. Introduction

1A. Elliptic curves over Q. Tables of elliptic curves over Q have been of great
value in mathematical research. Some of the first such tables were those in Antwerp
IV [4], which included all elliptic curves over Q of conductor up to 200, and also
a table of all elliptic curves with bad reduction only at 2 and 3.

Cremona’s book [10] gives a detailed description of algorithms that together out-
put a list of all elliptic curves over Q of any given conductor, along with extensive
data about each curve. The proof that his algorithm outputs all curves of given
conductor had to wait for the proof of the full modularity theorem in [8]. Cremona
has subsequently computed tables [12] of all elliptic curves over Q of conductor
up to 300;000, including Mordell-Weil groups and other extensive data about each
curve.

In another direction, Stein and Watkins (see [33; 1]) created a table of 136,832,795
elliptic curves over Q of conductor � 108, and a table of 11,378,911 elliptic curves
over Q of prime conductor � 1010. There are many curves of large discriminant

MSC2010: primary 11-04; secondary 11G05.
Keywords: elliptic curves, totally real number fields, Hilbert modular forms, tables, sage.
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missing from the Stein-Watkins tables, since these tables are made by enumerating
curves with relatively small defining equations, and discarding those of large con-
ductor, rather than systematically finding all curves of given conductor no matter
how large the defining equation.

1B. Why Q.
p

5/? Like Q, the field F DQ.
p

5/ is a totally real field, and many
of the theorems and ideas about elliptic curves over Q have been generalized to
totally real fields. As is the case over Q, there is a notion of modularity of elliptic
curves over F , and work of Zhang [36] has extended many results of Gross and
Zagier [20] and Kolyvagin [24] to the context of elliptic curves over totally real
fields.

If we order totally real number fields K by the absolute value of their discrim-
inant, then F D Q.

p
5/ comes next after Q (the Minkowski bound implies that

jDK j � .n
n=n!/2, where nD ŒK WQ�, so if n� 3 then jDK j> 20). That 5 divides

disc.F /D 5 thwarts attempts to easily generalize the method of Taylor and Wiles
to elliptic curves over F , which makes Q.

p
5/ even more interesting. Furthermore

F is a PID and elliptic curves over F admit global minimal models and have well-
defined notions of minimal discriminants. The field F also has 31 CM j -invariants,
which is far more than any other quadratic field (see Section 5). Letting ' D 1C

p
5

2
,

we have that the group of units f˙1g � h'i of the ring RDOF D ZŒ'� of integers
of F is infinite, leading to additional complications. Finally, F has even degree,
which makes certain computations more difficult, as the cohomological techniques
of [19] are not available.

1C. Modularity conjecture. The following conjecture is open:

Conjecture 1.1 (Modularity). The set of L-functions of elliptic curves over F

equals the set of L-functions associated to cuspidal Hilbert modular newforms
over F of weight .2; 2/ with rational Hecke eigenvalues.

Given the progress on modularity theorems initiated by [35], we are optimistic that
Conjecture 1.1 will be proved. We assume Conjecture 1.1 for the rest of this paper.

In Section 2 we sketch how to compute Hilbert modular forms using arithmetic
in quaternion algebras. Section 3 gives numerous methods for finding an elliptic
curve corresponding to a Hilbert modular form. It should be noted that these are
the methods originally used to make the tables – in hindsight, it was discovered
that some of the elliptic curves found using the more specific techniques could
be found using a better implementation of the sieved enumeration of Section 3B.
Section 4 addresses how to find all curves that are isogenous to a given curve. In
Section 5 we enumerate the CM j -invariants in F . We discuss some projects for
future work in Section 6. Finally, Section 7 contains tables that summarize various
information about our dataset [5].
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2. Computing Hilbert modular forms over F

In Section 2A we sketch Dembélé’s approach to computing Hilbert modular forms
over F , then in Section 2B we make some remarks about our fast implementation.

2A. Hilbert modular forms and quaternion algebras. Dembélé [14] introduced
an algebraic approach via the Jacquet-Langlands correspondence to computing
Hilbert modular forms of weight .2; 2/ over F . The Hamiltonian quaternion al-
gebra F Œi; j ; k� over F is ramified exactly at the two infinite places, and contains
the maximal order

S DR
�

1
2
.1�'i C'j /; 1

2
.�'i C j C'k/; 1

2
.' i �'j C k/; 1

2
.i C'j �'k/

�
:

For any nonzero ideal n in RDOF , let P1.R=n/ be the set of equivalence classes of
column vectors with two coprime entries a; b 2R=n modulo the action of .R=n/�.
We use the notation Œa W b� to denote the equivalence class of

�
a
b

�
. For each prime

p jn, we fix a choice of isomorphism F Œi; j ; k�˝Fp�M2.Fp/, which induces a left
action of S� on P1.R=n/. The action of Tp, for p − n, is Tp.Œx�/D

P
Œ˛x�, where

the sum is over the classes Œ˛� 2 S=S� with Nred.˛/ D �p (reduced quaternion
norm), where �p is a fixed choice of totally positive generator of p. The Jacquet-
Langlands correspondence implies that the space of Hilbert modular forms of level
n and weight .2; 2/ is noncanonically isomorphic as a module over the Hecke
algebra

TD ZŒTp W p nonzero prime ideal of R �

to the finite dimensional complex vector space V D CŒS�nP1.R=n/�.

2B. Remarks on computing with P1.R=n/. In order to implement the algorithm
sketched in Section 2A, it is critical that we can compute with P1.R=n/ very, very
quickly. For example, to apply the method of Section 3G below, in some cases
we have to compute tens of thousands of Hecke operators. Thus in this section we
make some additional remarks about this fast implementation.

When n D pe is a prime power, it is straightforward to efficiently enumerate
representative elements of P1.R=pe/, since each element Œx W y� of P1.R=pe/ has
a unique representative of the form Œ1 W b� or Œa W 1� with a divisible by p, and these
are all distinct. It is easy to put any Œx W y� in this canonical form and enumerate the
elements of P1.R=pe/, after choosing a way to enumerate the elements of R=pe.
An enumeration of R=pe is easy to give once we decide on how to represent R=pe .

In general, consider the factorization nD
Qm

iD1 p
ei

i . We have a bijection between
P1.R=n/ and

Qm
iD1 P1.R=p

ei

i /, which allows us to reduce to the prime power case,
at the expense of having to compute the bijection R=nŠ

Q
R=p

ei

i . To this end,
we represent elements of R=n as m-tuples in

Q
R=p

ei

i , thus making computation
of the bijection trivial.
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To minimize dynamic memory allocation, thus speeding up the code by an order
of magnitude, in the implementation we make some arbitrary bounds; this is not a
serious constraint, since the linear algebra needed to isolate eigenforms for levels
beyond this bound is prohibitive. We assume m� 16 and each individual p

ei

i � 231,
where pi is the residue characteristic of pi . In all cases, we represent an element
of R=p

ei

i as a pair of 64-bit integers, and represent an element of R=n as an array
of 16 pairs of 64-bit integers. We use this representation in all cases, even if n is
divisible by less than 16 primes; the gain in speed coming from avoiding dynamic
memory allocation more than compensates for the wasted memory.

Let pe be one of the prime power factors of n, and let p be the residue charac-
teristic of p. We have one of the following cases:

� p splits in R; then R=pŠ Z=pZ and we represent elements of R=pe as pairs
.a; 0/ mod pe with the usual addition and multiplication in the first factor.

� p is inert in R; then R=pe Š .Z=peZ/Œx�=.x2 � x � 1/, and we represent
elements by pairs .a; b/ 2 Z=peZ with multiplication

.a; b/.c; d/D .acC bd; ad C bd C bc/ mod pe:

� p is ramified and e D 2f is even; this is exactly the same as the case when p

is inert but with e replaced by f , since R=peRŠ .Z=pf Z/Œx�=.x2�x� 1/.

� p is ramified (so p D 5) and e D 2f � 1 is odd; the ring ADR=pe is trickier
than the rest, because it is not of the form ZŒx�=.m;g/ where m 2 Z and
g 2 ZŒx�. We have A� .Z=5f Z/Œx�=.x2�5; 5f�1x/, and represent elements
of A as pairs .a; b/ 2 .Z=5f /� .Z=5f�1Z/, with arithmetic given by

.a; b/C .c; d/D .aC c mod 5f ; bC d mod 5f�1/

.a; b/ � .c; d/D .acC 5bd mod 5f ; ad C bc mod 5f�1/:

We find that ' 2R 7! .1=2; 1=2/.

3. Strategies for finding an elliptic curve attached to a Hilbert modular form

In this section we describe various strategies to find an elliptic curve associated to
each of the Hilbert modular forms computed in Section 2. Let f be a rational cusp-
idal Hilbert newform of weight .2; 2/ as in Section 2. According to Conjecture 1.1,
there is some elliptic curve Ef over F such that L.f; s/D L.Ef ; s/. (Note that
Ef is only well defined up to isogeny.) Unlike the case for elliptic curves over
Q (see [10]), there seems to be no known efficient direct algorithm to find Ef .
Nonetheless, there are several approaches coming from various directions, which
are each efficient in some cases.
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Everywhere below, we continue to assume that Conjecture 1.1 is true and assume
that we have computed (as in Section 2) the Hecke eigenvalues ap 2Z of all rational
Hilbert newforms of some level n, for Norm.p/�B a good prime, where B is large
enough to distinguish newforms. In some cases we will need far more ap in order
to compute with the L-function attached to a newform. We will also need the ap

for bad p in a few cases, which we obtain using the functional equation for the
L-function (as an application of Dokchitser’s algorithm [16]).

We define the norm conductor of an elliptic curve over F to be the absolute
norm of the conductor ideal of the curve.

In Section 3A we give a very simple enumeration method for finding curves,
then in Section 3B we refine it by taking into account point counts modulo primes;
together, these two methods found a substantial fraction of our curves. Sections 3C
and 3D describe methods for searching in certain families of curves, for example,
curves with a torsion point of given order or curves with a given irreducible mod
` Galois representation. Section 3E is about how to find all twists of a curve with
bounded norm conductor. In Section 3F we mention the Cremona-Lingham algo-
rithm, which relies on computing all S-integral points on many auxiliary curves.
Finally, Section 3G explains in detail an algorithm of Dembélé that uses explicit
computations with special values of L-functions to find curves.

3A. Extremely naïve enumeration. The most naïve strategy is to systematically
enumerate elliptic curves EWy2 D x3C axC b, with a; b 2 R, and for each E,
to compute ap.E/ for p not dividing Disc.E/ by counting points on E reduced
modulo p. If all the ap.E/ match with those of the input newform f up to the
bound B, we then compute the conductor nE , and if it equals n, we conclude from
the sufficient largeness of B that E is in the isogeny class of Ef .

Under our hypotheses, this approach provides a deterministic and terminating
algorithm to find all Ef . However, it can be extremely slow when n is small but
the simplest curve in the isogeny class of Ef has large coefficients. For example,
using this search method it would be infeasible to find the curve (1) computed by
Fisher using the visibility of XŒ7�.

3B. Sieved enumeration. A refinement to the approach discussed above uses the
ap values to impose congruence conditions modulo p on E. If f is a newform
with Hecke eigenvalues ap, then # QEf .R=p/DN.p/C1�ap. Given p not dividing
the level n, we can find all elliptic curves modulo p with the specified number of
points, especially when N.p/C 1� ap has few prime factors. We impose these
congruence conditions at multiple primes pi , use the Chinese remainder theorem,
and lift the resulting elliptic curves modulo R=

Q
pi to nonsingular elliptic curves

over R.
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While this method, like the previous one, will eventually terminate, it too is very
ineffective if every E in the class of isogenous elliptic curves corresponding to f
has large coefficients. However in practice, by optimally choosing the number of
primes pi , a reasonably efficient implementation of this method can be obtained.

3C. Torsion families. We find elliptic curves of small conductor by specializing
explicit parametrizations of families of elliptic curves over F having specified tor-
sion subgroups. We use the parametrizations of [25].

Theorem 3.1 (Kamienny and Najman, [22]). The following is a complete list of
torsion structures for elliptic curves over F :

Z=mZ; 1�m� 10; mD 12;

Z=2Z˚Z=2mZ; 1�m� 4;

Z=15Z:

Moreover, there is a unique elliptic curve over F with 15-torsion.

We use the following proposition to determine in which family to search.

Proposition 3.2. Let ` be a prime and let E be an elliptic curve over F . Then
` j #E0.F /tor for some elliptic curve E0 in the isogeny class of E if and only if
` jN.p/C 1� ap for all odd primes p at which E has good reduction.

Proof. If ` j #E0.F /tor, from the injectivity of the reduction map at good primes
[23, Appendix], we have that ` j # QE0.Fp/DN.p/C1�ap. The converse statement
is one of the main results of [23]. �

By applying Proposition 3.2 for all ap with p up to some bound, we can decide
whether or not it is likely that some elliptic curve in the isogeny class of E contains
an F -rational `-torsion point. If this is the case, then we search over those families
of elliptic curves with rational `-torsion. With a relatively small search space, we
thus find many elliptic curves with large coefficients more quickly than with the
algorithm of Section 3A. For example, we first found the elliptic curve E given by

y2
C'y D x3

C .27' � 43/xC .�80'C 128/

with norm conductor 145 by searching for elliptic curves with torsion subgroup
Z=7Z.

3D. Congruence families. Suppose that we are searching for an elliptic curve E

and we already know another elliptic curve E0 with EŒ`��E0Œ`�, where ` is some
prime and EŒ`� is irreducible. Twists of the modular curve X.`/ parametrize pairs
of elliptic curves with isomorphic `-torsion subgroups, so finding rational points on
the correct twist allows us to find curves with the same mod ` Galois representation
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as E0. Using this idea, we found the curve E given by

y2
C'xy D x3

C .' � 1/x2

C .�257364' � 159063/xC .�75257037' � 46511406/ (1)

with conductor �6' C 42, which has norm 1476. Just given the ap, we noticed
that EŒ7�� E0Œ7�, where E0 has norm conductor 369. The curve E0 had already
been found via naïve search, since it is given by the equation y2C .'C 1/y D

x3 C .' � 1/x2 C .�2'/x. For any elliptic curve, the equation for the correct
twist of X.7/ was found both by Halberstadt and Kraus [21] and by Fisher [18],
whose methods also yield formulas for the appropriate twists of X.9/ and X.11/.

Fisher had already implemented Magma [6] routines to find `-congruent elliptic
curves over Q using these equations and was able to modify his work for Q.

p
5/.

Fortunately, our curve E was then easily found.

3E. Twisting. Let E be an elliptic curve over F . A twist E0 of E is an elliptic
curve over F that is isomorphic to E over some extension of F . A quadratic twist
is a twist in which the extension has degree 2. We can use twisting to find elliptic
curves that may otherwise be difficult to find as follows: Starting with a known
elliptic curve E of some (small) conductor, we compute its twists of conductor up
to some bound, and add them to our table.

More explicitly, if E is given by y2 D x3C axC b and d 2 F�, then the twist
Ed of E by d is given by dy2 D x3C axC b; in particular, we may assume that
d is squarefree. The following is well known:

Proposition 3.3. If n is the conductor of E and d 2OF is nonzero, squarefree and
coprime to n, then the conductor of Ed is divisible by d2n.

Proof. There are choices of Weierstrass equations such that �.Ed /D 212d6�.E/,
where � is the discriminant. Thus the elliptic curve Ed has bad reduction at each
prime that divides d , because twisting introduces a 6th power of the squarefree
d into the discriminant, and d is coprime to �.E/, so no change of Weierstrass
equation can remove this 6th power. Moreover, Ed is isomorphic to E over an
extension of the base field, so Ed has potentially good reduction at each prime
dividing d . Thus the reduction at each prime dividing d is additive. The conductor
is unchanged at the primes dividing n because of the formula relating the conductor,
discriminant and reduction type (see [31, App. C,§15]), that formation of Néron
models commutes with unramified base change, and the fact that at the primes that
divide n the minimal discriminant of Ed is the same as that of E. �

To find all twists Ed with norm conductor at most B, we twist E by all d of the
form ˙'ıd0d1, where ı 2 f0; 1g, d0 is a product of a fixed choice of generators for
the prime divisors of n, d1 is a squarefree product of a fixed choice of generators of
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primes not dividing n, and jN.d1/j �
p

B=C , where C is the norm of the product
of the primes that exactly divide n. We know from 3.3 that this search is exhaustive.

For example, let E be given by y2 C xy C 'y D x3 C .�' � 1/x2 of con-
ductor 5' � 3 having norm 31. Following the above strategy to find twists of
norm conductor � B WD 1831, we have C D 31 and squarefree d1 such that
jN.d1/j �

p
B=C � 7:6 : : :. Thus d1 2 f1; 2; '; 2'g and checking all possibilities

for 'ıd0d1, we find the elliptic curve E�'�2 having norm conductor 775 and the
elliptic curve E5'�3 having norm conductor 961. Other twists have larger norm
conductors; for example, E2 has norm conductor 126976D 212 � 31.

3F. Elliptic Curves with good reduction outside S . We use the algorithm of Cre-
mona and Lingham from [11] to find all elliptic curves E having good reduction at
primes outside of a finite set S of primes in F . This algorithm has limitations over
a general number field K due to the difficulty of finding a generating set for E.K/

and points on E defined over OK . Using Cremona’s Magma implementation of
the algorithm, we found several elliptic curves not found by other methods, for
example, y2C .'C 1/xyCy D x3�x2C .�19' � 39/xC .�143' � 4/, which
has norm conductor 1331.

3G. Special values of twisted L-series. In [15], Lassina Dembélé outlines some
methods for finding modular elliptic curves from Hilbert modular forms over real
quadratic fields. Formally, these methods are not proven to be any better than a
direct search procedure, as they involve making a large number of guesses, and a
priori we do not know just how many guesses we will need to make. And unlike
other methods described in this paper, this method requires many Hecke eigen-
values, and computing these takes a lot of time. However, this method certainly
works extremely well in many cases, and after tuning it by using large tables of
elliptic curves that we had already computed, we are able to use it to find more
elliptic curves that we would have had no hope of finding otherwise; we will give
an example of one of these elliptic curves later.

When the level n is not square, Dembélé’s method relies on computing or guess-
ing periods of the elliptic curve by using special values of L-functions of twists
of the elliptic curve. In particular, the only inputs required are the level of the
Hilbert modular form and its L-series. So we suppose that we know the level
n D .N / of the form, where N is totally positive, and that we have sufficiently
many coefficients of its L-series ap1

; ap2
; ap3

; : : :.
Let �1 and �2 denote the embeddings of F into the real numbers, with �1.'/�

1:61803 : : :. For an elliptic curve E over F we get two associated embeddings
into the complex numbers, and hence a pair of period lattices. Let �C

E
denote

the smallest positive real period corresponding to the embedding �1, and similarly
define ��

E
to be the smallest period which lies on the positive imaginary axis. We
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will refer to these as the periods of E, and as the period lattices are interchanged
when E is replaced with its conjugate elliptic curve, we let �C

E
and ��

E
denote

the least real and imaginary periods of the lattice under the embedding �2.
For ease, we write

�CC
E
D�C

E
�C

E
�C�

E
D�C

E
��

E

��C
E
D��E�

C

E
���E D��E�

�

E
:

We refer to these numbers as the mixed periods of E.

3G.1. Recovering the elliptic curve from its mixed periods. If we know these mixed
periods to sufficient precision, it is not hard to recover the elliptic curve E. Without
the knowledge of the discriminant of the elliptic curve, we do not know the lattice
type of the elliptic curve and its conjugate, but there are only a few possibilities
for what they might be. This gives us a few possibilities for the j -invariant of
E. Observe that �1.j .E// is either j .�1.E// or j .�2.E// and �2.j .E// is either
j .�1.E// or j .�2.E//, where

�1.E/D
��C

E

�CC
E

D
��

E

�C
E

�2.E/D
1

2

 
1C

��C
E

�CC
E

!
D

1

2

 
1C

��
E

�C
E

!

�1.E/D
�C�

E

�CC
E

D
��

E

�C
E

�2.E/D
1

2

 
1C

�C�
E

�CC
E

!
D

1

2

 
1C

��
E

�C
E

!
and j .�/ is the familiar

j .�/D e�2�i�
C 744C 196884e2�i�

C 21493760e4� i�
C � � � :

We try each pair of possible embeddings for j .E/ in turn, and recognize pos-
sibilities for j .E/ as an algebraic number. We then construct elliptic curves E0

corresponding to each possibility for j .E/. By computing a few ap.E/, we should
be able to determine whether we have chosen the correct j -invariant, in which case
E0 will be a twist of E. We can then recognize which twist it is in order to recover
E.

In practice, of course, as we have limited precision, and as j .E/ will not be
an algebraic integer, it may not be feasible to directly determine its exact value,
especially if its denominator is large.

To get around the problem of limited precision, we suppose that we have some
extra information; namely, the discriminant �E of the elliptic curve we are looking
for. With �E in hand we can directly determine which � to choose: If �1.�E/ > 0

then �1.j .E//D j .�1.E//, and if �1.�E/ < 0 then �1.j .E//D j .�2.E//, and
similarly for �2. We then compute �1.c4.E//D.j .�/�1.�E//

1=3 and �2.c4.E//D

.j .� 0/�2.�E//
1=3.
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Using the approximations of the two embeddings of c4, we can recognize c4

approximately as an algebraic integer. Specifically, we compute

˛ D
�1.c4/C �2.c4/

2
and ˇ D

�1.c4/� �2.c4/

2
p

5
:

Then c4 D ˛Cˇ
p

5, and we can find c6.
In practice, there are two important difficulties we must overcome: We do not

know �E and it may be quite difficult to get high precision approximations to
the mixed periods, and thus we may not be able to easily compute c4. Thus, we
actually proceed by choosing a �guess from which we compute half-integers ˛ and
ˇ and an integer aCb' � ˛Cˇ

p
5, arbitrarily rounding either a or b if necessary.

We then make some choice of search range M , and for each pair of integers m

and n, bounded in absolute value by M , we try each c4;guessD .aCm/C .bCn/'.
Given c4;guess, we attempt to solve

c6;guess D˙

q
c3

4;guess� 1728�guess;

and, if we can, we use these to construct a elliptic curve Eguess. If Eguess has
the correct conductor and the correct Hecke eigenvalues, we declare that we have
found the correct elliptic curve; otherwise, we proceed to the next guess.

For a choice of �guess, we will generally start with the conductor NE , and then
continue by trying unit multiples and by adding in powers of factors of NE .

3G.2. Guessing the mixed periods. We have thus far ignored the issue of actually
finding the mixed periods of the elliptic curve that we are looking for. Finding
them presents an extra difficulty as our procedure involves even more guesswork.
Dembélé’s idea is to use special values of twists of the L-function L.f; s/. Specif-
ically, we twist by primitive quadratic Dirichlet characters over OF , which are
homomorphisms �W .OF=c/

�!˙1, pulled back to OF .
In the case of odd prime conductor, which we will stick to here, there is just

a single primitive quadratic character, which is the quadratic residue symbol. A
simple way to compute it is by making a table of squares, or by choosing a primitive
root of g 2 .OF=c/

�, assigning �.g/D�1, and again making a table by extending
multiplicatively. Alternatively, one could use a reciprocity formula as described
in [7]. For general conductor, one can compute with products of characters having
prime conductor.

For a given f and a primitive �, we can construct the twisted L-function

L.f; �; s/D
X

m�OF

�.m/am

N.m/s
;

where m is a totally positive generator of m. (Note that � is not well defined
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on ideals, but is well defined on totally positive generators of ideals.) L.f; �; s/

will satisfy a functional equation similar to that of L.f; s/, but the conductor is
multiplied by Norm.c/2 and the sign is multiplied by �.�N /.

Oda [28] conjectured relations between the periods of f and the associated ellip-
tic curve E and gave some relations between the periods of f and central values of
L.s; �; 1/. Stronger versions of these relations are conjectured, and they are what
Dembélé uses to obtain information about the mixed periods of E. Specifically,
Dembélé distills the following conjecture from [2], which we further simplify to
state specifically for Q.

p
5/.

Conjecture 3.4. If � is a primitive quadratic character with conductor c relatively
prime to the conductor of E, with �.'/ D s0 and �.1 � '/ D s, (where s; s0 2

fC;�g D f˙1g), then

�
s;s0

E
D c��.�/L.E; �; 1/

p
5;

for some integer c�, where �.�/ is the Gauss sum

�.�/D
X
˛ mod c

�.˛/ exp
�
2� i Tr

�
˛=m
p

5
��
;

with m a totally positive generator of c.

Remark. The Gauss sum is more innocuous than it seems. For odd conductor
c it is of size

p
Norm.c/, while for an even conductor it is of size

p
2 Norm.c/.

Its sign is a 4-th root of unity, and whether it is real or imaginary can be deduced
directly from the conjecture, as it matches with the sign of �s;s0

E
. In particular, �.�/

is real when �.�1/ D 1 and imaginary when �.�1/ D �1, which is a condition
on Norm.c/ mod 4, as �.�1/ � Norm.c/ .mod 4/. This can all be deduced, for
example, from [7].

Also, note that Dembélé writes this conjecture with an additional factor of 4�2;
this factor does not occur with the definition of L.f; s/ that we have given.

Remark. Contained in this conjecture is the obstruction to carrying out the method
described here when n is a square. If the sign of the functional equation of L.f; s/

is �f , then the sign of L.f; �; s/ will be �.�N /�f . When n is a perfect square,
this is completely determined by whether or not �.'/D �.1�'/, so we can only
obtain information about either ��� and �CC or ��C and �C�, and we need
three of these values to find E.

With this conjecture in place, we can describe a method for guessing the mixed
periods of E. Now, to proceed, we construct four lists of characters up to some
conductor bound M (we are restricting to odd prime modulus here for simplicity,
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as primitivity is ensured, but this is not necessary):

S s;s0

D
˚
� mod p W�.'/Ds0; �.1�'/Ds; .p; n/D1;Norm.p/<M; �.�N /D�f

	
:

Here s; s0 2 fC;�g D f˙1g again, and we restrict our choice of characters to force
the functional equation of L.s; �; f / to have positive sign so that there is a good
chance that it does not vanish as the central point. We will consider these lists to
be ordered by the norms of the conductors of the characters in increasing order,
and index their elements as �s;s0

0
; �

s;s0

1
; �

s;s0

2
; : : :. For each character we compute

the central value of the twisted L-function to get four new lists

Ls;s0

D
˚
i ss0p

5 Norm.p/L.E; �; 1/; � 2 S s;s0	
D fLs;s0

0
;Ls;s0

1
; : : :g:

These numbers should now all be integer multiples of the mixed periods, so to get
an idea of which integer multiples they might be, we compute each of the ratios

Ls;s0

0

Ls;s0

k

D

c
�

s;s0

0

c
�

s;s0

k

2Q; k D 1; 2; : : : ;

attempt to recognize these as rational numbers, and choose as an initial guess

�ss0

E;guess D L
s;s0

0

�
lcm

�
numerator

�Ls;s0

0

Ls;s0

k

�
W k D 1; 2; : : :

���1

:

3G.3. An example. We give an example of an elliptic curve that we were only able
to find by using this method. At level nD .�38'C 26/ we found a newform f ,
computed

a.2/.f /D�1; a.�2'C1/.f /D 1;

a.3/.f /D�1; a.�3'C1/.f /D�1; a.�3'C2/.f /D�6;

: : : ;

a.200'�101/.f /D 168;

and determined, by examining the L-function, that the sign of the functional equa-
tion should be �1. (In fact, we do not really need to know the sign of the functional
equation, as we would quickly determine that C1 is wrong when attempting to
find the mixed periods.) Computing the sets of characters described above, and
choosing the first 3 of each, we have

S�� D f�.'C6/; �.7/; �.7'�4/g; S�C D f�.�3'C1/; �.5'�2/; �.'�9/g

SC� D f�.�4'C3/; �.5'�3/; �.�2'C13/g SCC D f�.'C9/; �.9'�5/; �.'C13/g:
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By using the 5133 eigenvalues above as input to Rubinstein’s lcalc [29], we
compute the lists of approximate values

L�� D f�33:5784397862407; �3:73093775400387; �18:6546887691646 g;

L�C D f 18:2648617736017i; 32:8767511924831i; 3:65297235421633ig;

LC� D f 41:4805656925342i; 8:29611313850694i; 41:4805677827298i g;

LCC D f 32:4909970742969; 162:454985515474; 162:454973589303 g:

Note that lcalc will warn us that we do not have enough coefficients to obtain
good accuracy, and we make no claim as far as the accuracy of these values is
concerned. Hoping that the ends will justify the means, we proceed forward.

Dividing each list by the first entry, and recognizing the quotients as rational
numbers, we get the lists

f1:000; 9:00000000005519; 1:80000000009351 g � f1; 9; 9=5g;

f1:000; 0:555555555555555; 5:00000000068986 g � f1; 5=9; 5g;

f1:000; 4:99999999999994; 0:999999949610245g � f1; 5; 1g;

f1:000; 0:199999999822733; 0:200000014505165g � f1; 1=5; 1=5g;

which may give an indication of the accuracy of our values. We now proceed with
the guesses

���E;guess � �33:5784397862407=9 � �3:73093775402141;

��C
E;guess � 18:2648617736017i=5� 3:65297235472034i;

�C�
E;guess � 41:4805656925342i=5� 8:29611313850683i;

�CC
E;guess � 32:4909970742969 D 32:4909970742969:

These cannot possibly be all correct, as ���
E
�CC

E
D ��C

E
�C�

E
. Still, we can

choose any three and get a reasonable guess, and in fact we may choose all possible
triples, dividing some of the guesses by small rational numbers, and choosing the
fourth guess to be consistent with the first three; we build a list of possible embed-
dings of j .E/, which will contain the possibility �1.j .E//� 1:365554233954�

1012, �2.j .E//� 221270:95861123, which is a possibility if

��C
E
D��C

E;guess; �C�
E
D�C�

E;guess; ��C
E
D
��C

E;guess

2
; �CC

E
D
�CC

E;guess

8
:

Cycling through many discriminants, we eventually try

�guess D ' � 2
5
� .19' � 13/;
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which leads us to the guess

�1.c4;guess/D .�1.j .E//�1.�guess//
1=3
� 107850:372979378;

�2.c4;guess/D .�2.j .E//�2.�guess//
1=3
� 476:625892034286:

We have enough precision to easily recognize this as

c4;guess D
108327C 48019

p
5

2
D 48019'C 30154;

and q
c3

4;guess� 1728�guess

does in fact have two square roots: ˙.15835084' C 9796985/. We try both of
them, and the choice with the minus sign gives the elliptic curve

y2
C'xyC'y D x3

C .' � 1/x2
C .�1001' � 628/xC .17899'C 11079/ ;

which has the correct conductor. We compute a few values of ap for this elliptic
curve, and it turns out to be the one that we are looking for.

4. Enumerating the elliptic curves in an isogeny class

Given an elliptic curve E=F , we wish to find representatives up to isomorphism
for all elliptic curves E0=F that are isogenous to E via an isogeny defined over F .
The analogue of this problem over Q has an algorithmic solution as explained in
[10, §3.8]; it relies on:

(1) Mazur’s theorem [27] that if  WE ! E0 is a Q-rational isogeny of prime
degree, then deg. /� 163.

(2) Formulas of Vélu [34] that provide a way to explicitly enumerate all p-isogenies
(if any) with domain E. Vélu’s formulas are valid for any number field, but
so far there has not been an explicit generalization of Mazur’s theorem for any
number field other than Q.

Remark. Assume the generalized Riemann hypothesis. Then work of Larson and
Vaintrob from [26] implies that there is an effectively computable constant CF

such that if 'WE! E0 is a prime-degree isogeny defined over F and E0 and E

are not isomorphic over F , then ' has degree at most CF .

Since we are interested in specific isogeny classes, we can use the algorithm de-
scribed in [3] that takes as input a specific non-CM elliptic curve E over a number
field K, and outputs a provably finite list of primes p such that E might have a
p-isogeny. The algorithm is particularly easy to implement in the case when K is
a quadratic field, as explained in [3, §2.3.4]. Using this algorithm combined with
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Vélu’s formulas, we were able to enumerate all isomorphism classes of elliptic
curves isogenous to the elliptic curves we found via the methods of Section 3, and
thus divide our isogeny classes into isomorphism classes.

5. CM elliptic curves over F

In this section we make some general remarks about CM elliptic curves over F .
The main surprise is that there are 31 distinct Q-isomorphism classes of CM elliptic
curves defined over F , more than for any other quadratic field.

Proposition 5.1. The field F has more isomorphism classes of CM elliptic curves
than any other quadratic field.

Proof. Let K be a quadratic extension of Q. Let HD denote the Hilbert class
polynomial of the CM order OD of discriminant D, so HD 2 QŒX � is the mini-
mal polynomial of the j -invariant jD of any elliptic curve E DED with CM by
OD . Since K is Galois, we have jD 2 K if and only if HD is either linear or
quadratic with both roots in K. The D for which HD is linear are the thirteen val-
ues �3;�4;�7;�8;�11;�12;�16;�19;�27;�28;�43;�67;�163. According
to [9], the D for which HD is quadratic are the following 29 discriminants:

�15;�20;�24;�32;�35;�36;�40;�48;�51;�52;�60;

�64;�72;�75;�88;�91;�99;�100;�112;�115;�123;

�147;�148;�187;�232;�235;�267;�403;�427:

By computing discriminants of these Hilbert class polynomials, we obtain Table 1.
The claim follows because the Q.

p
5/ row is largest, containing 9 entries. There

are thus 31D 2 � 9C 13 distinct CM j -invariants in Q.
p

5/. �

6. Related future projects

It would be natural to extend the tables to the first known elliptic curve of rank 3

over F , which may be the elliptic curve y2Cy D x3� 2xC 1 of norm conductor
1632 D 26569. It would also be interesting to make a table in the style of [33],
and compute analytic ranks of the large number of elliptic curves that we would
find; this would benefit from Sutherland’s smalljac program, which has very fast
code for computing L-series coefficients. Some aspects of the tables could also be
generalized to modular abelian varieties Af attached to Hilbert modular newforms
with not necessarily rational Hecke eigenvalues; in particular, we could enumerate
the Af up to some norm conductor, and numerically compute their analytic ranks.
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K D

Q.
p

2/ �24;�32;�64;�88

Q.
p

3/ �36;�48

Q.
p

5/ �15;�20;�35;�40;�60;�75;�100;�115;�235

Q.
p

6/ �72

Q.
p

7/ �112

Q.
p

13/ �52;�91;�403

Q.
p

17/ �51;�187

Q.
p

21/ �147

Q.
p

29/ �232

Q.
p

33/ �99

Q.
p

37/ �148

Q.
p

41/ �123

Q.
p

61/ �427

Q.
p

89/ �267

Table 1. Quadratic fields K and the values of D for which HD has roots in K

but not in Q.

7. Tables

As explained in Sections 3 and 4, assuming Conjecture 1.1, we found the complete
list of elliptic curves with norm conductor up to 1831, which is the first norm con-
ductor of a rank 2 elliptic curve over F . The complete dataset can be downloaded
from [5].

In each of the following tables #isom refers to the number of isomorphism
classes of elliptic curves, #isog refers to the number of isogeny classes of elliptic
curves, n refers to the conductor of the given elliptic curve, N.n/ is the norm of
the conductor, and Weierstrass equations are given in the form Ja1; a2; a3; a4; a6K.

Table 2 gives the number of elliptic curves and isogeny classes we found. Note
that in these counts we do not exclude conjugate elliptic curves, that is, if � denotes

Rank #Isog #Isom Smallest N.n/

0 745 2174 31

1 667 1192 199

2 2 2 1831

Total 1414 3368 —

Table 2. Number of isogeny classes and number of isomorphism classes of el-
liptic curves over F of norm conductor at most 1831.
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Size of isogeny class

Bound on N.n/ 1 2 3 4 6 8 10 Total

199 2 21 3 20 8 9 1 64
1831 498 530 36 243 66 38 3 1414

Table 3. Number of isogeny classes of a given size for elliptic curves over F

with norm conductors no larger than a given bound.

the nontrivial element of Gal.F=Q/, then we count E and E� separately if they
are not isomorphic.

Table 3 gives counts of the number of isogeny classes of elliptic curves in our
data of each size; note that we find some isogeny classes of cardinality 10, which
is bigger than what one observes with elliptic curves over Q.

Table 4 gives the number of elliptic curves and isogeny classes up to a given
norm conductor bound. Note that the first elliptic curve of rank 1 has norm con-
ductor 199, and there are no elliptic curves of norm conductor 200.

#Isogeny classes #Isomorphism classes

Rank Rank

Bound on N.n/ 0 1 2 Total 0 1 2 Total

200 62 2 0 64 257 6 0 263
400 151 32 0 183 580 59 0 639
600 246 94 0 340 827 155 0 982
800 334 172 0 506 1085 285 0 1370

1000 395 237 0 632 1247 399 0 1646
1200 492 321 0 813 1484 551 0 2035
1400 574 411 0 985 1731 723 0 2454
1600 669 531 0 1200 1970 972 0 2942
1800 729 655 0 1384 2128 1178 0 3306
1831 745 667 2 1414 2174 1192 2 3368

Table 4. Number of isogeny classes and number of isomorphism classes of el-
liptic curves over F with specified rank and with norm conductors no larger than
a given bound.

Table 5 gives the number of elliptic curves and isogeny classes with isogenies of
each degree; note that we do not see all possible isogeny degrees. For example, the
elliptic curve X0.19/ has rank 1 over F , so there are infinitely many elliptic curves
over F with degree 19 isogenies (unlike over Q where X0.19/ has rank 0). We
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Type #Isog #Isom Example curve N.n/

none 498 498 J'C 1, 1, 1, 0, 0 K 991
deg 2 652 2298 J ', �'C 1, 0, �4, 3' � 5 K 99
deg 3 289 950 J ', �', ', �2' � 2, 2'C 1 K 1004
deg 5 65 158 J 1, 0, 0, �28, 272 K 900
deg 7 19 38 J 0, 'C 1, 'C 1, ' � 1, �3' � 3 K 1025

Table 5. Number of isogeny classes and number of isomorphism classes of el-
liptic curves over F of norm conductor at most 1831 having isogenies of a given
type. “None” indicates curves having no cyclic isogenies.

also give an example of an elliptic curve (that need not have minimal conductor)
with an isogeny of the given degree.

Table 6 gives the number of elliptic curves with each torsion structure, along
with an example of an elliptic curve (again, not necessarily with minimal conductor)
with that torsion structure.

Group structure #Isom Example curve N.n/

0 796 J 0, �1, 1, �8, �7 K 225
Z=2Z 1453 J ', �1, 0, �' � 1, ' � 3 K 164
Z=3Z 202 J 1, 0, 1, �1, �2 K 100
Z=4Z 243 J'C 1, ' � 1, ', 0, 0 K 79

Z=2Z˚Z=2Z 312 J 0, 'C 1, 0, ', 0 K 256
Z=5Z 56 J 1, 1, 1, 22, �9 K 100
Z=6Z 183 J 1, ', 1, ' � 1, 0 K 55
Z=7Z 13 J 0, ' � 1, 'C 1, 0, �' K 41
Z=8Z 21 J 1, 'C 1, ', ', 0 K 31

Z=2Z˚Z=4Z 51 J'C 1, 0, 0, �4, �3' � 2 K 99
Z=9Z 6 J ', �'C 1, 1, �1, 0 K 76

Z=10Z 12 J'C 1, ', ', 0, 0 K 36
Z=12Z 6 J ', 'C 1, 0, 2' � 3, �'C 2 K 220

Z=2Z˚Z=6Z 11 J 0, 1, 0, �1, 0 K 80
Z=15Z 1 J 1, 1, 1, �3, 1 K 100

Z=2Z˚Z=8Z 2 J 1, 1, 1, �5, 2 K 45

Table 6. Number of isomorphism classes of elliptic curves over F of norm con-
ductor at most 1831 having given torsion subgroups.

We computed the invariants in the Birch and Swinnerton-Dyer conjecture for
our elliptic curves, and solved for the conjectural order of X; Table 7 gives the
number of elliptic curves in our data having each order of X, and Table 8 lists
elliptic curves of minimal conductor exhibiting each of these orders.



A DATABASE OF ELLIPTIC CURVES OVER Q.
p

5/: A FIRST REPORT 163

#X 1 4 9 16 25 36
#Isom 3191 84 43 16 2 2

Table 7. Number of isomorphism classes of elliptic curves over F of norm con-
ductor at most 1831 having given order of X.

#X First elliptic curve over F having X of this order N.n/

1 J 1; 'C 1; '; '; 0 K 31
4 J 1; 1; 1;�110;�880 K 45
9 J'C 1;�'; 1;�54686' � 35336;�7490886' � 4653177 K 76

16 J 1; '; 'C 1;�4976733' � 3075797;�6393196918' � 3951212998 K 45
25 J 0;�1; 1;�7820;�263580 K 121
36 J 1;�'C 1; '; 1326667' � 2146665; 880354255' � 1424443332 K 1580

Table 8. Elliptic curves over F of smallest norm conductor having X of a given order.
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Finding simultaneous Diophantine approximations
with prescribed quality

Wieb Bosma and Ionica Smeets

We give an algorithm that finds a sequence of approximations with Dirichlet
coefficients bounded by a constant only depending on the dimension. The algo-
rithm uses LLL lattice basis reduction. We present a version of the algorithm
that runs in polynomial time of the input.

1. Introduction

The regular continued fraction algorithm is a classical algorithm to approximate
reals by rational numbers. The denominators of continued fraction convergents
furnish, for every a 2 R, infinitely many integers q such that

kq ak< q�1;

where kxk denotes the distance between x and the nearest integer. The exponent
�1 of q is minimal; if it is replaced by any number e < �1, then there exist real
numbers a such that only finitely many integers q satisfy kq ak< qe.

Hurwitz [9] proved that the continued fraction algorithm finds, for every a 2

R nQ, an infinite sequence of increasing integers qn with

kqn ak<
1
p

5
q�1

n :

If the constant 1=
p

5 is replaced by any smaller one, then this statement is false.
Legendre [15] showed that the continued fraction algorithm finds all good approx-
imations, in the sense that if for some positive integer q

kq ak< 1
2

q�1;

then q is one of the qn found by the algorithm.

MSC2010: primary 11J13; secondary 11Y16, 11J70.
Keywords: simultaneous Diophantine approximation, LLL lattice reduction.
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As to the generalization of approximations in higher dimensions Dirichlet [16]
proved the following theorem; see Chapter II of [19].

Theorem 1.1. Let an n�m matrix A with entries aij 2RnQ be given and suppose
that 1; ai1; : : : ; aim are linearly independent over Q for some i with 1 � i � n.
There exist infinitely many coprime m-tuples of integers .q1; : : : ; qm/ such that,
with q Dmax

j
jqj j � 1, we have

max
i
kq1 ai1C � � �C qm aimk< q�m=n: (1)

If the exponent �m=n is replaced by any smaller number, there exists a matrix A

for which the inequality holds for only finitely many coprime tuples .q1; q2; : : : ; qm/.

Definition 1.2. Let an n�m matrix A with entries aij 2RnQ be given. The Dirich-
let coefficient of an m-tuple .q1; : : : ; qm/ is qm=nmax

i
kq1 ai1C � � �C qm aimk :

The proof of the theorem does not give an efficient way of finding a series
of approximations with a Dirichlet coefficient less than 1. For the case m D 1

the first multidimensional continued fraction algorithm was given by Jacobi [10].
Many more followed, see for instance Perron [18], Brun [5; 6], Lagarias [14] and
Just [11]. Brentjes [4] gives a detailed history and description of such algorithms.
Schweiger’s book [20] gives a broad overview. For nD 1 there is, amongst others,
the algorithm by Ferguson and Forcade [8]. However, there is no efficient algorithm
guaranteed to find a series of approximations with Dirichlet coefficient smaller
than 1.

In 1982 the LLL algorithm for lattice basis reduction was published in [17].
The authors noted that their algorithm could be used for finding Diophantine ap-
proximations of given rationals with Dirichlet coefficient only depending on the
dimension; see Corollary 2.4. Just [11] developed an algorithm based on lattice
reduction that detects Z-linear dependence in the ai , in the case mD 1. If no such
dependence is found her algorithm returns integers q with

max
i
kqaik � c

� nX
iD1

a2
i

�1=2

q�1=.2n.n�1//;

where c is a constant depending on n. The exponent �1=.2n.n� 1// is larger than
the Dirichlet exponent �1=n. Lagarias [13] used the LLL algorithm in a series of
lattices to find good approximations for the case mD 1. Let a1; : : : ; an 2Q and
let N be a positive integer; suppose there exists Q 2 N with 1�Q�N such that
maxj kQ ajk< ". Then Lagarias’s algorithm on input a1; : : : ; an and N finds in
polynomial time a q with 1� q � 2n=2N such that maxj kq ajk �

p
5n2.n�1/=2".

One difference with our work is that Lagarias focuses on the quality kq ajk, while
we focus on the Dirichlet coefficient q1=nkq ajk. We also consider the case m> 1.
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The main result of the present paper is an algorithm that by iterating the LLL
algorithm gives a series of approximations of given rationals with optimal Dirich-
let exponent. Where the LLL algorithm gives one approximation, our dynamic
algorithm gives a series of successive approximations. To be more precise: For
a given n�m-matrix A with entries aij 2 Q and a given upper bound qmax the
algorithm returns a sequence of m-tuples .q1; : : : ; qm/ such that for every Q with
2.mCnC3/.mCn/=.4m/ �Q� qmax one of these m-tuples satisfies

max
j
jqj j �Q

and
max

i
kq1ai1C � � �C qmaimk � 2.mCnC3/.mCn/=.4n/Q�m=n:

The exponent �m=n of Q can not be improved, and therefore we say that these
approximations have optimal Dirichlet exponent.

Our algorithm is a multidimensional continued fraction algorithm in the sense
that we work in a lattice basis and that we only interchange basis vectors and
add integer multiples of basis vectors to another. Our algorithm differs from other
multidimensional continued fraction algorithms in that the lattice is not fixed across
iterations. In Lemma 3.6 we show that if there exists an extremely good approxi-
mation, our algorithm finds a very good one. We derive in Theorem 3.8 how the
output of our algorithm gives a lower bound on the quality of possible approxima-
tions with coefficients up to a certain limit. In Section 4 we show that a slightly
modified version of our algorithm runs in polynomial time. In Section 5 we present
some numerical data.

An earlier version of this paper appeared as Chapter V of Smeets’s thesis [21].

2. Lattice reduction and the LLL algorithm

In this section we give the definitions and results that we need for our algorithm.
Let r be a positive integer. A subset L of the r -dimensional real Euclidean

vector space Rr is called a lattice if there exists a basis b1; : : : ; br of Rr such that

LD

rX
iD1

Zbi D

� rX
iD1

zibi

ˇ̌
zi 2 Z for i D 1; : : : ; r

�
:

We say that b1; : : : ; br is a basis for L. The determinant of the lattice L is defined
by j det.b1; : : : ; br /j and we denote it as det L.

For any linearly independent b1; : : : ; br 2 Rr the Gram-Schmidt process yields
an orthogonal basis b�

1
; : : : ; b�r for Rr , defined inductively by

b�i D bi �

i�1X
jD1

�ij b�j for 1� i � r
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and

�ij D
.bi ; b

�
j /

.b�j ; b
�
j /
;

where . ; / denotes the ordinary inner product on Rr .
We call a basis b1; : : : ; br for a lattice L reduced if

j�ij j �
1
2

for 1� j < i � r

and ˇ̌
b�i C�ii�1b�i�1

ˇ̌2
�

3
4
jb�i�1j

2 for 1� i � r;

where jxj denotes the Euclidean length of x.

Proposition 2.1 [17, Proposition 1.6]. Let b1; : : : ; br be a reduced basis for a
lattice L in Rr . Then

(1) jb1j � 2.r�1/=4 .det L/1=r ;

(2) jb1j
2 � 2r�1 jxj2 for every nonzero x 2L,

(3)
rY

iD1

jbi j � 2r.r�1/=4 det L.

Proposition 2.2 [17, Proposition 1.26]. Let L � Zr be a lattice with a basis
b1; b2; : : : ; br , and let F 2 R, F � 2, be such that jbi j

2 � F for 1 � i � r . Then
the number of arithmetic operations needed by the LLL algorithm is O.r4 log F /

and the integers on which these operations are performed each have binary length
O.r log F /.

In the following lemma the approach suggested in the original LLL-paper for
finding (simultaneous) Diophantine approximations is generalized to the case m> 1.

Lemma 2.3. Let an n�m-matrix A with entries aij 2R and an " 2 .0; 1/ be given.
Let L be the lattice formed by the columns of the .mC n/� .mC n/-matrix

B D

266666666664

1 0 � � � 0 a11 � � � a1m

0 1 0 a21 � � � a2m
:::

: : :
:::

:::
:::

0 � � � 0 1 an1 � � � anm

0 � � � 0 0 c 0
:::

:::
:::

: : :

0 � � � 0 0 0 c

377777777775
; (2)

with c D .2�.mCn�1/=4"/.mCn/=m.
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The LLL algorithm applied to L will yield an m-tuple .q1; : : : ; qm/ of integers
with

max
j
jqj j � 2.mCn�1/.mCn/=.4m/"�n=m (3)

and
max

i
kq1ai1C � � �C qmaimk � ":

Proof. The LLL algorithm finds a reduced basis b1; : : : ; bmCn for the lattice L.
For each vector b in this basis there exist pi 2 Z, for 1 � i � n, and qj 2 Z, for
1� j �m, such that

b D

2666666664

q1a11C � � �C qma1m�p1
:::

q1an1C � � �C qmanm�pn

cq1
:::

cqm

3777777775
:

Proposition 2.1(i) gives an upper bound for the length of the first basis vector,

jb1j � 2.mCn�1/=4cm=.mCn/:

From this vector b1 we find integers q1; : : : ; qm, such that

max
j
jqj j � 2.mCn�1/=4c�n=.mCn/ (4)

and

max
i
kq1ai1C � � �C qmaimk � 2.mCn�1/=4cm=.mCn/: (5)

Substituting c D .2�.mCn�1/=4"/.mCn/=m gives the results. �

From (4) and (5) we obtain the following corollary.

Corollary 2.4. For any n�m-matrix A with entries aij 2 R the LLL algorithm
can be used to obtain an m-tuple .q1; : : : ; qm/ that satisfies, with q Dmaxj jqj j,

max
i
kq1ai1C � � �C qmaimk � 2.mCn�1/.mCn/=.4n/q�m=n:

3. The iterated LLL algorithm

We iterate the LLL algorithm over a series of lattices to find a sequence of approx-
imations. We start with a lattice determined by a basis of the form (2). After the
LLL algorithm finds a reduced basis for this lattice, we decrease the constant c by
dividing the last m rows of the matrix by a constant d greater than 1. By doing
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so, " is divided by dm=.mCn/. We repeat this process until the upper bound (3) for
max jqj j guaranteed by the LLL algorithm exceeds a given upper bound qmax.

To ease notation we put d D 2 and "D 1=2.

Algorithm 3.1 (Iterated LLL algorithm (ILLL)).

Input: An n�m-matrix A with entries aij in R, and an upper bound qmax > 1.

Output: For each integer k � 1 no larger than the k 0 defined in (8), a vector
q.k/ 2 Zm with

max
j
jqj .k/j � 2.mCn�1/.mCn/=.4m/ 2kn=m (6)

and

max
i
kq1.k/ ai1C � � �C qm.k/ aimk � 1=2k : (7)

1. Construct the basis matrix B as given in (2) from A.

2. Apply the LLL algorithm to B.

3. Deduce q1; : : : ; qm from the first vector in the reduced basis returned by the
LLL algorithm.

4. Divide the last m rows of B by 2.mCn/=m

5. Stop if the upper bound for q guaranteed by the algorithm (6) exceeds qmax;
else go to Step 2.

Remark 3.2. The number 2.mCn/=m in Step 4 may be replaced by d .mCn/=m for
any real number d > 1. When we additionally set "D 1=d this yields

max
j
jqj .k/j � 2.mCn�1/.mCn/=.4m/dkn=m

and

max
i
kq1.k/ai1C � � �C qm.k/aimk< d�k :

In this paper, with the exception of the numerical examples in Section 5, we always
take d D 2 and "D 1=2.

Define

k 0 WD

�
�
.mC n� 1/.mC n/

4n
C

m log2 qmax

n

�
: (8)

Lemma 3.3. Let an n �m-matrix A with entries aij in R and an upper bound
qmax > 1 be given. With this input, the number of times the ILLL algorithm applies
the LLL algorithm equals k 0 from (8).

Proof. One derives the number of iterations by solving k from the stopping crite-
rion (6)

qmax � 2.mCn�1/.mCn/=.4m/2kn=m;
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that is:
m

n
log2 qmax �

.mC n� 1/.mC n/

4n
C k:

We stop iterating as soon as the integer k reaches the ceiling k 0 as in (8). �

For each k � 1 we define

c.k/D .2�k�.mCn�5/=4"/.mCn/=m:

Note that c.1/ is the constant c from Lemma 2.3. In the k-th iteration we are
working in the lattice defined by the basis in (2) with c replaced by c.k/.

Lemma 3.4. The output q.k/D .q1.k/; q2.k/; : : : ; qm.k// of the ILLL algorithm
satisfies (6) and (7), for 1� k � k 0.

Proof. Since we take "D 1=2, in the k-th iteration we use

c.k/D .2�k�.mCn�1/=4/.mCn/=m:

Substituting c.k/ for c in (4) and (5) yields (6) and (7), respectively. �

The following theorem gives the main result of the present paper, as mentioned
in the introduction. The algorithm returns a sequence of approximations with all
coefficients smaller than Q, optimal Dirichlet exponent and Dirichlet coefficient
only depending on the dimensions m and n .

Theorem 3.5. Let an n�m-matrix A with entries aij in R, and qmax > 1 be given.
The ILLL algorithm finds a sequence of m-tuples .q1; : : : ; qm/ of integers such that
for every Q with 2.mCnC3/.mCn/=.4m/ �Q� qmax one of these m-tuples satisfies

max
j
jqj j �Q and

max
i
kq1ai1C � � �C qmaimk � 2.mCnC3/.mCn/=.4n/Q�m=n:

Proof. Take k 2 N such that

2.k�1/n=m
�Q � 24m=..mCnC3/.mCn// < 2kn=m: (9)

From Lemma 3.4 we know that q.k/D .q1.k/; q2.k/; : : : ; qm.k// satisfies the
inequality

max
j
jqj .k/j � 2.mCnC3/.mCn/=.4m/ 2.k�1/n=m

�Q:

From the right side of inequality (9) it follows that

1

2k
< 2.mCnC3/.mCn/=.4n/Q�m=n:
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From Lemma 3.4 and this inequality we derive that

max
i
kq1.k/ ai1C � � �C qm.k/ aimk �

1

2k
< 2.mCnC3/.mCn/=.4n/Q�m=n: �

Proposition 2.1(2) guarantees that if there exists an extremely short vector in the
lattice, then the LLL algorithm finds a rather short lattice vector. We extend this
result to the realm of successive approximations. In the next lemma we show that
for every very good approximation (satisfying (11)), the ILLL algorithm finds a
rather good one (satisfying (14)) not too far away from it (as specified by (13)).

Lemma 3.6. Let an n�m-matrix A with entries aij in R, a real number 0< ı < 1,
and an integer s > 1 be given. If there exists an m-tuple .s1; : : : ; sm/ of integers
with

s Dmax
j
jsj j> 2.mCn�1/n=.4m/

�
nı2

m

�n=.2.mCn//
(10)

and

max
i
ks1ai1C � � �C smaimk � ıs

�m=n; (11)

then applying the ILLL algorithm with

qmax > 2.m
2Cm.n�1/C4n/=.4m/

� m

nı2

�n=.2.mCn//

s (12)

yields an m-tuple .q1; : : : ; qm/ of integers with

max
j
jqj j � 2.m

2Cm.n�1/C4n/=.4m/
� m

nı2

�n=.2.mCn//

s (13)

and

max
i
kq1ai1C � � �C qmaimk � 2.mCn/=2

p
nıs�m=n: (14)

Proof. Let 1� k � k 0 be an integer. Proposition 2.1(2) gives that for each m-tuple
q.k/ found by the algorithm, we have

nX
iD1

kq1.k/ai1C � � �C qm.k/aimk
2
C c.k/2

mX
jD1

qj .k/
2

� 2mCn�1

� nX
iD1

ks1a11C � � �C smaimk
2
C c.k/2

mX
jD1

s2
j

�
:

From this and (10) and (11) it follows that

max
i
kq1.k/ai1C � � �C qm.k/aimk

2
� 2mCn�1

�
nı2s�2m=n

C c.k/2ms2
�
: (15)
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Take the smallest positive integer K such that

c.K/�

r
n

m
ıs�.mCn/=n: (16)

We find for the K-th iteration from (15) and (16)

max
i
kq1.K/ai1C � � �C qm.K/aimk � 2.mCn/=2

p
nıs�m=n;

which gives (14).
We show that under assumption (12) the ILLL algorithm performs at least K

iterations. We may assume K > 1, since the ILLL algorithm always performs at
least 1 iteration. From Lemma 3.3 we find that if qmax satisfies

qmax > 2Kn=m2.mCn�1/.mCn/=.4m/;

then the ILLL algorithm performs at least K iterations. Our choice of K implies

c.K� 1/D
c.1/

2.mCn/.K�2/=m
D

2�.mCnC3/.mCn/=.4m/

2.mCn/.K�2/=m
>

r
n

m
ıs�.mCn/=n;

and we obtain

2Kn=m < 2�.mCn�5/n=.4m/
� m

nı2

�n=.2.mCn//

s:

From this we find that

qmax > 2.m
2Cm.n�1/C4n/=.4m/

� m

nı2

�n=.2.mCn//

s

is a sufficient condition to guarantee that the algorithm performs at least K itera-
tions.

Furthermore, either 2�.mCn/=m
p

n=m ıs�.mCn/=n < c.K/ or K D 1. In the
former case we find from (4) that

max
j
jqj .K/j � 2.mCn�1/=4c.K/�n=.mCn/ < 2.mCn�1/=42n=m

� m

nı2

�n=.2.mCn//

s:

In the latter case we obtain from (4) that

max
j
jqj .1/j � 2.mCn�1/=4c.1/�n=.mCn/

D 2.mCn�1/=42.mCnC3/n=.4m/

and, by (10),

2.mCn�1/=42.mCnC3/n=.4m/
D 2.mCn�1/=42n=m2.mCn�1/n=.4m/

< 2.mCn�1/=42n=m
� m

nı2

�n=.2.mCn//

s:



176 WIEB BOSMA AND IONICA SMEETS

We conclude that for all K � 1,

max
j
jqj .K/j � 2.m

2Cm.n�1/C4n/=.4m/
� m

nı2

�n=.2.mCn//

s: �

From (13) and (14) we obtain the following corollary.

Corollary 3.7. With the assumptions of Lemma 3.6, the ILLL algorithm can be
used to obtain an m-tuple .q1; : : : ; qm/ of integers that satisfies

qm=n max
i
kq1ai1C � � �C qmaimk

� 2.m
2Cm.3n�1/C4nC2n2/=.4n/mm=.2.mCn//.nı2/n=.2.mCn//;

where again q Dmax
j
jqj j.

Theorem 3.8. Let an n�m-matrix A with entries aij in R and qmax > 1 be given.
Assume that 
 is such that for every m-tuple .q1; : : : ; qm/ returned by the ILLL
algorithm, we have

qm=n max
i
kq1ai1C : : : qmaimk> 
 , where q Dmax

j
jqj j: (17)

Set

ı D 2�.mCn/.m2Cm.3n�1/C4nC2n2/=.4n2/m�m=.2n/n�1=2
 .mCn/=n: (18)

Let .s1; : : : ; sm/ be an m-tuple of integers, and set s Dmaxj jsj j. If

s > 2.mCn�1/n=.4m/
�

nı2

m

�n=.2.mCn//
(19)

and

s < 2�.m
2Cm.n�1/C4n/=.4m/

�
nı2

m

�n=.2.mCn//
qmax (20)

then
sm=n max

i
ks1ai1C � � �C smaimk> ı: (21)

Proof. Assume that every vector returned by our algorithm satisfies (17) and that
there exists an m-tuple .s1; : : : ; sm/ satisfying (19) and (20) but not satisfying
Equation (21). From Equation (20) it follows that qmax satisfies (12). We apply
Lemma 3.6 and find that the algorithm finds an m-tuple .q1; : : : ; qm/ that satis-
fies (17). Substituting ı as given in (18) gives

qm=n max
i
kq1ai1C � � �C qmaimk � 
;

in contradiction with our assumption. �
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4. A polynomial time version of the ILLL algorithm

We have used real numbers in our theoretical results, but in a practical implemen-
tation of the algorithm we only use rational numbers. Without loss of generality
we may assume that these numbers are in the interval Œ0; 1�. In this section we
describe the changes to the algorithm and we show that this modified version of
the algorithm runs in polynomial time.

As input for the rational algorithm we take

� the dimensions m and n,

� a rational number " 2 .0; 1/,

� an integer M that is large compared to .mCn/2

m
�

mCn

m
log ",

� an n�m-matrix A with entries 0 < aij � 1, where each aij D pij=2
M for

some integer pij ,

� an integer qmax < 2M .

Remark 4.1. In this rational algorithm all irrational numbers are approximated
by rational numbers with denominator 2M . Thus M denotes the precision that is
used.

When we construct the matrix B in Step 1 of the ILLL algorithm we approximate
c as given in (2) by a rational number

Oc D 2�M
d2M ce D 2�M

˙
2M

�
2�.mCn�1/=4"

�.mCn/=m�
: (22)

Hence c < Oc � cC 2�M .
In iteration k we use a rational Oc .k/ that for k � 2 is given by

Oc .k/D 2�M
˙
2M
Oc .k � 1/2�.mCn/=m

�
and Oc .1/D Oc as in (22);

and we change Step 4 of the ILLL algorithm to “Multiply the last m rows of B by
Oc .k � 1/= Oc .k/.” The other steps of the rational iterated algorithm are as described
in Section 3.

The running time of the rational algorithm.

Theorem 4.2. Let the input be given as described above. Then the number of arith-
metic operations needed by the ILLL algorithm and the binary length of the integers
on which these operations are performed are both bounded by a polynomial in m,
n, and M .

Proof. The number of times we apply the LLL algorithm is not changed by ratio-
nalizing c, so we find the number of iterations k 0 from Lemma 3.3

k 0 D

�
�
.mC n� 1/.mC n/

4n
C

m log2 qmax

n

�
<

�
mM

n

�
:
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It is obvious that Steps 1, 3, 4 and 5 of the algorithm are polynomial in the size
of the input and we focus on the LLL-step. We determine an upper bound for the
length of a basis vector used at the beginning of an iteration in the ILLL algorithm.

In the first application of the LLL algorithm the length of the initial basis vectors
as given in (2) is bounded by

jbi j
2
�max

j

˚
1; a2

1j C � � �C a2
nj Cm Oc 2

	
�mC n for 1� i �mC n;

where we use that 0< aij < 1 and Oc � 1.
The input of each following application of the LLL algorithm is derived from the

reduced basis found in the previous iteration by making some of the entries strictly
smaller. Part (2) of Proposition 2.1 yields that for every vector bi in a reduced basis
we have

jbi j
2
� 2.mCn/.mCn�1/=2.det L/2

mCnY
jD1
j¤i

jbi j
�2:

The determinant of our starting lattice is given by Oc m and the determinants of all
subsequent lattices are strictly smaller. Every vector bi in the lattice is at least
as long as the shortest nonzero vector in the lattice. Thus for each i we have
jbi j

2 �
1

2M . Combining this yields

jbi j
2
� 2.mCnC2M /.mCn�1/=2

Oc 2m
� 2.mCnC2M /.mCn�1/=2

for every vector used as input for the LLL-step after the first iteration.
Thus we have

jbi j
2 <max

˚
mC n ; 2.mCnC2M /.mCn�1/=2

	
D 2.mCnC2M /.mCn�1/=2 (23)

for any basis vector that is used as input for an LLL-step in the ILLL algorithm.
Proposition 2.2 shows that for a given basis b1; : : : ; bmCn for ZmCn with F 2R,

F � 2 such that jbi j
2 � F for 1� i �mC n the number of arithmetic operations

needed to find a reduced basis from this input is O..mC n/4 log F /. For matrices
with entries in Q we need to clear denominators before applying this proposition.
Thus for a basis with basis vectors jbi j

2 � F and rational entries that can all be
written as fractions with denominator 2M the number of arithmetic operations is
O..mC n/4 log.22M F //.

Combining this with (23) and the number of iterations yields the theorem. �

Approximation results from the rational algorithm. Assume that the input matrix
A (with entries aij D 2�M pij 2 Q) is an approximation of an n�m-matrix A
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(with entries ˛ij 2 R), found by putting aij D 2�M d2M˛ije. In this subsection
we derive the approximation results guaranteed by the rational iterated algorithm
for the ˛ij 2 R.

According to (4) and (5) the LLL algorithm, applied with Oc instead of c, is
guaranteed to find an m-tuple .q1; : : : ; qm/ such that

q Dmax
j
jqj j � 2.mCn�1/.mCn/=.4m/"�n=m

and

max
i
kq1ai1C � � �C qmaimk

� 2.mCn�1/=4
��

2�.mCn�1/=4"
�.mCn/=m

C 2�M
�m=.mCn/

� "C 2.mCn�1/=4�Mm=.mCn/;

the last inequality following from the fact that .xC y/˛ � x˛C y˛ if ˛ < 1 and
x;y > 0.

For the ˛ij we find that

max
i
kq1˛i1C � � �C qm˛imk

�max
i
kq1ai1C � � �C qmaimkCmq 2�M

� "C 2.mCn�1/=4�Mm=.mCn/
Cm "�n=m 2.mCn�1/.mCn/=.4m/�M :

In the introduction to Section 4 we have chosen M large enough to guarantee that
the error introduced by rationalizing the entries is negligible.

We show that the difference between Oc .k/ and c.k/ is bounded by 2=2M .

Lemma 4.3. For each integer k � 0,

c.k/� Oc .k/ < c.k/C 2�M
kX

iD0

2�i.mCn/=m < c.k/C
2

2M
:

Proof. We use induction. For k D 0 we have Oc .0/D 2�M
˙
c.0/2M

�
and trivially

c.0/� Oc .0/ < c.0/C
1

2M
:

Assume that

c.k � 1/� Oc .k � 1/ < c.k � 1/C 2�M
k�1X
iD0

2�i.mCn/=m

and consider Oc .k/. From the definition of Oc .k/ and the induction assumption it



180 WIEB BOSMA AND IONICA SMEETS

follows that

Oc .k/D 2�M
˙
Oc .k � 1/ 2�.mCn/=m2M

�
� 2�.mCn/=m

Oc .k � 1/� 2�.mCn/=m c.k � 1/D c.k/

and

Oc .k/D 2�M
˙
Oc .k � 1/ 2�.mCn/=m2M

�
< 2�.mCn/=m

Oc .k � 1/C 2�M

< 2�.mCn/=m

�
c.k � 1/C 2�M

k�1X
iD0

2�i.mCn/=m

�
C 2�M

D c.k/C 2�M
kX

iD0

2�i.mCn/=m:

Finally note that
kP

iD0

2�i.mCn/=m < 2 for all k. �

One can derive analogues of Theorem 3.5, Lemma 3.6 and Theorem 3.8 for the
polynomial version of the ILLL algorithm by carefully adjusting for the introduced
error. We do not give the details, since in practice this error is negligible.

5. Experimental data

In this section we present some experimental data from the rational ILLL algorithm.
In our experiments we choose the dimensions m and n and iteration speed d , so
"D 1

d
. We fill the m� n matrix A with random numbers in the interval Œ0; 1� and

repeat the entire ILLL algorithm for a large number of these random matrices to
find our results. First we look at the distribution of the approximation quality. Then
we look at the growth of the denominators q found by the algorithm.

The distribution of the approximation qualities. For one-dimensional continued
fractions the approximation coefficients ‚k are defined as

‚k D q2
k

ˇ̌̌̌
a�

pk

qk

ˇ̌̌̌
;

where pk=qk is the kth convergent of a.
For the multidimensional case we define ‚k in a similar way:

‚k D q.k/m=n max
i
kq1.k/ ai1C � � �C qm.k/ aimk:

The one-dimensional case m D n D 1. We compare the distribution of the ‚k

found by the ILLL algorithm for m D n D 1 and various values of d with the
distribution of the ‚k as produced by the continued fraction algorithm with the
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best approximation properties. For this optimal continued fraction algorithm it
was shown in [2] that for almost all a, the limit

lim
N!1

1

N
# fk W 1� k �N and ‚k � zg

is equal to F.z/, where

F.z/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

z

log G
if 0� z � 1=

p
5;

1

log G

�p
1� 4z2C log

�
G

1�
p

1� 4z2

2z

��
if 1=
p

5� z � 1=2;

1 if 1=2� z � 1;

with G D .
p

5C 1/=2.
The optimal continued fraction algorithm finds rational approximations of which

the denominators grow with maximal rate, and it finds all approximations with
‚k < 1=2; for all this, see [1; 2; 3].

The following figures display distribution functions for ‚k ; that is, we show the
fraction of the ‚k found up to the value given on the horizontal axis.

We plot the distribution of the ‚k found by the ILLL algorithm for mD nD 1

and d D 2 in Figure 1. The ILLL algorithm might find the same approximation
more than once. We see in Figure 1 that for d D 2 the distribution function dif-
fers depending on whether we leave in the duplicates or sort them out. With the
duplicate approximations removed the distribution of ‚k strongly resembles F.z/

of the optimal continued fraction. The duplicates that the ILLL algorithm finds are
usually good approximations: If they are much better than necessary they will also
be an admissible solution in the next few iterations.
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Figure 1. Distribution function for ‚k from ILLL with mD nD 1 and d D 2,
with and without the duplicate approximations, compared to that of ‚k for
optimal continued fractions.
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Figure 2. Distribution function for ‚k from ILLL with mD nD 1 and d D 64,
with and without the duplicate approximations, compared to that of ‚k for
optimal continued fractions.

For larger d we do not find so many duplicates, because the quality has to im-
prove much more in every iteration; also see Figure 2 for an example with d D 64.

From now on we remove duplicates from our results.

The multidimensional case. In this section we show some results for the distribu-
tion of the ‚k’s found by the ILLL algorithm. For fixed m and n there also appears
to be a limit distribution for ‚k as d grows. See Figure 3 (right) for an example
with mD 3 and nD 2, and compare this with the left half of the same figure. In
this section we fix d D 512.
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Figure 3. Distribution function for ‚k from ILLL (with duplicates removed)
for d D 2; 8; 128 and 512. Left: mD nD 1. Right: mD 3 and nD 2.

In Figure 4 we show some distributions for cases where either m or n is 1.
In Figure 5 we show some distributions for cases where mD n.

Remark 5.1. Very rarely the ILLL algorithm returns an approximation with‚k > 1.

The denominators q. For regular continued fractions, denominators grow expo-
nentially fast; to be more precise, for almost all x we have (see Section 3.5 of [7])

lim
k!1

q
1=k

k
D e�

2=.12 log 2/;
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Figure 4. Distribution for ‚k from ILLL when either mD 1 or nD 1.
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Figure 5. Distribution of ‚k from ILLL when mD n.

For optimal continued fractions, the constant �2=.12 log 2/ in this expression is
replaced by �2=.12 log G/, where G D .

p
5C 1/=2. For multidimensional contin-

ued fraction algorithms little is known about the distribution of the denominators qj .
Lagarias defined in [12] the notion of a best simultaneous Diophantine approxima-
tion and showed that for the ordered denominators 1 D q1 < q2 < � � � of best
approximations for a1; : : : ; an we have

lim
k!1

inf q
1=k

k
� 1C

1

2nC1
:

We look at the growth of the denominators q Dmaxj jqj j that are found by the
ILLL algorithm. Dirichlet’s Theorem 1.1 suggests that if q grows exponentially
with a rate of m=n, then infinitely many approximations with Dirichlet coefficient
smaller than 1 can be found. In the iterated LLL algorithm it is guaranteed by (6)
that q.k/ is smaller than a constant times dkn=m. Our experiments indicate that
q.k/ is about dkn=m, or equivalently that e.m log qk/=.kn/ is about d ; see Figure 6,
which gives a histogram of solutions that satisfy e.m log qk/=.kn/ D x.
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Figure 6. Histograms of e.m log q.k//=.kn/ for various values of m; n and d .
In these experiments we used qmax D 1040 and repeated the ILLL algorithm�
2000=k 0

˘
times, with k 0 from Lemma 3.3.
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Success and challenges in determining
the rational points on curves

Nils Bruin

We give an overview of current computational methods for determining the
rational points on algebraic curves. We discuss how two methods, based on
embedding a curve in an abelian variety, provide a practical method for deciding
whether the curve has rational points and, if some additional technical condition
is met, for the determination of these points.

While we cannot prove the methods are always successful, we do have a
heuristic that makes us expect so. This means that the main problem becomes
the determination of rational points on abelian varieties, in particular the deter-
mination of the free rank of the finitely generated group they form. We discuss
some methods that provide bounds on this rank.

Finally, we report on some recent progress on applying these methods to non-
hyperelliptic curves of genus 3.

1. Introduction

This article is an extended abstract from an invited lecture delivered on July 13,
2012, as part of the Tenth Algorithmic Number Theory Symposium (ANTS X),
at the University of California, San Diego. It discusses current computational
methods for determining the rational points on algebraic curves. Two methods,
Mordell-Weil sieving (see Section 4) and Chabauty’s method (see Section 5) to-
gether provide a procedure that often decides whether a curve has any rational
points and, if so, determines them. While we cannot prove that these methods will
always succeed, we do have some heuristics that indicate that this is quite likely.

Both methods rely on embedding a curve in an abelian variety J and on having a
rather detailed description of the rational points on J . There is presently no proven
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Keywords: Selmer group, descent, Mordell-Weil sieving, rational points, curves, Chabauty,

coverings.
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algorithm for determining the rational points on an abelian variety, but here too we
have methods that frequently work in practice. In fact, if Tate-Shafarevich groups
are finite, as they are conjectured to be, then it would theoretically be possible to
compute the rational points on an abelian variety.

The main point of this article is that the computational bottleneck for determin-
ing rational points on curves presently lies in the determination of rational points on
abelian varieties. Our main tool is the computation of Selmer sets via finite descent.

After reviewing the Mordell-Weil sieve and Chabauty’s method in Sections 4
and 5, we give a brief description in Section 7 of recent joint work [14] with Bjorn
Poonen and Michael Stoll to provide a description of descent computations which,
to our knowledge, encompasses all previous methods for doing such computations
for curves.

We note in Section 8 that descent methods also help in deciding whether a
curve C can be embedded in its Jacobian, a requirement for the curve to have
rational points and for the application of the Mordell-Weil sieve and Chabauty’s
method. A good description of Selmer groups also helps in constructing covering
collections, which can be used to transform problems where Chabauty’s method
does not apply into problems where it may.

The most difficult ingredient in descent computations usually is the determina-
tion of unit groups and ideal class groups of number fields. Especially for number
fields of larger degrees, this can be extremely challenging. In Section 7 we describe
some ways one can reduce the maximal degree to be considered: from 63 to 28

in the case of smooth plane quartic curves. This has allowed us to perform the
required calculations for some genus-3 curves. To our knowledge, these are the
first examples of curves with simple Jacobians and trivial automorphism groups
to which the methods have been successfully applied. Previous applications made
essential use of decompositions of the Jacobian or of the automorphisms to get
descriptions more favorable to computation.

Since in general curves have trivial automorphism groups, we believe these ex-
amples present evidence that these methods are indeed quite generally applicable,
although the computational challenges can be daunting.

We cannot hope to give an exhaustive account of the subject here. Instead, we
intend to provide the reader with a bit of insight into how the different methods
interact and what the fundamental ideas and problems are. We have also included
ample literature references for further reading.

2. Statement of the problems

Consider the equation

x4
Cy4

Cx2yC 2xy �y2
C 1D 0: (1)



DETERMINING THE RATIONAL POINTS ON CURVES 189

Can you determine the solutions x;y 2 Q to this equation? Can you determine
whether this equation has any rational solutions at all? These are questions about
rational points on curves, and such questions are about as old as mathematics itself.
(See Proposition 9.3 for results on this particular equation.)

We concern ourselves with curves C defined over Q, and we want to study the
set of rational points C.Q/. Every curve has a projective closure, which has at
most finitely many additional rational points. Furthermore, every curve admits a
morphism from a nonsingular curve that is an isomorphism outside the finitely
many singularities, which are easily determined and tested for rationality. We can
therefore restrict our attention to nonsingular, absolutely irreducible, projective
curves.

The reader does not lose much, and may gain a more concrete conception, by
thinking of C as a smooth plane curve such as the projective closure of the curve
defined by Equation (1). Although much of what we discuss holds with suitable
modifications over arbitrary number fields, we will limit ourselves to Q for the
sake of concreteness and ease of notation.

A common theme in arithmetic geometry is that geometry determines arithmetic:
The geometric classification of curves C has deep ramifications for the structure
of C.Q/. There are:

� Curves of genus 0. These are always isomorphic to plane conics. Either such a
curve C has no rational points at all, or C admits a parametrization �WP1!C ,
providing an explicit bijection between P1.Q/ and C.Q/.

� Curves of genus 1. If C has any rational points, then C is isomorphic to an
elliptic curve. In that case, Mordell’s Theorem [46] implies that C.Q/ can be
described as a finitely generated abelian group.

� Curves of general type (genus at least 2). Faltings’s Theorem [28] states that
C.Q/ is a finite set.

We concentrate on two explicit questions.

Decision Problem. Given a curve C over Q, decide if C.Q/D∅.

Determination Problem. Given a curve C over Q, give an explicit description
of C.Q/.

We assume that the curve is given to us in a sufficiently explicit way, for instance
by explicit equations like Equation (1). For genus-0 curves, both questions have a
reasonably satisfactory solution [44, pp. 512–513] (and see [58] for a modern algo-
rithmic perspective). For genus-1 curves, a satisfactory answer to the determination
problem is usually considered to be an explicit listing of a finite set of generators
of C.Q/ equipped with its group structure. We are primarily interested in curves
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of general type. For those curves the set C.Q/ is finite, so an explicit listing of the
set would provide a satisfactory solution to the determination problem.

As we discuss in Section 4, the most important step is to realize C as a subvariety
of an abelian variety J . If we take J to be the Jacobian of C then a rational point
on C gives rise to such an embedding. If we can prove no such embedding exists,
then we can conclude that C.Q/ is empty.

Challenge A. Given a curve C over Q of positive genus, determine an embedding
of C into its Jacobian or prove no such embedding exists.

The main advantage of considering C as a subvariety of an abelian variety J ,
rather than of a rational space such as P2, is that the set of rational points of J is
much sparser: The Mordell-Weil Theorem [63] states that J.Q/ is a finitely gener-
ated group. We can use knowledge about J.Q/ to obtain information about C.Q/.
This leads to our second challenge.

Challenge B. Given a curve C of positive genus, determine J.Q/, where J is the
Jacobian of C .

Note that if C is of genus 1, then an embedding as in Challenge A establishes
an isomorphism between C and J , so Challenge B provides a solution to the deter-
mination problem. In the remainder of this text we take C to be a curve of general
type.

A major component in determining J.Q/ is determining the rank of its free part.
A conjectural link suggested by Birch and Swinnerton-Dyer [4] for elliptic curves
connects this rank to the vanishing of an L-function at a special point. For elliptic
curves over Q with an L-function that vanishes to order at most 1, this is now
proved [38; 43], but for more general abelian varieties even the existence of the
function at the point is not generally established.

The only general unconditional approach uses descent to provide a hopefully
sharp upper bound on the rank. The ideas are most easily explained in the language
of Galois cohomology (see Section 6).

Once a bound on the rank is determined, one can try to prove that the bound
is sharp by exhibiting sufficiently many independent points on J . Finding them
is only a computational problem. Since these points can be drawn from an obvi-
ously enumerable set of candidates, generators will eventually be found. Finding
generators efficiently is a serious computational problem, but we will ignore it here.

The traditional way of showing that a set generates all of J.Q/ is by computing
canonical heights. However, a good algorithm for computing canonical heights
efficiently is only available for curves of genus up to 2; see [31; 35; 60; 61]. For
our purposes, one only needs a subgroup of J.Q/, of finite index prime to some
predetermined number B. Proving that a set generates such a group is usually
much easier to establish; see Remark 4.6.
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Since (sharply) bounding the rank of J.Q/ is a crucial step for the methods in
Sections 4 and 5, we describe in Section 7 a way to actually compute or approxi-
mate the rather abstract objects introduced in Section 6. While one can concentrate
on the geometry of J (see [3; 37]), this becomes unwieldy for more complicated J .
Another approach emphasizes that J represents the group Pic0.C / of degree-0
divisor classes on C and tries to express as much of the data as possible in terms
of objects directly related to the curve [18; 21; 23; 48; 49; 53; 54; 56]. We closely
follow the exposition in [14].

In Section 8 we describe how the constructions in Section 7 can also be used to
attack some related problems, and in Section 9 we give some examples, taken from
[14], of successful applications of these methods to smooth plane quartic curves. To
our knowledge, these are the first examples fully carried out for curves with trivial
automorphism groups. Previous applications all made essential use of nontrivial
automorphisms to simplify computations. The fact that these procedures are also
shown to be practical when no such automorphisms are available is a hopeful sign
that they are applicable in generality.

3. Local considerations

Let C be a curve over Q and let K �Q be a field extension. Then C.Q/� C.K/.
Hence, if C has a Q-rational point then C.R/¤∅ and C.Qp/¤∅ for all primes p.

We introduce some notation to express this observation more concisely. We call
R the completion of Q at the infinite prime and write RDQ1. We write

�Q D fp 2 Z>1 W p is primeg[ f1g:

The consideration of all completions of Q at once leads to the ring A of adèles.
We will only use it here as a concise piece of opaque notation and define for a
projective curve C the set

C.A/ WD
Y
v2�Q

C.Qv/:

The observation above now translates to

C.Q/¤∅ implies C.A/¤∅: (2)

Fact 3.1. One can decide algorithmically whether C.A/D∅.

Determining whether C.R/D∅ is a straightforward application of calculus and
the intermediate value theorem. Determining whether C.Qp/ D ∅ is also com-
putable thanks to Hensel’s lifting criterion (see [10] for a collection of algorithms).
Furthermore, for all but a finite and explicitly computable set of primes p we can
immediately conclude that C.Qp/ is nonempty.
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The implication (2) is mainly useful for its contrapositive: if we can show that
C.A/ is empty (that is, that C.Qv/ is empty for some v) then we can conclude
that C.Q/ is empty. The converse of implication (2), known as the local-global
principle, is known to hold for genus-0 curves. Hence, if C is a genus-0 curve and
C.A/¤∅ then C has a rational point.

However, for curves of positive genus the local-global principle is known to
fail. For instance, for curves of genus 2 over Q, one can prove that the subset
of curves C with C.A/ ¤ ∅ has asymptotic density about 0:85, measured with
respect to an appropriate height [50]. However, one would expect the set of curves
with a rational point to have asymptotic density 0 — see for instance [52, Conjec-
ture 2.2(i)] for a formal statement of this folklore conjecture in the case of plane
curves — so many curves with points everywhere locally should have no rational
points at all.

4. The Mordell-Weil sieve

Let C be a smooth projective curve of genus g � 2. In this section we discuss a
method that allows us to obtain significant information on C.Q/ by considering an
embedding of C into an abelian variety J (usually its Jacobian) for which we can
determine J.Q/. We write �WC ! J for the embedding.

The rational points on an abelian variety are sufficiently sparse that the topolog-
ical closure J.Q/� J.A/ is significantly smaller than J.A/. We observe that

C.Q/� C.A/\J.Q/:

The latter set is amenable to computation, or at least to approximation. As it turns
out, the small step of taking into consideration a little bit of extra global data, in
the form of J.Q/, provides considerable extra information.

In [57], Scharaschkin presents the method and shows, subject to the standard
conjecture that X.J=Q/ is finite, that the obstruction to the existence of rational
points on C that this method exhibits can be interpreted in terms of the Brauer-
Manin obstruction [59]. See [12; 33; 49] for applications and [15] for a larger
scale experiment. Details are provided in [17], including an optimal strategy for
avoiding a combinatorial explosion to which this method is prone. See also [20]
for an application of to determining integral points on curves.

Let p be a prime of good reduction of the embedding �WC ! J , meaning that
there are smooth proper models C and J over Zp of C and J , respectively, and
a morphism �0WC! J that restricts to � on the generic fiber. (The conditions on
the type of reduction can be significantly relaxed.) We write C.Fp/D C.Fp/ and
J.Fp/ D J.Fp/. We use that J.Qp/ D J.Zp/ and write �pWJ.Q/! J.Fp/ for
the induced reduction map. Via the same principle we obtain a reduction map
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C.Q/! C.Fp/. Furthermore, we write �pWC.Fp/! J.Fp/ for the map that �0

induces on the rational points of the reductions.
Let us fix a finite set S of primes of good reduction of J and a positive integer B.

We consider the commutative diagram

C.Q/
�

//

��

J.Q/

BJ.Q/

�S

��Y
p2S

C.Fp/ �S
//
Y

p2S

J.Fp/

B im �p
;

where �S and �S are the obvious maps induced by f�p W p 2 Sg and f�p W p 2 Sg

respectively.
Each of the four sets in this diagram is finite, so determining

VS;B D im �S \ im �S

is a matter of combinatorics. For sufficiently large B and S , the map �S ı � will be
an injection, so in that case the size of VS;B provides an upper bound on the size
of C.Q/. In any case, if VS;B is empty, then C has no rational points.

If the domains of �S and �S are sufficiently small relative to their codomain, one
would expect the intersection of their images to be rather small. One can formulate
a reasonable heuristic argument that supports this.

Heuristic 4.1 (Poonen [47]). Subject to plausible assumptions that im �S and im �S

behave in a way that can be suitably modeled by a random process, one expects
that for suitably chosen B and S , the set VS;B consists only of images of C.Q/.

While �S and �S are maps between finite sets, both B;S have to be quite large
in practice for Heuristic 4.1 to apply. So, while VS;B is likely a very small set, it
tends to be an intersection of two rather large sets. For practical computations, one
has to take some care in constructing the set via appropriate steps. See [17] for
some strategies for doing so.

We are left with finding an appropriate embedding �WC ! J into an abelian
variety. A canonical choice for J is the Jacobian of C . It is a g-dimensional abelian
variety representing the degree-0 divisor classes on C ; that is, J.Q/D Pic0.C=Q/.
This equality is Galois-equivariant, so J.Q/ consists of the Galois-invariant divi-
sor classes Pic0.C=Q/Gal.Q=Q/. The latter can be strictly larger than Pic0.C=Q/,
the set of linear equivalence classes that contain divisors that are defined over Q.
However, for the problem at hand, this is not an issue (see [7], for instance, for
some related theory).
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Lemma 4.2 (Standard result). Let C be a curve over a field k, where k is either
a finite field or a number field such that C.kv/ is nonempty for all places v of k.
Then every Galois-invariant divisor class on C contains a divisor defined over k.

For our applications, if C.Qv/D∅ for any place v 2�Q, the results in Section 3
already imply that C.Q/D∅, so we only need to work with J.Q/ when we can
represent its points by divisors over Q. This allows us to avoid constructing a
projective model for J as a variety.

A point on a curve C gives rise to a degree-1 divisor class. Since on a curve of
positive genus no two such divisors are linearly equivalent, we obtain an injection
C.Q/! Pic1.C=Q/. Similarly to how J is a variety that represents Pic0, there is
also a variety Pic1.C /, that represents Pic1. Indeed, there is a natural morphism
C ! Pic1.C /. There is a natural action of J on Pic1.C /, corresponding to addition
of divisor classes, that equips Pic1.C / with the structure of a Q-torsor under J . A
rational point on Pic1.C / induces an isomorphism between J and Pic1.C /. If there
is no such point, then C has no degree 1 divisors and hence certainly no rational
points. Therefore, a reformulation of Challenge A is:

Challenge A0. Given a curve C over Q of positive genus, determine a divisor class
d 2 Pic1.C=Q/ or prove no such divisor class exists.

If d exists then the map �WC ! J it induces corresponds to

C.Q/ // Pic0.C=Q/

P
� // ŒP �� d:

For an appropriate reduction dp modulo p, we get the corresponding map

C.Fp/! Pic0.C=Fp/

given by P 7! ŒP ��dp . This suggests the procedure below for solving the decision
problem. First note that a choice of smooth projective model for C also provides
us with an explicitly enumerable set containing C.Q/ — namely, Pn.Q/ — so if C

has a rational point we can find it in finite time by enumeration (but see Remark 4.5
for drastic improvements).

Remark 4.3. We use the term algorithm in the strict sense: a Turing machine or
an equivalent computing device that is guaranteed to produce a correct answer in
finite time when given correct input. We use the word procedure for a less formal
concept than an algorithm. We allow a procedure to include steps that are not
guaranteed to succeed, and we do not require that a procedure will stop for all
valid input. We do require the guarantee that if a procedure finishes then its output
is correct.
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Procedure 4.4 (Decision procedure).

Input: A curve C over Q (or more generally, a number field).

Output: A rational point on C or a proof that there is none.

First parallel thread:

0. Enumerate candidates for C.Q/. If a point is found, we have shown that C.Q/

is not empty.

Second parallel thread:

1. Test if C.A/D∅. If that is the case then C.Q/ is empty too. See Fact 3.1.

2. (Challenge A0) Find d 2 Pic1.C=Q/ or prove it doesn’t exist. We either obtain
an embedding �WC ! J or we prove that C.Q/ is empty.

3. (Challenge B) Find a finite set of generators for J.Q/.

4. Choose appropriate S and B.

5. Compute VS;B . This involves computing J.Fp/, using for instance [39; 42].

6. If VS;B D∅ then C.Q/ is empty. Otherwise, increase S and B and go to step 5.

Remark 4.5. Once we have determined generators for J.Q/, we can enumerate
candidates for C.Q/ much more efficiently by enumerating J.Q/. Furthermore,
the set VS;B provides us with a list of cosets modulo BJ.Q/ that may contain
elements of C.Q/, further reducing the number of candidates to consider. This
makes it feasible to search up to height bounds that are doubly exponential in time.
See [20] for an application to finding integral points on curves.

We do not have a proof that this procedure will always terminate, but Heuristic 4.1
suggests it should. Indeed, in [15] we describe an experiment where we test how
well the decision procedure works in practice. We consider genus-2 curves admit-
ting models of the form

y2
D f6x6

Cf5x5
C � � �Cf0 with f0; : : : ; f6 2 f�3;�2; : : : ; 3g:

For nearly all the roughly 200,000 isomorphism classes represented, we were able
to solve the decision problem. For 42 curves we were unable to unconditionally
complete step 2. For those we obtained a presumably accurate bound on the rank of
J.Q/ by assuming the Birch and Swinnerton-Dyer conjecture. The Mordell-Weil
sieving itself never posed an insurmountable problem.

The main practical problem with the procedure above is that if either of steps 2
or 3 fails, we have no way of continuing. We can weaken the requirement for step 3
slightly.

Remark 4.6. We only need a set of elements in J.Q/ that generate J.Q/=BJ.Q/,
so a subgroup of finite index prime to B in J.Q/ would already be enough. If
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one knows the rank of J.Q/ then one can usually quickly deduce that a given set
generates such a group by considering its image under

J.Q/ //
Q

p2S J.Fp/:

for some suitable set of primes S . For instance, let q be a prime dividing B. If
we know that J.Q/=qJ.Q/' .Z=qZ/t and the codomain has a direct factor of the
form

Qt
iD1.Z=q

ei Z/, with e1; : : : ; et � 1, onto which the group generated by our
given set surjects, then the set generates a subgroup of finite index prime to q.

5. Isolating rational points: Chabauty’s method

While Mordell-Weil sieving can provide a proof that C.Q/ is empty, it will not
prove that C.Q/ is finite, let alone determine C.Q/, if there is a rational point
on C . Yet for large enough B and S the map C.Q/ ! VS;B is injective, and
Heuristic 4.1 predicts that for suitable values of B and S it is surjective as well.
Thus, given a rational point P 2 C.Q/, we mainly need a way to prove the equality

�C.Q/\ .�.P /CBJ.Q//D f�.P /g: (3)

Inspired by Skolem’s ideas for subvarieties of multiplicative groups, Chabauty [24]
observed that one can construct a nonzero p-adic analytic function

‚pWJ.Qp/ // Qp

that vanishes on J.Q/, provided that the rank r of J.Q/ is strictly smaller than the
dimension g of J . (Actually, he observed that one can construct such functions
locally, and gets the desired result by doing so on a finite open covering of the
rational points.) The fact that analytic functions have isolated zeros allows one
to conclude that C has only finitely many rational points and, with a bit of extra
work, to establish statements like equality (3). See [26] for one of the first modern
treatments of the method and [23], [32], and [34] for a flexible way of applying it.

In order to avoid some technical complications, we take a prime p at which C

has good reduction. We write J .1/.Qp/ for the kernel of the reduction homomor-
phism J.Qp/! J.Fp/ and we write ƒp D J.Q/\ J .1/.Qp/ for the part of the
Mordell-Weil group that lies in the kernel of reduction.

The function ‚p in question arises from the p-adic integration of a regular differ-
ential !. We consider regular differentials obtained by lifting a regular differential
! on C over Fp, so our differentials have good reduction at p as well. We sketch
the details here.

Let P 2C.Qp/. We choose a uniformizer t 2 Fp.C / at the reduction P 2C.Fp/

of P and lift it to a uniformizer t 2 Qp.C / at P . Let ! be a regular differen-
tial on C with good reduction as described above. We have ! D h dt for some
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function h 2 Qp.C / regular at P . Localization at P provides a homomorphism
Qp.C /!Qp..t//. Regularity and good reduction imply that when we identify h

with its image, we have h.t/ 2 Zp ŒŒt ��. We can compute a formal power seriesZ z

tD0

h.t/dt 2Qp ŒŒz��;

and it is straightforward to check that its radius of convergence is at least 1. Let
Qp be an algebraic closure of Qp, and extend the p-adic absolute value in the
natural way to Qp . For any point Q 2 C.Qp/ that reduces to P 2 C.Fp/, we have
jt.Q/jp < 1. Hence we can define the integral of ! from P to Q by the formulaZ Q

P

! D

Z t.Q/

0

h.t/dt;

which is easily checked to not depend on the choice of t . Note that every divisor
class in J .1/.Qp/ admits a representative of the form

ŒQ1C � � �CQg �gP �;

where each Qi 2 C.Qp/ reduces to P 2 C.Fp/. We define the integral of ! over
this divisor class by Z

ŒQ1C���CQg�gP �

! D

gX
iD1

Z Qi

P

!:

One can check that the regularity of ! implies that this provides a well-defined
group homomorphism J 1.Qp/!Qp.

Let !1; : : : ; !g be a basis of the space of regular differentials of the reduction
of C at p and let !1; : : : ; !g be a lift of that basis. We have a Zp-bilinear pairing

J .1/.Qp/� .Zp/
g
!Qp

taking
�
D; .�1; : : : ; �g/

�
to Z

D

�1!1C � � �C�g!g:

We see that if the Z-rank r of J.Q/ is strictly less than g, then the Zp-submodule
generated by ƒp � J .1/.Qp/ has Zp-rank at most r < g, so there is a nonzero
differential !p such thatZ

D

!p D 0 for all D 2ƒp D J.Q/\J .1/.Qp/:

In particular, for a rational point P 2 C.Q/, we can define

‚p;P .Q/D

Z Q

P

!p for Q 2 C.Qp/ that reduce to P 2 C.Fp/:
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It follows that ‚p;P .Q/ D 0 for every Q 2 C.Q/ with the same reduction as P

modulo p. The following is straightforward to prove by applying Hensel’s lemma
to the appropriate power series expansion.

Proposition 5.1 [26, proof of Theorem 4]. If P 2 C.Q/ and the reduction !p is
nonzero at �p.P / 2 C.Fp/, then we have

�C.Q/\ .�.P /Cƒp/D f�.P /g:

We obtain the following procedure (see Remark 4.3 for the technical meaning
of this word).

Procedure 5.2 (Determination procedure).

Input: A curve C of genus g > 1 with J.Q/ of free rank r < g.

Output: The elements of C.Q/.

1. Choose S and B, and search for points fP1; : : : ;Pkg � C.Q/ such that

fP1; : : : ;PkgCBJ.Q/D VS;BCBJ.Q/:

2. For each point Pi , find a prime p such that BJ.Q/�ƒp and !p.P /¤ 0 2 Fp .
If this succeeds, you have proved that

C.Q/D fP1; : : : ;Pkg:

3. If step 2 fails, go to step 1 and choose larger S and B.

Remark 5.3. The linearity of the integration pairing in the first component implies
that for any D 2 J .1/.Qp/ and m 2 Z we have thatZ

mD

! Dm

Z
D

!:

Since J .1/.Qp/�J.Qp/ is of finite index, say index m, we have for any D2J.Qp/

that mD 2 J .1/.Qp/, so we can use this identity to extend the integration pairing to
all of J.Qp/. This provides a rigid analytic continuation of ‚p;P to all of C.Qp/

that vanishes at C.Q/ — see also [2].

We cannot prove that step 1 of the determination procedure will succeed, but
Heuristic 4.1 suggests it should. We cannot prove that step 2 will succeed eventu-
ally either, but given that !p.�p.P //D 0 requires the vanishing of a power series
coefficient in Fp, we expect that this happens only one in p cases on average.
Indeed, in practice finding an appropriate p in step 2 never seems to be a problem.

Combining Mordell-Weil sieving with Chabauty’s method yields the significant
benefit that larger residue characteristics pose no problem. Results typical for
Chabauty’s method by itself bound #C.Q/ in terms of #C.Fp/, and these bounds
are rarely sharp (see [26] and [62]).
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A more significant restriction is that the procedure is not guaranteed to apply at
all if r � g. One remedy is to use covers. One determines a finite set of covers
�i WDi! C with i D 1; : : : ;m and where the Di are curves of genus larger than g,
such that

C.Q/D

m[
iD1

�i.Di.Q//;

in the hope that the determination procedure does apply to each of D1; : : : ;Dr . In
Section 8C we see how the ideas from Section 6, in particular Proposition 6.3, can
be used to construct such covering sets.

6. Theory of finite descent

Let us first consider Challenge B, finding (a finite index subgroup of) the group
J.Q/. The first observation is that J .1/.Qp/ is torsion-free for p > 2 (see [41]),
so the reduction map J.Q/! J.Fp/ is injective on the torsion subgroup J.Q/tors.
As a consequence, by computing J.Fp/ for a small number of primes p, which we
have to do for Mordell-Weil sieving anyway, we easily obtain a bound on the size
of J.Q/tors. This bound is often sharp, so simply exhibiting enough torsion points
usually suffices for determining J.Q/tors.

More generally, the kernel of the multiplication-by-n morphism J ! J , denoted
by J Œn�, is 0-dimensional. Determining an approximation of it points over, say, C,
is straightforward. One can then recognize which of these torsion points are defined
over Q. Once J.Q/tors is obtained, we are left with determining the free part. The
structure theorem for finitely generated abelian groups gives us that

J.Q/' J.Q/tors �Zr and
J.Q/

nJ.Q/
'

J.Q/tors

nJ.Q/tors
� .Z=nZ/r :

That means that if we can compute the size of J.Q/=nJ.Q/, we can compute r .
Since the multiplication-by-n morphism J

n
�!J is surjective over algebraically

closed fields, we have a short exact sequence of Galois modules

0 // J Œn�.Q/ // J.Q/
n

// J.Q/ // 0: (4)

The abstract language of Galois cohomology allows us to derive a description of the
set J.Q/=nJ.Q/ that facilitates a clean proof of the weak Mordell-Weil theorem.
It also provides a road map for computing bounds on r . In this section we make a
detour into this abstract world. In the next section we investigate how to compute
some of the objects introduced here.
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For a Galois module M.Q/ we write H i.Q;M /DH i.Gal.Q=Q/;M.Q//. Tak-
ing cohomology of the short exact sequence (4), we obtain the exact sequence

0 //
J.Q/

nJ.Q/



// H 1.Q;J Œn�/ // H 1.Q;J /: (5)

Thus, if we can bound the size of the image of the connecting homomorphism 


then a corresponding bound on r follows.
Indeed, we can consider the same sequence over localizations Qv of Q, and by

identifying each Gal.Qv=Qv/ with a decomposition subgroup of Gal.Q=Q/ we
obtain the following commutative diagram:

0 //
J.Q/

nJ.Q/



//

��

H 1.Q;J Œn�/

resv

��

0 //
J.Qv/

nJ.Qv/


v
// H 1.Qv;J Œn�/:

Since rational points are also Qv-rational, it follows that im 
 lies in the n-Selmer
group of J , defined by

Seln.J=Q/D
˚
ı 2H 1.Q;J Œn�/ W resv.ı/ 2 im 
v for all v 2�Q

	
:

Part of the proof that J.Q/ is finitely generated is establishing that Seln.J=Q/

is finite, which is known as the weak Mordell-Weil theorem. This fact follows
from another interpretation of the set H 1.Q;J Œn�/, which also has computational
significance. Some technical language is required to properly formulate this inter-
pretation.

Let k be a field with separable closure k, let M be a finite group with a Gal.k=k/-
action and let X and Y be k-varieties. By limiting ourselves here to a finite
group M , we guarantee that M can be represented by an affine group scheme; this
helps in proving Proposition 6.1 below and simplifies the definition of an X -torsor
under M . Dropping the assumption that M be finite invalidates the statement
in general (see [5, §6.7]), but the statement does hold under various alternative
conditions.

An X -torsor under a finite M is an unramified morphism �WY ! X of de-
gree #M between k-varieties, together with an isomorphism M ! Aut

k
.Y=X / of

groups with Gal.k=k/-action; see [45, § III.4].
Let �WY !X and �0WY 0!X be X -torsors under a finite M . An isomorphism

of X -torsors is an isomorphism of k-varieties � WY ! Y 0 such that � D �0 ı �
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and such that the induced isomorphism Aut
k
.Y=X /! Aut

k
.Y 0=X / is compatible

with the isomorphisms M ! Aut
k
.Y=X / and M ! Aut

k
.Y 0=X /.

Let X
k

be the base change of X to k. Via base change, we can obtain from any
X -torsor under M an X

k
-torsor under M

k
. We say that two torsors are twists of

one another if they becomes isomorphic to one another upon base change to k.
If M is not abelian there is still an object denoted H 1.k;M /, but it is no longer

a group — it is merely a set with a distinguished element, called the trivial class.
From Theorem III.4.3(a) (p. 121) and Proposition III.4.6 (p. 123) of [45] we obtain
the following result.

Proposition 6.1 (Twisting principle). Let �WY !X be an X -torsor under a finite
M . There is a bijection between H 1.k;M / and the set of isomorphism classes of
twists of �WY !X , and a natural map 
 WX.k/!H 1.k;M /, such that

(1) the bijection sends the trivial class of H 1.k;M / to the class of �, and

(2) for every x 2X.k/, if 
 .x/ corresponds to a twist �x WYx!X , then x has a
k-rational preimage on Yx .

In fact, if a twist �0WY 0!X has a point y 2 Y 0.k/ then Y 0 is isomorphic to Yx ,
where x D �0.y/. It follows that the image of 
 consists exactly of those twists
for which Y 0.k/ is nonempty. We can approximate the image by considering those
that have adelic points.

Definition 6.2. Let �WY ! X be an M -cover over Q. We define the Selmer set
to be

Sel.Q;Y
�
�!X /D

˚
Œ�0WY 0!X � 2H 1.Q;M / W Y 0.A/¤∅

	
D
˚
ı 2H 1.Q;M / W resv.ı/ 2 im 
v for all v 2�Q

	
:

Note that the multiplication-by-n morphism in the exact sequence (4) yields
a J -torsor J ! J under the group M D J Œn�.Q/. Indeed, this map 
 and the
connecting homomorphism in Equation (5) agree, as do the concepts of Selmer set
and group.

Of particular importance for us is the case where k is a number field. For ease
of notation, we restrict to the case k D Q. Let Qunr

v be the maximal unramified
extension of Qv in Qv. We say a class is unramified if it becomes trivial under
the restriction H 1.Qv;M /!H 1.Qunr

v ;M /. A class in H 1.Q;M / is unramified
at v if resv maps it to an unramified class. For a finite set S � �Q we write
H 1.Q;M IS/ for the subgroup of classes unramified at all places outside of S .
We find that H 1.Q;M IS/ is finite; this is analogous to Hermite’s result that there
are only finitely many number fields of bounded degree unramified outside a finite
set of primes.
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Proposition 6.3 (Chevalley-Weil [25]). Let X and Y be smooth projective vari-
eties over Q, let M be a finite Gal.Q=Q/-group, and let �WY !X be an X -torsor
under M . Let S ��Q contain the archimedean places, the places of bad reduction
of �, and the places of residue characteristic dividing jM j. Then


 .X.Q//� Sel.Q;Y
�
�!X /�H 1.Q;M IS/:

In particular, 
 .X.Q// is finite.

The version in [25] states that ��1.X.Q// lies in Y .L/ for some fixed number
field L, the compositum of degree-jM j extensions unramified outside S of the
splitting field of M . This formulation is not very conducive to computation. A
more promising approach is to try to find reasonable computational descriptions of
H 1.k;M / and 
 for k DQ and k DQv . General theory gives us that the map 
v
for k DQv is continuous and therefore locally constant. If we can determine the
neighborhood on which 
v is constant, we can determine im 
v and thus compute
Sel.Q;Y �!� X /.

7. Computing Selmer groups

In this section we describe a method for computing (or at least approximating)
Selmer groups that goes back to Cassels (see [21] for a survey), and that has been
developed and used by many others [23; 48; 53; 54; 56]. The presentation here
closely follows that in [14].

We continue our philosophy that points on J are most conveniently represented
by divisors on C . We would like to describe J Œn� as a Galois module. We do so by
presenting a finite Galois-stable set of generators �D f�1; : : : ; �dg. Since this is
a finite Gal.k=k/-set, it can be viewed as the k-points of an affine 0-dimensional
variety over k, which we also denote by �. Its coordinate ring is some finite k-
algebra L. Note that L is a field only when Gal.k=k/ acts transitively on �. In
general, L is a direct sum of fields, corresponding to the Galois orbits of �.

A certificate that � 2 � is n-torsion as a divisor class on C can be given as a
function f� whose divisor is linearly equivalent to n� . If we take these functions
Galois-covariantly, we can combine them into a function f 2 k.C /˝k L.

We construct an n-torsion Galois module directly from � by taking the twisted
power �

Z

nZ

��
WD

dM
iD1

�
Z

nZ

�
�i ;

which as a group is simply .Z=nZ/d , but has its Galois action twisted so that the
coordinates are permuted according to the action on �. The fact that � generates
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J Œn� is expressed in the surjectivity of the third arrow in the short exact sequence

0 // R //

�
Z

nZ

��
// J Œn� // 0;

where the map to J Œn� consists of evaluating the formal linear combinations and
R is defined to be the kernel of that map. If we are able to choose a Galois-stable
basis for J Œn� then R is trivial and we obtain an isomorphism to J Œn�. In general,
we have to choose � larger than that. In fact, the Galois group may act transitively
on the nonzero elements of J Œn�, in which case �D J Œn� n f0g is the only choice.

If M is a finite Galois module, we let M_ denote the Cartier dual Hom.M; k�/

of M . We note that

..Z=nZ/�/_ D ..Z=nZ/_/� D ��n ;

and, thanks to the Weil pairing, that J Œn�_ D J Œn�. We obtain

0 // J Œn� // ��n
// R_ // 0:

Taking Galois cohomology yields a map from H 1.k;J Œn�/ to H 1.k; ��n /. From
Kummer theory we know that H 1.k; �n/D k�=k�n, and with a little extra work
we find that H 1.k; ��n /DL�=L�n. Hence we obtain the following commutative
diagram with exact rows:

J.k/

nJ.k/




��

Q

//

L�

L�n

0 // J Œn�.k/ // .��n /.k/
// R_.k/ // H 1.k;J Œn�/ // H 1.k; ��n /

Note that we represent elements of J.k/=nJ.k/ by divisors on C . Our function
f provides a partial map

Div.C=k/ //____ L�X
P2C.k/

nP P � //
Y

P2C.k/

f .P /nP

defined for divisors supported away from poles and zeros of f . The main work,
for which we refer the reader to [14], is to prove that this map induces the map Q

above.

For k DQ and S ��Q a finite set containing the infinite place and the primes
dividing n, we also need to describe the subgroup H 1.Q; ��n IS/. To that end,
we denote by OL;S the ring of the elements of L that are integral over ZS . This
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ring decomposes into a direct product of Dedekind domains, namely the rings of
S-integers of the number fields constituting L. If OL;S is a principal ideal ring,
which can be ensured by enlarging S if necessary, then

H 1.Q; ��n IS/D
O�

L;S

O�n
L;S

:

Computing an explicit representation amounts to determining class groups and unit
groups in number fields.

Our explicit description of the map Q
 also makes it possible to determine neigh-
borhoods on which the local version Q
v is constant. The arguments used are similar
to those that show that elements u; v 2 Q�

2
represent the same class in Q�

2
=Q�2

2

when 2�.u� v/ 2 1C 8Z2 for some � 2 Z.
For appropriate sets S;T ��Q we define

Sel Q
 .Q;J / WD
˚
ı 2H 1.Q; ��n / W resv.ı/ 2 im Q
v

	
�
˚
ı 2 O�L;S=O�n

L;S W resv.ı/ 2 im Q
v for all v 2 T
	
;

where, for a large enough finite set T ��Q, the inclusion stabilizes to an equality.
We have a map Seln.J=Q/! Sel Q
 .Q;J / but this need be neither surjective nor

injective. We do know that the kernel is contained in the group K defined by the
exact sequence

0 // J Œn�.k/ // ��n .k/
// R_.k/ // K // 0;

and in practice K is frequently trivial. In any case, we can use Sel Q
 .Q;J / to
obtain an upper bound on the rank of J.Q/. It may be larger than the one that can
be derived from the actual Selmer group, but it has the advantage that it is more
easily computed. There are also auxiliary computations one can do to obtain more
detailed information on the difference; see [14, Appendix A].

Requiring a set � as above is often too demanding. Indeed, in general one does
not expect a more favorable choice than �D J Œn�nf0g to be available. In that case,
L is usually a number field of degree n2g � 1, where g is the genus of C . So even
in the case g D 3 and nD 2 one expects to have to compute with a number field
of degree 63.

At the expense of getting even further removed from a description of H 1.Q;J Œn�/,
one can use a smaller set �. We restrict to the case nD 2. We take � to be a set
so that the differences of elements of � generate J Œ2�. We consider the submodule
E of even weight vectors,

0 // E // .Z=2Z/�
sum

// Z=2Z // 0;

and we obtain a short exact sequence
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0 // R // E // J Œn� // 0:

Taking cohomology of the dual sequence gives

H 1.k; �2/
// H 1.k; ��

2
/ // H 1.k;E_/;

which leads to
L�

L�2k�
�H 1.k;E_/:

Provided that Pic0.C=k/D J.k/, which holds for us by Lemma 4.2, we can show
that the part of H 1.k;E_/ relevant to us lies in the subgroup we can describe, and
we obtain a map

Q
 W
J.k/

nJ.k/
//

L�

L�2k�

which we can use in essentially the same way as above. One can choose � to be
the set of classes of odd theta characteristics, which has size 2g�1.2g � 1/, less
than half of what we needed before. For g D 3 this results in an algebra L of
degree 28.

8. Application of descent to other problems

8A. Descent on the curve. If we embed the curve C in its Jacobian then we can
restrict the maps 
 and Q
 to C . In that case we can construct a C -torsor under
J Œn� by pulling C back along the multiplication-by-n map J ! J . The result is
an unramified cover �WD! C of degree n2g.

We can compute approximations of Sel.Q;D �!� C / using the same approach
as in Section 7. If that approximation turns out to be empty, then C has no rational
points. This can happen even if C.A/ is nonempty. When it works, this method is
easier to apply than Mordell-Weil sieving, because the data we need is required for
determining J.Q/ anyway, and we do not have to actually find generators for J.Q/.

Given that the map Q
 is computed by evaluating a function on representative
divisors, we can evaluate Q
 directly on C , without choosing an embedding in J ,
and even if such an embedding does not exist. See [16] for a more thorough analysis
of this method for hyperelliptic curves.

8B. Finding an embedding in J . A curve C has a degree-n point for some n. For
instance, on a curve of genus g � 2, the canonical divisor class always contains a
rational effective divisor, so one can take n� 2g� 2. It follows that Picn.C /' J

and hence that multiplication-by-n yields a cover Pic1
! J . Note that over Q we

have J ' Pic1.C / in a way that is compatible with the multiplication-by-n map,
so this cover expresses Pic1 as a J -torsor under J Œn�. By Proposition 6.1, this
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torsor corresponds to some class in H 1.Q;J Œn�/. In fact, if C.A/¤ ∅, we have
ŒPic1.C /� 2 Seln.J=Q/. If we have succeeded in determining J.Q/, we can check
if ŒPic1.C /� lies in the image of J.Q/. If it does, then we have an explicit rational
point that we can lift to Pic1.C /. If it does not then we have proved that Pic1.C /

does not have a rational point, and therefore neither does C .
We can also adapt the ideas from Section 8A to do further descent computations

on Pic1, although doing a descent directly on C yields stronger information for our
purposes — see [27].

8C. Covering collections. Proposition 6.3 also provides useful information when
Chabauty’s method (Section 5) does not apply because J.Q/ is of too high rank.
As we saw in Section 8A, we can use the embedding C ! J to obtain unramified
Galois covers D �!� C . As Proposition 6.3 shows, one has

C.Q/D
[

ŒD0
�0

!C �2Sel.Q;D
�
!C /

�0.D0.Q//:

Note that D (and hence any of the D0) is of higher genus than C , so Chabauty’s
method might apply to D0 even if it does not to C ; see also [64]. A priori it may
seem computationally unattractive to compute with a curve of much higher genus.
However, by construction, the curve D is far from general; for example, it has
many automorphisms. That usually means that its Jacobian can be decomposed
into factors of lower dimension. For instance, if C is a hyperelliptic curve and
D is a C -torsor under J Œ2�, the Jacobian of D has many elliptic isogeny factors,
although not necessarily over Q. This means that many of the computations that
would normally take place on the Jacobian of D can now be done on elliptic curves.
This greatly simplifies computations and has led to a variant of Chabauty’s method
commonly referred to as elliptic curve Chabauty. See [36] for a special case and
[8], [9] for the general case, as well as an application that amounts to a Chabauty
computation on a 12-dimensional abelian variety. See also [16] on how to use
descent computation to determine which twists to consider and [13] for an iterated
application of these ideas. See [11] for an application to a curve of genus 3 admit-
ting a double cover; this example involves Mordell-Weil sieving and a Chabauty
computation on a genus-5 curve embedded in an abelian surface presented as the
Jacobian of an otherwise unrelated curve of genus 2.

9. Smooth plane quartics

As an example, let us see how the ideas in the previous sections apply to smooth
plane quartics — that is, nonhyperelliptic genus-3 curves. In a way, this is the
simplest collection of truly general curves, in the sense that genus-2 curves are
always hyperelliptic and hence necessarily have a nontrivial automorphism. The
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examples come from [14], to which the reader is referred for further details and
references.

Let C � P2 be a smooth plane quartic curve over Q. We apply the procedure
described in Section 7 for nD 2. The set � has a particularly explicit description.
A smooth plane quartic has 28 bitangents. If l and m are degree-1 forms on C that
describe bitangents, then l=m obviously induces a function on the curve whose
divisor is twice another divisor. That divisor therefore represents a 2-torsion class.
It is a matter of combinatorics to compute that every nonzero 2-torsion point can
be described this way (in fact, in 6 different ways). Let � � .P2/� be the 0-
dimensional, degree-28 locus in the dual space corresponding to these 28 bitan-
gents, and let L be the affine coordinate ring of �, so that L is a finite algebra over
Q of degree 28.

The Galois group of (a splitting field of) L is a subgroup of Sp6.F2/, which is
also the generic Galois group of J Œ2�. For this full group, the module .Z=2Z/�

has unique submodules E and R of dimensions 27 and 21 respectively, giving us
a unique sequence of Sp6.F2/-modules

0 // R // E // J Œ2� // 0:

If we identify the conjugacy class in Sp6.F2/ of the group through which Gal.Q=Q/

acts on L, then we can determine the action on the sequence via restriction. This
means we can determine the sequence

0 // J Œ2�.Q/ // E_.Q/ // R_.Q/

by identifying the Galois group of L as a subgroup of Sp6.F2/. Determining Galois
groups is one of the classic problems in computational algebraic number theory.

For each � 2 � we obtain a linear form l� 2 LŒx;y; z�, where x;y; z are the
coordinates on P2. Evaluating Q
 at a point on C amounts to evaluating l� at that
point.

In order to compute Sel Q
 .Q;J /, we need to compute the ideal class group and
unit group of L, for which we need an integral basis as well. The computation of
class groups, unit groups, and integral bases are three further classical problems in
computational algebraic number theory.

We give some examples.

Proposition 9.1. If C is the curve

x3y �x2y2
�x2z2

�xy2zCxz3
Cy3z D 0

in P2
Q

, then J.Q/D hŒ.0 W 1 W 0/� .0 W 0 W 1/�i ' Z=51Z and

C.Q/Df.1 W1 W1/; .0 W1 W0/; .0 W0 W1/; .1 W0 W0/; .1 W1 W0/; .1 W0 W1/g:
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For this example the Galois group of L is a member of the unique index-36

conjugacy class of Sp6.F2/. For that group we find that R_.Q/D Z=2Z and that
E_.Q/D 0. A priori this leaves room for a nontrivial kernel in

Sel2.Q;J /! Sel Q
 .Q;J /:

However, we find that R_.Q2/ D R_.Q/ and E_.Q2/ D E_.Q/ and that the
image of R_.Q2/ does not lie in the image of 
2. This means that the map is an
injection anyway and, since Sel Q
 .Q;J /D 0, that J.Q/ is finite and of odd order.
Further investigation shows that there is 51-torsion. Finding the rational points of
C from the finite set J.Q/ is trivial.

Proposition 9.2. Let C be the curve

x2y2
�xy3

�x3z� 2x2z2
Cy2z2

�xz3
Cyz3

D 0

in P2
Q

. If the generalized Riemann hypothesis holds, then J.Q/' Z and

C.Q/Df.1 W1 W0/; .�1 W0 W1/; .0 W�1 W1/; .0 W1 W0/;

.1 W1 W�1/; .0 W0 W1/; .1 W0 W0/; .1 W4 W�3/g:

For this curve, the Galois group of L is all of Sp6.F2/. Then R_.Q/D 0, so

Sel2.Q;J /� Sel Q
 .Q;J /:

Further computation shows that the latter has size 2, so J.Q/ has rank at most 1.
Furthermore, we have J.F3/' Z=85Z and J.F7/' Z=336Z. These group orders
are coprime, so J.Q/ is torsion free. It is straightforward to exhibit a nontriv-
ial point in J.Q/, so it follows the rank is 1. A straightforward application of
Chabauty’s method yields the rest of the statement.

We invoke the generalized Riemann hypothesis to verify the class group infor-
mation. The Minkowski bound of L (which is a field in this case) is 1,008,340,641,
so a dedicated enthusiast could probably confirm the class group information un-
conditionally.

Proposition 9.3. Let C be the curve in P2
Q

defined by

x4
Cy4

Cx2yzC 2xyz2
�y2z2

C z4
D 0:

Then C.R/¤∅ and C.Qp/¤∅ for all p, but if the generalized Riemann hypoth-
esis holds, then C.Q/D∅.

For this curve we verify that its Q
 -Selmer set is empty. The Minkowski bound
for L exceeds 1022 so unconditional verification is out of the question.
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Solving quadratic equations in dimension 5 or more
without factoring

Pierre Castel

Let Q be a 5 � 5 symmetric matrix with integral entries and with detQ ¤ 0,
but neither positive nor negative definite. We describe a probabilistic algorithm
which solves the equation txQx D 0 over Z without factoring detQ. The
method can easily be generalized to forms of higher dimensions by reduction
to a suitable subspace.

1. Introduction

Solving quadratic equations in dimension 1 is trivial: Since the equation is ax2D 0,
the only solution is x D 0. In two dimensions, the homogeneous equation is
ax2C bxyC cy2 D 0, and the solution is obtained by computing a square root. In
dimension 3, the equation is

ax2
C by2

C cz2
C 2dxyC 2exzC 2fyz D 0;

where the coefficients are integers. Since the polynomial becomes more compli-
cated as the dimension increases, we use matrix notation instead. We define Q
as the associated quadratic form. If we denote by X D .x; y; z/ the row vector
containing the variables, the equation becomes

tX

24a d e

d b f

e f c

35X D 0:
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If the equation has a solution, several algorithms exist for finding solutions, for
instance see Simon [11] or Cremona [3]. In dimension 3 it is known that find-
ing a (nontrivial) isotropic vector is equivalent to factoring the determinant of the
form.

The situation is almost the same in dimension 4 when the determinant is a square:
Solutions may not exist, and if a solution exists, finding one is equivalent to factor-
ing the determinant.

The situation is quite different in dimensions greater than or equal to 5. The
Hasse-Minkowski theorem [9] asserts that in such dimensions a nontrivial solution
always exists. It is easy to see that one just needs the result in dimension 5, since
larger dimensions can handled by restricting the form to a subspace of dimension 5
where the form has a suitable signature. This is why we will focus on quadratic
forms in dimension 5. As in dimensions 3 and 4, there exist algorithms such as
the ones given in [10], but since they are generalizations of algorithms in smaller
dimensions, they still need the factorization of the determinant, which rapidly be-
comes prohibitive. Thus, if we know the factorization of the determinant we can
easily find a solution, so the question is whether it is possible to find a solution (in
polynomial time) without factorizing the determinant. The goal of this paper is to
show that this is indeed possible; in other words, we will give an algorithm which
finds a (nontrivial) isotropic vector for a 5-dimensional quadratic form which does
not require the factorization of the determinant.

As already mentioned, this algorithm can also be used for forms of higher di-
mensions by restricting the form to a dimension 5 subspace where the restricted
form has a suitable signature. The solution is found over the integers, but since the
equation is homogeneous, this is equivalent to finding a rational solution.

The first part of this paper gives the definitions needed to understand the algo-
rithm, the second part explains how the algorithm works, and the last part gives
some ideas of the complexity of the method. The full analysis of its complexity is
not done here, since it requires a number of tools from analytic number theory and
the Cebotarev density theorem [6]. I refer the interested reader to [1].

Basic definitions and notation

To begin, we give definitions and basic properties which we need.
We denote the set of integral quadratic forms as follows.

Definition 1.1. Let n be a nonzero positive integer. We denote by Sym.n;Z/ the
set of n�n symmetric matrices with nonzero determinant and integral entries.

We recall the definition of the Smith normal form of a matrix; for more details,
see [2].
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Definition 1.2 (Smith normal form). Let A be an n�n matrix with coefficients in Z

and nonzero determinant. There exists a unique matrix in Smith normal form B

such that B D VAU with U and V elements of GLn.Z/. If we set di D bi;i , the di

are called the elementary divisors of the matrix A, and we have

AD U�1

266664
d1 0 : : : 0

0 d2
: : :

:::
:::
: : :

: : : 0

0 : : : 0 dn

377775V �1

with diC1 j di for 1� i < n.

Definition 1.3. For a matrix M 2Mn.Z/ with nonzero determinant, we denote by
d1.M/; : : : ; dn.M/ its elementary divisors (given by its Smith normal form). If
there is no possible confusion, they will be denoted d1; : : : ; dn.

We can now add a restriction to the set of quadratic forms.

Definition 1.4. Let n be a nonzero positive integer. We denote by Sym�.n;Z/ the
set of n�n symmetric matrices with nonzero determinant and integral entries, such
that their coefficient d2 as defined above is equal to 1.

2. The algorithm

2A. The main idea. The key idea of the method is to increase by 1 the dimension
of the form by adding a row and a column, then to use an efficient algorithm to
find solutions to our new form, and finally to deduce a solution to the original form
by considering intersections of hyperbolic spaces of suitable dimensions.

Since Simon’s algorithm [10] is very efficient when the factorization of the de-
terminant is known, we are going to build a new 6-dimensional quadratic form Q6

starting from Q, whose determinant will be equal to 2p where p is an odd prime
number. We will call this the completion step. To do this, we choose an integral
vector X D .x1; : : : ; x5/ of dimension 5 and an integer z and we complete Q in
the following way:

Q6 D

26664
x1

Q
:::

x5

x1 � � � x5 z

37775 : (1)

Lemma 2.1. LetQ be a symmetric matrix with integral entries and with detQ¤ 0.
If we complete Q to the form Q6 as described in (1) above, then we have

detQ6 D z detQ� tX Co.Q/X; (2)
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where Co.Q/ is the matrix of cofactors of the matrix Q.

Proof. Simply use the formula involving the cofactors of Q6 for computing its de-
terminant, and expand it along the row and then the column containing the xi . �

Some special cases may occur: There exist cases where all the values taken
by detQ6 have a common factor. To avoid these cases we will have to do some
minimizations of the form Q before completing it. In order to be able to do a
complexity analysis of the algorithm we will need the determinant of Q6 to be odd,
so we will also have to perform a reduction of the even part of the determinant.

2B. Minimizations. The values taken by the determinant of the form Q6 will fol-
low from the next result.

Theorem 2.2. Let Q 2 Sym.5;Z/ and �D detQ. Then for all X 2 Z5 and for all
z 2 Z we have that d2.Q/ divides detQ6, where Q6 is defined by (1).

Proof. Consider the Smith normal form of Q: There exist three matrices D, U ,
and V with integer entries such that D is diagonal with the elementary divisors
on the diagonal, U and V have determinant ˙1, and D D UQV . Because of the
relation (2), let us consider the values of �tX Co.Q/X .mod�/. We have

Co.Q/D Co.V �1/Co.D/Co.U�1/

D .detV /.detU/ tV Co.D/ tU

D˙t
�
U t Co.D/V

�
D˙t.U Co.D/V /:

Since D is the diagonal matrix of elementary divisors, it follows that Co.D/ is
also diagonal and that every coefficient is divisible by d2.Q/. We thus have

tX Co.Q/X D˙tX t.U Co.D/V /X

� 0 .mod d2.Q//:

Combining this congruence with the formula (2) proves the result. �

Remark. If d1.Q/¤ detQ it will not be possible to have detQ6 equal to a prime
or twice an odd prime number, so we will first need to minimize Q so as to obtain
an equivalent form Q0 such that d2.Q

0/D 1.

Remark 2.3. If we perform a change of basis using the matrix V of the previous
result with di .Q/ ¤ 1 and diC1.Q/ D 1, the first i columns and rows will be
divisible by di .Q/.

We are now going to explain what to do in order to avoid the case d2.Q/¤ 1.
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Case d5 ¤ 1.

Proposition 2.4. Let Q 2 Sym.5;Z/ such that d5.Q/¤ 1. There exist two 5� 5
matrices with integral entries G and Qf such that

d5Qf D
tGQG;

detQf D
1

d5
5

detQ:

The proof is given by the following algorithm.

Algorithm 2.5 (Minimization 5).

Input: Q 2 Sym.5;Z/ such that d5.Q/¤ 1 and m¤ 1 2 Z dividing d5.Q/.

Output: Qf : a form equivalent to Q such that detQf D .1=m
5/ detQ;

G : the corresponding change of basis such that d5Qf D
tGQG.

1. Set G WD Id5.

2. Set Qf WD .1=m/Q.

3. Return Qf , G.

When the coefficient d5 of the Smith normal form of Q is different from 1, the
whole matrix Q is divisible by d5, so the minimization simply consists in dividing
the matrix by d5 and the corresponding change of basis G is equal to Id5.

Case d4 ¤ 1 and d5 D 1.

Proposition 2.6. Let Q 2 Sym.5;Z/ such that d4.Q/¤ 1 and d5.Q/D 1. There
exist two 5� 5 matrices with integral entries G and Qf such that

d4Qf D
tGQG;

detQf D
1

d3
4

detQ:

The proof is given by the following algorithm.

Algorithm 2.7 (Minimization 4).

Input: Q 2 Sym.5;Z/ such that d4.Q/ ¤ 1 and d5.Q/D 1, m¤ 1 2 Z divid-
ing d4.Q/.

Output: Qf : a form equivalent to Q such that detQf D .1=m
3/ detQ;

G : the corresponding change of basis such that mQf D
tGQG.

1. Let V be the V matrix given by the SNF of Q.

2. Let H be the diagonal matrix such that for 1� i � 4, Hi;i D 1 and H5;5 Dm.

3. Set G WD V �H ; Q0 WD .1=m/ tGQG.
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4. Apply the LLL algorithm for indefinite forms to Q0 (see [11] for more details).
Let Qf be the returned form and G0 the corresponding change of basis.

5. Set G WDG �G0.

6. Return Qf , G.

As stated in Remark 2.3, after the change of basis in step 1, the first four columns
and rows are divisible by d4. Thus we apply this change of basis, multiply the last
row and column by d4, and divide the whole matrix by d4.

Remark. The notion of equivalence between quadratic forms used here simply
means that both corresponding quadratic equations have the same solutions up to
a change of basis.

Case d3 ¤ 1 and d4 D 1.

Proposition 2.8. Let Q 2 Sym.5;Z/ such that d3.Q/¤ 1 and d4.Q/D 1. There
exist two 5� 5 matrices with integer entries G and Qf such that

d3Qf D
tGQG;

detQf D
1

d3
detQ:

The proof is given by the following algorithm:

Algorithm 2.9 (Minimization 3).

Input: Q 2 Sym.5;Z/ such that d3.Q/ ¤ 1 and d4.Q/D 1, m¤ 1 2 Z divid-
ing d3.Q/.

Output: Qf : a form equivalent to Q such that detQf D .1=m/ detQ;
G : the corresponding change of basis such that mQf D

tGQG.

1. Let V be the V matrix given by the SNF of Q.

2. Let H be the diagonal matrix such that for 1 � i � 3, Hi;i D 1 and H4;4 D

H5;5 Dm.

3. Set G WD V �H ; Q0 WD .1=m/ tGQG.

4. Apply the LLL algorithm to Q0. Let Qf be the returned form and G0 the
corresponding change of basis.

5. Set G WDG �G0.

6. Return Qf , G.

The minimizing method for this case is essentially the same as for the previous
one.
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Case d2 ¤ 1 and d3 D 1. This case is much more complicated than the previous
ones. If we try to do it in the same way, we will multiply the determinant by some
factor which is of course not what we want. The idea is first to perform a change of
basis thanks to the matrix V given by the SNF of Q, and then to work on the 3� 3
block that remains which may not be divisible by d2.Q/. What we need to do in
order to be able to apply the same method is to be in the case where the upper-left
coefficient of this block is already divisible by d2.Q/. We are thus going to do a
special change of basis in order to succeed. The method is given by the following
result.

Proposition 2.10. Let Q 2 Sym.5;Z/ such that d2.Q/¤ 1 and d3 D 1. Let m be
an integer such that m ¤ 1 and m j d2.Q/. There exist two 5� 5 matrices with
integral entries G and Qf , with G unimodular, and such that

mQf D
tGQG;

detQf D
1

m
detQ:

Proof. We first compute the SNF of Q, so that D D UQV where D, U , V have
integral entries and U and V are unimodular. We apply the change of basis given by
the matrix V . The quadratic form Q0 D tVQV is equivalent to the form Q and its
first two rows and columns are divisible by m. Denote by Q3 the restriction of Q0

to the space spanned by the last three columns of the matrix V . This corresponds
to the submatrix .Q3/i;j D .Q

0/i;j with 3 � i � 5, 3 � j � 5. We now want to
have Q31;1 � 0 .modm/. We apply a Gram-Schmidt orthogonalization process
to the matrix Q3 modulo m. If we find a noninvertible element modulo m, this
means that we have found a factor of m. In that case we start the process again
by replacing m by its divisor. During the process, if we find a vector whose norm
is 0 modulo m, we just have to skip this step since this vector is exactly the one
we need. Otherwise the process ends and gives us a change of basis such that in
this new basis, the form Q3 .modm/ has the shape24a 0

b

0 c

35 .modm/:

We must now solve the following quadratic equation:

ax2
C by2

C cz2
� 0 .modm/: (3)

Since we do not want to factor m, we have to use a method which does not use its
factorization. Such a method is described in [8]: If the coefficient a is not invertible
modulo m we have found a factor of m, so we can continue the process with both
factors, obtain the solution for each of them and combine them using the Chinese
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remainder theorem and Hensel lifting if needed. We are thus reduced to the case
where a is invertible modulo m. Solving (3) is equivalent to solving the equation

x2
C ba�1y2

��ca�1z2 .modm/: (4)

If we take the arbitrary choice z D 1, we have exactly the type of equation that is
solved in [8]. We thus use this method to obtain a solution S of (3). We complete
the single vector family fSg to a unimodular matrix G, and we extend the matrix G
to a matrix G0 of dimension 5 by taking the identity matrix Id5 and replacing the
3� 3 lower-right block by G. We now apply G0 to Q0 and obtain Q00 which has
the form

tG0Q0G0 DQ00 D

266664
mM2;2 mM2;3

m� � �

mM3;2 � � �

� � �

377775 ;
where the � are integers. It is now possible to use the same methods explained in
the previous cases: We multiply the last rows and columns by m and divide the
whole matrix by m. �

Remark. The case where we find a factor of m practically never happens. The
reason is simply that the forms used to test the algorithm always have a determinant
which is very hard to factor. So finding a factor in such a way is quite hopeless.

The corresponding algorithm is the following.

Algorithm 2.11 (Minimization 2).

Input: Q 2 Sym.5;Z/ such that d2.Q/ ¤ 1 and d3.Q/D 1, m¤ 1 2 Z divid-
ing d2.Q/.

Output: Qf : a form equivalent form to Q;
G : the corresponding change of basis such that m0Qf D

tGQG with
1 < m0 jm.

1. Compute the SNF of Q with the algorithm described in [5].

2. Set G WD V and Q WD tGQG.

3. Let Q3 be the 3� 3 bottom-right submatrix of Q.

4. Apply a modified Gram-Schmidt orthogonalization process (see below) to Q3

and m.

5. If the Gram-Schmidt process returns a vector, store it in S and go to step 10. If
it returns an integer m0, go back to step 4 with mDm0.

6. Denote by D3 the returned matrix and by G3 the corresponding change of basis.
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7. Let d D gcd.D3Œ1; 1�;m/. If d ¤ 1, go back to step 5 with mD d .

8. Use the Pollard-Schnorr algorithm [8] to solve

X2
C
D3Œ2; 2�

D3Œ1; 1�
Y 2
��

D3Œ3; 3�

D3Œ1; 1�
.modm/:

Let S be a solution.

9. Set S WD ŒS; 1�.

10. Let H be a 3� 3 matrix whose first column is equal to S and whose columns
form a Z3 basis. This can be done using the Hermite normal form algorithm.

11. Set G3 WDG3 �H .

12. Let zG be the block-diagonal 5� 5 matrix such that the 2� 2 upper-left block
is the identity and the 3� 3 bottom-right block is equal to G3.

13. Set G WDG � zG and Q0 WD .1=m/ tGQG.

14. Apply the LLL algorithm to reduce Q0, and denote by Qf the returned form
and by G0 the corresponding change of basis.

15. Set G WDG �G0.

16. Return Qf , G.

The minimization algorithm. We can now give the complete algorithm that mini-
mizes an integral quadratic form of dimension 5.

Algorithm 2.12 (Minimization).

Input: Q 2 Sym.5;Z/.

Output: Qt 2 Sym�.5;Z/ equivalent to Q;
B : the corresponding change of basis.

1. Set Qt WDQ.

2. Compute the SNF D of Q.

3. If d1 D detQ, go to step 8.

4. If d5 ¤ 1 set i WD 5.

5. Let i � 5 be such that di ¤ 1 and diC1 D 1 or di D d5 if d5 ¤ 1.

6. Set B WD Id5.

7. While d1 ¤ detQt :

(a) Switch according to i :

Case i D 5: apply Algorithm 2.5 to Qt and di .
Case i D 4: apply Algorithm 2.7 to Qt and di .
Case i D 3: apply Algorithm 2.9 to Qt and di .
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Case i D 2: apply Algorithm 2.11 to Qt and di .

(b) Let Qf and G be the returned matrices.
(c) Set Qt WDQf and B WD B �G.
(d) Compute the SNF D of Qt .
(e) Let di be the diagonal coefficient of the SNF of Qt such that di ¤ 1 with

diC1 D 1 and di D d5 if d5 ¤ 1.

8. Return Qt , B .

Remark. This algorithm computes the Smith normal form at any step. To do this,
it is strongly recommended to use the method described in [5] which is optimized
and also gives the corresponding matrices U and V .

Remark. In this algorithm, we do not use a divisor m of di , but di itself. Using a
divisor would force the algorithm to use factorization.

Remark. Algorithms 2.7, 2.9, and 2.11 include a reduction step using an LLL
algorithm for indefinite quadratic forms given in [11]. This reduction is done to
have concrete bounds for the size of the coefficients at the end of the algorithm.

2C. Reducing the even part of the determinant. After performing the minimiza-
tion step, we get a form whose coefficient d2 is equal to 1. We now need to have
an equivalent form whose determinant is odd. This is performed by what we call
the reducing the even part step.

Lemma 2.13. Let Q 2 Sym�.5;Z/ be indefinite. Let v be the quotient in the Eu-
clidean division of the 2-adic valuation of detQ by 2. There exist two matrices Q0

and G such that

detG D
1

2v
;

Q0 D tGQG;

v2.detQ0/D 0 or 1;

Q0 2 Sym�.5;Z/:

Proof. If detQ is odd, we simply take G D Id5 and Q0 D Q. Thus assume
that v2.detQ/ ¤ 0. We compute the SNF of Q and obtain unimodular integer
matrices U , V and a diagonal matrix D such that D D UQV , and d1;1 D jdetQj.
Since d2.Q/ D 1 the other diagonal coefficients of D are all equal to 1. We
apply to Q the change of basis given by the matrix V . The first row and the first
column of Q00 D tVQV are divisible by 2v2.det Q/. Let v be the quotient in the
Euclidean division of the 2-adic valuation of detQ by 2, F be the diagonal matrix
whose upper-left entry is equal to 1=2v and the others equal to 1. If v2.detQ/ is
even, the determinant of tFQ00F DQ0 is odd. Otherwise the determinant of Q0
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is divisible by 2 but not by 4. So we take G D V � F . It remains to show that
Q0 2 Sym�.5;Z/. We know that Q 2 Sym�.5;Z/. Since the change of basis given
by the SNF is unimodular the invariant factors have not changed during the process.
The last operation is done on the first column and only with a power of 2, so it also
does not change the invariant factors, and so we have Q0 2 Sym�.5;Z/. �

The corresponding algorithm is as follows.

Algorithm 2.14 (Reduction of the even part — I).

Input: Q 2 Sym�.5;Z/ indefinite, of dimension 5, of determinant �.

Output: Q0 2 Sym�.5;Z/ indefinite, of determinant 2kn with n odd and k �
v2.detQ/ .mod 2/, Q0 equivalent to Q;
G the corresponding change of basis.

1. If �� 1 .mod 2/, return Q, Id5.

2. Set G WD Id5.

3. Let v2 be the 2-adic valuation of �.

4. Let v be the quotient in the Euclidean division of v2 by 2.

5. Let U , V and D be the matrices given by the SNF of Q such that D D UQV .

6. Set Q0 WD tVQV and G WDG �V .

7. Let H be the diagonal matrix such that H1;1 D 1=2
v and Hi;i D 1 otherwise.

8. Set Q0 WD tHQ0H and G WDG �H .

9. Return Q0, G.

Lemma 2.15. LetQ 2 Sym�.5;Z/ indefinite and such that detQD 2k, k 2Z, odd.
There exist two matrices Q0 and G such that

detG D
1

23
;

Q0 D 2� tGQG;

detQ0 � k .mod 2/:

Proof. As in proof of the previous lemma, we begin by computing the Smith normal
form of Q to obtain integer matrices U , V unimodular and D diagonal such that
D D UQV and d1;1 D jdetQj. We apply to Q the change of basis given by the
matrix V and obtain Q0 which has the following form:

Q0 D tVQV D

266664
2� 2�

2�

Q1
� �

� �

� � � �

� � � �

377775 :
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We are now interested in the form Q1 which is the restriction of the form Q to
the subspace generated by the second and third vectors of the basis. Denote this
form by the following matrix:

� a b
b c

�
. We are looking for a change of basis such

that the coefficient a in the new basis will be even. This means that we want a
pair .x; y/ such that ax2C cy2 � 0 .mod 2/. We solve this equation, apply the
corresponding change of basis to Q1, and we multiply the whole matrix by 2. The
determinant of the form is now divisible by 26 but not by 27. We rescale the
first two vectors by a factor 2. The determinant is now divisible by 22. We then
compute the SNF of this matrix and apply the change of basis according to the
matrix V . Since the determinant is divisible by 4, we have two possibilities: If the
kernel modulo 2 has dimension 1, the first row and the first column are divisible
by 2 and the upper left coefficient is divisible by 4. In this case, we rescale the
first vector by 2. Otherwise, the kernel has dimension 2. In this case, the first two
rows and columns are divisible by 2. Consider the upper-left 2� 2 block of the
matrix. This corresponds to the restriction of the form to the subspace generated
by the first two vectors of the basis. We are going to apply a change of basis such
that the upper-left coefficient will be divisible by 4. This corresponds to solving
the equation ax2C cy2 � 0 .mod 2/ which can be done as explained above. Once
the change of basis is done, we simply rescale the first vector by 2. In such a basis,
the determinant of the form is now odd. It remains to show that this form belongs
to Sym�.5;Z/. Indeed, since the determinants of the changes of basis that we have
applied are all equal to a power of 2 they are invertible modulo the odd primes
factors of the determinant of the form, and it follows that the rank of the form is
unchanged, so we have Q0 2 Sym�.5;Z/. �

The corresponding algorithm is as follows.

Algorithm 2.16 (Reduction of the even part — II).

Input: Q 2 Sym�.n;Z/ indefinite, with detQD�D 2kn with n odd and kD 0
or 1.

Output: Q0, a form in Sym�.5;Z/ with odd determinant and same solutions as Q
up to a change of basis;
G the corresponding change of basis.

1. If �� 1 .mod 2/ return Q, Id5.

2. Set G WD Id5.

3. Let v be the 2-adic valuation of �.

4. Let U , V and D be the matrices given by the SNF of Q such that D D UQV .

5. Set Q0 WD tVQV and G WDG �V .

6. If .q02;2; q
0
3;3/� .1; 1/ .mod 2/,
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(a) set H WD Id5 and HŒ3; 2� WD 1,
(b) set Q0 WD tHQ0H and G WDG �H .

7. If .q02;2; q
0
3;3/� .1; 0/ .mod 2/,

(a) set H WD

266664
1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

377775,

(b) set Q0 WD tHQ0H and G WDG �H .

8. Set Q0 WD 2�Q0.

9. Set P WD Id5 and P Œ2; 2� WD 1=2.

10. Set Q0 WD tPQ0P and G WDG �P .

11. Let U 0, V 0 andD0 be the matrices given by the SNF ofQ0 such thatDDUQ0V .

12. Set Q0 WD tV 0Q0V 0 and G WDG �V 0.

13. If q01;1 � 0 .mod 4/,

(a) set R WD Id5 and RŒ1; 1� WD 1=2,
(b) set Q0 WD tRQ0R and G WDG �R,
(c) return Q0, G.

14. Repeat steps 6 to 2 with .q01;1; q
0
2;2/.

15. Set R WD Id5 and RŒ1; 1� WD 1=2.

16. Set Q0 WD tRQ0R and G WDG �R.

17. Return Q0, G.

2D. Completion. We now explain how to complete the form to a form of dimen-
sion 6 in the way announced in Section 2A, and in particular how to choose the
value of z. Controlling this value will allow us to change the signature of the
completed form Q6.

Lemma 2.17. Let Q 2 Sym.5;Z/ be an indefinite form with signature .r; s/ and
determinant �. Let X be a 5-dimensional column vector with integral entries
and ˇ be a coset representative of the coset of tX Co.Q/X modulo �. Let

z WD
tX Co.Q/X �ˇ

�

and

Q6 D

�
Q X
tX z

�
:
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The signature of Q6 is determined by the signs of ˇ and detQ as follows:

signature of Q6 D

�
.r; sC 1/ if ˇ detQ> 0I

.r C 1; s/ if ˇ detQ< 0:

Moreover we have ˇ D�detQ6.

Proof. As seen in Section 2A, the formula (2) gives us the determinant of the
form Q6:

detQ6 D z detQ� tX Co.Q/X:

We also have defined the quantities: ˇ D tX Co.Q/X and ˇ a coset representative
of the coset of ˇ modulo � which is also equal to ˇ� z�D�detQ6. Since the
link between Q and Q6 is the addition of a row and a column, if we consider the
restriction of Q to the subspace generated by the first 5 vectors of the basis, we get
back exactly the form Q. Thus if we add a row and a column, we do not change its
signature on this subspace. It follows that we can deduce the signature of Q6 from
the signature of Q by simply considering the sign of their determinant. Indeed,
we know that sgn.detQ/ D .�1/s . If detQ > 0, we have s � 0 .mod 2/. We
take ˇ > 0 and have detQ6 < 0. We have changed the sign of the determinant, so
the signature of Q6 is .r; sC 1/. The others cases are done in the same way, and
combining them gives the formula for the signature given in the lemma. �

In order to be able to compute a solution, we need the signature .u; v/ of Q6

to satisfy u � 2 and v � 2. The following algorithm will choose the value of ˇ
so that this is satisfied. The algorithm for completing the form and controlling the
signature is the following.

Algorithm 2.18 (Completion).

Input: Q: an indefinite, nondegenerate dimension 5 integral quadratic form;
k � 1 an integer.

Output: Q6: an indefinite, nondegenerate dimension 6 integral quadratic form
with signature .r; s/ such that r � 2 and s � 2, of the form:

h
Q X
tX z

i
,

and such that jdetQ6j< kjdetQj.

1. Compute the signature .r; s/ of Q.

2. Choose an integer vector X whose coordinates are nonnegative integers less
than jdetQj5.

3. Set ˇ WD tX Co.Q/X and ˇ WD ˇ .mod detQ/ with 0� ˇ < jdetQj.

4. If r D 1 and detQ> 0, set ˇ WD ˇ� jdetQj.

5. If s D 1, set ˇ WD ˇ� detQ.

6. Set z WD
ˇ�ˇ

detQ
.
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7. Add a random multiple of jdetQj to ˇ so that jdetQ6j < k jdetQj while re-
specting the signature condition, and update the value of z.

8. Return Q6 D

h
Q X
tX z

i
.

Remark. The bounds on X in step 2 are chosen in this way since everything is then
reduced modulo detQ. Changing the bounds would not change the complexity of
the whole algorithm.

Remark. At the end of the algorithm, the determinant of Q6 is always equal to ˇ.
This is a consequence of the choice of the value of z.

Remark. We will use this algorithm until we obtain a ˇ of the form 2�p with p
an odd prime number. This choice will be explained in Section 2E.

2E. Computing a solution. The complete algorithm for finding a nonzero isotro-
pic vector for a quadratic form dimension 5 without factoring the determinant is
as follows.

Algorithm 2.19 (Solving).

Input: Q, an integral indefinite, nondegenerate quadratic form of dimension 5.

Output: X , a nonzero integral isotropic vector for Q.

1. Apply the minimization Algorithm 2.12 to Q.

2. Apply Algorithms 2.14 and 2.16 to the result of step 1.

3. Apply the completion Algorithm 2.18 to the result of step 2 until the determinant
of the returned form Q6 is equal to ˙2p where p is an odd prime number.

4. Solve the equation tXQ6X D 0.

5. Write Q6 DH ˚Q4 where H is a hyperbolic plane.

6. Solve the equation tXQ4X D 0.

7. Write Q4 DH
0˚Q2 where H 0 is a hyperbolic plane.

8. Deduce from the previous steps a solution S to the equation tXQX D 0.

9. Return S.

Theorem 2.20. Let Q be an integral indefinite, nondegenerate quadratic form of
dimension 5. Then Algorithm 2.19, applied to Q, outputs a nonzero integral vec-
tor S that is a solution to the equation tXQX D 0 without factorizing any integer.

Remark. The above algorithm is based on the fact that the method developed by
Simon in [11] is very efficient as soon as the factorization of the determinant of
the form is known. This theorem shows that there exists an efficient algorithm
even when the factorization is not known or when it is not possible to factor the
determinant in a reasonable amount of time.
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Proof. This proof follows the steps of the algorithm. We are going to divide the
proof in the same way as the algorithm is divided:

1: Minimizations

2: Reducing the even part

3: Choice of the signature and completion of Q while imposing the form of the
determinant

4: Computing a solution for Q6

5: Decomposition in a sum with a hyperbolic plane

6: Computing a solution for Q4

7: Decomposition in a sum with a hyperbolic plane

8: Computing a solution for Q

Step 1: We apply Algorithm 2.12 to Q. At the end of this step, we have a form
Q.2/ 2 Sym�.5;Z/ equivalent to Q, an invertible matrix G2, and a nonzero rational
number �.2/ such that Q.2/ D �.2/ tG2QG2.

Step 2: We successively apply Algorithms 2.14 and 2.16 to Q.2/ in order to
have a form with an odd determinant. At the end of this step, we obtain a form
Q.3/ 2 Sym�.5;Z/ equivalent to Q, an invertible matrix G3, and a nonzero rational
number �.3/ such that Q.3/ D �.3/ tG3Q

.2/G3 and the determinant � of Q.3/ is
odd.

Step 3: We apply Algorithm 2.18 and choose k D 106 (the value of k will
be detailed in a further paper) until the determinant of the returned form is equal
to ˙2p with p an odd prime number; the condition 2� p is necessary because
of some conditions on local solubility at 2. It is possible to show that a vector X
verifying these conditions can always be found efficiently by using an effective
version of the Cebotarev density theorem [6]. At the end of this step, we have a
form Q6 whose restriction to the subspace generated by the first 5 vectors of the
basis is equal to Q.3/, whose determinant is equal to ˙2p with p an odd prime
number, and whose signature .r; s/ is such that r � 2 and s � 2.

Step 4: We use the algorithm described in [11], and obtain a nonzero integral
vector T such that tTQ6T D 0. We divide T by the GCD of its coordinates in
order to have T primitive.

Step 5: This step consists in finding a hyperbolic plane containing the vector T .
The existence of such a plane is given by the result in [9, p.55, Proposition 3.]. We
first write the form Q6 in a unimodular basis whose first vector is the vector T (the
basis can be found by using the HNF of a primitive vector), we denote by G4 such
a change of basis. We then have Q.1/

6 D
tG4Q6G4 and the upper-left coefficient

is 0. Let RD
�
Q

.1/
6 Œ1; 2�;Q

.1/
6 Œ1; 3�;Q

.1/
6 Œ1; 4�;Q

.1/
6 Œ1; 5�;Q

.1/
6 Œ1; 6�

�
, and let G5
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be a unimodular matrix such that RG5 D .a; 0; 0; 0; 0/, where a is the GCD of the
coefficients of the vector R. Since a divides the first row and the first column of
the matrix Q.1/

6 we have a2 j detQ.1/
6 , but since detQ.1/

6 D˙2p with p prime, we
must therefore have aD 1. Such a G5 matrix is given by the HNF of the vector R.
We can now set G6 D

h
1 0
0 G5

i
, and we then have

Q
.2/
6 D

tG6Q
.1/
6 G6 D

266666664

0 1 0 0 0 0

1 b2 b3 b4 b5 b6

0 b3 � � � �

0 b4 � � � �

0 b5 � � � �

0 b6 � � � �

377777775
:

Now let G7 be the following matrix:

G7 D

266666664

1
�
�b2

2

�
�b3 �b4 �b5 �b6

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

377777775
:

We have detG7 D 1, and

Q
.3/
6 D

tG7Q
.2/
6 G7 D

266666664

0 1 0 0 0 0

1 ˛ 0 0 0 0

0 0

Q4
0 0

0 0

0 0

377777775
;

where Q4 2 Sym.4;Z/. We also have detQ4 D �detQ6. The coefficient in this
matrix is either 0 or 1 according to the parity of the coefficient b2, but it will not
change anything in the rest of the algorithm. We regroup all the changes of basis
and set G8DG4�G6�G7. We then have Q.3/

6 D
tG8Q6G8. This step ends with

the computation of the matrices Q.3/
6 and G8.

Step 6: We now work on the quadratic form Q4 defined above. Its determinant
is �detQ6, which is still equal to �2p with p a prime number. We are going to
show that the equation tXQ4X D 0 has a nontrivial solution: We know that Q4

is indefinite; indeed, the form Q.3/ has been completed in order to have r � 2
and s � 2. We have decomposed this form into the sum of a hyperbolic plane
and a dimension 4 quadratic form Q4, but the signature of a quadratic form on a
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hyperbolic plane is .1; 1/, and Q.3/
6 has the same signature as Q6, so the signa-

ture Q4 is .r � 1; s � 1/ and we have r � 1 � 1, s � 1 � 1, showing that Q4 is
indefinite hence that there exists real solutions. We now need to show the existence
of a solution over Q` for every prime number `. If ` is an odd prime number not
dividing detQ4, the consideration of Hilbert symbols shows that solutions always
exist. Two cases remain: `D 2 and ` j detQ4. We know that detQ4D˙2p is not a
square neither in Q2 nor in Qp since the valuations are odd and p¤ 2, so there exist
local solutions, and using the local-global principle allows us to conclude. Since
solutions exist, we can now use Simon’s algorithm to compute such a solution, and
since the determinant is equal to ˙2p with p prime, we do not need to use any
factorization. We denote by R a primitive solution.

Step 7: This step is the same as the step 5, but the work is done over the
form Q

.1/
4 . Let B be the corresponding change of basis.

Step 8: We have to recall the changes of basis done on the matrix Q4. We set

G9 D

266666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0

B
0 0

0 0

0 0

377777775
and

P DG8 �G9:

We thus have a matrix P such that

tPQ6P D

266666664

0 1
0 0

1 ˛

0
0 1

0
1 ˇ

0 0 Q2

377777775
with ˛; ˇD 0 or 1. We note that the first and the third columns of P are solutions of
the equation tXQ6X D 0. But they also are orthogonal vectors for Q6. It follows
that every linear combination of these vectors still is a solution for Q6. We now
consider a combination such that the last coordinate is 0, denote it by J . We then
have

J D

2664U
0

3775 with U 2 Z5:
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We know that tJQ6J D 0, but we give the computation in detail:

tJQ6J D
�

tU 0
�
26664 Q.3/ X

tX z

37775
2664U
0

3775
D tUQ.3/U

D 0:

ThusU is a nonzero solution to the equation tXQ.3/XD0. We then set SDG2G3U ,
and we have tSQS D 0. We are finally done. �

Remark. The condition of having the determinant equal to ˙2�p with p an odd
prime is necessary due to the condition of local solubility over Q2. The 2 can be
replaced by 22kC1 with k 2 N, but the analysis is much more complicated in this
case and it practically does not affect the running time of the algorithm.

Remark. The complexity of the algorithm is not done here, but the number of
vectors X that we need to try in step 3 until we have a determinant of the desired
shape is O.logjdetQj/.

2F. Generalization to higher dimensions. The algorithm given above is for qua-
dratic forms of dimension 5. It is easy to generalize it to higher dimensions: Indeed,
since the algorithm needs a form of dimension 5 as an input, if the given form has a
larger dimension, we simply need to restrict the form to a subspace of dimension 5.
The only condition required is that the restriction of the form must have a signature
.r; s/ that verifies r � 1 and s � 1 so that the decomposition as the sum of two
hyperbolic planes is possible. When a solution to the restriction is found, we simply
lift the solution to the original space by setting the remaining coordinates to 0.

3. Overview of performance

This algorithm has been implemented in the PARI/GP language, see [7]. Since
the proof of the complexity of this algorithm requires a considerable amount of
additional work it will not be detailed here, but will be explained in a further
work. However, we give an overview of the global performances of the algorithm
with the two following figures. The comparisons are made with the method given
by Simon in [11] and [10]. These algorithms have also been implemented in
the PARI/GP language and can downloaded from the author’s webpage (http://
www.math.unicaen.fr/~simon).

http://www.math.unicaen.fr/~simon
http://www.math.unicaen.fr/~simon
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These values have been computed by averaging over 100 random forms for each
point. The forms are the same for each algorithm. We can clearly observe the fact
that the factorization of the determinant makes Simon’s algorithm very slow for
determinants with size larger than 50 digits. The graph below shows the same
comparison, but this time, the method used for building the forms is made in such
a way that the algorithm often needs to do minimizations. We still can see the
“wall” due to the factorization of the determinant in Simon’s method.
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Counting value sets: algorithm and complexity

Qi Cheng, Joshua E. Hill, and Daqing Wan

Let p be a prime. Given a polynomial in Fpm Œx� of degree d over the finite field
Fpm , one can view it as a map from Fpm to Fpm , and examine the image of this
map, also known as the value set of the polynomial. In this paper, we present the
first nontrivial algorithm and the first complexity result on explicitly computing
the cardinality of this value set. We show an elementary connection between
this cardinality and the number of points on a family of varieties in affine space.
We then apply Lauder and Wan’s p-adic point-counting algorithm to count these
points, resulting in a nontrivial algorithm for calculating the cardinality of the
value set. The running time of our algorithm is .pmd/O.d/. In particular, this is
a polynomial-time algorithm for fixed d if p is reasonably small. We also show
that the problem is #P-hard when the polynomial is given in a sparse represen-
tation, p D 2, and m is allowed to vary, or when the polynomial is given as a
straight-line program, mD 1 and p is allowed to vary. Additionally, we prove
that it is NP-hard to decide whether a polynomial represented by a straight-line
program has a root in a prime-order finite field, thus resolving an open problem
proposed by Kaltofen and Koiran.

1. Introduction

Let f 2 FqŒx� be a polynomial of degree d with coefficients in a finite field having
q D pm elements, where p is prime. Denote the image set of this polynomial by

Vf D
˚
f .˛/ j ˛ 2 Fq

	
and denote the cardinality of this set by # .Vf /.

There are a few trivial bounds on # .Vf / that can be immediately established.
There are only q elements in the field, so # .Vf /� q. Additionally, any polynomial

MSC2010: primary 11Y16; secondary 11Y40, 68Q17.
Keywords: finite field, polynomial value set cardinality, point counting, polynomial time,

randomized polynomial time, RP-reduction, NP-hard, #P-hard, straight-line program, sparse
polynomial, subset sum problem.
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of degree d can have at most d roots, thus for all a 2 Vf , f .x/D a is satisfied at
most d times. This is true for every element in Vf , so # .Vf /d � q, whencel

q

d

m
� # .Vf /� q;

where d � e is the ceiling function.
Both of these bounds can be achieved: If # .Vf /D q, then f is called a permu-

tation polynomial, and if # .Vf /D dq=de, then f is said to have a minimal value
set.

The problem of computing # .Vf / has been studied in various forms for at least
the last 115 years, but exact formulas for # .Vf / are known only for polynomials
of very specific forms. Results that apply to general polynomials are asymptotic
in nature, or provide estimates whose errors have reasonable bounds only on aver-
age [14].

The fundamental problem of determining the value set cardinality # .Vf / can
be thought of as a much more general version of the problem of determining
whether a particular polynomial is a permutation polynomial. Shparlinski [17]
provides a baby-step giant-step type test that determines if a given polynomial
is a permutation polynomial by extending the ideas in [20] to an algorithm that
runs in time QO..dq/6=7/. This is still fully exponential in log q. Ma and von zur
Gathen [13] provide a ZPP (zero-error probabilistic polynomial-time) algorithm
for testing if a given polynomial is a permutation polynomial. According to [10],
the first deterministic polynomial-time algorithm for testing permutation polyno-
mials was obtained by Lenstra using the classification of exceptional polynomials,
which in turn depends on the classification of finite simple groups. Subsequently,
an elementary approach based on the Gao-Kaltofen-Lauder factorization algorithm
was given by Kayal [10].

Essentially nothing is known about the complexity of the more general prob-
lem of exactly computing # .Vf /, and no nontrivial algorithms for this problem
are known. For instance, no baby-step giant-step type algorithm for computing
# .Vf / is known, and no probabilistic polynomial-time algorithm for this problem
is known. Finding a nontrivial algorithm and proving a nontrivial complexity result
for the value counting problem were raised as open problems in [13], where a
probabilistic approximation algorithm is given. In this paper, we provide the first
nontrivial algorithm and the first nontrivial complexity result for the exact counting
of the value set problem.

1A. Our results. Perhaps the most obvious method to calculate # .Vf / is to evalu-
ate the polynomial at each point in Fq and count how many distinct images result.
This algorithm has a time and space complexity .dq/O.1/. One can also approach
this problem by operating on points in the codomain. One has f .x/D a for some
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x 2 Fq if and only if fa.X/D f .X/� a has a zero in Fq; this algorithm again has
a time complexity .dq/O.1/, but the space complexity is improved considerably to
.d log q/O.1/.

In this paper we present several results on determining the cardinality of value
sets. On the algorithmic side, we show an elementary connection between this
cardinality and the number of points on a family of varieties in affine space. We
then apply Lauder and Wan’s p-adic point-counting algorithm [12], resulting in
a nontrivial algorithm for calculating the image set cardinality in the case that p
is sufficiently small (that is, p D O..d log q/C / for some positive constant C ).
Precisely, we have the following.

Theorem 5.2. There exists an explicit deterministic algorithm and an explicit poly-
nomial R such that for any f 2 FqŒx� of degree d , where q D pm (p prime), the
algorithm computes # .Vf /, the cardinality of the image set, in a number of bit
operations bounded by R.mdddpd /.

The running time of this algorithm is polynomial in both p and m, but is expo-
nential in d . In particular, this is a polynomial-time algorithm for fixed d if the
characteristic p is small: q D pm can be large, but p DO..d log q/C /.

On the complexity side, we have several hardness results on the value set prob-
lem. We frame these results using some standard classes in complexity theory,
which we outline here. NP is the complexity class of decision problem whose
positive solutions can be verified in polynomial time. NP-hard is the computa-
tional class of decision problems that all NP problems can be reduced to using a
polynomial-time reduction. NP-complete is the complexity class of all NP-hard
problems whose solution can be verified in polynomial time (that is, NP-complete
is the intersection of NP-hard and NP). Co-NP-complete is the complexity class
of problems where answering the logical complement of the decision problem is
NP-complete.

The corresponding counting complexity theory classes that we use are as follows.
#P (read “sharp-P”) is the set of counting problems whose corresponding decision
problem is in NP. #P-hard is the computational class of counting problems that
all #P problems can be reduced to using a polynomial-time counting reduction.
#P-complete is the intersection of #P-hard and #P.

With a field of characteristic 2, we have the following.

Theorem 4.3. The problem of counting the value set of a sparse polynomial over
a finite field of characteristic 2 is #P-hard.

The central approach in our proof of this theorem is to reduce the problem of
counting satisfying assignments for a 3SAT formula to the problem of value set
counting.

Over a prime-order finite field, we have the following.
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Theorem 4.6. Over a prime-order finite field Fp , the problem of counting the value
set is #P-hard under RP-reduction (randomized polynomial-time reduction) if the
polynomial is given as a straight-line program.

Additionally, we prove that it is NP-hard to decide whether a polynomial in
ZŒx� represented by a straight-line program has a root in a prime-order finite field,
thus resolving an open problem proposed in [7; 8]. We accomplish the complexity
results over prime-order finite fields by reducing the prime-order finite field subset
sum problem (PFFSSP) to these problems.

In the PFFSSP, given a prime p, an integer b, and a set of integers S D
fa1; a2; : : : ; atg, we want to decide the solvability of the equation

a1x1C a2x2C � � �C atxt � b .mod p/

with xi 2 f0; 1g for 1 � i � t . The main idea comes from the observation that if
t < logp=3, there is a sparse polynomial ˛.x/ 2 FpŒx� such that as x runs over Fp ,
the vector �

˛.x/; ˛.xC 1/; : : : ; ˛.xC t � 1/
�

runs over all the elements in f0; 1gt . In fact, a lightly modified version of the
quadratic character ˛.x/D .x.p�1/=2C xp�1/=2 suffices. So the PFFSSP can be
reduced to deciding whether the sparse shift polynomial

Pt�1
iD0 aiC1˛.xCi/�bD0

has a solution in Fp.

2. Background

2A. The subset sum problem. To prove the complexity results, we use the subset
sum problem (SSP) extensively. The SSP is a well-known problem in computer
science; we describe three versions of it. Let an integer b and a set of positive
integers S D fa1; a2; : : : ; atg be given.

(1) Decision version: The goal is to decide whether there exists a subset T � S
such that the sum of all the integers in T equals b.

(2) Search version: The goal is to find a subset T � S such that the sum of all
the integers in T equals b.

(3) Counting version: The goal is to count the number of subsets T � S such that
the sum of all the integers in T equals b.

The decision version of the SSP is a classical NP-complete problem. The counting
version of the SSP is #P-complete, which can be easily derived from proofs of the
NP-completeness of the decision version, for example [5, Theorem 34.15].

One can view the SSP as a problem of solving the linear equation

a1x1C a2x2C � � �C atxt D b
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with xi 2 f0; 1g for 1� i � t . The prime-order finite field subset sum problem is a
similar problem where in addition to b and S , one is given a prime p, and the goal
is to decide the solvability of the equation

a1x1C a2x2C � � �C atxt � b .mod p/

with xi 2 f0; 1g for 1� i � t .

Proposition 2.1. The prime-order finite field subset sum problem is NP-hard under
RP-reduction.

Proof. To reduce the subset sum problem to the prime-order finite field subset
sum problem, one finds a prime p >

Pt
iD1 ai , which can be done in randomized

polynomial time. �

Remark. To make the reduction deterministic, one needs to derandomize the prob-
lem of finding a large prime, which appears to be difficult [18].

2B. Polynomial representations. There are different ways to represent a polyno-
mial over a field F. The dense representation lists all the coefficients of a poly-
nomial, including the zero coefficients. The sparse representation lists only the
nonzero coefficients, along with the degrees of the corresponding terms. If most
of the coefficients of a polynomial are zero, then the sparse representation is much
shorter than the dense representation. A sparse shift representation of a polynomial
in FŒx� is a list of n triples .ai ; bi ; ei /2 F�F�Z�0 which represents the polynomialX

1�i�n

ai .xC bi /
ei :

More generally, a straight-line program for a univariate polynomial in ZŒx� or
FpŒx� is a sequence of assignments, starting from x1 D 1 and x2 D x. After that,
the i -th assignment has the form

xi D xj ˇ xk

where 0 � j; k < i and ˇ is one of the three operations C, �, �. We first let
˛ be an element in Fpm such that Fpm D FpŒ˛�. A straight-line program for a
univariate polynomial in Fpm Œx� can be defined similarly, except that the sequence
starts from x1D˛ and x2Dx. One can verify that a straight-line program computes
a univariate polynomial, and that sparse polynomials and sparse shift polynomials
have short straight-line programs. A polynomial produced by a short straight-line
program may have very high degree, and most of its coefficients may be nonzero,
so it may be costly to write it in either a dense form or a sparse form.
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3. Hardness of solving straight-line polynomials

It is known that deciding whether there is a root in a finite field for a sparse polyno-
mial is NP-hard [11]. In a related work, it was shown that deciding whether there
is a p-adic rational root for a sparse polynomial is NP-hard [1]. However, the
complexity of deciding the solvability of a straight-line polynomial in ZŒx� within
a prime-order finite field was not known. This open problem was proposed in [7]
and [8]. We resolve this problem within this section, and this same idea will be
used later on to prove the hardness result of the value set counting problem.

Let p be an odd prime. Let � be the quadratic character modulo p; that is, �.x/
equals 1, �1, or 0, depending on whether x is a quadratic residue, a quadratic
nonresidue, or is congruent to 0 modulo p. For x 2 Fp , we have �.x/D x.p�1/=2.
Consider the list

�.1/; �.2/; : : : ; �.p� 1/: (1)

It is a sequence in f1;�1gp�1. The following bound is a standard consequence of
the celebrated Weil bound for character sums; see [16] for a detailed proof.

Proposition 3.1. Let .b1; b2; : : : ; bt / be a sequence in f1;�1gt . Then the number
of x 2 Fp such that

�.x/D b1; �.xC 1/D b2; : : : ; �.xC t � 1/D bt

lies between p=2t � t .3C
p
p/ and p=2t C t .3C

p
p/.

The proposition implies that if t < .logp/=3, then every possible sequence in
f�1; 1gt occurs as a consecutive subsequence in expression (1). In many situations
it is more convenient to use binary 0=1 sequences, which suggests instead using
the polynomial .x.p�1/=2C 1/=2, but this results in a small problem at x D 0. We
instead use the sparse polynomial

˛.x/D .x.p�1/=2
C xp�1/=2: (2)

The polynomial ˛.x/ takes values in f0; 1g if x 2 Fp, and ˛.x/D 1 if and only if
�.x/D 1.

Corollary 3.2. If t < .logp/=3, then for any binary sequence .b1; b2; : : : ; bt / 2

f0; 1gt there exists an x 2 Fp such that

˛.x/D b1; ˛.xC 1/D b2; : : : ; ˛.xC t � 1/D bt :

In other words, if t < .logp/=3, the map

x 7!
�
˛.x/; ˛.xC 1/; : : : ; ˛.xC t � 1/

�
is a surjective map from Fp to f0; 1gt ; one can view this map as sending an algebraic
object to a combinatorial object.
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Given a straight-line polynomial f .x/ 2 ZŒx� and a prime p, how hard is it
to decide whether the polynomial has a solution in Fp? We now prove that this
problem is NP-hard.

Theorem 3.3. Given a sparse shift polynomial f .x/ 2 ZŒx� and a large prime p,
it is NP-hard to decide whether f .x/ has a root in Fp under RP-reduction.

Proof. We reduce the (decision version of the) subset sum problem to this problem.
Given b 2 Z�0 and S D fa1; a2; : : : ; atg � Z�0, one can find a prime p such that
p >max.23t ;

Pt
iD1 ai / and construct a sparse shift polynomial

ˇ.x/D

t�1X
iD0

ai˛.xC i/� b: (3)

If the polynomial has a solution modulo p, then the answer to the subset sum
problem is “yes”, since for every x 2 Fp we have ˛.xC i/ 2 f0; 1g.

In the other direction, if the answer to the subset sum problem is “yes”, then
according to Corollary 3.2, the polynomial has a solution in Fp. Note that the
reduction can be computed in randomized polynomial time. �

4. Complexity of the value set counting problem

In this section, we prove several results about the complexity of the value set count-
ing problem.

4A. Finite fields of characteristic 2. We will use a problem about NC0
5 circuits to

prove that counting the value set of a sparse polynomial in a field of characteristic
2 is #P-hard. A Boolean circuit is in NC0

5 if every output bit of the circuit depends
only on at most 5 input bits. We can view a circuit with n input bits and m output
bits as a map from f0; 1gn to f0; 1gm and call the image of the map the value set
of the circuit. The following proposition is implied in [6]; we provide a sketch of
the proof.

Proposition 4.1. Given a 3SAT formula with n variables and m clauses, one can
construct in polynomial time an NC 0

5 circuit with nCm input bits and nCm outputs
bits, such that if there are M satisfying assignments for the 3SAT formula, then
the cardinality of the value set of the NC 0

5 circuit is 2nCm� 2m�1M . In particular,
if the 3SAT formula can not be satisfied, then the circuit computes a permutation
from f0; 1gnCm to f0; 1gnCm.

Proof. Denote the variables and the clauses of the 3SAT formula by x1; x2; : : : ; xn

and C1; C2; : : : ; Cm, respectively. Build a circuit with n C m input bits and
nCm output bits as follows. The input bits will be denoted by x1; x2; : : : ; xn
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and y1; y2; : : : ; ym, and the output bits will be denoted by z1; z2; : : : ; zn and
w1; w2; : : : ; wm. Set zi D xi for 1� i � n, and set

wi D
�
Ci ^ .yi ˚y.iC1 .mod m///

�
_ .:Ci ^yi /

for 1 � i � m. In other words, if Ci is evaluated to be TRUE, then output
yi ˚ y.iC1 .mod m// as wi , and otherwise output yi as wi . Note that Ci depends
only on 3 variables from fx1; x2; : : : ; xng, so we obtain an NC0

5 circuit. After
fixing an assignment to the xi , the zi are also fixed, and the transformation from
.y1; y2; : : : ; ym/ to .w1; w2; : : : ; wm/ is linear over F2. One can verify that the
linear transformation has rank m� 1 if the assignment satisfies all the clauses, and
it has rank m (that is, it has full rank) if some of the clauses are not satisfied. So
the cardinality of the value set of the circuit is

M2m�1
C .2n

�M/2m
D 2nCm

� 2m�1M: �

If we replace the Boolean gates in the NC0
5 circuit by algebraic gates over F2,

we obtain an algebraic circuit that computes a polynomial map from FnCm
2 to itself,

where each polynomial depends only on 5 variables and has degree equal to or less
than 5. There is an F2-basis for F2nCm , say !1; !2; : : : ; !nCm, which induces a
bijection from FnCm

2 to F2nCm given by

.x1; x2; : : : ; xnCm/ 7! x D

nCmX
iD1

xi!i I

the inverse of this map can be represented by sparse polynomials in F2nCm Œx�.
Using this fact, we can replace the input bits of the algebraic circuit by sparse
polynomials, and collect the output bits together using the base to form a single
element in F2nCm . We thus obtain a sparse univariate polynomial in F2nCm Œx� from
the NC0

5 circuit such that their value sets have the same cardinality. We thus have
the following theorem.

Theorem 4.2. Given a 3SAT formula with n variables and m clauses, one can
construct in polynomial time a sparse polynomial 
.x/ over F2nCm such that the
value set of 
.x/ has cardinality 2nCm � 2m�1M , where M is the number of
satisfying assignments of the 3SAT formula.

Since counting the number of satisfying assignments for a 3SAT formula is
known to be #P-complete, we have our main theorem.

Theorem 4.3. The problem of counting the value set of a sparse polynomial over
a finite field of characteristic 2 is #P-hard.

Corollary 4.4. The set of sparse permutation polynomials over finite fields of char-
acteristic 2 is co-NP-complete.
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4B. Prime-order finite fields. The construction in Theorem 4.2 relies on building
extensions over F2. The technique cannot be adopted easily to the prime-order
finite field case. We will prove that counting the value set of a straight-line poly-
nomial over a prime-order finite field is #P-hard. We reduce the counting version
of the subset sum problem to the value set counting problem.

Theorem 4.5. Given access to an oracle that solves the value set counting problem
for straight-line polynomials over prime-order finite fields, there is a randomized
polynomial-time algorithm solving the counting version of the SSP.

Proof. Suppose we are given an instance of the counting subset sum problem, say b
with the set S D fa1; a2; : : : ; ang. If b >

Pn
iD1 ai we answer 0, while if b D 0 we

answer 1. Otherwise, we find a prime p >max.23t ; 2
Pn

iD1 ai / and ask the oracle
to count the value set of the sparse shift polynomial

f .x/ WD
�
1�ˇ.x/p�1

��t�1X
iD0

˛.xC i/2i

�
over the prime-order field Fp, where ˛.x/ and ˇ.x/ are as defined in (2) and (3),
respectively. We output the answer # .Vf /� 1, which is easily seen to be exactly
the number of subsets of fa1; : : : ; ang that sum to b. �

Since the counting version of the SSP is #P-complete, this theorem yields the
following.

Theorem 4.6. Over a prime-order finite field Fp , the problem of counting the value
set is #P-hard under RP-reduction, if the polynomial is given as a straight-line
program.

5. The image set and point counting

Proposition 5.1. If f 2 FqŒx� is a polynomial of degree d > 0, then the cardinality
of its image set is

# .Vf /D

dX
iD1

.�1/i�1Ni�i

�
1;
1

2
; : : : ;

1

d

�
(4)

where Nk D # .f.x1; : : : ; xk/ 2 Fk
q j f .x1/D � � � D f .xk/g/ and �i denotes the i -th

elementary symmetric function on d elements.

Proof. For any y 2 Vf , define

QNk;y D
˚
.x1; : : : ; xk/ 2 Fk

q j f .x1/D � � � D f .xk/D y
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and denote the cardinalities of QNk;y by Nk;y . We then see that

Nk D

X
y2Vf

Nk;y : (5)

Let us refer to the right-hand side of (4) as �; plugging (5) into this expression
and rearranging, we get

�D
X

y2Vf

dX
iD1

.�1/i�1Ni;y �i

�
1;
1

2
; : : : ;

1

d

�
:

Let us call the inner sum !y ; that is,

!y D

dX
iD1

.�1/i�1Ni;y �i

�
1;
1

2
; : : : ;

1

d

�
:

If we can show that for all y 2 Vf we have !y D 1, then we clearly have �D # .Vf /.
Let y 2Vf be fixed. Let kD # .f �1.y//. It is clear that 1� k�d andNi;yD k

i

for 0� i � d . Substituting this in, our expression mercifully becomes somewhat
nicer:

!y D 1�

dX
iD0

.�1/iki�i

�
1;
1

2
; : : : ;

1

d

�
D 1�

dX
iD0

.�1/i�i

�
k;
k

2
; : : : ;

k

d

�
(6)

D 1�
h�
1� k

��
1�

k

2

�
� � �

�
1�

k

d

�i
(7)

D 1:

From step (6) to step (7), we are using the identity
nY

jD1

�
��Xj

�
D

nX
jD0

.�1/j �n�j�j .X1; : : : ; Xn/ :

Note that the bracketed term of (7) is 0, as k must be an integer such that 1� k � d ,
so one term in the product will be 0. Thus, we have �D # .Vf /, as desired. �

Proposition 5.1 gives us a way to express # .Vf / in terms of the numbers of
rational points on a sequence of curves over Fq . If we had a way of getting Nk for
1� k � d , then it would be easy to calculate # .Vf /.

We proceed by examining a family of related spaces,

QNk D
˚
.x1; : : : ; xk/ 2 Fk

q j f .x1/D � � � D f .xk/
	
:
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We immediately note that Nk D # . QNk/.
Spaces similar to our QNk have been used several times [19; 2] to establish various

asymptotic results for # .Vf /. The spaces used in these earlier papers require that
xi ¤ xj for i ¤ j . We will see that our work would have been dramatically harder
had we imposed these additional restrictions.

The spaces QNk are not of any nice form (in particular, we cannot assume they
are nonsingular projective, abelian varieties, and so on), so we proceed by using
the p-adic point counting method described in [12], which runs in polynomial time
for any variety over a field of small characteristic (that is, p DO..d log q/C / for
some positive constant C ).

Theorem 5.2. There exist an explicit deterministic algorithm and an explicit poly-
nomial R such that for any f 2 FqŒx� of degree d , where q D pm and p is prime,
the algorithm computes the cardinality of the image set # .Vf / in a number of bit
operations bounded by R.mdddpd /.

Proof. We first note that

QNk D
˚
.x1; : : : ; xk/ 2 Fk

q j f .x1/D � � � D f .xk/
	

D

8̂̂̂<̂
ˆ̂:.x1; : : : ; xk/ 2 Fk

q

ˇ̌̌̌
ˇ̌̌̌
ˇ
f .x1/�f .x2/D 0

f .x1/�f .x3/D 0
:::

f .x1/�f .xk/D 0

9>>>=>>>; :
For reasons soon to become clear, we need to represent this as the solution set
of a single polynomial. Let us introduce additional variables z1 to zk�1, and set
x D .x1; : : : ; xk/ and z D .z1; : : : ; zk�1/. Now examine the auxiliary function

Fk.x; z/D z1

�
f .x1/�f .x2/

�
C � � �C zk�1

�
f .x1/�f .xk/

�
: (8)

Clearly, if 
 2 QNk , then Fk.
; z/ is the zero function. If 
 2 Fk
q n
QNk , then the

solutions of Fk.
; z/D 0 specify a .k� 2/-dimensional Fq-linear subspace of Fk�1
q .

Thus, if we denote the cardinality of the solution set to Fk.x; z/D 0 as # .Fk/, then
we see that

# .Fk/D q
k�1NkC q

k�2.qk
�Nk/

DNkq
k�2.q� 1/C q2k�2:

Solving for Nk , we find that

Nk D
# .Fk/� q

2k�2

qk�2 .q� 1/
: (9)

Thus we have an easy way to determine Nk , if we know the number of points on
the hypersurface defined by the single polynomial equation Fk D 0.
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The main theorem in [12] yields an algorithm for toric point counting in Fq`

that is polynomial time when the characteristic is small (that is, pDO..d log q/C /
for some positive constant C ) that works for general varieties. In [12, §6.4], this
theorem is adapted to be a generic point counting algorithm.

To apply this result to our problem, we note that Fk is a polynomial in 2k� 1
variables with total degree d C1, and that we only care about the case where `D 1.
Thus, the running time for this algorithm is QO.28kC1m6kC4k6kC2d6k�3p4kC2/

bit operations. In order to calculate # .Vf / using (4), we calculate Nk for 1� k � d ,
scaled by an elementary symmetric polynomial. All of the necessary elementary
symmetric polynomials can be evaluated using Newton’s identities (see [15]) in
O.d2 log d/ multiplications. Therefore, the entire calculation has a running time
of QO.28dC1m6dC4d12d�1p4dC2/ bit operations. For consistency with [12], we
can then note that as d > 1, we can write 28dC1 D d .logd 2/.8dC1/. Thus, there
is a polynomial R in one variable such that the running time of this algorithm is
bounded by R.mdddpd / bit operations. In the dense polynomial model, the poly-
nomial f has input size O .d log q/, so this algorithm does not have polynomial
running time with respect to the input length. This algorithm has running time that
is exponential in the degree d of the polynomial, and polynomial in m and p. �

Note that if we had adopted the spaces constructed in prior works [19; 2], we
would have then required xi ¤ xj for i ¤ j . The standard approach to represent-
ing such inequalities is the “Rabinovich trick”. To use this trick, we would have
introduced an additional variable, say y, and the additional equation

y
Y
i<j

.xj � xi /D 1:

This is a polynomial of degree
�
k
2

�
C 1, which would have led to an equation

corresponding to (8) of degree at least
�
k
2

�
C 2 with 2kC 1 variables; this would

have increased the work factor of the algorithm significantly.

6. Open problems

The algorithm we have presented relies on the result of Lauder and Wan, which
is intended to calculate the number of Fq-rational points on a general variety. We
use this algorithm on a polynomial of a very special form. As such, it may be
possible to get a considerably more efficient algorithm by exploiting symmetry in
the resulting Newton polytope.

Though value sets of polynomials appear to be closely related to zero sets,
they are not as well studied. There are many interesting open problems about
value sets. The most important one is to find a counting algorithm with running
time .d log q/O.1/, that is, a deterministic polynomial-time algorithm in the dense
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model. It is not clear if this is always possible. Our result affirmatively solves this
problem for fixed d if the characteristic p is reasonably small. We conjecture that
the same result is true for fixed d and all characteristic p.

For the complexity side, can one prove that the counting problem for sparse
polynomials in prime-order finite fields is hard? Can one prove that the counting
problem for the dense input model is hard for general degree d?
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Haberland’s formula and numerical computation
of Petersson scalar products

Henri Cohen

We study several methods for the numerical computation of Petersson scalar
products, and in particular we prove a generalization of Haberland’s formula to
any subgroup of finite index G of � D PSL2.Z/, which gives a fast method
to compute these scalar products when a Hecke eigenbasis is not necessarily
available.

1. Introduction

Let G be a subgroup of � D SL2.Z/ of finite index r D Œ� WG�. Recall that � acts
on the upper half-plane H via linear fractional transformations and that we have
an invariant measure d� D dx dy=y2. We will denote by D.G/ a “reasonable”
fundamental domain for the action of G on H; see Definition 4.1 below.

Given two modular forms f1 and f2 having the same weight k and the same
multiplier system v on G, we recall that one defines the Petersson scalar product
hf1; f2iG (abbreviated PSP), when it exists, by the formula

hf1; f2iG D
1

Œ� WG�

Z
GnH

f1.�/f2.�/y
k dx dy

y2
D
1

r

Z
D.G/

f1.�/f2.�/y
k d�:

This is a fundamental quantity which enters almost everywhere in the theory of
modular forms, and the aim of the present paper is to study how to compute it
numerically in practice. The normalizing factor 1=r is included so that the result
does not depend on which group is taken with respect to which both f1 and f2 are
modular.

The absolute convergence of the above integral is assured if either f1 or f2 is a
cusp form, or if we are in weight 1=2. Note however that it can also converge in
other cases. We will always consider the case where one of f1 and f2 is a cusp

MSC2010: primary 11F11; secondary 11Y35.
Keywords: Petersson product.
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form and we will assume that k � 2 and that k is integral. It is an interesting and
nontrivial question to ask what can be done when k D 1.

When the space Sk.G; v/ of cusp forms of weight k and multiplier system v is
known explicitly, and in particular when the decomposition into Hecke eigenforms
is known (when G D �0.N / or �1.N / for instance), there are specific methods
for computing the PSP if the decomposition of f1 and f2 on the eigenbasis can be
easily computed; we will mention these methods below. But we are more interested
in the general context where one does not need to know either Sk.G; v/ or the
eigenbasis decompositions, but where we assume that for any � 2H one can rapidly
compute f1.�/ and f2.�/ to reasonably high accuracy.

In the sequel we will let .
j /1�j�r be a system of representatives of right cosets
of Gn� , so that � D

F
1�j�r G
j . In particular, if F is a fundamental domain for

the full modular group � (for instance the standard one), then
S
1�j�r 
j .F/ is a

fundamental domain for G, where the union is essentially disjoint, with the only
possible intersections being on the boundaries.

Recall that if 
 D
�
a b
c d

�
2 � we write f j

k

 to mean

f jk 
.�/D .c� C d/
�kf

�
a�Cb

c�Cd

�
;

so that f is an element of Mk.G; v/ if and only if f j
k

 D v.
/f for all 
 2 G

and f is holomorphic on H and at the cusps; also, f lies in Sk.G; v/ if in addition
f vanishes at the cusps.

It is clear that f j
k
g
j D v.g/f j

k

j , so up to the factor v.g/ the function

fj D f jk 
j is independent of the chosen representative of the right coset G
j . In
addition, for any ˛ 2 � we have by definition 
j˛ D gj 
a.j / for some gj 2G, the
map j 7! a.j / being a permutation of Œ1; r�, so up to the factors v.gj /, the family
of fj jk˛ is simply a permutation of the fj .

2. Some standard methods

Before coming to the more original part of the paper, where we explain how to
compute PSP’s in a quite general setting, we recall with some detail some well-
known methods.

Throughout the paper we will use three test examples, even though they are not
completely general:

f1 D f2 D�.�/D �.�/
24
2 S12.�/;

f1 D f2 D�5.�/D
�
�.�/�.5�/

�4
2 S4.�0.5//;

and
f1 D f2 D�11.�/D

�
�.�/�.11�/

�2
2 S2.�0.11//;
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the last of these being the cusp form associated to the elliptic curve X0.11/. To
47 decimals, we have

h�;�i� D 0:00000103536205680432092234781681222516459322491 : : : ;

h�5; �5i�0.5/
D 0:00014513335082978187614092680220909259631066600 : : : ;

h�11; �11i�0.11/
D 0:00390834565612459898524738548138211386179054941 : : : :

In most cases, we assume for simplicity that G D � , but we will of course state
the necessary modifications for a general subgroup of finite index G.

2A. Computing from the definition. A first method for computing PSP’s is to use
the definition directly: Assuming for instance that G D � , we have

hf1; f2i D

Z
F
f1.�/f2.�/y

k�2 dx dy

D

Z 1
2

�
1
2

�Z 1
p
1�x2

f1.xC iy/f2.xC iy/y
k�2 dy

�
dx:

Since the functions fi are holomorphic, to compute the integrals numerically one
can use the doubly exponential integration method (see for instance [2, §9.3]). This
little-known but remarkable method is especially efficient for holomorphic func-
tions, and it can be shown that to obtain an accuracy of N decimals the method
requires O.N logN/ evaluations of the function to be integrated.

However, we have here a double integral, so the method requires O.N 2 log2N/
evaluations of the functions, which can be rather expensive. Of course this can be
generalized to any subgroup G by using a natural choice of fundamental domain
D.G/D

S
1�j�r 
j .F/ and making the obvious changes of variable. Table 1 gives

a selection of timings to compute hf; f iG to a given number N of decimals using
this method. The timings are in seconds, and those not given (as indicated by a
dash) are greater than 30 minutes. The present timings have been made on a single
processor of a standard 1.8 GHz Intel core i7 CPU, but they are highly dependent
on the implementation, so this table is only indicative.

f N D 19 38 57 96 250 500

� 11 16 87 143 — —
�5 154 219 1185 — — —
�11 327 468 — — — —

Table 1. Timings (in seconds, on one processor of a 1.8 GHz Intel core i7 CPU)
to compute hf; f iG to N decimal places using the definition of the pairing. Tim-
ings greater than 30 minutes are indicated with a dash.
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To summarize: The advantages of this method are its complete generality and
simplicity, while its main disadvantage is that it is quite slow, especially at high
accuracy and/or for a subgroup of large index.

2B. Using Kloosterman sums. Thanks to the computation of the Fourier expan-
sion of Poincaré series for � , it is easy to show that

1

h�;�i
D
.4�/11

10Š�.n/

�
ın;1C 2� �n

11=2
X
c�1

K.n; 1I c/

c
J11

�
4�n1=2

c

��
;

and similar formulas exist in higher weight and for congruence subgroups.
The convergence of this type of series is essentially of the order of O.1=ck�2/

(here with k D 12). This shows that, although useful, the above formula has severe
limitations. First, even in the case of �, the convergence in O.1=c10/ and the
necessity of computing Kloosterman sums and Bessel functions implies that one
can reasonably compute perhaps 106 terms if one is patient, giving an accuracy of
60 decimals. A more important limitation occurs for subgroups of � , for which
there exist forms of lower weight than 12. For instance, in weight 2 the absolute
convergence is not even clear, and in weight 4 the convergence is in O.1=c2/,
which is too slow to obtain any reasonable accuracy.

Table 2 presents some timings for this method, but limited to � since the con-
vergence for �5 would be too slow.

To summarize: The advantage of this method is its speed for high weight and
reasonably low accuracy such as 19 or 38 decimals, but the method is essentially
useless in all other cases. In addition, its use is restricted to congruence subgroups.

2C. Using symmetric square L-functions. Once again for simplicity we restrict
to G D � , but there is no difficulty in generalizing.

Since there exists an explicit orthogonal basis of eigenfunctions in Mk.�/, com-
puting Petersson scalar products of two arbitrary forms can easily be reduced to
the computation of hf; f i for f a normalized eigenform. If

L.f;s/D
X
n�1

a.n/

ns
D

Y
p

1

1� a.p/p�sCpk�1�2s
D

Y
p

1

.1� p̨p�s/.1� p̌p�s/

f N D 19 38 57 96 250 500

� 0:01 3 900 — — —

Table 2. Timings (in seconds) to compute hf; f iG to N decimal places using
Kloosterman sums.
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with p̨C p̌ D a.p/ and p̨ p̌ Dp
k�1, recall that we define the symmetric square

L-function L.Sym2.f /; s/ for <.s/ > k by the formula

L.Sym2.f /; s/D
Y
p

1

.1�˛2pp
�s/.1� p̨ p̌p�s/.1�ˇ2pp

�s/
:

The main properties of this function are summarized in the following result.

Theorem 2.1. Let f D
P
n�1 a.n/q

n 2 Sk.�/ be a normalized Hecke eigenform.

(1) (Fourier expansion.) If we set

A.n/D
X
mjn

.�1/�.m/mk�1a.n=m/2;

where �.m/ is the number of prime divisors of m, counted with multiplicity,
then

L.Sym2.f /; s/D
X
n�1

A.n/

ns
:

(2) (Functional equation.) The function L.Sym2.f /; s/ can be extended holo-
morphically to the whole of C, and the completed L-function

ƒ
�
Sym2.f /; s

�
D ��3s=2�.s=2/�

�
.sC 1/=2

�
�
�
.s� k/=2C 1

�
L
�
Sym2.f /; s

�
satisfies the functional equation

ƒ
�
Sym2.f /; 2k� 1� s

�
Dƒ

�
Sym2.f /; s

�
:

(3) (Special value.) We have

L
�
Sym2.f /; k

�
D
�

2

.4�/k

.k�1/Š
hf; f i:

Proof. The meromorphic continuation, functional equation, and special value are
very classical and immediate consequences of the Rankin-Selberg method. The
holomorphy is more difficult, and was proved independently by Shimura and Zagier
in 1975. �

Note that similar results are of course valid for subgroups.
The last statement of the theorem allows us to reduce the computation of hf; f i

to that of L.Sym2.f /; k/. For this, the direct use of the definition is of little help,
since it is not even clear that the series or product defining this L-function converge,
and even if they do, the convergence will be extremely slow. However, the crucial
point is the following: Any Dirichlet series satisfying a functional equation of
standard type can be evaluated numerically very efficiently using exponentially
convergent series, see for instance [1, §10.3]. Specializing to our case, it is easy to
show the following theorem.
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Theorem 2.2. Let f D
P
n�1 a.n/q

n2Sk.�/ be a Hecke eigenform. SetC D2��
3
2

and 
.s/D C�s�.s/�
�
.s � k/=2C 1

�
, and as usual let Hn denote the harmonic

number
P
1�j�n 1=j and let 
 denote Euler’s constant. Let

F1;k.s; x/D
X

1�m�.k�2/=2

.�1/k=2�m�1
.2m� 1/Š

.k=2�m� 1/Š

.Cx/�2m

s� 2m
;

F2;k.s; x/D
X
m�0

.�1/k=2�m�1
22mCk.mC k=2/Š

.2mC 1/Š.2mC k/Š

.Cx/2mC1

sC 2mC 1
; and

F3;k.s; x/D
X
m�0

.�1/k=2�m�1
1

.2m/Š.mC k=2� 1/Š

.Cx/2m

2mC s
Gm.s; x/;

where

Gm.s; x/D 2H2mCHmCk=2�1� 3
 � 2 log.Cx/C 2

2mCs
;

and set

Fk.s; x/D 
.s/� x
s
�
2F1;k.s; x/C�

1=2F2;k.s; x/CF3;k.s; x/
�
:

Then for every s 2 C with <.s/ > k� 2 and every t0 > 0, we have


.s/L
�
Sym2.f /; s

�
D

X
n�1

A.n/

ns
Fk.s; nt0/C

X
n�1

A.n/

n2k�1�s
Fk.2k� 1� s; n=t0/

where the A.n/ are the coefficients given in part (1) of Theorem 2.1. In particular,

hf; f i D 21�k�k=2�1
�X
n�1

A.n/

nk

�
Fk.k; n/CnFk.k� 1; n/

��
:

Note that even though there is cancellation for large x, the series for Fk.s; x/ are
sufficient for practical computation. One can also compute asymptotic expansions
for large x, if desired, showing in particular that Fk.s; x/ tends to 0 exponentially.

Table 3 presents a few timings; for simplicity of implementation, we again limit
the table to the case f D�.

The advantages of this method are that it is general and fast; its main disadvan-
tage is that its implementation requires great care in writing the correct formulas,

f N D 19 38 57 96 250 500

� 0:03 0:09 0:2 0:8 11 97

Table 3. Timings (in seconds) to compute hf; f iG to N decimal places using
symmetric-square L-functions.
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especially for subgroups, and in dealing with cancellation and accuracy problems.
But once these hurdles have been overcome, it is the best method that we have seen
up to now, and most experts in the field would agree that it is the best available.
However, as already mentioned, it assumes that the eigenfunction decomposition
of f is known, and this is not always easy or possible. This lead us now to a
different method, which is completely general.

3. Basic lemmas

The main computational difficulty related to Petersson products is that they are truly
double integrals. In the first naïve approach, we have explained that nonetheless
these integrals can be computed, somewhat slowly, by using doubly exponential
integration techniques. A remarkable fact however, discovered by Haberland [4]
(see also [7]) some time ago, is that PSP’s can be reduced to the computation of
a reasonably small finite number of simple integrals, which can now be evaluated
very rapidly using doubly exponential integration.

Haberland’s result was given for general weights k but only for the full modular
group. In a slightly different form it was generalized long ago to �0.N / but only
in weight k D 2 and trivial character, first by Cremona [3] and Zagier [10] in the
context of computing the degree of modular parametrizations of elliptic curves
(see the more recent paper of Watkins [9] on this subject), and much more recently
by Merel [5] in connection with Manin symbols. It was realized that a complete
generalization should not be difficult to obtain, and it is one of the purposes of
this paper to give it. Note that in [6] the authors also give such a generalization,
in a slightly different form, and also for noncuspforms. In what follows, we will
assume that f1 and f2 are both cuspforms; if one of the fi is not a cuspform we
can either find its decomposition into its Eisenstein and cuspidal part, which can
usually be done with ease, or use the generalization due to [6].

Our goal in this section, which is the main step toward Haberland’s formulas,
is to show that PSP’s are related to other double integrals, which are not “true”
double integrals in the sense that they can easily be expressed in terms of simple
integrals. For this, we need some preliminary definitions and results. We assume
G, .
j /1�j�r , k, v, f1, and f2 as above, and we will set f1;j D f1 jk 
j and
f2;j D f2 jk 
j for 1� j � r . As mentioned above, for simplicity we assume that
f1 and f2 are both cuspforms.

3A. The differentials " and ı.

Definition 3.1. We set

".f1; f2/.�1; �2/D f1.�1/f2.�2/.�1� �2/
k�2 d�1 d�2
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and

ı.f1; f2/D
X
1�j�r

".f1;j ; f2;j /:

Lemma 3.2. Let ˛ 2 � .

(1) We have

".f1; f2/.˛�1; ˛�2/D "
�
f1 jk˛; f2 jk˛

�
.�1; �2/:

(2) The expression ".f1;j ; f2;j / does not depend on the choice of the right coset
representative 
j .

(3) If 
j˛ D gj 
a.j / with gj 2G we have

".f1;j ; f2;j /.˛�1; ˛�2/D ".f1;a.j /; f2;a.j //:

(4) We have ı.f1; f2/.˛�1; ˛�2/D ı.f1; f2/; in other words, ı.f1; f2/ is invari-
ant under � .

Proof. Writing ˛ D
�
a b
c d

�
, we have

".f1; f2/.˛�1; ˛�2/

D f1 jk˛.�1/ f2 jk˛.�2/ � .c�1C d/
k.c�2C d/

k
.˛�1�˛�2/

k�2 d˛�1 d˛�2

D f1 jk˛.�1/ f2 jk˛.�2/.�1� �2/
k�2 d�1 d�2

D "
�
f1 jk˛; f2 jk˛

�
.�1; �2/;

using the immediate but fundamental identity

.c�1C d/
k.c�2C d/

k
.˛�1�˛�2/

k�2 d˛�1 d˛�2 D .�1� �2/
k�2 d�1 d�2:

Statement (1) follows.
If g 2 G we have f1 jkg
j D v.g/f1;j , and similarly for f2, so statement (2)

follows from v.g/v.g/D 1.
By definition we have

f1;j jk˛ D f1 jk 
j˛ D f1 jkgj 
a.j / D v.gj /f1;a.j /

since f1 2Mk.G; v/, and similarly for f2;j . Again using v.gj /v.gj /D 1, we ob-
tain statement (3). Statement (4) follows by summing on j since the map j 7! a.j /

is a permutation. �
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3B. The simple integral F2;j .

Definition 3.3. Let Z 2H be fixed, and set

F2;j .ZI �/D F2;j .�/D

Z �

Z

f2;j .�2/.� � �2/
k�2 d�2:

Remarks. (1) We could also define F1;j in a similar manner, but we will only
need F2;j since we temporarily treat f1 and f2 in a nonsymmetric manner.

(2) Note that F2;j is in general not holomorphic, so must be considered as a
function of � and � .

(3) We have

F2;j .Z1I �/�F2;j .Z2I �/D

Z Z2

Z1

f2;j .�2/.� � �2/
k�2 d�2;

which is a polynomial (hence in particular a holomorphic function) in � .

Lemma 3.4. (1) We have

@F2;j

@�
D f2;j .�/.� � �/

k�2:

(2) For every ˛ 2 � we have

F2;j j2�k˛.�/D

Z �

˛�1.Z/

f2;j jk˛.�2/.� � �2/
k�2 d�2:

(3) In particular, if we write 
j˛ D gj 
a.j / with gj 2G, we have

F2;j j2�k˛.�/D v.gj /
�
F2;a.j /.�/�Pa.j /.˛I �/

�
;

where

Pa.j /.˛I �/D

Z ˛�1.Z/

Z

f2;a.j /.�2/.� � �2/
k�2 d�2

is a polynomial in � of degree less than or equal to k � 2 (recall once again
that we assume k � 2).

(4) We have�Z B

A

�

Z ˛.B/

˛.A/

� X
1�j�r

f1;j .�/F2;j .�/ d� D

Z B

A

X
1�j�r

f1;j .�/Pj .˛I �/ d�:

Proof. We have F2;j .�/D
R �
Z f2;j .�2/.� � �2/

k�2 d�2, so

@F2;j .�/

@�
D f2;j .�/.� � �/

k�2:

Conjugating this equality proves statement (1).
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Setting �2 D ˛z and writing ˛ D
�
a b
c d

�
, we have

F2;j j2�k˛.�/D .c� C d/
k�2

Z ˛�

Z

f2;j .�2/.˛� � �2/
k�2 d�2

D .c� C d/k�2
Z �

˛�1Z

.czC d/k�2f2;j jk˛.z/.˛� �˛z/
k�2 dz

D

Z �

˛�1Z

f2;j jk˛.z/.� � z/
k�2 dz;

since ˛u�˛v D .u� v/
ı�
.cuC d/.cvC d/

�
; this proves statement (2).

Since we have f2;j jk˛ D v.gj /f2;a.j /, it follows from statement (2) that

F2;j j2�k˛.�/D v.gj /

Z �

˛�1.Z/

f2;a.j /.�2/.� � �2/
k�2 d�2;

proving statement (3).
Setting � D ˛z with ˛ D

�
a b
c d

�
and as before 
j˛ D gj 
a.j /, we haveZ ˛.B/

˛.A/

f1;j .�/F2;j .�/ d� D

Z B

A

f1;j .˛z/F2;j .˛z/.czC d/
�2 dz

D

Z B

A

f1;j jk˛.z/F2;j j2�k˛.z/ dz

D v.gj /v.gj /

Z B

A

f1;a.j /.�/
�
F2;a.j /.�/�Pa.j /.˛I �/

�
d�;

and since j 7! a.j / is a bijection, we obtainZ ˛.B/

˛.A/

X
1�j�r

f1;j .�/F2;j .�/ d� D

Z B

A

X
1�j�r

f1;j .�/
�
F2;j .�/�Pj .˛I �/

�
d�;

proving statement (4). �

Corollary 3.5. Let f1 and f2 be in Mk.G; v/, one of them being a cusp form. For
every subgroup H of � of finite index s D Œ� WH� we have

.2i/k�1rshf1; f2iG D

Z
@.D.H//

X
1�j�r

f1;j .�/F2;j .�/ d�;

where @.D.H// denotes the boundary of a reasonable fundamental domain D.H/
of H .

Note that the subgroup H need not have anything to do with the subgroup G.
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Proof. By definition we have

.2i/k�1rhf1; f2iG D

Z
D.G/

f1.�/f2.�/.� � �/
k�2 d� d�

D

X
1�j�r

Z

j .D.�//

f1.�/f2.�/.� � �/
k�2 d� d�

D

Z
D.�/

X
1�j�r

f1;j .�/f2;j .�/.� � �/
k�2 d� d�

D

Z
D.�/

ı.f1; f2/.�; �/

D
1

s

Z
D.H/

ı.f1; f2/.�; �/;

after an evident change of variable, and since ı is invariant by � by Lemma 3.2.
Now since f1;j is holomorphic, we have @f1;j =@� D 0, so by Stokes’s theorem
and the above lemma we have

.2i/k�1rshf1; f2iG D

Z
D.H/

X
1�j�r

@.f1;jF2;j /

@�
d� d�

D

Z
@.D.H//

X
1�j�r

f1;j .�/F2;j .�/ d�;

as claimed. �

3C. The basic double integral J. We make the following definition.

Definition 3.6. Let f1 and f2 be modular forms. If A1, B1, A2, B2 are in H, we
set, when defined,

J.A1; B1IA2; B2/D

Z B1

A1

Z B2

A2

ı.f1; f2/

D

X
1�j�r

Z B1

A1

Z B2

A2

f1;j .�1/f2;j .�2/.�1� �2/
k�2 d�1 d�2;

where f1;j D f1 jk 
j and f2;j D f2 jk 
j .

When we need to emphasize the dependence in f1 and f2 we will of course
write J.f1; f2IA1; B1IA2; B2/ instead of J.A1; B1IA2; B2/. Also, as usual when
integrating on H it is understood that integrals having a cusp as an endpoint must
end with a hyperbolic circle. The following properties are immediate.

Lemma 3.7. (1) The above definition does not depend on the paths of integration,
as long as the conditions at the cusps are satisfied.
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(2) The above definition does not depend on the right coset representatives 
j .

(3) The function J is transitive separately on .A1; B1/ and on .A2; B2/; in other
words,

J.A1; C1IA2; B2/CJ.C1; B1IA2; B2/D J.A1; B1IA2; B2/;

and similarly for .A2; B2/.

(4) We have

J.f1; f2IA2; B2IA1; B1/D .�1/
k�2J.f2; f1IA1; B1IA2; B2/:

(5) We have

J.A1; B1IA2; B2/

D

X
1�j�r

X
0�n�k�2

.�1/n
�
k�2
n

� Z B1

A1

�k�2�nf1;j .�/ d�

Z B2

A2

�nf2;j .�/ d�;

where we must assume that f1 and f2 are both cusp forms if at least one of
the Ai or Bi is a cusp.

In particular, this last statement shows that J is much easier to compute than a
PSP, and it is in this sense that we said above that it is not a “true” double integral.

Proposition 3.8. For any ˛ 2 � we have

J.˛A1; ˛B1I˛A2; ˛B2/D J.A1; B1IA2; B2/:

Proof. This follows immediately from the �-invariance of ı, proved in Lemma 3.2.
�

4. The main result

4A. Fundamental domains. Before stating and proving the main result, we must
discuss fundamental domains of subgroups of � . We first set the following defini-
tion.

Definition 4.1. Let G � � be a subgroup of finite index r . A subset D.G/ of H

is called a reasonable fundamental domain (or simply a fundamental domain) for
G if the following conditions are satisfied:

(1) D.G/ is a finite union of connected and simply connected open subsets of H.

(2) The boundary @.D.G//DD.G/ nD.G/ has measure 0.

(3) For any � 2 H there exists g 2 G such that g� 2 D.G/. In addition, if
g� 2D.G/ then g is unique, or equivalently, if g1 and g2 2G are such that
g1.�/ and g2.�/ are in D.G/, then gi .�/ 2 @.D.G//.
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If F is the standard fundamental domain for the full modular group � , it is clear
that D.G/D

S

j .F

ı/ is a reasonable fundamental domain. The following results
are well-known.

Proposition 4.2. The fundamental domain D.G/ can be chosen so that its bound-
ary @.D.G// is the union of an even number of oriented hyperbolic circles, say
ŒAi ; AiC1Œ with 1� i � 2n (where the indices are taken modulo 2n), such that
there exists a family .˛i /1�i�2n of elements of � and a permutation � of Œ1; 2n�
satisfying the following properties:

(1) � is an involution without fixed points (that is, �2 D 1 and �.i/¤ i for all i);
equivalently, � is a product of n disjoint transpositions .im; jm/1�m�n.

(2) ˛�.i/ D ˛�1i .

(3) ˛i .Ai / D A�.i/C1 and ˛i .AiC1/ D A�.i/, so that ˛i gives a bijection from
ŒAi ; AiC1Œ to ŒA�.i/C1; A�.i/Œ .

Corollary 4.3. If � is the product of the n disjoint transpositions .im; jm/1�m�n,
then ˛im gives a bijection from ŒAim ; AimC1Œ to the reverse of ŒAjm

; AjmC1Œ , and

@.D.H//D
G

1�m�n

�
ŒAim ; AimC1Œt ŒAjm

; AjmC1Œ
�
:

Proof. Clear. �

4B. Examples of fundamental domains. For simplicity, we will choose subgroups
G having a fundamental domain whose boundary has only 4 sides, and � will
always be the product .1; 2/.3; 4/ of the two transpositions exchanging 1 and 2,
and 3 and 4, so i1 D 1 and i2 D 3. The fundamental domain is thus a hyperbolic
quadrilateral given by its vertices A1, A2, A3, and A4, and ˛1 sends ŒA1; A2Œ bi-
jectively to the reverse of ŒA2; A3Œ, and ˛3 sends ŒA3; A4Œ bijectively to the reverse
of ŒA4; A1Œ .

We consider a number of different subgroups H of � , and give one or more
fundamental domains of the above type for each, where as usual �D e2i�=3:

(1) H D � , with A1 D � C 1, A2 D i1, A3 D �, A4 D i , ˛1 D T �1, and
˛3 D S , which corresponds to the standard fundamental domain F, where as
usual T D

�
1 1
0 1

�
and S D

�
0 �1
1 0

�
.

(2) H D � , with A1 D 0, A2 D i , A3 D i1, A4 D �, ˛1 D S , and ˛3 D ST .

(3) H D �2 the unique subgroup of index 2 in � , with A1 D �C 1, A2 D i1,
A3 D �, A4 D 0, ˛1 D T �1, and ˛3 D TST D ST �1S D

�
1 0
1 1

�
.

(4) H D�2 the unique subgroup of index 2 in � , withA1D0, A2D i1, A3D�1,
A4 D �, ˛1 D T �1 and ˛3 D T �1S D

�
�1 �1
1 0

�
.
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(5) H D �3 one of the subgroups of index 3 in � , with A1 D 1, A2 D i1,
A3 D�1, A4 D I , ˛1 D T �2, and ˛3 D S .

(6) H D �0.3/, which has index 4 in � , with A1 D .�C 2/=3, A2 D i1, A3 D
.�� 1/=3, A4 D 0, ˛1 D T �1, and ˛3 D ST �3S D

�
1 0
3 1

�
.

(7) H D �.2/ the principal congruence subgroup of level 2, which has index 6 in
� and is a free group, with A1 D 1, A2 D i1, A3 D�1, A4 D 0, ˛1 D T �2,
and ˛3 D ST �2S D

�
1 0
2 1

�
.

Proof. The domain (1) is of course completely classical, and the others, which
can all be found somewhere in the literature, can be usually deduced by splitting
the standard fundamental domain of (1) into a finite number of pieces and then
applying to those a suitable finite number of elements of � . One can also prove
the results directly in the same way as the classical proofs of (1). �

4C. The main result.

Proposition 4.4. Keep the above notation and let H be a subgroup of finite index s
in � . For every Z 2H we have

.2i/k�1rshf1; f2iG D
X

1�m�n

J
�
Aim ; AimC1IZ; ˛

�1
im
.Z/

�
:

Proof. By Corollary 3.5 and Lemma 3.4(4), we have

.2i/k�1rshf1; f2iG D
X

1�m�n

�Z AimC1

Aim

�

Z ˛im .AimC1/

˛im .Aim /

� X
1�j�r

f1;j .�/F2;j .�/ d�

D

X
1�m�n

Z AimC1

Aim

X
1�j�r

f1;j .�/Pj .˛im I �/ d�;

proving the proposition using the definition of Pj and J. �

Since we have seen that J is not a “true” double integral but an explicit finite lin-
ear combination of products of two simple integrals, we see that we have achieved
our goal of expressing PSP’s in terms of simple integrals. In the next section, we
will specialize this formula to the fundamental domains given above.

5. The main corollaries

5A. General formulas. From the above proposition, we can deduce infinitely many
expressions of PSP’s in terms of simple integrals. We give a few here.
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Theorem 5.1. Assume that f1 and f2 are in Mk.G; v/, one of them being a cusp
form. Then for all Z, we have

.2i/k�1rhf1; f2iG D J
�
�; i1IZ�1; Z

�
CJ

�
�; i I Z; �

1
Z

�
D J

�
i; i1I Z; � 1

Z

�
CJ

�
�; i1I�ZC1

Z
; Z

�
D

�
J
�
�; i1IZ�1; Z

�
CJ

�
�; i1I�ZC1

Z
; �

1
Z

��ı
2

D

�
J
�
0; i1I Z;ZC1

�
CJ

�
�1; �I Z;� 1

ZC1

��ı
2

D

�
J
�
0; i1I Z; Z

ZC1

�
CJ

�
�; i1I� 1

ZC1
; Z

��ı
2

D

�
J
�
0; i1IZ�1;ZC1

�
CJ

�
�1; i I Z; �

1
Z

��ı
3

D

�
J
�
�; 0I Z

ZC1
; Z
1�2Z

�
CJ

�
�; 1I Z�1

Z
; Z

ZC1

��ı
4

D

�
J
�
0; i1IZ�1;ZC1

�
CJ

�
�1; 0I Z; Z

1�2Z

��ı
6

D

�
J
�
0; i1IZ�1;ZC1

�
CJ

�
0; i1I�ZC1

Z
; Z�1

Z

��ı
6:

In particular, we have

.2i/k�1rhf1; f2iG D J. i; �I 0; i1/ D J. i; i1I �; �C 1/

D J.�; i1I i � 1; i/ D J.�; i1I �1; 0/=2

D J.�; i1I �� 1; �C 1/=2 D J.0; i1I �; �C 1/=2

D J.0; i1I �1; �/=2 D J.0; i1I �1; �C 1/=4

D J.0; i1I �1; i/=3 D J.0; i1I i � 1; i C 1/=3

D J.0; i1I �1; 1/=6

as well as

.2i/k�1rhf1; f2iG D
�
J.0; i1I�1; 0/�J.�1; 0I 0; i1/

�
=6:

Proof. The first collection of formulas follows from the different subgroups H and
corresponding fundamental domains given in the preceding section, together with
Proposition 3.8, which expresses the �-invariance of J. The formulas in the second
collection are obtained from those in the first by specializing to specific values of
Z and using Proposition 3.8 and transitivity of the function J. The details are left
to the reader. �

Note that even though the final formula in the theorem involves two evaluations
of the function J instead of one, and so takes longer to compute, we have included
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it because it is the only formula which is symmetrical in f1 and f2, and because
it leads directly to Haberland’s formulas, given below.

5B. Haberland’s formulas for subgroups. Even though the above theorem is suf-
ficient for computational needs, we now reach our goal of generalizing Haberland’s
formulas to general subgroups of finite index of � . Recall that for any cusp form f

we let rn.f /D
R i1
0 �nf .�/ d� denote the n-th period of f , and that T D

�
1 1
0 1

�
.

Theorem 5.2. If f1 and f2 are in Sk.G; v/, we have the formula

6r.�2i/k�1hf1; f2iG D
X

mCn�k�2

�
k�2
mCn

��
mCn
m

�
Mm;n.f1; f2/;

where

Mm;n.f1; f2/

D

X
1�j�r

�
.�1/mrm.f1;j /rn.f2;j jkT /� .�1/

nrm.f1;j jkT /rn.f2;j /
�
;

and where we recall that fi;j D fi jk 
j . In particular, we have

�6r.�2i/k�2hf; f iG

D

X
mCn�k�2

�
k�2
mCn

��
mCn
m

� X
1�j�r

.�1/m=
�
rm.f1;j /rn.f2;j jkT /

�
:

Proof. As already mentioned, by the binomial theorem we have

J.�1; 0I 0; i1/D
X
1�j�r

X
0�n�k�2

.�1/n
�
k�2
n

�
rn.f2;j /

Z 0

�1

�k�2�nf1;j .�/ d�:

Setting � D�1=.zC 1/D ST .z/D U.z/, we haveZ 0

�1

�k�2�nf1;j .�/ d� D .�1/
k�2�n

Z i1

0

.zC 1/nf1;j jkU.z/ dz

D .�1/k�2�n
X

0�m�n

�
n
m

�
rm.f1;j jkU/;

so using the trivial equality rk�2�n.f /D .�1/k�1�nrn.f jkS/, we obtain

J.�1; 0I 0; i1/

D .�1/k�2
X

0�m�n�k�2

�
k�2
n

��
n
m

� X
1�j�r

rm.f1;j jkU/rn.f2;j /

D

X
0�m�n�k�2

.�1/nC1
�
k�2
n

��
n
m

� X
1�j�r

rm.f1;j jkU/rk�2�n.f2;j jkS/:
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By Lemma 3.7(2), J does not depend on the chosen representatives of right cosets,
so replacing 
j by 
jS and then changing n into k� 2�n gives

J.�1; 0I 0; i1/

D

X
mCn�k�2

.�1/k�1�n
�
k�2
mCn

��
mCn
m

� X
1�j�r

rm.f1;j jkT / rn.f2;j /:

By symmetry, we have

J.0; i1I�1; 0/

D

X
mCn�k�2

.�1/k�1�m
�
k�2
mCn

��
mCn
m

� X
1�j�r

rm.f1;j / rn.f2;j jkT /;

so the last formula of Theorem 5.1 gives us the first formula of Theorem 5.2. The
second formula of Theorem 5.2 follows immediately. �

Even though we will not need the following proposition, note that it can be
proved in the same way.

Proposition 5.3. Under the same assumptions as above, we haveX
mCn�k�2

�
k�2
mCn

��
mCn
m

�
�

X
1�j�r

�
.�1/mrm.f1;j / rn.f2;j jkT /C .�1/

nrm.f1;j jkT / rn.f2;j /
�

D

X
1�j�r

X
mCnDk�2

.�1/m
�
k�2
m

�
rm.f1;j / rn.f2;j /:

Proof. Simply expand as above the identity

J.�1; 0I 0; i1/CJ.0; i1I�1; 0/D�J.0; i1I 0; i1/: �

Corollary 5.4 (Haberland). Assume that G D � , so that r D 1, v D 1, and k is
even. We have

3.�2i/k�1hf1; f2i D
X

mCn�k�2
mCn�1 .mod 2/

�
k�2
mCn

��
mCn
m

�
.�1/mrm.f1/ rn.f2/;

and X0

mCn�k�2
mCn�0 .mod 2/

�
k�2
mCn

��
mCn
m

�
.�1/mrm.f1/ rn.f2/D 0;

where
P0 means that the term mCnD k� 2 occurs with coefficient 1=2. �



266 HENRI COHEN

6. Using Theorem 5.1

We now consider methods for computing PSP’s based on the results obtained above.
First, let us consider one of the formulas of Theorem 5.1, for instance the formula

6r.2i/k�1hf1; f2iG D J.0; i1I�1; 1/:

Once again we will assume for simplicity that G D � but the reasoning is com-
pletely general. We have

J.0; i1I�1; 1/D
X

0�n�k�2

.�1/n
�
k�2
n

� Z i1

0

�k�2�nf1.�/ d�

Z 1

�1

�nf2.�/ d�;

so the problem boils down to the computation of k� 1 integrals involving f1 and
k� 1 integrals involving f2 (in the general case, this becomes r.k� 1/ integrals).

The computation of
R i1
0 �k�2�nf .�/ d� D rk�2�n.f / can be done in two

quite different ways. On the one hand, we can apply the above-mentioned theory
of double-exponential integration, which here works very well since it is only a
simple and not a double integral.

An important implementation remark must be noted here: Since f .�/ may be
costly to compute, it is preferable to use the integration method on the vector-valued
function .1;�;: : :;�k�2/f .�/ or on the polynomial-valued function .X��/k�2f .�/,
instead of on each component individually, since this only requires one evaluation
of f instead of k� 1.

On the other hand, we can use the elementary link between this integral and the
value of the ƒ-function attached to f : Indeed, we have trivially

rj .f /D i
jC1ƒ.f; j C 1/;

where ƒ.f; s/D .2�/�s�.s/L.f; s/ satisfies the functional equation

ƒ.f; k� s/D .�1/k=2ƒ.f; s/:

Thus, using the standard method explained above, but here in a much simpler con-
text because the inverse Mellin transform of .2�/�s�.s/ is simply e�2�x , we
obtain the formula

ƒ.f; s/D
X
n�1

a.n/

.2�n/s
�.s; 2�nt0/C .�1/

k=2
X
n�1

a.n/

.2�n/k�s
�.k� s; 2�n=t0/;

where

�.s; x/D

Z 1
x

e�t ts�1 dt

is the incomplete gamma function, which can be computed in many efficient ways.
The computation of

R 1
�1 �

nf .�/ d� poses slightly different problems. We can
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of course still use double-exponential integration. On the other hand, the link with
L-functions still exists but is slightly more subtle (unless G D �). Indeed, we first
write

R 1
�1 D

R 0
�1C

R 1
0 , and then set � D ST .z/D�1=.zC 1/ in the first integral

and � D z=.zC 1/ in the second integral. We obtainZ 1

�1

�nf .�/ d� D .�1/n
Z i1

0

.zC 1/k�2�nf
�
�1=.zC 1/

�
dz

C

Z i1

0

zn.zC 1/k�2�nf
�
z=.zC 1/

�
dz:

If GD� then the transforms of f are equal to f , so by using the binomial theorem
we reduce the computation to that of at most k� 1 periods of f . If desired we can
in fact directly use Haberland’s formula; see below.

If G ¤ � , a new difficulty appears: Since the transforms of f by � are not
in general equal to f , we have to compute their periods. The doubly exponential
integration method is of course always available, but the use of the L-function
explained above now requires the knowledge of the Fourier expansions at infinity
of the functions fj D f jk 
j , using the notation of the beginning of this section;
equivalently, given f 2Mk.G; v/ in some way, we need to compute the Fourier
expansion of f at the cusps of G, not only at infinity. This is still another compu-
tational problem which we do not consider here.

Table 4 presents some timings to compute hf; f iG to the given number N of
decimals using this method, without using at all the functional equation but only
double-exponential integration, so as to keep it as general as possible. Note that in
my implementation, the fastest among the formulas given by Theorem 5.1 for �,
�5, and �11 is the one given above involving J.0; i1I�1; 1/, but this may not
be the case for other implementations.

As an illustration of the power of double-exponential integration, note that for
instance to compute h�;�i to 500 decimal digits, we only need 500 sample points,
so only 1000 evaluations of � (which is of course efficiently computed using the
equality �.�/D �24.�/).

To summarize, in order to use Theorem 5.1 in the simplest possible manner,
I suggest using the doubly exponential integration methods, since here they only
apply to simple integrals.

f N D 19 38 57 96 250 500

� 0:06 0:06 0:14 0:19 2:02 11:3

�5 0:35 0:46 1:16 1:60 17:1 94:3

�11 0:67 0:89 2:24 3:11 33:7 188

Table 4. Timings (in seconds) to compute hf; f iG to N decimal places using Theorem 5.1.
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f N D 19 38 57 96 250 500

� 0:02 0:02 0:06 0:08 0:86 4:96

�5 0:23 0:29 0:72 1:00 10:5 58:4

�11 0:48 0:61 1:48 2:12 22:0 122:5

Table 5. Timings (in seconds) to compute hf; f iG to N decimal places using Theorem 5.2.

7. Using Theorem 5.2

As mentioned above, a variant is to directly use Theorem 5.2. This should be done
in the following way: Using either double-exponential integration or the L-function
method if available, we compute the .k � 1/r periods rm.f1;j /, as well as the
.k�1/r periods rn.f2;j / if f1¤f2 (as mentioned above, these should be computed
as r vectors with k� 1 components). It is not necessary to compute the periods of
f1;j jkT and f2;j jkT . Indeed, we can write 
jT D gj 
t.j /, where gj 2 G and
j 7! t .j / is a permutation of Œ1; r�. Thus, since f1 2Mk.G; v/, we have

rm.f1;j jkT /D rm.f1 jk 
jT /D v.gj /rm.f1;t.j //;

so no additional computation is necessary. Table 5 gives the corresponding timings.
Note that the main gain compared to the use of Theorem 5.1 comes from the

fact that since f2 D f1, the periods have to be computed only once.

8. Using rationality theorems

There is a more subtle way of using periods to compute Petersson scalar products,
but only in the special case of Hecke eigenforms: It is a well-known theorem
of Manin that in the case of G D � , if f is a normalized eigenform there exist
positive real numbers !C and !� such that the even (respectively, odd) periods
are algebraic multiples of !C (respectively, of !�), and that !C and !� can be
chosen such that hf; f i D !C!�. Since !C and !� are essentially periods, they
are thus very easy to compute as explained above, so this gives a very efficient way
of computing hf; f i. For instance, once one knows that

h�;�i D
225

2048i
r1.�/r2.�/;

without using any tricks and computing the periods using the doubly exponential
integration method, we obtain the result to 500 decimals in only 9 seconds, while
using the L-function method we obtain the result in 1 second, so there is no special
advantage in this case.
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However, in the case of congruence subgroups G of � , similar results hold, and
here we may use rationality to our advantage. I thank N. Skoruppa for the precise
statement of this theorem.

Theorem 8.1. Denote by


Cj D
�
aj bj

cj dj

�
a system of representatives of right cosets of Gn� . Set


�j D
�
�bj �aj

dj cj

�
D P�1
jSP;

where P D
�
�1 0
0 1

�
, and for f 2Mk.G; v/ write f ˙j D f jk 


˙
j . Finally, let

R˙j .f /.X/D

Z i1

0

.X � �/k�2f ˙j d�;

and
P˙j .f /DR

C
j .f /˙R

�
j .f /:

Assume that f is a normalized eigenfunction of all Hecke operators, so that the
Fourier coefficients of f at infinity are algebraic, and denote by K D Q.f / the
number field generated by them. There exist complex numbers !˙ such that the
coefficients of the polynomials P˙j .f /.X/=!

˙ are in K. In addition, !˙ can be
chosen so that !C!� D hf; f i.

Remarks. (1) I do not know if this theorem is stated explicitly in the literature,
although it certainly is implicit.

(2) I thank an anonymous referee for pointing out that a similar theorem is valid
with 
�j D

�
aj �bj

�cj dj

�
D P�1
jP instead.

For f D �, as mentioned above we choose for instance !C D r2.�/=i and
!� D r1.�/, and we have

h�;�i D .225=2048/!C!�:

For f D �5, we choose for instance !C D r0.�5/=i and !� D r1.�5/, and
we have

h�5; �5i D �.13=24/!
C!�:

For f D �11, we choose for instance !C D r0.�11/=i and !� D

<
�
r0
�
�11I

�
1 0
3 1

���
(which is one of the simplest choices), and we have

h�11; �11i D .5=12/!
C!�:

Table 6 gives the timings.
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f N D 19 38 57 96 250 500

� 0:013 0:017 0:043 0:063 0:75 4:41

�5 0:023 0:028 0:071 0:103 1:20 7:07

�11 0:06 0:09 0:20 0:28 3:08 17:58

Table 6. Timings (in seconds) to compute hf; f iG to N decimal places using
rationality theorems.

We see that this is by far the fastest method, especially when the index r D Œ� WG�
is large, since we only need to compute two periods. Its main disadvantages are
first that it is applicable only to Hecke eigenforms, and second that we need to
compute the rational (or algebraic) constants which occur for each form f , which
we do not know how to give in closed form, although such a formula may well
exist.
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Approximate common divisors via lattices

Henry Cohn and Nadia Heninger

We analyze the multivariate generalization of Howgrave-Graham’s algorithm for
the approximate common divisor problem. In the m-variable case with modu-
lus N and approximate common divisor of size N ˇ , this improves the size of
the error tolerated from N ˇ2

to N ˇ .mC1/=m
, under a commonly used heuristic

assumption. This gives a more detailed analysis of the hardness assumption un-
derlying the recent fully homomorphic cryptosystem of van Dijk, Gentry, Halevi,
and Vaikuntanathan. While these results do not challenge the suggested param-
eters, a 2n

"
approximation algorithm with " < 2=3 for lattice basis reduction in

n dimensions could be used to break these parameters. We have implemented
the algorithm, and it performs better in practice than the theoretical analysis
suggests.

Our results fit into a broader context of analogies between cryptanalysis and
coding theory. The multivariate approximate common divisor problem is the
number-theoretic analogue of multivariate polynomial reconstruction, and we
develop a corresponding lattice-based algorithm for the latter problem. In par-
ticular, it specializes to a lattice-based list decoding algorithm for Parvaresh-
Vardy and Guruswami-Rudra codes, which are multivariate extensions of Reed-
Solomon codes. This yields a new proof of the list decoding radii for these
codes.

1. Introduction

Given two integers, we can compute their greatest common divisor efficiently using
Euclid’s algorithm. Howgrave-Graham [28] formulated and gave an algorithm to
solve an approximate version of this problem, asking the question “What if instead

This paper is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License
(http://creativecommons.org/licenses/by-nd/3.0/).
MSC2010: primary 11Y16; secondary 94A60, 94B35.
Keywords: Coppersmith’s algorithm, lattice basis reduction, fully homomorphic encryption,

approximate common divisors, list decoding, Parvaresh-Vardy codes, noisy polynomial
reconstruction.
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of exact multiples of some common divisor, we only know approximations?” In
the simplest case, we are given one exact multiple N D pq0 and one near multiple
a1 D pq1C r1, and the goal is to learn p, or at least p gcd.q0; q1/.

In this paper, we generalize Howgrave-Graham’s approach to the case when
one is given many near multiples of p. The hardness of solving this problem for
small p (relative to the size of the near multiples) was recently proposed as the
foundation for a fully homomorphic cryptosystem [21]. Specifically, we can show
that improving the approximation of lattice basis reduction for the particular lattices
L we are looking at from 2dimL to 2.dimL/" with "<2=3 would break the suggested
parameters in the system. See Section 3 for the details. The approximate common
divisor problem is also closely related to the problem of finding small solutions to
multivariate polynomials, a problem first posed by Coppersmith [15], and whose
various extensions have many applications in cryptanalysis [9].

The multivariate version of the problem allows us to improve the bounds for
when the approximate common divisor problem is solvable. Given N D pq0 and
m randomly chosen approximate multiples ai D pqi C ri of p DN ˇ , as well as
upper bounds Xi for each jri j, we can find the perturbations ri when

m
p
X1 � � �Xm <N

.1Co.1//ˇ .mC1/=m

:

In other words, we can compute approximate common divisors when ri is as large
as N ˇ .mC1/=m

. For mD 1, we recover Howgrave-Graham’s theorem [28], which
handles errors as large as N ˇ2

. As the number m of samples grows large, our
bound approaches N ˇ , i.e., the size of the approximate common divisor p. The
algorithm runs in polynomial time for fixed m. We cannot rigorously prove that it
always works, but it is supported by a heuristic argument and works in practice.

There is an analogy between the ring of integers and the ring of polynomials
over a field. Under this analogy, finding a large approximate common divisor of
two integers is analogous to reconstructing a polynomial from noisy interpolation
information, as we explain in Section 1.2.2. One of the most important applications
of polynomial reconstruction is decoding of Reed-Solomon codes. Guruswami and
Sudan [25] increased the feasible decoding radius of these codes by giving a list-
decoding algorithm that outputs a list of polynomially many solutions to a polyno-
mial reconstruction problem. The analogy between the integers and polynomials
was used in [14] to give a proof of the Guruswami-Sudan algorithm inspired by
Howgrave-Graham’s approach, as well as a faster algorithm.

Parvaresh and Vardy [40] developed a related family of codes with a larger list-
decoding radius than Reed-Solomon codes. The decoding algorithm corresponds
to simultaneous reconstruction of several polynomials.

In this paper, we observe that the problem of simultaneous reconstruction of
multiple polynomials is the exact analogue of the approximate common divisor
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problem with many inputs, and the improved list-decoding radius of Parvaresh-
Vardy codes corresponds to the improved error tolerance in the integer case. We
adapt the algorithm for the integers to give a corresponding algorithm to solve the
multiple polynomial reconstruction problem.

This algorithm has recently been applied to construct an optimally Byzantine-
robust private information retrieval protocol [20]. The polynomial lattice methods
we describe are extremely fast in practice, and they speed up the client-side calcu-
lations by a factor of several thousand compared with a related scheme that uses
the Guruswami-Sudan algorithm. See [20] for more information and timings.

1.1. Related work. Howgrave-Graham first posed the problem of approximate in-
teger common divisors in [28], and used it to address the problem of factoring
when information is known about one of the factors. His algorithm gave a differ-
ent viewpoint on Coppersmith’s proof [15] that one can factor an RSA modulus
N D pq where p � q �

p
N given the most significant half of the bits of one of

the factors. This technique was applied by Boneh, Durfee, and Howgrave-Graham
[10] to factor numbers of the form prq with r large. Jochemsz and May [29]
and Jutla [30] considered the problem of finding small solutions to multivariate
polynomial equations, and showed how to do so by obtaining several equations
satisfied by the desired roots using lattice basis reduction. Herrmann and May
[26] gave a similar algorithm in the case of finding solutions to multivariate linear
equations modulo divisors of a given integer. They applied their results to the case
of factoring with bits known when those bits might be spread across log logN
chunks of p. Notably, their results display similar behavior to ours as the number of
variables grows large. Sarkar and Maitra [45] studied the multivariate extension of
Howgrave-Graham’s method and applied it to the problem of implicit factorization.

Most relevantly, van Dijk, Gentry, Halevi, and Vaikuntanathan [21] discussed
extensions of Howgrave-Graham’s method to larger m and provided a rough heuris-
tic analysis in Appendix B.2 of the longer version of their paper available on the
Cryptology ePrint Archive. In particular, they carried out the calculation using the
parameter settings t D k D 2 from Section 2 below and estimating the determinant
by the product of row lengths. They briefly sketched how to extend it to t D k D d
for larger values of d . However, they did not optimize the choice of parameters
or provide a detailed analysis. They concluded that including products of pairs
of equations does worse than the original Howgrave-Graham attack and does not
threaten their parameter choices.

Chen and Nguyen [13] gave an algorithm to find approximate common divisors
which is not related to the Coppersmith/Howgrave-Graham lattice techniques and
which provides an exponential speedup compared with exhaustive search over the
possible perturbations.
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In addition to the extensive work on polynomial reconstruction and noisy polyno-
mial interpolation in the coding theory literature, the problem in both the single and
multiple polynomial cases has been used as a cryptographic primitive, for example
in [33], [32], and [3] (broken in [17]). Coppersmith and Sudan [16] gave an algo-
rithm for simultaneous reconstruction of multiple polynomials, assuming random
(rather than adversarially chosen) errors. Bleichenbacher, Kiayias, and Yung [7]
gave a different algorithm for simultaneous reconstruction of multiple polynomials
under a similar probabilistic model. Parvaresh and Vardy [40] were the first to beat
the list-decoding performance of Reed-Solomon codes for adversarial errors, by
combining multiple polynomial reconstruction with carefully chosen constraints
on the polynomial solutions; this allowed them to prove that their algorithm ran in
polynomial time, without requiring any heuristic assumptions. Finally, Guruswami
and Rudra [24] combined the idea of multipolynomial reconstruction with an op-
timal choice of polynomials to construct codes that can be list-decoded up to the
information-theoretic bound (for large alphabets).

1.2. Problems and results.

1.2.1. Approximate common divisors. Following Howgrave-Graham, we define the
“partial” approximate common divisor problem to be the case when one hasN Dpq0
and m approximate multiples ai D pqi C ri of p. We want to recover an approxi-
mate common divisor. To do so, we will compute r1; : : : ; rm, after which we can
simply compute the exact greatest common divisor of N , a1� r1; : : : ; am� rm.

If the perturbations ri are allowed to be as large as p, then it is clearly impossible
to reconstruct p from this data. If they are sufficiently small, then one can easily
find them by a brute force search. The following theorem interpolates between
these extremes. As m grows, the bound on the size of ri approaches the trivial
upper bound of p.

Theorem 1 (Partial approximate common divisors). Given positive integers N ,
a1; : : : ; am and bounds ˇ�1=

p
logN andX1; : : : ; Xm, we can find all r1; : : : ; rm

such that
gcd.N; a1� r1; : : : ; am� rm/�N ˇ

and jri j �Xi , provided that

m
p
X1 � � �Xm <N

.1Co.1//ˇ .mC1/=m

and that the algebraic independence hypothesis discussed in Section 2 holds. The
algorithm runs in polynomial time for fixed m, and the� and o.1/ are as N !1.

For m D 1, this theorem requires no algebraic independence hypothesis and
is due to Howgrave-Graham [28]. For m > 1, not all inputs N; a1; : : : ; am will
satisfy the hypothesis. Specifically, we must rule out attempting to improve on
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the mD 1 case by deriving a2; : : : ; am from a1, for example by taking ai to be a
small multiple of a1 plus an additional perturbation (or, worse yet, a1 D � � � D am).
However, we believe that generic integers will work, for example integers chosen
at random from a large range, or at least integers giving independent information
in some sense.

We describe the algorithm to solve this problem in Section 2. We follow the
general technique of Howgrave-Graham; that is, we use LLL lattice basis reduction
to construct m polynomials for which r1; : : : ; rm are roots, and then we solve the
system of equations. The lattice basis reduction is for a lattice of dimension at
most ˇ logN , regardless of what m is, but the root finding becomes difficult when
m is large.

This algorithm is heuristic, because we assume we can obtain m short lattice
vectors representing algebraically independent polynomials from the lattice that
we will construct. This assumption is commonly made when applying multivariate
versions of Coppersmith’s method, and has generally been observed to hold in
practice. See Section 2 for more details. This is where the restriction to generic
inputs becomes necessary; if a1; : : : ; am are related in trivial ways, then the algo-
rithm will simply recover the corresponding relations between r1; : : : ; rm, without
providing enough information to solve for them.

Note that we are always able to find one nontrivial algebraic relation between
r1; : : : ; rm, because LLL will always produce at least one short vector. If we were
provided in advance with m�1 additional relations, carefully chosen to ensure that
they would be algebraically independent of the new one, then we would have no
need for heuristic assumptions. We will see later in this section that this situation
arises naturally in coding theory, namely in Parvaresh-Vardy codes [40].

The condition ˇ� 1=
p

logN arises from the exponential approximation factor
in LLL. It amounts to N ˇ2

� 1. An equivalent formulation is logp�
p

logN ;
i.e., the number of digits in the approximate common factor p must be more than
the square root of the number of digits in N . When mD 1, this is not a restriction
at all, because when p is small enough that N ˇ2

is bounded, there are only a
bounded number of possibilities for r1 and we can simply try all of them. When
m> 1, the multivariate algorithm can handle much larger values of ri for a given
p, but the logp�

p
logN condition dictates that p cannot be any smaller than

when mD 1. Given a lattice basis reduction algorithm with approximation factor
2.dimL/" , one could replace this condition with ˇ1C" logN � 1. If "D 1=m, then
the constraint could be removed entirely in the m-variable algorithm. See Section 2
for the details.

The logp �
p

logN condition is the only thing keeping us from breaking
the fully homomorphic encryption scheme from [21]. Specifically, improving the
approximation of lattice basis reduction for the particular lattices L we are looking
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at to 2.dimL/" with " < 2=3 would break the suggested parameters in the system.
See Section 3 for the details.

We get nearly the same bounds for the “general” approximate common divisor
problem, in which we are not given the exact multiple N .

Theorem 2 (General approximate common divisors). Given positive integers
a1; : : : ; am (with ai �N for all i ) and bounds ˇ� 1=

p
logN and X , we can find

all r1; : : : ; rm such that

gcd.a1� r1; : : : ; am� rm/�N ˇ

and jri j �X , provided that

X <N .CmCo.1//ˇ
m=.m�1/

;

where

Cm D
1� 1=m2

m1=.m�1/
� 1�

logm
m

;

and that the algebraic independence hypothesis holds. The algorithm runs in poly-
nomial time for fixed m, and the� and o.1/ are as N !1.

Again, for mD 2, this result is due to Howgrave-Graham [28], and no algebraic
independence hypothesis is needed.

The proof is very similar to the case when N is known, but the calculations are
more tedious because the determinant of the lattice is more difficult to bound. See
Section 2.2 for the details.

In [28], Howgrave-Graham gave a more detailed analysis of the behavior for
mD2. Instead of our exponent C2ˇ2D 3

8
ˇ2, he obtained 1�ˇ=2�

p
1�ˇ�ˇ2=2,

which is asymptotic to 3
8
ˇ2 for small ˇ but is slightly better when ˇ is large. We

are interested primarily in the case when ˇ is small, so we have opted for simplicity,
but one could carry out a similar analysis for all m.

1.2.2. Noisy multipolynomial reconstruction. Let F be a field. Given m single-
variable polynomials g1.z/; : : : ; gm.z/ over F and n distinct points z1; : : : ; zn
in F , evaluating the polynomials at these points yields mn elements yij D gi .zj /
of F .

The noisy multipolynomial reconstruction problem asks for the recovery of
g1; : : : ; gm given the evaluation points z1; : : : ; zn, degree bounds `i on gi , and
possibly incorrect values yij . Stated more precisely, we wish to find all m-tuples
of polynomials .g1; : : : ; gm/ satisfying deggi � `i , for which there are at least
ˇn values of j such that gi .zj /D yij for all i . In other words, some of the data
may have been corrupted, but we are guaranteed that there are at least ˇn points
at which all the values are correct.
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Bleichenbacher and Nguyen [8] distinguish the problem of “polynomial recon-
struction” from the “noisy polynomial interpolation” problem. Their definition
of “noisy polynomial interpolation” involves reconstructing a single polynomial
when there are several possibilities for each value. The multivariate version of this
problem can be solved using Theorem 5.

This problem is an important stepping stone between single-variable interpola-
tion problems and full multivariate interpolation, in which we reconstruct polyno-
mials of many variables. The multipolynomial reconstruction problem allows us to
take advantage of multivariate techniques to prove much stronger bounds, without
having to worry about issues such as whether our evaluation points are in general
position.

We can restate the multipolynomial reconstruction problem slightly to make the
analogy with the integer case clear. Given evaluation points zj and values yij ,
define N.z/ D

Q
j .z � zj /, and use ordinary interpolation to find polynomials

fi .z/ such that fi .zj /D yij . Then we will see shortly that g1; : : : ; gm solve the
noisy multipolynomial reconstruction problem if and only if

deg gcd
�
f1.z/�g1.z/; : : : ; fm.z/�gm.z/; N.z/

�
� ˇn:

This is completely analogous to the approximate common divisor problem, with
N.z/ as the exact multiple and f1.z/; : : : ; fm.z/ as the approximate multiples.

To see why this works, observe that gi .zj /D yij if and only if gi .z/� yij is
divisible by z � zj . Thus, gi .zj / D fi .zj / D yij if and only if fi .z/� gi .z/ is
divisible by z� zj , and deg gcd

�
fi .z/�gi .z/; N.z/

�
counts how many j satisfy

gi .zj /D yij . Finally, to count the j such that gi .zj /D yij for all i , we use

deg gcd
�
f1.z/�g1.z/; : : : ; fm.z/�gm.z/; N.z/

�
:

This leads us to our result in the polynomial case.

Theorem 3. Given polynomialsN.z/;f1.z/; : : : ;fm.z/, degree bounds `1; : : : ;`m,
and ˇ 2 Œ0; 1�, we can find all g1.z/; : : : ; gm.z/ such that

deg gcd
�
f1.z/�g1.z/; : : : ; fm.z/�gm.z/; N.z/

�
� ˇ degN.z/

and deggi � `i , provided that

`1C � � �C `m

m
< ˇ.mC1/=m degN.z/

and that the algebraic independence hypothesis holds. The algorithm runs in poly-
nomial time for fixed m.

As in the integer case, our analysis depends on an algebraic independence hy-
pothesis, but it may be easier to resolve this issue in the polynomial case, because
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lattice basis reduction is far more effective and easier to analyze over polynomial
rings than it is over the integers.

Parvaresh-Vardy codes [40] are based on noisy multipolynomial reconstruc-
tion. A codeword is constructed by evaluating polynomials f1; : : : ; fm at points
z1; : : : ; zn to obtain mn elements fi .zj /. In their construction, f1; : : : ; fm are cho-
sen to satisfy m� 1 polynomial relations, so that they only need to find one more
algebraically independent relation to solve the decoding problem. Furthermore,
the m� 1 relations are constructed so that they must be algebraically independent
from the relation constructed by the decoding algorithm. This avoids the need
for the heuristic assumption discussed above in the integer case. Furthermore, the
Guruswami-Rudra codes [24] achieve improved rates by constructing a system of
polynomials so that only n symbols need to be transmitted, rather than mn.

Parvaresh and Vardy gave a list-decoding algorithm using the method of Gu-
ruswami and Sudan, which constructs a polynomial by solving a system of equa-
tions to determine the coefficients. In our terms, they proved the following theorem:

Theorem 4. Given polynomialsN.z/;f1.z/; : : : ;fm.z/, degree bounds `1; : : : ;`m,
and ˇ 2 Œ0; 1� satisfying

`1C � � �C `m

m
< ˇ.mC1/=m degN.z/;

we can find a nontrivial polynomial Q.x1; : : : ; xm/ such that

Q.g1.z/; : : : ; gm.z//D 0

for all g1.z/; : : : ; gm.z/ satisfying deggi � `i and

deg gcd
�
f1.z/�g1.z/; : : : ; fm.z/�gm.z/; N.z/

�
� ˇ degN.z/:

The algorithm runs in polynomial time.

In Section 4, we give an alternative proof of this theorem using the analogue
of lattice basis reduction over polynomial rings. This algorithm requires neither
heuristic assumptions nor conditions on ˇ.

2. Computing approximate common divisors

In this section, we describe the algorithm to solve the approximate common divisor
problem over the integers.

To derive Theorem 1, we will use the following approach:

(1) Construct polynomials Q1; : : : ;Qm of m variables such that

Qi .r1; : : : ; rm/D 0

for all r1; : : : ; rm satisfying the conditions of the theorem.
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(2) Solve this system of equations to learn candidates for the roots r1; : : : ; rm.

(3) Test each of the polynomially many candidates to see if it is a solution to the
original problem.

In the first step, we will construct polynomials Q satisfying

Q.r1; : : : ; rm/� 0 .mod pk/

(for a k to be chosen later) whenever ai � ri .mod p/ for all i . We will furthermore
arrange that

jQ.r1; : : : ; rm/j<N
ˇk :

These two facts together imply that Q.r1; : : : ; rm/D 0 whenever p �N ˇ .
To ensure that Q.r1; : : : ; rm/� 0 .mod pk/, we will construct Q as an integer

linear combination of products

.x1� a1/
i1 � � � .xm� am/

imN `

with i1C� � �C imC `� k. Alternatively, we can think of Q as being in the integer
lattice generated by the coefficient vectors of these polynomials. To ensure that
jQ.r1; : : : ; rm/j<N

ˇk , we will construct Q to have small coefficients; i.e., it will
be a short vector in the lattice.

More precisely, we will use the lattice L generated by the coefficient vectors of
the polynomials

.X1x1� a1/
i1 � � � .Xmxm� am/

imN `

with i1C � � � C im � t and ` D max
�
k �

P
j ij ; 0

�
. Here t and k are parameters

to be chosen later. Note that we have incorporated the bounds X1; : : : ; Xm on
the desired roots r1; : : : ; rm into the lattice. We define Q to be the corresponding
integer linear combination of .x1�a1/i1 � � � .xm�am/imN `, without X1; : : : ; Xm.

Given a polynomial Q.x1; : : : ; xm/ corresponding to a vector v 2 L, we can
bound jQ.r1; : : : ; rm/j by the `1 norm jvj1. Specifically, if

Q.x1; : : : ; xm/D
X

j1;:::;jm

qj1:::jm
x
j1

1 � � � x
jm
m ;

then v has entries qj1:::jm
X
j1

1 � � �X
jm
m , and

jQ.r1; : : : ; rm/j �
X

j1;:::;jm

jqj1:::jm
jjr1j

j1 � � � jrmj
jm

�

X
j1;:::;jm

jqj1:::jm
jX
j1

1 � � �X
jm
m

D jvj1:



280 HENRY COHN AND NADIA HENINGER

Thus, every vector v 2L satisfying jvj1<N ˇk gives a polynomial relation between
r1; : : : ; rm.

It is straightforward to compute the dimension and determinant of the lattice:

dimLD

�
t Cm

m

�
;

and
detLD .X1 � � �Xm/.

tCm
m / t

mC1N.
kCm

m / k
mC1 :

To compute the determinant, we can choose a monomial ordering so that the basis
matrix for this lattice is upper triangular; then the determinant is simply the product
of the terms on the diagonal.

Now we apply LLL lattice basis reduction to L. Because all the vectors in L
are integral, the m shortest vectors v1; : : : ; vm in the LLL-reduced basis satisfy

jv1j � � � � � jvmj � 2
.dimL/=4.detL/1=.dimLC1�m/

(see Theorem 2 in [26]), and jvj1 �
p

dimL jvj by Cauchy-Schwarz, so we know
that the corresponding polynomials Q satisfy

jQ.r1; : : : ; rm/j �
p

dimL2.dimL/=4.detL/1=.dimLC1�m/:

If
p

dimL2.dimL/=4 detL1=.dimLC1�m/ <N ˇk; (1)

then we can conclude that Q.r1; : : : ; rm/D 0.
If t and k are large, then we can approximate

�
tCm
m

�
with tm=mŠ and

�
kCm
m

�
with km=mŠ. The

p
dimL factor plays no significant role asymptotically, so we

simply omit it (the omission is not difficult to justify). After taking a logarithm
and simplifying slightly, our desired equation (1) becomes

tm

4kmŠ
C

1

1� .m�1/mŠ
tm

�
m log2X
mC 1

t

k
C

log2N
mC 1

km

tm

�
< ˇ log2N;

where X denotes the geometric mean of X1; : : : ; Xm.
The tm=.4kmŠ/ and .m�1/mŠ=tm terms are nuisance factors, and once we opti-

mize the parameters they will tend to zero asymptotically. We will take t �ˇ�1=mk
and logX � ˇ.mC1/=m logN . Then

m logX
mC 1

t

k
C

logN
mC 1

km

tm
�

m

mC 1
ˇ logN C

1

mC 1
ˇ logN D ˇ logN:

By setting logX slightly less than this bound (by a 1Co.1/ factor), we can achieve
the desired inequality, assuming that the 1� .m� 1/Š=tm and tm=.4kmŠ/ terms
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do not interfere. To ensure that they do not, we take t �m and tm� ˇ logN as
N !1. Note that then dimL� ˇ logN , which is bounded independently of m.

Specifically, when N is large we can take

t D

�
.ˇ logN/1=m

.ˇ2 logN/1=.2m/

�
and

k D bˇ1=mtc � .ˇ2 logN/1=.2m/:

With these parameter settings, t and k both tend to infinity as N !1, because
ˇ2 logN !1, and they satisfy the necessary constraints. We do not recommend
using these parameter settings in practice; instead, one should choose t and k
more carefully. However, these choices work asymptotically. Notice that with this
approach, ˇ2 logN must be large enough to allow t=k to approximate ˇ�1=m.
This is a fundamental issue, and we discuss it in more detail in the next subsection.

The final step of the proof is to solve the system of equations defined by the m
shortest vectors in the reduced basis to learn r1; : : : ; rm. One way to do this is to
repeatedly use resultants to eliminate variables; alternatively, we can use Gröbner
bases. See, for example, Chapter 3 of [19].

One obstacle is that the equations may be not algebraically independent, in
which case we will not have enough information to complete the solution. In
the experiments summarized in Section 6, we sometimes encountered cases when
the m shortest vectors were algebraically dependent. However, in every case the
vectors represented either (1) irreducible, algebraically independent polynomials,
or (2) algebraically dependent polynomials that factored easily into polynomials
which all had the desired properties. Thus when the assumption of algebraic depen-
dence failed, it failed because there were fewer than m independent factors among
the m shortest relations. In these cases, there were always more than m vectors of
`1 norm less than N ˇk , and we were able to complete the solution by using all
these vectors. This behavior appears to depend sensitively on the optimization of
the parameters t and k.

2.1. The ˇ2 logN � 1 requirement. The condition that ˇ2 logN � 1 is not
merely a convenient assumption for the analysis. Instead, it is a necessary hypoth-
esis for our approach to work at all when using a lattice basis reduction algorithm
with an exponential approximation factor. In previous papers on these lattice-based
techniques, such as [15] or [28], this issue seemingly does not arise, but that is
because it is hidden in a degenerate case. When mD 1, we are merely ruling out
the cases when the bound N ˇ2

on the perturbations is itself bounded, and in those
cases the problem can be solved by brute force.
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To see why a lower bound on ˇ2 logN is necessary, we can start with (1). For
that equation to hold, we must at least have 2.dimL/=4<N ˇk and .detL/1=.dimL/<

N ˇk , and these inequalities imply that

1

4

�
t Cm

m

�
< ˇk log2N

and �
kCm
m

�
log2N�

tCm
m

�
.mC 1/

< ˇ log2N:

Combining them with
�
kCm
m

�
> k yields

1

4.mC 1/
< ˇ2 log2N;

so we have an absolute lower bound for ˇ2 logN . Furthermore, one can check
that in order for the 2.dimL/=4 factor to become negligible compared with N ˇk , we
must have ˇ2 logN � 1.

Given a lattice basis reduction algorithm with approximation factor 2.dimL/" , we
could replace tm with t"m in the nuisance term coming from the approximation
factor. Then the condition tm� ˇ logN would become t"m� ˇ logN , and if we
combine this with k � ˇ1=mt , we find that

k"m � ˇ"t"m� ˇ1C" logN:

Because k � 1, the condition ˇ1C" logN � 1 is needed, and then we can take

t D

�
.ˇ logN/1=."m/

.ˇ1C" logN/1=.2"m/

�
and

k D bˇ1=mtc � .ˇ1C" logN/1=.2"m/:

2.2. Theorem 2. The algorithm for Theorem 2 is identical to the above, except
that we do not have an exact N , so we omit all vectors involving N from the
construction of the lattice L.

The matrix of coefficients is no longer square, so we have to do more work
to bound the determinant of the lattice. Howgrave-Graham [28] observed in the
two-variable case that the determinant is preserved even under nonintegral row
operations, and he used a nonintegral transformation to hand-reduce the matrix
before bounding the determinant as the product of the `2 norms of the basis vectors;
furthermore, the `2 norms are bounded by

p
dimL times the `1 norms.
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The nonintegral transformation that he uses is based on the relation

.xi � ai /�
ai

a1
.x1� a1/D xi �

ai

a1
x1:

Adding a multiple of f .x/.x1 � a1/ reduces f .x/.xi � ai / to f .x/
�
xi �

ai

a1
x1
�
.

The advantage of this is that if x1 � xi and a1 � ai , then xi � .ai=a1/x1 may be
much smaller than xi � ai was. The calculations are somewhat cumbersome, and
we will omit the details (see [28] for more information).

When a1; : : : ; am are all roughly N (as in Theorem 2), we get the following
values for the determinant and dimension in the m-variable case:

detL� .N=X/.
kCm�1

m /.t�kC1/X
m
�
.tCm

m / t
mC1
�.k�1Cm

m / k�1
mC1

�
and

dimLD

�
t Cm

m

�
�

�
k� 1Cm

m

�
:

To optimize the resulting bound, we take t � .m=ˇ/1=.m�1/k.

3. Applications to fully homomorphic encryption

In [21], the authors build a fully homomorphic encryption system whose secu-
rity relies on several assumptions, among them the hardness of computing an ap-
proximate common divisor of many integers. This assumption is used to build a
simple “somewhat homomorphic” scheme, which is then transformed into a fully
homomorphic system under additional hardness assumptions. In this section, we
use Theorem 1 to provide a more precise theoretical understanding of the security
assumption underlying this somewhat homomorphic scheme, as well as the related
cryptosystem of [18].

For ease of comparison, we will use the notation from the above two papers (see
Section 3 of [21]). Let 
 be the bit length of N , � be the bit length of p, and � be
the bit length of each ri . Using Theorem 1, we can find r1; : : : ; rm and the secret
key p when

� � 
ˇ.mC1/=m:

Substituting in ˇ D �=
 , we obtain

�m
 � �mC1:

The authors of [21] suggest as a “convenient parameter set to keep in mind” to set
�D �, �D �2, and 
 D �5. Using m> 3 we would be able to solve this parameter
set, if we did not have the barrier that �2 must be much greater than 
 .

As pointed out in Section 1.2.1, this barrier would no longer apply if we could
improve the approximation factor for lattice basis reduction. If we could improve
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the approximation factor to 2.dimL/" , then the barrier would amount to ˇ1C"�5� 1,
where ˇ D �=
 D ��3. If " < 2=3, this would no longer be an obstacle. Given
a 2.dimL/2=3= log dimL approximation factor, we could take mD 4, k D 1, and t D
b3�3=4c in the notation of Section 2. Then (1) holds, and thus the algorithm works,
for all �� 300.

One might try to achieve these subexponential approximation factors by using
blockwise lattice reduction techniques [22]. For an n-dimensional lattice, one can
obtain an approximation factor of roughly �n=� in time exponential in �. For the
above parameter settings, the lattice will have dimension on the order of �3, and
even a 2n

2=3

approximation will require � > n1=3 D �, for a running time that
remains exponential in �. (Note that for these parameters, using a subexponential-
time factoring algorithm to factor the modulus in the “partial” approximate com-
mon divisor problem is super-exponential in the security parameter.)

In general, if we could achieve an approximation factor of 2.dimL/" for arbitrarily
small ", then we could solve the approximate common divisor problem for param-
eters given by any polynomials in �. Furthermore, as we will see in Section 6, the
LLL algorithm performs better in practice on these problems than the theoretical
analysis suggests.

In [18], Coron, Mandal, Naccache, and Tibouchi suggest explicit parameter
sizes for a modified version of the scheme from [21]. The parameters are well
within the range for which the algorithm works, assuming typical LLL performance.
However, although our attacks run in time polynomial in the input size, the running
time is dependent on the largest input (the total key size) and for these parameters
the performance of the lattice-based approach is not competitive with attacks such
as Chen and Nguyen [13], which run in time subexponential in the size of the error.

4. Multipolynomial reconstruction

4.1. Polynomial lattices. For Theorem 3 and Theorem 4, we can use almost ex-
actly the same technique, but with lattices over the polynomial ring F Œz� instead
of the integers.

By a d -dimensional lattice L over F Œz�, we mean the F Œz�-span of d linearly
independent vectors in F Œz�d . The degree deg v of a vector v in L is the maximum
degree of any of its components, and the determinant detL is the determinant of a
basis matrix (which is well-defined, up to scalar multiplication).

The polynomial analogue of lattice basis reduction produces a basis b1; : : : ; bd
for L such that

deg b1C � � �C deg bd D deg detL:

Such a basis is called a reduced basis (sometimes column or row-reduced, depend-
ing on how the vectors are written), and it can be found in polynomial time; see,
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for example, Section 6.3 in [31]. If we order the basis so that deg b1 � � � � � deg bd ,
then clearly

deg b1 �
deg detL

d
;

and more generally

deg bi �
deg detL
d � .i � 1/

;

because

deg detL� .d � .i � 1// deg bi D
dX
jD1

deg bj �
dX
jDi

deg bi � 0:

These inequalities are the polynomial analogues of the vector length bounds in
LLL-reduced lattices, but notice that the exponential approximation factor does not
occur. See [14] for more information about this analogy, and [20] for applications
that demonstrate the superior performance of these methods in practice.

4.2. Theorems 3 and 4. In the polynomial setting, we will choose Q.x1; : : : ; xm/
to be a linear combination (with coefficients from F Œz�) of the polynomials

.x1�f1.z//
i1 � � � .xm�fm.z//

imN.z/`

with i1C � � � C im � t and ` D max.k �
P
j ij ; 0/. We define the lattice L to be

spanned by the coefficient vectors of these polynomials, but with xi replaced with
z`ixi to incorporate the bound on deggi , much as we replaced xi with Xixi in
Section 2.

As before, we can easily compute the dimension and determinant of L:

dimLD

�
t Cm

m

�
and

deg detLD .`1C � � �C `m/
�
t Cm

m

�
t

mC 1
Cn

�
kCm

m

�
k

mC 1
;

where nD degN.z/.
Given a polynomial Q.x1; : : : ; xm/ corresponding to a vector v 2 L, we can

bound degQ.g1.z/; : : : ; gm.z// by deg v. Specifically, suppose

Q.x1; : : : ; xm/D
X

j1;:::;jm

qj1:::jm
.z/x

j1

1 � � � x
jm
m I
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then v is the vector whose entries are qj1:::jm
.z/zj1`1C���Cjm`m , and

degQ.g1.z/; : : : ; gm.z//

� max
j1;:::;jm

.deg qj1:::jm
.z/C j1 degg1.z/C � � �C jm deggm.z//

� max
j1;:::;jm

.deg qj1:::jm
.z/C j1`1C � � �C jm`m/

D deg v:

Let v1; : : : ; vdimL be a reduced basis of L, arranged in increasing order by de-
gree. If

deg detL
dimL� .m� 1/

< ˇkn; (2)

then each of v1; : : : ; vm yields a polynomial relation Qi such that

Qi .g1.z/; : : : ; gm.z//D 0;

because by the construction of the lattice, Qi .g1.z/; : : : ; gm.z// is divisible by the
k-th power of an approximate common divisor of degree ˇn, while

degQi .g1.z/; : : : ; gm.z//� deg vi < ˇkn:

Thus we must determine how large `1C� � �C`m can be, subject to the inequality (2).
If we set t � kˇ�1=m and

`1C � � �C `m

m
< nˇ.mC1/=m;

then inequality (2) is satisfied when t and k are sufficiently large. Because there
is no analogue of the LLL approximation factor in this setting, we do not have to
worry about t and k becoming too large (except for the obvious restriction that
dimL must remain polynomially bounded), and there is no lower bound on ˇ.
Furthermore, we require no 1C o.1/ factors, because all degrees are integers and
all the quantities we care about are rational numbers with bounded numerators and
denominators; thus, any sufficiently close approximation might as well be exact,
and we can achieve this when t and k are polynomially large. More precisely,
without loss of generality we can take ˇn to be an integer. Then the inequality

`1C � � �C `m

m
< nˇ.mC1/=m

is equivalent to n.`1C � � �C `m/m < .nˇ/mC1mm and hence

n.`1C � � �C `m/
m
� .nˇ/mC1mm� 1
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by integrality. Thus, .`1C� � �C`m/=m is smaller than nˇ.mC1/=m by at least a fac-
tor of .1�n�.mC1/m�m/1=m, and this factor is enough to ensure that inequality (2)
holds when t and k are only polynomially large.

5. Higher-degree polynomials

It is possible to generalize the results in the previous sections to find solutions of
a system of higher-degree polynomials modulo divisors of N .

Theorem 5. Given a positive integerN andmmonic polynomials h1.x/;: : :;hm.x/
over the integers, of degrees d1; : : : ; dm, and given any ˇ� 1=

p
logN and bounds

X1; : : : ; Xm, we can find all r1; : : : ; rm such that

gcd.N; h1.r1/; : : : ; hm.rm//�N ˇ

and jri j �Xi , provided that

m

q
X
d1

1 � � �X
dm
m <N .1Co.1//ˇ .mC1/=m

and that the algebraic independence hypothesis holds. The algorithm runs in poly-
nomial time for fixed m.

The m D 1 case does not require the algebraic independence hypothesis, and
it encompasses both Howgrave-Graham and Coppersmith’s theorems [28; 15]; it
first appeared in [36].

In the case where X1 D � � � D Xm, the bound becomes N ˇ .mC1/=m=d , where
d D .d1C � � �C dm/=m is the average degree.

Theorem 6. Given a polynomialN.z/ andmmonic polynomials h1.x/; : : : ; hm.x/
over F Œz�, of degrees d1; : : : ; dm in x, and given degree bounds `1; : : : ; `m and
ˇ 2 Œ0; 1�, we can find all g1.z/; : : : ; gm.z/ in F Œz� such that

deg gcd
�
N.z/; h1.g1.z//; : : : ; hm.gm.z//

�
� ˇ degN.z/

and deggi .z/� `i , provided that

`1d1C � � �C `mdm

m
< ˇ.mC1/=m degN.z/

and that the algebraic independence hypothesis holds. The algorithm runs in poly-
nomial time for fixed m.

The algorithms are exactly analogous to those for the degree-1 cases, except that
xi � ai (or xi �fi .z/) is replaced with hi .xi /.
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6. Implementation

We implemented the number-theoretic version of the partial approximate common
divisor algorithm using Sage [47]. We used Magma [11] to do the LLL and Gröbner
basis calculations.

We solved the systems of equations by computing a Gröbner basis with respect to
the lexicographic monomial ordering, to eliminate variables. Computing a Gröbner
basis can be extremely slow, both in theory and in practice. We found that it was
more efficient to solve the equations modulo a large prime, to limit the bit length
of the coefficients in the intermediate and final results. Because r1; : : : ; rm are
bounded in size, we can simply choose a prime larger than 2maxi jri j.

We ran our experiments on a computer with a 3.30 GHz quad-core Intel Core i5
processor and 8 GB of RAM. Table 1 shows a selection of sample running times
(in seconds) for various parameter settings. For comparison, the table includes
the mD 1 case, which is Howgrave-Graham’s algorithm. The rows for which no
timing information is listed give example lattice dimensions for larger inputs, in
order to illustrate the limiting behavior of the algorithm.

The performance of the algorithm depends on the ratio of t to k, which should
be approximately ˇ�1=m. Incorrectly optimized parameters often perform much
worse than correctly optimized parameters. For example, whenmD3, log2ND1000,
and log2 p D 200, taking .t; k/D .4; 2/ can handle 84-bit perturbations ri , as one
can see in Table 1, but taking .t; k/D .4; 3/ cannot even handle 60 bits.

For large m, we experimented with using the nonoptimized parameters .t; k/D
.1; 1/, as reported in Table 1. For the shortest vector only, the bounds would replace
the exponent ˇ.mC1/=m with .m C 1/ˇ=m � 1=m, which is its tangent line at
ˇD 1. This bound is always worse, and it is trivial when ˇ � 1=.mC1/, but it still
approaches the optimal exponent ˇ for largem. Our analysis does not yield a strong
enough bound for the m-th largest vector, but in our experiments the vectors found
by LLL are much shorter than predicted by the worst-case bounds, as described
below. Furthermore, the algorithm runs extremely quickly with these parameters,
because the lattices have lower dimensions and the simultaneous equations are all
linear.

The last column of the table gives the value of the “LLL factor” �, which de-
scribes the approximation ratio obtained by LLL in the experiment. Specifically,
the value of � satisfies

jvmj � �
dimL.detL/1=.dimL/;

where vm is the m-th smallest vector in the LLL-reduced basis for L. Empirically,
we find that all of the vectors in the reduced basis are generally quite close in size,
so this estimate is more appropriate than using 1=.dimL� .m�1// in the exponent
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m log2N log2 p log2 r t k dimL LLL Gröbner �

1 1000 200 36 41 8 42 12.10 — 1.037
1 1000 200 39 190 38 191
1 1000 400 154 40 16 41 34.60 — 1.023
1 1000 400 156 82 33 83 4554.49 — 1.029
1 1000 400 159 280 112 281

2 1000 200 72 9 4 55 25.22 0.94 1.030
2 1000 200 85 36 16 703
2 1000 400 232 10 6 66 126.27 5.95 1.038
2 1000 400 238 15 9 136 15720.95 25.86 1.019
2 1000 400 246 46 29 1128

3 1000 200 87 5 3 56 18.57 1.20 1.038
3 1000 200 102 14 8 680
3 1000 400 255 4 3 35 2.86 2.13 1.032
3 1000 400 268 7 5 120 1770.04 25.43 1.040
3 1000 400 281 19 14 1540

4 1000 200 94 3 2 35 1.35 0.54 1.028
4 1000 200 111 8 5 495
4 1000 400 279 4 3 70 38.32 9.33 1.035
4 1000 400 293 10 8 1001

5 1000 200 108 3 2 56 7.35 1.42 1.035
5 1000 200 110 4 3 126 738.57 7.28 1.037
5 1000 400 278 3 2 56 1.86 0.90* 0.743

6 1000 200 115 3 2 84 31.51 3.16 1.038
6 1000 400 297 3 2 84 3.97 1.34* 0.586

7 1000 200 120 3 2 120 203.03 7.73 1.046
7 1000 400 311 3 2 120 12.99 2.23* 0.568

12 1000 400 347 1 1 13 0.01 0.52 1.013
18 1000 400 364 1 1 19 0.03 1.08 1.032
24 1000 400 372 1 1 25 0.04 1.93 1.024
48 1000 400 383 1 1 49 0.28 8.37 1.030
96 1000 400 387 1 1 97 1.71 27.94 1.040

Table 1. Timings, in seconds, of the LLL and Gröbner basis portions of our
implementation of the integer partial approximate common divisor algorithm,
for various choices of the parameters m, N , p, r , t , and k. Rows for which no
timings are listed give sample parameters for more extreme calculations. The
meanings of the final column and of the timings marked with an asterisk are
explained in the text. We include results for the nonoptimized parameters t D
k D 1, which perform well for a large number of samples but give a weaker result
than Theorem 1.



290 HENRY COHN AND NADIA HENINGER

(which we did in the theoretical analysis, in order to get a rigorous bound). The
typical value is about 1:02, which matches the behavior one would expect from
LLL on a randomly generated lattice [37], whose successive minima will all be
close to detL1=.dimL/.

Because of this, the reduced lattice bases in practice contain many more than
m suitable polynomials, and we were able to speed up some of the Gröbner basis
calculations in Table 1 by including all of them in the basis. Even using all the
vectors with `1 norm less than N ˇk is overly conservative in many cases, because
vectors that do not satisfy this constraint can still lead to valid relations. Our code
initially tries using every vector in the reduced basis except the longest one; if that
fails, we fall back on the m shortest vectors. We also experimented with using just
those with `1 norm less than N ˇk , but in our experiments this bound was often
violated even for polynomials that did vanish. Including more polynomials in the
Gröbner basis calculation in many cases leads to substantially better running times
than using just m vectors.

A handful of our experimental parameters resulted in lattices whose shortest
vectors were much shorter than the expected bounds; this tended to correlate with
a small sublattice of algebraically dependent vectors. We marked cases where we
encountered algebraically dependent relations with an asterisk in Table 1. In each
case, we were still able to solve the system of equations by including more relations
from the lattice and solving this larger system.

Acknowledgments

We thank Chris Umans and Alex Vardy for suggesting looking at Parvaresh-Vardy
codes, and Martin Albrecht for advice on computing Gröbner bases in practice.
N.H. would like to thank MIT, CSAIL, and Microsoft Research New England for
their hospitality during the course of this research. This material is based upon work
supported by an AT&T Labs Graduate Fellowship and by the National Science
Foundation under Award No. DMS-1103803.

References

[1] ACM (ed.), STOC’03: Proceedings of the 35th Annual ACM Symposium on Theory of Comput-
ing, New York, ACM Press, 2003. MR 2005j:68009

[2] ACM (ed.), STOC’08: Proceedings of the 40th Annual ACM Symposium on Theory of Comput-
ing, New York, ACM Press, 2008. MR 2010m:68004

[3] Daniel Augot and Matthieu Finiasz, A public key encryption scheme based on the polynomial
reconstruction problem, in Biham [6], 2003, pp. 229–240. MR 2005d:94075

[4] Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger (eds.), Au-
tomata, languages and programming, Lecture Notes in Computer Science, no. 2719, Berlin,
Springer, 2003. MR 2005b:68008



APPROXIMATE COMMON DIVISORS VIA LATTICES 291

[5] Feng Bao, Robert Deng, and Jianying Zhou (eds.), Public Key Cryptography—PKC 2004, Lec-
ture Notes in Computer Science, no. 2947, Berlin, Springer, 2004.

[6] Eli Biham (ed.), Advances in cryptology—EUROCRYPT 2003, Lecture Notes in Computer Sci-
ence, no. 2656, Berlin, Springer, 2003. MR 2005c:94003

[7] Daniel Bleichenbacher, Aggelos Kiayias, and Moti Yung, Decoding of interleaved Reed Solomon
codes over noisy data, in Baeten et al. [4], 2003, pp. 97–108. MR 2005b:94062

[8] Daniel Bleichenbacher and Phong Q. Nguyen, Noisy polynomial interpolation and noisy Chi-
nese remaindering, in Preneel [43], 2000, pp. 53–69. MR 2001b:94030

[9] Dan Boneh and Glenn Durfee, Cryptanalysis of RSA with private key d less than N 0:292, IEEE
Trans. Inform. Theory 46 (2000), no. 4, 1339–1349. MR 2002g:94034

[10] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham, Factoring N D prq for large r , in
Wiener [49], 1999, pp. 326–337. MR 2000i:11188

[11] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. MR 1484478

[12] Bernard Chazelle (ed.), Innovations in Computer Science—ICS 2011, Beijing, Tsinghua Uni-
versity Press, 2011.

[13] Yuanmi Chen and Phong Q. Nguyen, Faster algorithms for approximate common divisors:
Breaking fully-homomorphic-encryption challenges over the integers, in Pointcheval and Jo-
hansson [42], 2012, pp. 502–519.

[14] Henry Cohn and Nadia Heninger, Ideal forms of Coppersmith’s theorem and Guruswami-Sudan
list decoding, in Chazelle [12], 2011, pp. 298–308, full version at arXiv:1008.1284 [math.NT].

[15] Don Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabil-
ities, J. Cryptology 10 (1997), no. 4, 233–260. MR 99b:94027

[16] Don Coppersmith and Madhu Sudan, Reconstructing curves in three (and higher) dimensional
space from noisy data, in ACM [1], 2003, pp. 136–142. MR 2005k:94004

[17] Jean-Sébastien Coron, Cryptanalysis of a public-key encryption scheme based on the polyno-
mial reconstruction problem, in Bao et al. [5], 2004, pp. 14–27.

[18] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi, Fully homomor-
phic encryption over the integers with shorter public keys, in Rogaway [44], 2011, pp. 487–504.
MR 2874875

[19] David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms: an introduction
to computational algebraic geometry and commutative algebra, Undergraduate Texts in Math-
ematics, Springer, New York, 1992. MR 93j:13031

[20] Casey Devet, Ian Goldberg, and Nadia Heninger, Optimally robust private information retrieval,
in Kohno [34], 2012, pp. 269–283, extended version at http://eprint.iacr.org/2012/083.

[21] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan, Fully homomorphic
encryption over the integers, in Gilbert [23], 2010, pp. 24–43, extended version at http://
eprint.iacr.org/2009/616. MR 2660481

[22] Nicolas Gama and Phong Q. Nguyen, Finding short lattice vectors within Mordell’s inequality,
in ACM [2], 2008, pp. 207–216. MR 2011c:68214

[23] Henri Gilbert (ed.), Advances in cryptology—EUROCRYPT 2010, Lecture Notes in Computer
Science, no. 6110, Berlin, Springer, 2010. MR 2011g:94001

[24] Venkatesan Guruswami and Atri Rudra, Explicit codes achieving list decoding capacity: error-
correction with optimal redundancy, IEEE Trans. Inform. Theory 54 (2008), no. 1, 135–150.
MR 2010b:94096



292 HENRY COHN AND NADIA HENINGER

[25] Venkatesan Guruswami and Madhu Sudan, Improved decoding of Reed-Solomon and algebraic-
geometry codes, IEEE Trans. Inform. Theory 45 (1999), no. 6, 1757–1767. MR 2000j:94033

[26] Mathias Herrmann and Alexander May, Solving linear equations modulo divisors: on factoring
given any bits, in Pieprzyk [41], 2008, pp. 406–424. MR 2546108

[27] Florian Hess, Sebastian Pauli, and Michael Pohst (eds.), Algorithmic number theory, Lecture
Notes in Computer Science, no. 4076, Berlin, Springer, 2006. MR 2007h:11001

[28] Nick Howgrave-Graham, Approximate integer common divisors, in Silverman [46], 2001, pp. 51–
66. MR 2003h:11160

[29] Ellen Jochemsz and Alexander May, A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants, in Lai and Chen [35], 2006, pp. 267–282.
MR 2009h:94128

[30] Charanjit S. Jutla, On finding small solutions of modular multivariate polynomial equations, in
Nyberg [38], 1998, pp. 158–170. MR 2000k:94033

[31] Thomas Kailath, Linear systems, Prentice-Hall, Englewood Cliffs, NJ, 1980. MR 82a:93001

[32] Aggelos Kiayias and Moti Yung, Polynomial reconstruction based cryptography (a short sur-
vey), in Vaudenay and Youssef [48], 2001, pp. 129–133. MR 2054433

[33] , Secure games with polynomial expressions, in Orejas et al. [39], 2001, pp. 939–950.
MR 2066563

[34] Tadayoshi Kohno (ed.), 21st USENIX Security Symposium, Berkeley, The USENIX Associa-
tion, 2012.

[35] Xuejia Lai and Kefei Chen (eds.), Advances in cryptology—ASIACRYPT 2006, Lecture Notes
in Computer Science, no. 4284, Berlin, Springer, 2006. MR 2009e:94091

[36] Alexander May, New RSA vulnerabilities using lattice reduction methods, Ph.D. thesis, Univer-
sität Paderborn, 2003. http://nbn-resolving.de/urn:nbn:de:hbz:466-20030101205

[37] Phong Q. Nguyen and Damien Stehlé, LLL on the average, in Hess et al. [27], 2006, pp. 238–
256. MR 2008a:11154

[38] Kaisa Nyberg (ed.), Advances in cryptology—EUROCRYPT ’98, Lecture Notes in Computer
Science, no. 1403, Berlin, Springer, 1998. MR 2000h:94004

[39] Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen (eds.), Automata, languages and
programming, Lecture Notes in Computer Science, no. 2076, Berlin, Springer, 2001. MR
2005a:68007

[40] Farzad Parvaresh and Alexander Vardy, Correcting errors beyond the Guruswami-Sudan radius
in polynomial time, Proceedings of the 46th IEEE Symposium on Foundations of Computer
Science held in Pittsburgh, October 23–25, 2005 (Los Alamitos, CA), Institute of Electrical
and Electronics Engineers, IEEE Computer Society, 2005, pp. 285–294.

[41] Josef Pieprzyk (ed.), Advances in cryptology—ASIACRYPT 2008, Lecture Notes in Computer
Science, no. 5350, Berlin, Springer, 2008. MR 2010j:94005

[42] David Pointcheval and Thomas Johansson (eds.), Advances in cryptology—EUROCRYPT 2012,
Lecture Notes in Computer Science, no. 7237, Berlin, Springer, 2012.

[43] Bart Preneel (ed.), Advances in cryptology—EUROCRYPT 2000, Lecture Notes in Computer
Science, no. 1807, Berlin, Springer, 2000. MR 2001b:94028

[44] Phillip Rogaway (ed.), Advances in cryptology—CRYPTO 2011, Lecture Notes in Computer
Science, no. 6841, Heidelberg, Springer, 2011. MR 2012i:94009



APPROXIMATE COMMON DIVISORS VIA LATTICES 293

[45] Santanu Sarkar and Subhamoy Maitra, Approximate integer common divisor problem relates to
implicit factorization, IEEE Trans. Inform. Theory 57 (2011), no. 6, 4002–4013. MR 2012f:
94121

[46] Joseph H. Silverman (ed.), Cryptography and lattices, Lecture Notes in Computer Science, no.
2146, Berlin, Springer, 2001. MR 2002m:11002

[47] W. A. Stein et al., Sage Mathematics Software (version 4.6.2), 2011. http://www.sagemath.org

[48] Serge Vaudenay and Amr M. Youssef (eds.), Selected areas in cryptography: Revised papers
from the 8th Annual International Workshop (SAC 2001) held in Toronto, ON, August 16–17,
2001, Lecture Notes in Computer Science, no. 2259, Springer, Berlin, 2001. MR 2004k:94066

[49] Michael Wiener (ed.), Advances in cryptology—CRYPTO ’99, Lecture Notes in Computer Sci-
ence, no. 1666, Berlin, Springer, 1999. MR 2000h:94003

HENRY COHN: cohn@microsoft.com
Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142, United States

NADIA HENINGER: nadiah@cis.upenn.edu
Department of Computer Science, Princeton University, Princeton, NJ 08540, United States
Current address: Department of Computer and Information Science, 3330 Walnut St.,
Philadelphia, PA 19104, United States

msp





THE OPEN BOOK SERIES 1 (2013)

Tenth Algorithmic Number Theory Symposium
dx.doi.org/10.2140/obs.2013.1.295

msp

Explicit descent in the Picard group of a
cyclic cover of the projective line

Brendan Creutz

Given a curveX of the form yp D h.x/ over a number field, one can use descents
to obtain explicit bounds on the Mordell-Weil rank of the Jacobian or to prove
that the curve has no rational points. We show how, having performed such a
descent, one can easily obtain additional information which may rule out the
existence of rational divisors on X of degree prime to p. This can yield sharper
bounds on the Mordell-Weil rank by demonstrating the existence of nontrivial
elements in the Shafarevich-Tate group. As an example we compute the Mordell-
Weil rank of the Jacobian of a genus 4 curve over Q by determining that the
3-primary part of the Shafarevich-Tate group is isomorphic to Z=3�Z=3.

1. Introduction

Let k be a global field and J=k an abelian variety. Any separable isogeny ' WJ!J

gives rise to a short exact sequence of finite abelian groups,

0 // J.k/='.J.k// // Sel'.J=k/ // X.J=k/Œ'� // 0;

relating the finitely generated Mordell-Weil group J.k/ and the conjecturally finite
Shafarevich-Tate group X.J=k/. Computation of the middle term, the '-Selmer
group of J , is typically referred to as a '-descent on J . This produces an explicit
upper bound for the Mordell-Weil rank which will only be sharp when X.J=k/Œ'�

is trivial.
While descents on elliptic curves have a history stretching back as far as Fermat,

the first examples for abelian varieties of higher dimension appear to have been
computed in the 1990s by Gordon and Grant [10], though Cassels had suggested
a method using his so-called .x � T / map a decade earlier [6]. These first ex-
amples concerned Jacobians of genus 2 curves with rational Weierstrass points.

MSC2010: primary 11G10; secondary 11Y50.
Keywords: abelian variety, Mordell-Weil group, explicit descent.
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Schaefer [16; 17] and Poonen and Schaefer [13] later developed a cohomological
interpretation of Cassels’ .x�T /map which allowed them to generalize the method
to Jacobians of all cyclic covers of the projective line. More recently Bruin and
Stoll [5] and Mourao [12] have used a similar .x � T / map to do a descent on
the cyclic cover itself. This computes a finite set of everywhere locally solvable
coverings of the curve which may be of use in determining its set of rational points.
In particular, when this set is empty there are no rational points on the curve.

We show how, having performed a descent on the Jacobian J of a cyclic cover X ,
one can easily obtain additional information which may rule out the existence of
k-rational divisors of degree 1 on X . When X is everywhere locally solvable
(for instance) the scheme Pic1.X/, whose k-rational points parametrize k-rational
divisor classes of degree 1 on X , represents an element of X.J=k/. So this can
be used to show that X.J=k/ is nontrivial, and consequently to deduce sharper
bounds for the Mordell-Weil rank. We show that this new information can be
interpreted as a set parametrizing certain everywhere locally solvable coverings
of Pic1.X/, so one might refer to the method as a descent on Pic1.X/. This
interpretation allows us to relate the set in question to the divisibility properties of
Pic1.X/ in X.J=k/ (see Theorem 4.5 and Corollary 4.6). Well known properties
of the Cassels-Tate pairing then allow us to deduce a better lower bound for the
size of X.J=k/ (unconditionally). We give several examples. In one we compute
the Mordell-Weil rank of the Jacobian of a genus 4 curve over Q by determining
that the 3-primary part of the Shafarevich-Tate group is isomorphic to Z=3�Z=3.
We also present empirical data suggesting better bounds are thus obtained rather
frequently for hyperelliptic curves.

While one gets additional information on k-rational divisors of degree 1, this
is unlikely to be of much additional use for determining the set of rational points
on X when the genus is at least 2. When X.k/ ¤ ∅, the descent on Pic1.X/
yields no new information on the Mordell-Weil rank since Pic1.X/ ' J . The
obstruction to the existence of rational points on X provided by the descent on
Pic1.X/ is weaker than that given by the descent on X , and only provides any
new information when the descent on X actually gives an obstruction. That being
said, descents on Pic1.X/ could be useful for computing large generators of the
Mordell-Weil group or for finding a k-rational embedding of X into the Jacobian
(see [4, Section 3.2] for some examples with genus 2 curves), both of which are
relevant for tools such as the Mordell-Weil sieve or Chabauty’s method. However,
such benefits can only be reaped by constructing explicit models for the coverings
parametrized by the descent, which is a topic which we will not address here.

1A. Notation. Throughout the paper p will be a prime number and k a field of
characteristic different from p containing the p-th roots of unity. We use k to
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denote a separable closure of k and gk to denote the absolute Galois group of k.
When k is a global field we denote its completion at a prime v by kv.

If G is a group, a principal homogeneous space forG is a setH on which G acts
simply transitively. We make the convention that ∅ is a principal homogeneous
space for any group. Suppose H and H 0 are principal homogeneous spaces for
groups G and G0, respectively, and that i0 WG!G0 is a homomorphism of groups.
Then a map i WH!H 0 is said to be affine (with respect to i0) if i.g �h/D i0.g/�i.h/
for all h 2H and g 2G. An affine isomorphism is an affine bijection with respect
to an isomorphism of groups. When G is an abelian group and n is an integer, we
use GŒn� and G.n/ to denote the n-torsion subgroup and the subgroup of elements
killed by some power of n, respectively.

If L is a k-algebra we use L to denote L˝k k. If V is a projective variety over k
and L is a commutative k-algebra we use VL or V ˝k L to denote the extension
of scalars, V �Spec.k/ Spec.L/. The group of k-rational divisors on V is denoted
Div.V /. The function field of V is denoted �.V /. A divisor is called principal if
it is the divisor of a function f 2 �.V /; the group of all such divisors is denoted
Princ.V /. The quotient of Div.V / by Princ.V / is denoted Pic.V /. When V is a
curve Div.V / is the free abelian group on the set of closed points of V , and there
is a well defined notion of degree in Div.V /. For a point P 2 V.k/ we use ŒP �
to denote the corresponding element in Div.V

k
/. The degree of a principal divisor

is 0, so there is also a well defined notion of degree for classes in Pic.V /. We
denote the subset consisting of classes of degree i by Pici .V /.

Let A be an abelian variety defined over k. A k-torsor under A is a variety T
over k, together with an algebraic group action of A on T defined over k such that
the induced map A�T 3 .a; t/ 7! .aC t; t /2 T �T is an isomorphism. This means
that geometrically A acts simply transitively on T . The k-isomorphism classes of
k-torsors under A are parametrized by the torsion abelian group H 1.k; A/. The
trivial class is represented by A acting on itself by translations, and a k-torsor
under A is trivial if and only if it possesses a k-rational point. Thus when k is a
global field with completions kv, the Shafarevich-Tate group

X.A=k/ WD ker
�
H 1.k; A/!

M
H 1.kv; A/

�
parametrizes isomorphism classes of everywhere locally solvable torsors.

We often refer to a variety as a k-torsor under A, taking the group action to
be implicit. If T is a k-torsor under A, then any point t0 2 T gives rise to an
isomorphism T ' A defined over k.t0/ sending a point t 2 T to the unique a 2 A
such that aC t0 D t . We say an isomorphism  W T ' A is compatible with the
torsor structure on T if it is of this type. The action of A on T can be recovered
from such an isomorphism by the rule aC t D  �1. .t/C a/.
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2. Coverings and divisibility in X

Definition 2.1. Let ' W A0! A be a separable isogeny of abelian varieties. Let T
be a k-torsor under A and fix a k-isomorphism  T W T ! A compatible with the
torsor structure. A '-covering of T is a k-variety S together with a morphism
S

�
�!T defined over k such that there exists a k-isomorphism  S W S ! A0 such

that ' ı  S D  T ı � . Two '-coverings of T are k-isomorphic if they are k-
isomorphic as T -schemes. We use Cov'.T=k/ to denote the set of isomorphism
classes of '-coverings of T . If k is a global field we define the '-Selmer set of T
to be the subset Sel'.T=k/� Cov'.T=k/ consisting of those '-coverings which
are everywhere locally solvable.

We will see below that this definition generalizes the usual definition of the '-
Selmer group of an abelian variety. The definition does not depend on the choice for
 T , and the isomorphism  S endows S with the structure of a k-torsor under A0.

Lemma 2.2. Let .S; �/ be a '-covering of T . Then its group of k-automorphisms
is isomorphic to A0Œ'� as a Galois module.

Proof. Suppose  W S! S is an isomorphism such that � D � ı and consider the
endomorphism � D  S ı ı 

�1
S � 1 2 End.A0/. Since � D ' ı S D ' ı S ı 

we have that ' ı � is identically 0. Then � is a continuous map from A0.k/, which
is irreducible, to A0Œ'�, which is discrete. Hence � is constant. It follows that  
is translation by a '-torsion point. Conversely it is clear that translation by any
'-torsion point gives an automorphism of .S; �/. �

By definition all '-coverings of T are twists of one another. So by the twisting
principle Cov'.T=k/ is a principal homogeneous space for the groupH 1.k; A0Œ'�/.
In the special case T DA (acting on itself by translations), the morphism ' WA0!A

gives A0 a canonical structure as a '-covering of A. This gives a canonical iden-
tification of H 1.k; A0Œ'�/ and Cov'.A=k/ and consequently endows Cov'.A=k/
with a group structure in which ' WA0!A represents the identity. Under this iden-
tification the isomorphism classes of '-coverings of A which possess k-rational
points correspond to the kernel in the Kummer sequence

0 // A.k/='.A0.k// // H 1.k; A0Œ'�/ // H 1.k; A0/Œ'� // 0: (2-1)

When k is a global field one can deduce from this that Sel'.A=k/ is identified with
the kernel of the natural map H 1.k; A0Œ'�/!

L
vH

1.kv; A/. In particular it is a
subgroup and it sits in an exact sequence

0 // A.k/='.A0.k// // Sel'.A=k/ // X.A0=k/Œ'� // 0: (2-2)
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Remark. The reader is cautioned that our notation is nonstandard. Our Sel'.A=k/
would typically be referred to as the '-Selmer group of A0 (with A0 present in the
notation).

More generally '-Selmer sets are related to divisibility in the Shafarevich-Tate
group as follows.

Proposition 2.3. Suppose ' W A0! A is a separable isogeny of abelian varieties
over k and that T is a k-torsor under A. Then Cov'.T=k/ ¤ ∅ if and only
if T 2 'H 1.k; A0/. If k is a global field, then Sel'.T=k/ ¤ ∅ if and only if
T 2 'X.A0=k/.

Proof. We will prove the second statement. The first can be proved using the same
argument. We may assume T 2X.A=k/, otherwise the statement is trivial. Sup-
pose T is killed by m and consider the following commutative and exact diagram:

Selmı'.A=k/

'�

��

// X.A0=k/Œm ı'� //

'

��

0

Selm.A=k/ // X.A=k/Œm� // 0:

The torsor T admits a lift to an m-covering T �
�!A in the m-Selmer group of A.

Each choice of lift gives a map

Sel'.T=k/ // Sel.mı'/.A=k/

.S; �/
� // .S; � ı �/:

The image of this map is exactly the fiber above .T; �/ under the map denoted '�
in the diagram above. From this one deduces the result from commutativity and
the fact that the horizontal maps are surjective. �

We record here the following well known lemma which relates the condition in
Proposition 2.3 to the Cassels-Tate pairing.

Lemma 2.4. Let ' W A0 ! A be a separable isogeny of abelian varieties over
a global field k with dual isogeny '_ W A_ ! A0_. An element of X.A=k/ is
divisible by ' if and only if it pairs trivially with every element of X.A_=k/Œ'_�

under the Cassels-Tate pairing.

Proof. The compatibility of the Cassels-Tate pairing with isogenies (see [11, Re-
mark I.6.10(a)]) shows that it induces a complex

'X.A0/ // X.A/ // Hom
�
X.A_/Œ'_�;Q=Z

�
:
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The statement is equivalent to claiming that this is exact. When ' is multiplication
by an integer this result appears in the paragraph following the proof of [11, Lemma
I.6.17]. The general statement can be deduced in exactly the same manner. �

3. Cyclic covers of P1

Let � W X ! P1 be a cyclic cover of degree p defined over k. By the Riemann-
Hurwitz formula, X has genus g D .d � 2/.p � 1/=2, where d is the number of
branch points of � . Provided P1.k/ has sufficiently many points we can make a
change of variables to ensure that � is not ramified above12 P1. As our present
interest lies in infinite fields, there is no harm in assuming this to be the case. The
pullback mD ��1 is an effective k-rational divisor of degree p on X . Let ��X
denote the set of ramification points of � . Then for any ! 2� the divisor pŒ!� is
linearly equivalent to m, and .2g� 2/Œ!� is a canonical divisor.

3A. The isogeny �. Since k contains the p-th roots of unity, the group of deck
transformations of � may be identified with �p.k/. The action of �p.k/ on X
extends linearly to give a Galois-equivariant action of the group ring ZŒ�p� on
Div.X

k
/. For any divisor D, the element t D

P
�2�p

� 2 ZŒ�p� sends D to a
divisor linearly equivalent to .degD/m. Hence t sends Div0.X

k
/ to Princ.X

k
/, so

the induced actions of ZŒ�p� on J and Pic0.X/ factor through ZŒ�p�=t , which is
isomorphic to the cyclotomic subring of k generated by �p . Fix a generator � 2�p
and set � D 1� �. Then � W J ! J is an isogeny of degree pd�2. We note that
the ratio of �p�1 and p is a unit in End.J /.

3B. The model yp D ch.x/. By Kummer theory, X has a (possibly singular)
affine model of the form yp D ch.x/, where c 2 k� and h.x/ 2 kŒx� is a p-th-
power-free polynomial with leading coefficient 1. In this model � is given by the
x-coordinate and � 2 �p.k/ acts via .x; y/ 7! .x; �y/. Our assumption that1 is
not a branch point implies that the branch points are the roots of h.x/ and so we
may assume p divides the degree of h.x/.

3C. The torsor X. In what follows we consider the reduced scheme XD Pic1.X/
classifying linear equivalence classes of divisors of degree 1 on X . This scheme is
defined over k and its set of k-points is X.k/D Pic1.X

k
/. The obvious injection

Pic1.X/! Pic1.X
k
/gk D X.k/ is not always surjective. The obstruction to a k-

rational divisor class being represented by a k-rational divisor can be interpreted
as an element of the Brauer group; one has a well known exact sequence (see, for
example, [2, Section 9.1])

0 // Pic1.X/ // X.k/
�X // Br.k/: (3-1)
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The obstruction �X vanishes identically when Pic1.X/ is nonempty. When k
is a global field, the local-global principle for Br.k/ can be used to show that
Pic1.X/D X.k/ if Pic1.Xkv

/D∅ for at most one prime. Similarly if X.kv/D∅
for at most one prime v, then Pic0.X/D Pic0.X

k
/gk , which is equal to J.k/.

There is a k-isomorphism X' J , sending a point P 2 X corresponding to the
divisor class of D to the class of the divisor D � Œ!0� in Pic0.X

k
/D J.k/. This

endows X with the structure of a k-torsor under J (which does not depend on the
choice for !0). The class of X in H 1.k; J / is given by the class of the 1-cocycle
sending � 2 gk to the class of Œ!0�� Œ!�0 � in Pic0.X

k
/D J.k/. As the difference

of any two ramification points gives a �-torsion point on J , we see that the class
of X in H 1.k; J / is killed by �. In particular, this class has order p if and only if
X.k/D∅. This is the case if and only if every k-rational divisor class on X has
degree divisible by p.

4. The algebraic Selmer set

4A. The .x�T; y/map. LetH.x; z/ be the binary form of degree nD deg.h.x//
such that H.x; 1/D h.x/. Then X is birational to the curve yp D cH.x; z/ in the
weighted projective plane P2.x W y W z/ with weights 1; n=p; 1. Writing H.x; z/ as
H.x; z/DH1.x; z/

n1 � � �He.x; z/
ne with distinct irreducible factors Hi .x; z/, the

radical of H.x; z/ is Hrad.x; z/DH1.x; z/ � � �He.x; z/. Let LDMapk.�; k/'
kŒx�=Hrad.x; 1/. This is the étale k-algebra associated to the finite gk-set �. It
splits as a product L'K1� � � ��Ke of finite extensions of k corresponding to the
irreducible factors hi .x/ of h.x/. We have a weighted norm map

N W L'K1 � � � � �Ke! k; .˛1; : : : ; ˛e/ 7!
eQ
iD1

NKi=k.˛i /
ni : (4-1)

Let
�0 D

˚
pŒ!� W ! 2�

	
[

n P
!2�

n! Œ!�
o
� Div.X

k
/:

The first set appearing in the union above is isomorphic to� as a gk-set. The divisorP
!2� n! Œ!� is the zero divisor of the function y=zn=p 2 �.X/�. In particular it

is invariant under the action of gk . Thus �0 is a disjoint union of gk-sets, and the
étale k-algebra corresponding to �0 splits as Mapk.�

0; k/DM ' L� k. Since
the action of gk on �0 is induced from the action on �, we have an induced norm
map

@ WLDMapk.�; k/!Mapk.�
0; k/DM; ˛ 7!

�
!0D

P
c! Œ!� 7!

Q
˛.!/c!

�
:

Concretely, this is the map

˛ 7! .˛p; N.˛// 2 L� k; (4-2)



302 BRENDAN CREUTZ

where N is the weighted norm map defined in (4-1). We can embed k in M via
the map � W k ! M ' L � k sending a to .a; an=p/. The choice is such that
@.a/D �.ap/.

Let f 2Mapk.�
0; �.X

k
/�/ be the map

!0 7�!

�
.x� x.!/z/=z if !0 D pŒ!�,

y=zn=p if !0 D
P
!2� n! Œ!�.

Then f is a Galois-equivariant family of functions f! parametrized by �0, whose
divisors are supported on the union of � and the support of m. Moreover, if
Œw� 2 Mapk.�;Div.X

k
// denotes the map .! 7! Œ!�/ and we interpret �.m/ as

the element

!0 7�!

�
m if !0 D pŒ!�,

.n=p/m if !0 D
P
!2� n! Œ!�

of Mapk.�
0;Div.X

k
//, then the family of divisors corresponding to f is

div.f /D @Œw�� �.m/ 2Mapk
�
�0;Div.X

k
/
�
:

Following the terminology in [13] we will say a divisor is good if its support is
disjoint from � and m. For any good divisor, DD

P
P nP ŒP � 2Div.X

k
/, we may

define
f .D/D

Q
P

f .P /nP 2M�:

Note that if D 2 Div.X/, then f .D/ 2M�. Every k-rational divisor is linearly
equivalent to a good k-rational divisor. Using this and applying Weil reciprocity
one can prove the following proposition. For details we refer the reader to [7,
Proposition 3.1], [13, Section 5] or [21, Section 4].

Proposition 4.1. The function f induces a unique homomorphism

f W Pic.X/!M�=�.k�/@.L�/

with the property that the image of the class of any good divisor D 2 Div.X/ is
given by f .D/ as defined above.

Remark. The .x�T; y/ map of Stoll and van Luijk defined in [21] differs from
ours slightly. The second factor of their map is defined using the function 
y=zn=p

where 
 is some p-th root of c. Hence their map and ours agree in degree 0 only.
The projection pr1 WM 'L�k!L induces a mapM�=�.k�/@.L�/!L�=k�L�p .
Composing this with either f or the .x�T; y/ map defined in [21] one recovers
the .x � T / map defined in [13]. The main advantage of our definition over the
others is that it defines a homomorphism on all of Pic.X/ and not just the degree
divisible by p part. The map used in [5; 12] to do a descent on X is the restriction
of pr1 ıf to X.k/� Pic1.X/.
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Recall that c 2 k� is the leading coefficient of the polynomial defining X . For
r 2 Z define

H r
k D

f.˛; s/ 2 L� � k� W cr �N.˛/D spg

f.
˛p; 
n=pN.˛// 2 L� � k� W ˛ 2 L�; 
 2 k�g
�M�=�.k�/@.L�/:

Lemma 4.2. For r 2 Z,

H r
k D

�
f .D/@.L�/

�gk
ı
�.k�/@.L�/;

where D 2 Picr.X
k
/ is any divisor class of degree r . In particular,

H 0
k D

�
@.L�/

�gk
ı
�.k�/@.L�/:

Proof. First we claim that

@.L�/D
˚
.˛; s/ 2 L� � k� WN.˛/D sp

	
:

By definition @.L�/D f.˛p; N.˛// W ˛ 2 L�g, so clearly

@.L�/�
˚
.˛; s/ 2 L� � k� WN.˛/D sp

	
:

For the other inclusion, suppose .a; s/ 2 L� � k� is such that N.˛/D sp. Then
for any p-th root ˇ 2 L� of ˛ we have N.ˇ/p D sp. Hence N.ˇ/ D �s for
some � 2 �p.k/. Since h.x/ is p-th-power-free, the weighted norm map N W
�p.L/!�p.k/ is surjective. Hence there must exist �02�p.L/ such that �0ˇ2L�

satisfies @ˇ D ..�0ˇ/p; N.�0ˇ//D .˛; s/. This establishes the claim.
For i D 1; 2, let pri denote the projection of M 'L�k onto the i -th factor. For

every point P D .x0; y0/ 2X we have

cN.pr1 ıf .P //D c
Y
!2�

.x0� x.!//
n! D ch.x0/D y

p
0 D pr2.f .P //

p;

where n! denotes the multiplicity of ! as a root of h.x/. So for any good divisor D
of degree r we have crN.pr1 ıf .D// D pr2.f .D//

p, and, in light of the claim
above, we have

f .D/@.L�/D
˚
.˛; s/ 2 L� � k� W cr �N.˛/D sp

	
:

In particular, the coset f .D/@.L�/ depends only on the degree of D. The same is
then true of its Galois-invariant subset. The lemma now follows easily. �

Corollary 4.3. If H 1
k
D∅, then Pic1.X/D∅.

Proof. The image of f W Picr.X/!M�=�.k�/@.L�/ is contained in H r
k

. �
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4B. The algebraic Selmer set. Over a global field one can combine the informa-
tion from the various local versions of the map f to obtain a finite subset of H r

k

which contains the image of Picr.X/.

Definition 4.4. For a global field k with completions kv , define algebraic �-Selmer
sets:

Sel�alg.J=k/D
˚
ı 2H 0

k W for all primes v, resv.ı/ 2 f .Pic0.Xkv
//
	
;

Sel�alg.X=k/D
˚
ı 2H 1

k W for all primes v, resv.ı/ 2 f .X.kv//
	
;

Sel�alg.X=k/D
˚
ı 2H 1

k W for all primes v, resv.ı/ 2 f .Pic1.Xkv
//
	
:

Recall that the projection pr1 WM ' L� k! L induces a map

pr1 WM
�=�.k�/@.L�/! L�=k�L�p:

The fake �-Selmer group considered in [13] is equal to pr1.Sel�alg.J=k//. The
unfaked �-Selmer group considered in [21] is equal to Sel�alg.J=k/. From [21,
Theorem 5.1] we see that if X has divisors of degree 1 everywhere locally, then we
can identify Sel�alg.J=k/ with the �-Selmer group of J . In particular, Sel�alg.J=k/

is finite. If the set Sel�alg.X=k/ is nonempty, it is a coset of Sel�alg.J=k/ inside
M�=�.k�/@.L�/. This implies that Sel�alg.X=k/ is also finite. If, in addition,
ı 2 Sel�alg.X=k/ ¤ ∅, then Sel�alg.X=k/ D ı � Sel�alg.J=k/, and, in particular,
Sel�alg.X=k/�Sel�alg.X=k/. The set pr1

�
Sel�alg.X=k/

�
is equal to the fake �-Selmer

set considered in [5; 12] where it is shown to be a quotient of the �-Selmer set of X
(see Definition 5.1). As we shall see in Corollary 5.5, Sel�alg.X=k/ is in one-to-one
correspondence with �-Selmer set of X .

One motivation for considering this set is that it can explain the failure of the
Hasse principle for X . Similarly, one can easily deduce the implication�

Sel�alg.X=k/D∅
�
H)

�
Pic1.X/D∅

�
:

When X has points everywhere locally we can say even more.

Theorem 4.5. Suppose k is a global field and X is everywhere locally solvable.
Then Sel�alg.X=k/ is nonempty if and only if the torsor X is divisible by � in X.J=k/.

In light of Proposition 2.3, to prove the theorem it will suffice to show that
when X is everywhere locally solvable Sel�.X=k/ and Sel�alg.X=k/ are in one-to-
one correspondence. This will be accomplished with Proposition 6.2 below.

Corollary 4.6. Suppose k is a global field and X is everywhere locally solvable. If
Sel�alg.X=k/ is empty, then dimFp

X.J=k/Œ���2. If in addition dimFp
X.J=k/Œ���2,

then X.J=k/.p/' Z=p�Z=p.
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Proof. Under the assumptions the theorem implies that X represents a nontrivial
class in the finite abelian groupGDX.J=k/Œ��

ı
�X.J=k/Œ�2�. Under the canon-

ical identification of J with its dual, � is self dual (up to a unit). It then follows
from Lemma 2.4 and [14, Corollary 12] that the Cassels-Tate pairing induces a
nondegenerate alternating pairing on G. Hence the order of G is a positive even
power of p. This establishes the first statement. For the second, note that the
assumptions imply that �X.J=k/Œ�2�D 0, and use that �p�1 D p up to a unit.

�

Remark. To showG has square order it is enough to assume that p is odd or thatX
has a kv-rational divisor of degree 1 for each prime v. We use the assumption thatX
is everywhere locally solvable to ensure that X represents a nontrivial element
of G. Indeed this assumption is used in our proof of Theorem 4.5 when we apply
Lemma 6.1 in the proof of Proposition 6.2. While it may be possible to relax this
hypothesis, some assumption on the existence of kv-rational divisors of degree 1
is required. For the curve X W y2 D 3x6C 3, one can show that Pic1.XQ2

/D ∅,
while X.Q/¤∅. So the algebraic Selmer set is empty, but X 2 2X.J=Q/.

Remark. It is not generally true that X.J=k/Œ�� has square order. Well known
examples with p D 2 are given in [13] and are necessarily explained by the fact
that X fails to have a kv-rational divisor of degree 1 at an odd number of primes.
An example with p D 3 where X has a rational point is given in [8].

4C. Computing the algebraic Selmer set. Before carrying on with the proof of
Theorem 4.5 we briefly discuss how Sel�alg.X=k/ can be computed in practice. For
an extension K=k set L.K/ D .L ˝k K/

�=K�.L ˝k K/
�p, and use resK to

denote the canonical map L.k/! L.K/. The weighted norm N W L! k induces
a map N W L.k/! k�=k�p. If k is a local field, an element of L.k/ is said to
be unramified if its image under resku is trivial, where ku denotes the maximal
unramified extension of k. If k is a global field, an element ı 2 L.k/ is said to be
unramified at a prime v of k if reskv

.ı/ is unramified.
Now suppose k is a global field and let S denote the set of primes of k consisting

of all primes of bad reduction, all nonarchimedean primes dividing cp and all
archimedean primes.1 Let L.k/S denote the subgroup of L.k/ consisting of ele-
ments which are unramified at all primes outside of S . This is a finite group which
can be computed from the S -unit group and class group of each of the constituent
fields of L (see Propositions 12.5 and 12.6, Corollary 12.7, and Proposition 12.8
of [13]). For an element a 2 k�, let L.k/S;a denote the subset of L.k/S consisting
of elements ˛ such that aN.˛/ 2 k�p.

1 Actually, one can get away with using a smaller set of primes. Compare with [20, Corollary 4.7
and Proposition 5.12], [5, Lemma 4.3], and [12, Lemma 2.6].
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Computable descriptions of pr1.Sel�alg.J=k// and pr1.Sel�alg.X=k// are given in
[13, Theorem 13.2], [5, Section 6] and [12, Corollary 3.12]. They are the subsets
of L.k/S;1 and L.k/S; c cut out by certain local conditions. The former is the
subgroup of elements which restrict into pr1 ıf .Pic0.Xkv

// for all v 2 S while the
latter is the subset which restricts into pr1 ıf .X.kv// for all primes with norm up
to some explicit bound. For explicit descriptions of how to compute these local
images, see [5; 12; 20].

Proposition 4.7. Suppose that Dv 2X.kv/ for each v 2 S . Then

pr1
�
Sel�alg.X=k/

�
D
˚
ı 2 L.k/S; c W reskv

.ı/ 2 pr1.f .Dv// � pr1
�
f .Pic0.Xkv

//
�

for all v 2 S
	
:

Proof. This follows from the descriptions of pr1.Sel�alg.J=k// and pr1.Sel�alg.X=k//

above and the fact that pr1 ıf is a homomorphism. �
Remark. This shows that while doing a �-descent on J — that is, computing
pr1.Sel�alg.J=k//— one can determine whether Sel�alg.X=k/ is empty or not with
virtually no extra effort.

5. �-coverings of X

Our proof of Theorem 4.5 will involve relating Sel�alg.X=k/ and Sel�.X=k/. To do
this we first relate Sel�alg.X=k/ to a certain set of coverings of X which we now
define.

Definition 5.1. A �-covering of X is a covering Y ! X which arises as the
pullback of some �-covering Y! X along the canonical map X ! X sending
a point P to the class of the divisor ŒP �. We use Cov�.X=k/ to denote the set of
k-isomorphism classes of �-coverings of X . If k is a global field, the �-Selmer
set of X is defined to be the subset Sel�.X=k/� Cov�.X=k/ consisting of those
coverings that are everywhere locally solvable.

It follows that any �-covering of X is an X-torsor under J Œ�� and that all �-
coverings of X are twists of one another. Hence Cov�.X=k/ is also a principal
homogeneous space for H 1.k; J Œ��/. The action of twisting is compatible with
base change, so the obvious map Cov�.X=k/! Cov�.X=k/ is an affine isomor-
phism.

Our next goal is to relate H 1
k

with a certain subset of Cov�.X=k/ and use
this to show that Sel�alg.X=k/ and Sel�.X=k/ are in one-to-one correspondence.
While we work with Sel�alg.X=k/ rather than its image under pr1, this result was
essentially established in [5; 12]. The only new ingredient here is to clarify the
affine structure of these sets. This interpretation is, however, crucial to our proof
of Theorem 4.5.
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We have an exact sequence

1 // �p // JmŒ��
q // J Œ�� // 0; (5-1)

where Jm is the generalized Jacobian associated to the modulus m 2 Div.X/ (see
[13, Section 2] or [19, Chapter 5]). Applying Galois cohomology gives an exact
sequence

H 1.k; �p/ // H 1.k; JmŒ��/
// H 1.k; J Œ��/

‡ // H 2.k; �p/: (5-2)

The description of JmŒ�� in [13, Section 6] identifies JmŒ�� with the kernel of
@ W L�!M�. This allows us to interpret the cocycle in the following proposition
as taking values in J Œ��.

Proposition 5.2. There is an isomorphism H 0
k
' ker‡ which sends the class of

@.˛/ 2 @.L�/gk to the class of the 1-cocycle � 7! q.�.˛/=˛/ in H 1.k; J Œ��/.

Proof. This can be found in [21] (see Proposition 3.1 and Remark 4.3). �

Definition 5.3. Define

Cov�0 .X=k/D
�
.Y; �/ 2 Cov�.X=k/ W �

�Œ!0� is linearly equivalent
to a k-rational divisor

�
:

The pullbacks of the ramification points are all linearly equivalent, so ��Œ!0�
represents a k-rational divisor class. If k is a global field and Y is everywhere
locally solvable, then every k-rational divisor class contains a k-rational divisor.
Thus we see that Sel�.X=k/� Cov�0 .X=k/.

Proposition 5.4. The action of H 1.k; J Œ��/ on Cov�.X=k/ restricts to a simply
transitive action of ker.‡/ ' H 0

k
on Cov�0 .X=k/. The function f induces an

affine isomorphism
f W Cov�0 .X=k/!H 1

k

with the property that for any .Y; �/ 2 Cov�0 .X=k/ and any extension K=k, we
have

f .�.Q//D f..Y; �// inH 1
K

for every point Q 2 Y.K/.

Corollary 5.5. Suppose k is a global field. Then f restricts to give a bijection
f W Sel�.X=k/! Sel�alg.X=k/.

Proof of Proposition 5.4. Let .Y; �/ 2 Cov�0 .X=k/. The complete linear system
associated to ��Œ!0� gives an embedding in PN (for some N ) with the property
that for ! 2�, the divisor ��Œ!� is a hyperplane section defined by the vanishing
of some linear form l! . Recall that Œw� is the map .! 7! Œ!�/2MapK.�;Div.X

k
//.
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These linear forms l! may be chosen so as to give a linear form l with coefficients
in L defining the gk-equivariant family of divisors�

��Œw� W ! 7! ��Œ!�
�
2MapK.�;Div.Y

k
//:

Since the divisor of f is @Œw�� �.m/ 2Mapk.�
0;Div.X

k
//, we see that there is

some � 2M� such that

��f D�
@.l/

�.z ı�/
2Mapk.�

0; �.Y
k
/�/:

Define f..Y; �// D �. A different choice of model for Y or a different choice
for the linear form l would serve to modify � by an element of �.k�/@.L�/. So
the class of � in H 1

k
is well defined. For any point Q 2 Y.K/ not lying above

a Weierstrass point or some point at above1 on X , the defining property stated
in the proposition is immediate. For the finitely many remaining points the result
follows by application of the moving lemma.

Given .ı; s/ 2 L� � k� representing an element of H 1
k

one can construct a
�-covering of X as follows. Let P� be the projective space with coordinates
parametrized by �. Define a curve Yı; s � P� �X by declaring that�

.u!/!2�; .x W y W z/
�
2 Yı; s

if and only if there exists some a 2 k� such that

ı.!/up! D a.x� x.!/z/ for all ! 2�; and s
Y
!

un!
! D a

dy: (5-3)

Recall that ı 2 L can be interpreted as a map ı W�! k and that n! denotes the
weight associated to ! in the weighted norm map N W L! k. Projection onto
the second factor gives Yı; s the structure of an X-torsor under J Œ��. It is easy
to see that the isomorphism class of Yı ! X depends only on the class of .ı; s/
in H 1

k
. Suppose .Y; �/ 2 Cov�0 .X=k/ and f.Y; �/D .�; t/. Then (with notation as

above) we can find a projective embedding Y ! PN and linear forms l! which cut
out the divisors ��Œ!�. The rational map PN ! P� given by .l!/!2� gives an
isomorphism (of X -schemes) Y ! Y�; t . This shows that the Yı; s are �-coverings.
It is evident from the construction that the pullback of any ramification point ! 2X
is the hyperplane section of Yı; s cut out by u! D 0. So this covering represents an
element of Cov�0 .X=k/. Moreover, it is clear that the image of .Yı ; �ı; s/ under f

is represented by .ı; s/. This shows that f is surjective.
Now we show that the map is affine with respect to the action of

H 0
k ' .@.L

�//gk=�.k�/@.L�/:
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For this suppose ˛ 2 L� with @˛ D .˛p; N.˛// 2 .@.L�//gk . Multiplication by ˛
induces a k-automorphism of P�. It is evident from (5-3) that this induces an
isomorphism of X-schemes ˛ W .Y˛pı;N.˛/s; �˛pı;N.˛/s/ �! .Yı; s; �ı; s/. The
cocycle � 2H 1.k; J Œ��/ corresponding to this twist sends � 2 gk to

˛� ı˛�1 2 Aut..Yı ; �ı; s//' J Œ��:

Under the isomorphism .@.L�//gk=k�@.L�/ ' ker.‡/ � H 1.k; JmŒ��/ from
Proposition 5.2, the class of @˛ corresponds to the class of the cocycle � that sends
� 2 gk to q.˛�=˛/2 J Œ��, where q W JmŒ��! J Œ�� is the quotient map in the exact
sequence (5-1). It is then clear that � and � give the same class in H 1.k; J Œ��/.
This proves that f is affine. �

6. A descent map for coverings of X

We consider the subset Cov�good.X=k/ � Cov�.X=k/ consisting of �-coverings
of X such that the corresponding �-covering of X lies in Cov�0 .X=k/, and we
define a map

F W Cov�good.X=k/! Cov�0 .X=k/
f
�!H 1

k :

Proposition 5.4 implies that F is an affine isomorphism.

Lemma 6.1. Suppose X.k/¤∅.

(1) If .Y; �/ 2 Cov�.X=k/ and Y.k/¤∅, then .Y; �/ 2 Cov�good.X=k/.

(2) If .Y; �/ 2 Cov�good.X=k/ and Q 2 Y.K/ for some extension K=k, then

f .�.Q//D F..Y; �// inH 1
K :

Proof. By assumption there is some point R 2 X.k/ ¤ ∅. Then there exists
.Y;�/2Cov�0 .X=k/ andR02Y.k/ such that�.R0/DR. Let .Y; z�/2Cov�good.X=k/

be the corresponding covering and iY W Y ! Y the base change of iX W X ! X.
Clearly iY .R0/ 2 Y.k/¤∅.

The set B of isomorphism classes of �-coverings of X which contain a k-rational
point is a principal homogeneous space for the image of J.k/ under the connecting
homomorphism in the Kummer sequence (2-2). This image is contained in ker.‡/,
so B � .Y; �/ � ker.‡/D Cov�good.X=k/. This proves statement (1).

For statement (2), consider the map d W Pic1.X/! Cov�.X=k/ sending a point
P 2 Pic1.X/D X.k/ to the unique covering to which P lifts. This map is affine,
since f W Pic0.X/ ! H 0

k
' ker.‡/ � H 1.k; J Œ��/ can be identified with the

connecting homomorphism in the Kummer sequence [21, Theorem 1.1]. Moreover
its image lands in Cov�good.X=k/ by statement (1).
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It suffices to prove the statement for K D k, which amounts to showing that
f .D/ D F.d.D// for every D 2 Pic1.X/. The point iY .R0/ 2 Y.k/ is a lift of
ŒR� 2 X.k/, so YD d.ŒR�/. From the definition of F and the defining property of f

we have
F..Y; z�//D f..Y; �//D f .Œ�.R0/�/D f .ŒR�/ 2H 1

k :

Hence f .ŒR�/D F.d.ŒR�//.
Now suppose D 2 Pic1.X/. Since d is affine, d.D/ is the twist of d.ŒR�/ by

the cocycle f .D� ŒR�/ 2H 0
k
' ker.‡/. Since F is affine, we have

F.d.D//D F.d ŒR�/ �f .D� ŒR�/D f .D/F.d ŒR�/=f .ŒR�/D f .D/:

This completes the proof. �

We have the following analogue of Corollary 5.5, which, with Proposition 2.3,
implies Theorem 4.5.

Proposition 6.2. Suppose k is a global field and X is everywhere locally solvable.
Then F restricts to an affine isomorphism Sel�.X=k/! Sel�alg.X=k/.

Proof. First off, let us show that Sel�.X=k/ � Cov�good.X=k/. Suppose that
.Y; �/ 2 Sel�.X=k/ and that X is everywhere locally solvable. Consider the cov-
ering z� W Y !X obtained by pulling back. We want to show that the pullback to Y
of some ramification point on X is linearly equivalent to a k-rational divisor. The
obstruction to a k-rational divisor class being represented by a k-rational divisor
is an element of the Brauer group of k. Since the Brauer group of a global field
satisfies the local-global principle it suffices to show that .Y; z�/ gives a class in
Cov�0 .X=kv/ for every prime v. This follows from Lemma 6.1(1) since we have
assumed both X and Y are everywhere locally solvable.

Now let us show that F maps the �-Selmer set to the algebraic �-Selmer set.
Let .Y; �/ 2 Sel�.X=k/ and set ı D F..Y; �//. For every completion kv of k,
X.kv/¤ ∅, so we may apply Lemma 6.1(2) over kv. This shows that resv.ı/ 2
f .Pic1.Xkv

// for every v. Consequently, ı lies in the algebraic �-Selmer set.
It now suffices to show that the map in the statement is surjective, as it is the

restriction of an affine isomorphism. For this let ı be an element in the algebraic �-
Selmer set. Then ı 2H 1

k
, so ı D F..Y; �// for some .Y; �/ 2 Cov�good.X=k/. We

need to show that Y is everywhere locally solvable. For each prime v we can find
Pv 2Pic1.Xkv

/�X.kv/ such that resv.ı/Df .Pv/. The point Pv lifts to a kv-point
on some �-covering .Yv; �v/ defined over kv . Moreover .Yv; �v/2Cov�good.X=kv/

by Lemma 6.1(1) and F..Yv; �v//D resv.ı/ by Lemma 6.1(2). Since F is injective
we have that Y˝ kv and Yv are isomorphic, for each prime v. This implies that Y

is everywhere locally solvable as required. �
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7. Examples

We have implemented the algorithm described in Section 4C in the computer al-
gebra system Magma [3] for degree p cyclic covers of P1 defined over the p-th
cyclotomic field. As a test of the algorithm (and the correctness of the imple-
mentation) we performed computations for a large sample of hyperelliptic curves.
When at all possible we checked our results for consistency with rank bounds
obtained by other means (for example, different implementations of descent on
elliptic curves and Jacobians of hyperelliptic curves, points of small height on the
Jacobian, information obtained assuming standard conjectures, and so on). Some
of the resulting data is presented at the end of this section. In addition to this we
offer the following examples.

Example 7.1. The two hyperelliptic curves

X1 W y
2
C .x3C xC 1/y D x6C 5x5C 12x4C 12x3C 6x2� 3x� 4;

X2 W y
2
C .x3C xC 1/y D�2x6C 7x5� 2x4� 19x3C 2x2C 18xC 7

over Q have Mordell-Weil rank 0, and the 2-primary parts of their Shafarevich-Tate
groups are isomorphic to Z=2�Z=2.

Proof. Let Ji denote the Jacobian of Xi and Xi denote Pic1.Xi /. The Xi are
everywhere locally solvable double covers of P1. Using Magma we computed that
Sel2.Ji=Q/ has F2-dimension 2 and that the 2-Selmer set of Pic1.Xi / is empty for
i D 1; 2. The result then follows from Theorem 4.5 and its corollary. �

Remark. These curves were taken from [9] (where they were labeled C125;B and
C133;A), where it is shown that the order of the 2-torsion subgroup of X is equal to
the order of X predicted by the Birch and Swinnerton-Dyer conjectural formula
for several modular Jacobian surfaces. In particular, it is proved in [9] that the
formula holds for those Jacobians considered if and only if 2XD 0. For the curves
considered one can determine the rank (unconditionally) by analytic means, so a
2-descent on the Jacobian determines XŒ2�, but it only determines X.2/ when
dimF2

XŒ2� � 1. Apart from the two curves above, all curves considered in [9]
had dimF2

XŒ2� � 1. So from the example above one can now conclude for the
curves considered in [9] that the conjectural formula holds if and only if X has no
elements of odd order.

Example 7.2. Let X=Q be the genus 4 cyclic cover of P1 with affine equation

X W y3 D 3.x6C x4C 4x3C 2x2C 4xC 3/:

Then X is everywhere locally solvable, yet has no Q-rational divisors of any degree
prime to 3. Moreover, the Jacobian J of X has Mordell-Weil rank 1 and the 3-
primary part of its Shafarevich-Tate group is isomorphic to Z=3�Z=3.
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Proof. We first note that X is everywhere locally solvable. In order to apply the
results of this paper, we work over the field k D Q.�3/ obtained by adjoining a
primitive cube root of unity �3. To prove the result we do �-descents on Jk and
Pic1.Xk/, for � D 1� �3. Using Magma we computed that the �-Selmer group
of Jk has F3-dimension 3. From the exact sequence (2-2) it follows that

dimF3

J.k/

�J.k/
C dimF3

X.J=k/Œ��D 3:

We then computed Sel�alg.Pic1.Xk/=k/ and found it to be empty. Using Corollary 4.6
this lowers the upper bound for the dimension of J.k/=�J.k/ to 1.

The divisor on P1 defined by x3 � x2 C 4x C 4 D 0 lifts to a degree 3 Q-
rational divisor D on X . One can check that the image of the class of D �m

under f W Pic0.Xk/ ! H 0
k

is nontrivial. So we find that J.k/=�J.k/ has di-
mension 1. This gives an upper bound of 2 for the dimension of X.J=k/Œ��, so
by Corollary 4.6, X.J=k/.3/ 'X.J=k/Œ�� ' Z=3 � Z=3. On the other hand,
Pic1.X/ represents an element of X.J=Q/Œ3� which is not divisible by 3 (since it
is not divisible by 3 over k). On the other hand the dimension of X.J=Q/Œ3� is
even [14], so it is at least 2. Now the map X.J=Q/.3/!X.J=k/.3/ obtained
by extension of scalars is injective since Œk WQ�D 2 is prime to 3, so we must have
X.J=Q/.3/' Z=3�Z=3.

It remains to compute the rank. The Galois group acts on the ramification points
as the full symmetric group, from which it follows that there is no nontrivial k-
rational �-torsion in J.k/. By [17, Corollary 3.7 and Proposition 3.8] it follows
that

rank.J.k//D Œk WQ� �
�

dim
J.k/

�J.k/
� dimJ.k/Œ��

�
D 2; and

rank.J.Q//D
rank.J.k//
Œk WQ�

D 1:

In fact, D�m represents a point of infinite order in J.Q/. �

Remark. From a �-descent on J alone, one is only able to conclude that 1 �
dimF3

J.k/=�J.k/� 3, giving 1� rank.J.Q//� 3.

Example 7.3 (Data for hyperelliptic curves). For g 2 f2; 3; 4g we tested our algo-
rithm on various samples of hyperelliptic curves of genus g. For varying values
of N , we randomly chose 10,000 separable polynomials h.x/D

P2gC2
iD1 hix

i of
degree at least 2gC 1 and with integer coefficients hi bounded in absolute value
by N . For each of the genus g curves X defined by y2 D h.x/, we computed
Sel2alg.J=Q/ and Sel2alg.X=Q/, assuming the generalized Riemann hypothesis for
reasons of efficiency. If the latter set was empty, we noted whether or not this
was because Pic1.XQp

/ was empty for some prime p � 1. The resulting data
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g N Sel2.X=Q/D∅ Rank Rank� Improvement Improvement�

2 5 2146 7873 9819 29% 84%
981 848 977

2 10 3088 5315 9346 22% 73%
1778 1295 1752

2 20 3787 3411 8392 17% 59%
2420 1350 2317

2 50 4297 2156 6955 15% 46%
2916 1350 2637

3 5 2101 2540 7573 8% 32%
1228 645 1164

3 10 2801 1477 5840 8% 29%
1857 786 1619

4 5 1991 1717 6031 6% 22%
1278 484 1127

4 10 2687 1296 5145 8% 25%
1952 726 1644

Table 1. Data for hyperelliptic curves. For reasons of efficiency, all computa-
tions summarized in this table were made under the assumption of the gener-
alized Riemann hypothesis; furthermore, in the columns marked by asterisks,
we also assumed that Xdiv D 0. The first two columns indicate the genus g
and the coefficient height bound N of the examples considered in a given row.
The third column counts the number of curves (out of 10,000 randomly chosen
hyperelliptic curves of the given genus and coefficient height bound) for which
Sel2.X=Q/ D ∅; the bold figures give the number of times the explanation
was not simply that Pic1.XQp

/ is empty for some prime p � 1. The “Rank”
columns give the number of curves for which the rank could be computed (un-
der the assumptions indicated), with the numbers in bold giving the number of
curves for which information from our algorithm was needed to complete the
computation. The final two columns give the “improvement factor” in the rank
computations: of the sample curves whose ranks could not be determined by ear-
lier methods, the fraction whose ranks could be determined using our algorithm
(under the assumptions indicated).

is summarized in Table 1. The boldfaced entries correspond to curves where our
algorithm provided information that would not otherwise have been obtained.

It is also interesting to consider how often the combined information yields a
sharp upper bound for the Mordell-Weil rank. This will be the case if (i) X is either
trivial or not divisible by 2 in X.J=Q/; (ii) the number of primes where X fails
to have divisors of degree 1 locally is at most one (respectively, not even and posi-
tive when the genus is even); and (iii) X.J=Q/Œ2� contains at most two elements
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linearly independent from X. The assumptions (i) and (ii) imply, respectively, that
in order for X.Q/ to be empty it is necessary and sufficient that Sel2alg.X=Q/ be
empty, while (iii) guarantees that determining whether X.Q/ is empty is sufficient
to deduce a sharp bound.

With this in mind we used a point search to compute a lower bound for the
rank for each curve, both with and without assuming that the divisible subgroup
of X.J=Q/ is trivial (the assumption allows us to determine the parity of the
rank). When this matched the upper bound it means we computed the rank, and
in such cases we counted the number of curves where the additional information
provided by Sel2alg.X=Q/ was needed. We then computed the proportion of curves
for which the rank could be determined with the additional information provided by
our algorithm among those for which the rank could not be determined by descent
on the Jacobian alone.

For example, in the sample of genus 2 curves with N D 10 the method yielded
new information for about 17% of the curves, which (assuming XdivD 0) increased
our success rate from about 76% to about 93%, handling about 73% of the curves
left previously undecided by the descent on the Jacobian.
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Computing equations of curves with many points

Virgile Ducet and Claus Fieker

We explain how to compute the equations of the abelian coverings of any curve
defined over a finite field. Then we describe an algorithm which computes curves
with many rational points with respect to their genus. The implementation of the
algorithm provides seven new records over F2.

1. Introduction

The motivation for finding curves defined over a finite field Fq with many rational
points compared to their genus comes from the theory of error-correcting codes.
Let C be a .n; k; d/-code, that is, a subvector space of Fnq of dimension k in which
every nonzero vector has at least d nonzero coordinates in a fixed basis. For given
parameters n and k, one wishes to find codes with the largest possible correction
capacity .d � 1/=2.

In a 1977 paper, Goppa [7] proposed a method for constructing codes which
is based on algebraic geometry. Let X be a (nonsingular projective irreducible)
curve X defined over Fq . Let D1 D P1 C � � � C Pn and D2 be two divisors
over X with disjoint support such that the points Pi are rational and such that
2g�2 < degD2 < n. Let �X .D1�D2/ be the space of differentials ! on X such
that div.!/�D2�D1, and for every differential ! let resPi

.!/ denote the residue
of ! at Pi . The Goppa code C.X;D1;D2/ associated to this data is the image of
the Fq-linear map �X .D1�D2/! Fnq defined by ! 7! .resP1

.!/; : : : ; resPn
.!//.

For these codes, the Riemann-Roch theorem shows that k D g� 1C n� degD2
and that

k

n
C
d

n
� 1C

1

n
�
g

n
:

By construction, n is bounded by the number of rational points N.X/ of X , and
from the above inequality, for given n and k, the smaller the genus, the more

MSC2010: primary 11R37; secondary 14H45.
Keywords: explicit class field theory, Kummer theory, Witt vectors, curves with many points,

equations of abelian coverings.

317



318 VIRGILE DUCET AND CLAUS FIEKER

efficient the code. So one would like to find, for every n, the smallest genus g such
that there exists a curve X=Fq with at least n rational points. The moral of all this
is that one must look for curves with many rational points compared to their genus,
for every genus.

The idea of using class field theory to construct abelian coverings with many
rational points over a finite field comes from Serre (see [22]). His Harvard course
notes [23] remain a very useful reference with a lot of material. Niederreiter and
Xing continued the search for good curves and devoted many papers to finding and
exploiting new techniques; in particular, they make use of the explicit description
of ray class fields provided by the theory of Drinfel’d modules. Their book [18]
includes all their work on the subject and much more. In a series of paper in the
late 90s, Lauter [12; 13; 14] extended Serre’s method and obtained new records
by studying the degrees of certain abelian extensions of the rational function field
ramified at a single rational place and totally split at the others. She also interpreted
several known families of curves as particular class field theoretical constructions.
Auer (see his Ph.D. thesis [1] or the ANTS paper [2] for a summary of the results)
extended Lauter’s work and described an algorithm to compute the degree of the
maximal abelian extension of any function field ramified at most one place and with
prescribed splitting behavior. This allowed him to find many new curves improving
the known records. We conclude this historical survey by noting that only in a few
cases can one deduce the equation of the curve from its theoretical construction;
in particular, the so-called “explicit” description via Drinfel’d modules is very dif-
ficult to use.

In the present article, we use explicit class field theory to compute the equations
of the abelian coverings of a curve defined over a finite field, and we apply this
method to the problem of finding curves with the maximum possible number of
rational points compared to their genus. The paper is divided as follows. In the
first section we explain the link between ray class groups and abelian coverings.
Then we describe how to use explicit class field theory to compute the equation
of an abelian covering of a curve from knowledge of the corresponding ray class
group. In Section 4 we present an algorithm to find good curves, and we give an
overview of our results in Section 5.

2. Ray class groups

We first recall the main aspects of class field theory in the classical language of ray
class groups. The reader is referred to [10], [15], or [25] for the proofs.

Let K be a global function field defined over a finite field Fq; K should be
thought of as the function field of a curve X defined over Fq . The set of places
of K is denoted by PlK . Let m be a modulus on K, that is, an effective divisor
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over K. Let Divm be the group of divisors of K whose support is disjoint from
that of m, and let Pm;1 be the subgroup of divisors of functions “congruent to 1
modulo m”:

Pm;1 D fdiv.f / W f 2K� and vP .f � 1/� vP .m/ for all P 2 Supp.m/g:

A subgroup H of Divm of finite index is called a congruence subgroup modulo m

if H contains Pm;1.
By the Artin reciprocity law, for every finite abelian extension L of K there

exist a modulus m and a congruence subgroup Hm.L/ modulo m such that the
Artin map provides an isomorphism of groups

Gal.L=K/Š Divm =Hm.L/:

Such a m is called an admissible modulus for L=K; it is not unique (whereas for a
given m, Hm.L/ is), but there exists an admissible modulus fL=K for L=K, called
the conductor of L=K, which is smaller than the others in the sense that every
admissible modulus m for L=K satisfies fL=K � m (as divisors). An important
property of the conductor of an abelian extension is that its support consists of
exactly those places that are ramified.

The existence theorem of class field theory guarantees, for every modulus m

and every congruence subgroup Hm modulo m, the existence of a unique global
function field Lm.Hm/, possibly defined over a constant field extension, that is
a finite abelian extension of K such that Gal.Lm.Hm/=K/ Š Divm =Hm. The
field Lm.Hm/ is called the class field of Hm. Note that by definition of the con-
ductor, we have fLm.Hm/=K �m.

Instead of working with congruence subgroups modulo a certain m, it is some-
times more convenient to consider subgroups of the ray class group modulo m,
which is the quotient group Picm D Divm =Pm;1. To each congruence subgroup H
modulo m, one can associate the subgroup H D H=Pm;1 of Picm of finite in-
dex. This correspondence is one-to-one, and furthermore we have an isomorphism
Picm =H Š Divm =H . We can thus restate what has been said above as follows:

Theorem 1 (Main theorem of class field theory). Let m be a modulus. There is
a one-to-one inclusion reversing correspondence between subgroups H of Picm

of finite index and finite abelian extensions L of K with conductor less than m.
Furthermore, the Artin map provides an isomorphism Picm =H Š Gal.L=K/.

3. Computing the equation of an abelian covering

Throughout this section, K is a function field defined over a finite field Fq . We
fix a modulus m and a congruence subgroup H modulo m, and we explain how
to compute the class field L of H . The similar approach for number fields has
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been introduced by the second author in [6], where one will find more algorithmic
details; the computations of groups of units and ray class groups are explained
in [8].

3.1. Reduction to the cyclic case. First, we show that we can reduce the prob-
lem to the case of a cyclic extension of prime power degree. For this, we use
the fundamental theorem of abelian groups to decompose H D Divm =H as a
finite product of cyclic groups H D

Qd
iD1H i , where each H i is of the form

Divm =Hi for a subgroup H � Hi � Divm such that H i Š Z=p
mi

i Z for some
prime number pi and some positive integer mi . For every i , let Li be the class
field of Hi , so Gal.Li=K/ŠH i , and let L0 be the composite field L1L2 � � �Ld .
By general Galois theory, Gal.L0=K/ is isomorphic to the subgroup of elements
of
Qd
iD1 Gal.Li=K/ which agree on L1 \ � � � \ Ld . The functoriality of the

Artin map implies that the previous condition is always true, so Gal.L0=K/ ŠQd
iD1 Gal.Li=K/. Thus Gal.L=K/ and Gal.L0=K/ are equal, and by the unique-

ness property of the class field, we conclude that LD
Qd
iD1Li . Also, note that

if we have equations for two abelian extensions L1=K and L2=K, then there are
algorithms based on the theory of resultants to compute an equation of L1L2=K.

3.2. Cyclic case: l ¤ p. Now suppose that H is cyclic of prime power degree
n D lm for a prime l different from p and an integer m � 1. As in the proof of
the existence theorem (see [10, Chapter XI, §2]), the idea consists of reducing to
the case when K contains the n-th roots of unity, and then to use explicit Kummer
theory. So let K 0 DK.�n/ and set L0 D LK 0: We will “translate” the problem to
the extension L0=K 0. (Note that the extension K 0=K is a constant field extension,
hence it is unramified.)

We will refer to Figure 1; the solid lines in the figure connect fields that are actu-
ally constructed during the execution of the algorithm, while dotted lines connect
fields that are only implicitly used.

SinceL=K is cyclic of degree n, the fieldL0 WDL.�n/DK 0L is a Kummer exten-
sion ofK 0, and hence there exists a nonzero element ˛ 2K 0 such thatL0DK 0. n

p
˛/.

Since L0=K has to be unramified outside places in the modulus m of L=K, there
exists a set S of places of K 0, depending only on m and K 0, such that ˛ can be
chosen as an element of the S-units US , that is, as an element that has no poles
outside S ; in particular, L0=K 0 is unramified1 outside S . Let m0 be an admissible
modulus for L0=K 0, and assume without loss of generality that m0 is supported
on S . By the Dirichlet unit theorem, we have US D h�1; : : : ; �si for independent
elements �i (1 � i � s � 1) and a torsion unit �s . Set M WD K 0. n

p
US /, so that

Gal.M=K 0/D .Z=nZ/s . For any place P ofK 0 unramified inM=K 0, the Frobenius

1This is a general property of Kummer extensions, which follows from Hensel’s lemma; see for
example [17, Lemma V.3.3].
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M DK0. n
p
US /

K0. n
p
�1/ L0 D LK0 DK0. n

p
˛/ K0. n

p
�s/

L

K0 DK.�n/

K

Figure 1. Fields used implicitly in the discussion.

Divm0

. � ;M=K0/ //

NK0=K

��

Gal.M=K0/

 

zz
Divm =H

Figure 2. Definition of  .

.P;M=K 0/ at P is defined by its operation on the n
p
�i . Since M=K 0 is unramified

outside S , we see that we get a map Divm0! .Z=nZ/s defined by P 7! .ni /, where
n
p
�i 7! �

ni
n

n
p
�i and n

p
�i
N
� �

ni
n

n
p
�i mod P , where N is the cardinality of the

residue field FP of K 0 at P . In particular, N � 1 mod n because FP contains the
n-th roots of unity, and thus ni is defined by �dN=nei � �

ni
n mod P . To summarize:

The Artin map from Divm0 to .Z=nZ/s is explicit and can be computed in K 0

already!
To find L0 we need to find divisors D 2Divm0 such that .D;M=K 0/ fixes L0. By

the existence theorem, this is equivalent to D 2H 0, where H 0 is the congruence
subgroup modulo m0 whose class field is L0. By standard properties of the Artin
map, this reduces to NK0=K.D/ 2 H . We use this as summarized in Figure 2
to explicitly construct the map  : Computing .P;M=K 0/ on the one side and
NK0=K.P /CH 2 Divm =H on the other, we collect (small) places outside S until
the full group Gal.M=K 0/ can be generated. The field L0 is then obtained as the
field fixed by the kernel of  .

In order to find ˛ we apply a similar idea (see [6, §4] for details): L0=K is
abelian and the Galois group can be computed explicitly. Once the automorphisms
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of L0=K are known, we can easily establish again an explicit Artin map, now
from Divm to Gal.L0=K/, and find the subgroup fixing L as above. We note that the
conductor of L0 can be larger than the conductor of L=K, but since L0 is obtained
via a constant field extension, the ramified primes remain the same, hence the map
is well defined and surjective (but the kernel may not be a congruence subgroup
modulo m).

3.3. Cyclic case: l D p. Finally we turn to the case when L=K is cyclic of degree
n D pm, for an integer m � 1. To begin with, we recall some aspects of Artin-
Schreier-Witt theory.

Let k be an arbitrary field and let k be an algebraic closure of k. Let r be an
integer and let Wr.k/ and Wr.k/ be the rings of Witt vectors of length r with
coefficients in k and k, respectively. Then any Ę in Wr.k/ can be used to generate
an algebraic extension k. Ę/ of k in the following way: If Ę D .˛1; : : : ; ˛r/, then
we set k. Ę/D k.˛1; : : : ; ˛r/. This construction can be visualized as a tower:

kr D k. Ę/;

"

:::

"

k2 D k1.˛2/;

"

k1 D k0.˛1/;

"

k0 D k:

Suppose now that k has positive characteristic p. Let } be the Artin-Schreier-
Witt operator acting on Ę 2Wr.k/ by

}. Ę/D Ęp � Ę:

Then for Ě in Wr.k/ the equation }. Ę/ D Ě is algebraic over k, so as above
one can consider the extension k.}�1. Ě//. Actually, by explicit Artin-Schreier-
Witt theory (see [11, pp. 330–332]), every abelian extension of exponent pr of k
arises as k.}�1.�r// for some subgroup �r �Wr.k/ containing }.Wr.k//. In
particular, a cyclic extension of degree pr of k is of the form k.E
/ for some E

in }�1.k/ � Wr.k/, with Galois group generated by the automorphism E
 7!
E
 C .1; 0; : : : ; 0/ (see [21]).

So for our purposes we take r Dm, and we can assume that the cyclic extension
of degree pm of K is of the form LDK. Ey/ for some Ex 2Wm.K/ and Ey 2Wm.k/
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satisfying }. Ey/D Ex. Now we explain how to compute Ex. It is clear that the Artin-
Schreier-Witt extension does not change if one replaces Ex with ExC}.Ez/ for some Ez
in Wm.K/, so one will look for Ex as an element of Wm.K/=}.Wm.K//.

We first look at the case mD 1; hence we assume that L=K is a cyclic extension
of degree p, and write x for Ex.

Lemma 2. Let y 2 K be arbitrary. For every place P of K there exists an ele-
ment uP 2K such that either vP .yCu

p
P �uP / is negative and coprime to p, or

vP .yCu
p
P �uP /� 0.

Proof. If vP .y/ � 0 or vP .y/ is coprime to p then uP WD 0 works, so we hence-
forth assume that vP .y/ < 0 and p j vP .y/. Let y WD .y��vP .y//.P / 2 FP ,
where FP is the residue class field of K at P and � is a uniformizing element
(that is, vP .�/ D 1). Since the p-power Frobenius is surjective, we can find a
u 2 FP such that up D�y. Now let u be a lift of u in K: There exists a 2K with
vP .a/ > vP .y/ such that yCup�vP .y/ D a. Then, since vP .y/ < vP .y/=p < 0,
we have vP .y C .u�vP .y/=p/p � u�vP .y/=p/ � minfvP .a/; vP .y/=pg > vP .y/
(note that vP .u/D 0), and we can recurse. �

We also make use of the fact that the ramified places P in L=K (which appear
in the support of m) are exactly those for which there exists a uP as above such that
�P WD �vP .yCu

p
P �uP / is positive and coprime to p; furthermore, the conduc-

tor fL=K verifies vP .fL=K/D �P C1 (use [24, Proposition 3.7.8] and Proposition 4
below), so �P does not depend on y. Thus, while Lemma 2 helps us understand
the ramification in L=K, if we want to explicitly compute L we need to find a
Riemann-Roch space containing the generator x. With this in mind, we combine
Lemma 2 with the strong approximation theorem to get a global result.

Lemma 3. Let y be an element of K. For every place P of K, let uP and �P
be as above. Let S be the set of places P of K such that �P > 0, and let S 0 WD
fP 2 PlK W vP .y/ < 0g, so that S � S 0. Fix an arbitrary place P0 62 S 0, and let n0
be a positive integer such that D WD n0P0�

P
P2S 0 2P is nonspecial. Then there

exists some u such that

� vP .yCu
p �u/D��P for P 2 S ,

� vP .yCu
p �u/� 0 for P 62 S [fP0g, and

� vP0
.yCup �u/� �pn0.

Proof. By the strong approximation theorem and its proof (see [24, Theorem 1.6.5]),
there exists an element u in K such that vP .u� uP /D 1 for P 2 S 0, vP .u/ � 0
for P 62 S 0[fP0g, and vP0

.u/� �n0. We have

v WD vP .yCu
p
�u/D vP .yCu

p
P �uP C .u�uP /

p
C .uP �u//

�minfvP .yCu
p
P �uP /; pvP .u�uP /; vP .uP �u/g;
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which shows that v D��P if P 2 S , and v � 0 if P 2 S 0 nS . In the same way,

v D vP .yCu
p
P �uP C .u

p
�u/� .u

p
P �uP //

�minfvP .yCu
p
P �uP /; vP .u

p
�u/; vP .u

p
P �uP /g;

so we also have that v � 0 if P 62 S 0[fP0g, and v � �pn0 if P D P0 (note that
uP D 0 when P 62 S 0). �

Thus we have that x WD yCup �u is an element of the Riemann-Roch space

L

�
pn0P0C

P
S

�PP

�
D

�
f 2K W div.f /� �pn0P0�

P
S

�PP

�
:

We now return to our hypothesis that L=K is a cyclic extension of degree pm

for some m � 1, with primitive element Ex. Following [21], we study the vector
�P WD �vP .Ex/ WD .�vP .x1/; : : : ;�vP .xm//. By adding elements of the form
}.0; : : : ;0;x;0; : : : ;0/we can assume that there exist sets Si �Supp.m/, placesP0; i
not in Si , and positive integers n0; i such that xi is in L.pn0; iP0; iC

P
Si
�P; iP /,

where �P; i WD �vP .xi / > 0 and gcd.�P; i ; p/D 1 for P 2 Si .
Setting MP WD maxfpm�i�P; i W 1 � i � mg, we obtain vP .fL=K/ DMP C 1

from [21, p. 163]. Given that we already know a modulus m such that fL=K �m,
we immediately get �P; i � .vP .m/� 1/pi�m. If mD

P
P nPP , then we set

Di WD pn0; iP0; i C
P
Si

.nP � 1/p
i�mP:

With these notations, we see that xi is an element of L.Di /.
By induction, we assume that the xi have been computed for 1� i �m� 1 and

explain how to find xm. Set Mm WD K.}
�1.x1; : : : ; xm�1// and D WD Dm; as

remarked above, we can identify xm as an element of the Fq-vector space

LK.D/D LK.D/=}.LK.D//:

Let d be the dimension of this space over Fp . We compute an Fp-basis of LK.D/

and lift it to a set of d elements ff1; : : : ; fd g of LK.D/. Hence xm is an element
of the subvector space of LK.D/ generated by the fi , and we have

xm D
dP
iD1

aifi

for some unknown elements ai of Fp. Next, we set

M WDK.}�1..x1; : : : ; xm�1;LK.D////DMm.}
�1.0; : : : ; 0;LK.D///;

so that we have a tower K � Mm � L � M . Note that as in the Kummer
case, neither M nor Mm is actually ever constructed. We will use the explicit
action of the Frobenius automorphisms on Witt vectors of length m, so we identify
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.x1; : : : ;xm�1/with .x1; : : : ;xm�1;0/2Wm.K/ and fi with .0; : : : ;0;fi /2Wm.K/.
Let P be an unramified place of K; then the Frobenius automorphism .P;L=K/

acts on Ey via the formula

.P;L=K/. Ey/D EyC

�
Ex

P

�
(see [21]), where the last term is in Wm.Fp/Š Zp mod pm and satisfies�

Ex

P

�
D TrFq=Fp

�
ExC ExqC � � �C Ex

N.P /
q mod P

�
:

We now compute Gal.M=Mm/. We have canonical isomorphisms

Gal.M=Mm/Š

dY
iD1

Gal.Mm.0; : : : ; 0; }
�1.fi //=Mm/Š .Z=pZ/d ;

and this is made explicit via the Frobenius: Every Gal.Mm.0; : : : ;0;}
�1.fi //=Mm/

is generated by the isomorphisms .Q;Mm.0; : : : ; 0; }
�1.fi //=Mm/, where Q is

a place of Mm. Because of the canonical isomorphism

Gal.Mm.0; : : : ; 0; }
�1.fi //=Mm/Š Gal.K.}�1.fi //=K/;

the generating isomorphisms are of the form

yi 7! yi C

�
fi

P

�
;

where yi is a primitive element ofK.}�1.fi //=K and P is the place ofK belowQ.
Since the symbol f � g is additive (see [21]), we have

Gal.K.}�1.fi //=K/Š
��
fi

P

��
;

and so the isomorphism Gal.M=Mm/Š .Z=pZ/d is made explicit via the map

.Q;M=Mm/ 7!

��
f1

P

�
; : : : ;

�
fd

P

��
:

We lift the terms in f � g from Wm.Fp/ to Zp, and if we can find enough places Pi
such that the Zp-vectors ��

f1

Pi

�
; : : : ;

�
fd

Pi

��
i

form a matrix of rank d over Zp, then we are done, because by class field theory
every element of Gal.M=Mm/ is a Frobenius automorphism for some place Q.
The generator is now obtained in exactly the same way as in the previous section
for Kummer extensions — for which all that is necessary is an explicit Artin map.
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4. An algorithm to find curves with many points

We now turn to the explicit applications of the theory described in the preceding
sections, and switch between the language of curves and function fields when
necessary. Our aim here is to find curves of low genus (g � 50) defined over a
small finite field (q � 100) such that the number of rational points is the maximum
possible; the current records can be found at www.manypoints.org. So we will only
be interested in the abelian extensions L=K defined over the same finite field Fq

such that the number of rational places of the field L is greater than or equal to
the corresponding entry in the table2 (as it was in June 2011). Furthermore, with
the aid of the theory of Section 3, we will be able to find the equations of such
extensions.

Proposition 4. Let L=K be a cyclic extension of prime degree l of function fields
defined over a finite field Fq . Then the genus of L satisfies

gL D 1C l.gK � 1/C
1
2
.l � 1/ deg fL=K :

Proof. By the Riemann-Hurwitz genus formula, this comes down to showing that
the degree of the different DL=K of L=K is .l � 1/ deg fL=K . Let Q be a place
of L and let P be the place of K below Q. The extension being Galois, the inertia
degree of P relatively to Q is independent of Q, so we denote it fP . Let

ND NL=K W Div.L/! Div.K/

be the norm map defined by linearizing the formula N.Q/ D fPP . From the
general relation degQDfP degP , we note that deg N.DL=K/Ddeg DL=K . By the
conductor-discriminant formula, N.D.LK// is equal to fl�1

L=K
, so by taking degrees

we obtain the proposition. �

From Proposition 4, the genus of a cyclic extension of global function fields L=K
of prime degree is exactly determined by its conductor fL=K , or even simply by
its degree. On the other hand, fL=K identifies L as the only field such that the
Galois group of L=K is a quotient of the ray class group modulo fL=K by a certain
subgroup of finite index. So, starting from a prime number l and a modulus m

defined over a global function field K with field of constants Fq , one can enumerate
all the cyclic extensions L of K of degree l and of conductor fL=K less than m by
computing all the subgroups of index l of Picm. We also know in advance that the
genus of these extensions will be less than

1C l.gK � 1/C
1
2
.l � 1/ deg m:

2Note that L will be defined over Fq if at least one rational place of K splits totally in L, which
will be the case when we are looking for L with many rational places.
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Since l is a prime, all places which ramify have the same ramification type:
Either they are all wildly ramified, or they are all tamely ramified. The following
proposition thus describes what kind of m one should test for a given l .

Proposition 5. Let L=K be an abelian extension of function fields. Let P be a
place of K. Then P is wildly ramified in L=K if and only if P appears in the
conductor of L=K with multiplicity greater than 2, that is,

P is wildly ramified if and only if fL=K � 2P:

Proof. From [16, Corollary 7.59], we see that a place P is tamely ramified if
and only if the first ramification group in upper numbering is trivial, and from the
local-global property of the conductor, this amounts to saying that P has weight
one in fLK

. So a place with weight at least two must be wildly ramified. �

We see that if l is prime to the characteristic p of K, then m must be of the form

mD

nX
iD1

Pi ;

whereas if l equals p, then m must be of the form

mD

nX
iD1

miPi ;

where mi � 2.
Because we want the greatest possible number of rational places for the field L,

and because of the formula
N.L/D l jS jC r

(where S is the set of rational places of K which split in L and r is the number of
rational places in the support of fL=K), it seems reasonable to start from a field K
which itself has many rational points compared to its genus. In this way, we will
find curves with many points and their equations recursively: We start from the
projective line or a maximal3 elliptic curve, compute all of its “best” coverings
reaching or improving a lower bound in www.manypoints.org, start the process
again on these coverings, and so on. We summarize the process in Algorithm 1.
Note that a reasonable restriction, especially when the size of the constant field
increases, could be to take only conductors with places of degree 1 in their support.

3We call a curve of genus g defined over Fq maximal if no genus g curve defined over Fq has
more rational points. This number of points is denoted Nq.g/.
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Algorithm 1 (Good abelian coverings).

Input: A function field K=Fq , a prime l , an integer G.
Output: The equations of all cyclic extensions of K of degree l and genus less

than G whose number of Fq-rational points improves the best known records.

1: Compute all the moduli of degree less than BD .2G�2�l.2g.K/�2//=.l�1/
using Proposition 5.

2: for each such modulus m do
3: Compute the ray class group Picm modulo m.
4: Compute the set S of subgroups of Picm of index l and conductor m.
5: for every s in S do
6: Compute the genus g and the number of rational places n of the class

field L of s.
7: if n is greater or equal to the known record for a genus g curve defined

over Fq then
8: Update n as the new lower bound on Nq.g/.
9: Compute and output the equation of L.
10: end if
11: end for
12: end for

The complexity of the algorithm is linear in the number of fields (or pairs of
divisors and subgroups) we need to consider. The total number of divisors of
degree bounded by B is roughly O.qB/ since this is the estimate for the number
of irreducible polynomials of degree bounded by B . The number of subgroups
to consider depends on the structure of the ray class group. For tamely ramified
extensions, the group is the extension of the divisor class group by the product
of the multiplicative groups of the divisors (modulo constants), so the number of
cyclic factors depends on the number of places such that l j qdegP �1. For wild ex-
tensions, the number of ramified places provides the same information. In the wild
case, the number is bounded by B=2, so the total number of fields to investigate is
roughly O.qB �qB=2/. For each pair we have to compute the genus and the number
of rational places. The computation of the genus can be seen to run in time quartic
in the number of (potentially) ramified places: For each place we need to check if
it divides the conductor. This test is done by some Z-HNF computation of a matrix
whose dimension depends again on the total number of places. The computation
of the number of rational places requires the computation of discrete logarithms in
the divisor class group for every rational place of the base field. Assuming a small
degree, this depends linearly on the number of ramified places.
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Name f

D1 y2CyCx3Cx

D2 y2C.x3CxC1/yCx5Cx4Cx3Cx

D3 y3Cx2y2C.x3C1/yCx2Cx

D4 y4C.xC1/y2C.x3Cx/yCx7Cx3

D5 y4C.x2CxC1/y2C.x2Cx/yCx7Cx6Cx5Cx4

D6 y4C.x6Cx5Cx4C1/y2C.x7Cx4Cx3Cx2/yCx11Cx10Cx3Cx2

D7 y4C.x7Cx6Cx4Cx2C1/y2C.x8Cx6Cx5Cx4/yCx10Cx8Cx6Cx4

D01 y2CxyCx3Cx

D02 y2CyCx5Cx

D03 y4C.x2CxC1/y2C.x2Cx/yCx6Cx5

D04 y4Cxy2C.xC1/yCx5Cx4Cx3Cx2

D05 y4C.x3C1/y2C.x4Cx2/yCx9Cx5

D06 y4C.x3CxC1/y2C.x3Cx/yCx9Cx8Cx5Cx4

D07 y4Cx7y2C.x7C1/yCx5Cx

Table 1. Equations f D 0 for the base curves over F2 used in our calculations.
The curves Dg have genus g and are maximal; the curves D0g have genus g and
satisfy jD0g .F2/j DN2.g/�1.

To summarize: The total complexity is essentially exponential in the genus
bound, and is thus limited in scope.

Remark. It is possible to extend the algorithm to coverings of nonprime degrees,
to include Artin-Schreier-Witt extensions for example, and this is what we have
implemented in Magma. The genus and the conductor can then be computed using
techniques from [8]. Note however that the computations then are much longer.
This is the reason why we presented the algorithm only for cyclic extensions of
prime degree: Since their arithmetic is simpler, the algorithm works best for them
and can thus be used more efficiently over finite fields of size greater than 2 or 3.

5. Results

In this section we present the explicit results we obtained by implementing our
algorithm. All of our computations were carried out in Magma [4], using a class
field theory library implemented by the second author.

We restrict our attention here to the case where the base field is F2.
In Table 1 we give the equations for the base curves to which we applied our

algorithm. The curves Dg have genus g and are maximal; the curves D0g have
genus g and satisfy jD0g.F2/j DNq.g/� 1. Note that Rigato [19] has shown that
the maximal curves of genus 1, 2, 3, 4, and 5 over F2 are unique.
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Oesterlé Base Galois
g N bound curve Conductor f group G jS j jT j jRj

14 16 16 D4 2P7 Z=2Z 16 0 0

17 18 18 D2 4P1C 6P1 Z=2Z˚Z=2Z 16 2 0

24 23 23 D04 2P1C 4P1C 2P2 Z=2Z˚Z=2Z 20 1 2

29 26 27 D4 4P1C 8P1 Z=2Z˚Z=2Z 24 2 0

41 34 35 D03 4P1C 4P1 Z=2Z˚Z=4Z 32 2 0

45 34 37 D2 4P1C 8P1 Z=2Z˚Z=4Z 32 2 0

46 35 38 D3 3P1C 8P1 Z=2Z˚Z=4Z 32 1 2

Table 2. New results over F2. For each genus g in the leftmost column, we give
the largest number N for which we have constructed a genus-g curve over F2
having N rational points. The other columns are explained in the text.

Table 2 presents data on the curves we constructed that improved the previous
records for the number of points on a genus-g curve over F2. The first two columns
in the table give the genus g and the number of rational points N on the abelian
coverings we construct. The third column gives the Oesterlé bound on the number
of rational points of a genus-g curve defined over F2; in the cases we consider
this is the best upper bound known. The fourth column gives the name (from
Table 1) of the base curve used in the construction. The fifth column gives the
conductor of the covering; a summand of the form niPi means that there is a place
of degree i occurring in the conductor with weight ni . The final four columns
give the Galois group G of the covering, the number jS j of totally split places,
the number jT j of totally ramified places, and the number jRj of partially ramified
places. In some cases we obtained the same values of g and N by applying our
algorithm to different base curves; in these cases, we only make one entry in our
table, corresponding to the construction using the base curve with the smallest
genus. Finally, we mention that the average bound on the degree of the possible
conductors we have tested was 14.

For each row of Table 2, let Cg denote the covering curve of genus g correspond-
ing to that row. We present explicit equations for each Cg next; these are equations
for the Cg as coverings of their base curves, so the equations for the base curves
(given in Table 1) are left unstated here. We have attempted to present the equations
so that the structure of each cover as a tower of Artin-Schreier covers is clear.

C14 W

(
0D .x7C x3C 1/.z2C z/

Cy3C .x4C x/y2C .x4C x2C 1/yC .x8C x6C x5C x4/

C17 W

8̂<̂
:
0D z2C x2z

C x.xC 1/.x3C x2C 1/yC x2.xC 1/2.x4C x3C x2C xC 1/

0Dw2C xwC x.xC 1/.x2C xC 1/yC x2.xC 1/
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C24 W

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0D z2C x2.xC 1/z

C x.x3C x2C 1/y3C x3.xC 1/4y2C x2.x4C x3C 1/y

C x.xC 1/.x7C x6C x3C x2C 1/

0Dw2C x2wC x.xC 1/y3

C x3.xC 1/2y2C x2.xC 1/2yC x.xC 1/.x2C xC 1/

C29 W

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

0D z2Cx2.xC1/4z

C.xC1/.x6Cx5Cx4Cx3C1/y3

Cx.xC1/3.x5Cx4Cx3Cx2C1/y2C.xC1/2.x6Cx2C1/y

Cx2.xC1/3.x5Cx4Cx3Cx2C1/

0Dw2Cx2.xC1/5w

C.xC1/.x9Cx8Cx5Cx4C1/y3

Cx.xC1/3.x9Cx8Cx6Cx5Cx4Cx2C1/y2

C.xC1/2.x9Cx8Cx3Cx2C1/y

Cx2.xC1/3.x11Cx9Cx8Cx6Cx5Cx4Cx3Cx2C1/

C41 W

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

0D z2C
�
x6.x2C xC 1/y3C x7.x4C x3C x2C xC 1/y2

C x6.xC 1/.x2C xC 1/yC x10.xC 1/4
�
z

C x.xC 1/7.x13C x12C x11C x9C x6C x4C 1/y3

C x2.xC 1/3.x17C x15C x12C x11C x9C x3C 1/y2

C x.xC 1/6.x17C x15C x14C x13C x4C x2C 1/y

C x5.xC 1/4.x17C x16C x12C x11C x6C x3C 1/

0D v2C x7vC xz

0Dw2C x2wC xy2C x2y

C45 W

8̂̂̂<̂
ˆ̂:
0D z2C .xC 1/2.xyC 1/zC x2.x13C x11C x9C xC 1/y

C x9.x8C x6C x4C x3C x2C xC 1/

0D v2C .xC 1/2vC x.xC 1/zC x7.x4C xC 1/

0Dw2C .xC 1/2wC .xC 1/.x5C x2C x/yC .xC 1/.x8C x5C x4/

C46 W

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0D z2C
�
.xC 1/y2C .x3C x2C 1/yC .x4C x3C x2C xC 1/

�
z

C .xC 1/2.x11C x8C x6C xC 1/y2C .xC 1/6.x9C x2C 1/y

C x7.xC 1/2.x7C x5C x4C x3C 1/

0D v2C vC x.xC 1/zC x5.xC 1/

0Dw2CwC xy2C x2.x3C x2C 1/y

Remark. After this article was written, a preprint of Karl Rökaeus appeared in
which he undertakes similar computations over the finite fields of size 2, 3, 4, and 5
(see [20]). Over F2 he recovers our genus-17 record, and he improves our genus-45
bound to 36 points. (He obtains the record-setting genus-45 curve as an abelian
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cover of a genus-2 curve D with jD.F2/j DN2.2/� 2.) In private communication,
Rökaeus indicated that he also found a genus-46 curve over F2 with 36 points.

Remark. As mentioned above, we have restricted our search to curves over the
field F2. However, our code works over other fields as well, and while we were
testing it we found a curve of genus 11 over F3 with 21 rational points. This curve
is a degree-2 cover of the genus-4 maximal curve defined by

C W y4�y2C x6C x4C x2 D 0:

With notations as above, the conductor of the cover is of the form P1CP1CP1CP5,
and we have jS j D 9, jRj D 3, and jT j D 0. The resulting cover C 0 is given by the
equation

z2D�.x5Cx4Cx3�x2CxC2/�.yCx2Cx/�.y2C.�xC1/yCx3�x2�xC1/

�
�
.x7C x6C x5� x3� 1/y3C .�x8C x6C x5� x4� x3� x/y2

C .�x10� x9� x8C x5C x4C x3� x2C 1/y

� x12� x9� x8C x6C x4C x
�
:
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Computing the unit group, class group, and
compact representations in algebraic function fields

Kirsten Eisenträger and Sean Hallgren

Number fields and global function fields have many similar properties. Both
have many applications to cryptography and coding theory, and the main com-
putational problems for number fields, such as computing the ring of integers
and computing the class group and the unit group, have analogues over function
fields. The complexity of the number field problems has been studied exten-
sively, and quantum computation has provided exponential speedups for some
of these problems. In this paper we study the analogous problems in function
fields. We show that there are efficient quantum algorithms for computing the
unit group, for computing the class group, and for solving the principal ideal
problem in function fields of arbitrary degree. We show that compact represen-
tations exist, which allows us to show that the principal ideal problem is in NP.
We are also able to show that these compact representations can be computed
efficiently, in contrast with the number field case.

1. Introduction

Algebraic number theory is concerned with the study of number fields — that is,
finite extensions L of Q — and of the rings of algebraic integers OL of such L .
Similarly, we can consider finite algebraic extensions K of Fq(t), where Fq(t) is
the quotient field of the polynomial ring Fq [t]. These fields are called function fields
over finite fields or global function fields. It was noticed early on that the integers
have many properties in common with Fq [t], and similarly, that number fields and
global function fields have many similar properties. Often, a problem that is posed
for number fields admits an analogous problem for global function fields, and the
other way around. For example, the Riemann hypothesis for the classical Riemann

MSC2010: primary 11Y16; secondary 11R27, 11R29.
Keywords: function fields, compact representations, infrastructure, unit group, principal ideal

problem.

335



336 KIRSTEN EISENTRÄGER AND SEAN HALLGREN

zeta function ζ(s) is still open, while the function-field analogue of this conjecture
was proved by Weil.

The main computational problems for number fields include computing the ring
of integers, the class group, and the unit group, and solving the principal ideal prob-
lem. These problems have been studied extensively, and there are a large number
of classical algorithms for computing with number fields. Applications include
the number field sieve, which is the fastest classical algorithm for factoring [29],
and the Buchmann-Williams key-exchange system, whose security depends on the
hardness of the principal ideal problem [7]. The recent push to make lattice-based
cryptography more efficient has relied upon special lattices that come from num-
ber fields [33; 30]. Error-correcting codes have also been constructed using such
lattices [23]. Quantum algorithms have been the source of exponential speedups
for many of these computational problems for number fields. There are efficient
quantum algorithms for computing the unit group and class group, and for solving
the principal ideal problem in constant degree number fields [25; 38]. Some field
extensions have also been computed using quantum algorithms [16]. In this paper
we study the analogous computational problems over function fields.

Function fields also have many applications in cryptography and coding theory.
There are many cryptographic applications that use elliptic curves or Jacobians
of curves of small genus defined over finite fields [13]. Most of these rely on
the assumption that the discrete log problem is difficult to solve in the underlying
group associated with these curves. Another way to state this is that the discrete
log problem is assumed to be hard in the divisor class group of the function field of
the curve. Error correcting codes have also been based on function fields [22]. In
a recent paper, Guruswami [24] constructed codes where everything was efficient
except computing the basis for the Riemann-Roch space of a certain divisor.

For number fields the problems listed above have been studied extensively, and
they appear to be computationally hard. For example, computing the ring of inte-
gers requires squarefree factorization of integers. The best known classical algo-
rithms for computing the unit group, for computing the class group, and for solving
the principal ideal problem are exponentially slower than factoring. On the other
hand, computing the class group and unit group is in NP∩coNP for arbitrary degree
number fields [42], while the quantum algorithms are only efficient for constant
degree number fields. One apparent obstacle is that the only way known to compute
with ideals of number fields requires a shortest vector problem in ideal lattices to
be solved during computations, in order to keep representation sizes small.

In this paper we examine these computational problems over function fields of
arbitrary degree. For function fields, computing the ring of integers is computa-
tionally equivalent to factoring polynomials over a finite field, which can be done
in (classical) polynomial time, so one might hope that much more can be done.
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In fact, even the analogue of the shortest vector problem has an efficient classical
algorithm. But problems such as computing the divisor class group should be
hard classically since they include as a special case the discrete log problem on
an elliptic curve (a curve of genus one whose function field has degree two). For
certain special classes of function fields (where the degree is two and the genus is
large) there are subexponential algorithms for computing the class group, which
make them less secure for cryptographic purposes: In [4] the authors give a subex-
ponential algorithm for computing the class group of a hyperelliptic curve of large
genus, and [31] gives a subexponential probabilistic algorithm for computing the
class group of a real quadratic congruence function field of large genus. In [37] it
is shown that various decision problems for quadratic congruence function fields
of large genus are in NP ∩ coNP. There are also some exponential algorithms
known for more general function fields. Another important computational prob-
lem that only exists in the function field case is that of computing Riemann-Roch
spaces.

In this paper we show that the principal ideal problem over function fields of
arbitrary degree is in NP. To do this we show that compact multiplicative represen-
tations exist for elements in function fields. This answers a question of Smart [40]
and generalizes [36], which showed the existence of compact representations for
real quadratic congruence function fields (which have degree two). Our work
adapts work of Thiel, who used compact representations in number fields and
showed that the principal ideal problem, the computation of class numbers, and
the computation of compact representations of units are in NP∩ coNP for number
fields [42]. We also show that, unlike the situation for number fields, compact
representations can be computed in (classical) polynomial time for arbitrary degree
function fields. The standard representation of an element, for example a unit, may
take exponentially many bits to represent. Compact representations give a certain
factored form of the element which only requires polynomial representation size.

Given this setup, we also show that there are efficient quantum algorithms for
computing the unit group and the class group, and for solving the principal ideal
problem in arbitrary degree function fields. This is in contrast to the number field
case, where currently only the constant degree case has quantum algorithms. These
problems are solved by setting up abelian hidden subgroup problems.

One open question related to our work is whether the function field analogues
of the problems treated by Thiel are also in NP∩ coNP. Compact representations
played a key role in the number field case. One issue in the function field case
is that it is not known how to deterministically compute generators for the class
group efficiently.

Another open question is finding an efficient quantum algorithm for computing
class field towers of function fields. Certain towers of function fields — namely,
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Hilbert class field towers — have applications to coding theory. When the tower is
infinite one can construct asymptotically good sequences of codes from the fields
in such towers [20, p. 212]. Infinite towers are known to exist [39], but for applica-
tions of such codes in practice, an explicit construction of the fields in the tower is
required. Class groups of certain subrings of the function fields in the tower appear
as the Galois groups of the field extensions in the tower. Therefore, computing the
class groups (and compact representations), as we do in this paper, is required to
compute such towers, as it is in the number field case [16].

In order to set up our algorithms we need efficient algorithms for doing compu-
tations in the infrastructure of a function field. Fontein recently provided these and
we prove that his algorithms in [19; 17] are polynomial-time. To compute with
the infrastructure it is necessary to efficiently compute the Riemann-Roch space
of a divisor D. For this we use Hess’s algorithm [26], which is a relatively simple,
self-contained algorithm. In the appendix we include a complexity analysis of
his algorithm. For other references that analyze Hess’s algorithm see [19] (which
makes some additional assumptions) and [14]. The algorithms above have been
implemented, for example in Magma. The focus of this paper, however, is on
the complexity analysis. Analyzing the Riemann-Roch algorithm addresses the
missing piece for the codes in [24] to be efficient.

One technical challenge in our work is adapting Thiel’s algorithm for computing
compact representations [42] from the number field case to the function field case.
To do this, and to end up with a polynomial-time algorithm, we must show that
we can compute compact representations without searching for minima in a region
of exponential size, something that is necessary in the number field case. We
also analyze the Riemann-Roch space computation. This involves showing that
we can efficiently compute certain prime ideals of the ring O∞ (see Section 2 for
notation) that we use to compute the Riemann-Roch space L(D) from a given
representation of the divisor D. We carry out this computation by factoring and
computing radicals of certain ideals; further details, and the complexity analysis,
can be found in Appendix B. Our algorithm generalizes the ideal factorization
algorithm for number fields [16].

There have been other approaches to the study of some of these problems over
function fields. In [27] Huang and Ierardi gave a construction of the Riemann-Roch
space that is polynomial-time, assuming that all the singular points of the plane
curve defining the function field are ordinary and defined over the base field. For
another construction, which uses the Brill-Noether method, see Volcheck [43]. Re-
cently, the authors learned that the (unpublished) Habilitation thesis by Diem [14]
also studied Hess’s algorithm. Kedlaya [28] showed how to compute zeta functions
of curves with a quantum algorithm. His method requires computing the size of the
divisor class group Pic0(K ), and he showed how to compute in the group efficiently.
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Our work, by contrast, requires the different representation using the infrastructure
of Fontein [17] in order to compute in the unit group and the class group, rather
than only in the divisor class group Pic0(K ). The infrastructure also allows us to
show the existence of compact representations.

Infrastructures have also been studied in [35; 18], which give quantum algo-
rithms for computing one-dimensional infrastructures and the period lattice of in-
frastructures of fixed dimension.

2. Background on algebraic function fields and divisors

Algebraic function fields over finite fields. Let k be a finite field with q = pm

elements for some prime p and integer m > 0. An algebraic function field K/k
is an extension field K ⊇ k such that K is a finite algebraic extension of k(x)
for some x ∈ K which is transcendental over k. After replacing k with a finite
extension, if necessary, we may assume that k is the constant field of K , that is,
that k is algebraically closed in K . By [41, p. 144] such an algebraic function field
is separably generated; that is, there exist x, y ∈ K such that K = k(x, y). The
function field K is then specified by the finite field k, the indeterminate x and the
minimal polynomial f ∈ k(x)[T ] of y over k(x). Throughout the paper, we assume
that K is given to us as K = k(x, y) with x, y as above, and we let d := [K : k(x)].

A valuation ring of the function field K/k is a ring Õ⊆ K such that k $ Õ $ K
and such that for every z ∈ K we have z ∈ Õ or z−1

∈ Õ. A valuation ring is a local
ring; that is, it has a unique maximal ideal [41, p. 2]. A place of a function field
K/k is defined to be the maximal ideal of some valuation ring of K/k. To each
place p of K , there is an associated discrete valuation vp : K ∗→ Z, and there is a
one-to-one correspondence between places of K/k and discrete valuations of K/k
[41, pp. 5–6]. Denote by PK the set of all places of K . If p is a place of K with
corresponding valuation ring Op, we define the degree of p to be the degree of the
field extension of Op/p over k; that is, deg p= [Op/p : k]. If F/K is an extension
of algebraic function fields we say that a place P ∈ PF lies above a place p ∈ PK

if p⊆P.
For the rational function field k(x), the places are completely understood: The

places of k(x) correspond to the irreducible polynomials of k[x], together with a
“place at infinity”, denoted∞.

Let v∞ be the discrete valuation corresponding to the infinite place∞ of the
rational function field k(x). Then v∞ is defined via v∞( f/g)= deg g− deg f , for
f, g ∈ k[x]. Let o∞ := {a ∈ k(x) : v∞(a) ≥ 0}. Then o∞ is the valuation ring
associated to v∞ and the unique maximal ideal of o∞ is generated by 1/x . Let S
denote the set of places of K above∞. Let

O∞ := {a ∈ K : vp(a)≥ 0 for all p ∈ S}.
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Then O∞ is the integral closure of o∞ in K , and O∞ is a free o∞-module of rank d .
The ring O∞ is a principal ideal domain whose prime ideals correspond to the
elements in S.

Divisors on algebraic function fields. A divisor on K is a formal sum

D =
∑
p∈PK

np p

such that np= 0 for all but finitely many p. Let Div(K ) denote the group of divisors
on K . For a divisor D which is given as D =

∑
p∈PK

np p, we define the degree of
D to be deg D =

∑
p∈PK

np deg p. The divisors of degree zero form a subgroup of
Div(K ), which we denote by Div0(K ). For f ∈ K ∗, the divisor of f is defined to
be

div( f )=
∑
p∈PK

vp( f ) p.

The set of all divisors of the form div( f ) forms the group Prin(K ) of principal
divisors on K . Note that if D is a principal divisor then deg D = 0. We define the
divisor class group Pic0(K ) to be the quotient of the group of divisors of degree
zero by the group of principal divisors; that is, Pic0(K )= Div0(K )/Prin(K ). The
divisor class group is a finite group.

A divisor D =
∑

p np p is effective if np ≥ 0 for all p; we write D1 ≥ D2

to mean that D1 − D2 is effective. Every divisor D can be written uniquely as
D = D+− D− with D+, D− effective divisors with disjoint support. We define
the height of a divisor D to be ht(D) := max{deg(D+), deg(D−)}. For a divisor
D ∈ Div(K ) we define the Riemann-Roch space of D to be the set

L(D) := { f ∈ K : div( f )+ D ≥ 0} ∪ {0}.

The set L(D) is a vector space over k, and we denote its dimension by `(D).

Fractional ideals. Let O be the integral closure of k[x] in K . Then O is a free
k[x]-module of rank d. By [11, Theorem 1], a k[x]-basis for O can be computed
in time polynomial in d and log q . If S = {p1, . . . , pn+1} is the set of places above
the infinite place∞ of k(x), then we also have

O= {a ∈ K : vp(a)≥ 0 for all p /∈ S}.

Note that for any nonempty finite set S of places of K one can find an x ∈ K such
that S is the set of infinite places above x . Throughout the paper we assume that
deg pn+1 = 1. This can always be achieved by passing to a finite extension of the
constant field k.

A fractional ideal of O is a finitely generated O-submodule of K . Since O is a
Dedekind domain, the nonzero fractional ideals Id(O) of O form a (free) abelian
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group under multiplication. There is a natural homomorphism φ : Div(K )→ Id(O)
defined by ∑

npp 7→
∏
p/∈S

(p∩O)−np .

This map has a right inverse, namely the map div : Id(O)→ Div(K ) that sends a
fractional ideal B =

∏
p/∈S(p∩O)np to div(B) := −

∑
p/∈S npp. Hence each divisor

can be represented by a pair
(

A,
∑

tipi
)
, where A is a fractional ideal of O and

{p1, . . . , pn+1} are the places in S, that is, the primes above ∞. This is how we
will represent divisors throughout the paper.

The class group Cl(O) of O is defined to be the group of fractional ideals of
O modulo the principal fractional ideals of O. The class group is a finite abelian
group, and the map φ : Div(K )→ Id(O) extends to a homomorphism

φ : Pic0(K ) // Cl(O)[∑
npp

] � //
[∏
p/∈S
(p∩O)−np

]
.

When deg pn+1 = 1 this map fits into an exact sequence

0 // Ker // Pic0(K )
φ // Cl(O) // 1.

Here Ker is the subgroup of Pic0(K ) that is generated by all degree-zero divisors
with support in S, so the map Ker→ Pic0(K ) is just the inclusion map. Since k is
a finite field, Ker is finite by [34, Proposition 14.2, p. 243].

3. Computing efficiently in the unit group

In this section we show how to efficiently compute classically in the unit group of
O. Recall that S = {p1, . . . , pn+1} are the places of K above∞ and that

O= {a ∈ K : vp(a)≥ 0 for all p /∈ S}.

Also, we assume that pn+1 is a place of degree 1.
To compute in the unit group, consider the map val∞ : K ∗ → Zn given by

val∞(a) = (−vp1(a), . . . ,−vpn (a)). The image of O∗ under val∞ is a lattice 3
in Zn . By an analogue of Dirichlet’s Unit Theorem for function fields, the unit
rank — that is, the rank of 3 — is equal to n = #S − 1. Since units can have
exponentially many bits in the standard representation, computing the unit group
means to compute a basis of that lattice, or to compute compact representations
for a fundamental set of units as in Definition 4.3. In Lemma 4.7 we show that the
compact representation of an element can be computed from its valuation vector,
so it follows that these two problems are polynomial time equivalent in function
fields.
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Fontein [17] showed that it is possible to compute in a finite abelian group which
he denotes Rep f ∗(O) and which is isomorphic to Zn/3. We discuss his approach
in the next section. We then show that these computations are efficient. From the
group structure of Zn/3 we can obtain the basis for the lattice 3.

3A. Minima and reduced ideals in function fields. We now give the definitions
of minima and reduced ideals and define Rep f ∗(O) (see [17]). In the following, by
an ideal of O we will always mean a fractional ideal of O.

For each place pi ∈ S, with its associated discrete valuation vpi , there is a corre-
sponding absolute value |α|i , defined by

|α|i := q−vpi (α) deg pi .

For an ideal A and integers t1, . . . , tn+1 ∈ Z we define

B(A, (t1, . . . , tn+1)) := {α ∈ A : |α|i ≤ q ti deg pi for i = 1, . . . , n+ 1}.

This is a Riemann-Roch space; we have

B(A, (t1, . . . , tn+1))= L
(

div(A)+
n+1∑
i=1

tipi

)
.

For an ideal A and α ∈ K ∗, let B(A, α) := B(A, (−vp1(α), . . . ,−vpn+1(α))).

Definition 3.1 (Minima and reduced ideals).

(1) Let A be an ideal of O and let µ be a nonzero element of A. The element µ
is a minimum of A if for every nonzero α ∈ B(A, µ) we have |α|i = |µ|i for
i = 1, . . . , n+ 1.

(2) An ideal A is reduced if 1 is a minimum of A.

Denote by Red(A) the set of reduced ideals of O which are in the same ideal
class as A in Cl(O). There is a close connection between the set of minima of an
ideal A and the set of reduced ideals equivalent to A. First, if µ is a minimum of
A and ε ∈ O∗, then εµ is also a minimum of A. This action of O∗ on the set of
minima gives rise to a bijection

{minima of A}/O∗ // Red(A)

µO∗ � // (1/µ)A.

So every element of Red(A) is of the form (1/µ)A with µ a minimum of A. Next
define a map from the set of reduced ideals equivalent to A to Zn/3 by defining

d : Red(A) // Zn/3

(1/µ)A � // val∞(µ)+3
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This map is well-defined since deg pn+1 = 1 (see [17, Corollary 5.3]), and it is
also injective [17, Proposition 5.5]. Now we can define Fontein’s group Rep f ∗(O),
which is isomorphic to Zn/3.

Definition 3.2. Let A be an ideal of O. An f ∗-representation is a tuple

(I, (t1, . . . , tn)) ∈ Red(A)×Zn

such that B(I, (t1, . . . , tn, 0)) = k. Denote the set of all f ∗-representations in
Red(A)×Zn by Rep f ∗(A).

When A and B are two ideals that are in the same ideal class in Cl(O), then
clearly Rep f ∗(A)= Rep f ∗(B). Let

8A : Rep f ∗(A)→ Zn/3

be defined by
8A ((1/µ)A, t)= val∞(µ)+ t +3.

Here t = (t1, . . . , tn) ∈ Zn . In [17, Theorem 6.8] it is proved that this map is
a bijection. In particular, Rep f ∗(O) is isomorphic to Zn/3. So to each element
(I, t) of Rep f ∗(A), there is an associated point in Zn/3, and if I = (1/µ)A, we
say that (I, t) represents the element val∞(µ)+ t +3 of Zn/3. Let [A] be the
set of ideals equivalent to A in the class group. It is possible to extend 8A to
a well-defined (but no longer injective) map 8A : [A] × Zn

→ Zn/3 by letting
8A ((1/α)A, f )= val∞(α)+ f +3.

In [17, Proposition 8.1] the following is shown:

Proposition 3.3. Let (A, (t1, . . . , tn)) be an element of Rep f ∗(B) for some ideal B.
Then div(A)≥ 0 and ti ≥ 0 for 1≤ i ≤ n. Moreover,

0≤ deg div(A)+
n∑

i=1

ti deg pi ≤ g.

Here g denotes the genus of the function field.

We want to compute a basis for the n-dimensional lattice 3. Since Zn/3 is
isomorphic to Rep f ∗(O), it is enough to obtain generators and relations for the
finite group Rep f ∗(O).

3B. Reduction and obtaining generators for Rep f ∗(O). Let

8 :=8O : Rep f ∗(O)→ Zn/3

and its extension to [O] × Zn
→ Zn/3 be the maps defined above. The group

Zn/3 is generated by the standard basis vectors ei (1≤ i ≤ n), so in order to find
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generators for Rep f ∗(O) we need to find elements ((1/µi )O, fi ) such that

8((1/µi )O, fi )= ei +3.

To obtain such elements we consider the elements (O, ei ), for i = 1, . . . , n. These
elements are not in Rep f ∗(O), but they do have the property that 8(O, ei )= ei +3.
So to obtain the right elements in Rep f ∗(O) we reduce the elements (O, ei ) to
elements ((1/µ)O, fi ) ∈ Rep f ∗(O) with Algorithm 3.4 below, and use the fact that
under 8, the element (O, ei ) and its reduction have the same image (see Remark 3.6
below).

The general reduction algorithm that we are describing next works for Rep f ∗(I )
for any ideal I of O.

Algorithm 3.4 (Reduce).

Input: An ideal A and a vector t = (t1, . . . , tn) ∈ Zn .

Output: A minimum µ of A, the reduced ideal (1/µ)A, and a vector t − val∞(µ)
such that ((1/µ)A, t − val∞(µ)) ∈ Rep f ∗(A).

1. Find the minimum ` in the interval[
− deg div(A)−

n∑
i=1

ti deg pi , g− deg div(A)−
n∑

i=1

ti deg pi

]
such that dim B(A, (t1, . . . , tn, `)) > 0.

2. Set u1, . . . , un = 0. For each 1≤ i ≤ n, increase ui to find the largest value ui

with dim B(A, (t1− u1, . . . , tn − un, `)) > 0.

3. Let µ be a nonzero element of B(A, (t1− u1, . . . , tn − un, `)).
Output (µ, (1/µ)A, (u1, . . . , un)).

Proposition 3.5. Algorithm 3.4 is correct and returns (µ, (1/µ)A, (u1, . . . , un))

in time polynomial in d, log q , ht(div(A)) and ‖t‖∞.

Proof. Let ` be minimal such that dim B(A, (t1, . . . , tn, `)) > 0. By [19, Theo-
rem 4.4.3], we have

` ∈
[
− deg div(A)−

n∑
i=1

ti deg pi , g− deg div(A)−
n∑

i=1

ti deg pi

]
,

so the first step of the algorithm requires at most g Riemann-Roch computations.
By Theorem B.9, each of these computations

B(A, (t1, . . . , tn, `))= L
(

div(A)+
n∑

i=1

ti · pi + ` · pn+1

)
can be performed in time polynomial in d , log q , ht(div(A)), and ‖t‖∞, because `
is at most a polynomial in g, div(A), and ‖t‖∞, and g is a polynomial in d .
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The second step computes the valuation that µ has in the third step. For coor-
dinate i , there are at most ti Riemann-Roch computations, so in total there are at
most n max |ti |, which is polynomial in d and ‖t‖∞ since n ≤ d. The correctness
of steps 2 and 3 follows from the correctness proof of Algorithm 5.4.2 in [19]. �

Remark 3.6. Let A be an ideal of O and let t=(t1,..., tn)∈Zn . Then (A,(t1,..., tn))
represents the same point in Zn/3 as its reduction

((1/µ)A, t − val∞(µ)) ∈ Rep f ∗(A),

because

8A(A, t)= t +3

= val∞(µ)+ (t − val∞(µ))+3

=8A((1/µ)A, t − val∞(µ)).

Denote by Reduce(A, e) the element of Rep f ∗(A) computed by Algorithm 3.4.
By the above discussion we have 8A(Reduce(A, e))= e+3, and if e′= e+v with
v ∈3, then 8A(Reduce(A, e′))= e′+3= e+3. Since 8A : Rep f ∗(A)→ Zn/3

is injective this implies that Reduce(A,e)= Reduce(A,e′) whenever e− e′ ∈3.

Definition 3.7. When α ∈ K , the norm of α can be expressed uniquely as N (α)=
f/h, where f and h are coprime elements of k[x] and h is monic. We define
dg(N (α)) to be dg(N (α))=max{deg f, deg h}.

Remark 3.8. When A = αO then being polynomial in ht(div(A)) is the same as
being polynomial in dg N (α) (see [17, p. 28]).

3C. Composition and computing inverses in Rep f ∗(O) and bounding the repre-
sentation size of elements. By [17, Proposition 8.2], elements in Rep f ∗(O) can be
represented by O(d2g log q) bits. Here g denotes the genus of the function field,
which is of size polynomial in d.

Composition of two elements (A, f ), (A′, f ′) of Rep f ∗(O) is done by multi-
plying the ideals, adding the two vectors, and then applying Algorithm 3.4 to
(AA′, f + f ′). To compute the inverse of (A, f1, . . . , fn), compute the inverse
A−1, find ` minimal such that dim B(A−1, (− f1, . . . ,− fn, `)) > 0 and then re-
duce using Algorithm 3.4 [19, Proposition 4.3.4]. The ideal arithmetic in O is
polynomial in log q, d, and ht(div(A)), ht(div(A′)) [14, Proposition 2.66, and
Proposition 2.69(b)] and ht(div(A)) is of size polynomial in d and log q when
(A, f ) ∈ Rep f ∗(O). Hence Proposition 3.5 implies that composition of two ele-
ments and computing inverses in Rep f ∗(O) are both polynomial in log q and d .
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4. Compact representations in global function fields

In this section we show how to efficiently compute compact representations of
elements α ∈ K classically. This allows us to show that the principal ideal problem
is in NP, and to compute compact representations of units. We adapt the definitions
and approach for number fields given in [42, p. 82] to the function field case. The
sizes are adapted to match the parameters that are appropriate for number fields
and that come from our algorithms. In the function field case we show that an
exponential search for minima is no longer necessary.

Definition 4.1. For α ∈ K and s ∈Qn we say that α is close to s if

‖val∞(α)− s‖1 ≤ n+ g,

where g is the genus of K .

Definition 4.2. A multiplicative representation of an element α ∈ K is a pair

M = ((β1, . . . , β`), (e1, . . . , e`)),

where βi ∈ K , ei ∈ Z, ` ∈ N, and such that α =
∏`

i=1 β
ei
i .

A binary multiplicative representation (BMR) of an element α ∈ K is a mul-
tiplicative representation such that for all i ≤ ` we have both that ei = 2`−i and
that ((β1, . . . , βi ), (e1, . . . , ei )) is a minimum of O. Since the exponents ei are
determined, a BMR can be represented as (β1, . . . , βk).

Definition 4.3. A compact representation of α ∈ K is a pair B = (γ, (β1, . . . , β`)),
where (β1, . . . , β`) is a BMR for a minimum β of O with γ = αβ, and where

`≤ log(‖val∞(α)‖∞+ g),

size(γ )≤ poly(log q, d, dg N (α)), and

size(βi )≤ poly(log q, d).

Here size denotes the number of bits required to represent the element.

Remark 4.4. Definition 4.3 depends on certain implied constants hidden in expres-
sions like poly(log q, d). What is meant is that there exist specific polynomials that
can be used in the definition so that all subsequent statements in this paper hold.

The bound on ` is chosen to handle the length of the generator after reducing
αO, which is val∞(γ /α). The factor γ comes from ideal reduction, so γ has size
polynomial in d , log q , and dg N (α).

Claim 4.5. Given a BMR (β1, . . . , β`) of a minimum β of O, the ideal (1/β)O can
be efficiently computed.
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Proof. At the first step, the ideal (1/β1)O, which is reduced by the definition of
a BMR, can be efficiently computed. In general, let β ′i =

∏i
j=1 β

2i− j

j . By the
definition of a BMR, β ′i is a minimum of O for all i . Given the reduced ideal
(1/β ′i )O, the reduced ideal (1/β ′i+1)O= (1/(βi+1β

′2
i ))O can be efficiently computed

by squaring (1/β ′i )O and multiplying by 1/βi+1. �

Our next algorithm produces a compact representation of a generator of an ideal.
It calls Close (Algorithm 4.8), which calls Double (Algorithm 4.10); we will post-
pone the description of these algorithms, and the proofs of their correctness, until
after the proof that Algorithm 4.6 is correct.

Algorithm 4.6 (Compact representation).

Input: A vector v ∈ Zn and an ideal A such that v = val∞(α) and A = αO for
some α ∈ K .

Output: A compact representation of such an α.

1. Call Reduce(A, 0) to get a reduced ideal (1/γ )A and element γ ∈ K .

2. Let (β1, . . . , β`)= Close(O, val∞(γ /α)).

3. Output (γ, (β1, . . . , β`)).

Lemma 4.7. Algorithm 4.6 returns a compact representation of α ∈ K in time
polynomial in log q , d, dg N (α), and log(‖val∞(α)‖∞).

Proof. Proposition 3.5 and Remark 3.8 show that the element γ in Step 1 can be
computed with Algorithm 3.4 in time polynomial in d , log q , and dg N (α). There-
fore the size of γ is bounded by the same amount. Also, γ is a minimum of A= αO,
so β := γ /α is a minimum of O. By Corollary 4.13 below, Close(O, val∞(γ /α))
returns the BMR (β1, . . . , β`) of the minimum β = γ /α of O (and not just the
BMR of a minimum close to γ /α). Hence the algorithm computes the compact
representation (γ, (β1, . . . , β`)) of α = γ /β.

We have already noted that Step 1 takes time polynomial in d , log q , and dg N (α).
In Step 2, Algorithm Close is called, which executes `= log(‖val∞(γ /α)‖∞)+ 1
calls of Algorithm Double. Therefore it suffices to show that Double takes time
polynomial in d , log q , and dg N (α).

Each call of Double calls Reduce once on input of the form (B, bue); here B is
the square of a reduced ideal, u is a vector in Qk for some k ≤ `, with ` as above,
and where bue denotes the nearest integer vector to u. The ideal B is the square of
a reduced ideal, and so is small. On the other hand, u is obtained from doubling a
vector t − val∞(µ) with ‖t − val∞(µ)‖1 ≤ n+ g, so ‖u‖1 ≤ 2n+ 2g. Rounding
u to bue adds at most k/2 to the 1-norm, and k ≤ n, so ‖bue‖1 ≤ 5n/2+ 2g. By
Proposition 3.5, we find that each call of Reduce takes time polynomial in d , log q ,
dg N (α), as we were to show. �
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Algorithm 4.8 (Close).

Input: A reduced ideal A and a vector s ∈Qn .

Output: A BMR (β1, . . . , β`) of a minimum β ∈ A which is close to s, where
`= log(‖s‖∞)+ 1.

1. Let β0 = 1, `= log(‖s‖∞)+ 1 and t = s/2`.

2. For k from 1 to `

(a) Let (β1, . . . , βk) := Double(A, t, (β0, β1, . . . , βk−1)).
(b) Let t := 2t .

3. Return (β1, . . . , β`).

Proposition 4.9. Algorithm 4.8 is correct.

Proof. This follows from Proposition 4.11, together with the fact that in Step 1 of
the algorithm β0 = 1 is a minimum of A which is close to t = s/2`. �

Algorithm 4.10 (Double).

Input: A reduced ideal A, a vector t ∈ Qn , and a BMR (β1, . . . , βk−1) of a
minimum β of A which is close to t .

Output: A BMR (β1, . . . , βk−1, βk) of a minimum of A which is close to 2t ,
where βk is a minimum of (1/β2)A that has size polynomial in d, log q,
ht(div A).

1. Let B := (1/β2)A and u := 2t − val∞(β2).

2. Reduce (B, bue) to get a minimum βk of B that is close to u. (Here bue denotes
the integer vector closest to u.)

3. Return (β1, . . . , βk−1, βk). (This is a BMR of β2
·βk .)

Proposition 4.11. Algorithm 4.10 is correct.

Proof. First we show that there exists a minimum βk of B such that

‖val∞(βk)− u‖1 ≤ n/2+ g.

When we reduce the pair (B, bue) we get a pair

((1/βk)B, bue− val∞(βk)) ∈ Rep f ∗(B).

Let t = (t1, . . . , tn)= bue− val∞(βk). By Proposition 3.3, we have

n∑
i=1

ti deg pi ≤ g,
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where g is the genus of the function field K . The difference between the `1-norms
of u and bue is at most n/2, so val∞(βk)− u has `1-norm bounded by n/2+ g.
Thus there exists a minimum βk of B that is close to u = 2t − val∞(β2), and this
minimum is computed in Step 3 of Double. Moreover, by Proposition 3.5, the size
of the minimum βk is polynomial in d, log q, ht(div(B)), and ‖u‖∞. Then, since
βk is close to 2t − val∞(β2), we have that β2βk is close to 2t , because

‖2t − val∞(β2βk)‖1 = ‖(2t − (val∞(β2))− val∞(βk)‖1. �

In the next proposition we show that if there is a minimum of A whose valuation
vector equals 2t , then Double returns a BMR of this minimum.

Proposition 4.12. Let A be a reduced ideal. Suppose there is a minimum µ of A
such that val∞(µ) = 2t . Then Double(A, t, β = (β, . . . , βk−1)) returns the BMR
(β1, . . . , βk) of this minimum; that is, µ= β2βk .

Proof. In Step 3 of Double the algorithm reduces the pair ((1/β2)A, 2t−val∞(β2)),
where β is the given minimum of A which is close to t . Since 2t = val∞(µ), we see
that 2t has integer coordinates, so it is not necessary to round u = 2t − val∞(β2).

After reducing ((1/β2)A, 2t − v(β2)) we obtain an element

((1/(βkβ
2))A, 2t − val∞(β2)− val∞(βk))

of Rep f ∗(O), where βk is a minimum of (1/β2)A. Since reduction produces a
unique element in Rep f ∗(O) and elements of Rep f ∗(O) have unique representatives,
this implies that βk is uniquely determined (up to multiplication by an element of
F∗q ). Since µ is a minimum of A, we have ((1/µ)A, 0) ∈ Rep f ∗(O). We also have
that ν := µ/(β2) is a minimum of (1/β2)A. Then(

(1/ν)(1/β2)A, 2t − val∞(β2)− val∞(ν)
)
= ((1/µ)A, 0) ∈ Rep f ∗(O).

Hence we must have βk = µ/β
2; that is, Double returns a BMR of µ= βkβ

2. �

Corollary 4.13. If the input in Close (Algorithm 4.8) is a reduced ideal A and a
vector s ∈Qn such that s = val∞(µ) for a minimum µ of A, then Close outputs a
BMR of µ.

Proof. At the last step of the for loop in Step 2 of Close, we have a BMR of a
minimum β of A that is close to s/2, and the last call of Double produces a BMR
of a minimum β ′ of A that is close to s. By Proposition 4.12, Double outputs a
BMR of µ, so Algorithm Close returns a BMR of µ with s = val∞(µ). �

Corollary 4.14. The principal ideal problem is in NP.

Proof. Given a function field and an ideal I of O represented in Hermite normal
form (HNF), if the ideal is principal, then the proof is a compact representation
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B = (γ, (β1, . . . , β`)) for α, where I = αO. By Definition 4.3, the compact repre-
sentation B has size bounded by log(‖val∞(α)‖∞+g) and poly(log q, d, dg N (α)).
The field parameters are log q, d, and g. By Remark 3.8, being polynomial in
dg(N (α)) is the same as being polynomial in ht(div(A)), which is the size of the
ideal A = αO. Propositions 3.3 and 3.5 tell us that ‖log val∞(α)‖∞ is bounded.

The verifier must efficiently test whether A = (γ /β)O, where β =
∏
β2n−i

i . The
verifier can efficiently compute the ideal as follows. By Claim 4.5, (1/β)O can be
efficiently computed. Multiplication by γ is efficient. Finally, comparing the HNF
of A and (γ /β)O is efficient since the representation of an ideal is unique. �

5. Quantum algorithms for the unit group, the principal ideal problem, and
the class group

In this section we give efficient quantum algorithms for computing the unit group,
solving the principal ideal problem and computing the class group. Recall from
Section 3 that for the unit group and the principal ideal problem this means the
objects are computed in the val∞ embedding, and that compact representations
can then be computed.

The basic approach is to show that each of these problems reduces to an instance
of the abelian hidden subgroup problem (HSP), which is known to have an efficient
quantum algorithm [10]. The class group case is slightly more general since the
HSP instances will take values that are quantum states.

Theorem 5.1. There is a polynomial-time quantum algorithm for computing the
unit group of a function field.

Proof. A hidden subgroup problem for the unit group can be defined by the function
g : Zn

→ Rep f ∗(O) defined as g(e) = Reduce(O, e). Here Reduce(O, e) is the
element of Rep f ∗(O) that is computed by Algorithm 3.4; it is polynomial-time
computable by Proposition 3.5. By Remark 3.6,

Reduce(O, e)= Reduce(O, e+ v)

for every v ∈3, so the function g is constant on cosets. Therefore g is also defined
on Zn/3, and it gives a bijection between Zn/3 and Rep f ∗(O), so it is also distinct
on different cosets. Using the HSP instance g, a quantum algorithm can compute a
basis for 3 efficiently. Compact representations can then be computed if desired.

�

In the decision version of the principal ideal problem, an ideal I of O is given
in HNF and the problem is to decide if it is principal. If it is principal, then the
search version of the problem is to compute a generator; that is, to compute an
α such that I = αO. Since generators may take an exponential number of bits to
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represent in general, we only require computing val∞(α). Knowing val∞(α) and
αO determines α up to multiplication by an element of k∗. So given an arbitrary
ideal I that is given to us in HNF, the strategy is to solve the search problem and
compute a candidate value for val∞(α), and then to test whether I = αO to see if
the ideal is principal or not. A compact representation of α can then be computed
from val∞(α) and I using Algorithm 4.6.

Theorem 5.2. There is a polynomial-time quantum algorithm for the principal
ideal problem in a function field.

Proof. Recall that for a vector v ∈ Zn , calling Algorithm 3.4 on (O, v) results in a
pair (Iv, fv) ∈ Rep f ∗(O). Here Iv is a reduced ideal and fv is a vector such that fv
has positive coordinates. If (1/µ)O= Iv then val∞(1/µ)+ fv = v by Remark 3.6.

To solve the principal ideal problem we do the following: Given any ideal I we
first call Algorithm 3.4 on (I, 0) to get a reduced ideal Iv . The reduction algorithm
also computes γ such that (1/γ )I = Iv. Hence it suffices to solve the principal
ideal problem for reduced ideals. If Iv = (1/µ)O is reduced, then Iv represents
the point v +3 ∈ Zn/3 with v = val∞(µ). By the above discussion, solving
the principal ideal problem means computing v. First, by Theorem 5.1, a basis B
of the unit group (under the embedding val∞) can be computed efficiently with a
quantum algorithm. A hidden subgroup problem can be set up as follows. By
abuse of notation we denote by Zn/B the quotient of Zn by the lattice gener-
ated by the elements in B. Let G = ZM × Zn/B, where M = |Zn/B|. Define
h : G→ Rep f ∗(K )=

⋃
A Rep f ∗(A) by the following algorithm: On input (a, b),

use the composition operation in Section 3C and repeated doubling to compute a
times the group element (this does reductions along the way, giving an element
in Rep f ∗(K )); then compose the result with (O,−b) and reduce. When the ideal
I is principal, we have h(a, b) = (Iav−b, fav−b). The hidden subgroup in this
case is H = 〈(1, v)〉, and h(H) = (O, 0). A set of coset representatives for H is
{(0, w) :w ∈ Zn/B}. Then h((0, w)+ n(1, v))= h(n, w+ nv)= (I−w, f−w), and
so the different values of w correspond to the set of elements in Rep f ∗(O). So h is
constant on cosets and distinct on different cosets. The function h can be computed
efficiently using a small modification of Close (Algorithm 4.8). Therefore there is
an efficient quantum algorithm for finding generators for H . Given an element
(n, nv) ∈ ZM ×Zn/B of H , it is easy to compute v. �

Theorem 5.3. There is a polynomial-time quantum algorithm for computing the
ideal class group of a function field.

Proof. To compute the class group we also reduce to an abelian hidden sub-
group problem where the function takes quantum states as values. Since it is not
known how to compute unique representatives in the class group we instead create
quantum states to represent each element, as a superposition over all elements of
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Rep f ∗(J ) for the ideal class of J . Let g1, . . . , gm be a set of generators for Cl(O);
Appendix A shows how to compute such a set. For an ideal J , let

|φJ 〉 =
∑

(I,v)∈Rep f ∗(J )

|I, v〉.

Define
f : Zm

→ C|Pic0(K )|

by f (e1, . . . , em)=|φJ 〉, where J is the ideal resulting from Reduce(ge1
1 · · · g

em
m , 0).

The function f can be efficiently evaluated using the algorithm for the principal
ideal problem as follows. Given |e1, . . . , em〉, compute |e1, . . . , em, J 〉, where J
is the ideal resulting from Reduce(ge1

1 · · · g
em
m , 0). The ideal in the last register,

call it J , is now used to create the superposition over reduced ideals. Create∑
v∈Zn/B |J, v〉, then

∑
v∈Zn/B |J, v, (Jv, fv)〉 where (Jv, fv) is the result of calling

Reduce(J, v). Next use the principal ideal algorithm on J · J−1
v , which outputs

v, to create
∑

v∈Zn/B |J, v, (Jv, fv), v〉. Next uncompute v in the second register
using the fourth, then uncompute the fourth register by running the principal ideal
algorithm backwards. Finally, uncompute J using e1, . . . , em . �
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Appendix A. Computing generators for Cl(O)

As usual, let K be an algebraic function field over a finite field of constants k = Fq .
As discussed in Section 2, when S = {p1, . . . , pn+1} is the set of places at infinity
and deg pn+1 = 1, we have a short exact sequence

0−→ Ker−→ Pic0(K )−→ Cl(O)→ 1

where the map from Pic0(K )→ Cl(O) is given as∑
p∈PK

npp 7−→
∏

p∈PK−S

(p∩O)−np .

Given a function field K as above, there is a smooth projective geometrically
irreducible curve C whose function field is K . Let g denote the genus of this curve.

In [28] Kedlaya proved that for q with q1/2 > 16g there exists a randomized
algorithm that produces a generating set for Pic0(K ) in time polynomial in g and
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log q. The genus of the curve C does not change if we increase the size of the
base field k. Hence by enlarging the constant field, if necessary, we may assume
that q1/2 > 16g. From the exact sequence above it follows that the image of the
generating set for Pic0(K ) under the map described above gives a generating set
of Cl(O).

Appendix B. Computing Riemann-Roch spaces

In this section we analyze the complexity of computing the Riemann-Roch space
L(D) := { f ∈ K : div( f )+ D ≥ 0} ∪ {0}. The input to the problem is a function
field K and a divisor

D =
(

A,
n+1∑
i=1

tipi

)
of K . The fractional ideal A of O is given in HNF relative to an O-basis. The
second part of D is given by a set of integers {ti : 1≤ i ≤ n+ 1} that determine the
multiplicity of the infinite places, that is, the places of S = {p1, . . . , pn+1}, in D.

We follow Hess’s [26] algorithm to compute the Riemann-Roch space. In [26]
Hess does not include any proofs for the complexity of his algorithm, so in this
section we show that the Riemann-Roch space L(D) can be computed in time poly-
nomial in d, log q and ht(D). (For the definition of ht(D) see Section 2.) Hess’s
algorithm is a relatively simple, self-contained algorithm. We also investigate more
closely the complexity of computing o∞-bases of the ideals we are working with.

The main idea in [26] is that the Riemann-Roch space can be computed as the
intersection of two ideals that come from the divisor D, where the two ideals are
in the rings O and O∞.

First we show that we can compute an o∞-basis for O∞ in polynomial time.

Proposition B.1 ([15], Proposition 4.13). Let R ⊂ S be commutative rings with
identity and let U be a multiplicatively closed subset of R. If S′ is the integral
closure of R in S, then S′[U−1

] is the integral closure of R[U−1
] in S[U−1

].

Lemma B.2. An o∞-basis for O∞ is computable in time polynomial in d and log q.

Proof. By [11, Theorem 1] applied to k[1/x], we can compute a basis β1, . . . , βd

of the integral closure of k[1/x] in K . By Proposition B.1, taking integral closures
commutes with localization, so when we apply the proposition to the rings R =
k[1/x] and S= K , with U being the complement of the prime ideal (1/x) of R, we
find that o∞ = k[1/x][U−1

]. Let S′ be the integral closure of k[1/x] in K . Then
O∞ = S′[U−1

], which implies that β1, . . . , βd is an o∞-basis for O∞. �

Lemma B.3. Let A be a fractional ideal of O given by a k[x]-basis, and let B be
a fractional ideal of O∞ given by an o∞-basis. There exist bases a1, . . . , ad of A
and b1, . . . , bd of B and uniquely determined integers λi such that x−λi bi = ai .
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Proof. Let a′1, . . . , a′d ∈ K be a k[x]-basis of A and b′1, . . . , b′d ∈ K a o∞-basis of
B. Both of these are bases for K as a k(x)-vector space. Let M ∈ k(x)d×d be such
that

(a′1, . . . , a′d)= (b
′

1, . . . , b′d)M.

By [26, Corollary 4.3] there exists a unimodular T1 ∈ od×d
∞
⊂ k[[x−1

]]
d×d and a

unimodular T2 ∈ k[x]d×d such that T1 MT2 = (x−λ j δi j )i j .
Let (a1, . . . , ad)= (a′1, . . . , a′d)T2 and (b1, . . . , bd)= (b′1, . . . , b′d)T

−1
1 . Then

(b1, . . . , bn)T1 MT2 = (b′1, . . . , b′d)MT2 = (a′1, . . . , a′d)T2 = (a1, . . . , ad). �

Lemma B.4. If a1, . . . , ad and b1, . . . , bd are bases as in Lemma B.3, then A∩ B
has k-basis {x j ai : 1≤ i ≤ d, 0≤ j ≤ λ j }.

Proof. Assume λ≥ 0. Because x ∈ O, the elements x j ai lie in A for j ≥ 0, so all
we have to show is that x j ai ∈ B if and only if 0≤ j ≤ λ. We have ai = x−λi bi ∈ B
since 1/x ∈ o∞, B is an o∞-module and λi ≥ 0. Similarly, x j ai = x j−λi bi ∈ B if
and only if j − λi ≤ 0, that is, if and only if j ≤ λi . But x j ai ∈ A if and only if
j ≥ 0, so x j ai ∈ A∩ B for 0≤ j ≤ λi .

To see that this set forms a k-basis note that A∩ B =
⋃d

i=1(A∩ B∩k(x)ai ), and
a k-basis for A∩ B is the union of the k-bases for A∩ B ∩ k(x)ai .

But for i with λi ≥ 0 we have A∩ B ∩ k(x)ai = A∩ B ∩ ai k[x], so it suffices to
determine which monomials (x j )ai are in this intersection. By the above argument
the only monomials in this intersection are ai , xai , . . . , xλi ai , and these elements
are clearly linearly independent over k, so they form a k-basis for A∩ B ∩ k(x)ai

(for i with λi ≥ 0). �

Lemma B.5. The elements a1, . . . , ad and the integers λ1, . . . , λd above can be
computed in polynomial time.

Proof. We will first show that the matrices M and T2 from the proof of Lemma B.3
can be computed in polynomial time. The lemma then follows from the fact that
(a1, . . . , ad)= (a′1, . . . , a′d)T2, and that the maximum degree of elements of the j-
th column of MT2 is equal to −λ j ([19, p. 15], [26, Corollary 4.3]). When elements
in K are specified as polynomials in y, that is, as

∑n
i=0 ai yi for coefficients ai ∈

k(x), then writing a element α ∈ K in terms of a basis ω1, . . . , ωn is a vector space
transformation, with vector space generators 1, y, y2, . . . , yn−1. The columns of
the matrix A ∈ k(x)n×n contain the coefficients of the polynomials ω1, . . . , ωn .
Then solving the equation Az = b over k(x) for z gives the coefficients of b in
terms of the basis. For M , this can be done for each column.

The matrix T2 is computed using Paulus’s polynomial-time algorithm [32] by
keeping track of the operations during the basis reduction. �
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Algorithm B.6 (Ideal intersection for ideals in two different rings).

Input: A function field K ; an element x ∈ K ; a k[x]-basis ω1, . . . , ωd of O; a
k[x]-basis a′1, . . . , a′d of the fractional ideal A of O; an o∞-basis v1, . . . , vd

of O∞; and an o∞-basis b′1, . . . , b′d of the fractional ideal B of O∞.

Output: Elements a1, . . . , ad of K and integers λ1, . . . , λd such that {x j ai : 1 ≤
i ≤ d, 0≤ j ≤ λi } is k-basis of the k-vector space A∩ B.

1. Compute a matrix M such that (b′1, . . . , b′d)M = (a
′

1, . . . , a′d).

2. Do a basis reduction on M . Keep track of the operations and let T2 ∈ Gld(k[x])
be the transformation. Let −λi be the maximum degree in the i-th column of
the reduced matrix MT2.

3. Let (a1, . . . , ad)= (a′1, . . . , a′d)T2.

4. Return (a1, . . . , ad; λ1, . . . , λd).

Proposition B.7. Algorithm B.6 is correct, and runs in polynomial time.

Proof. The matrix M computed in Step 1 of the algorithm is exactly the matrix
from Lemma B.3 that leads to the special basis for A; that is, (a1, . . . , ad) =

(a′1, . . . , a′d)T2. By Lemma B.4 and its proof, if −λ j is the maximum column
degree in the j-th column of MT2, then {x j ai : 1≤ i ≤ d, 0≤ j ≤ λi } is a k-basis
for the intersection A∩ B. By Lemma B.5, the ai and the λi can be computed in
polynomial time. �

Algorithm B.8 (Riemann-Roch space).

Input: A function field K ; a k[x]-basis ω1, . . . , ωd of O; and a divisor D =
(A,

∑n+1
i=1 tipi ), where A is a fractional ideal of O given in a k[x]-basis.

Output: Elements a1, . . . , ad of K and integers λ1, . . . , λd such that {x j ai : 1 ≤
i ≤ d, 0≤ j ≤ λi } is a basis of the Riemann-Roch space L(D).

1. Compute a k[x]-basis of A−1.

2. Compute an o∞-basis of B :=5n+1
i=1 (pi ∩O∞)

ti ⊆ O∞.

3. Compute an o∞-basis of B−1.

4. Use Algorithm B.6 to compute A−1
∩ B−1.

5. Return the (a1, . . . , ad; λ1, . . . , λd) computed by Algorithm B.6.

Theorem B.9. Algorithm B.8 computes the Riemann-Roch space L(D) in time
polynomial in d, log q, and ht(D).
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Proof. Computing the inverse of a fractional ideal A of O can be done in time
polynomial in log q , d , and ht(div(A)) [14, Proposition 2.69(b)]. The ideals pi∩O∞
in Step 2 are the prime ideals of O∞ corresponding to the places in S. These can
be computed in polynomial time with an algorithm similar to the one given for
number fields in [16]. Hence we can compute an o∞-basis for the ideal B in
Step 2 in polynomial time. The inverse of an ideal B in this ring can be computed
efficiently as well. Finally, by Proposition B.7 above, a basis for the k-vector space
A−1
∩ B−1 can be computed in polynomial time. �
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The complex polynomials P.x/ with
Gal.P.x/� t /ŠM23

Noam D. Elkies

We find the polynomials P 2 CŒX� of degree 23 such that the Galois group of
P.x/� t over C.t/ is the Mathieu group M23. This completes the computation
of polyomials P for which the Galois group of P.x/� t is among the exceptional
groups listed by Müller.

1. Introduction

For P 2 CŒx� of degree n > 0, define GP to be the Galois group of P.x/ � t
over C.t/. Since P.x/ � t is irreducible, GP is a transitive subgroup of the
symmetric group Sn. Generically1 GP is all of Sn, but it can be as small as
the cyclic or dihedral group for special choices such as P D xn or P D Tn.x/
(Chebyshev polynomial) respectively. If P decomposes as P.x/ D P1.P2.x//

with each deg.Pi / > 1, then GP permutes the proper subsets fx W P2.x/D ug of
the roots with P1.u/D t , and is therefore imprimitive. The converse implication
is shown in [8, Proposition 3.4]. Müller [12] determined all GP that can arise for
indecomposable polynomials: they are the symmetric and alternating groups, the
cyclic groups of prime order, the dihedral groups of order twice an odd prime, and
twelve exceptional permutation groups with nD 6; 7; : : : ; 23; 31, the last two for
the sporadic Mathieu group M23 and the linear group GL5.Z=2Z/.

The proof uses covering-space methods and Riemann’s existence theorem, and
thus does not yield explicit polynomials. But it is still a natural question to exhibit
all P that realize each possible group GP , except for the cases of An and Sn,

MSC2010: primary 12F12; secondary 20D08.
Keywords: Mathieu group M23, Galois groups, Chebotarev density theorem.

1In particular, GP D Sn if dP=dx has n � 1 distinct roots at which P takes distinct values;
equivalently, if disct .discx.P.x/� t //¤ 0. This sufficient (but far from necessary) condition was
already noted by Hilbert ([10], see also [15, §4.4]); the formulation in terms of the discriminant of
the discriminant is attributed to Davenport in [3, p. 422].
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which occur in “many, not reasonably classifiable types” [12]. Say P;Q 2 CŒx�

are equivalent if Q.x/ D L1.P.L2.x/// for some polynomials L1; L2 both of
degree 1; then GP DGQ. Up to this equivalence, the cyclic and dihedral groups
occur only for powers and Chebyshev polynomials respectively. Some of the ex-
ceptional groups were realized in [12], or earlier by Matzat [11]; most of the others
were realized by Cassou-Noguès and Couveignes [4],2 leaving only M23. Here we
find the polynomials P with GP ŠM23.

The main novelty here is not in the computation of P but in the proof that
GP ŠM23. The coefficients of P were computed using a known p-adic method for
finding polynomial identities by solving the equivalent system of nonlinear equa-
tions in the coefficients, though here the search for the initial approximation took
several CPU-days. The difficulty was that these equations cannot distinguish be-
tween polynomials with Galois group M23 and A23, and there are four M23-covers
but numerous A23-covers with the same cycle structure (with all the A23-covers
probably defined only over number fields of rather high degree). Once we found P
with coefficients in a quartic number field F , we quickly convinced ourselves that
GP must beM23 by factoring P.x/�t0 mod � for many primes � of F and choices
of t0 mod � at which P.x/�t0 has distinct roots: in each case the degrees of the fac-
tors matched one of the 12 cycle structures of elements of M23, out of the 632 that
arise in A23. Moreover, the fraction of t0 values that yield each cycle structure was
quite near to the fraction of elements of M23 with that cycle structure, as promised
by the Chebotarev density theorem for Galois extensions of function fields. (I later
learned from Mark Watkins that Samir Siksek had independently used much the
same technique to find P and gather overwhelming evidence that GP ŠM23.)

Still this did not amount to a proof that GP Š M23. However, if GP were
actually A23 then we would observe a very different distribution of cycle structures,
which would contradict the Chebotarev theorem once the residue field of � got large
enough. In our function-field setting such a calculation turns out to be feasible
thanks to Weil’s proof of the Riemann hypothesis for curves over finite fields. We
did this for a � whose residue field is prime of characteristic l D 108 C 7 (the
smallest 9-digit prime, which happens to lie under a degree-1 prime of F ). We
showed that the resulting distribution of cycle structures implies that GP is not
5-transitive, which soon yields GP ŠM23 as desired.

The factorization of 108 polynomials mod � was a somewhat extravagant com-
putation (two days of CPU time in gp [13]). This is not the only way to prove
that GP Š M23; for example, one could do it also by numerically lifting mon-
odromy generators to permutations of 23 preimages, as Granboulan did for the 24

2Michael Zieve had already obtained but not published polynomials for a few of these cases, with
groups PGL2.Z=7Z/ (nD 8), P�L2.F8/ (nD 9, both classes), and M11 (nD 11); he also calculated
that there are four M23 polynomials up to equivalence, but was not able to exhibit such a polynomial.



POLYNOMIALS WITH GALOIS GROUP M23 361

preimages of an M24-cover [9]. Still our technique using Chebotarev plus Weil has
some advantages over the monodromy computation: while our computation took
rather long to run, it was very easy to code, whereas the monodromy calculation
would require some careful estimates to guarantee that the precision was sufficient
to obtain the correct permutations; and our technique works also for Galois groups
of extensions in positive characteristic. This approach also raises the theoretical
question of how large a residue field is necessary: perhaps it can be shown that the
counts over a field of size much smaller than 108 would have sufficed.

In the next section we exhibit F and P 2 F Œx� and give some details on its
calculation. In the following section we report on the results of our computation
mod �, use them to prove that GP ©A23, and deduce that a polynomial P1 satisfies
GP1
ŠM23 if and only if P1 is equivalent to the image of our P under one of the

four embeddings of F into C.

2. Computation of P

Suppose GP ŠM23. By [12], the map P W P1! P1 is branched above only three
points, with orders 23 (at t D 1), 2, and 4. The group M23 contains only one
conjugacy class of order 2 and one of order 4. The corresponding monodromy
generators 
2 and 
4 must have 
2
4 of order 23. Up to conjugation in M23,
there are four such pairs .
2; 
4/, two for each of the two conjugacy classes of
elements of order 23 in M23, and in each case 
2 and 
4 generate M23. Since M23

is its own normalizer in S23, we conclude that there are four equivalence classes
of M23 polynomials, each defined over a number field F containing Q.

p
�23/

with degree 1 or 2. We eventually found that F is the dihedral quartic field of
discriminant 3 �233 generated by a root of g4Cg3C9g2�10gC8, which indeed
contains the square roots ˙.2g3C 4g2C 16g� 7/=3 of �23.

The permutations 
2 and 
4 of 23 objects have cycle structures 1728 and 132244.
Thus P is equivalent to a monic polynomial with two double and four quadruple
roots. Then, if � is the value of P at its finite critical points other than zeros, we
can write

P D P 22 P3P
4
4 D P7P

2
8 C �; (1)

where the Pi (i D 2; 3; 4; 7; 8) are pairwise coprime monic polynomials of degree i ,
and � is a nonzero constant. It may seem that we have 10 coefficients to determine:
the 2C3C4 non-leading coefficients of P2; P3; P4, together with � . We can reduce
this to 8 variables using the remaining equivalences (translate x, and multiply x
by some nonzero � and divide each Pi by �i ). One further variable is eliminated
using a familiar3 differentiation trick: dP=dx has leading term 23x22 and is a

3The earliest published references I know of are [6; 2], but the trick must have been known and
used long before that.
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multiple of P2P
3
4 P8, so must equal 23P2P

3
4 P8; hence

P8 D
1

23

dP=dx

P2P
3
4

D
1

23

�
2P 0

2P3P4CP2P
0
3P4C 4P2P3P

0
4

�
: (2)

Still the remaining nonlinear equations are too complicated to solve directly by
techniques such as Gröbner bases, especially since they do not distinguish between
M23- and A23-covers.

Instead we use the following strategy. Suppose the solution is defined over a
number field F with a prime � of small residue field at which the cover P WP1!P1

has good reduction. We can then find our cover mod � by exhaustive search. An
arbitrary lift to the �-adic numbers is then an approximate solution, which can
be improved by a multivariate Newton iteration. Once we have the solution to
high enough �-adic precision, we can recognize it as an F -rational point by lattice
reduction, and verify that it satisfies the equations exactly.

For a general system of nonlinear equations we could not know in advance
which � satisfy the condition of good reduction. In our setting, we are seeking
a “Belyi map” (a cover of P1 ramified only above three points), so Beckmann’s
theorem [1] gives a sufficient condition: if the characteristic of the residue field of �
does not divide the order of the Galois group then the cover has good reduction
at � . But we do not know F in advance, and thus do not know which residue fields
arise. We therefore tried small prime fields Z=pZ in the hope that one would work.
But searches over .Z=pZ/7 became ever longer without finding the desired cover.
For example, a search mod 13 (the smallest prime not dividing jM23j) found only

P2 D x
2
� 3x� 6; P3 D x

4
� 4x� 4; P4 D x

4
C 5x2� 5x� 1

with � D 5; but the resulting P DP 22 P3P
4
4 cannot have Galois group M23 because

there are t0 ¤ 0; 5 for which the factorization of P � t0 mod 13 has degrees not
seen in any of the M23 cycle structures — for instance, P � 1 has an irreducible
factor of degree 19. In retrospect we know there is no M23 polynomial over Z=13Z,
because F has no prime of degree 1 above 13 (even though 13 does split in the
quadratic subfield Q.

p
�23/).

To bring larger p within reach, we applied the following refinement. For j � 0
and anyQ2CŒx�, denote by cj .Q/ the xj coefficient ofQ; for example ci .Pi /D 1
for each i D 2; 3; 4; 7; 8. For any monic P2; P3; P4, let R be the remainder
when P23 is divided by P 28 , where P23 and P8 are defined by (1) and (2). Then R
has degree deg.P 28 / � 1 D 15 generically, but must vanish at the desired solu-
tion. We noticed that if we hold all but c0.P4/ and c1.P4/ fixed then c15.R/ and
c14.R/ are polynomials of degree only 2 in c0.P4/ and of degree 3 in c1.P4/;
in fact, c15.R/ and c14.R/ have degrees 2 and 3 respectively in .c0.P4/; c1.P4//
together. We could have solved the simultaneous equations c15.R/D c14.R/D 0 in
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.c0.P4/; c1.P4//, reducing the search from O.p7/ to O.p5/ but with quite a large
O-constant. Instead we opted for the following strategy, which is still O.p7/ but
with a much smaller constant. Having fixed all but c0.P4/ and c1.P4/, compute R
at the 12 sample points with c0.P4/D 0; 1; 2 and c1.P4/D 0; 1; 2; 3, and then use
the fact that both c15.R/ and c14.R/ are quadratic in c0.P4/ and cubic in c1.P4/
to recursively evaluate them at all other choices of c0.P4/ and c1.P4/. If both
vanish, test whether deg.R/D 0. This way, instead of computing p2 polynomial
remainders we need on average only 13: twelve sample points, and one more for
the expected number of solutions of c15.R/D c14.R/D 0.

We implemented this search in gp (which we used also for the earlier O.p7/
method), and finally succeeded at p D 29. We assumed that c2.P3/ D 0, and
that c0.P3/ D c1.P3/ if both c0.P3/ and c0.P1/ are nonzero; every choice of
P2; P3; P4 with c0.P3/c1.P3/ ¤ 0 is equivalent to exactly one satisfying these
conditions. (One can also make a unique choice if c0.P3/D 0 or c1.P3/D 0, but
here this was not necessary.) The search took 46 CPU-hours, compressed to less
than five hours by running on 10 heads in parallel, which is an order of magnitude
smaller than the time to compute some 297 polynomial remainders. The result-
ing list of solutions contained two for which every P.x/� t0 has a factorization
consistent with GP ŠM23. One of these was

P2 D x
2
� x� 3; P3 D x

3
� 3x� 3; P4 D x

4
� 3x3� 11x2C 13xC 7

with � D 5. Lifting to Z=p128Z (while retaining the conditions c2.P3/ D 0 and
c0.P3/D c1.P3/) gave more than enough precision to identify all the coefficients
as elements of the quartic field F DQŒg�=.g4Cg3C 9g2� 10gC 8/.

These elements ofF are quite complicated because of the normalization c0.P3/D
c1.P3/. Once we have found one choice of P2; P3; P4 2 F Œx� that works, we can
find equivalent but simpler ones by removing this normalization and the spurious
bad reduction that it entails. One reasonably simple choice we found (dropping
also the condition that the Pi be monic) is as follows:

P2 D .8g
3
C 16g2� 20gC 20/x2� .7g3C 17g2� 7gC 76/x

� 13g3C 25g2� 107gC 596I

P3 D 8.31g
3
C 405g2� 459gC 333/x3C .941g3C 1303g2� 1853gC 1772/x

C 85g3� 385g2C 395g� 220I

P4 D 32.4g
3
� 69g2C 74g� 49/x4C 32.21g3C 53g2� 68gC 58/x3

� 8.97g3C 95g2� 145gC 148/x2C 8.41g3� 89g2�gC 140/x

� 123g3C 391g2� 93gC 3228:
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With this choice,

� D
238317

233
.47323g3� 1084897g2C 7751g� 711002/;

the last factor having norm 227323510.

3. Proof of Gal.P.x/� t/ŠM23

We chose the degree-1 prime � of F above the rational prime l D 108 C 7 at
which g � 36436770 mod l . We reduced P mod � to obtain a polynomial P
with coefficients in F� D Z=lZ, and factored P � t0 for each of the l � 2 values
of t0 mod l for which P � t0 has no repeated roots. In each case the degrees of
the irreducible factors, and thus the cycle structure of the action of Frobenius at
t D t0, agreed with the cycle structure of one or two of the conjugacy classes ofM23.
Table 1 lists the key information for each class or pair of classes c�M23, including
the difference between the expected and the actual number of occurrences of c’s
cycle structure. The agreement is quite close: the discrepancy never exceeds twice
the square root of the expected value.

In particular, because each of theM23 cycle structures occurs (and GP �A23 be-
cause discx.P.x/� t / is a square) we know that GP is a transitive subgroup of A23
containing elements of order p for each of the prime factors p D 2; 3; 5; 7; 11; 23

Occurrences

ATLAS label Cycle structure jcj=jM23j Expected Actual �

1A 123 1=jM23j 10 9 �1

2A 1728 1=2688 37202 37235 33

3A 1536 1=180 555556 556547 991

4A 132244 1=32 3125000 3123317 �1683

5A 1354 1=15 6666667 6665816 �851

6A 1 223262 1=12 8333334 8329354 �3980

7A, 7B 1273 2=14 14285715 14290600 4885

8A 1 2 4 82 1=8 12500001 12493007 �6994

11A, 11B 1 112 2=11 18181819 18185450 3631

14A, 14B 2 7 14 2=14 14285715 14289505 3790

15A, 15B 3 5 15 2=15 13333334 13331689 �1645

23A, 23B 23 2=23 8695653 8697476 1823

Table 1. Data on conjugacy classes. For each class or pair of classes c �M23,
we list the ATLAS label [5, p. 71], the cycle structure, the fraction jcj=jM23j,
the integer nearest to .jcj=jM23j/.l � 2/ (which is the expected number of occur-
rences of this cycle structure), the actual number of times it appeared, and the
difference between the actual and expected counts.
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of jM23j D 2
7 � 32 � 5 � 7 � 11 � 23 D 10200960. This shows that GP is either M23

or A23.
One could try various strategies for deducing GP © A23 from the counts in

Table 1. The following approach was the one that worked most easily. We shall
take C0 and C1 to be the projective t - and x-lines in the following general setup.

Suppose C1=C0 is a degree-n covering of curves over some finite field F�. Let zC
be the Galois closure, with Galois group G � Sn. Assume that G is k-transitive.
Let Gk be the stabilizer of a k-element set, so the action of Gk on that set gives a
surjective homomorphism Gk! Sk whose kernel is the k-point stabilizer; write
Ck D zC=Gk , so Ck=C0 is a cover of degree

�
n
k

�
. If the cover C1=C0 is given

by a polynomial Q of degree n, then with finitely many exceptions a point of Ck
corresponds to a degree-k factor of a specialization of Q.

LetNk be the number of F�-rational points of Ck . For an unramified F�-rational
point t0 on C0, let Nk.t0/ be the number of F�-rational points of Ck lying over t0.
We next express Nk.t0/ in terms of the Galois structure of the preimage of t0 in C1.
Let � be the Frobenius permutation of the preimage of t0 in C1.

Lemma. Let c1; c2; : : : ; cm (with
Pm
iD1 cm D n) be the cycle lengths of �. Then

Nk.t0/ is the Xk coefficient of the polynomial
Qm
iD1.1CX

ci /.

Proof. A k-element subset of the preimage of t0 yields a rational point of Ck if and
only if it is taken to itself by �; equivalently, if and only if it is the union of orbits
of �. Since these orbits have sizes ci , the expansion of

Qm
iD1.1CX

ci / yields
a sum of 2m monomials, with each monomial Xk corresponding to a k-element
subset. �

We now take C0 and C1 to be the t - and x-lines. Then G DGP by Beckmann’s
criterion [1] (since l is too large to be a factor of jGj even if G D A23). Using the
entries in Table 1, we find for each k D 1; 2; : : : ; 22 the sum of

Qm
iD1.1CX

ci /

over the l � 2 unramified points t0. The sum is invariant under k$ n� k, so we
need only tabulate up to k D 11. In each case we write

P
t0
Nk.t0/DAl �B with

A 2 Z minimizing jBj; the results are given in Table 2.
In each case Al �B is a lower bound for Nk , with the difference coming from

the counts above the three ramified points. If G acts k-transitively then Ck is an

k A B k A B k A B

1 1 10 5 2 10892 9 5 487620
2 1 6592 6 3 60120 10 5 742744
3 1 19784 7 4 109978 11 7 883854
4 1 2326 8 5 243430

Table 2. Integers A and B such that
P
t0
Nk.t0/D Al �B , with jBj minimal.
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irreducible curve, and then the Weil bound gives jNk � .l C 1/j � 2l1=2g.Ck/.
Table 2 suggests that this might happen for k � 4 but not for k D 5 (and indeed C5
has two components, one for each of the orbits of the action of M23 on 5-element
subsets). We next prove that G is not 5-transitive by bounding g.C5/. If GP DA23
then Ck has genus at most

1C
1

2

�
1�

1

2
�
1

4
�
1

23

�
ŒCk W C0�D 1C

1

2

19

92

�
23

k

�
by the Riemann-Hurwitz formula. For k D 5 this gives 27805=8, so g.C5/ < 3476.
Therefore

jN5� .l C 1/j< 2l
1=2
� 3476 < 7 � 107: (3)

But the k D 5 row of Table 2 gives

N5� .l C 1/� l � 10893 > 9 � 10
7; (4)

even without including the preimages of the ramified points. The conflict between
inequalities (3) and (4) refutes the hypothesis that GP D A23 and completes the
proof that GP ŠM23. �
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Experiments with the transcendental
Brauer-Manin obstruction

Andreas-Stephan Elsenhans and Jörg Jahnel

We report on some experiments and theoretical investigations concerning weak
approximation and the transcendental Brauer-Manin obstruction for Kummer
surfaces of certain products of elliptic curves.

1. Introduction

Weak approximation. Consider a geometrically integral, projective variety S over
the field Q of rational numbers. We say that S fulfills weak approximation when
the following is true: For every finite set fp1; : : : ;plg of prime numbers and every
vector

.x0;x1; : : : ;xl/ 2 S.R/�S.Qp1
/� � � � �S.Qpl

/;

there exists a sequence of Q-rational points that simultaneously converges to xi in
the pi-adic topology for i D 1; : : : ; l and to x0 with respect to the real topology. In
a more formal language, this means that the set S.Q/ of the rational points on S

is dense in the set S.AQ/ of all adelic points.
Even for Fano varieties, which are generally expected to have many rational

points, weak approximation is not always fulfilled. Well-known counterexamples
are due to Sir Peter Swinnerton-Dyer [26], L. J. Mordell [20], J. W. S. Cassels and
M. J. T. Guy [4], and many others.

For varieties of intermediate type — K3 surfaces, for example — the situation is
yet more obscure. In fact, proving the much weaker statement that #S.Q/D1

is usually a formidable task in its own [18; 17]. It seems therefore that proving
weak approximation, even for a single K3 surface, is presently out of reach and
that experiments are asked for.

MSC2010: primary 11D41; secondary 11Y50, 11G35, 14J28.
Keywords: Kummer surface, weak approximation, transcendental Brauer-Manin obstruction,
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Obstructions and colorings. To test weak approximation experimentally is, how-
ever, an ill-posed problem, at least from the strictly formal point of view. The
reason is that weak approximation is not a finite phenomenon. It is strongly infinite
in nature.

An interesting situation occurs when a certain “obstruction” is responsible for
the failure of weak approximation. This means that S.Qp/ breaks somehow regu-
larly into open-closed subsets, each of which behaves uniformly as far as approx-
imation by Q-rational points is concerned. As S.Qp/ is compact, it is clear that
finitely many subsets U1; : : : ;Uk � S.Qp/ will suffice. When such a behavior
appears, we speak of a coloring and call the subsets the colors of S.Qp/.

The Brauer-Manin obstructions. It is well-known that a class ˛ 2 Br.S/ in the
Grothendieck-Brauer group of S induces such a coloring. For a point x 2 S.Qp/,
its color is obtained as invQp

.˛jx/ 2Q=Z. If ˛ is of order N then not more than N

colors may occur.
As a result, a failure of weak approximation may appear. Indeed, for a Q-rational

point x one must have
P

p invQp
.˛jx/D 0, but the same need not be true for an

adelic point. This phenomenon is called the Brauer-Manin obstruction [19].
There is a canonical filtration on Br.S/, which gives rise to a distinction be-

tween algebraic and transcendental Brauer classes. Correspondingly, there are the
algebraic and the transcendental Brauer-Manin obstructions.

The algebraic Brauer-Manin obstruction is rather well understood. At least on
S.Qp/good � S.Qp/, the p-adic points with good reduction, it yields extremely
regular colorings [5; 6; 11]. For example, a coloring by two colors is possible only
when there is an unramified two-sheeted covering � W X ! S.Qp/good. The two
colors are then given by the subsets

fx 2 S.Qp/ j �
�1.x/D∅g and fx 2 S.Qp/ j #��1.x/D 2g:

Explicit computations of the algebraic Brauer-Manin obstruction have been done
for many classes of varieties. Most of the examples were Fano. For instance, we
gave a systematic treatment of the (algebraic) Brauer-Manin obstruction for cubic
surfaces in [9; 10]. Concerning K3 surfaces, computations for diagonal quartic
surfaces are provided by M. Bright [3]. Furthermore, it is known that there is no
algebraic Brauer-Manin obstruction on a generic Kummer surface, or in the generic
case of a Kummer surface associated to the product of two elliptic curves [25,
Proposition 1.4(ii)].

The transcendental Brauer-Manin obstruction. The transcendental Brauer-Manin
obstruction is much less understood and seems to be by far more difficult, at least
at present. Historically, the first example of a variety where weak approximation
is violated due to a transcendental Brauer class was constructed by D. Harari [12].



TRANSCENDENTAL BRAUER-MANIN OBSTRUCTION 371

Concerning K3 surfaces, the available literature is still rather small. The inter-
ested reader is encouraged to consult the articles [13; 14; 15; 16; 22; 24; 27], at least
in order to recognize the enormous efforts made by the authors. For example, the
entire Ph.D. thesis of Th. Preu is devoted to the computation of the transcendental
Brauer-Manin obstruction for single diagonal quartic surface.

An exceptional case, which seems to be a bit more accessible, is provided by
the Kummer surfaces S WD Kum.E �E0/ for two elliptic curves E and E0. Here
the Brauer group, which is typically purely transcendental, was described in detail
by A. N. Skorobogatov and Yu. G. Zarhin in [25].

The present article. For this reason, in the present article we will deal with Kum-
mer surfaces, defined over Q, of the type described in the preceding paragraph. To
keep the theory simple, we will restrict ourselves to the case that both curves have
their full 2-torsion defined over the base field. We may start with equations for the
elliptic curves of the form

E W y2
D x.x� a/.x� b/ and E0 W y2

D x.x� a0/.x� b0/;

for a; b; a0; b0 2Q. Then S WDKum.E�E0/ is a double cover of P1�P1, an affine
chart of which is given by the equation

z2
D x.x� a/.x� b/u.u� a0/.u� b0/: (1)

The goal of the article is to report on our experiments and theoretical investigations
concerning weak approximation and the transcendental Brauer-Manin obstruction
for Kummer surfaces of this particular type.

Remark 1.1. To be precise, Equation (1) defines a model of the Kummer surface
with 16 singular points of type A1. In the minimal regular model, the singularities
are replaced by projective lines. As Br.P1

k
/ D Br.k/, the evaluation of a Brauer

class on a projective line is automatically constant. Thus, we may work as well
with the singular model.

The results. Among the Kummer surfaces of type (1) for integers a, b, a0, b0 of
absolute value at most 200, we determined all those for which there is a transcen-
dental Brauer-Manin obstruction arising from a 2-torsion Brauer class.

We found that there are exactly 3418 such surfaces having a nontrivial 2-torsion
Brauer class. In three cases, this class was algebraic. Moreover, we identified the
adelic subsets of the surfaces where the Brauer class gives no obstruction. On only
six of the surfaces, it happened that no adelic point was excluded.

On the other hand, we developed a memory-friendly point searching algorithm
for Kummer surfaces of the form above. The sets of Q-rational points found turned
out to be compatible with the idea that the Brauer-Manin obstruction might be the
only obstruction to weak approximation.
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2. The transcendental Brauer group

Generalities. The cohomological Grothendieck-Brauer group of an algebraic va-
riety S over a field k is equipped with a canonical three-step filtration, defined by
the Hochschild-Serre spectral sequence.

(i) Br0.S/ � Br.S/ is the image of Br.k/ under the natural map. When S has
a k-rational point, we have Br0.S/ Š Br.k/; when k is a number field, the
existence of an adelic point suffices. The group Br0.S/ does not contribute
to the Brauer-Manin obstruction.

(ii) The quotient Br1.S/=Br0.S/ is isomorphic to H 1.Gal.ksep=k/;Pic.Sksep//.
This subquotient is called the algebraic part of the Brauer group. For k a
number field, it is responsible for the algebraic Brauer-Manin obstruction.

(iii) Finally, Br.S/=Br1.S/ injects into Br.Sksep/. This quotient is called the tran-
scendental part of the Brauer group. Nevertheless, every Brauer class that is
not algebraic is usually said to be transcendental. For k a number field, the
corresponding obstruction is a transcendental Brauer-Manin obstruction.

When S is the Kummer surface corresponding to the product of two elliptic
curves, the Brauer group of S is well understood due to the work of A. N. Skoro-
bogatov and Yu. G. Zarhin [25]. For us, the proposition below will be sufficient.

Notation. We will denote the 2-torsion part of an abelian group A by A2.

Proposition 2.1 (Skorobogatov and Zarhin). Let

E W y2
D x.x� a/.x� b/ and E0 W v2

D u.u� a0/.u� b0/

be elliptic curves over a field k of characteristic zero, and let S WD Kum.E �E0/

be the corresponding Kummer surface. Suppose that the 2-torsion points of E and
E0 are defined over k and that E

k
and E0

k
are not isogenous to one another. Then

Br.S/2=Br.k/2 D im
�
Br.S/2! Br.S

k
/2
�
Š ker.� W F4

2! .k�=k�2/4/;

where � is given by the matrix

Maba0b0 WD

0BB@
1 ab a0b0 �aa0

ab 1 aa0 a0.a0� b0/

a0b0 aa0 1 a.a� b/

�aa0 a0.a0� b0/ a.a� b/ 1

1CCA : (2)

Remark 2.2. The reader should keep in mind that the matrix in Equation (2) is
supposed to be giving a linear map from F4

2
to .k�=k�2/4. Thus, the entries of the

matrix (although written as elements of k) represent classes of k�=k�2, and the
null space of the matrix is a subspace of F4

2
.



TRANSCENDENTAL BRAUER-MANIN OBSTRUCTION 373

Proof of Proposition 2.1. The equality on the left hand side expresses the absence
of algebraic Brauer classes, which is shown in [25, Proposition 3.5.i]. The isomor-
phism on the right is established by combining [25, Propositions 3.5.ii and 3.5.iii]
with [25, Lemma 3.6]. The reader might want to compare [25, Proposition 3.7]. �

Consider the case where k is algebraically closed. Then the Kummer sequence
induces a short exact sequence

0! Pic.S/=2 Pic.S/!H 2
ét.S; �2/! Br.S/2! 0:

We have dimF2
Pic.S/=2 Pic.S/ D 16C dimF2

NS.E �E0/=2 NS.E �E0/ D 18

and dimF2
H 2

ét.S; �2/ D 22. This explains why Br.S/2 Š F4
2
. More canonically,

there are isomorphisms

Br.S/2 ŠH 2
ét.E �E0; �2/=.H

2
ét.E; �2/˚H 2

ét.E
0; �2//Š Hom.EŒ2�;E0Œ2�/:

Remark 2.3. If k is a field of characteristic zero, the assumption that the 2-torsion
points are defined over k implies that Gal.k=k/ operates trivially on Br.S

k
/2. We

see explicitly that

Br.S/2=Br.k/2 ¤ Br.S
k
/

Gal.k=k/
2

Š F4
2;

in general.

Assume that k is algebraically closed. For two rational functions f;g 2 k.S/,
we denote by .f;g/ the quaternion algebra

k.S/fI;J g=.I2
�f;J 2

�g; IJ CJI/

over k.S/. Cohomologically, f and g define classes in H 1.Gal.k.S/=k.S//; �2/

via the Kummer sequence. The Brauer class of .f;g/ is the cup product of these
two classes in

H 2.Gal.k.S/=k.S//; �˝2
2
/DH 2.Gal.k.S/=k.S//; �2/

�H 2.Gal.k.S/=k.S//; k.S/�/:

The symbol . � ; � / is thus bilinear and symmetric.

Fact 2.4. Let k be an algebraically closed field of characteristic 0, let a, b, a0, b0 be
elements of k, and let S be as in Proposition 2.1. Then, in terms of the canonical
injection Br.S/ ,! Br.k.S//, a basis of Br.S/2 is given by the four quaternion
algebras

A�;� WD ..x��/.x� b/; .u� �/.u� b0//;

for � 2 f0; ag and � 2 f0; a0g. Here the standard vectors in F4
2

correspond to these
four algebras. More precisely, e1 corresponds to Aa;a0 , e2 to Aa;0, e3 to A0;a0 ,
and e4 to A0;0.
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Proof. This is [25, Lemma 3.6] together with [25, formula (20)]. �
Remark 2.5. Using bilinearity, we find for nine of the 15 nontrivial classes a de-
scription as a single quaternion algebra, similar to the type above. For the six
classes corresponding to the vectors .1; 0; 0; 1/, .0; 1; 1; 0/, .1; 1; 1; 0/, .1; 1; 0; 1/,
.1; 0; 1; 1/, and .0; 1; 1; 1/, we need at least two such algebras.

Observations 2.6 (Isomorphy, twisting).

(i) We may replace .a; b/ by .�a; b� a/ or .�b; a� b/ without changing S , and
similarly for .a0; b0/. Indeed, these substitutions simply come from applying
the translations A1

k
! A1

k
given by x 7! x��, for �D a; b.

(ii) It is also possible to replace .a; b; a0; b0/ with the vector .�2a; �2b; a0; b0/ or
the vector .�a; �b; �a0; �b0/, for � 2 k. The reason is that the twist

E.�/
W �y2

D x.x� a/.x� b/

is isomorphic to the elliptic curve given by Y 2 DX.X ��a/.X ��b/.

One hypothesis of Proposition 2.1 is that E
k

and E0
k

are not isogenous. Only mi-
nor modifications to the proposition are necessary to deal with the case when these
curves are isogenous. The isogeny causes NS.E

k
�E0

k
/=2 NS.E

k
�E0

k
/ to have di-

mension higher than two, so the homomorphism F4
2
ŠHom.EŒ2�;E0Œ2�/!Br.S

k
/2

is only a surjection, not a bijection.
Over a non-algebraically closed field, the situation is as follows. If E and E0

are isogenous over k then dimF2
Pic.S/=2 Pic.S/ > 16C 2D 18. As the additional

generator evaluates trivially, it will be found in ker Maba0b0 [25, Lemma 3.6]. Thus,
the homomorphism ker Maba0b0� Br.S/2=Br.k/2 has a nontrivial kernel.

An isogeny defined over a proper field extension l=k causes the same effect
over l , but not over k. As Pic.S/=2 Pic.S/¨ Pic.Sl/=2 Pic.Sl/, it may, however,
happen that a Brauer class is annihilated by the extension l=k; that is, that a vec-
tor in ker Maba0b0 describes an algebraic Brauer class. By the Hochschild-Serre
spectral sequence, we have H 2

ét.S; �2/=Br.k/2 �H 2
ét.Sk

; �2/. Hence, there are
no other algebraic 2-torsion Brauer classes than these.

The transcendental Brauer-Manin obstruction.

Lemma 2.7. Let k be a local field of characteristic zero, let E Wy2Dx.x�a/.x�b/

and E0 W v2 D u.u� a0/.u� b0/ be elliptic curves over k with all 2-torsion points
defined over k, and let S WD Kum.E �E0/, given explicitly by

z2
D x.x� a/.x� b/u.u� a0/.u� b0/: (3)

Let ˛ 2 Br.S/2 be a Brauer class, represented by an Azumaya algebra over k.S/

of the type
N

i A�i ;�i
. Then the local evaluation map ev˛ W S.k/! 1

2
Z=Z is given
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by

.x;uI z/ 7! ev˛..x;uI z//D
X

i

�
.x��i/.x� b/; .u� �i/.u� b0/

�
k
:

Here . � ; � /k denotes the k-Hilbert symbol [2, Chapter 1, §6].

Proof. By definition, ev˛..x;uI z//D inv.˛j.x;uIz//. Further, ˛j.x;uIz/ is the Azu-
maya algebra

N
i..x��i/.x� b/; .u� �i/.u� b0// over k. Now observe that the

quaternion algebra .s; t/ splits if and only if t is a norm from k.
p

s/. This is tested
by the norm residue symbol .t; k.

p
s/=k/, which agrees with the classical Hilbert

symbol .s; t/k . �

Remarks 2.8.

(i) For us, the Hilbert symbol takes values in .1
2

Z=Z;C/. This differs from the
classical setting, where the values are taken in .f˙1g; � /.

(ii) According to Proposition 2.1, Br.S/2=Br.k/2 � F4
2

. Further, by Fact 2.4, we
have an explicit basis, which is given by Azumaya algebras; that is, for each
class in Br.S/2=Br.k/2, we chose a lift to Br.S/2. For k a local field, this
lift is normalized such that ev˛..1;1I � //D 0. Indeed, for x close to1 in
k, .x��/.x� b/ is automatically a square.

The next lemma shows that the evaluation map is constant near the singular
points.

Lemma 2.9. Let p > 2 be a prime number, and let a, b, a0, b0 be elements of Zp

such that E W y2 D x.x � a/.x � b/ and E0 W v2 D u.u� a0/.u� b0/ are elliptic
curves that are not isogenous to each other. Suppose that

min.�p.a/; �p.b//Dmin.�p.a0/; �p.b0//D 0

and put

l WDmax.�p.a/; �p.b/; �p.a� b/; �p.a
0/; �p.b

0/; �p.a
0
� b0//:

Consider the surface S over Qp defined by z2 D x.x� a/.x� b/u.u� a0/.u� b0/.
Then for every ˛ 2 Br.S/2, the evaluation map S.Qp/!Q=Z is constant on the
subset

T WD
˚
.x;uI z/ 2 S.Qp/

ˇ̌
�p.x/ < 0 or �p.u/ < 0

	
[

[
�2f0;a;bg
�2f0;a0;b0g

˚
.x;uI z/ 2 S.Qp/

ˇ̌
x � �;u� � .mod plC1/

	
depicted in Figure 1.
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0

a0

b0

1

0 a b 1

Figure 1. The set T .

Proof. It suffices to prove the lemma for ˛ ranging over a lift to Br.S/2 of a basis for
Br.S/2=Br.Qp/2; we will use the basis given in Fact 2.4. We first consider the ba-
sis element e1, corresponding to the Hilbert symbol ..x�a/.x�b/; .u�a0/.u�b0//p .
We will show that if ab and a0b0 and �aa0 are all squares, then the Hilbert symbol
will be 0 on the set T .

Using the equation of the surface, we see that

..x� a/.x� b/; .u� a0/.u� b0//p D ..x� a/.x� b/;�xu/p (4)

D .�xu; .u� a0/.u� b0//p:

Let us distinguish three cases. In all cases, we observe that a Hilbert symbol is
zero when at least one of its arguments is a square.

First case. Suppose that either �p.x/ < 0 or �p.u/ < 0. If the first condition
holds, then .x � a/.x � b/ is a square, while if the second condition holds, then
.u� a0/.u� b0/ is a square. Thus the Hilbert symbol is 0 in this case.

Second case. Suppose that x � 0 or u� 0 .mod plC1/.
If x � 0 .mod plC1/ then .x� a/.x� b/� ab .mod plC1/. Since

�p.ab/D �p.a/C �p.b/Dmax.�p.a/; �p.b//� l;

the numbers .x� a/.x� b/ and ab belong to the same square class. Thus, if ab is
a square, the Hilbert symbol will be 0.

Analogously, if u� 0 .mod plC1/ then .u�a0/.u�b0/� a0b0 .mod plC1/, so
that .u� a0/.u� b0/ is in the square class of a0b0. It follows that if a0b0 is a square,
the Hilbert symbol will be 0.

Third case. Suppose that x � � and u � � .mod plC1/ where � 2 fa; bg and
� 2 fa0; b0g.

Suppose, for example that x � a .mod plC1/ and u � a0 .mod plC1/. Then,
in particular, x � a .mod p�.a/C1/ and u� a0 .mod p�.a

0/C1/. This implies that
�xu��aa0 .mod p�.a/C�.a

0/C1/ so that �xu is in the square class of �aa0. In
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particular, if �aa0 is a square then the Hilbert symbol is 0. The other possibilities
for the residue classes of x and u yield the square classes of �ab0, �ba0, and �bb0,
which are all trivial when ab, a0b0, and �aa0 are squares.

We see that the evaluation map is constant on the set T if and only if the vector

.1; ab; a0b0;�aa0/t 2 .Q�p=Q�2p /4

is zero. This is exactly the first column of the matrix Maba0b0 given in Equation (2).
For the Hilbert symbols ..x�a/.x�b/;u.u�b0//p , .x.x�b/; .u�a0/.u�b0//p ,

and .x.x� b/;u.u� b0//p, the calculations are completely analogous. They lead
to the second, third, and fourth columns of Maba0b0 .

Hence we see that, for a combination of Hilbert symbols, the evaluation map is
constant on the set T if and only if it represents a Brauer class. �

Remarks 2.10.

(i) In Lemma 2.9, the assumption that

min.�p.a/; �p.b//Dmin.�p.a0/; �p.b0//D 0

is not a restriction in view of Remark 2.16(i), below.

(ii) A result similar to Lemma 2.9 holds for p D 2 as well; however, the condition
in the first set in the definition of T must be strengthened to �2.x/ < �2 or
�2.u/ < �2, and the congruences in the other sets in the definition of T must
be taken modulo 2lC3. The proof is essentially the same.

Proposition 2.11. Let k be either R or the field Qp for a prime p. Let E W y2 D

x.x� a/.x� b/ and E0 W v2 D u.u� a0/.u� b0/ be elliptic curves over k with all
2-torsion points defined over k, and let S WD Kum.E �E0/ be the corresponding
Kummer surface. Suppose that E and E0 are not isogenous to one another, and
that both E and E0 have good reduction if k D Qp. Then for every ˛ 2 Br.S/2,
the evaluation map ev˛ W S.k/!Q=Z is constant.

Proof. First suppose that k DQp. Then the assertion of the lemma is a particular
case of a very general result [6, Proposition 2.4] due to J.-L. Colliot-Thélène and
A. N. Skorobogatov. (Using Lemma 2.9 and elementary properties of the Hilbert
symbol, one could also provide an elementary argument that is specific for the
present situation.)

Next, suppose that k D R. Without loss of generality, we may assume that a>

b > 0 and a0 > b0 > 0. Then it will suffice to prove the assertion for representatives
of e2 and e3, that is, for ..x�a/.x�b/;u.u�b0//R and .x.x�b/; .u�a0/.u�b0//R.

Consider e2. Suppose .x;uI z/ is an R-rational point on the model of S given
by Equation (3). If ..x� a/.x� b/;u.u� b0//R D

1
2

then .x� a/.x� b/ < 0 and
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u.u� b0/ < 0. Hence, b < x < a and 0< u< b0. But then

z2
D x.x� a/.x� b/u.u� a0/.u� b0/ < 0;

a contradiction. Thus, the evaluation map is constant.
For e3, the argument is analogous. �

Algorithm 2.12.

Input: Integers a, b, a0, and b0; a prime number p; and a Brauer class ˛ 2Br.S/2
for the surface

S W z2
D x.x� a/.x� b/u.u� a0/.u� b0/;

given as a combination of Hilbert symbols.

Output: The coloring of S.Qp/ defined by ev˛ W S.Qp/!
1
2

Z=Z.

1. Calculate l WD max.�p.a/; �p.b/; �p.a � b/; �p.a
0/; �p.b

0/; �p.a
0 � b0//, the

bound established in Lemma 2.9.

2. Initialize three lists S0, S1, and S2, the first two being empty, the third contain-
ing all triples .x0;u0;p/ for x0;u0 2 f0; : : : ;p�1g. A triple .x0;u0;p

e/ shall
represent the subset

f.x;uI z/ 2 S.Qp/ j �p.x�x0/� e; �p.u�u0/� eg:

3. Run through S2. For each element .x0;u0;p
e/, execute the following opera-

tions.

(a) Test whether the corresponding set is nonempty. If not, delete the element
.x0;u0;p

e/.
(b) If e� lC1 and �p.x��/� lC1 for some�2f0; a; bg, and �p.u��/� lC1

for a � 2 f0; a0; b0g, then move .x0;u0;p
e/ to S0.

(c) Test naïvely, using the elementary properties of the Hilbert symbol, whether
the elements in the corresponding set all have the same evaluation. If this
test succeeds then move .x0;u0;p

e/ to S0 or S1, depending on whether
the value is 0 or 1

2
.

(d) Otherwise, replace .x0;u0;p
e/ by the p2 triples .x0Cipe;u0Cjpe;peC1/

for i; j 2 f0; : : : ;p� 1g.

4. If S2 is empty then output S0 and S1 and terminate. Otherwise, go back to
step 3.

Example 2.13. Consider the Kummer surface S over Q given by

z2
D x.x� 1/.x� 25/u.uC 25/.uC 36/:

Then weak approximation is violated on S .
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Proof. This is caused by a transcendental Brauer-Manin obstruction. In fact, the
matrix (2) is

M D

0BB@
1 25 900 25

25 1 �25 �275

900 �25 1 �24

25 �275 �24 1

1CCAbD
0BB@

1 1 1 1

1 1 �1 �11

1 �1 1 �6

1 �11 �6 1

1CCA ;
and its kernel is he1i. Hence there is a transcendental Brauer class on S , represented
by the quaternion algebra ..x� 1/.x� 25/; .uC 25/.uC 36//.

Now the argument is completely elementary. For every .x;uI z/ 2 S.Qp/ with
z ¤ 0, one has X

p

..x� 1/.x� 25/; .uC 25/.uC 36//p D 0;

according to the sum formula for the Hilbert symbol. The bad primes of the elliptic
curves y2 D x.x � 1/.x � 25/ and y2 D x.x C 25/.x C 36/ are 2; 3; 5, and 11.
Hence, the sum is actually only over these four primes.

Our implementation of Algorithm 2.12 shows that the local evaluation map is
constant at the primes 2, 3, and 11, but not at 5. Hence, 5-adic points such that
..x� 1/.x� 25/; .uC 25/.uC 36//5 D

1
2

may not be approximated by Q-rational
ones.

Examples of such 5-adic points include those with .x;u/D .2; 5/. Indeed,

2 � .2� 1/ � .2� 25/ � 5 � .5C 25/ � .5C 36/D�11316 � 52

is a 5-adic square, but .2� 1/ � .2� 25/ D �23 is a nonsquare and �5..5C 25/ �

.5C 36//D 1 is odd. �
Remarks 2.14.

(i) The constancy of the local evaluation maps at 3 and 11 and the nonconstancy
at 5 also follow from the criterion formulated as Theorem 2.19 below.

(ii) In the coloring obtained on S.Q5/, all the points such that x;u 6� 0 .mod 5/

have color zero. This is rather different from the colorings typically obtained
from an algebraic Brauer class. The reader should compare the situation de-
scribed in [5], where, on the cone over an elliptic curve, three sets of equal
sizes appear.

Normal form, ranks, asymptotics. Let k be a field, let a, b, a0, and b0 be elements
of k� with a¤ b and a0 ¤ b0, and let S be the Kummer surface

z2
D x.x� a/.x� b/u.u� a0/.u� b0/:

There are two types of nontrivial Brauer classes ˛ 2 Br.S/2=Br.k/2.
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Type 1: ˛ may be expressed by a single Hilbert symbol. There are nine cases for
the kernel vector of Maba0b0 . As seen in Observations 2.6(i), a suitable translation
of A1 �A1 transforms the surface into an isomorphic one with kernel vector e1.
Then ab, a0b0, and �aa0 are squares in k. Note that this implies that �ba0, �ab0,
and �bb0 are squares as well.

Type 2: To express ˛, two Hilbert symbols are necessary. There are six cases
for the kernel vector of Maba0b0 . A suitable translation of A1 �A1 transforms the
surface into an isomorphic one with kernel vector e2 C e3. Then aa0, bb0, and
.a� b/.a0� b0/ are squares.

Corollary 2.15. Let p be a prime number, let a, b, a0, and b0 be elements of Q�p
with a¤ b and a0 ¤ b0, and let S be the Kummer surface

z2
D x.x� a/.x� b/u.u� a0/.u� b0/:

Suppose that �p.a/ � �p.b/, that �p.a0/ � �p.b0/, and that Br.S/2=Br.k/2 ¤ 0.
Then �p.aa0/ is even.

Proof. The assertion is that the expression

m WDmin.�p.a/; �p.b/; �p.a� b//Cmin.�p.a0/; �p.b0/; �p.a0� b0//

is even as soon as Br.S/2=Br.k/2 ¤ 0. As m is invariant under translations as
described in Observations 2.6(i), we may suppose that either e1 or e2 C e3 lies
in ker Maba0b0 . In both cases the assertion is easily checked. Note that either
minimum is adopted by at least two of the three valuations. �

Remarks 2.16.

(i) Suppose k D Qp. Then, by Observations 2.6(ii), we may assume without
loss of generality that a; b; a0; b0 2 Zp, that min.�p.a/; �p.b// D 0, and that
min.�p.a0/; �p.b0// D 0; 1. By Corollary 2.15, the assumption that Maba0b0

has a nontrivial kernel ensures that min.�p.a0/; �p.b0//D 0, too.

(ii) Suppose that k DQ and that there is a Brauer class of type 1. Reasoning as
in the preceding remark, we see that we may suppose that a, b, a0, and b0 are
integers with gcd.a; b/D gcd.a0; b0/D 1. Hence there is a normal form with
a > b, with a0 < b0, and with a; b;�a0;�b0 2 Z\Q�2. Up to the involution
.a; b; a0; b0/ 7! .�a0;�b0;�a;�b/, this normal form is unique. The geometric
interpretation of this involution is that it interchanges the two elliptic curves
and twists them both by �1.

Proposition 2.17. Let k be a field of characteristic zero, let E W y2 D x.x �

a/.x � b/ and E0 W v2 D u.u � a0/.u � b0/ be elliptic curves over k with all 2-
torsion points defined over k, and let S WD Kum.E �E0/ be the corresponding
Kummer surface. Suppose that E and E0 are not isogenous to each other.
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(i) We have dim Br.S/2=Br.k/2 � 4 and dim Br.S/2=Br.k/2 ¤ 3. Further,
dim Br.S/2=Br.k/2 D 4 is possible only when �1 is a square in k.

(ii) Suppose k DQp for a prime p. If both E and E0 have potential good reduc-
tion then dim Br.S/2=Br.k/2 is even.

(iii) If k D R then dim Br.S/2=Br.k/2 D 2.

Proof. All of these assertions will follow from Proposition 2.1. Recall that Maba0b0

is a matrix with entries in the F2-vector space k�=k�2.
Statement (i): The inequality dim Br.S/2=Br.k/2 � 4 is clear. If the vector

space had dimension three, the matrix Maba0b0 would have column rank one. But
this is impossible for a symmetric matrix having zeroes on the diagonal. Further,
dim Br.S/2=Br.k/2 D 4 requires Maba0b0 to be the zero matrix. In particular, aa0

and �aa0 both have to be squares in k. This implies that �1 is a square, too.
Statement (ii): Standard considerations (see [23, Proposition VII.5.5], for ex-

ample) show that the elliptic curve given by y2 D x.x ��/.x � �/ has potential
good reduction if and only if �=� 2 Z�p and �=� 6� 1 .mod p/. This implies, in
particular, that p > 2.

If Br.S/2=Br.k/2 D 0 the assertion is trivially true, so let us assume that
Br.S/2=Br.k/2 ¤ 0. Then, by Remark 2.16(i), we may assume that the elements
a, b, a� b, a0, b0, a0� b0 all lie in Z�p. But for p-adic units, being a square in Qp

or not is tested by the Legendre symbol. Thus Maba0b0 is essentially an alternating
matrix with entries in F2. Such matrices have even rank.

Statement (iii): After applying one of the translations A1�A1!A1�A1 given
by .x;u/ 7! .x ��;u� �/ for � 2 f0; a; bg and � 2 f0; a0; b0g, we may assume
that a> b > 0 and a0 > b0 > 0. Then

Maba0b0 D

0BB@
C C C �

C C C C

C C C C

� C C C

1CCA
has kernel he2; e3i. �
Remarks 2.18. We discuss some asymptotic estimates for the number of surfaces
with Brauer groups of various types.

(i) Let N > 0. Then the number of pairs .a; b/ such that a and b are perfect
squares, a< b, and a; b� a<N is asymptotically CN for

C WD 1
2

�
log.
p

2C 1/C
p

2� 1
�
:

Indeed, the Stieltjes integralZ N

1

�p
xCN �

p
x
�

d
p

x
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has exactly this behavior. Assuming that isogenies are rare, we find that the
number of surfaces over Q with integer parameters of absolute value at most
N and a 2-torsion Brauer class of type 1 is asymptotically

1

2

�
6

�2

�2

C 2N 2
� 0:077544N 2:

(ii) On the other hand, a 2-torsion Brauer class of type 2 yields a Q-rational point
on the intersection of three quadrics in P6. The Manin conjecture leads to the
naïve expectation of growth of the type cN logdN for some integer d � 0.

(iii) The number of all Kummer surfaces of the form considered and with param-
eters up to N is O.N 4/. Thus, only a very small fraction have a nontrivial
2-torsion Brauer class.

Even fewer surfaces should have odd torsion in their Brauer group. Indeed,
for l-torsion, one must have

HomGal.Q=Q/
.EŒl �;E0Œl �/¤ 0

(see [25, Proposition 3.3]). Consequently, #E.Fp/ � #E0.Fp/ .mod l/ for
every prime p ¤ l that is good for both E and E0. Based on this, our com-
putations show that, up to N D 200, no surface has an l-torsion Brauer class
for l � 5. Further, at most eight pairs of j -invariants allow a 3-torsion Brauer
class.

(iv) It is possible over Q to have a 2-dimensional 2-torsion Brauer group. For this,
in the normal form of Remark 2.16(ii), one needs that a� b and b0 � a0 are
perfect squares. Further, these surfaces have four normal forms instead of two,
as there are two Brauer classes of type 1. These examples correspond to pairs
of Pythagorean triples, and we therefore have two Kummer surfaces, differing
from each other by a twist by .�1/. The asymptotics of Pythagorean triples
[1] shows that there are asymptotically

4

�4
log2.1C

p
2/N � 0:031899N

surfaces over Q with integer parameters of absolute value at most N and a
Brauer group of dimension two.

(v) Some actual numbers are listed in Table 1. For a precise description of the
sample, see Section 4B below.

Trivial evaluation.

Theorem 2.19. Let p > 2 be a prime number and let a, b, a0, b0 be nonzero
elements of Zp such that a¤ b and a0 ¤ b0. Let S be the Kummer surface given
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Bound Dimension 2 Dimension 1, type 1 Dimension 1, type 2

Total Algebraic Total Algebraic

50 0 183 1 38 0
100 0 766 2 98 0
200 2 3049 3 367 0
500 12 18825 4 1457 0

1000 20 77249 8 4398 0
2000 42 305812 11 12052 0

Table 1. Number of surfaces with bounded parameters whose Brauer groups
have 2-torsion of various types. The first column gives the bound N on the
parameters of the surfaces we computed; see Section 4B for a precise descrip-
tion of the parameters allowed. The remaining columns give the number of
such surfaces whose Brauer groups have 2-torsion subgroups of dimension 2,
of dimension 1 and type 1, and of dimension 1 and type 2. For the 1-dimensional
cases, the number of algebraic classes is listed as well.

by z2 D x.x� a/.x� b/u.u� a0/.u� b0/. Assume that e1 is a kernel vector of the
matrix Maba0b0 and let ˛ 2 Br.S/2 be the corresponding Brauer class.

(i) Suppose that either a � b 6� 0 .mod p/ or a0 � b0 6� 0 .mod p/. Then the
evaluation map ev˛ W S.Qp/!Q=Z is constant.

(ii) If a 6� b .mod p/ and a0 6� b0 .mod p/, and if not all four numbers are p-adic
units, then the evaluation map ev˛ W S.Qp/!Q=Z is nonconstant.

Proof. First step: Preparations. We are interested in the Hilbert symbol

..x� a/.x� b/; .u� a0/.u� b0//p:

Recall that a=b, a0=b0, and �bb0 are all squares in Qp.
A Qp-rational point on S corresponds to a pair of points on the elliptic curves

�y2D x.x�a/.x�b/ and �v2D u.u�a0/.u�b0/ for a common value of �. The
Hilbert symbol then simplifies to .�x; �u/p.

Second step: 2-descent. By 2-descent (see for example [23, Proposition X.1.4]),
the elliptic curve E W Y 2 DX.X � a/.X � b/ has a point in the square class of x

if and only if the system

xz2
1 � tz2

2 D a

xz2
1 �xtz2

3 D b

is solvable. Eliminating t , we obtain x2z2
1
z2

3
�xz2

1
z2

2
D axz2

3
� bz2

2
, which gives

.xz2
3 � z2

2/.xz2
1 � b/D .a� b/xz2

3 :
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Dividing by �bxz2
3

yields�
1�

z2
2

z2
3

1

x

��
1�

z2
1

b
x

�
D 1�

a

b
:

In other words, E has a point in the square class of x if and only if the equation
.1� v2x/.1�w2x=b/D 1� a=b is solvable.

Third step: Application to the Kummer surface S . As �y2 D x.x� a/.x� b/ is
equivalent to y02 D �x.�x��a/.�x��b/ and b and �b0 are squares, we see that
S has a point with coordinates in the square classes of x and u if and only if

.1� v2�x/.1�w2x=b/D 1� a=b

.1� v02�u/.1�w02x=b0/D 1� a0=b0

has a solution .v; w; v0; w0; �/ 2 .Q�p/
5.

Proof of (i): Without loss of generality, assume that a � b 6� 0 .mod p/ and
a0=b0 2 Zp. Let .x;uI z/ 2 S.Qp/ be any point such that z ¤ 0.

Then Lemma 2.21(i) (below) shows that .u=b0; �u/p D 0. Furthermore, by
Lemma 2.21(iii), at least one of x=b and �x is a square in Qp . In the case �x 2Q�2p ,
the assertion .�x; �u/p D 0 is clearly true. If x=b 2Q�2p then

0D .u=b0; �u/p D .��=b
0; �u/p D ..�x/=.�bb0/; �u/p D .�x; �u/p:

Proof of (ii): Again without loss of generality, assume that p2 j a, that b is a
unit, and that a0=b0 2 Zp. We claim that, for �D �b, there is a point on S such
that x D p and 2 j �p.u/, so that �uD�bu is a nonsquare.

Indeed, it is obvious that �bp.p � a/.p � b/ 2 Q�2p . Further, by Hensel’s
Lemma, it suffices to find a pair .U1;U2/ 2 F�p � F�p of nonsquares such that
.1 � U1/.1 � U2/ D 1 � a0=b0. For this, a counting argument applies. In fact,
each U1 2 Fp n f0; 1; a

0=b0g uniquely determines its partner. As this set contains
.p� 1/=2 nonsquares and only .p� 5/=2 squares, the assertion follows. �

Remarks 2.20.

(i) It might seem strange to use a descent argument over a local field. It seems
to us, however, that a direct argument is neither more elegant nor shorter.

(ii) Using the descent argument above, we also recover the constancy of the eval-
uation map in the case of good reduction. Indeed, Lemma 2.21(ii) implies
that either at least one of x=b and �x is a square, or both have even valuation.
The first two cases are dealt with as above. Otherwise, �b is a square, hence
��=b0 is a square, too, and one has to show that 2 j �p.�u/. But this is implied
by Lemma 2.21(ii) when looking at the second equation.
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Lemma 2.21. Let p > 2 be a prime number, let A and B be nonzero elements
of Qp , and let Q2Q�p be a square. Suppose that the equation .1�Av2/.1�Bw2/D

1�Q is solvable in Q�p �Q�p.

(i) We have .A;B/p D 0.

(ii) If Q 2 Z�p then either A 2 Q�2p , or B 2 Q�2p , or both A and B are of even
valuation.

(iii) If Q 2 Z�p and Q� 1 .mod p/ then either A 2Q�2p or B 2Q�2p .

Proof. Statement (i): We have that Av2CBw2�AB.vw/2 is a square. When all
three summands are of the same valuation, they must be units. The assertion is then
clearly true. Otherwise, at most two of the three summands have minimal valuation.
Then their sum is a square, too. According to the definition of the Hilbert symbol
[2, p. 55], we have either .A;B/p D 0 or .A;�AB/p D 0 or .B;�AB/p D 0.
These three statements are equivalent to each other.

Statement (ii): We have �p.1�Q/ � 0. On the other hand, if both A and B

are nonsquares then �p.1�Av2/; �p.1�Bw2/� 0. This implies equality, hence
Av2;Bw2 2 Zp . Both must be units as Av2CBw2�AB.vw/2 is, by assumption,
a square in Z�p.

Statement (iii): If A and B were both nonsquares then �p.1�Av2/ � 0 and
�p.1�Bw2/� 0. As �p.1�Q/ > 0, this is a contradiction. �

Experiments with Algorithm 2.12 show that surprisingly often there are nontriv-
ial Brauer classes with trivial p-adic evaluation. This is partially explained by the
following result.

Theorem 2.22. Let p > 2 be a prime number and let a; b; a0; b0 2Qp be such that
E Wy2Dx.x�a/.x�b/ and E0 W v2Du.u�a0/.u�b0/ are elliptic curves. Suppose
that E and E0 are not isogenous to each other, and let S be the corresponding
Kummer surface.

(i) If dim Br.S/2=Br.Qp/2 � 2 then there is a nonzero ˛ 2 Br.S/2 such that ev˛
is the zero map.

(ii) If dim Br.S/2=Br.Qp/2D 4 then the subspace of classes with constant evalua-
tion map is of dimension 4 when both E and E0 have potential good reduction.
The dimension is 3 when neither curve has potential good reduction and 2 in
the mixed case.

Proof. By Remark 2.16(i), we may assume without loss of generality that a and
b lie in Zp and are not both divisible by p, and that the same holds for a0 and b0.
The case in which both E and E0 have potential good reduction has already been
treated in Proposition 2.11.
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Statement (ii). If neither curve has potential good reduction, we can apply a
translation of A1 �A1, as in Observations 2.6(i), to reduce to the case a � b 6�

0 .mod p/ and a0 � b0 6� 0 .mod p/. Then, by virtue of Theorem 2.19(ii), the
Brauer classes corresponding to he1; e2; e3i have constant evaluation maps, but
eve4

is nonconstant.
Further, when only E0 has potential good reduction, the same arguments show

that the Brauer classes corresponding to he1; e2i have constant evaluation maps,
while those of e3, e4, and e3C e4 are nonconstant.

Statement (i). Only the case that at least one of the curves E and E0 does
not have potential good reduction requires a proof. Hence, we may assume that
a; b 2 Zp and a� b 6� 0 .mod p/. Then ab 2Q�2p .

The upper left 2 � 2-block of Maba0b0 is zero. If the block
�

a0b0 aa0

�aa0 a0.a0�b0/

�
occurring in the lower left has trivial kernel then the 2�2-block in the upper right is
certainly not the zero matrix. Therefore dim ker Maba0b0 � 1, a contradiction. Thus,
there is a Brauer class represented by a vector from he1; e2i. By Theorem 2.19(i),
its evaluation map is constant. �

3. A point search algorithm for special Kummer surfaces

The surfaces we are studying are double covers of P1 �P1, given by equations of
the form

w2
D fab.x;y/fa0b0.u; v/:

Here, fab is the binary quartic form fab.x;y/ WD xy.x � ay/.x � by/. Thus, a
point .Œx W y�; Œu W v�/ 2 .P1 �P1/.Q/ leads to a point on the surface if and only if
the square classes of fab.x;y/ and fa0b0.u; v/ coincide, or one of them is zero.

We will call the solutions with fab.x;y/ or fa0b0.u; v/ zero the trivial solutions
of the equation. Obviously, there is a huge number of trivial solutions. Our aim is
to describe an efficient algorithm that searches for nontrivial solutions and does not
care about the trivial ones. In its simplest version, our algorithm works as follows.

Algorithm 3.1 (Point search).

Input: Two sequences a1; : : : ; ak and b1; : : : ; bk of integers and a search bound
B > 0.

Output: All solutions of the equations

w2
D fai bi

.x;y/faj bj
.u; v/

for which x, y, u, and v are integers with jxj; jyj; juj; jvj � B.

1. Compute the bound

L WD B.1Cmaxfjai j; jbi j j i D 1; : : : ; kg/
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for the linear factors.

2. Store the squarefree parts of the integers in Œ1; : : : ;L� in an array T .

3. Enumerate in an iterated loop representatives for all points Œx W y� 2 P1.Q/ with
x;y 2 Z, jxj; jyj � B, and x;y ¤ 0.

4. For each point Œx W y� enumerated, execute the operations below.

(a) Run a loop over i D 1; : : : ; k to compute the four linear factors x, y, x�aiy,
and x� biy of fai ;bi

.
(b) Store the squarefree parts of the factors in m1; : : : ;m4. (Use the table T to

compute the squarefree parts.)
(c) Put

p1 WD
m1

gcd.m1;m2/

m2

gcd.m1;m2/

p2 WD
m3

gcd.m3;m4/

m4

gcd.m3;m4/

p3 WD
p1

gcd.p1;p2/

p2

gcd.p1;p2/
:

Thus, p3 is a representative of the square class of fai bi
.x;y/.

(d) Store the quadruple .x;y; i; h.p3// in a list. Here, h is a hash function.

5. Sort the list by the last component.

6. Split the list into parts. Each part corresponds to a single value of h.p3/. (At
this point, we have detected all collisions of the hash function.)

7. Run in an iterated loop over all the collisions and check whether

..x;y; i; h.p3//; .x
0;y0; i 0; h.p03///

corresponds to a solution .Œx W y�; Œx0 W y0�/ of the equation

w2
D fai bi

.x;y/fai0 bi0 .x
0;y0/:

Output all the solutions found.

Remarks 3.2.

(i) For practical search bounds B, the first integer overflow occurs when we mul-
tiply p1=gcd.p1;p2/ and p2=gcd.p1;p2/. But we can think of this reduction
modulo 264 as being a part of our hash function. Note that the final check of
fai bi

.x;y/fai0 bi0 .x
0;y0/ being a square can be done without multiprecision

integers by inspecting the gcd’s of the eight factors.

(ii) One disadvantage of Algorithm 3.1 is obvious. It requires more memory than
is reasonably available by present standards. We solved this problem by the
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introduction of what we call a multiplicative paging. This is an approach
motivated by the simple additive paging as described in [8]. In addition, our
memory-optimized point search algorithm is based on the following observa-
tion.

Lemma 3.3. Let p be a good prime. Then, for each pair .x;y/ with gcd.x;y/D 1,
at most one of the factors x, y, .x� ay/, and .x� by/ is divisible by p. �

Algorithm 3.4 (Point search using multivariate paging).

Input: The same as in Algorithm 3.1.

Output: The same as in Algorithm 3.1.

1. Compute the bound L and the square-class representatives as in Algorithm 3.1.

2. Compute the upper bound

C WD 2 maxfjai j; jbi j j i D 1; : : : ; kg

for the possible bad primes.

3. Initialize an array of boolean variables of length L. Use the value false for the
initialization. We will call this array the markers of the factors already treated.

4. In a loop, run over all good primes below L. Start with the biggest prime and
stop when the upper bound C is reached; that is, work in decreasing order. For
each prime pp, execute the steps below. We call pp the page prime.

(a) Run over all multiples m of pp not exceeding L and such that the pp-adic
valuation is odd. For each m, do the following.

i. Check whether m is marked as already treated. In this case, continue
with the next m.

ii. Test whether x, y, x � aiy, or x � biy can represent this value. Here,
use the constraints jxj; jyj � B and i 2 f1; : : : ; kg.

iii. For each possible representation with gcd.x;y/D1, check to see whether
x, y, x� aiy, or x� biy is marked as already treated. Otherwise, store
the quadruples .x;y; i; h.p3// into a list.

iv. Mark the value of m as treated and continue with the next m.

(b) As in Algorithm 3.1, construct all solutions by inspecting the collisions of
the hash function.

5. Up to now, all solutions were found such that w has at least one prime factor
bigger than the bad primes bound. To get the remaining ones, use Algorithm 3.1
but skip all values of x;y that are marked as treated factors. Further, break
step 4 of Algorithm 3.1 early if m3 or m4 is marked as treated.
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Remark 3.5. The last step computes all solutions in smooth numbers — that is,
points such that the square classes of fab.x;y/ and fa0b0.u; v/ are smooth with
respect to the bad primes bound C defined in step 2. It is an experimental observa-
tion that this step takes only a small fraction of the running time, but gives a large
percentage of the solutions. The algorithm may easily be modified such that only
the solutions in smooth numbers are found. For this, the markers for treated factors
have to be initialized in an appropriate way.

4. Some experiments

4A. Coloring by covering — a search for regular colorings. As noted in the intro-
duction, on various types of surfaces [3; 11], the (algebraic) Brauer-Manin obstruc-
tion leads to very regular colorings. Carrying this knowledge over to the special
Kummer surfaces given by

S W w2
D f4.x;y/g4.u; v/;

one is led to test the following: For a Q-rational point with w ¤ 0, write �w2
1
D

f4.x;y/ and �w2
2
D g4.u; v/ and expect the color to be given by the square class

of �.
For p-adic points, this defines a coloring with four or eight colors, depending

on whether p > 2 or p D 2. At the infinite place, the color is given by the sign
of �. Motivated by [3; 11], we assume that the p-adic color of a rational point has
a meaning only when p divides the conductor of one of the elliptic curves used
to construct S . Further, we restricted ourselves to the square classes of even p-
adic valuation (for the primes of bad reduction). This does not exclude all rational
points reducing to the singular locus at a bad prime.

Thus, we get a coloring of the Q-rational points with 2kC1 colors for a surface
with k relevant odd primes. Weak approximation would imply that the color map
is a surjection. In the case of a visible obstruction, we would expect that at most
half of the possible colors are in the image of the color map.

For a systematic test, we used the 184 elliptic curves with odd conductor and
jaj; jbj < 100. This led to 16,836 surfaces. Table 2 gives an overview of the
number of colors that occurred. The table indicates that our result is negative:
It seems that there is no obstruction factoring over such a coloring. We expect
that one would find Q-rational points of all colors for a sufficiently large search
bound.

On one core of an Intel Core 2 Duo E8300 processor, the running times were
18.5 hours for search bound 30,000 and 275 hours for search bound 100,000, but
only 51 minutes for smooth solutions with respect to a bad prime bound of 200

and bound 100,000.
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#Bad primes 2 3 4 5 6 7 8

#Surfaces 4 182 1678 5777 7409 1726 60
#Colors 8 16 32 64 128 256 512

B D 1000 8 15–16 26–32 32–64 33–127 31–157 27– 81
B D 3000 8 16 30–32 49–64 67–128 81–226 92–192
B D 10000 8 16 32 57–64 93–128 142–254 207–352
B D 30000 8 16 32 62–64 109–128 196–256 303–474
B D 100000 8 16 32 64 121–128 232–256 387–505

B D 10000, smooth 8 16 31–32 54–64 79–128 99–236 113–197
B D 30000, smooth 8 16 32 59–64 92–128 146–253 161–300
B D 100000, smooth 8 16 32 61–64 108–128 185–256 230–381

Table 2. Number of colors attained by Q-rational points of bounded height on
Kummer surfaces of products of elliptic curves, classified by the number of bad
primes and the search bound B. The second row of the table indicates the number
of surfaces we analyzed with the given number of bad primes. For each number
of bad primes and each search bound B, we list the lowest and highest number
of colors attained by Q-rational points of height at most B, ranging over the
surfaces with the given number of bad primes. For the rows in which the search
bound is annotated with the word “smooth”, we consider only rational points that
are smooth in the sense of Remark 3.5.

4B. Investigating the Brauer-Manin obstruction — a sample. We determined all
Kummer surfaces of the form

z2
D x.x� a/.x� b/u.u� a0/.u� b0/;

with integer parameters of absolute value at most 200, that have a transcendental
2-torsion Brauer class.

More precisely, we determined all .a; b; a0; b0/ 2 Z4 such that

gcd.a; b/D 1; a> b > 0; a� b � 200; b � 200;

gcd.a0; b0/D 1; a0 < b0 < 0; a0� b0 � �200; b0 � �200;

and such that the matrix Maba0b0 has nonzero kernel. We made sure that only one
of the four equivalent quadruples

.a; b; a0; b0/; .�a0;�b0;�a;�b/; .a; a�b; a0; a0�b0/; .�a0; b0�a0;�a; b�a/

was on the list, and we ignored the quadruples where .a; b/ and .a0; b0/ define
geometrically isomorphic elliptic curves.

This led to 3075 surfaces with a kernel vector of type 1 and 367 surfaces with
a kernel vector of type 2, together with two surfaces with Br.S/2 of dimension two.
The latter correspond to the quadruples .25; 9;�169;�25/ and .25; 16;�169;�25/.
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#Relevant primes 0 1 2 3 4 5 6
#Surfaces 6 428 1577 1119 276 9 1

Table 3. Number of surfaces with a given number of relevant primes.

Among the 3075 surfaces, 26 actually have Br.S/2 D 0, due to a Q-isogeny be-
tween the corresponding elliptic curves.

The complete list of these surfaces, the exact equations we worked with, and
more details are available on both author’s web pages in the file ants_X_data.txt.

4C. The BM-relevant primes — the p-adic point of view. We say that a Brauer
class ˛ 2Br.S/ works at a prime p if the local evaluation map ev˛;p is nonconstant.
For every surface in the sample described in Section 4B, we used Algorithm 2.12
and Theorem 2.19 to determine all of the BM-relevant primes p — that is, those
for which there is a Brauer class working at p.

For the two surfaces with Br.S/2 of dimension two, the situation is as follows:
In the case of the parameter vector .25; 9;�169;�25/, one Brauer class works at 2

and 13, another at 5 and 13, and the third at all three. For the surface corresponding
to .25; 16;�169;�25/, one Brauer class works at 3 and 13, another at 5 and 13,
and the last at all three.

Table 3 lists the number of surfaces in our sample set having a given number of
relevant primes. The one example with six relevant primes is .196; 75;�361;�169/,
for which the Brauer class works at 2, 5, 7, 11, 13, and 19.

For three surfaces, it happened that the corresponding elliptic curves were isoge-
nous over a proper extension of Q. In these cases, the Brauer-Manin obstruction
is algebraic. For two of the surfaces, it worked at one prime, while for the third it
worked at two.

4D. The BM-relevant primes — Q-rational points. When the Brauer class ˛ works
at l primes p1; : : : ;pl , there are 2l vectors with entries in

˚
0; 1

2

	
. By the Brauer-

Manin obstruction, half of these vectors cannot be obtained as values of .ev˛;p1
.x/;

: : : ; ev˛;pl
.x// for Q-rational points x 2 S.Q/. For every surface in our sample

set, and for every vector not forbidden by the Brauer-Manin obstruction, we used
Algorithm 3.4 to test whether there is a rational point giving rise to the vector.

It turned out that this was indeed the case. Thus, no further obstruction becomes
visible via this coloring. However, in some of the cases rather high search bounds
were necessary. Table 4 shows, for the extreme case of six relevant primes, the
number of vectors hit for several search bounds. Somewhat surprisingly, the small-
est solution for each color was smooth with respect to a bad prime bound of 800.

For the other surfaces in the sample, lower search bounds were sufficient, but
the differences were enormous. We summarize our observations in Table 5.
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Bound 50 100 200 400 800 1600 3200 6400 12800 25600 50000
#Vecs 5 10 14 20 24 26 28 30 31 31 32

Table 4. Numbers of evaluation vectors obtained from rational points of
bounded height for the surface with parameters .196; 75;�361;�169/.

Search bound B

#Primes #Surfaces 50 100 200 400 800 1600 3200 6400 12800

2 1577 190 56 22 — — — — — —
3 1119 555 187 48 1 — — — — —
4 262 262 200 127 67 36 24 13 4 —
5 9 9 9 8 8 8 5 3 1 —

Table 5. Search bounds required to obtain all possible evaluation vectors from
rational points. For each entry in the first column, we list in the second column
the number of surfaces in our sample having that number of relevant primes.
For each search bound B in columns 3 through 11, we list the number of these
surfaces for which the rational points of height at most B do not account for all
valuations vectors not forbidden by the Brauer-Manin obstruction.

Remark 4.1. There is the expectation that the behavior of the evaluation map ev˛;p
is strongly connected to the type of bad reduction at the prime p. For algebraic
Brauer classes, such a connection is well known; for example, see [11]. In the
transcendental case, there are only partial results; see for example [13, §4].

For our examples, the reductions Sp are rational surfaces having one or two
double lines. Further, ev˛;p is necessarily constant on the set of Q-rational points
reducing to a smooth point. The finer structure seems to be complicated; compare
Lemma 2.9.

References

[1] Manuel Benito and Juan L. Varona, Pythagorean triangles with legs less than n, J. Comput.
Appl. Math. 143 (2002), no. 1, 117–126. MR 2003b:11027

[2] Z. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, no. 20,
Academic Press, New York, 1966. MR 33 #4001

[3] Martin Bright, The Brauer-Manin obstruction on a general diagonal quartic surface, Acta
Arith. 147 (2011), no. 3, 291–302. MR 2012f:11118

[4] J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces, Mathematika 13
(1966), 111–120. MR 35 #2841

[5] Jean-Louis Colliot-Thélène, Dimitri Kanevsky, and Jean-Jacques Sansuc, Arithmétique des sur-
faces cubiques diagonales, in Wüstholz [28], 1987, pp. 1–108. MR 89g:11051

[6] Jean-Louis Colliot-Thélène and Alexei N. Skorobogatov, Good reduction of the Brauer–Manin
obstruction, Trans. Amer. Math. Soc. 365 (2013), no. 2, 579–590. MR 2995366



TRANSCENDENTAL BRAUER-MANIN OBSTRUCTION 393

[7] Sinnou David (ed.), Number theory: Papers from the Séminaire de Théorie des Nombres de
Paris, 1993–94, London Mathematical Society Lecture Note Series, no. 235, Cambridge Uni-
versity Press, 1996. MR 99b:11003

[8] Andreas-Stephan Elsenhans and Jörg Jahnel, The Diophantine equation x4C 2y4 D z4C 4w4,
Math. Comp. 75 (2006), no. 254, 935–940. MR 2007e:11143

[9] , On the Brauer-Manin obstruction for cubic surfaces, J. Comb. Number Theory 2
(2010), no. 2, 107–128. MR 2907786

[10] , On the order three Brauer classes for cubic surfaces, Cent. Eur. J. Math. 10 (2012),
no. 3, 903–926. MR 2902222

[11] , On the quasi-group of a cubic surface over a finite field, J. Number Theory 132 (2012),
no. 7, 1554–1571. MR 2903170

[12] David Harari, Obstructions de Manin transcendantes, in David [7], 1996, pp. 75–87. MR 99e:
14025

[13] Brendan Hassett and Anthony Várilly-Alvarado, Failure of the Hasse principle on general K3
surfaces, 2011. arXiv 1110.1738 [math.NT]

[14] Brendan Hassett, Anthony Várilly-Alvarado, and Patrick Varilly, Transcendental obstructions
to weak approximation on general K3 surfaces, Adv. Math. 228 (2011), no. 3, 1377–1404.
MR 2012i:14025

[15] Evis Ieronymou, Diagonal quartic surfaces and transcendental elements of the Brauer groups,
J. Inst. Math. Jussieu 9 (2010), no. 4, 769–798. MR 2011g:14053

[16] Evis Ieronymou, Alexei N. Skorobogatov, and Yuri G. Zarhin, On the Brauer group of diagonal
quartic surfaces, J. Lond. Math. Soc. .2/ 83 (2011), no. 3, 659–672. MR 2012e:14046

[17] Ilya Karzhemanov, One construction of a K3 surface with the dense set of rational points, 2011.
arXiv 1102.1873 [math.AG]

[18] Adam Logan, David McKinnon, and Ronald van Luijk, Density of rational points on diagonal
quartic surfaces, Algebra Number Theory 4 (2010), no. 1, 1–20. MR 2011a:11126

[19] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical Li-
brary, no. 4, North-Holland Publishing Co., Amsterdam, 1974. MR 57 #343

[20] L. J. Mordell, On the conjecture for the rational points on a cubic surface, J. London Math.
Soc. 40 (1965), 149–158. MR 30 #58

[21] Bjorn Poonen and Yuri Tschinkel (eds.), Arithmetic of higher-dimensional algebraic varieties:
Proceedings of the Workshop on Rational and Integral Points of Higher-Dimensional Varieties
held in Palo Alto, CA, December 11–20, 2002, Progress in Mathematics, no. 226, Boston,
Birkhäuser, 2004. MR 2004h:11001

[22] Thomas Preu, Transcendental Brauer-Manin obstruction for a diagonal quartic surface, Ph.D.
thesis, Universität Zürich, 2011. http://www.math.uzh.ch/fileadmin/user/preu/publikation/
preuThesis.pdf

[23] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics,
no. 106, Springer, Dordrecht, 2009. MR 2010i:11005

[24] Alexei Skorobogatov and Peter Swinnerton-Dyer, 2-descent on elliptic curves and rational
points on certain Kummer surfaces, Adv. Math. 198 (2005), no. 2, 448–483. MR 2006g:11129

[25] Alexei N. Skorobogatov and Yuri G. Zarhin, The Brauer group of Kummer surfaces and torsion
of elliptic curves, J. Reine Angew. Math. 666 (2012), 115–140. MR 2920883

[26] H. P. F. Swinnerton-Dyer, Two special cubic surfaces, Mathematika 9 (1962), 54–56. MR 25
#3413



394 ANDREAS-STEPHAN ELSENHANS AND JÖRG JAHNEL

[27] Olivier Wittenberg, Transcendental Brauer-Manin obstruction on a pencil of elliptic curves, in
Poonen and Tschinkel [21], 2004, pp. 259–267. MR 2005c:11082

[28] G. Wüstholz (ed.), Diophantine approximation and transcendence theory: Papers from the
seminar on number theory held in Bonn, May–June 1985, Lecture Notes in Mathematics, no.
1290, Springer, Berlin, 1987. MR 88j:11036

ANDREAS-STEPHAN ELSENHANS: stephan@maths.usyd.edu.au
School of Mathematics and Statistics F07, University of Sydney, NSW 2006, Sydney, Australia

JÖRG JAHNEL: jahnel@mathematik.uni-siegen.de
Department Mathematik, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany

msp



THE OPEN BOOK SERIES 1 (2013)

Tenth Algorithmic Number Theory Symposium
dx.doi.org/10.2140/obs.2013.1.395

msp

Explicit 5-descent on elliptic curves

Tom Fisher

We compute equations for genus-one curves representing nontrivial elements of
order 5 in the Tate-Shafarevich group of an elliptic curve. We explain how to
write the equations in terms of Pfaffians and give examples for elliptic curves
over the rationals both with and without a rational 5-isogeny.

1. Introduction

An explicit descent calculation on an elliptic curve E over a number field K com-
putes the Selmer group (attached to some isogeny) and represents its elements
by giving equations for the corresponding covering curves. These curves may be
used to help search for generators of the Mordell-Weil group E.K/ or to exhibit
nontrivial elements of the Tate-Shafarevich group X.E=K/.

Let C be a smooth curve of genus one representing an element of order n in
X.E=K/. Cassels [8] showed that C admits a K-rational divisor D of degree n.
So for n � 3 we may embed C � Pn�1 by the complete linear system jDj. The
result is called a genus-one normal curve of degree n. For n� 4 it is well known
(see for example [19; 29]) that the homogeneous ideal of such a curve is generated
by a vector space of quadrics of dimension n.n� 3/=2.

The equations for a genus-one normal curve of degree 5 may conveniently be
written as the 4� 4 Pfaffians of a 5� 5 alternating matrix of linear forms. Over
the complex numbers this is a classical fact. In general it is a consequence of the
Buchsbaum-Eisenbud structure theorem [7; 6] for Gorenstein ideals of codimen-
sion 3. In Section 4 we explain how to compute these matrices of linear forms.

The author has been compiling [22] a list of explicit elements of X.E=Q/Œ5� for
elliptic curves E=Q of small conductor (taken from the Cremona database [10; 11]).
The equations are computed using either descent by 5-isogeny, full 5-descent, or
visibility. We give details of the first two of these methods in Sections 5 and 6,

MSC2010: primary 11G05; secondary 14H52, 14H25.
Keywords: elliptic curves, descent, Selmer groups, Pfaffians.
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expanding on the treatments in [17] and [12; 13; 14]. Our use of visibility is
described in [20].

2. Background on descent

Let � WE!E 0 be an isogeny of elliptic curves over K. A �-covering of E 0 is a
pair .C; �/ where C is a smooth curve of genus one and � WC !E 0 is a morphism
(both defined over K) such that the diagram

C

 

��

�

  
E

�
// E 0

commutes for some isomorphism  W C !E defined over K.
We write H i .K;�/ as a shorthand for H i .Gal.K=K/;�/. Taking Galois co-

homology of the short exact sequence of Gal.K=K/-modules

0 �!EŒ�� �!E
�
�!E 0 �! 0

gives a long exact sequence of abelian groups

� � � �!E.K/
�
�!E 0.K/

ı
�!H 1.K;EŒ��/ �!H 1.K;E/ �! � � � : (1)

The group H 1.K;EŒ��/ parametrises the �-coverings of E 0, up to isomorphism
over K. The subgroup of everywhere locally soluble coverings is the �-Selmer
group S .�/.E=K/. Likewise the group H 1.K;E/ parametrises the torsors (or prin-
cipal homogeneous spaces) under E, up to isomorphism over K. The subgroup of
everywhere locally soluble torsors is the Tate-Shafarevich group X.E=K/. There
is then an exact sequence

0 �!E 0.K/=�E.K/
ı
�! S .�/.E=K/ �!X.E=K/Œ��� �! 0

where �� WX.E=K/!X.E 0=K/ is the map induced by �.
There are two natural ways to construct a rational divisor class on C . Let m

be the smallest positive integer such that EŒ�� � EŒm�. Then D D  �.m � 0E /
and D0 D ��.0E 0/ are divisors on C of degrees m and nD deg�, respectively. A
calculation shows that D is linearly equivalent to all its Galois conjugates, whereas
D0 is already defined over K. For each � 2 Gal.K=K/ we pick h� 2K.C/� with
div.h� /D �D�D. There is then an obstruction map (see [26; 30; 12])

Ob WH 1.K;EŒ��/ �! Br.K/DH 2.K;K�/
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that sends the �-covering .C; �/ to the class of the 2-cocycle .�; �/ 7!�.h� /h�=h�� .
Since H 1.K;K.C /�/D 0 it follows that D is linearly equivalent to a K-rational
divisor if and only if .C; �/ has trivial obstruction.

If #.EŒ��\EŒ2�/D 1 or 4 then the elements of EŒ�� sum to 0E , in which case
��.0E 0/� n � 0E and D0 � .n=m/D.

In this paper we are interested in the following two cases, where we may write
C as a genus-one normal curve of degree 5 with hyperplane section D:

(i) � is an isogeny of degree 5 and .C; �/ 2H 1.K;EŒ��/.

(ii) � is multiplication-by-5 on E and .C; �/ 2 S .5/.E=K/.

The obstruction is trivial in both cases. In the first case this is because D � D0,
whereas in the second case the proof (which we follow in our calculations) uses
the local-to-global principle for the Brauer group.

3. Pfaffians

We recall some basic facts about Pfaffians. Let AD .aij / be an n�n alternating
matrix. If nD 2m is even then the Pfaffian of A is

pf.A/D
1

2mmŠ

X
�2Sn

sign.�/
mY
iD1

a�.2i�1/�.2i/: (2)

Standard calculations (see [3, §5]) show that pf.PAP T /D det.P / pf.A/ and that
det.A/D pf.A/2. Since det.A/ in an integer coefficient polynomial in the entries
of A, the same must be true of pf.A/. This is used to define the Pfaffian over an
arbitrary ring.

Pfaffians, just like determinants, may be expanded along a row. We write Afi;j g

for the matrix obtained from A by deleting the i -th and j -th rows and columns. It
may be shown using (2) that

pf.A/D
nX

jD2

.�1/ja1j pf.Af1;j g/:

For example, in the 4� 4 case we have

pf

0BB@
0 a12 a13 a14

0 a23 a24
� 0 a34

0

1CCAD a12a34� a13a24C a14a23:
Definition 3.1. Let A be an n� n alternating matrix with n odd. The row vector
of submaximal Pfaffians of A is Pf.A/D .p1; : : : ; pn/, where pi D .�1/i pf.Afig/
and Afig is the matrix obtained by deleting the i -th row and column of A.



398 TOM FISHER

Lemma 3.2. If A is an n�n alternating matrix with n odd then

(i) Pf.A/AD 0,

(ii) Pf.PAP T /D Pf.A/ adj.P /,

(iii) adj.A/D Pf.A/T Pf.A/.

Proof. Since we only need the case n D 5 (which may be checked by a generic
computation) we omit the proof. �

4. Computing genus-one models

A genus-one model (of degree 5) is a 5� 5 alternating matrix of linear forms in
variables x1; : : : ; x5. We write X5.K/ for the space of all genus-one models with
coefficients in a field K, and Cˆ � P4 for the subscheme defined by the 4 � 4
Pfaffians of ˆ 2X5.K/.

Theorem 4.1. Let C � P4 be a genus-one normal curve of degree 5 defined over
a field K.

(i) There exists ˆ 2X5.K/ such that C D Cˆ.

(ii) If ˆ1; ˆ2 2 X5.K/ with C D Cˆ1
D Cˆ2

then there exist A 2 GL5.K/ and
� 2K� such that ˆ2 D �Aˆ1AT .

Theorem 4.1 is a consequence of the Buchsbaum-Eisenbud structure theorem [7;
6] for Gorenstein ideals of codimension 3. In this section we give a simplified form
of the proof and use it to give explicit algorithms for computing ˆ and A. These
algorithms are needed in our work [19; 20] on the invariant theory of genus-one
models.

Example 4.2. Let E be the elliptic curve y2D x3CaxCb. For any n� 3 we may
embed E into Pn�1 via the complete linear system jn � 0E j to give a genus-one
normal curve of degree n. If nD 5 then the embedding is given by

.x1 W � � � W x5/D .1 W x W y W x
2
W xy/

and the image is defined by the 4� 4 Pfaffians of0BBBB@
0 bx1 x5 x4C ax1 �x3

0 �x4 �x3 x2
0 �x2 0

� 0 �x1
0

1CCCCA :
(Since the homogeneous ideal is generated by a 5-dimensional space of quadrics,
it suffices to check that the 4� 4 Pfaffians are linearly independent and that they
vanish on E.)
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Let RDKŒx1; : : : ; xn�D
L
d�0Rd be the polynomial ring with its usual grad-

ing by degree. Let RC D
L
d�1Rd be the irrelevant ideal.

Definition 4.3. Let M be a finitely generated graded R-module. A graded free
resolution of M is a complex of graded free R-modules

F� W 0 �! Fs
's
�! Fs�1 �! � � � �! F2

'2
�! F1

'1
�! F0 �! 0

that is exact at all terms except F0, where we have F0= im.'1/ŠM . The resolu-
tion F� is minimal if �i .Fi /�RCFi�1 for all i .

We shall need the following two facts.

Lemma 4.4. Let F� be a minimal graded free resolution of M . Then any graded
free resolution of M is a direct sum of F� and a trivial complex. In particular, F� is
unique up to isomorphism.

Proof. See [16, §20.1] or [33, §7]. �
Lemma 4.5 (Buchsbaum-Eisenbud acyclicity criterion). The complex F� is acyclic
(that is, exact at all terms except F0) if and only if for all 1� i � s,

rankFi D rank'i C rank'iC1;

and the ideal generated by the ri � ri minors of 'i (where ri D rank'i ) has codi-
mension at least i .

Proof. See [5, Theorem 1.4.13] or [16, Theorem 20.9]. We use here that R is
Cohen-Macaulay, so that the codimension (also called height) of an ideal is the
same as the grade (also called depth). �

We follow the convention that maps of graded R-modules preserve the degree.
Let R.d/ be R as a graded module over itself with degrees shifted by d , that is,
R.d/e DRdCe . We use the same notation for maps of R-modules and the matrices
that represent them (with respect to the standard bases).

Theorem 4.6. Let C � P4 be a genus-one normal curve of degree 5 with homoge-
neous ideal I D I.C /�RDKŒx1; : : : ; x5�.

(i) The minimal graded free resolution of R=I takes the form

0 �!R.�5/
QT

�!R.�3/5
ˆ
�!R.�2/5

P
�!R �! 0: (3)

(This means that P D .p1; : : : ; p5/ and Q D .q1; : : : ; q5/ are vectors of
quadrics and ˆ is a 5� 5 matrix of linear forms.)

(ii) The K-vector space

fB 2Mat5.K/ jˆB is alternatingg

is 1-dimensional and contains a nonsingular matrix.
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(iii) If ˆ is alternating then P and Q are scalar multiples of Pf.ˆ/.

Proof. The conclusions of the theorem are unchanged if we extend our field K, so
we may assume K is algebraically closed. Then C is an elliptic curve, and up to
translation any two divisors on C of the same degree are linearly equivalent. So we
may change coordinates on P4 so that C DCˆ where ˆ is as given in Example 4.2.
(If K has characteristic 2 or 3, we use the more general formula in [19, §6].) By
Lemma 3.2(i) there is a complex

0 �!R.�5/
PT

�!R.�3/5
ˆ
�!R.�2/5

P
�!R �! 0 (4)

with P D Pf.ˆ/. Since P is not identically zero we have rank.ˆ/ D 4 and
rank.P /D 1. By Lemma 3.2(iii) the ideals generated by the 4� 4 Pfaffians of ˆ
and the 4�4 minors of ˆ have the same radical. Since C � P4 has codimension 3,
the conditions of Lemma 4.5 are satisfied and so (4) is the minimal graded free
resolution of R=I . This proves (i) and shows by Lemma 4.4 that for any resolu-
tion (3) there exist A1; A2 2GL5.K/ such that A1ˆA2 is alternating. Replacing ˆ
by ˆA2A�T1 we may assume for the proof of (ii) that ˆ is alternating.

Suppose that both ˆ and ˆB are alternating for some B 2 Mat5.K/. Then
Pˆ D PˆB D 0 and ˆP T D ˆBP T D 0. Since the sequence (3) is exact it
follows that P T and BP T are scalar multiples of QT . Therefore B is a scalar
matrix. This proves (ii). To prove (iii) we apply the same argument starting with
the identity Pf.ˆ/ˆD 0. �

Theorem 4.6 not only proves Theorem 4.1(i) but gives the following algorithm
for computing a genus-one modelˆ with C DCˆ. We start with a basis p1; : : : ; p5
for the space of quadrics vanishing on C . We then solve by linear algebra for a
matrix ‰ whose columns are a basis for the space of all 5-tuples of linear forms
.`1; : : : ; `5/ 2 R

5 satisfying
P5
iD1 `ipi D 0. Finally we take ˆ D ‰B where

B 2Mat5.K/ is any nonzero matrix satisfying ‰B D�BT‰T .
To prove Theorem 4.1(ii) we put P1 D Pf.ˆ1/ and P2 D Pf.ˆ2/, and note that

by Lemma 4.4 there is an isomorphism of complexes

0 // R.�5/
PT

1 //

�

��

R.�3/5
ˆ1 //

A�T

��

R.�2/5
P1 //

BT

��

R // 0

0 // R.�5/
PT

2 // R.�3/5
ˆ2 // R.�2/5

P2 // R // 0

for some A;B 2 GL5.K/ and � 2 K�. Commutativity of this diagram gives
P T1 D �A

TP T2 D BP
T
2 and ˆ2 D BTˆ1AT . Since the entries of P2 are linearly

independent it follows that B D �AT , and so ˆ2 D �Aˆ1AT , as required. The
proof shows that A2GL5.K/ is uniquely determined up to scalars by the condition
Pf.ˆ1// Pf.ˆ2/A. This observation (which also follows by Lemma 3.2(ii)) gives
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a convenient way to compute A. If K is algebraically closed then we may scale A
so that �D 1. With this convention A is unique up to sign.

5. Descent by isogeny

We return to working over a number field K. Let � WE!E 0 be a cyclic isogeny
of degree n and let y� W E 0! E be its dual isogeny. If .C; �/ is a �-covering of
E 0 then .C; y� ı�/ is an n-covering of E. In general not all n-coverings of E arise
in this way. Instead, an upper bound for the rank is obtained by computing both
S .�/.E=K/ and S .y�/.E 0=K/.

Since the Weil pairing EŒ���E 0Œy��!�n is nondegenerate, the action of Galois
on EŒ��, E 0Œy��, and �n is described by three characters

��1!; �; ! W Gal.K=K/! .Z=nZ/�:

Let LDK.E 0Œy��/ be the fixed field of the kernel of �, and let GDGal.L=K/. If n
is prime then ŒL WK� divides n�1 and so is coprime to n. By the inflation-restriction
exact sequence we have

H 1.K;EŒ��/ŠH 1.L;EŒ��/G :

Since H 1.L;EŒ��/ Š H 1.L; �n/ Š L
�=.L�/n it follows (by keeping track of

the G-actions) that H 1.K;EŒ��/Š .L�=.L�/n/�, where, if A is a G-module, we
write

A� D fa 2 A j �.a/D a�.�/ for all � 2Gg:

There is an analogue of the exact sequence (1) obtained by replacing K by its
completion Kv. Let ıv be the connecting map in this exact sequence. The Selmer
group attached to � is

S .�/.E=K/D f� 2H 1.K;EŒ��/ j resv.�/ 2 im ıv for all places vg

where resv WH 1.K;EŒ��/!H 1.Kv; EŒ��/ is the restriction map. Assuming we
can compute the groups

L.S; n/D f� 2 L�=.L�/n j vp.�/� 0 mod n for all p 62 Sg

for S a finite set of primes, the problem of computing the Selmer group reduces
to that of computing the images of the local connecting maps ıv. Since we give
equations for the covering curves, the images of the ıv may be computed by work-
ing out conditions for these curves to be locally soluble. See for example [17; 18;
9]. Alternatively, as described for example in [23; 28], the images of the ıv may
be computed as the cokernels of the maps � WE.Kv/!E 0.Kv/.
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We take nD 5 and split into the cases where � has order 1, 2 or 4. If � is trivial
then EŒ��Š �5 and E 0Œy��Š Z=5Z as Galois modules. We recall from [17] that
E Š C� and E 0 ŠD� for some � 2K, where C� and D� are the curves given by

C� W y2C .1��/xy ��y D x3��x2C a4xC a6;

D� W y2C .1��/xy ��y D x3��x2;
(5)

where a4 D�5�.�2C 2�� 1/ and a6 D��.�4C 10�3� 5�2C 15�� 1/.

Theorem 5.1. If �0; : : : ; �4 are elements of K such that

�D

4Y
iD0

�i and � �

4Y
iD0

�ii mod .K�/5; (6)

then the �-covering of D� corresponding to � 2K�=.K�/5 is defined by the 4� 4
Pfaffians of 0BBBB@

0 �1x1 x2 �x3 ��4x4
0 �3x3 x4 �x0

0 �0x0 x1
� 0 �2x2

0

1CCCCA :
Proof. See [17, Proposition 2.12]. The analogue of this result for cyclic isogenies
of degrees 3 and 4 is given in [18, §1.2]. �

Example 5.2. Taking K D Q and .�0; : : : ; �4/ D .1; 1; 2; 3; 5/ gives an element
of order 5 in X.C30=Q/.

If � is a quadratic character then E and E 0 are the quadratic twists by � of C�
and D� for some � 2K. We write LDK.

p
d/.

Theorem 5.3. If r and s are elements of K, not both zero, then the �-covering
of E 0 corresponding to � D .r C s

p
d/=.r � s

p
d/ 2 .L�=.L�/5/� is defined by

the 4� 4 Pfaffians of0BBBB@
0 �x0 d.x2� x4/ �x1C x3 �x3

0 �x1� x3 x2C x4 x4
0 .r2� s2d/x0 rx1C sdx2

� 0 sx1C rx2
0

1CCCCA :

Proof. Let ˛ D r C s
p
d and ˛0 D r � s

p
d . We apply Theorem 5.1 over L with

.�0; : : : ; �4/D .�=.˛˛
0/; ˛; 1; 1; ˛0/:
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We then substitute x0 �.r2� s2d/x0 and

.x1; : : : ; x4/ .x1C
p
dx2; x3C

p
dx4; x3�

p
dx4; x1�

p
dx2/

to give a curve defined over K. Since ŒL WK� and deg� are coprime to one another,
the restriction map H 1.K;EŒ��/!H 1.L;EŒ��/ is injective. Since the curve we
have found and the curve we are looking for are isomorphic over L, they must
therefore be isomorphic over K. �

Example 5.4. Taking K DQ and �D 11, d D 5, r D sD 1 gives an element of or-
der 5 in X.E=Q/ where E is the elliptic curve 275b3 in Cremona’s tables [10; 11].

Remark 5.5. The curve in Theorem 5.1 is defined by the 5 quadrics

�ix
2
i C xi�1xiC1��i�2�iC2xi�2xiC2 D 0

where the subscripts are read modulo 5. If �0i D ��2i=.�2i�2�2iC2/ then the
curves defined by �0; : : : ; �4 and �00; : : : ; �

0
4 are isomorphic via

.x0 W � � � W x4/ 7! .x0 W x2 W x4 W x1 W x3/:

Taking Jacobians it follows that C� Š C�1=�. Alternatively this last statement may
be checked using the Weierstrass equations (5).

Now suppose � has order 4. Let � be the generator of Gal.L=K/ with �.�/D 2.
Then E and E 0 are isomorphic over L to C� and D� for some � 2 L satisfying
�.�/D�1=�.

Theorem 5.6. If ˛ 2 L� then the �-covering of E 0 corresponding to

� D ˛4�.˛/2�2.˛/�3.˛/3 2 .L�=.L�/5/� (7)

is isomorphic over L to the curve in Theorem 5.1 with

.�0; : : : ; �4/D

�
��.˛/�3.˛/;

˛

��.˛/�3.˛/
;
��.˛/

˛
;
��3.˛/

�2.˛/
;

�2.˛/

��.˛/�3.˛/

�
:

Moreover a model for this curve over K is obtained by substituting0BB@
x1
x2
x3
x4

1CCA 
0BB@

ˇ1 ˇ2 ˇ3 ˇ4
�.ˇ1/ �.ˇ2/ �.ˇ3/ �.ˇ4/

�3.ˇ1/ �
3.ˇ2/ �

3.ˇ3/ �
3.ˇ4/

�2.ˇ1/ �
2.ˇ2/ �

2.ˇ3/ �
2.ˇ4/

1CCA
0BB@
x1
x2
x3
x4

1CCA
where ˇ1; : : : ; ˇ4 is a basis for L over K.

Proof. The first part is clear since we have chosen �0; : : : ; �4 to satisfy (6). We
have also arranged that �.�i /D��2i=.�2i�2�2iC2/. The second part then follows
by Remark 5.5. �
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Remark 5.7. Since � D 4C 2� C �2C 3�3 2 F5ŒG� is an idempotent satisfying
��D 2�, every element of .L�=.L�/5/� is of the form (7).

Example 5.8. Let E and E 0 be the 5-isogenous elliptic curves

E D 23808c3 W y2 D x3� x2� 785949x� 271615419;

E 0 D 23808c2 W y2 D x3� x2C 7651xC 676677:

Then LDQ."/ where "D
p
2C
p
2. Moreover �D .49C41

p
2/=31 and � W " 7!

"3� 3". We take ˛ D 1C " and ǰ D "
j�1 for j D 1; : : : ; 4. After following the

construction in Theorem 5.6, the algorithms for minimisation and reduction in [21]
suggest the change of coordinates0BBBB@

x0
x1
x2
x3
x4

1CCCCA 
0BBBB@

0 0 0 0 62

0 6 �6 14 0

13 �13 �7 �7 0

0 1 �1 �8 0

�3 3 4 4 0

1CCCCA
0BBBB@
x0
x1
x2
x3
x4

1CCCCA :

The result is C � P4 defined by the 4� 4 Pfaffians of0BBBB@
0 x0� x1C x3C 4x4 x1� x2� x4 �x2� 2x3C 4x4 x1

0 �x2� 4x4 x1� x2C x4 x3
0 x0� x1� x3� 4x4 x2

� 0 x0
0

1CCCCA :
Computing the invariants, as described in [19], and using Bruin’s programs [4] to
check local solubility, we find that C represents an element of X.E=Q/Œ5�. It is
nontrivial since E 0.Q/D 0 and � … .L�/5.

6. An example of full 5-descent

In this section we compute equations for an order-5 element in the Tate-Shafarevich
group of the elliptic curve E=Q:

6727a1 W y2C xy D x3� x2� 202951x� 34841040:

Since E has no rational 5-isogenies, our method is to use full 5-descent; that is,
descent with respect to the multiplication-by-5 map on E. Further details of the
calculation are given in a Magma [2] file available at this article’s webpage.

Let T D .xT ; yT / be a nontrivial 5-torsion point on E. Then L D Q.T / is a
number field of degree 24. Let �2 be the automorphism of L with �2.T / D 2T .
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We shall write elements of L in terms of u and v where

v D�31.2yT C xT /=.x
2
T C 480xT C 87391/

and uD v=�2.v/. Explicitly, u has minimal polynomial

X12C 4X11� 6X10� 20X9C 15X8� 303X7

C 323X6C 303X5C 15X4C 20X3� 6X2� 4X C 1

and v is a square root of

.2u11C9u10�8u9�46u8C10u7�591u6C343u5C928u4C331u3C60u2C8u�9/=3:

We recall from [15; 34] that there is an injective group homomorphism

H 1.Q; EŒ5�/! L�=.L�/5

whose image is contained in the �2-eigenspace

fx 2 L�=.L�/5 j �2.x/� x
2 mod .L�/5g: (8)

The primes of bad reduction for E are 7 and 31, with Tamagawa numbers c7 D 1
and c31D 2. Since the Tamagawa numbers are coprime to 5, we have S .5/.E=Q/�

L.S; 5/ where SD fp1; p2g is the set of primes of L above 5.
The number field L is too large for an unconditional computation of its class

group and units. However according to PARI/GP [32] (which by default makes
heuristic assumptions) the class number is 2. We also used PARI/GP to compute
a set of fundamental units, and generators for the prime ideals p1 and p2. This
gives a basis for L.S; 5/ Š .Z=5Z/15. The intersection of L.S; 5/ with the �2-
eigenspace (8) is 3-dimensional. One of the nontrivial elements is aD a0=294, with

a0 D .4600u11C8325u10�72155u9�50035u8C289975u7�1450795u6

C4510595u5�592350u4�3962957u3�1755928u2�811953u�191035/v

C.158985u11C661975u10�836070u9�3280275u8C1784950u7

�48064875u6C43645605u5C52498690u4C14516335u3C7628705u2

C310520u�311257/:

We have .a/D c5 for some integral ideal c, and a�2.a/2Db5 where bDb0=294 and

b0 D .452u11C 1935u10� 2186u9� 9743u8C 4070u7� 135379u6

C 108106u5C 172665u4C 54912u3C 14840u2� 4879u� 12762/v

C .�1983u11� 9082u10C 7240u9C 46137u8� 7149u7C 585937u6

� 289205u5� 957562u4� 338134u3� 139997u2� 62943uC 7646/:
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We recall some of the theory from [12; 13; 14]. Let E be an elliptic curve over
a field K of characteristic 0. Let R be the K-algebra of all Galois-equivariant
maps EŒn�! K and let w W EŒn�! R� DMap.EŒn�;K�/ be the map induced
by the Weil pairing en. If � 7! �� is a cocycle representing � 2 H 1.K;EŒn�/

then by Hilbert’s theorem 90 there exists 
 2 R� with �.
/=
 D w.�� / for all
� 2 Gal.K=K/. We put ˛ D 
n and �D @
 where

@ WR�! .R˝R/� DMap.EŒn��EŒn�;K�/

is given by .@z/.T1; T2/ D z.T1/z.T2/=z.T1C T2/. Then according to [12, §3]
there are group homomorphisms

w1 WH
1.K;EŒn�/!R�=.R�/n; � 7! ˛;

w2 WH
1.K;EŒn�/! .R˝R/�=@R�; � 7! �:

The map w1 is injective for n prime, whereas w2 is always injective.
Let Ob WH 1.K;EŒn�/! Br.K/ be the obstruction map as defined in Section 2.

Theorem 6.1. Assume n is odd. Let � 2 H 1.K;EŒn�/ and � 2 .R˝ R/� with
w2.�/ D �@R

�. Let A� D .R;C;��/ where the new multiplication �� is defined
by

z1 �� z2 W T 7!
X

T1CT2DT

en.T1; T2/
.nC1/=2�.T1; T2/z1.T1/z2.T2/:

Then A� is a central simple algebra over K of dimension n2 representing the class
of Ob.�/ in Br.K/.

Proof. See [12, Lemma 3.11 and §4]. �

Returning to our numerical example, we write ˛ and ˇ for the elements .1; a/
and .1; b/ in the étale algebra RDQ�L. To compute � exactly (using @˛ D �5)
we must extract a 5th root in a number field of degree 1

2
# GL2.Z=5Z/D 240. This

would be the direct analogue of what we do for 3-descent (see [14, §8]), but is
clearly not very promising. So instead we write �D @
 and (fixing an embedding
Q� C) represent 
 2 RDMap.EŒ5�;Q/ numerically. Since 
5 D ˛ there are at
first sight 525 possibilities for 
 . We cut down to just 53 choices by requiring that

(i) 
.T /
.2T /2 D ˇ.T / for all T 2EŒ5�, and

(ii) 
 WE.C/Œ5�! C is Gal.C=R/-equivariant.

To explain these conditions we recall that �.
/=
 D w.�� / for all � 2 Gal.Q=Q/.
From this it is easy to see that T 7! 
.T /
.2T /2 is Galois-equivariant. Since
˛.T /˛.2T /2 D ˇ.T /5, and there are no nontrivial fifth roots of unity in R, this
proves (i). Let � 2Gal.Q=Q/ be complex conjugation. (Recall that we fixed an em-
bedding Q�C.) Since H 1.R; EŒ5�/D 0 we have �.
/=
 Dw.�� /Dw.�.S/�S/
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for some S 2E.C/Œ5�. Dividing 
 by w.S/ now gives (ii). Multiplying 
 by w.T /
for T 2E.R/Œ5� does not change �D @
 , so in fact we only need to loop over 52

choices for 
 .
Let T1, T2 be a basis forEŒ5�.C/ with T 1DT1, T 2D�T2. Then �D e5.T1; T2/

is a primitive fifth root of unity. We define

h.T1/D

0BBBB@
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

1CCCCA ; h.T2/D

0BBBB@
1 0 0 0 0

0 � 0 0 0

0 0 �2 0 0

0 0 0 �3 0

0 0 0 0 �4

1CCCCA ;
and

h WEŒ5�.C/!Mat5.C/; h.rT1C sT2/D �
�rs=2h.T1/

rh.T2/
s;

where the exponent of � is read as an element of Z=5Z.
We compute the structure constants for A� from the real trivialisation given in

[14, §5], that is,

A�˝R �!� Mat5.R/; z 7!
X

T2EŒ5�


.T /z.T /h.T /:

As recommended there, we choose our Q-basis for L to be a Z-basis for c�1 that
is LLL-reduced with respect to the inner product

hz1; z2i D
X

0 6DT2EŒ5�

j˛.T /j2=5z1.T /z2.T /:

This makes the structure constants small integers, which are therefore easy to recog-
nise from floating-point approximations. The incorrect choices of 
 are quickly
discarded since the structure constants do not in general turn out to be integers.

To record our final choice of 
 we let T1; T2 be the basis for E.C/Œ5� given
(approximately) by

T1 D .1996:32;�87675:66/;

T2 D .�643:55; 321:77� 13079:33i/:

Then 
 is the fifth root of ˛ given (approximately) by the following matrix, with
entries 
.rT1C sT2/ for r; s D 0; : : : ; 4.0BBBB@

1:00 �3:96C 0:90i 1:39� 4:05i 1:39C 4:05i �3:96� 0:90i

�0:92 5:87� 2:18i 2:39C 1:96i 2:39� 1:96i 5:87C 2:18i

�2:20 4:41C 3:00i �3:56� 4:19i �3:56C 4:19i 4:41� 3:00i

�2:12 �7:13� 4:33i �0:29C 3:75i �0:29� 3:75i �7:13C 4:33i

4:44 0:14� 0:12i �0:96� 0:48i �0:96C 0:48i 0:14C 0:12i

1CCCCA
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Although our method for choosing a basis for L as a Q-vector space works well
on a computer, the basis vectors (which are elements of c�1) are extremely messy
to write down. To assist in recording some details of the calculation, we replace ˛
and 
 by their inverses. Our Q-basis u1; : : : ; u24 for L is now a Z-basis for c. Its
first two elements are u1 D u01=147 and u2 D u02=294, where

u01 D 906u
11
C 3697u10� 5099u9� 18382u8C 11847u7� 274284u6

C 271264u5C 284304u4C 51522u3C 31261u2� 4247u� 3174

and

u02 D .640u
11
C 2621u10� 3565u9� 13051u8C 8154u7� 193589u6

C 188894u5C 204155u4C 40745u3C 21338u2� 5548u� 2903/v

C .�221u11� 943u10C 1135u9C 4972u8� 2330u7C 65086u6

� 53197u5� 99488u4� 12061u3C 13094u2C 5473uC 4980/:

Then R has basis r1; : : : ; r25, where r1 D .1; 0/ and riC1 D .0; ui /. Let A� D
.R;C;��/ with basis a1; : : : ; a25 corresponding to r1; : : : ; r25. Note that a1 is the
identity. The structure constants turn out to be integers with maximum absolute
value 448 and mean absolute value 22:65. As predicted by [14, Lemma 5.2] the
order with basis the ai has discriminant 548 � 716 � 3118 D 525 �Disc.L/. The basis
vectors ai have minimal polynomials

X � 1; X5C 435X3C 7315X2C 835X C 32172;

X5� 390X3� 4885X2C 17560X C 1407822; : : :

If ˛ 2R�=.R�/5 corresponds to a Selmer group element, then by the local-to-
global principle for the Brauer group we have A� Š Mat5.Q/. The problem of
finding such an isomorphism (called a trivialisation) is addressed in [14; 24; 25].
By using Magma to compute a maximal order (and running LLL on the change of
basis matrix) we found a basis with minimal polynomials

X2; X2; X2; X4; X2; X3; X2; X3�X;

X5� 2X3CX; X4�X2; X4�X2; X5CX3; X2;

X4�X2; X3; X4� 2X2; X4�X2; X5�X3CX2CX;

X5�X3� 4X2C 4X; X4� 2X2�X; X4CX3�X2�X;

X5�X3; X5� 2X3; X5� 5X2CX; X3CX2:

Any reducible minimal polynomial gives a zero-divisor in A�, and once we know a
zero-divisor it is easy to find a trivialisation. In this way we found a trivialisation �
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that maps a1 7! I5 and

a2 7!

0BBBB@
13 �5 �20 �20 �15

�40 �22 40 20 10

�20 �35 3 �15 �15

�15 0 30 13 0

15 15 �10 �5 �7

1CCCCA ; a3 7!

0BBBB@
�12 5 0 10 5

�30 �42 35 5 0

�50 �35 38 20 5

�110 �50 65 8 5

45 45 �30 0 8

1CCCCA :

These calculations show that the element ˛ of R�=.R�/5 corresponds to an element
ofH 1.Q; EŒ5�/ with trivial obstruction. It may therefore be represented by a genus-
one normal curve C � P4.

We compute equations for C using the “Hesse pencil method”, as described
in [12, §5.1]. Let r�1 ; : : : ; r

�
25 be the basis for R with TrR=Q.rir

�
j / D ıij . It is

shown that

M D

25X
iD1

r�i �.ai / 2 GL5.R/DMapQ.EŒ5�;GL5.Q//

describes the action of EŒ5� on C � P4. In [20, §12] we gave a practical method
for computing all genus-one normal curves C � P4 that have Jacobian E and
are invariant under the matrices MT for T 2 EŒ5�. As predicted by [12, Proposi-
tion 5.5] there is only one such curve defined over Q. We use the algorithms for
minimisation and reduction in [21] to make a final change of coordinates. In this
example the model obtained is already minimal, whereas reduction suggests the
change of coordinates0BBBB@

x1
x2
x3
x4
x5

1CCCCA 
0BBBB@
�1 2 1 �2 1

�1 1 1 �1 1

1 �1 0 1 0

0 0 0 0 1

0 0 0 1 0

1CCCCA
0BBBB@
x1
x2
x3
x4
x5

1CCCCA :

The result is C � P4 defined by the 4� 4 Pfaffians of0BBBB@
0 �x1Cx2Cx3 x1C3x2Cx4 �2x2Cx3Cx5 2x2�2x3Cx5

0 �x1�x2�x3Cx5 x2�x4Cx5 �x2Cx3Cx4
0 �x3Cx5 �x1Cx3�x5

� 0 x4
0

1CCCCA :
Computing the invariants, as described in [19], and using Bruin’s programs [4] to
check local solubility, we find that C represents an element of X.E=Q/Œ5�. It is
nontrivial since E.Q/=5E.Q/D 0 and ˛ … .R�/5.
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The theory in [12, §3] shows that if M 5 D ˛0I5 then ˛0=˛ 2 .R�/5. This
is a condition we can check exactly. So even though we made use of floating-
point approximations (and did not check at the outset that ˛ is in the image of w1,
although methods for doing this are described in [15; 34]), we can be sure that C
corresponds to our original choice of ˛.

Repeating for other choices of ˛, we found a subgroup of X.E=Q/ isomor-
phic to .Z=5Z/2. For these, and examples for other elliptic curves E=Q of small
conductor, see [22]. The main difficulty in computing further examples is that the
computation of class group and units is often prohibitively expensive.
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On the density of abelian surfaces with
Tate-Shafarevich group of order five times a square

Stefan Keil and Remke Kloosterman

Let A D E1 � E2 be the product of two elliptic curves over Q, each having
a rational 5-torsion point Pi . Set B WD A=h.P1; P2/i. In this paper we give
an algorithm to decide whether the order of the Tate-Shafarevich group of the
abelian surface B is square or five times a square, under the assumptions that
we can find a basis for the Mordell-Weil groups of E1 and E2 and that the Tate-
Shafarevich groups of E1 and E2 are finite.

We considered all pairs .E1; E2/ with prescribed bounds on the conductor
and the coefficients in a minimal Weierstrass equation. In total we considered
around 20:0 million abelian surfaces, of which 49:16% have Tate-Shafarevich
groups of nonsquare order.

1. Introduction

Let A be an abelian variety over a number field K. The Tate-Shafarevich group
X.A=K/ plays an important role in understanding the arithmetic of A. For exam-
ple, it contains information on the tightness of the upper bound on the Mordell-
Weil rank obtained by m-descent. Moreover, the order of this group, which is
conjectured to be finite, plays a role in the Birch and Swinnerton-Dyer conjecture.

The Tate-Shafarevich group comes with a pairing, the Cassels-Tate pairing,
which depends on the choice of a polarization � W A! A_:

h � ; � i� WX.A=K/�X.A=K/!Q=Z:

Let X.A=K/nd denote the Tate-Shafarevich group modulo its maximal divisible
subgroup. If � is an isomorphism, that is, A is principally polarized, then the

MSC2010: primary 11G10; secondary 11G40, 14G10, 14K15.
Keywords: Tate-Shafarevich groups, abelian surface, Cassels-Tate equation.
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induced pairing on X.A=K/nd is nondegenerate. If moreover this pairing is alter-
nating, then for all primes p the cardinality of the p-primary part X.A=K/ndŒp

1�

is a perfect square; thus, if X.A=K/ is finite then it is a perfect square.
Tate [18] showed that if � is an isomorphism and is induced from a K-rational

divisor on A, then the Cassels-Tate pairing is in fact alternating, as for example for
elliptic curves. However, if dimA > 1 then A may not admit a principal polariza-
tion, and even when A is principally polarized this polarization need not be induced
by a K-rational divisor on A. Poonen and Stoll [11] showed that in fact there exist
genus-2 curves C=Q such that #X.J.C /=Q/ is twice a square. Moreover, they
showed that if one assumes that X.J.C /=Q/ is finite for all genus-2 curves C=Q,
then the density of genus-2 curves whose Jacobians have Tate-Shafarevich groups
of nonsquare order exists, and is approximately 13%.

For arbitrary abelian varieties Flach [4] showed that if #X.A=K/D kn2, with
k square free, then k divides 2 times the degree of every polarization on A. Hence
for principally polarized abelian varieties one has that #X.A=K/ is either a square
or twice a square, if it is finite, but for general abelian varieties there are more
possibilities. Stein [17] constructed, for every prime number p < 25000 (excluding
p D 2 and p D 37), an example of a .p � 1/-dimensional abelian variety Ap=Q

such that #X.Ap/D pn
2.

We restrict now to the case of dimAD 2. The constructions of Poonen-Stoll and
of Stein yield examples of abelian surfaces such that #X.A=K/ is a square, twice
a square, or three times a square. One might wonder which further possibilities
occur. Recently, the first author [6] showed that there exist abelian surfaces such
that the Tate-Shafarevich group has order five times a square and seven times a
square.

In this paper we will take a closer look at the construction of abelian surfaces
with Tate-Shafarevich group of order five times a square. The examples of [6]
are members of a two-dimensional family of abelian surfaces with a polarization
of degree 52. Moreover, one can show that for a general member of this family,
every polarization it possesses has degree a multiple of 5; thus they are not a priori
excluded by Flach’s theorem and might have a Tate-Shafarevich group of order
five times a square.

The construction of this family goes as follows. Let .E;O/ be an elliptic curve
over Q with a point P of order 5. Then there exists a d 2Q� such that ..E;O/; P /
is isomorphic to ..Ed ; O/; .0; 0//, where

Ed W yC .d C 1/xyC dy D x
3
C dx2:

Take two numbers d1; d2 2Q� and consider Bd1;d2
WDEd1

�Ed2
=h.0; 0/� .0; 0/i.

Then Ad1;d2
WDEd1

�Ed2
! Bd1;d2

is an isogeny of degree 5. Moreover, if the
two elliptic curves are not isogenous, then all polarizations on Bd1;d2

have degree
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divisible by 5. The Bd1;d2
’s are the family we consider. In our case we know that

X.Ad1;d2
=Q/ has square order, if it is finite, since it is isomorphic to the product

of the two Tate-Shafarevich groups of Ed1
and Ed2

.
The behavior of the Tate-Shafarevich group under isogenies is well-known. This

behavior is part of Tate’s proof of the invariance of the Birch and Swinnerton-Dyer
conjecture; for more on this see Section 2. The upshot of this is the following: Let
' W A! B be an isogeny and assume that either #X.A=K/ or #X.B=K/ is finite
(which implies that both are finite). Denote by '_ WB_!A_ the dual isogeny. For
a field L�K denote by 'L W A.L/! B.L/ the induced map on L-rational points.
Let S be a finite set of places containing the primes where A has bad reduction, the
infinite places, and the primes dividing the degree of '. Then the following holds:

#X.A=K/

#X.B=K/
D

# ker'K# coker'_K
# ker'_K# coker'K

Y
v2S

# coker'Kv

# ker'Kv

:

In Sections 4 and 5 we show that for our choice of abelian surfaces the above-
mentioned cardinalities of kernels and cokernels can be determined, provided one
has a basis for the Mordell-Weil group of both Ed1

and Ed2
. (Actually something

weaker is enough; see the end of Section 4.) Hence, given bases for the Mordell-
Weil groups of both elliptic curves we can determine whether #X.B=Q/, if finite,
is a square or a nonsquare.

For all pairs .d1; d2/ with di D ui=vi where max.jui j; jvi j/ is bounded by
N D 50,000 and where the conductor of Edi

is bounded by C D 106, we computed
this product of cardinalities of kernels and cokernels. There are 2,445,366 such
pairs, and 47:01% of these surfaces have a Tate-Shafarevich group of nonsquare
order (assuming that X.Ed1

=Q/ and X.Ed2
=Q/ are finite). We also computed

these cardinalities for all pairs .d1; d2/ such that the absolute value of the numerator
and denominator of di is bounded by N D 100. There are 18,522,741 such pairs,
and 49:31% of them have Tate-Shafarevich group of nonsquare order. Based on our
computations, we expect that the density of abelian surfaces Bd1;d2

with nonsquare
Tate-Shafarevich groups exists and is around 50%. For some heuristics see the end
of the final section.

The outline of this paper is as follows. In Section 2 we discuss some prelim-
inaries and in Section 3 we explain in more detail the construction of the family
of abelian surfaces we consider. In Section 4 we discuss how we can calculate
the global quotient and which conditions on Ed1

and Ed2
are needed for this. In

Section 5 we discuss how we calculate the local quotient, which turns out to be
a much simpler computation. In Section 6 we sketch the algorithm used for the
computations of the densities, and finally in Section 7 we discuss the results we
obtain.
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2. Preliminaries

Let K be a number field and let GK be the absolute Galois group Gal.K=K/. For
a (finite or infinite) place v of K, denote by Kv the completion of K with respect
to v and by GKv

the absolute Galois group of Kv.
Let A=K be an abelian variety. Denote by A_ the dual abelian variety. Then

the Tate-Shafarevich group of A=K is defined as

X.A=K/ WD ker
�
H 1.GK ; A/!

Q
v
H 1.GKv

; A/
�
;

where the product is taken over all finite and infinite places of K. Let ' W A! B

be an isogeny of abelian varieties. Then the '-Selmer group of A=K is defined as

S'.A=K/ WD ker
�
H 1.GK ; AŒ'�/!

Q
v
H 1.GKv

; A/
�
:

The Tate-Shafarevich group is a torsion group. It is conjectured to be finite,
and the '-Selmer group is known to be finite. The m-torsion subgroup of the
Tate-Shafarevich group fits in an exact sequence

0! A.K/=mA.K/! S Œm�.A=K/!X.A=K/Œm�! 0:

That is, it measures the difference between the m-Selmer group and A.K/=mA.K/.
In theory the m-Selmer group is computable; hence the Tate-Shafarevich group
measures the difference between the upper bound on the Mordell-Weil rank ob-
tained by doing m-descent and the actual Mordell-Weil rank of A.

The Tate-Shafarevich group plays also a role in the Birch and Swinnerton-Dyer
conjecture:

Conjecture 2.1 (Birch and Swinnerton-Dyer). Let A=K be an abelian variety and
let L.A; s/ be its L-series. Set r WD rkA.K/. Then X.A=K/ is finite, L.A; s/ has
a zero of exact order r at s D 1, and

lim
s!1

L.A; s/

.s� 1/r
D
2r#X.A=K/RA

QR
A.Kv/

j!jv

#A.K/tor#A_.K/tor
: (1)

The left hand side of (1) is invariant under isogeny. Cassels [2] (for the case
dimA D 1) and Tate [18] (for the general case dimA � 1) proved that the right
hand side is also invariant under isogeny. That is, if ' W A! B is an isogeny then

#X.A=K/

#X.B=K/
D
RB#A.K/tor#A_.K/tor

QR
B.Kv/

j!jv

RA#B.K/tor#B_.K/tor
QR

A.Kv/
j!jv

:
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This formula was used by Schaefer and the second author [9] to provide examples
of elliptic curves with large Selmer groups, by Matsuno [10] and by the second au-
thor [8] to provide examples of elliptic curves with large Tate-Shafarevich groups,
and by Flynn and Grattoni [5] to compute several Selmer groups.

However, the right hand side of (1) is not well-suited for calculation. One can
rewrite the right hand side as follows: For a field L�K, let 'L denote the group
homomorphism 'L W A.L/! B.L/. Then

#X.A=K/

#X.B=K/
D

# ker'K# coker'_K
# ker'_K# coker'K

Y
v

# coker'Kv

# ker'Kv

: (2)

We will call the first factor (with the 'K) the global factor, and the second factor
(with the 'Kv

) the local factor. If v is a finite prime of good reduction and v does
not divides the degree of the isogeny, then # coker'Kv

D # ker'Kv
; hence the

product on the right hand side is a finite product, where only the bad primes, the
infinite primes, and the primes dividing the degree of the isogeny need be taken
into account.

It is known that if an elliptic curve has analytic rank at most 1, then its Tate-
Shafarevich group is finite and its analytic rank is equal to its Mordell-Weil rank.
Throughout this paper we will assume that the same is true even for elliptic curves
with larger analytic rank.

3. Constructing a family of abelian surfaces

We will construct a two-dimensional family of abelian surfaces B=K, whose mem-
bers are quotients of products of two elliptic curves E1; E2 by an isogeny of degree
5. Therefore #X.B=K/�5aD#X.E1�E2/, for some a2Z. Since #X.E1�E2/ is
a square, it follows that #X.B=K/ modulo squares is one of f1; 5g. Additionally,
we have that for a general member of this family every polarization has degree
divisible by 5. Thus Flach’s theorem does not restrict us further.

Let G=K be a group scheme of prime order `. Let E1; E2 be two elliptic curves
over K such that G is a subgroup scheme of both E1 and E2. Let AD E1 �E2
and B D A=G, where G is embedded diagonally in A. Then the natural isogeny
' W A ! B has degree `. Moreover, one can show that either E1 and E2 are
isogenous or every polarization on B has degree a multiple of `. Hence for general
E1; E2 we are in the second case.

Consider the case G D Z=`Z; that is, the case in which G is generated by a
K-rational point. Since for ` > 4 the functor Y1.`/ is representable, one has a
universal family of elliptic curves E with a point P of order `. In the case `D 5
the universal family is given by

Ed W y
2
C .d C 1/xyC dy D x3C dx2; P D .0; 0/;
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for any d 2K� with d2C 11d � 1¤ 0. The four nontrivial 5-torsion points are
.0; 0/, .�d; d2/, .�d; 0/, and .0;�d/. If we move .0;�d/ to .0; 0/ and bring the
curve into standard form we obtain Ed . If we move .�d; d2/ or .�d; 0/ to .0; 0/
and bring the elliptic curve into standard form we obtain E�1=d .

We restrict now to the case where K D Q, `D 5, and G is generated by a Q-
rational point. Fix d1 and d2 in Q� and set A WDEd1

�Ed2
. The rational 5-torsion

subgroup of A has four diagonally embedded subgroups of order 5. Let G D Z=5Z

be one of those, so that G is the subscheme of A generated by .0; 0/� Œn�.0; 0/
for some n 2 f1; 2; 3; 4g. Let B WD A=G. Then B is a candidate for an abelian
surface such that X.B=Q/ has order five times a square. To actually check whether
X.B=Q/ has nonsquare order we will now calculate both the local and the global
factor.

Note that the 16 surfaces B=Q one obtains by replacing di by �1=di and using
the four values of n break into two sets of 8 isomorphic surfaces. For fixed d1; d2
the surfaces corresponding to nD 1; 4 lie in one of these isomorphism classes and
those for nD 2; 3 in the other one. We will see in the next two sections that for fixed
d1; d2 the size of X.B=Q/ is independent of n, and so all 16 surfaces will have
Tate-Shafarevich groups of the same cardinality. Therefore, for our computations
we will only consider the case d1; d2 > 0 and nD 1.

Let A0 be the quotient of Ed1
�Ed2

by the group scheme generated by .0; 0/�O
and O � .0; 0/, let E 0

di
be the quotient of Edi

by h.0; 0/i, and let �i be the natural
isogeny from Edi

to E 0
di

. The natural isogeny � W A! A0 factors as A! B! A0.
Consider now the dual picture

.A0/_! B_! A_:

Since A and A0 are products of elliptic curves, they are principally polarized. There-
fore we have the factorization

A0! B_! A:

The kernel of A0 ! A is Cartier dual to the kernel of A ! A0, and hence is
isomorphic to .�5/2. The kernel of A0 ! B_ is isomorphic to �5 embedded
with .1;�n/ in .�5/2.

In summary, we have the following diagram:

B
 

&&
ADEd1

�Ed2

'

88

�D�1��2
--
A0 DE 0

d1
�E 0

d2
:

 _

xx

�_

ll

B_
'_

ff
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Lemma 3.1. Suppose LDQ. Then ker'Q Š Z=5Z and ker'_
Q
D 0.

Proof. Since AŒ'�D Z=5Z it follows that A0Œ'_�D�5. Taking Q-rational points
yields the lemma. �

Lemma 3.2. Suppose LD R. Then ker'R Š Z=5Z and coker'R D 0.

Proof. The first assertion is automatic. The nontrivial element in Gal.C=R/ acts
on the fiber of an element of B.R/ under 'C either by swapping elements or fixing
them. Since the degree of ' is not divisible by 2 at least one element in the fiber
is fixed, and hence lies in A.R/. �

Let S be the set of primes where A has bad reduction, together with 5. Using
the above lemmas it follows that

#X.A=Q/

#X.B=Q/
D

# coker'_
Q

# coker'Q

Y
v2S

# coker'Qv

# ker'Qv

:

In other words, in our situation the global factor from (2) simplifies, and we do
not need to consider the local factor at infinity. In the next two sections we will
explain how to determine the global and local factors.

4. Determining the global factor

To determine
# coker'_

Q

# coker'Q

we assume for the moment that we have a basis for the Mordell-Weil groups
Ed1

.Q/, Ed2
.Q/, E 0

d1
.Q/, and E 0

d2
.Q/. We will now explain how one can de-

termine coker'Q and coker'_
Q

from this information.
Using the factorization �_ D '_ ı _ we obtain a surjective homomorphism

coker �_
Q
! coker'_

Q
. With Hilbert’s Theorem 90 we obtain

H 1.GQ; A
0Œ�_�/DH 1.GQ;�

2
5/D .Q

�=Q�5/2;

H 1.GQ; B
_Œ'_�/DH 1.GQ;�5/DQ�=Q�5:

Under these identifications, the surjection coker �_
Q
! coker'_

Q
becomes the map

.x; y/ 7! xn=y from .Q�=Q�5/2 to Q�=Q�5. One sees immediately that the image
of this map is independent of n, so to compute coker'_

Q
we may as well set nD

1. In order to determine coker'_
Q

it suffices to determine a basis in Q�=Q�5 for
coker �_1;Q and coker �_2;Q. By following [15, Exercise 10.1], this can be done quite
easily: Suppose that f is a function on Edi

with divisor 5.0; 0/� 5O . Then there
exists a unique constant c 2Q�=Q�5 such that the map

coker �_i;Q!Q�=Q�5
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that sends P 6D .0; 0/;O to cf .P / mod Q�5 is a well-defined injective group homo-
morphism, with image equal to the image of the natural embedding of coker �_i;Q
into H 1.GQ; E

0
di
Œ�_i �/Š Q�=Q�5. In our case we can take the function f to be

�x2CyC xy and the constant c to be 1. The point .0; 0/ is mapped to d�1 and
O to 1 by linearity.

An element of Q�=Q�5 is determined by its valuations at each prime. Write
d D u=v and let S be the set of all primes p dividing five times the minimal
discriminant of Ed , that is, p j 5uv.u2C 11uv� v2/. Define

Q.S; 5/ WD fx 2Q�=Q�5 j vp.x/� 0 mod 5 for all p … Sg:

From the same exercise from [15] it follows that f .coker �_
Q
/ � Q.S; 5/. Hence

we can represent an element of coker �_
Q

by its valuation at each prime number
p 2 S . Once the cokernels of both �_i;Q are established, the cokernel of '_

Q
can be

computed easily.
To determine the cokernel of 'Q we use the exact sequence

0! ker. Q/='.ker �Q/! coker'Q

 
! coker �Q! coker Q! 0:

Note that ker. Q/D '.ker �Q/. Set K WDQ.�5/, where �5 is a primitive fifth root
of unity. Then the restriction map H 1.GQ;Z=5Z/!H 1.GK ;Z=5Z/ is injective,
because its kernel has exponent dividing both ŒK WQ�D 4 and #Z=5Z. Since AŒ'�,
AŒ��, and BŒ � are isomorphic overK to �5, �5��5, and �5 (respectively), we ob-
tain the following commutative diagram, where the vertical maps are embeddings:

0 // coker'Q

 //

��

coker �Q
//

��

coker Q
//

��

0

0 // K�=K�5 // .K�=K�5/2 // K�=K�5 // 0:

(3)

As above, the third of the lower horizontal maps is just .x; y/ 7! xn=y. Hence,
to determine the cokernel of 'Q it suffices to determine the kernel of xn=y on
coker �1;Q � coker �2;Q! coker Q. Again this is independent of n, so we may
take nD 1. We compute the kernel as follows:

(1) For some Qd 2K there is a K-isomorphism � WE 0
d
!E Qd that sends a generator

of ker �_ to .0; 0/. The map f WE 0
d
!K�=K�5 is then

P 7! �x.�.P //2Cy.�.P //C x.�.P //y.�.P //:

Hence we have to determine � . This can be done easily for each individual
curve E 0

d
.
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(2) To represent elements in coker �Q �K
�=K�5, note that the class number of

K� equals 1. Set

K.S; 5/ WD fx 2K�=K�5 j vp.x/� 0 mod 5 for all p … Sg;

where S contains all primes p of K that are bad primes for Ed or that divide
5; that is, all primes p of K lying over a prime p of Q such that

p j 5uv.u2C 11uv� v2/:

From [15, Exercise 10.9] it follows that f .coker �Q/ � K.S; 5/. Hence to
represent elements in coker �Q we have to fix a generator tp for each prime
p 2 S , and we have to fix generators for the unit group of K modulo fifth
powers. The field K is well-understood, and it is easy to see that its unit
group is generated by ��5 and .1C �5/. Hence we can write

f .P /� �
a0

5 .1C �5/
a1

Y
p2S

t
vp.f .P //
p

modulo fifth powers.

Remark. We can weaken the assumption of having a basis for the Mordell-Weil
groups Ed1

.Q/, Ed2
.Q/, E 0

d1
.Q/, and E 0

d2
.Q/. It is actually sufficient to just have

generators of finite-index sublattices of these four groups, such that the indices are
not divisible by 5; that is, the generators of infinite order are not divisible by 5
modulo torsion. Such sublattices suffice because their images in the cokernels
of �_i , respectively �i , are the entire cokernels. Also, it is sufficient to just know
such sublattices for Ed1

.Q/ and Ed2
.Q/, because suitable dual sublattices can be

easily computed using the isogenies �i . One only has to calculate the images of
the generators under �i and then check whether their span contains points divisible
by 5 modulo torsion.

5. Determining the local factor

We want to calculate
# coker'Qp

# ker'Qp

for all bad primes p and for p D deg' D 5. Since the kernel of 'Qp
is generated

by a Q-rational point it follows that # ker'Qp
D 5. The size of the cokernel of 'Qp

depends on the reduction of Ed1
and Ed2

, but turns out to be independent of n.
For � WD �i , we first describe how coker �Qp

depends on the reduction type of
E WD Edi

. Write di DW u=v with u; v 2 Z and gcd.u; v/D 1. Then E has global
minimal equation

E W y2C .uC v/xyCuvy D x3Cuv2x2
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and discriminant �.uv/5.u2C 11uv� v2/.

Lemma 5.1. The elliptic curve E has the following reduction type at a prime p.

(1) If p j uv then the reduction is split multiplicative and the point .0; 0/ does not
lie on the identity component of the Néron model of E.

(2) If p j u2C 11uv� v2 then .0; 0/ lies on the identity component of the Néron
model of E and either p D 5, or p �˙1 mod 5 holds. If p D 5 the reduction
is additive, if p � 1 mod 5 then the reduction is split multiplicative, and if
p � 4 mod 5 then the reduction type is nonsplit multiplicative.

Proof. LetE beE mod p and letEns be the smooth locus ofE. If p juv thenE has
equation y2C˛xy D x3 for some nonzero ˛ 2 Z=pZ. In particular, .0; 0/ mod p
is a node of E and the tangent cone is generated by x D �˛y and y D 0, hence
the reduction is split multiplicative. Since .0; 0/ reduces to the singular point of E
this point does not lie on the identity component of the Néron model of E.

If p j u2C11uv�v2 then the reduction of .0; 0/ is both on Ens and is nontrivial.
In particular the order of the reduction of .0; 0/, which is 5, divides #Ens.Fp/. If
the reduction is split multiplicative this group has order p� 1, if the reduction is
nonsplit this group has order pC 1, and if the reduction is additive this group has
order p; that is, p � 1 mod 5, p ��1 mod 5, and p D 5 respectively. �

Let E 0 WD E 0
di

be the isogenous elliptic curve. Denote by cE;p and cE 0;p the
local Tamagawa numbers, that is, the number of components of the Néron model.
We refer to the ratio of cE 0;p to cE;p as the Tamagawa quotient.

Lemma 5.2. For the Tamagawa quotient we have

cE 0;p

cE;p
D

8<:
1=5 if p j uv;
5 if p j u2C 11uv� v2 and p � 1 mod 5;
1 otherwise:

Proof. Since � has degree 5 it follows that cE 0;p=cE;p D 5
a for some a 2 Z. If the

reduction is different from split multiplicative then cE;p and cE 0;p are at most 4,
hence aD 0 and cE;p D cE 0;p.

In [6, Proposition 2.16] it is shown by using Tate curves that if the reduction is
split multiplicative then a 2 f�1; 1g, depending on whether or not the kernel is on
the identity component of the Néron model. �

If p − deg �D 5 then from [12, Lemma 3.8] it follows that

# coker �Qp

# ker �Qp

D
cE 0;p

cE;p
:

Using this, we easily obtain the following lemma:
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Lemma 5.3. Suppose p is a prime different from 5. We have

coker �Qp
Š

8̂̂̂<̂
ˆ̂:

Z=5Z if p is good for E,
0 if p j uv,
.Z=5Z/2 if p j u2C 11uv� v2 and p � 1 mod 5,
Z=5Z if p j u2C 11uv� v2 and p � 4 mod 5.

Now coker �Qp
�H 1.GQp

;Z=5Z/. From Theorem 2 and Proposition 17 of [14,
§II.5] it follows that for p − deg �D 5 we have

#H 1.GQp
;Z=5Z/D #H 0.GQp

;Z=5Z/ #H 0.GQp
;�5/D 5

a;

where aD 1 if p � 4 mod 5 and aD 2 if p � 1 mod 5. From this we deduce the
following:

Proposition 5.4. Suppose that p ¤ 5 is a prime dividing u2C 11uv� v2 (so that
E has bad reduction at p). Then coker �Qp

DH 1.GQp
;Z=5Z/.

We now return to our abelian surface A. The above proposition enables us to
determine coker'Qp

for bad primes different from 5.

Proposition 5.5. Suppose p is a prime of bad reduction for A and p ¤ 5. Then

coker'Qp
Š

8̂̂<̂
:̂
0 if p j u1v1u2v2;
.Z=5Z/2 if p j gcd.u21C 11u1v1� v

2
1 ; u

2
2C 11u2v2� v

2
2/

and p � 1 mod 5,
Z=5Z otherwise:

Proof. Recall that

coker'Qp
D ker.coker �1;Qp

� coker �2;Qp
! coker Qp

/;

which equals

.coker �1;Qp
� coker �2;Qp

/\ ker
�
H 1.GQp

;Z=5Z/2!H 1.GQp
;Z=5Z/

�
:

The surjective map H 1.GQp
;Z=5Z/2 ! H 1.GQp

;Z=5Z/ is given by .x; y/ 7!
nx�y. Suppose that p j u1v1u2v2. Then by Lemma 5.3 we have coker �i;Qp

D 0

for at least one i , and therefore coker'Qp
D 0.

Suppose now p − u1v1u2v2. By assumption one of the Edi
, say Ed1

, has
bad reduction at p. Since p − 5u1v1 it follows from the above proposition that
coker �1;Qp

DH 1.GQp
;Z=5Z/ and hence coker'Qp

Š coker �2;Qp
. Now Ed2

has
either additive or good reduction. The reduction of Ed2

is additive if and only if
p j gcd.u21C 11u1v1� v

2
1 ; u

2
2C 11u2v2� v

2
2/. Now apply Lemma 5.3 to deduce

the structure of coker �2;Qp
, hence the structure of coker'Qp

. �
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It remains to check the case p D 5. As before, we first have a look at the
elliptic curve E. If 5 j uv then as above the reduction is split multiplicative and
cE 0;p=cE;p D 1=5. Using Tate curves one easily shows that coker �Qp

D 0.
If 5 j u2C11uv�v2 then the reduction is additive. In particular, the component

groups of E and E 0 have the same order, which is also the case if the reduction
is good. Therefore cE 0;p=cE;p D 1. The isogeny � W E ! E 0 can be written as
a power series in one variable in a neighborhood of the point O . Again from [12,
Lemma 3.8] it follows that

# coker �Q5

# ker �Q5

D j�0.0/j�15 ;

where j�0.0/j5 is the normalized 5-adic absolute value of the leading coefficient of
the power series representation of � evaluated at 0. This can be easily computed
using Vélu’s algorithm [19]. In Lemma 4.1 and Proposition 4.2 of [6] it is shown
that in the additive case we have v5.u2 C 11uv � v2/ 2 f2; 3g; furthermore, if
v5.u

2C 11uv� v2/D 2 then j�0.0/j5 D 1, while if v5.u2C 11uv� v2/D 3 then
j�0.0/j5D 1=5. If E has good reduction at pD 5 then it follows that # coker �Qp

D

# ker �Qp
, because in this case we also have j�0.0/j5D 1. We summarize as follows.

Lemma 5.6. We have

coker �Qp
Š

8̂̂̂<̂
ˆ̂:

Z=5Z if 5 is good for E,
0 if 5 j uv,
.Z=5Z/2 if 53 j u2C 11uv� v2,
Z=5Z if 5 j u2C 11uv� v2 and 53 − u2C 11uv� v2.

Now we can calculate coker'Qp
in the remaining case p D 5.

Lemma 5.7. We have

# coker'Q5
D

8<:
1 if 5 j u1v1u2v2,
52 if 53 j gcd.u21C 11u1v1� v

2
1 ; u

2
2C 11u2v2� v

2
2/,

5 otherwise.

Proof. If coker �i;Q5
D 0 for one i , then coker'Q5

D 0. The first condition is
equivalent to 5 j u1v1u2v2.

Suppose now that coker �i;Q5
¤ 0 for both i , which implies that p D 5 is ad-

ditive or good for Edi
. From Proposition 18 and Theorem 5 of [14, §II.5], we

find that H 1.GQ5
;Z=5Z/ D .Z=5Z/2 and H 1

nr.GQ5
;Z=5Z/ D Z=5Z. As in the

proof of Proposition 5.5, we have that if coker �1;Q5
D H 1.GQ5

;Z=5Z/, then
coker'Q5

Š coker �2;Q5
and vice versa. This gives the second case of the lemma,

since coker �i;Q5
D .Z=5Z/2 if and only if 53 ju2i C11uivi�v

2
i , and coker �i;Q5

D

Z=5Z otherwise.
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It remains to consider coker �1;Q5
D coker �2;Q5

D .Z=5Z/. In this case one
can show that coker �i;Q5

DH 1
nr.GQ5

;Z=5Z/, for both i ; see [6, Propositions 2.10
and 3.5; 13, §3]. Thus the kernel of coker �1;Q5

� coker �2;Q5
! coker Q5

, which
equals coker'Q5

, has five elements. This finishes the proof. �

Putting everything together yields the following proposition:

Proposition 5.8. Let p be a prime. Then

# coker'Qp

# ker'Qp

is a nonsquare if and only if one of the following occurs:

(1) p j u1v1u2v2,

(2) p j gcd.u21C 11u1v1� v
2
1 ; u

2
2C 11u2v2� v

2
2/ and p � 1 mod 5, or

(3) p3 j gcd.u21C 11u1v1� v
2
1 ; u

2
2C 11u2v2� v

2
2/ and p D 5.

6. Algorithm

In this section we present the algorithm that we used to produce the databases of
abelian surfaces that we studied. Our code was implemented in Sage [16] and is
available at [7]. The algorithm consists of two main steps and an initialization step,
which we call step 0. In step 1 one creates a database of elliptic curves having
a point P of order 5, which are parametrized by two coprime positive integers
.u; v/. One has to specify which pairs .u; v/ one wants to consider. In step 2 one
takes such a database of elliptic curves Ed , for d D u=v, goes over all pairs of
these curves and determines whether the order of the Tate-Shafarevich group of the
abelian surfaces Bd1;d2

D Ed1
�Ed2

=h.P1; P2/i is a square. For trivial reasons,
pairs of the same elliptic curve are omitted and pairs are considered to be without
order.

Algorithm 6.1.

Input: A height bound N and, optionally, a conductor bound C .

Output: The list of all unordered pairs fd1; d2g, where d1 and d2 are distinct
positive rationals of height at most N such that the elliptic curves Ed1

and Ed2
have conductor at most C , together with an indication of whether

X.Bd1;d2
=Q/ has square order.

0. Initialization. Fix a (large) integerM . For each prime number p�M determine
the prime ideals p of K DQ.�5/ above p and fix an ordering of them. Then fix
for each prime ideal p a generator tp.
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1. Creation of a database D of elliptic curves. For each pair of coprime positive
integers .u; v/ such that max.u; v/ � N , set E WD Ed , where d D u=v. If no
conductor bound is given or the conductor of E is at most C , do the following:

(a) Collect all the primes dividing 5uv.u2C 11uv� v2/ in a set S .
(b) Collect all the primes dividing uv in a set T .
(c) Collect all the primes p � 1 mod 5 dividing u2C 11uv� v2 in a set U .
(d) If v5.u2C 11uv� v2/D 3, add p D 5 to the set U .
(e) Determine the analytic rank r of E.
(f) Determine a system of r generators of a sublattice ƒ of E.Q/, such that

the points of infinite order modulo torsion are not divisible by 5. Take the
image of ƒ in Q.S; 5/ to determine a basis P of coker �_

Q
�Q.S; 5/. The

data for each basis element consists of a pair for each prime in S , where
the first entry is the corresponding element in S and the second entry is the
exponent as an element in Z=5Z.

(g) Calculate the image of ƒ under � in E 0.Q/ and determine which image
points are divisible by 5 modulo torsion. Divide if possible and determine
the nontrivial 5-torsion points of E 0.Q/ to get a sublattice ƒ0 of E 0.Q/,
such that the points of infinite order modulo torsion are not divisible by 5.
Use this information to compute dim coker �Q.

(h) Take the image of ƒ0 in K.S; 5/ to determine a basis Q for coker �Q �

K.S; 5/. The data for each basis element consists of a pair for each prime
in S and a pair for the units. For the primes p in S , the first entry is p and
the second entry is a list of elements in Z=5Z, containing as many entries
as there are prime ideals p in K over p; for the units, the first element is 1
and the second is the list of exponents of the units.

(i) Append ..u; v/; S; T; U; P;Q/ to the database D.

2. Determination of surfaces with X of nonsquare order. For each pair

..u1; v1/; S1; T1; U1; P1;Q1/ and ..u2; v2/; S2; T2; U2; P2;Q2/

of distinct elements D (modulo ordering), do the following:

(a) Set L WD #.U1\U2/� #.T1[T2/.
(b) Fix an ordering for S WD S1[S2.
(c) Write out the elements from P1[P2 into a matrix with respect to S. This

gives a matrix with entries in Z=5Z. Calculate the rank of this matrix, which
equals the dimension of coker'_

Q
.

(d) Write out the elements from Q1 [Q2 into a matrix with respect to the
prime ideals .tp/ lying over the primes of S (and with respect to the units).
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This gives a matrix with entries in Z=5Z. Calculate the rank of this matrix,
which equals the dimension of coker Q.

(e) Set G WD dim coker'_
Q
� dim coker �1;Q� dim coker �2;QC dim coker Q.

(We have dim coker'Q D dim coker �1;QCdim coker �2;Q�dim coker Q

from the sequence (3), so G D dim coker'_
Q
� dim coker'Q.)

(f) Output .d1; d2; LCG mod 2/, where di D ui=vi .

Remark. The final step is justified as follows: The local factor (without the infinite
prime) is a nonsquare if and only if L is odd, and the global factor (without the
kernels) is a nonsquare if and only if G is odd. Since the contribution of the infinite
prime and the kernels cancel, we have that X.Bd1;d2

=Q/ has nonsquare order if
and only if LCG is odd.

The databases we constructed and the results we obtained are summarized in
the following section. To conclude this section, we make some comments on our
implementation.

In the cases we considered, Step 0 is not computationally demanding. For
example, on a desktop computer it may take some seconds up to a few minutes
to compute all generators for all prime ideals of K lying over all primes up to
500,000. Step 2 is also no problem. It consists only of simple set operations and
the calculation of the ranks of small matrices with coefficients in Z=5Z. A few
million pairs of elliptic curves can be considered in under an hour.

The computationally demanding part is step 1. There are two main issues. The
most problematic calculation is the determination of r generators of a finite index
subgroup of the Mordell-Weil group, where r is the analytic rank. We used the
standard Sage method E.point_search(height_limit=18,rank_bound=r),
and in case this did not come up with enough points we tried some of the re-
maining curves with E.gens(). In several cases these methods did not provide
an answer within 48 hours on a single CPU. For these curves we used the method
MordellWeilShaInformation() in Magma [1], which could handle all our prob-
lematic curves in a few seconds each.

The second problematic calculation in the actual code is the computation of the
image of coker �Q in K.S; 5/. The computation involves factoring ideals of K that
are generated by elements of possibly very big norm. For example, the curve Ed ,
for d D 1=94, has analytic rank 1; the numerator and denominator of the image
of the point of infinite order in K.S; 5/ each have about 600 digits, and Sage was
not able to factor the corresponding ideal. As we already knew that the image was
trivial, since the dimension of coker �Q was zero, we could skip this calculation.
Considering this additional information in the algorithm allowed us to deal with
all of the curves we tried. This problem might be avoidable by trying another
strategy working modulo primes. The rest of step 1 is not a problem for moderately
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chosen d D u=v, because it consists mainly of finding the prime factorizations of
integers and of rational polynomials of degree 25 (to divide points by 5), as well
as calculating isogenies and analytic ranks. In a few hours on a desktop computer,
one could produce a database of a few thousand curves.

Remark. At various places in the algorithm we need to assume the Birch and
Swinnerton-Dyer conjecture. In step 1(e) we compute the analytic rank of an
elliptic curve. To actually compute the analytic rank of a curve E of analytic
rank r , we need to assume that the Birch and Swinnerton-Dyer conjecture holds
for all elliptic curves with analytic rank at most r � 2 and that the Mordell-Weil
rank of E is at least the analytic rank minus 1. Step 1(f) terminates if and only if
the analytic rank of E is at least the Mordell-Weil rank of E.

A second place where we use the Birch and Swinnerton-Dyer conjecture is in
the computation of the quantity G in step 2(e). For this we have to assume that
for both curves under consideration the analytic rank is precisely the Mordell-Weil
rank. However, if we have come this far in the algorithm then we know already
that the Mordell-Weil rank is at least the analytic rank.

One may replace steps 1(e) and 1(f) by an algorithm that actually computes a
basis for the Mordell-Weil group. This would make the output of the algorithm
unconditional. However, in the sample we take below, all elliptic curves have
analytic rank at most 3, and for each of them step 1(f) terminated. Hence, to speed
up our computations we preferred to determine analytic ranks rather than do full
descents.

For the elliptic curves of analytic rank at least 2 we have also to assume that
the Tate-Shafarevich group is finite. If this group were infinite then our algorithm
would detect whether # ker'�=# coker'� is a square. Here '� is the induced
morphism on the Tate-Shafarevich groups.

7. Results

Using Algorithm 6.1, in a short time one can produce millions of examples of
abelian surfaces over Q such that the order of the Tate-Shafarevich group is either
a square or five times a square. In the cases arising from two elliptic curves each of
analytic rank at most 1, the examples are completely unconditional. We constructed
two databases of elliptic curves using step 1 of the algorithm. The first database
consists of all elliptic curves Ed , where d D u=v for positive integers u and v
with max.u; v/� 50,000, and where the conductor of Ed is bounded by C D 106.
The second database consists of all elliptic curves Ed , where d D u=v for positive
integers u and v such that max.u; v/� 100.

Database 1 contains 2212 elliptic curves, all of them having analytic rank r � 2.
It is likely that there are no further elliptic curves of conductor at most 106 that
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Number of Ed of rank r

N #Ed rD0 rD1 rD2

50,000 2,212 987 1,109 116
4,617 2,212 987 1,109 116
3,375 2,211 986 1,109 116
3,072 2,210 986 1,108 116
2,695 2,209 986 1,107 116
2,000 2,200 982 1,102 116
1,000 2,174 963 1,095 116

900 2,170 961 1,093 116

Number of Ed of rank r

N #Ed rD0 rD1 rD2

800 2,159 956 1,088 115
700 2,145 951 1,079 115
600 2,119 941 1,063 115
500 2,088 921 1,052 115
400 2,066 912 1,039 115
300 1,993 872 1,009 112
200 1,818 786 929 103
100 1,391 616 697 78
50 845 394 405 46

Table 1. Summary of database 1. For each N , we give the number of curves Ed
of conductor at most 106, where d>0 has height at most N . The final three
columns give the number of such curves of analytic rank 0, 1, and 2.

have a rational torsion point of order 5, since there is no such curve with 4617 <
max.u; v/� 50,000. The database is described in more detail in Table 1, where we
state for each analytic rank the number of elliptic curves with conductor at most
106 and with max.u; v/ � N . Database 2 contains 6,087 elliptic curves. All of
them have analytic rank r � 3. See Table 2 for more details. In the following
we will present the results of step 2 of the algorithm applied to the two databases
described above.

Database 1 yields 2,445,366 abelian surfaces Bd1;d2
. It turns out that 47:01% of

these surfaces have Tate-Shafarevich groups of nonsquare order. Database 2 leads
to 18,522,741 abelian surfaces. The percentage of the nonsquare case is 49:31. The
intersection of the two databases consists of 1,391 curves, hence we considered
966,745 surfaces twice. In total this gives 20,001,362 surfaces, of which 49:16%
have a Tate-Shafarevich group of nonsquare order.

Number of Ed of rank r

N #Ed rD0 rD1 rD2 rD3

100 6,087 2,390 3,038 633 26
90 4,959 1,987 2,463 490 19
80 3,931 1,597 1,940 380 14
70 2,987 1,235 1,455 287 10
60 2,203 925 1,074 198 6

Number of Ed of rank r

N #Ed rD0 rD1 rD2 rD3

50 1,547 660 760 123 4
40 979 412 494 70 3
30 555 245 277 33 0
20 255 130 115 10 0
10 63 40 22 1 0

Table 2. Summary of database 2. For each N , we give the number of curves Ed ,
where d>0 has height at most N . The final four columns give the number of
such curves of analytic rank 0, 1, 2, and 3.
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rkE1 rkE2 #B %.XD�/ %.RE� rkB/

0 0 486,591 54.041 100.00
1 1 614,386 58.614 63.51
2 2 6,670 92.039 55.53

0 1 1,094,583 46.634 83.44
0 2 114,492 52.867 47.96
1 2 128,644 74.314 42.48

� 1 � 1 2,195,560 51.628 81.53

Table 3. Results of experiment 1 for database 1, the curves Ed of conductor at
most 106 and with d > 0 of height at most 50,000. For each pair of ranks, we list
the number of surfaces B obtained from elliptic curves in database 1 with those
ranks. The fourth column gives the percentage of these surfaces for which X has
square order, and the fifth column gives the percentage for which the exponent of
the regulator quotient is congruent modulo 2 to the rank of the surface.

We did two different experiments with the two databases. In experiment 1 we
investigated how the rank influences the squareness of the Tate-Shafarevich group.
We list the result in Table 3 for database 1 and in Table 4 for database 2. The first
three, respectively four, entries correspond to pairs .E1; E2/ with the same analytic
rank. The following three, respectively six, lines correspond to pairs with different

rkE1 rkE2 #B %.XD�/ %.RE� rkB/

0 0 2,854,855 48.598 100.00
1 1 4,613,203 48.882 80.91
2 2 200,028 73.031 44.03
3 3 325 98.154 51.08

0 1 7,260,820 51.366 91.02
0 2 1,512,870 50.567 71.36
0 3 62,140 49.891 52.73
1 2 1,923,054 52.717 59.50
1 3 78,988 60.632 46.23
2 3 16,458 84.470 48.23

� 1 � 1 14,728,878 50.051 89.59

Table 4. Results of experiment 1 for database 2, the curves Ed with d > 0 of
height at most 100. For each pair of ranks, we list the number of surfaces B
obtained from elliptic curves in database 2 with those ranks. The fourth column
gives the percentage of these surfaces for which X has square order, and the fifth
column gives the percentage for which the exponent of the regulator quotient is
congruent modulo 2 to the rank of the surface.
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C #E #B %.XD�/ %.RE� rkB/

1,000,000 2,212 2,445,366 52.990 77.84
800,000 1,966 1,931,595 53.232 77.16
600,000 1,683 1,415,403 53.758 76.06
400,000 1,351 911,925 54.215 75.24
200,000 924 426,426 55.001 73.91
100,000 623 193,753 57.074 74.29

80,000 547 149,331 57.776 74.03
60,000 470 110,215 57.990 72.75
40,000 376 70,500 59.306 73.34
20,000 245 29,890 61.288 71.72
10,000 152 11,476 62.182 72.59
5,000 110 5,995 59.783 71.79
1,000 45 990 65.556 76.77

Table 5. Results of experiment 2 for database 1. For each value of C , we list
the number of elliptic curves Ed having conductor at most C and with d > 0
of height at most 50,000. In the third column we list the number of abelian
surfaces B obtained from pairs of such curves. The fourth column gives the
percentage of these surfaces for which X has square order, and the fifth column
gives the percentage for which the exponent of the regulator quotient is congruent
modulo 2 to the rank of the surface.

analytic ranks, and the final line corresponds to pairs with analytic rank r � 1. If we
consider abelian surfaces of fixed analytic rank of at least 4 then the density of the
surfaces with square Tate-Shafarevich group seems to be significant larger than 0:5.
However the surfaces with rank larger than 2 inside our family are conjectured to
have density zero and our database contains very few such cases. The calculations
with curves of rank r � 1 all show that the nonsquare case happens in about 50%
of all cases. For both experiments we list how many abelian surfaces Bd1;d2

occur
in each of the cases, we state the percentage of the surfaces with square Tate-
Shafarevich group, and we give the percentage of in how many cases the parity
of the rank of the abelian surface agrees with the parity of the exponent of the
regulator quotient (RE). Note that the results are unconditional in case rk.Ei /� 1,
for both Ei . If one of the analytic ranks is at least 2 then we need to make some
assumptions; see the remark at the send of Section 6.

In experiment 2 we looked for the behavior of the distribution of square and
nonsquare Tate-Shafarevich group orders for increasing conductor (for database 1)
and height (for database 2) of the elliptic curves. For low bounds on the conductor
and height, the nonsquare case was less likely. When we increase these bounds
the frequency of nonsquares tends to approximately 50%. The results of experi-
ment 2 is given in Table 5 for database 1 and Table 6 for database 2. Note that for
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N #E #B %.XD�/ %.RE� rkB/

100 6,087 18,522,741 50.694 84.14
90 4,959 12,293,361 50.821 83.66
80 3,931 7,724,415 50.941 83.32
70 2,987 4,459,591 51.235 82.51
60 2,203 2,425,503 51.461 82.00
50 1,547 1,195,831 52.211 80.85
40 979 478,731 52.764 79.92
30 555 153,735 54.157 77.12
20 255 32,385 56.384 77.11
10 63 1,953 67.179 74.04

Table 6. Results of experiment 2 for database 2. For each value of N , we list the
number of curves Ed with d > 0 of height at most N , as well as the number of
abelian surfaces B obtained from pairs of such curves. The fourth column gives
the percentage of these surfaces for which X has square order, and the fifth
column gives the percentage for which the exponent of the regulator quotient is
congruent modulo 2 to the rank of the surface.

some of the surfaces we assume the weak form of the Birch and Swinnerton-Dyer
conjecture mentioned above.

The two ways we ordered the elliptic curves, via conductor and via height, are
natural orderings. It is conjectured that the densities obtained with respect to these
orderings agree. In both cases the densities seem to exist and are around 0:5. This
is in contrast to the results of Poonen and Stoll [11], who showed that the density
of nonsquare #X for Jacobians of genus-2 curves is about 0:13, while for higher-
genus curves the density tends to zero as the genus increases.

We end by giving some heuristics why we expect the density to be 50%. We
expect that for a random pair .d1 D u1=v1; d2 D u2=v2/ in Q� �Q� the global
factor is a square for 50% of the abelian surfaces and that the local factor is a
square for 50% of them, too. We also expect these distributions to be independent.
Using the 18,522,741 pairs obtained from the second database, we get numerical
evidence for the independence, as illustrated in Table 7.

Global quotient Local quotient Percentage

square square 26.08
square nonsquare 24.04

nonsquare square 25.26
nonsquare nonsquare 24.61

Table 7. Fraction of surfaces coming from database 2 with square and nonsquare
local and global quotients.
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#.U1\U2/ #.T1[T2/ Percentage

even even 46.71
even odd 49.55
odd even 1.80
odd odd 1.95

Table 8. Fraction of surfaces coming from database 2 with even and odd values
of #.U1 \U2/ and #.T1 [T2/.

Recall that the exponent of the local quotient equals #.U1\U2/� #.T1[T2/,
hence one could prove the expected densities for the local quotient by showing that
the probability that the set .T1[T2/ has an even number of elements is independent
of the probability that the set .U1 \ U2/ has an even number of elements. The
corresponding numerical result for database 2 is gathered in Table 8.

The global quotient is harder to control. The exponent of the torsion quotient
equals 3 on a density-1 subset of the pairs .d1; d2/; see [6, Proposition 4.6]. The
results of Tables 3–6 suggest that the squareness of the regular quotient, and hence
the squareness of the global quotient, is not independent of the parity of the rank.
If the ranks of both of the elliptic curves E1 and E2 are equal to 0, hence are even,
the regulator quotient equals 1, hence is a square. If one elliptic curve is of rank 0
and the other is of rank 1, then the regulator quotient is a nonsquare if and only if
coker �Q can be generated by torsion points, where � is the usual isogeny belonging
to the elliptic curve of rank 1. In database 2 we have the following situation. For the
rank-1 curves it happens in about 91:2% of the cases that �Q is surjective on the free
part. In case both ranks are equal to 1, the regulator quotient is a square in about
80:9% of the cases. For the complete second database we get that the parity of the
exponent of the regulator quotient agrees with the parity of the rank in 84:14% of
the cases. If we consider only all the elliptic curves of rank � 1, then we have that
for abelian surfaces Bd1;d2

of even rank the regulator quotient is a square in about
88:2% of the cases, and for abelian surfaces Bd1;d2

of odd rank the regulator quo-
tient is a nonsquare in about 91:0% of the cases; together, this means there is agree-
ment 89:6% of the time. Table 9 gives the situation for the complete database 2.

Regulator quotient rk.Bd1;d2
/ Percentage

square even 42.067
square odd 7.931

nonsquare even 7.927
nonsquare odd 42.075

Table 9. Fraction of surfaces Bd1;d2
coming from database 2 with square and

nonsquare regulator quotient and even and odd rank.
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Local quotient rk.Bd1;d2
/ Percentage

square even 25.670
square odd 25.675

nonsquare even 24.324
nonsquare odd 24.331

Table 10. Fraction of surfaces Bd1;d2
coming from database 2 with square and

nonsquare local quotient and even and odd rank.

In contrast to the global quotient, the squareness of the local quotient seems to
be independent of the parity of the rank of the abelian surfaces. Table 10 gives the
numerical results for database 2.
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Improved CRT algorithm for class polynomials
in genus 2

Kristin E. Lauter and Damien Robert

We present a generalization to genus 2 of the probabilistic algorithm of Suther-
land for computing Hilbert class polynomials. The improvement over the Bröker-
Gruenewald-Lauter algorithm for the genus 2 case is that we do not need to find
a curve in the isogeny class whose endomorphism ring is the maximal order;
rather, we present a probabilistic algorithm for “going up” to a maximal curve
(a curve with maximal endomorphism ring), once we find any curve in the right
isogeny class. Then we use the structure of the Shimura class group and the
computation of .`; `/-isogenies to compute all isogenous maximal curves from
an initial one.

1. Introduction

Cryptographic solutions to provide privacy and security for sensitive transactions
depend on using a mathematical group in which the discrete logarithm problem is
hard. For example, digital signature schemes or a Diffie-Hellman key exchange
may be based on the difficulty of solving the discrete logarithm problem in the
group of points on the Jacobian of a genus-2 curve. For this problem to be hard we
must ensure that we can choose genus-2 curves over finite fields whose Jacobian
have an almost-prime number of points.

One approach to this problem is to construct curves whose Jacobians have a
given order using the method of complex multiplication (CM). The CM method
works by computing invariants of the curve and then reconstructing the curve using
the Mestre-Cardona-Quer [31; 8] algorithm. Invariants are computed by construct-
ing their minimal polynomials, called Igusa class polynomials. Computing the
invariants is computationally intensive, and there are three known methods for
constructing Igusa class polynomials:

MSC2010: primary 14K22; secondary 11Y40, 11Y16, 11G15, 14K02.
Keywords: class field polynomials, CRT, hyperelliptic curve cryptography, isogenies.
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(1) the complex analytic method [37; 41; 42; 38];

(2) the Chinese remainder theorem method (CRT) [16; 18; 6]; and

(3) the p-adic lifting method [20; 9; 10].

Currently, the CRT method in genus 2 remains by far the slowest of these three
methods, as measured on the small examples that have been computed to date; but
the history of the evolution of these three methods in genus 1 gives some hope that
the CRT method may be asymptotically competitive with the others. In genus 1, the
(explicit) CRT method now holds the record for the best proven bounds on time and
space complexity (under GRH), as well as for the size of the largest examples that
have been computed [39; 17]. In this paper, we propose numerous improvements
to the CRT method for computing genus-2 curves, paralleling improvements made
by Sutherland [39] to the CRT method in genus 1.

The CRT method works by computing class polynomials modulo many small
primes, and then reconstructing the polynomials with rational coefficients (or mod-
ulo a much larger prime number) via the Chinese remainder theorem (respectively,
the explicit CRT). The CRT method for computing class polynomials in genus 2
was proposed by Eisenträger and Lauter [16]; they gave sufficient conditions on
the CRT primes to ensure correctness and included an algorithm for computing
endomorphism rings for ordinary Jacobians of genus-2 curves, generalizing Ko-
hel’s algorithm for genus-1 curves. For each small CRT prime p, the algorithm
loops through all p3 possible triples of Igusa invariants of curves, reconstructing
the curve and testing for each curve whether it is in the desired isogeny class and
whether its endomorphism ring is maximal. The algorithm for computing endo-
morphism rings from [16] was replaced by a much more efficient probabilistic
algorithm in [18], where a number of examples were given for running times of
the computations modulo small CRT primes. Bröker, Gruenewald, and Lauter [6]
introduced the idea of using computable .3; 3/-isogenies to find other curves in
the isogeny class once an initial curve was found, but still searched until finding a
curve whose Jacobian has endomorphism ring equal to a maximal order (a maximal
curve). Another improvement described in [6] was a method to construct other
maximal curves using .3; 3/-isogenies once an initial maximal curve is found.

In this paper we present a generalization to genus 2 of the probabilistic Algo-
rithm 1 in Sutherland [39]. The improvement over the genus-2 algorithm presented
in [6] is that we do not need to find a maximal curve in the isogeny class; instead,
we present a probabilistic algorithm for “going up” to a maximal curve once we find
any curve in the right isogeny class. Then we use the structure of the Shimura class
group and the computation of .`; `/-isogenies to compute all isogenous maximal
curves from an initial one. Although we cannot prove that the going-up algorithm
succeeds with any fixed probability, it works well in practice, and heuristically
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it improves the running time of the genus-2 CRT method from p3 per prime p
to p3=2 per prime p.

Let K denote a primitive quartic CM field, with real quadratic subfield KC and
ring of integers OK . Let ˆ denote a CM-type of K and let Kˆ denote the reflex
CM field. Let TNˆ denote the type norm associated to the CM-type ˆ. Informally,
the algorithm is as follows; the individual steps will be explained in subsequent
sections.

Algorithm 1.
Input: A primitive quartic CM field K with a CM-type ˆ, and a collection of

CRT primes PK for K.

Output: Igusa class polynomials Hi .x/, i D 1; 2; 3, either in QŒx� or reduced
modulo a prime q.

1. Loop through CRT primes p 2 PK :
(a) Enumerate hyperelliptic curves C of genus 2 over Fp until a curve in the

right Fp-isogeny class (up to a quadratic twist) is found.
(b) Try to go up to a maximal curve from C ; if this step fails, go back to

Step 1(a).
(c) From a maximal curve C , compute all other maximal curves.
(d) Reconstruct the class polynomials Hi .x/ modulo p from the Igusa invari-

ants of the set of maximal curves.

2. Recover Hi .x/, i D 1; 2; 3, in QŒx� or modulo q using the (explicit) CRT
method once we have computed Hi .x/ modulo p for enough primes p.

For the dihedral case, one new aspect of our algorithm is that we extend to
the CRT setting the idea of computing the class polynomials associated to only
one fixed CM-type ˆ for K [38, §III.3]. When K is cyclic, this makes no dif-
ference, since all isomorphism classes of abelian surfaces with CM by K arise
from one CM-type; but when K is dihedral, two CM-types are needed to find all
isomorphism classes of CM abelian surfaces. All three previous versions of the
CRT algorithm [16; 18; 6] compute the class polynomials classifying all abelian
surfaces with CM by OK (with either of the two possible CM-types in the dihedral
case). The advantage of our approach is that it computes only a factor of half the
degree of the whole class polynomial. The drawback of this approach is that in the
dihedral case, each factor of the class polynomials is defined over O

K
C

ˆ

rather than
over Z. So once we compute the class polynomials modulo p as polynomials in
O
K
C

ˆ

=p, the CRT step must be performed in O
K
C

ˆ

.
A CRT prime p� O

K
C

ˆ

is a prime such that all abelian surfaces over C with CM
by .OK ; ˆ/ have good reduction modulo p. By [36, §III.13], p is a CRT prime for
the CM-type ˆ if and only if there exists an unramified prime q in OKˆ

of degree 1
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above p of principal type norm .�/ with �� DNK=Q.q/; in particular, this implies
that q is totally split in the class field corresponding to the abelian surfaces with
CM by .OK ; ˆ/. By [21, §3], these surfaces have good reduction modulo p, and
by a theorem of Tate the isogeny class of the reductions modulo p is determined
by the characteristic polynomial of ˙� , at least in the case where O�K D f˙1g.
For reasons of efficiency, we will work with CRT primes p that are unramified of
degree one over pD p\Z. By [21], the reduction to Fp of the abelian surfaces with
CM by .OK ; ˆ/ will then be ordinary. We then make the slight abuse of notation
of calling p a CRT prime when there is a CRT prime p above it. Note another
advantage of restricting to one CM-type: To use p for both CM-types, p needs to
split completely into p D p1p2 such that both p1 and p2 are CRT primes, and there
are fewer p which satisfy this stronger requirement.

In addition to the two main contributions of the paper — the going-up algorithm
to find maximal curves, and an improvement to the algorithm to compute maximal
curves from maximal curves — we also give improvements to every step of the
CRT algorithm. Here we give a brief outline of the paper and a summary of those
improvements.

Step 1(b) of the algorithm (the “going-up” part) is explained in Section 3. We
first explain in Section 2 how to compute if a curve is maximal, since this is used
in the going-up algorithm. We present some significant improvements over the
algorithm from [18]. Step 1(c) (finding all other maximal curves from one maximal
curve) is explained in Section 4.

As for Step 1(d), once all maximal abelian surfaces with CM by K are found
for a given prime p, it is easy to compute the associated class polynomials modulo
p. The class polynomials depend on the choice of Igusa invariants, and we use the
invariants recommended in [38, Appendix 3] which give smaller coefficients than
those used in [41; 42; 21]. For the dihedral case the class polynomials must be
reconstructed over O

K
C

ˆ

, and we give more details about this step in Section 5.
Section 6 gives a complexity analysis, and explains how each improvement af-

fects the final complexity. The final complexity bound, while still not quasilinear,
is a significant improvement compared to [6]. Finally, examples demonstrating
significantly improved running times are given in Section 7.

The interested reader will find an extended version of this paper in [28].

2. Checking whether the endomorphism ring is maximal

We recall the algorithm described in [16] for checking whether the endomorphism
ring of an abelian surface is maximal, and we describe some improvements. The
ideas for computing the endomorphism ring will be used in the going-up phase of
Algorithm 1.
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2.1. The algorithm of Eisenträger, Freeman, and Lauter. Let A=Fp be an ordi-
nary abelian surface with CM by K, let OD EndA, and let � 2 O be the Frobenius
endomorphism. We know that ZŒ��� ZŒ�; ��� O� OK , and our goal is to check
whether O D OK . First, the Chinese remainder theorem gives us the following
proposition:

Proposition 2. Let f1; ˛1; ˛2; ˛3g be a basis of OK as a Z-module, and write
ŒOK W ZŒ�; ��� D

Q
`
ei

i . If ŒOK W ZŒ�; ��� � j̨=`
ei

i 2 O for j D 1; 2; 3, and all `i
dividing the index, then OD OK . �

We are then reduced to the following problem: For 
 2OK such that `e
 2ZŒ�; ��,
check if 
 2 O.

Proposition 3. Let ODEndA and let 
 2 OK be such that `e
 2ZŒ�; ��. There ex-
ists a unique integer polynomial P
 of degree less than 4 such that `ep
 D P
 .�/,
and 
 is in O if and only if P
 .�/D 0 on AŒ`e�.

Proof. First note that ŒZŒ�; �� W ZŒ���D p (see [18, p. 38]), so that `ep
 2 ZŒ��,
which means we can write `ep
 D P
 .�/ for a unique P
 2 ZŒx� of degree less
than 4. Second, since we are dealing with ordinary abelian surfaces over Fp, we
have p − ŒOK W ZŒ�; ��� by [18, Proposition 3.7], so that 
 2 O() p
 2 O. Lastly,
by the universal property of isogenies, we have that P
 .�/ D 0 on AŒ`e� if and
only if p
 2 O (see [16]). Summing up, we only need to check that P
 .�/ D 0
on AŒ`e� to check that 
 2 O. �

Remark 4. Since most of the curves in the isogeny class are not maximal, it is
more efficient to check the condition P
 .�/ D 0 on AŒ`�, AŒ`2�, . . . , rather than
directly on AŒ`e�.

2.2. Computing the `e-torsion. The obvious method of using Proposition 3 to test
whether an element of OK lies in O involves computing a basis of the `e-torsion
group. The cost of such a computation depends on the degree of the extension
where the `e-torsion points are defined. We have:

Lemma 5. Let d be the degree such that the `-torsion points of A are defined
over Fpd . Then d � `4� 1. Furthermore, the `e-torsion is all defined over Fq with
q D pd`

e�1

.

Proof. Let �� be the characteristic polynomial of � . Then d is the (multiplicative)
order of X in the ring F`ŒX�=��.X/, so d � `4� 1. The second assertion follows
from [18, §6]. �

Remark 6. For maximal abelian surfaces, [18, Proposition 6.2] gives a better
bound for d : In that case we have d < `3, and if ` is completely split in OK
we have d j`� 1.



442 KRISTIN E. LAUTER AND DAMIEN ROBERT

We will use the following algorithm to compute points uniformly in an `-primary
group containing AŒ`e�:

Algorithm 7.
Input: An abelian surface A=Fp and a prime power `e.

Output: Uniform random points in the group A.Fpde /Œ`
1�, defined below.

1. Precomputation:
(a) Let d be the (multiplicative) order of X in the ring F`ŒX�=��.X/ and set

de D d`
e�1.

(b) Compute ��de as the resultant in X of ��.Y / and Y de � X , and write
#A.Fde

p /D ��de .1/D `
e
 with 
 prime to `.

2. Repeat as needed:
(a) Take a random point P (uniformly) in A.Fpde /.
(b) Return 
P .

Algorithm 4.3 of [18] computes random points in A.Fpde /Œ`
e� by taking uniform

random points P in A.Fpde /Œ`
1� and looking at the smallest k such that `k �P is

an `e-torsion point; it generates enough such random points so that the probability
that they generate the full `e-torsion is sufficiently high, and then tests P
 on these
points of `e-torsion. The algorithm computes how many points are needed so that
the probability of generating the full `e-torsion is greater than 1� � for some � > 0,
so the result is not guaranteed (that is, it is a “Monte Carlo” algorithm). This is
very inconvenient in our setting since we need to test a lot of curves across different
CRT primes p.

To ensure correctness we can check that the subgroup generated by the points
obtained is of cardinality `4e , but this is costly. A more efficient way is as follows:
fP1; : : : ; P4g is a basis of the `e-torsion if and only if f`e�1P1; : : : ; `e�1P4g is
a basis of the `-torsion. But that can be easily checked by computing the 6 Weil
pairings e`.`e�1Pi ; `e�1Pj / for i < j and testing whether the corresponding 4�4
matrix is invertible. Since Weil pairings can be computed in time O.log.`//, this
is much faster. This is our first improvement, yielding a “Las Vegas” algorithm.

The second drawback of the approach of [18] is that, although the random points
in A.Fpde /Œ`

1� are uniform, this is not always the case for the random points
in A.Fpde /Œ`

e�. To have a high probability of generating the full `-torsion then
requires taking many random points in A.Fpde /Œ`

1�: If A.Fpde /Œ`
1� D `s , the

algorithm requires `s�4e.� log.�//1=2 random points to succeed with probability
greater than 1 � �. Since generating these points is the most costly part of the
algorithm it is best to minimize the number of random points required. Our second
improvement is to use an algorithm, due to Couveignes [14] and implemented in
the Magma package AVIsogenies [4], to get uniform random points in A.Fpde /Œ`

e�.
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Since the full algorithm is described in more detail in [4], we only give an example
to illustrate it here.

Suppose that G is an `-primary group generated by a point P of order `2 and a
point Q of order `. Assume that the first random point chosen is P DR1, which
gives an `-torsion point T1 D `P . The second random point R2 chosen will be of
the form ˛P CˇQ. In most cases, ˛¤ 0, so the corresponding new `-torsion point
is T2 D ˛`P , a multiple of T1. However we can correct R2 by the corresponding
multiple: Compute R02 DR2�˛R1 D ˇQ. Thus R02 gives the rest of the `-torsion
unless ˇ D 0. In our setting we can use the Weil pairing to express a new `-torsion
point in terms of the generating set already constructed (except when we have an
isotropic group, in this case we have to compute the `2 multiples), and we only need
O.1/ random points to find a basis. The cost of finding a basis of the `e-torsion is
then O.de logpC `2/ operations in Fpde .

2.3. Reducing the degree. The complexity of finding the basis is closely related to
the degree of the extension de . Let d0 be the minimal integer such that .�d0 �1/ 2

`OK . Then d0 jd , and, as remarked in [18], since we only need to check if OD OK ,
we can first check that .�d0 � 1/=` lies in O. In other words, we can check that the
`-torsion points of A are defined over Fpd0 rather than over Fpd . If this is the case,
the `e-torsion points are then defined over an extension of degree d0`e�1 of Fp,
which allows us to work with smaller extensions.

Another improvement we implemented to reduce the degree is to use twists.
Let d 00 be the minimal integer such that ..��/d

0
0 � 1/ 2 `OK . Then there are three

possibilities: We have either d 00 D d0, or d 00 D 2d0, or d0 D 2d 00. In the third case
it is to our advantage to replace A by its twist, because the Frobenius of the twist
is represented by �� , and we can therefore compute the points of `e-torsion by
working over extensions of half the degree.

Example 8. Let H be the curve y2 D 80x6 C 51x5 C 49x4 C 3x3 C 34x2 C

40xC 12 of genus 2 over F139, and let J be the Jacobian of H . By computing the
characteristic polynomial of Frobenius for J we find that

.EndJ /˝QŠQ
�
i
p
13C 2

p
29
�
;

and we would like to check whether EndJ is maximal. In this example, we com-
pute that ŒOK W ZŒ�; ���D 35, so we need to compute the points in J Œ35�, which
live over an extension of degree 81. If we had checked the endomorphism ring of
the Jacobian of the twist of H , we would have needed to work over an extension
of degree 162.

2.4. Reducing the number of endomorphisms to test. One last improvement to
the algorithm of [18] is to use the fact that EndA is an order; if we know that
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 2 O, then we know that the whole ring ZŒ�; �; 
� is contained in O. For example,
suppose f1; ˛1; ˛2; ˛3g is a basis for OK and ˛3 D ˛1˛2 mod ZŒ�; ���. To check
that O D OK we only have to check that ˛1 and ˛2 are in O. In fact, since our
algorithm works locally at primes `, we only need the relation between ˛3 and ˛1˛2
to hold locally at `.

We use this idea as follows: Suppose that we have checked that f
1; : : : ; 
kg are
endomorphisms lying in O, and we want to check if 
 2 O. Let N1 be the order of 

in the Z-module OK=ZŒ�; �; 
1; : : : ; 
k�, and N2 be the order of 
 in OK=ZŒ�; ��.
If we write N2 D

Q
`
ei

i , we only have to check that .N2=`
ei

i /
 2 O for `i jN1.
In fact, if the valuation of N1 at `i is fi , then we would only need to check that
.N1=`

fi

i /
 2 O, which means testing if N1
 D 0 on the `fi

i -torsion, where N1

is a polynomial in � , � , and the 
i (i D 1; : : : ; k/. We write this polynomial as
N1=.pN2/ times a polynomial in � , so that we still need to compute the `ei

i -torsion.

Example 9. Let H be the curve y2 D 10x6 C 57x5 C 18x4 C 11x3 C 38x2 C
12xC 31 of genus 2 over F59 and let J the Jacobian of H . We have

.EndJ /˝QDQ
�
i
p
29C 2

p
29
�

and we would like to check whether EndJ D OK . The ring OK is generated as a Z-
module by 1; ˛; ˇ; 
 , where ˛ has order 2 in OK=ZŒ�; ��, ˇ has order 4, and 
 has
order 40. The algorithm from [18] would require computing the elements of J Œ23�
and J Œ5�. But .OK/2 D Z2Œ�; �; ˛�, so we only need to compute in J Œ2� and J Œ5�.

2.5. The algorithm. Incorporating all these improvements yields the following al-
gorithm:

Algorithm 10. Checking that EndA is maximal.

Input: An ordinary abelian surface A=Fp with CM by K.

Output: True or false, depending on whether or not EndAD OK .

1. Choose a basis f1; ˛1; ˛2; ˛3g of OK and a basis f1; ˇ1; ˇ2; ˇ3g of ZŒ�� such
that ˇ1 D c1˛1, ˇ2 D c2˛2, ˇ3 D c3˛3 and c1; c2; c3 2 Z with c1 jc2 jc3.

2. (Checking where the `-torsion lives.) For each `jŒOK W ZŒ�; ��� do:

(a) Let d be the smallest integer such that �d �12 `OK , and d 0 be the smallest
integer such that .��/d

0

�1 2 `OK . If d 0 <d , switch to the quadratic twist.
(b) Compute a basis of AŒ`�.Fpd / using the algorithm from [4].
(c) If this basis is of cardinality (strictly) less than 4, return false.
(d) (Checking the generators of OK .) For i D 1; 2; 3 do:

i. Let N1 be the order of ˛i in OK=ZŒ�; �; j̨ jj < i� and N2 the order of
˛i in OK=ZŒ�; ��.
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ii. If `jN1, let e be the `-valuation of N2 and write pN2˛i as a polyno-
mial P.�/.

iii. Compute a basis of A.F
pd`e�1 /Œ`e�.

iv. If P.�/¤ 0 on this basis, return false.

3. Return true.

2.6. Complexity. We will measure complexity in terms of operations in the base
field Fp, and we will neglect factors of log.p/. Since the index ŒOK W ZŒ�; ��� is
bounded by a polynomial in p by [18, Proposition 6.2], evaluating the polynomi-
als P.�/ (of degrees at most 3) is done in logarithmic time. The most expensive
part of the algorithm is then the computation of AŒ`e�, for the various ` dividing the
index ŒOK W ZŒ�; ��� where e is at most the `-valuation of the index. According to
Lemma 5 and Remark 6, the `e-torsion points live in an extension of degree at most
d D `eC3. Since #A.Fpd /D p2d.1C�/, computing a random point in A.Fpd /Œ`e�

takes zO.d2/ operations in Fp . Correcting this random point requires some pairing
computations, and costs at most O.`2/ (in case the first points give an isotropic
group). Since we need O.1/ such random points, the global cost is given by the
following proposition (we will only need a very rough bound for the complexity
analysis in Section 6):

Proposition 11. Let ŒOK W ZŒ�; ��� D
Q
`
ei

i be the decomposition of the index
into powers of primes. Then checking if an abelian surface in the isogeny class is
maximal can be done in time

P
zO.`

2eiC6
i /.

Remark 12. One can compare to [18, Proposition 4.6] to see the speedup we gain
in the endomorphism ring computation. We note that our method is exponential
in the discriminant, while in [3] one can find a subexponential algorithm to com-
pute the endomorphism ring of an ordinary abelian surface. In ongoing work with
Gaetan Bisson, we have developed a method that combines the going-up algorithm
of the next section with his endomorphism ring algorithm. Since we still need to
take `-isogenies for `jŒOK W ZŒ�; ��� in the going-up step, this approach is mainly
interesting when the index is divisible by a power of a prime.

3. Going up

“Going up” is the process of finding genus-2 curves with maximal endomorphism
ring by moving from any curve in the isogeny class to a maximal one via isogenies.
This is not always possible and we will explain some of the obstructions. One
difficulty was already illustrated in [6, Example 8.2], where it was shown that there
can be cycles in the isogeny graph involving only nonmaximal curves. Clearly,
when trying to “go up”, the algorithm should avoid making cycles in the graph,
and we propose one method to avoid that. Further difficulties arise from the fact
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that the graph of rational .`; `/ isogenies can be disconnected, and can even have
isolated nodes. This is an important caveat, as this means that our method for going
up will not always succeed, so we only have a probabilistic algorithm; furthermore,
we cannot currently estimate the probability of failure.

As noted in [18], for the type of fields we can deal with via the CRT method,
the cost of going through p3 Jacobians is dominant compared to checking if the
endomorphism ring is maximal. (This imbalance is magnified in our case due to
our faster algorithm to compute the `e-torsion.) In our algorithm, we try to find a
random curve in the isogeny class, and we try to select p so that the probability of
finding a curve in the right isogeny class is of magnitude p3=2. In practice, finding
one such curve is still the dominant aspect, which explains why we can afford to
spend a lot of effort on going up from this curve.

The algorithm we propose for going up is made possible by the techniques de-
veloped in [30; 13; 33] for computing rational .`; `/-isogenies between abelian
surfaces over finite fields. If A is an ordinary abelian surface with CM by K,
then for each ` dividing the index ŒOK W ZŒ�; ���, we try to find an .`; `/-isogeny
path starting from A and going to A0 such that .OK/` D .EndA0/`. If this is
possible, we let AD A0 in the next step (going to the next `). A rather inefficient
method for finding A0 would be to use the algorithm for computing endomorphism
rings which was detailed in the preceding section (modified to handle the case
of nonmaximal orders), compute the endomorphism ring of EndA and the .`; `/-
isogenous surfaces A0, and keep A0 if its endomorphism ring is bigger than that of A.
In this section we will describe a more efficient algorithm, which combines the
endomorphism ring checks of the preceding section with a going-up phase. Since
we are working locally in `, we may as well suppose that we are working over Z`.

3.1. Going up for one endomorphism. In this section, we suppose that we have
an element ˛0 2 OK such that ˛ WD 
`e˛0 lies in ZŒ�� for some 
 2 OK prime to `.
Starting from an abelian surface A in the isogeny class, we want to find an abelian
surface A0 such that ˛=`e 2 EndA0 (or equivalently that ˛0 2 EndA0 locally at `).

We saw in Section 2 that ˛=`e is in the endomorphism ring of A if and only if
˛.AŒ`e�/D 0, and we know how to compute this subgroup. More generally, we
let N D #˛.AŒ`e�/. We think of N as a way to measure the “obstruction” to ˛=`e

being an element of EndA. Our algorithm is as follows: For each .`; `/-isogenous
surface A0, we let N 0 D #˛.A0Œ`e�/ and we replace A by A0 if N 0 <N . We iterate
this process until N D 1, in which case we have succeeded, or until we are stuck, in
which case we try to find a new random abelian surface in the right isogeny class.

Rather than directly computing the obstruction N D #˛.AŒ`e�/, we can compute
the partial obstructions N.�/ WD #˛.AŒ`��/ for � � e. Starting from � D 1, we take
isogenies until we find an abelian surface A with N.�/ D 1, which means that
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˛=`� 2 EndA. We will now try to take isogenies to reduce the obstruction of
higher degree N.�C 1/. Let k D ˛.AŒ`�C1�/� AŒ`�. The following lemma helps
us select the isogeny we are looking for:

Lemma 13. With notation and assumptions as above, let A0 be an abelian surface
isogenous to A such that #˛.A0Œ`�C1�/ < #˛.AŒ`�C1�/. Then the kernel of the
isogeny A! A0 intersects nontrivially with k D ˛.AŒ`�C1�/.

Proof. Let f W A! A0 be a rational isogeny between A and A0. Then since ˛
is a polynomial in the Frobenius, we have ˛ ı f D f ı ˛. In particular, f maps
˛.AŒ`�C1�/ to ˛.A0Œ`�C1�/. If #˛.A0Œ`�C1�/ < #˛.AŒ`�C1�/ then there exists x 2
Kerf \˛.AŒ`�C1�/. �

This gives the following algorithm:

Algorithm 14. Going up for one endomorphism ˛=`�.

Input: An ordinary abelian surface A=Fp with CM by K, a prime power `e , and
an ˛ 2 `eOK .

Output: An abelian surface A0=Fp isogenous to A such that ˛=`� 2 EndA0, or fail.

1. Set � D 1.

2. Compute N.�/D #˛.AŒ`��/.

3. If N.�/D 1, do:

(a) If � D e then return A.
(b) Otherwise, set � WD �C 1, and go back to Step 2.

4. At this point, N.�/ > 1. Let L be the list of all rational maximal isotropic
subgroups of AŒ`� which intersect nontrivially with ˛.AŒ`��/. For k 2 L do:

(a) Compute A0 D A=k.
(b) Let N 0.�/D #˛.A0Œ`��/.
(c) If N 0.�/ < N.�/, set AD A0 and go back to Step 2.

5. Return fail.

Remark 15. As in Section 2 we let d0 be the minimal integer such that .�d0�1/2

`OK and d the minimal integer such that .�d � 1/ 2 `ZŒ��. Then the `�-torsion
points ofA are defined over an extension of degree d`��1. If moreover .�d0�1/=`2

EndA they are actually defined over an extension of degree d0`��1.
Therefore when we try to go up globally for all endomorphisms ˛, the first step

is to try to go up for the endomorphism .�d0 � 1/=`. During the algorithm, the
obstructionN is given by the size of the kernel of �d0�1, whose rank is 4minus the
rank of the `-torsion points defined over Fpd0 . So we compute the size of a basis of
AŒ`�.Fpd0 / and take isogenies, where this size increases until we find the full rank.
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3.2. Going up globally. Let f1; ˛1=`e1 ; ˛2=`
e2 ; ˛3=`

e3g be a generating set for
the maximal order .OK/` over the subring Z`Œ�; ��, where ˛i 2 Z`Œ�; ��. Starting
from an abelian surface A in the isogeny class, we want to find an abelian surface
which is maximal at `.

We could apply Algorithm 14 for each ˛i=`ei , but the algorithm does not guar-
antee that the endomorphisms already defined on A stay defined during the process,
so we would observe loops on nonmaximal abelian surfaces with this method.
Moreover we want to reuse the computations of AŒ`��, which are the expensive
part of the process.

If Ni D #˛i .AŒ`di �/ for i D 1; 2; 3 is the obstruction corresponding to ˛i , we
define N to be the global obstruction N D

P
Ni . We can then adapt the same

method: For each .`; `/-isogenous A0, if N 0i D #˛i .A0Œ`di �/, then we replace A
by A0 if

P
N 0i <

P
Ni . We iterate this process until all the Ni D 1, in which

case we go to the next `, or until we are stuck, in which case we try to find a new
random abelian surface in the right isogeny class.

As before, if e D max.e1; e2; e3/ we first compute AŒ`�� and the partial ob-
structions Ni .�/D #AŒ`min.�;ei /� (for i D 1; 2; 3). We do the same for the .`; `/-
isogenous abelian surfaces, and switch to the new one if

P
Ni .�/ decreases (strictly).

This allows working with smaller torsion in the beginning steps.
The level � of the individual obstruction we are working on depends on the

endomorphism considered, so if we get stuck on level �, we may have to look at
level �C 1 even if not all endomorphisms ˛i=`� are defined yet. For instance, in
the case where we are only dealing with two generators, there are examples where
N1.�/ D 1, N2.�/ ¤ 1 and N 01.�/ D 1, N 02.�/ D N2.�/ for all .`; `/-isogenous
abelian surfaces A0, so we are stuck on level �. However we can still find an
isogenous A0 such that N 01.�C 1/ < N1.�C 1/.

Finally, as in Remark 15, we first try to go up in a way that increases the size of
A.Fpd0 /Œ`�. If we are unlucky and get stuck, we switch to the computation of the
full `-torsion over Fp . This method allows working over the smallest extension to
compute AŒ`e� as soon as possible.

A summary of the algorithm with the notation from above is given below:

Algorithm 16. Going up.

Input: An ordinary abelian surface A=Fp with CM by K, and a prime `.

Output: An abelian surface A0=Fp with EndAD OK (locally at `), or fail.

1. (Special case for the endomorphism .�d0 � 1/=`.) Compute a basis B of
A.Fpd0 /Œ`�. If #B < 4, compute a basis B 0 of A0.Fpd0 /Œ`� for each .`; `/-
isogenous abelian surface A0. If #B 0 > #B , restart the algorithm with A0 D A.
If #B D 4 or we get stuck, go to the next step.

2. Set � D 1.
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3. Compute1 Ni .�/D #˛i .AŒ`min.�;ei /�/ for i D 1; 2; 3.

4. If fNi W i D 1; 2; 3g D f1g, do:

(a) If � Dmax.ei W i D 1; 2; 3/ then return A.
(b) Otherwise, set � WD �C 1 and go back to Step 3.

5. Let L be the list of all rational maximal isotropic kernels of AŒ`� which intersect
nontrivially with one of the ˛i .AŒ`min.�;ei /�/. For k 2 L do:

(a) Compute A0 D A=k.
(b) Let N 0i .�/D #˛i .A0Œ`min.�;ei /�/.
(c) If

P
N 0i .�/ <

P
Ni .�/, restart the algorithm with A D A0 (but do not

reinitialize � in Step 2).

6. If we get stuck and � < max.ei W i D 1; 2; 3/, set � WD �C 1 and go back to
Step 3.

7. Return fail.

3.3. Cost of the going-up step. We will see in the examples that the going-up step
is a very important part in speeding up the CRT algorithm in practical computations.
However, since it is doomed to fail in some cases (see Remark 18), we need to
check that it will not dominate the complexity of the rest of the algorithm, so that
in theory there will be no drawback to using it. Thus we need to estimate the cost
of the going-up step.

The going-up phase is a mix of endomorphism testing and isogeny computa-
tions. We already analyzed the cost of the endomorphism testing in the preceding
section. For the isogeny computation, the points in the kernel of rational .`; `/-
isogenies live in an extension of degree at most `2� 1. Transposing the analysis
of Section 2.6 to this case shows that the computation of all of the points in these
kernels takes at most zO.`4/ operations in Fp . There are at mostO.`3/ such kernels,
and each isogeny computation takes at most zO.`4/ operations in the extension. The
final cost is at most zO.`9/ operations in Fp for computing all isogenies. For each
of the O.`3/ isogenous abelian surfaces we do (part of) the endomorphism ring
computation, which takes zO.`2eC6/ operations, according to Section 2.6. Since
the global obstruction computed is of size O.`e/, we do at most O.e/ steps. The
global complexity is then given as follows:

Proposition 17. Let ŒOK W ZŒ�; ��� D
Q
`
ei

i be the decomposition of the index
into prime factors. Then the going-up phase either fails or is done in at most
zO.
P
`
2eiC9
i / operations in the base field.

1The degree of the extension where the full `�-torsion is defined depends on whether Step 1
succeeded.
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Remark 18. It is important to note that the going-up phase does not always suc-
ceed. We will give some examples of that in Section 7. First, as noted in the
introduction of this section, the .`; `/-isogeny graph is not always connected, so
if we start with a curve not in the same component as a maximal curve, there is
no way to find the maximal curves using only .`; `/-isogenies. Second, even if the
curve is in the same component as a maximal curve, finding a maximal curve may
involve going through isogenous curves that increase the global obstruction, so the
going-up algorithm would not find it.

In practical computations we observed the following behavior: In the very large
majority of the cases where we were not able to go up, there actually did not
exist any rational .`; `/-isogenies for any curve in the isogeny class. If �� is the
characteristic polynomial, this can be detected by the fact that �� does not factor
modulo ` as �� D PP .mod `/ (where P is the conjugate of P under the action
�! p=� , which sends the Frobenius to the Verschiebung). In this situation, there
is no way to go up even locally at `. This gives a criterion for estimating whether
one can go up for this `.

4. Computing maximal curves from maximal curves

Once a maximal curve in the isogeny class has been found via the random search
and going-up steps, we use isogenies to find the other maximal curves. The set
of maximal curves in the isogeny class corresponding to a fixed CM-type ˆ is a
principal homogeneous space under the action of the Shimura class group

CD f.I; �/jI a fractional OK-ideal with II D .�/, � 2KC totally positiveg=K�;

associated to the primitive quartic CM field K, which acts by isogenies (see for
instance [6, §3]).

However, using the Magma package AVIsogenies we can only compute isoge-
nies with a maximal isotropic kernel. The lemma below show that in terms of the
Shimura class group, this means that we can only compute the action corresponding
to (equivalences classes) of elements of the form .I; `/, where I is an ideal in K
and ` is a prime number.

Lemma 19. Let .I; �/ be an element of the Shimura class group C and let ` be a
prime. Then the action of .I; �/ on a maximal abelian surface A corresponds to an
isogeny with maximal isotropic kernel in AŒ`� if and only if � D ` (so if and only
if I has relative norm `).

Proof. This follows from the construction of the action of C on the set of maximal
abelian surfaces. The action is given by the isogeny f W C2=ƒ ! C2=Iƒ and
moreover the action of I corresponds to the dual isogeny yf (here we identify the
abelian surface A with its dual yA via the principal polarization induced from the
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CM data). Since ` is prime, the isogeny corresponding to I is an .`; `/ isogeny if
and only if II D .�/D .`/. �

Therefore to ensure that we can find all other maximal curves using this type of
isogeny we make the following heuristic assumption.

Assumption. There is a polynomial P such that for every primitive quartic CM
field K, the Shimura class group associated to K is generated by elements of
the form .I; `/, where ` ranges over the prime numbers less than P.log�/ and
where � is the discriminant of K.

Justification. We have tested this assumption on numerous examples, using
the bound 12 log�0, where �0 is the discriminant of the reflex field, which is
itself O.�2/. The assumption on the size of the isogenies will be used in the
complexity analysis. At worst, we know (under GRH) that the class group of the
reflex field is generated by prime ideals of degree one and of norm polynomial in
log� [1, Theorem 1]. But if I is such an ideal of OKˆ

of norm prime to p, then
the element .TN.I /; N.I // will give a horizontal isogeny. So we will at least be
able to compute all the maximal curves that are deduced from the first one by an
action coming from the type norm. As we will see in the complexity analysis in
Section 6, this is sufficient for most discriminants �. �

Lemma 20. Let A be an ordinary abelian surface with .EndA/˝QDK, and let
f W A! B be an isogeny of degree prime to ŒOK W ZŒ�; ���. Then EndAD EndB .

Proof. Let d be the smallest integer that factorizes through f , so d D f zf for
some isogeny zf W B ! A. By assumption d is prime to the index. If ˛ 2 EndA,
then f ı ˛ ı zf D d˛ is an endomorphism of B . Since ŒOK W EndB� is prime to
d , we have that ˛ 2 EndB . The same argument shows that EndB � EndA, so
EndAD EndB . �

Note that we can precompute generators of the Shimura class group since this
data does not depend on the current prime p. We want to find generators of relative
norm a prime ` 2 Z with ` as small as possible, since the size of ` will directly
influence the time spent to find the other maximal curves.

Now for a CRT prime p, there may exist among the generators we have chosen
some that divide the index ŒOK W ZŒ�; ���. We can either find other generators
(whose norm will be bigger), or still try to use the precomputed generators. In
this case, if such a generator has norm `, then not all new .`; `/-isogenous abelian
surfaces will be maximal, so we have to use Algorithm 10 to test which of them is
maximal. In that case, after the isogeny is applied, the `e-torsion (in the notation
of Section 3) must again be computed, along with the action of the generators of
.OK/` over ZŒ�; ��`. The trade-off depends then on the degree of the extension
field required to compute the `e-torsion for small ` dividing the index versus the
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degree of the field of definition for the points in the kernel of the `-isogeny for `
not dividing the index.

Finally, we can also use the group structure of the Shimura class group as fol-
lows: Suppose that we have computed maximal curves corresponding to the action
of ˛1; : : : ; ˛t 2 C, and we want to find new maximal curves by computing .`; `/-
isogeny graphs starting from these curves. Then if C.`/ is the set of elements of the
form .I; `/ in C, then the number of maximal curves that we can find in this way is
the cardinality of the subgroup generated by the ˛i and C.`/. In particular, as soon
as we reach this number, we can stop the computation since it will not yield any
new maximal curves. This is particularly useful when ` divides the index, because
then we avoid some endomorphism tests. In the isogeny graph computation done
by AVIsogenies, each node is computed twice since there are two edges between
adjacent nodes (corresponding to the isogeny and the dual). Here, since we know
the number of nodes, we can abort the computation early.

We thus obtain the following algorithm:

Algorithm 21. Finding all maximal curves from one maximal curve.

Input: An ordinary abelian surface A=Fp with CM by .OK ; ˆ/.

Output: All abelian surfaces over Fp with CM by .OK ; ˆ/.

1. Precomputation: Compute a set of generators of the Shimura class group with
relative norm ` as small as possible. (The set is not chosen to be minimal; on
the contrary, we want some redundancy.) For each of the generators, compute
the extension degree of the field of definition of the geometric points of the
kernel corresponding to this generator.

2. For each generator of (relative) norm ` dividing the index, replace the previous
degree by the degree of the extension where the `e-torsion lives. (Usually e
is the `-valuation of the index, but the tricks from Section 2 can sometimes
reduce it.)

3. Sort the generators by the corresponding degrees to get a list .g1; : : : ; gn/.

4. For each generator gi on the list, let `i be its norm and do:

(a) Compute the surfaces .`i ; `i /-isogenous to the one already found. If `i di-
vides the index, then do an endomorphism ring computation from Section 2
and keep only the maximal curves.

(b) Repeat until the number of maximal abelian surfaces is #hC.`1/; : : : ;C.`i /i.

5. The CRT step

In contrast to the elliptic curve case, the coefficients of the class polynomials in
genus 2 are rational numbers, not integers. We estimate the denominators of these
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rational numbers by using the Bruinier-Yang conjectural formula [7] (proved only
for special cases [43; 44]), together with minor adjustments from [22]; since we
are using the invariants from [38, Appendix 3], we must also alter the denominator
formulas by small powers of 2. A formula for the factorization of the denominators
that holds for general primitive quartic CM fields was recently given in [26]; this
formula produces a multiple of the denominators, because it allows for cancellation
with the numerators and for the case where KC does not have class number 1. As
in [16, Theorem 3], we can multiply coefficients by their denominators, and then
use the CRT to reconstruct the polynomials.

5.1. Sieving the CRT primes. To determine whether to use a CRT prime in the
CRT algorithm, we check if the corresponding isogeny class is large enough. There
are approximately 2p3 isomorphism classes of genus-2 curves over Fp (see [5,
Proposition 7.1]), and since the area of Figure 10.1 in [29] is 32=3, there are ap-
proximately .32=3/p3=2 isogeny classes. We keep p if the size of the isogeny class
is of size roughly p3=2. We could compute the size of this isogeny class by using
Lemma 6.3 in [29] for each order (stable by conjugation) between ZŒ�; �� and OK ,
but since computing the lattice of orders is quite costly, we instead use a heuristic
derived from this formula. More details on this heuristic are given in [28, §7.2].

In practice, we are only interested in the number of curves from which we can go
up. This is harder to estimate, but numerous computations showed that the main
obstruction to going-up occurs when there are no .`; `/-isogenies with rational
kernel at all. But this case is easy to detect (see [4]). So in the previous estimate,
we discount the orders whose index is divisible by such an `.

Finally, we use a dynamic approach for the prime selection: We use a prime if
the probability of finding a maximal curve with the going-up algorithm is better
than a certain threshold (depending on the size of the prime), but we go back to
previously discarded (smaller) primes if they satisfy the threshold for the current
size of primes we are considering.

5.2. The CRT. In the cyclic case, we compute the class polynomials modulo small
integer primes, and we use the CRT to get the result modulo the product P (the
“precision”) of these small primes. Once the precision is large enough, we can re-
cover the polynomials over Z by lifting each coefficient to an integer in the interval
Œ�P=2; P=2�.

In the dihedral case, the primes are in O
K
C

ˆ

, and so is the precision ideal P .
Here we explain how to lift a coefficient x mod P to O

K
C

ˆ

. Take the Minkowski
embedding of a lift of x, and find the closest vector cx in the lattice associated to P
in the Minkowski embedding. Then cx corresponds to an element of the ideal P ,
and our final lift is x� cx . We note that the lattice is of rank 2, so we can directly
compute the closest vector rather than doing an LLL approximation.



454 KRISTIN E. LAUTER AND DAMIEN ROBERT

5.3. Lifting without denominators. We note that in the dihedral case, the denomi-
nator from the formulas in [7; 22; 26] is too large, as it takes into account both CM-
types. This increases the size of the coefficients we compute, so that using those
denominator formulas does not actually give better results than doing a rational
reconstruction directly.

With the notation from above, from x mod P we want to do a rational lift of x.
This time we embed the lattice associated to P into the lattice of rank 3 obtained by
adjoining the vector ŒCx1; Cx2; C � where x1 and x2 are the two real embeddings
of (a lift of) x and C is a constant accounting for how skewed we expect the size
of the denominator to be compared to the numerators. A minimal vector in this
lattice will correspond to an element N D cCDx where c 2 p and D is an integer.
We then take N=D as our lift for x.

This solution requires the precision to be the sum of the bit sizes of the numera-
tors and denominator, so it can be even better than using the denominator formulas
for small denominators, where there may be cancellation with the numerators.

6. Complexity

In this section, we give a mostly heuristic analysis of how Algorithm 16 (the going-
up algorithm) and Algorithm 21 (the algorithm to find all maximal curves from
one maximal curve) affect the asymptotic complexity of Algorithm 1. We will
sometimes call the isogenies we compute in the going-up algorithm vertical steps,
and the isogenies we compute in Algorithm 21 horizontal steps; this is in analogy
with the corresponding terminology in the elliptic curve case.

We begin with a quick reminder of the rough complexity analysis of the CRT
method in the elliptic curve case, where K is a quadratic imaginary field. In this
case there is only one class polynomial H , whose degree is the class number of OK ,
and classical bounds give that degH D zO.

p
�/, where� is the discriminant of OK .

Likewise, the coefficients of H have size zO.
p
�/. So the whole class polynomial

is of size zO.�/.
Each CRT prime p gives log.p/ bits of information, so neglecting logarith-

mic factors, we need about
p
� primes. CRT primes split completely in the

Hilbert class field of K, whose Galois group is Cl.OK/, so by the Cebotarev
theorem the density of CRT primes is roughly 1=# Cl.OK/ ' 1=

p
�. Neglect-

ing logarithmic factors again, we therefore expect the biggest prime p to be of
size zO.�/.

Now there are O.p/ isomorphism classes of elliptic curves, and zO.
p
�/ maxi-

mal curves, so one is found in time zO.p=
p
�/D zO.

p
p/. Once one maximal curve

is found, all others can be obtained using isogenies of degree logarithmic in �, so
one can recover all maximal elliptic curves over Fp in time zO.

p
p/D zO.

p
�/.
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We need
p
� CRT primes, so the total cost is zO.�/. The CRT reconstruction

can be done in quasilinear time too, so in the end the algorithm is quasilinear, even
without using a vertical step. If we had not used horizontal steps, the complexity
would have been zO.�3=2/.

Now consider the genus-2 case. Let �0 D�KC=Q and �1 DNKC=Q.�K=KC/,
so�D�K=QD�1�

2
0. Then the degree of the class polynomials is zO.�1=20 �

1=2
1 /,

while the height of their coefficients is bounded by zO.�5=20 �
3=2
1 / (see [38, §II.9]

and [21]). In practice, we observe [38, Appendix 3] that the coefficient height is
bounded by zO.�1=20 �

1=2
1 /, and we will use this observed bound in the following

analysis. According to [6, §6.4], the smallest prime is of size zO.�0�1/. We need
zO.�

1=2
0 �

1=2
1 / CRT primes, and an analysis using [24], as in [2, §5, Lemma 3],

shows that the largest prime is also zO.�0�1/. We remark that the sieving phase
does not affect the size of the largest prime (apart from the constant in the big O)
as long as we sieve a positive density of CRT primes.

For the horizontal step, the isogeny computation involves primes of size loga-
rithmic in �, so the cost of this step is quasilinear in the number zO.�1=20 �

1=2
1 /

of maximal curves. This is under the Assumption from Section 4. Without this
assumption, what we know is that for each ideal I in OKˆ

of norm prime to p, the
element .TN.I /; N.I // is an element of the Shimura class group whose action is
given by a maximally isotropic kernel. In the horizontal step, we can then compute
the action of TN.Cl.OKˆ

// by isogenies of size logarithmic in �. By Lemma 6.5
of [6], the cofactor is bounded by 26w.D/C1, where w.D/ is the number of prime
divisors of D. This gives a bound on the number of horizontal isogeny steps we
need to take. As remarked in [6, p. 516], we have w.n/ < 2 log logn outside
a density-0 subset of very smooth integers, so the corresponding factor can be
absorbed into the zO-notation.

In contrast, the complexity of the endomorphism ring computation and the going-
up phase involves the largest prime power dividing the index ŒOK W ZŒ�; ���. Ac-
cording to Proposition 6.1 of [18] we have that ŒOK W ZŒ�; ���� 16p2=

p
�. For the

size of the CRT prime we are considering, we see that ŒOK WZŒ�; ���D zO.�0�
3=2
1 /.

We fix �D 1=2. Assuming that the index is uniformly distributed, [15] showed that
there is a positive density of CRT primes where the largest prime power dividing
the index is O.��=1000 �

�=100
1 /. By the complexity analysis of Sections 2.6 and 3.3,

we see then that there is a positive density of primes where these algorithms take
time at most O.��0�

�
1/.

We then let p D zO.�0�1/ be a CRT prime. There are O.
p
p/ maximal curves,

so we expect the isogeny class to be of size ‚.p3=2/ (see Heuristic 6.6 in [6]). Up
to isomorphism over the algebraic closure, there are p3 genus-2 curves over Fp.
The original CRT algorithm of [16; 18] looped through all p3 geometric isomor-
phism classes of curves and tested whether the corresponding endomorphism ring



456 KRISTIN E. LAUTER AND DAMIEN ROBERT

is maximal. This takes time zO.�30�
3
1/CO.�

3=2C�
0 �

3=2C�
1 / per CRT prime. Since

zO.�
1=2
0 �

1=2
1 / CRT primes are needed, we find a total cost of zO.�7=20 �

7=2
1 /, given

our choice of �.
The approach of [6] is to search for only one maximal curve, and then to use hor-

izontal isogenies to find the others. With the improvements proposed in this paper
(using all horizontal isogenies and not just those coming from the type norm, and
the improved endomorphism ring computation), we find a cost of zO.�5=20 �

5=2
1 /C

O.�
3=2C�
0 �

3=2C�
1 / per CRT prime. The total cost is then zO.�30�

3
1/.

With our method, we need to find a curve in the isogeny class where the going-
up step yields a maximal curve. Finding a curve in the isogeny class takes time
O.p3=2/. If X is the number of going-up steps we need to try on average, the cost
per CRT prime is then zO.X.�3=20 �

3=2
1 C�

�
0�

�
1//. At best, X DO.1/, and we have

a total cost of zO.�20�
2
1/ from CRT primes. So at best we have a quasiquadratic

complexity, while the CRT itself is quasilinear, and thus negligible. We see that
we are still far from quasilinearity achieved by the analytic method. At worst,
X DO.p/ (number of random tries in the isogeny class until we find a maximal
one directly), and we recover the quasicubic complexity of the previous method.

To improve the complexity, there are two possibilities. The first is to increase the
probability of success of the going-up method. This requires an algorithm to com-
pute isogenies with cyclic kernels. But even with that, we achieve at most quasi-
quadratic complexity because the size of the isogeny class is too small compared
to the size of the search space. This is the case because the algorithm computes
the class polynomials (a scheme of dimension 0) directly from the moduli space
of dimension 3 of all abelian surfaces. In contrast, in the elliptic curve case, the
algorithm searches a space of dimension 1 for elements of a space of dimension 0.
It would be interesting to find convenient subspaces of the moduli space of smaller
dimension, and to work over them. One example would be to use Humbert surfaces,
which are of dimension 2, and Gundlach invariants, as proposed in [27].

7. Examples
7.1. Improvements due to the going-up phase. We first look at improvements due
solely to the going-up phase. The new timings for the case K DQ.i

p
29C 2

p
29/,

C.OK/D f0g, are given in Table 1, compared to old timings from [18, §9]. This
is a cyclic Galois example with class number one, so there is only one maximal
curve and the algorithm from Section 4 is not used.

Note that much less time is spent exploring curves with the new algorithm, due
to the going-up algorithm. Also note that, even though the going-up phase is more
complicated, it is still less costly than the computation of the endomorphism rings
in the old algorithm, due to the improvements described in Section 2 and the fact
that the new version calls it less often.
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Timings (in seconds)

p ld ˛d Curves Estimate Old New

7 — — 1 1 0:3C 0:0 0:1C 0:0

23 13 84 15 2 .16/ 9 C 70:7 0:4C 24:6

53 7 3 7 7 105 C 0:5 7:7C 0:5

59 2; 5 1; 12 322 48 .286/ 164 C 6:4 1:4C 0:6

83 3; 5 4; 24 77 108 431 C 9:8 2:4C 1:1

103 67 1122
107 7; 13 3; 21 105 8 .107/ 963 C 69:3

139 52; 7 60; 2 259 9 .260/ 2189 C 62:1

181 3 1 161 135 5040 C 3:6 4:5C 0:2

197 5; 109 24; 5940
199 52 60 37 2 .39/ 6360 C 1355:3

223 2; 23 1; 11 1058 39 .914/ 10440 C 35:1

227 109 1485
233 5; 7; 13 8; 3; 28 735 55 .770/ 11580 C 141:6 88:3C 29:4

239 7; 109 6; 297
257 3; 7; 13 4; 6; 84 1155 109 .1521/ 17160 C 382:8

313 3; 13 1; 14 146 .2035/ 165:0C 14:7

373 5; 7 6; 24 312 183:4C 3:8

541 2; 7; 13 1; 3; 14 294 .4106/ 91:0C 5:5

571 3; 5; 7 2; 6; 6 1111 .6663/ 96:6C 3:1

Total time for calculating class polynomials: 56585 776

Table 1. Timings and other information for the old and new algorithms to com-
pute the Igusa class polynomials for the field Q.i

p
29C 2

p
29/, using a 2.39

GHz AMD Opteron with 4 GB of RAM. The first column gives the possible
CRT primes; an entry in the “Timings” column indicates whether this CRT prime
was used in the calculation. The second column lists the `d -torsion subgroups re-
quired to compute whether a curve is maximal; bold entries indicate that there are
no rational .`; `/-isogenies (so that “going up” is not possible), and italic entries
indicate that .`; `/-isogenies are too expensive to compute. The third column
gives the degree of the field extensions where the points of these subgroups live;
the degree is italicized when it is so large that computing the `d -torsion would
be too expensive. The fourth column indicates the total number of curves in the
isogeny class, computed via the algorithm from [18]. The fifth gives an estimate,
obtained as explained in Section 5.1, for the number of curves from which we
can go up, and, in parentheses, for the total number of curves in the isogeny
class. The last two columns give the timings of the old and new algorithms,
split into “Time exploring curves” + “Time spent computing endomorphism
rings/Time spent going up”. The old timings are obtained from [18, Table 3].
The total times listed on the last line include some overhead not accounted for
elsewhere.
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The trade-offs in the going-up step depend on the discriminant of the CM fieldK.
The more CRT primes we need, the bigger the isogenies and the bigger the degrees
in the endomorphism ring computations we allow. Note that computing .`; `/-
isogenies requires zO.`2/ operations in the field where the points of the kernel
are defined when ` is congruent to 1 .mod 4/, but zO.`4/ when ` is congruent
to 3 .mod 4/. So in the above example, we computed the .109; 109/-isogenies
faster than the .23; 23/-isogenies.

7.2. Dihedral examples. Here we illustrate our new CRT algorithm for dihedral
fields, for K DQ.X/=.X4C 13X2C 41/ with C.K/' f0g.

We first compute the class polynomials over Z using Spallek’s invariants, and
obtain the following polynomials in 5956 seconds:

H1 D 64X
2
C 14761305216X � 11157710083200000;

H2 D 16X
2
C 72590904X � 8609344200000;

H3 D 16X
2
C 28820286X � 303718531500:

Next we compute them over the real subfield and use the invariants from [38, Ap-
pendix 3]. We get:

H1 D 256X � 2030994C 56133˛;

H2 D 128X C 12637944� 2224908˛;

H3 D 65536X � 11920680322632C 1305660546324˛;

where ˛ is a root of X2�3534XC177505, so that O
K
C

0

DZŒ˛�. This computation
took 1401 seconds, so in this case, the speedup due to using better invariants and
computing over the real subfield is more than 4-fold.
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Fast computation of isomorphisms of hyperelliptic
curves and explicit Galois descent

Reynald Lercier, Christophe Ritzenthaler, and Jeroen Sijsling

We show how to speed up the computation of isomorphisms of hyperelliptic
curves by using covariants. We also obtain new theoretical and practical results
concerning models of these curves over their field of moduli.

1. Introduction

Let X1 and X2 be two curves of genus g � 2 over a field k. We wish to quickly
determine the (possibly empty) set of isomorphisms between them. The standard
strategy mainly consists of interpolating the isomorphisms at Weierstrass or small
degree places, depending on whether the characteristic of the field is zero or pos-
itive [17]. This yields algorithms of complexity at least O.g6/ in general, and at
least O.g2/ even in very favorable cases.

In this article we restrict to hyperelliptic curves with equations Xi W y2 D fi .x/
over a field k of characteristic different from 2. The issue can then be rephrased
in terms of isomorphisms of degree 2gC 2 polynomials under the Möbius action
of GL2.k/ (see Section 2E1). Our first contribution is to show how to compute
the set of isomorphisms in a much faster way by combining two new ideas. The
first one uses the factorization of the Möbius action into a diagonal matrix times
a second matrix whose diagonal coefficients are equal to 1. This idea allows us
to perform the computation of the isomorphisms with only univariate polynomial
calculations (see Section 2B). The second idea relies on a classical generalization
of invariants, called covariants (see Section 2C). Using covariants, we can reduce
our search for an isomorphism between f1 and f2 to the search for an isomorphism
between polynomials of lower degree. This gives us an algorithm for generic
hyperelliptic curves whose complexity is quasilinear in g (see Section 2D). In
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the genus-2 and genus-3 cases, we analyze the small locus of curves where our
strategy fails (see Section 2E2). The use of covariants was inspired by work of
van Rijnswou [30], who used covariants, along with a miraculous isomorphism
from representation theory, to generically reduce the isomorphism question for
ternary quartics to that for binary quartics.

In a related direction, thanks to covariants, we get both theoretical and practical
results on Galois descent of hyperelliptic curves over their field of moduli. As the
terminology suggests, this issue is related to moduli spaces, namely as follows.

The use of invariants allows the construction of the coarse moduli space of
smooth curves admitting a suitable representation (for example, hyperelliptic or
planar) as a geometric quotient in the sense of Mumford [28]. Such quotients
have been calculated explicitly; for instance, for genus-2 and genus-3 hyperelliptic
curves, see [21; 34]. Given a field k, the k-points of these quotients correspond to
curves whose field of moduli, in the sense of Definition 3.1, is equal to k (up to
a possible purely inseparable extension). This statement is probably well-known,
but we could not find it in the literature; therefore, we give the link between these
two definitions in Section 3.

A natural question is to determine when a curve descends to its field of moduli,
that is, when its field of moduli is also a field of definition (and hence the smallest
possible field of definition, under inclusion). Examples of curves that do not so
descend were constructed by Shimura [33] and Earle [12], among others. However,
curves of genus at most 1 always descend to their field of moduli, and models over
the field of moduli can be explicitly constructed. Moreover, in the genus-2 case,
although an obstruction to the descent may exist, as is shown in [26] and [7], the
question of explicit descent to the field of moduli is solved. One of our aims is to
obtain similar results in the general hyperelliptic case.

Many theoretical results for the general case can be found in [18]. In practice,
though, computing an explicit model of a given curve over its field of moduli can
be a very hard task, as we explain in Section 3B1. Indeed, for a given finite Galois
extension, Weil’s criterion in [35] often leads to a computational answer; the main
difficulty in our context is to work out the finite Galois extension over which a
descent isomorphism is defined. As far as we know, there is no easy general way
to find this extension, except when k is finite or when the geometric automorphism
group of the curve is trivial. Moreover, for hyperelliptic curves there is a refinement
of the descent question — namely, to ask for a descent to a model of the form
y2 D f .x/— and this introduces additional difficulties.

The “magic” of the covariant method is to reduce the descent problem to lower
genus, where a solution may be easier to determine (Theorem 3.8). In the genus-1
case, for example, there is always an explicit model over the field of moduli and
we can quickly determine a descent isomorphism to this model, thanks to the first
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part of our work. It turns out that in suitable cases, this descent induces a descent
of the original hyperelliptic curve to its field of moduli.

We illustrate this descent to the field of moduli for genus-3 hyperelliptic curves
with automorphism group .Z=2Z/3, a case which remained unsolved in [25]; see
Section 3C1. We also look at the case of genus-3 hyperelliptic curves with auto-
morphism group .Z=2Z/2; in this case the field of moduli is not always a field of
definition, and we prove that we can always find a model over an at most quadratic
extension of the field of moduli. Finally, in Section 3D we show that our method
can be used to descend families of curves with the example of a 3-dimensional
family of genus-5 hyperelliptic curves from [13].

We stress that we are merely beginning to exploit the full strength of these new
ideas. An article on nonhyperelliptic curves is in progress. We are also developing
a general version of van Rijnswou’s algorithms that is much more effective over
finite fields and number fields. Finally, we seek to obtain new theoretical and
practical descent results by analyzing the influence of twists on covariants.

We have implemented our algorithms in Magma [3]; the resulting programs,
together with other useful scripts and output that was too large to include in this
paper, may be found at

http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/hyp-desc.tgz

Notation. In the following, k denotes a field of characteristic p (prime or 0) with
algebraic closure K. Hyperelliptic curves are additionally assumed to be smooth,
so that when a singular affine model of a curve is given, we actually consider its
desingularization. Unless noted otherwise, (iso)morphisms are defined over the
base field k. We use the following notation for groups: Cn D Z=nZ; D2n is
the dihedral group with 2n elements; U6 is the group with 24 elements defined
by hS; T i with S12 D T 2 D 1 and TST D S5; V8 is the group with 32 elements
defined by hS; T i with S4 D T 8 D .ST /2 D .S�1T /2 D 1; Sn is the symmetric
group over n symbols. Finally, if f1 and f2 are polynomials or matrices or some
other such objects over a field k, we will write f1 � f2 if there exists � 2 k� such
that f1 D � �f2.

2. Isomorphisms between forms and hyperelliptic curves

2A. Isomorphisms of binary forms. Let n � 1 be an integer, let V D k2 be the
k-vector space with basis .x; z/, and let Sn.V / be the .nC 1/-dimensional vector
space of homogeneous forms

Pn
iD0 aix

izn�i of degree n in .x; z/. In the sequel,
we call an element of Sn.V / a (binary) form. When n D 0, we let S0.V / D k.
Let G be a subgroup of GL2.k/ and let M be an element of G. If f is a form
in Sn.V /, we define M:f by .M:f /.x; z/D f .M�1.x; z//, where the action of
a matrix on .x; z/ is the standard action on t.x; z/.
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Definition 2.1. Let f1; f2 be forms of degree n� 1 over a field k. We denote by
Isom.f1; f2/� PGL2.k/ the set of matrices M up to scalar equivalence such that
M:f1 � f2. Additionally, we write Autf1 for Isom.f1; f1/.

If Isom.f1; f2/¤∅, this set is a principal homogeneous space over Autf1. In
particular, Isom.f1; f2/DM Autf1 for any M 2 Isom.f1; f2/.

Let f be a form of degree n over k. OverK, we can write f D
Qs
iD1.˛ix�ˇiz/

ni,
where .˛i ; ˇi /2K2nf.0; 0/g and ni 2N. We associate to such a form its squarefree
part zf D

Qs
iD1.˛ix�ˇiz/, which is defined up to a multiplicative constant. The

action of M on f reflects the classical Möbius action of PGL2.K/ on the roots
.˛i W ˇi / 2 P1K of f . In particular, two forms of the same degree are K-isomorphic
if and only if there exists an M 2 GL2.K/ mapping the roots of the first form to
the roots of the second form (counting multiplicities). Hence we have:

Lemma 2.2. The group AutKf is finite if and only if s � 3, that is, if and only if
deg zf � 3. Moreover, AutKf � AutK zf .

2B. The direct approach. The classical method to compute isomorphisms between
two binary forms f1, f2 of degree n over a field k is to find a PGL2.k/-transfor-
mation of P1 which maps the roots of the first form to the root of the second form.
The most time-consuming task is to compute an isomorphism between the splitting
fields of f1 and f2. Even in the most favorable case, where k is a finite field, the
fastest algorithms need at least O.n2; 5Co.1// operations in k (see [22]).

We show here that it is actually possible to get rid of this cumbersome ring
isomorphism computation, and describe an algorithm of time complexity only
quasilinear in n. This algorithm takes as input binary forms f1 D

P
i Aix

izn�i

and f2 D
P
i Bix

izn�i of equal degree n� 3, each having at least three distinct
roots. It returns matrices representing the elements of Isom.f1; f2/.

First, we suppose that the coefficient An�1 is equal to zero. Note that this is
typically not a big restriction, since we may apply linear transformations to f1. A
notable exception is when p divides n. We therefore assume that p is prime to n.

Second, we note that determining Isom.f1; f2/ is equivalent to determining the
matrices M D .mi;j / 2 GL2.k/ such that

f2.m11xCm12z;m21xCm22z/D �f1.x; z/ for some � 2 k�: (1)

Third, because of homogeneity, we may suppose that the � in (1) equals 1,
after enlarging k by a radical extension if necessary. Note that though this radical
extension is a priori unknown, the details of the algorithm below will show how it
can be determined.

Finally, we may suppose that the M in (1) are of the form

M D

�
1=˛ ˇ=ı


=˛ 1=ı

�
:
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Of course this may not be true, because a zero may occur on the diagonal of one
of these M . However, one can fix this situation by applying a suitable change of
variables to f2.

The equation f2.m11xCm12z;m21xCm22z/D f1.x; z/ now becomes

f2.xCˇz; 
xC z/D f1.˛x; ız/:

Equating the coefficients of xn in both sides of this equation yieldsAn˛nDf2.1; 
/,
and we can write ˛n in terms of 
 . Similarly, the equality of the coefficients
of xn�1z,

ˇ
@f2

@x
.1; 
/C

@f2

@z
.1; 
/D 0;

enables us to write ˇ in term of 
 too. More generally, equating the coefficients
of xn�izi for i D 2; : : : ; n, where we substitute ˛n and ˇ in term of 
 , yields n�1
equations of the form

An

� iX
j D0

�
i

j

��
�
@f2

@z

�j�@f2
@x

�i�j @if2

@xj @zi�j

�
.1; 
/

D i Š

�
@f2

@x
.1; 
/

�i� ı
˛

�i
f2.1; 
/: (2)

Note that the left-hand side of (2) is actually a polynomial multiple of f2.x; z/,
and we can divide both sides by f2.1; 
/— see [16, Chapter 1, §§15–16] for an
elegant explanation. This yields equations of degree i.n� 2/ in 
 for the left side
and of degree i.n� 1/ in 
 and degree i in ı=˛ on the right side.

Now, dividing the square of (2) specialized at i D 3 by the cube of (2) spe-
cialized at i D 2 allows to eliminate, up to some constant, the right-hand side of
these equations, in particular the unknown ı=˛. We end up with an equation of
degree 6.n� 2/ in 
 . Similarly, when n > 3, dividing (2) specialized at i D 4 by
the square of (2) specialized at i D 2 yields an equation of degree 4.n� 2/ in 
 .
Taking the gcd, we obtain a polynomial of low degree with root 
 . Generically,
this gcd is of degree 1.

Under the assumptions made, the algorithm is therefore straightforward. For
each possible 
 , we compute ˛; ˇ and ı and check whether the resulting matrix is
in Isom.f1; f2/.

The computations involved in this algorithm (taking gcds of polynomials of
degree O.n/, taking n-th roots, and so forth) are all of time complexity quasilinear
in n.

We have implemented the algorithm in Magma (version 2.18-2) and have timed
the resulting procedure, IsGL2EquivFast, on a laptop (based on an Intel Core i7
M620 2.67GHz processor) for irreducible forms of increasing degree, the most



468 REYNALD LERCIER, CHRISTOPHE RITZENTHALER, AND JEROEN SIJSLING

Computations over F10007 Computations over Q

Genus Old Section 2B Section 2D Old Section 2B Section 2D

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.4 0.0 0.0
8 0.0 0.0 0.0 15 0.0 0.0

16 0.1 0.0 0.0 1150 0.1 0.0
32 0.2 0.0 0.0 — 0.2 0.0
64 0.9 0.1 0.0 — 0.6 0.0

128 6.5 0.6 0.0 — 3 0.2
256 39 3.7 0.1 — 30 0.6
512 242 25 0.5 — 382 3.4

1024 1560 165 2.5 — 5850 7

Table 1. Timings (in seconds) for isomorphisms between forms of degree 2gC2,
over F10007 and over Q. The columns labeled “Old” give timings for Magma’s
built-in function IsGL2Equivalent; the columns labeled “Section 2B” give tim-
ings for the function IsGL2EquivFast described in Section 2B; and the columns
labeled “Section 2D” give timings for the function IsGL2EquivCovariant de-
scribed in Section 2D. Entries of “—” indicate computations that were aborted
after an hour.

favorable case for the native Magma routine IsGL2Equivalent. We compare with
IsGL2Equivalent, which implements the classical method, first over the finite
field F10007, then over the rationals with coefficients bounded by ˙2. The results
are in Table 1. (See Section 2D for the definition of IsGL2EquivCovariant.)

As concluding remarks, we note first of all that this algorithm is equally suitable
for determining K-isomorphisms. Moreover, in the special case of binary quartics,
it is just as efficient as the algorithm given in [8].

2C. The covariant approach. Let k be an infinite field of characteristic p and let
n > 1 be an integer.

Definition 2.3. Let r � 0 be an integer. A homogeneous polynomial function
C W Sn.V /! Sr.V / of degree d is a covariant if there exists ! 2 Z such that, for
all M 2G and all f 2 Sn.V /, we have

C.M:f /D .detM/�! �M:C.f /:

When r D 0, such a C is called a (relative) invariant and is denoted by I .

The integer r is called the order of the covariant. If nd � r is odd, the covariant
is necessarily zero. Otherwise the integer ! is unique, and is called the weight
of the covariant. It is equal to .nd � r/=2. In the sequel, we often identify C
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with C.f / for a general form f 2 F.a0; : : : ; an/Œx; z�, where F is the prime field
of k. For instance, the identity function Sn.V /! Sn.V / is a covariant of degree 1
and order n that we identify with f itself.

Remark 2.4. The determinant factor prevents the addition of covariants of differ-
ent weights when GDGL2.K/. Hence one generally studies the graded algebra Cn
of covariants and In of invariants under the action of SL2.K/. It is easy to see
that the homogeneous elements of Cn and In are actually all the covariants or
invariants under the action of GL2.K/. Despite this ambiguity, in the rest of the
article we work with G D GL2.K/ instead of SL2.K/ because, in practice, this
choice often allows us to avoid a quadratic extension of k when looking for an
isomorphism M between two forms.

There is a large literature on how to generate invariants and covariants start-
ing from f . Gordan’s algorithm [15] allows to find a set of generators for the
algebras Cn and In thanks to the use of certain differential operators, called h-
transvectants and defined as follows. Given two covariants C1; C2 of degree d1; d2
and of order r1; r2, and given an integer h � 1, we can create a new covariant
denoted .C1; C2/h and usually defined as [29, p. 88]

.r1� h/Š.r2� h/Š

r1Šr2Š

hX
iD0

.�1/i
�
h

i

�
@hC1

@xh�i@zi

@hC2

@xi@zh�i
:

In practice, we use the univariate counterpart. Looking at C1, C2 as univariate
polynomials in x=z, we get [29, Theorem 5.6]

hŠ
.r1� h/Š.r2� h/Š

r1Šr2Š

hX
iD0

.�1/i
�
r1� i

h� i

��
r2� hC i

i

�
dh�iC1

dxh�i

d iC2

dxi
: (3)

Effective methods for computing sets of generators when K DC have been worked
out for n up to 10 (see [11; 14; 10; 2; 34; 9; 5; 4]). It has been shown that, if C is
replaced by an algebraically closed field K of characteristic p, these computations
are still valid for g D 2 if p ¤ 2; 3; 5 [24] and for g D 3 if p ¤ 2; 3; 5; 7 [25].

Our second idea to compute isomorphisms between forms of a given degree is
to reduce the question to smaller degree by using covariants. Indeed, the following
observation is a simple consequence of the definition itself.

Proposition 2.5. Let f1; f2 be forms of even degree n over a field k. Let C be a
covariant of order r for binary forms of degree n, defined over the prime field of k,
and let ci D C.fi / 2 Sr.V /. Then Isom.f1; f2/� Isom.c1; c2/. �

We illustrate this idea and study its limitations with the computation of isomor-
phisms for forms and hyperelliptic curves in Sections 2D and 2E. As we want the
covariants ci to have the smallest degree possible and Isom.c1; c2/ to be finite,
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we want that deg zci � 3. Actually, in what follows we mostly deal with forms of
even degree, so nonzero covariants will be of even order, and the smallest degree
meeting our restriction is then 4.

Consider a binary quartic q D a4x4Ca3x3zCa2x2z2Ca1xz3Ca0z4 over k
with p ¤ 2; 3. We define

I D I.q/ D 12a4a0� 3a3a1C a
2
2;

J D J.q/D 72a4a2a0C 9a3a2a1� 27a4a
2
1 � 27a0a

2
3 � 2a

3
2

as in [8]. The form q has distinct roots if and only if � D 4I 3 � J 2 ¤ 0.
Given I; J 2 K such that �¤ 0, one can easily reconstruct a form with at least
three distinct roots which is K-isomorphic to q. We can take

q D

�
x3z� 27.I 3=J 2/xz3� 27.I 3=J 2/z4 if J ¤ 0;
x3zC xz3 otherwise.

(4)

Concerning the geometric automorphisms of binary quartics, we have the fol-
lowing easy result, for which we could not find a reference.

Proposition 2.6. Let q be a binary quartic form over K, with invariants I and J .
Suppose that �¤ 0. Then

Aut q Š

8<:
A4 if I D 0;
D8 if J D 0;
D4 otherwise.

(5)

Proof. Let ƒ � P1.K/ be the set of four roots of q. Using the 3-transitivity
of the action of PGL2.K/ on P1.K/, we may assume that ƒ D f0; 1;1; �g for
some � 2K n f0; 1g. Then the transformation x 7! �=x induces the permutation
.01/.1�/ of ƒ. By symmetry, we see that Stabƒ � Symƒ contains the Vier-
gruppe D4 � Symƒ.

We are reduced to analyzing the case when Stabƒ properly contains D4. Since
the extension 1!D4! S4! S3! 1 is split and all subgroups of S3 of equal
order are conjugate, this is in turn equivalent to determining when Stabƒ contains
an additional given 2- or 3-cycle. These cases give rise to the exceptional groups
in (5) of order 8 and 12.

First let us see for which � the permutation .1�/ is in Stabƒ. In this case, the
fractional linear transformation fixes 0 and1 and is therefore of the form x 7! cx.
This only gives a new automorphism if c D�1, so �D�1 and J D 0.

In the case where the permutation .01�/ is in Stabƒ, a slightly more involved
calculation gives that �D �3C 1 for a primitive third root of unity �3, and in that
case I D 0. �

We will also need in the sequel the following result.
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Proposition 2.7. Let q be a binary quartic form defined over k with distinct roots,
and let q be the form defined by (4). Assume that I.q/ ¤ 0 and J.q/ ¤ 0. Then
a K-isomorphism between q and qD z.x3C b1xz

2C b0z
3/ is defined over any

extension of k where q has a root.

Proof. Let k0 be an extension of k where q has a root. By a change of variable
defined over k0, we can map this root to infinity and hence q onto q0 D zr , where
r D x3C a1xz

2C a0z
3 2 k0Œx; z�. Now, since

I.q0/D�a1=4; I.q/D�b1=4;

J.q0/D�a0=16; J.q/D�b0=16;

we get the relation a31=a
2
0 D b

3
1=b

2
0 . Hence if we define � 2 k0 by

�D
J.q0/I.q/

J.q/I.q0/
;

the k0-isomorphism M W .x; z/ 7! .�x; z/ maps q0 onto q. �

2D. Generic forms of even degree. We now describe an algorithm, based on the
ideas of Sections 2B and 2C, to compute the isomorphisms between two generic
binary forms f1 and f2. Our notation is as in Section 2B.

Algorithm 2.8 (IsGL2EquivCovariant).

Input: Two forms f1 and f2 of the same degree n � 3 over k, and integer
parameters Border � 3, Bdegree � 2, and Bsingular � 0.

Output: The matrices M D .mi;j /i;j in PGL2.k/ such that M:f1 � f2.

1. Order loop. For o increasing from 3 to Border do:

(a) Degree loop. For d increasing from 2 to Bdegree do:

i. Compute a random covariant C of order o and degree d using transvec-
tants.

ii. If zC.f1/ is of degree at least 3, then compute Isom. zC.f1/; zC.f2// and
return the elements which induce isomorphisms between f1 and f2.

iii. Otherwise, repeat the following procedure Bsingular times:

– Compute a new random covariant C 0 of order o and degree d using
transvectants, and replace C by the covariant C C �C 0 for some
random � in the field k.

– If zC.f1/ is of degree at least 3, compute Isom. zC.f1/; zC.f2// and
return the elements that induce isomorphisms between f1 and f2.

2. Failure. Return the result of IsGL2EquivFast(f1, f2).
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For the purpose of computing random covariants, we follow Gordan [15]. Given
an order o and a degree d , we construct recursively a covariant C D

�Q
Cd 0;o0 ; f

�
h

as a transvectant of some level h of the form f and a product of covariants of
intermediate orders o0 and degrees d 0, under the two constraints d D

P
d 0 and

oD nC
P
o0� 2h.

When n is even, the transvectant of smallest order and degree isC2;4D .f; f /n�2.
The next simplest transvectant is C3;4D ..f; f /n=2; f /n�2, of order 4 and degree 3.
For large orders and degrees, covariants must be computed “on the fly”, specialized
for f1 and f2, since expressions are far too large to be precomputed.

To completely specify the algorithm, we have to be more precise about how to
compute covariants and how to choose the loop bounds Border, Bdegree and Bsingular.
A straightforward choice for the loop bounds is Border D 4, Bdegree D 2, and
Bsingular D 0. With this choice, only the covariant C2;4 D .f; f /n�2 is tested for n
even, and when it turns out that the discriminant of this covariant vanishes, we go
back to the method IsGL2EquivFast. First note that the covariant .f; f /n�2 can
be easily computed. Using (3), we find that we can write

.nŠ/2

.n� 2/Š
.f; f /n�2 D c4x

4
C c3x

3zC c2x
2z2C c1xz

3
C c0z

4; (6)

where the coefficients ci are given by

c0 D

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š an�2�kak;

c1 D

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š
�
.n� 1� k/an�1�kakC .kC 1/an�2�kakC1

�
;

c2 D
1

2

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š
�
.kC 2/.kC 1/akC2an�2�k

C 2.n� 1� k/.kC 1/akC1an�1�kC .n� k/.n� 1� k/akan�k
�
;

c3 D

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š
�
.n� 1� k/an�kakC1C .kC 1/an�1�kakC2

�
;

c4 D

n�2X
kD0

.�1/k.n� k/Š.kC 2/Š an�kakC2:

Moreover, this setting is a good option for generic forms, as the following propo-
sition shows.

Proposition 2.9. Let n � 6 be an even integer and p ¤ 2; 3. Let f be a generic
binary form of degree n over k. Then the discriminant of C2;4.f / is nonzero.
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Proof. It is enough to find a single form f of degree n for which C2;4.f / has
nonzero discriminant. First let us suppose that p is coprime to

n.n� 2/.n� 3/.n2C 3nC 6/:

We then take f D xnCxn�1z�xzn�1� zn. Note that this form is in fact nonsin-
gular because f D .xC z/.xn�1� zn�1/. We have that

�C2;4.f /D
4

n
x3zC

2.n2�nC 6/

n2
x2zC

4

n
xz2:

This form has discriminant equal to 64.n� 3/.n� 2/.n2C 3nC 6/=n6, which is
nonzero by hypothesis.

One calculates similarly that for the other values of p ¤ 2; 3; 5, one can use the
form xnC xn�1zC xzn�1� zn instead. Indeed, under these hypotheses on p the
numerator n4C 2n3C 5n2� 12nC 36 of the resulting discriminant is coprime to
the previous numerator. To finish the proof, p D 5 can be excluded using the form
xnC xn�1zC xzn�1C 2zn. �

For nonrandom forms, especially forms of small degree with nontrivial automor-
phism group, it may be interesting to test other covariants than merely C4;2. We
then propose the following settings:

Border Dmin.8; n/; Bdegree D 10; and Bsingular D 10:

These bounds are constant in order to keep the total time complexity quasilinear
in n. More precisely, the bound Border is chosen to be at most 8 so as to take
advantage of the classification work of [25], the bound Bdegree is chosen to cover
all the possible fundamental covariants of degree 8 and with order between 4 and 8
(see [25, Table 1, p. 607]), and the bound Bsingular is chosen so as to increase the
probability that our covariants, if singular, have distinct points of singularity (so
that a linear combination may be nonsingular).

Remark 2.10. We may enter the last loop of the algorithm even if the form f has
no geometric automorphisms. For example, this happens with the degree-8 form

x7zC 7x6z2C 7x5z3C 8x4z4C 2x3z5C 10x2z6C 9xz7

over k D F11.

We have programmed Algorithm 2.8 in Magma (version 2.18-2), using the
first setting of the parameters. In particular, we have implemented the covari-
ant C4;2 using (6), and we have measured the timings of the resulting procedure,
IsGL2EquivCovariant, in the same experiments as in Section 2B. The results
are presented in Table 1. As expected, computing isomorphisms is much faster
with the help of covariants, even if the forms are split over k.
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2E. Application to isomorphisms of hyperelliptic curves.

2E1. Isomorphisms of forms and of hyperelliptic curves. A curve X of genus g� 1
defined over k will be called hyperelliptic if X=K has a separable degree-2 map
to P1K . If g > 1, the curve X then has a unique involution �, called the hyperelliptic
involution, such that QDX=h�i is of genus 0. This involution is in the center of
AutK X . We call AutK X D .AutK X/=h�i the reduced automorphism group of X .

Let us assume from now on that p ¤ 2. Then if Q has a rational point, X is
birationally equivalent to an affine curve of the form y2 D f .x/ for a separable
polynomial f of degree 2gC 1 or 2gC 2. We say that f is a hyperelliptic poly-
nomial and that X has a hyperelliptic equation if a curve in its isomorphism class
(over k) can be written in the form above. We denote by Xf the curve associated
to a hyperelliptic polynomial f . A hyperelliptic curve automatically has a hyperel-
liptic equation when k is algebraically closed or a finite field. However, for more
general fields and curves of odd genus, this is not necessarily the case (see [25]).

By homogenizing to weighted projective coordinates of weight .1; gC 1; 1/, we
obtain an equation y2D f .x; z/. Here f is seen as a form of degree 2gC2, taking
into account a “root” at infinity when degf D 2gC 1. With this convention, the
roots of f are the ramification points of the cover X=Q. We will use these conven-
tions for the roots and degree in the sequel when we speak about a hyperelliptic
polynomial or the associated form.

If f1 and f2 are hyperelliptic polynomials of even degree 2g C 2 � 6, then
isomorphisms between the hyperelliptic curves y2 D fi .x; z/ are represented by
pairs .M; e/ with

M D

�
a b

c d

�
2 GL2.k/

and e 2 k�. To such a couple, one associates the isomorphism

.x; z; y/ 7! .axC bz; cxC dz; ey/:

The representation is unique up to the equivalence .M; e/ � .�M; �gC1e/ for
� 2 k�. Hence, if M:f1 D � �f2 then the map

Isom.f1; f2/! .GL2.k/�K�/=�; M 7! .M;˙
p
�/

is well-defined up to the choice of a sign. It surjects onto Isom.Xf1
; Xf2

/, so know-
ing Isom.f1; f2/ is enough to determine Isom.Xf1

; Xf2
/ “up to the hyperelliptic

involution”.

2E2. Hyperelliptic curves of genus 2 and 3. The covariant approach requires a
covariant with at least three distinct roots, and hence it may fail in special cases,
which we can specify for small genera. We give some details on the more difficult
of the two cases: the genus-3 case. This problem is naturally stratified by the
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AutK Xf AutK Xf Normal models Xf W y2 D f

C2 f1g f D x.x� 1/.x5C ax4C bx3C cx2C dxC e/

D4 C2 f D x8C ax6C bx4C cx2C 1 or
f D .x2� 1/.x6C ax4C bx2C c/

C4 C2 f D x.x2� 1/.x4C ax2C b/

C 3
2 D4 f D .x4C ax2C 1/.x4C bx2C 1/

C2 �C4 D4 f D .x4� 1/.x4C ax2C 1/ or
f D x.x2� 1/.x4C ax2C 1/

D12 D6 f D x.x6C ax3C 1/

C2 �D8 D8 f D x8C ax4C 1

C14 C7 f D x7� 1

U6 D12 f D x.x6� 1/

V8 D16 f D x8� 1

C2 �S4 S4 f D x8C 14x4C 1

Table 2. Automorphism groups of genus-3 hyperelliptic curves. For each auto-
morphism group, we list the associated reduced automorphism group, together
with normal model(s) for the generic hyperelliptic curve with that automorphism
group. The notation for the groups is given at the end of the Introduction.

possible automorphism groups of the curve; we list these automorphism groups,
together with normal models and inclusion relations between the strata, in Table 2
and Figure 1. We assume here that p D 0 or p > 7.

C2 5-dimensional

D4 3-dimensional

C4 C 3
2 2-dimensional

C2 �C4 D12 C2 �D8 1-dimensional

C14 U6 V8 C2 �S4 0-dimensional

Figure 1. Dimensions and containment relationships among the moduli spaces
of genus-3 hyperelliptic curves with given automorphism groups.
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The moduli space of hyperelliptic curves of genus 3 is 5-dimensional, and can be
explicitly described using the Shioda invariants J2; J3; : : : ; J10 constructed in [34].
These invariants were used to speed up the calculations leading to the proof of the
following proposition, which shows that the locus where the covariant method fails
is of codimension 4 in the full moduli space. (The Magma parts of this proof, and
of other proofs in this section, may be found at the URL listed in the Introduction.)

Proposition 2.11. Let Xf =K W y2 D f .x/ be a genus-3 hyperelliptic curve such
that the form f cancels the discriminants of all its quartic covariants. Then AutXf
contains either D12, C2 �D8, or C14.

Proof. Construct

C.f /˙ � � I.f / �C 0.f /

such that degC D deg ICdegC 0, where C and C 0 run through the 14 fundamental
quartic covariants given in [25, Table 1], where I.f / equals either 1 or a Shioda
invariant Ji .f /, and where � runs through the integers between 0 and 10. We
rewrite the discriminants of these covariants in terms of Shioda invariants and add
to them the five Shioda relations [34, Theorem 3, p. 1042]. Using Magma, we have
been able to compute a Gröbner basis of this polynomial system, over Q, for the
graded reverse lexicographical (grevlex) order J2 < J3 < � � �< J10 with weights 2,
3, . . . , 10. Upon removing multiplicities, we obtain a basis with 22 polynomials,
of total degree between 8 and 20. One then checks, using the stratum formulas
from [25], that the irreducible components of the corresponding subscheme of the
moduli space either correspond to families of forms with discriminant zero or to
strata of curves Xf such that AutXf contain D12, C2 �D8, or C14. �

We see from this that curves with automorphism group D12, C2 �D8, or C14
cannot have separable quartic covariants. In these cases, using Proposition 2.5 and
the normal models from Table 2, one can show:

� if AutX is equal to D12 or U6 then the sextic covariant C3;6 D ..f; f /4; f /5
has nonzero discriminant;

� if AutX contains C2�D8 or is equal to C14 then there is no order-4 or order-6
covariant with three distinct roots.

The number of covariants considered in the proof of Proposition 2.11 — namely,
1253— is not minimal, but the redundancy helped Magma during the Gröbner
basis computations. Nevertheless, similar computations show that we can easily
reduce this number for curves with automorphism group larger than C2 (and also
impose conditions on the automorphism groups of the covariants; see Sections 3B2
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and 3C2). For example, consider the following five quartic covariants:

C2;4 D .f; f /6; C4;4 D ...f; f /4; f /6; f /4;

C3;4 D ..f; f /4; f /6; C 04;4 D ...f; f /4; f /4; f /6;

C5;4 D ....f; f /4; f /6; f /1; f /7:

If Xf =K is a genus-3 hyperelliptic curve, we find that:

� If AutXf ŠD4, one of the five covariants above has nonzero discriminant.

� If AutXf Š C4, one of C2;4, C3;4, C4;4, and C 04;4 has nonzero discriminant.

� If AutXf Š C 3
2 , one of C2;4, C3;4, and C4;4 has nonzero discriminant.

� If AutXf Š C2 �C4, the covariant C3;4 has nonzero discriminant.

Remark 2.12. Similar conclusions hold for genus 2. Specifically, there is no quartic
covariant with nonzero discriminant for the curves Xf =K such that D12 �AutXf
or AutXf 'C10. Moreover, when AutXf 'D8 then .f; f /4 has nonzero discrim-
inant, and when AutXf ' D4 then at least one of .f; f /4, ...f; f /2; f /4; f /4,
and ....f; f /2; f /3; f /2; f /6 has nonzero discriminant.

3. Explicit descent for hyperelliptic curves

3A. Field of moduli and fields of definition. Let X be a curve defined over K of
genus g � 1, let k be a subfield of K, and let F be the prime field of K.

Definition 3.1. The field of moduli of X , denoted MX , is the subfield of K fixed
by f� 2 AutK jX 'X�g.

We now restrict to hyperelliptic curves and we assume that p ¤ 2. Let X DXf
be a hyperelliptic curve over K given by a hyperelliptic polynomial f of even
degree n. Our first task is to show that we can get information on MX through the
invariants.

Lemma 3.2. Let I1; I2 be two invariants of the same degree for binary forms
of degree n. Assume that I1; I2 are defined over F and that I2.f / ¤ 0. Then
�D I1.f /=I2.f / is an element of MXf

.

Proof. It is enough to prove that �� D � for all � 2 Gal.K=MX /. By the definition
of MX , there exists an isomorphism between X and X� . We have seen that such
an isomorphism induces an element M 2 Isom.f; f � /. Therefore

�� D
I1.f

� /

I2.f � /
D
I1.� �M:f /

I2.� �M:f /
D �: �
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It is not always practical to work with a fixed quotient of invariants as above,
since I2.f / may be zero. As shown in [25], it is better to work inside a weighted
projective space, for elements of which one can define a canonical representative
as follows. Let .I1 W � � � W Im/ be an m-tuple of degree-di invariants of degree-n
binary forms, where m � 2, and suppose each Ii is defined over F . Let f be a
binary form of degree n. Let d be the gcd of the degrees di of the invariants Ii
whose values at f are nonzero. Then there exist ci 2 Z, with ci D 0 if Ii .f /D 0,
such that

P
cidi D d . We then define I D

Q
i I
ci

i . The canonical representative
of .I1.f / W � � � W Im.f // is

.I1.f /; : : : ;Im.f //D

�
I1.f /

I.f /d1=d
; : : : ;

Im.f /

I.f /dm=d

�
2Mm

X :

Proposition 3.3. Let .I1 W � � � W Im/ be a set of generators for In defined over F .
Then

MX D F.I1.f /; : : : ;Im.f //:

Proof. Let � 2 Gal.K=F.I1.f /; : : : ;Im.f ///. Since

.I1.f
� /; : : : ;Im.f

� //D .I1.f /; : : : ;Im.f //;

and since In separates the orbits of separable forms [28, p. 78], there exists a
matrix M 2 GL2.K/ such that M:f � f � , hence an isomorphism between Xf
and X�

f
. �

With our current knowledge of invariants, we are then able to compute MXf
for

nD 6; 8; 10. However, in the following applications to descent we will see that we
often do not need a complete set of invariants.

Definition 3.4. We say that k is a field of definition of X if there exists a curve X=k

such that X is K-isomorphic to X . The curve X=k is a model of X over k and we
call a geometric isomorphism between the two curves a descent isomorphism.

A classical problem is to determine the smallest field of definition of a curve.
Assuming for simplicity that every subfield of K is perfect, if MX is a field of
definition then it is the smallest possible field of definition, because it is the inter-
section of all the fields of definition (see [23] or [19, Theorem 1.5.8]). There might
be an obstruction for MX being a field of definition, but if there is none we will
denote by X a model of X over MX . In the case of hyperelliptic curves of odd
genus, there is a subtlety: The curve X does not necessarily admit a hyperelliptic
equation. However, if it does, we will say that X can be hyperelliptically defined
over MX , and we denote by f 2MX Œx� a hyperelliptic polynomial associated to
this model.

One can find in the literature several sufficient conditions for a curve to be hy-
perelliptically defined over MX . For instance, it is always the case when K is
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the algebraic closure of a finite field (see [18, Corollary 2.11]). Over an arbitrary
algebraically closed field K, the work of Huggins [18] shows that if the reduced au-
tomorphism group is noncyclic then the curve can be hyperelliptically defined over
its field of moduli. For g D 2, it has been proved that if the reduced automorphism
group is nontrivial, then the curve can be hyperelliptically defined over its field of
moduli [7]. This is also the case for g D 3, except for curves with automorphism
group isomorphic to D4 (see [25] and Section 3C2).

3B. Explicit hyperelliptic descent. Now let Xf be a hyperelliptic curve over K
that can be hyperelliptically defined over MX . We want to find f 2MX Œx� and
A 2 GL2.K/ such that f � A:f . The first task is of course to compute MX . As
we have seen, this can be done if we have a set of generators for the invariants
of the form f . However, if we do not have a full set of generators, and instead
have only some invariants .I1; : : : ; Im/ over F with m� 2, we can always try to
hyperelliptically descend Xf over the field k generated by .I1.f /; : : : ;Im.f //.
Since k �MX , if this can be achieved, we are done.

3B1. The cocycle approach. The direct approach relies on the following slightly
modified version of Weil’s cocycle relations (see [25]).

Lemma 3.5. The curve Xf can be hyperelliptically defined over k if and only
if there exists a finite extension k0=k such that for all � 2 Gal.K=k/, there exists
M� 2GL2.k0/ such thatM� 2 Isomk0.f; f � / and such that for all �; � 2Gal.K=k/,
we have M�� DM

�
�M� .

Assume that Xf can be hyperelliptically defined over k and let � WXf !Xf be
a descent isomorphism. It induces a matrix zA 2 IsomK.f; f/ � PGL2.K/. If we
choose a representative A 2GL2.K/ of zA, we can define M� D .A

�1/�A for all
� 2Gal.K=k/. It is easy to check that this choice ofM� satisfies all the hypotheses
of the lemma. Moreover, if A is defined over a Galois extension L=k then k0 � L,
and we have M� D id for all � 2 Gal.K=k/ such that �jL D id. Conversely, the
crucial step to construct such an A is to identify a Galois extension L=k satisfying
this property, since in this case one can use an explicit version of Hilbert 90 as
in [31, Proposition 3, p. 159]: For a general matrix P 2 GL2.k0/ the matrix

AD
X

� 2Gal.L=k/

P �M� (7)

gives a descent morphism.

Lemma 3.6. Assume that f is defined over an extension k0 of k. If AutKf D fidg
then we can take L to be the Galois closure of k0=k.
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Proof. We have to prove that A can be defined over such an L. Let A0 be induced
by a descent morphism. Since A0 2 IsomK.f; f/, we have

..A0/�1/�A0 2 IsomK.f; f � /D AutKf

for all � 2 Gal.K=L/; hence there exists �� 2K� such that .A0/� D �� �A0. One
can easily check that the �� satisfy a cocycle relation, so there exists e 2K� such
that �� D e=e� for all � . We then define AD e �A0, and we are done. �

As far as we know, there is no easy way to determine such an L when the
automorphism group is nontrivial (but see [25] for the case when k is a finite
field). Naïvely, one would expect to be able to construct the cocycle over the
field L0 over which all isomorphisms between f and its conjugates are defined.
Typically, what then happens is the following: Let � 2 Gal.L0=k/ be an element
of order n. Then usually no M� exists over L0 such that the cocycle condition
1DM�n DM �n�1

� � �M � �M is satisfied. We have to work with matrices of the
form �M� , where � belongs to a quadratic extension L of L0. This enlarges the
field and the Galois group, which may in turn give rise to more problems of the
same type. Even if this problem can be resolved, the computation of (7) is time-
consuming and limited to extensions of small degree (less than 50) in practice. In
the next section, we present a new idea that works extremely well to get around
these difficulties in certain cases.

Remark 3.7. In the odd genus case, it turns out that if we only want Xf to have
a model over k, instead of a hyperelliptic model, then the cocycle condition is
replaced by the condition M�� �M

�
�M� . However, even in this case we do not

know a general method to address the problem effectively.

3B2. The covariant approach. Using covariants, we can sometimes reduce the
problem of descent for Xf to a descent problem for a curve of lower genus.

Theorem 3.8. Assume that there exists a covariant C of order r � 4 such that
c D C.f / is a hyperelliptic polynomial, and let Xc W y2 D c.x/ be the associated
curve. Then MXc

�MXf
.

Moreover, if Xc is hyperelliptically defined over MXc
, then Xf is hyperellipti-

cally defined over an extension of MXf
of degree at most ŒAutK c W AutKf �.

In particular, if AutK cDAutKf and Xc is hyperelliptically defined over MXc
,

then Xf is hyperelliptically defined over MXf
.

Proof. Let � be an element of the group � D Gal.K=MXf
/. Then there exists a

K-isomorphism between Xf and X�
f

which induces a matrix M 2 IsomK.f; f � /.
Since we have the inclusion IsomK.f; f � /� IsomK.c; c� / by Proposition 2.5, we
get a K-isomorphism between Xc and X�c , so MXc

�MXf
.
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Assume now that Xc can be hyperelliptically defined over MXc
as Xc for some

form c 2MXc
Œx�. There exists A 2 IsomK.c; c/. Let us consider hD A:f , which

we can assume to be monic. We want to prove that h is defined over an extension
of MXf

DMXh
of degree at most

`D #.AutK c=AutKf /D #.AutK c=AutK h/:

First note that C.h/�A:C.f /� c. LetH �� be the subgroup consisting of the au-
tomorphisms � such that h� h� . Since we have assumed that h is monic, we even
have hD h� . We must show that #�=H � `. To this end, we note that c� D c for all
� 2� . Hence we can associate to each � 2� a matrixM 2 IsomK.h; h� /�AutK c.
In fact, this association gives rise to a well-defined class of AutK c=AutK h, so we
have defined a map � from � to AutK c=AutK h. If �.�/ D �.� 0/ then we have
h� � h�

0

, and hence ��1� 0 2H . Therefore � induces an injective map from �=H

to AutK c=AutK h, and we get our result. �

To use the theorem in a constructive way, we need a covariant that has a finite
automorphism group and for which we know how to find a hyperelliptic model
over its field of moduli. We give some examples in Sections 3C and 3D.

Remark 3.9. The fields of moduli of Xf and Xc may be different, even when the
automorphism groups of the forms are the same. For instance, let r be a root of
t2C 2t C 16=9D 0 and let f be the form

f D .x4C rx2z2C z4/.x4� 3rx2z2C z4/I

then the field of moduli of f is Q.r/, while the field of moduli of

c D .f; f /6 D .16=49/x
4
C .992=441/x2C .16=49/

is Q. Using the programs of [25], one sees that AutKf D AutK c 'D4.

3C. Application to genus-3 hyperelliptic curves. In [25], the two first authors
give algorithms for reconstructing genus-3 hyperelliptic models from given invari-
ants. These models are defined over the field of moduli, with the notable exception
of the 2-dimensional stratum C 3

2 and the 3-dimensional stratum D4. As an illus-
tration of our strategy, we see how our method applies in these remaining cases.

3C1. Descent of curves with automorphism group C 3
2 . Let X=K W y2 D f .x/ be

a genus-3 hyperelliptic curve with automorphism group isomorphic to C 3
2 . Since

the reduced automorphism group is not cyclic, [18] shows that X can be hyper-
elliptically defined over its field of moduli. In [25], we showed how to construct
a hyperelliptic equation for a model over an extension of the field of moduli of
degree at most 3. Using covariants, we can now give a method to get an equation
over the field of moduli itself.
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In Section 2E2, we checked that at least one of the quartic covariants in the
list fC2;4.f /; C3;4.f /; C4;4.f /g has nonzero discriminant. Moreover, we see by
Proposition 2.6 that the automorphism group of such a quartic is equal to D4 if
the quartic invariants I and J are both nonzero. Using some formal computations
(see the Magma scripts available at the URL listed in the Introduction), we checked
that it is always the case that at least one of the three covariants has nonzero dis-
criminant and I and J nonzero. Since AutK.f /'D4 we can use the approach
of Theorem 3.8 to find a hyperelliptic equation y2 D f.x/ over the field of moduli.
The procedure can actually be applied to a generic element of the family, but the
result is too large to be written down here; instead, we present an example.

Example 3.10. When we evaluate the parametrization formulas given in [25] for
the stratum C 3

2 at t D 0 and uD 1, we find the rational point

.j2 W j3 W � � � W j10/

D

�
0 W 0 W �

25

98
W �
25

98
W �

225

2744
W �

25

1372
W �

225

134456
W
1125

76832
W
15125

3764768

�
in the moduli space. This gives rise to the curve X W y2 D f with

f D .�32˛2C 420˛� 2275/x8=160C .�12˛2C 140˛� 700/x6=25

C˛x4C x2C .16˛2C 280˛� 2275/=12250

over Q.˛/, with ˛3�.35=2/˛2C.1925=16/˛�.18375=64/D0. By Proposition 3.3,
we have MX DQ.

Let c be the covariant .f; f /6. We find

c D
�16˛2C 180˛� 875

280
x4C

24˛2� 630˛C 3150

1225
x2z2C

4˛C 35

490
z4;

so that I D�75=49 and J D�2025=343. Then cD x3zC .25=9/xz3C .25=9/z4

is GL2.Q/-equivalent to c, is defined over MX D Q, and satisfies AutQ c ' D4.
The direct approach of Section 2B explicitly finds a Q-isomorphism M between c
and c. Its inverse M�1 is equal to .mi;j /i;j , where

m11 D 110250;

m12 D .3360˛
2
� 58800˛C 147000/ˇ2� 16800˛2C 147000˛� 18375;

m21 D .�2064˛
2
C 24780˛� 60900/ˇ3C .�3120˛2C 67200˛� 375375/ˇ;

m22 D .�5840˛
2
C 74900˛� 280000/ˇ3C .16880˛2� 173600˛C 487375/ˇ:

Here ˇ satisfies

ˇ4C
32˛2� 280˛C 350

175
ˇ2�

176˛2� 1820˛C 7350

175
D 0:
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We compute the monic form f�M:f :

fD x8C 160x7� 560x6� 2800x5C 64750x4� 91000x3

C 3010000x2� 2225000x� 9696875:

So y2 D f.x/ is a model of X over MX DQ.

3C2. Descent of curves with automorphism group D4. It is proved in [19, Chap-
ter 5] that there may be an obstruction for a genus-3 hyperelliptic curve overK with
automorphism group isomorphic to D4 to have a model over its field of moduli.
In [25], we were able to construct a model of such curves over an extension of the
field of moduli of degree at most 8. Using Theorem 3.8, we find:

Proposition 3.11. Let Xf be a genus-3 hyperelliptic curve over K with automor-
phism group isomorphic to D4. Then there exists an explicit model of X over an
at most quadratic extension of MX .

Proof. Applying the methods of Proposition 2.11 to the stratum D4 shows that
at least one of the five binary covariants C2;4.f /, C3;4.f /, C4;4.f /, C 04;4.f /,
C5;4.f / has not only a discriminant different from 0, but also I.f /¤ 0, J.f /¤ 0.
(The computations can be found in the Magma scripts available at the URL given
in the Introduction.) One then combines Proposition 2.6 and Theorem 3.8. �

We plan to investigate how to apply the theory of twists to the binary quartics
used in the application of Theorem 3.8 to give a precise characterization of the
obstruction to the descent on the field of moduli.

3D. Application to a family of Fuertes-González-Diez in genus 5. Let k be the
degree-3 Galois extension of Q defined by the irreducible polynomial t3� 3t C 1.
Let r1; r2; r3 be the roots of this polynomial in k. Then, as in [13], we can consider
the family

y2 D

6Y
iD4

�
x4� 2

�
1� 2

r3� r1

r3� r2

qi � r2

q4� r1

�
x2C 1

�
(8)

of genus-5 hyperelliptic curves, with q4; q5; q6 in Q. It was proved in [13] that the
members of this family have field of moduli equal to Q and automorphism group
isomorphic to C 3

2 . Moreover, it was claimed in [13] that these curves cannot be
hyperelliptically defined over Q, in contradiction with [18]. However, the proof
turns out to contain a subtle error. Still, the explicit descent of any of the member
of the family was extremely hard.

As in Example 3.10, we can use Theorem 3.8 to construct an explicit descent
for the curves in this family. For this particular family, the descent can even be per-
formed uniformly to yield a general expression in q4; q5; q6. Let F D k.q4; q5; q6/
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be the rational function field over k in three indeterminates, and define the binary
quartic form f 2 F Œx; z� as the homogenization of the right-hand side of (8). Let c
be the transvectant .f; f /10. Then c is a covariant of order 4 with nonzero discrimi-
nant and nonzero I.c/ and J.c/, and hence has automorphism group D4. The field
of moduli of Xc is contained in the field of moduli of Xf , which is a subfield of
Q.q4; q5; q6/; therefore the quartic c as in (4) is defined over Q.q4; q5; q6/ and is
GL2.F /-equivalent to c.

Now let L be the degree-4 extension of F defined by the dehomogenization of c.
From Proposition 2.7, we can explicitly construct an L-isomorphism between c
and c. This transformation gives a descent of the curve corresponding to c, which
by Theorem 3.8 also yields a descent of the curve corresponding to f . The resulting
expression, though indeed defined over the rationals, is huge and impossible to give
here. (The computations above, their final result, and the program to compute the
descent of any given specialization are available at the URL listed in the Introduc-
tion.) However, we can give an example for a specialization.

Example 3.12. Take q4 D 1, q5 D 2, q6 D 3. The hyperelliptic equation over Q is

y2 D 199950247575x12� 296949924611352x11� 66659816245812750x10

� 15421975495507360656x9C 2005635519424553708745x8

C 130792088864772419461200x7C 44148454149188354317253820x6

� 9718847083908693649803959136x5

C 93749472927036312839424054441x4

C 86331359417888600607650948443656x3

� 7423912080663182513045938205161326x2

C 249511197641168404939510946041515184x

� 3006656143858472317763973580984260681:
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Elliptic factors in Jacobians of hyperelliptic curves
with certain automorphism groups

Jennifer Paulhus

We decompose the Jacobian varieties of hyperelliptic curves up to genus 20,
defined over an algebraically closed field of characteristic zero, with reduced
automorphism group A4, S4, or A5. Among these curves is a genus-4 curve
with Jacobian variety isogenous to E2

1 �E
2
2 and a genus-5 curve with Jacobian

variety isogenous to E5, for E and Ei elliptic curves. These types of results
have some interesting consequences for questions of ranks of elliptic curves and
ranks of their twists.

1. Introduction

Curves with Jacobian varieties that have many elliptic curve factors in their de-
compositions up to isogeny have been studied in many different contexts. Ekedahl
and Serre found examples of curves whose Jacobians split completely into elliptic
curves (not necessarily isogenous to one another) [13] (see also [27], [14, §5]).
In genus 2, Cardona showed connections between curves whose Jacobians have
two isogenous elliptic curve factors and Q-curves of degree 2 and 3 [5]. There
are applications of such curves to ranks of twists of elliptic curves [24], results on
torsion [19], and cryptography [12].

Let JX denote the Jacobian variety of a curve X and let � represent an isogeny
between abelian varieties. Consider the following question.

Question 1. For a fixed genus g, what is the largest positive integer t such that
JX �E

t �A for some genus-g curve X over the algebraic closure of Q, where E
is an elliptic curve and A an abelian variety?

MSC2010: primary 14H40; secondary 11G30, 14H37.
Keywords: Jacobian varieties, hyperelliptic curves, automorphism groups of Riemann surfaces.
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In [22] the author developed a method for decomposing the Jacobian variety
of a curve X with automorphism group G, based on idempotent relations in the
group ring QŒG�. This technique yielded thitherto unknown examples of curves
of genus 4 through 6 where t is as large as is possible — that is, t is equal to
the genus g. For genus 7 through 10, examples of curves whose Jacobians have
many isogenous elliptic curves in their decompositions were also found. All these
examples are nonhyperelliptic curves.

In this paper we apply the methods of [22] to hyperelliptic curves with certain
automorphism groups. Let X be a hyperelliptic curve defined over a field of char-
acteristic 0, with hyperelliptic involution !. The automorphism group of the curve
X modulo the subgroup h!i is called the reduced automorphism group and must
be one of the groups Cn, Dn, A4, S4, or A5; here Cn represents the cyclic group
of order n and Dn is the dihedral group of order 2n. This follows from a result of
Dickson on transformations of binary forms [7].

We study hyperelliptic curves with reduced automorphism group one of A4, S4,
or A5. These reduced automorphism groups were chosen for two reasons. First,
results from genus 2 and 3 suggest that these families may yield curves with many
isogenous elliptic curve factors in higher genus. Second, for any genus, the list of
full automorphism groups with reduced automorphism group one of A4, S4, or A5

is manageable.
Section 3 reviews the method from [22], and Section 4 gives proofs of results for

genus up to 20. This bound of genus 20 is somewhat arbitrary. The technique will
work for any genus, but the computations become more complicated as the genus in-
creases. Section 5 discusses some computational obstructions to producing results
in higher genus. In that section we also work with families of curves with three par-
ticular automorphism groups. These groups have special properties that allow us to
prove results about the decomposition of the curves’ Jacobians for arbitrary genus.

A brief word on fields of definition: Unless specifically stated otherwise, curves
in this paper are defined over an algebraically closed field of characteristic zero.
The method of decomposition works generally for curves over any field; however,
a particular field must be specified in order to determine the automorphism group
of the curve. In each individual case, the decomposition results will hold for the
Jacobian of the curve defined over any field over which every geometric automor-
phism of the curve is defined. Partial answers to Question 1 are known for curves
over fields of characteristic p; see, for example, [28; 17; 9].

2. Overview of results

The decompositions of Jacobian varieties of hyperelliptic curves with reduced au-
tomorphism group A4, S4, or A5 up to genus 20 are summarized in Theorem 5.
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Jacobian varieties with several isogenous elliptic curve factors are also found, and
many are improvements on the best known results for t [22]. Two results of par-
ticular interest are:

Theorem 1. The hyperelliptic curve of genus 4 with affine model

X W y2
D x.x4

� 1/.x4
C 2
p
�3 x2

C 1/

has a Jacobian variety that decomposes as E2
1 �E

2
2 for two elliptic curves Ei .

Theorem 2. The genus-5 hyperelliptic curve with affine model

X W y2
D x.x10

C 11x5
� 1/

has JX �E
5 for the elliptic curve E with equation y2 D x.x2C 11x� 1/.

The first theorem is an improvement from best decompositions of genus-4 hy-
perelliptic curves from [23]. The second theorem is, to the author’s knowledge,
the first example in the literature of a hyperelliptic curve with a Jacobian variety
that decomposes into five isogenous elliptic curves over a number field. Proofs of
these results may be found in Section 4.

3. Review of technique

Fix an algebraically closed field k of characteristic 0. Throughout the paper the
word curve will mean a smooth projective variety of dimension 1. For simplicity,
models are affine, when given. Any parameters in the affine model (labeled as “ai ”)
are elements of k. Also, �n will denote a primitive n-th root of unity.

Given a curve X of genus g over k, the automorphism group of X is the auto-
morphism group of the field extension k.X/ over k, where k.X/ is the function
field of X . This group will always be finite for g � 2. Throughout, G will denote
the automorphism group of a curve X . In the case of hyperelliptic curves over
algebraically closed fields of characteristic zero, all possible automorphism groups
are known for a given genus [2; 4; 25].

Kani and Rosen [20] proved a result connecting certain idempotent relations in
the endomorphism algebra End0JX D .EndJX /˝Z Q to isogenies among images
of JX under endomorphisms. If ˛1 and ˛2 are elements of End0JX , we write
˛1 � ˛2 if �.˛1/D �.˛2/ for all Q-characters � of End0JX .

Theorem 3 [20, Theorem A]. Let "1; : : : ; "n; "
0
1; : : : ; "

0
m 2End0JX be idempotents.

Then the idempotent relation

"1C � � �C "n � "
0
1C � � �C "

0
m

holds in End0JX if and only if there is the isogeny relation

"1.JX /� � � � � "n.JX /� "
0
1.JX /� � � � � "

0
m.JX /:
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There is a natural Q-algebra homomorphism from QŒG� to End0JX , which we
will denote by e. It is a well-known result of Wedderburn [11, §18.2] that any
group ring of the form QŒG� has a decomposition into a direct sum of matrix rings
over division rings �i :

QŒG�Š
M

i

Mni
.�i /: (1)

Define �i;j to be the idempotent in QŒG� which is the zero matrix for all com-
ponents except the i-th component where it is the matrix with a 1 in the .j; j /
position and zeros elsewhere. The following equation is an idempotent relation in
QŒG�:

1QŒG� D

X
i;j

�i;j :

Applying the map e to this relation and using Theorem 3, we find

JX �

M
i;j

e.�i;j /JX : (2)

Recall that our primary goal is to study isogenous elliptic curves that appear
in the decomposition above. In order to identify which summands in (2) have
dimension 1, we use results from [15, §5.2] to compute the dimensions of these
factors. This requires a certain representation of G.

Definition. The Hurwitz representation V of a group G is defined by the action
of G on H1.X;Z/˝Q.

The character of this representation is computed as follows. Let � WX!Y DX=G

be the natural map from X to its quotient by G. Suppose � is branched at s points,
with monodromy g1; : : : ; gs 2G (unique up to conjugation). Let �triv be the trivial
character of G, and for each i let �hgi i

denote the character of G induced from the
trivial character of the subgroup hgi i of G; observe that �h1Gi

is the character of
the regular representation. If we let gY denote the genus of Y , then the character
of the Hurwitz representation V is defined as

�V D 2�trivC 2.gY � 1/�h1Gi
C

X
i

�
�h1Gi

��hgi i

�
: (3)

Note that for a hyperelliptic curve X , we have X=G Š P1 (since G contains the
hyperelliptic involution) and so gY D 0. Also, �hgi i

D �hgj i
if hgi i and hgj i are

conjugate subgroups.
Via the regular representation, each element gi can be written as an element of

the symmetric group Sn, where n D #G. The monodromy type of a cover will
be written as an ordered tuple .t .a1/

1 ; : : : ; t
.as/
s / where t .ai /

i corresponds to gi and
denotes a permutation consisting of ai ti -tuples. If �i is the irreducible Q-character
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associated to the i-th component from (1), then the dimensions of the summands
in (2) are

dim e.�i;j /JX D
1
2

dimQ �i;jV D
1
2
h�i ; �V i: (4)

See [15, §5.2] for more information on the dimension computations.
Hence, given the automorphism group G of a curve X and monodromy for the

cover X over Y , to compute these dimensions we first determine the degrees of the
irreducible Q-characters of G, which will be the ni values in (1). Next we identify
elements of the automorphism group that satisfy the monodromy conditions. We
compute the Hurwitz character for this group and covering using (3), and finally
compute the inner product of the irreducible Q-characters with the Hurwitz char-
acter.

Again, our particular interest is in factors that are isogenous to one another. The
following proposition gives a condition for the factors to be isogenous.

Proposition 4 [23]. With notation as above, e.�i;j1
/JX � e.�i;j2

/JX .

Suppose a curve of genus g has automorphism group with group ring decom-
position as in (1) with at least one matrix ring of degree close to g; that is, one
ni value close to g— call it nj . If the computations of dimensions of abelian variety
factors outlined above lead to a dimension-1 variety in the place corresponding to
that matrix ring (the j -th place), Proposition 4 implies that the Jacobian variety
decomposition consists of nj isogenous elliptic curves. Our goal then is to apply
the steps above to hyperelliptic curves of genus up to 20 and with reduced auto-
morphism group isomorphic to A4, S4, or A5.

4. Results

For hyperelliptic curves over an algebraically closed field of characteristic zero, the
existence of curves of a fixed genus with reduced automorphism group isomorphic
to one of A4, S4, or A5 is completely determined by whether the genus is in certain
residue classes modulo 6, 12, and 30, respectively [25].

For each reduced automorphism group there are several possible full automor-
phism groups. Table 1 lists all groups and the modular conditions for their existence
in a certain genus, as well as monodromy type, listed using the notation described
in the previous section. The data from this table is taken from [25, Table 1, p. 250].
Explanations of how this data was produced may be found in [25], along with affine
models for all of the corresponding families. The groups

W2 D hu; v j u
4; v3; vu2v�1u2; .uv/4i;

W3 D hu; v j u
4; v3; u2.uv/4; .uv/8i

mentioned in the table are both of order 48.
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Automorphism group

Reduced Full Genus restrictions Monodromy

A4 A4 �C2 5 mod 6 .3.8/; 3.8/; 2.12/; : : : ; 2.12//

A4 �C2 1 mod 6 .3.8/; 6.4/; 2.12/; : : : ; 2.12//

A4 �C2 3 mod 6, g > 3 .6.4/; 6.4/; 2.12/; : : : ; 2.12//

SL2.3/ 2 mod 6, g > 2 .4.6/; 3.8/; 3.8/; 2.12/; : : : ; 2.12//

SL2.3/ 4 mod 6 .4.6/; 3.8/; 6.4/; 2.12/; : : : ; 2.12//

SL2.3/ 0 mod 6, g > 6 .4.6/; 6.4/; 6.4/; 2.12/; : : : ; 2.12//

S4 S4 �C2 11 mod 12 .3.16/; 4.12/; 2.24/; : : : ; 2.24//

S4 �C2 3 mod 12 .6.8/; 4.12/; 2.24/; : : : ; 2.24//

GL2.3/ 2 mod 12 .3.16/; 8.6/; 2.24/; : : : ; 2.24//

GL2.3/ 6 mod 12 .6.8/; 8.6/; 2.24/; : : : ; 2.24//

W2 5 mod 12 .4.12/; 4.12/; 3.16/; 2.24/; : : : ; 2.24//

W2 9 mod 12 .4.12/; 4.12/; 6.8/; 2.24/; : : : ; 2.24//

W3 8 mod 12 .4.12/; 3.16/; 8.6/; 2.24/; : : : ; 2.24//

W3 0 mod 12 .4.12/; 6.8/; 8.6/; 2.24/; : : : ; 2.24//

A5 A5 �C2 29 mod 30 .3.40/; 5.24/; 2.60/; : : : ; 2.60//

A5 �C2 5 mod 30 .3.40/; 10.12/; 2.60/; : : : ; 2.60//

A5 �C2 15 mod 30 .6.20/; 10.12/; 2.60/; : : : ; 2.60//

A5 �C2 9 mod 30 .6.20/; 5.24/; 2.60/; : : : ; 2.60//

SL2.5/ 14 mod 30 .4.30/; 3.40/; 5.24/; 2.60/; : : : ; 2.60//

SL2.5/ 20 mod 30 .4.30/; 3.40/; 10.12/; 2.60/; : : : ; 2.60//

SL2.5/ 24 mod 30 .4.30/; 6.20/; 5.24/; 2.60/; : : : ; 2.60//

SL2.5/ 0 mod 30 .4.30/; 6.20/; 10.12/; 2.60/; : : : ; 2.60//

Table 1. Full automorphism groups of hyperelliptic curves with certain reduced
automorphism groups. For each group QG in the first column, we list the pos-
sible automorphism groups G occurring for hyperelliptic curves with reduced
automorphism group QG. The third column lists restrictions on the genus g of
hyperelliptic curves with the given automorphism group, and the fourth column
lists the monodromy of such curves.

Applying the technique in Section 3 to hyperelliptic curves of genus 3 through
20 produces results that are summarized in the following theorem.

Theorem 5. For hyperelliptic curves up to genus 20 defined over an algebraically
closed field of characteristic zero with reduced automorphism group A4, S4, or A5,
Table 2 gives a decomposition of the Jacobian of these curves up to isogeny. In the
table Ei represents an elliptic curve and Ai;j is an abelian variety of dimension
i > 1, indexed if necessary by j . The dimension of the family with each automor-
phism group in the moduli space is also included.
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Automorphism Jacobian
Genus Group Dimension decomposition

3 S4 �C2 0 E3

4 SL2.3/ 0 E2
1 �E

2
2

5 A4 �C2 1 E3 �A2

W2 0 E2
1 �E

3
2

A5 �C2 0 E5

6 GL2.3/ 0 E2
1 �E

4
2

7 A4 �C2 1 E1 �E
3
2 �E

3
3

8 SL2.3/ 1 A2
2;1 �A

2
2;2

W3 0 E4 �A2
2

9 A4 �C2 1 E3 �A3
2

W2 0 E1 �E
2
2 �A

3
2

A5 �C2 0 E4
1 �E

5
2

10 SL2.3/ 1 A2
2 �A

2
3

11 A4 �C2 2 A2 �A
3
3

S4 �C2 1 E3 �A2;1 �A
3
2;2

12 SL2.3/ 1 A2
2 �A

2
4

W3 0 A2
2;1 �A

4
2;2

13 A4 �C2 2 E �A3;1 �A
3
3;2

14 SL2.3/ 2 A2
3 �A

2
4

GL2.3/ 1 A4
2 �A

2
3

SL2.5/ 0 E4
1 �E

6
2 �A

2
2

15 A4 �C2 2 A3
2 �A

3
3

S4 �C2 1 E1 �E
2
2 �A

3
2;1 �A

3
2;2

A5 �C2 0 E4
1 �E

5
2 �A

3
2

16 SL2.3/ 2 A2
3 �A

2
5

17 A4 �C2 3 E �A4;1 �A
3
4;2

W2 1 E �A2
2 �A

3
4

18 SL2.3/ 2 A2
3 �A

2
6

GL2.3/ 1 A2
3;1 �A

4
3;2

19 A4 �C2 3 E �A3
2 �A

3
4

20 SL2.3/ 3 A2
4 �A

2
6

W3 1 A4
3 �A

2
4

SL2.5/ 0 E4 �A2
2;1 �A

6
2;2

Table 2. Jacobian variety decompositions. For each genus g and automorphism
group G, we list the dimension of the moduli space of genus-g hyperelliptic
curves with automorphism group G, along with a decomposition of the Jacobian
of these curves. The notation is explained in Theorem 5.

The technique described in the previous section does not necessarily guarantee
the finest decomposition of the Jacobian varieties. We have not ruled out the pos-
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sibility that some of the abelian varieties e.�i;j /JX from (2) decompose further.
In fact, in many cases there will be subfamilies where the decomposition is finer.
However, for those curves in Table 2 which have affine models defined over Q, we
found a finite field where the factorization of the zeta function of that curve is no
better than what our Jacobian decompositions predict. Hence, in those cases, the
decomposition cannot be any finer, at least over Q. Using ideas similar to those em-
ployed by Stoll [26, §2] one could show that, in fact, many of these decompositions
cannot be refined even over the algebraic closure of Q.

4.1. Finding monodromy and Q-characters. The list of possible automorphism
groups for hyperelliptic curves is well known, and most of these groups have easily
identifiable character tables; thus, for hyperelliptic curves the most computationally
difficult part of the technique summarized in Section 3 is finding the branching
data. Breuer [3] developed an algorithm to generate a database of automorphism
groups of Riemann surfaces, and he implemented this algorithm, up to genus 48,
in the computer algebra package GAP [16]. Breuer’s algorithm relies on the clas-
sifications of small groups in GAP. While the algorithm itself computes branching
data, specific information about the monodromy was not recorded when Breuer
originally ran the program.

We have now implemented in Magma [1] a version of Breuer’s algorithm which
does output the monodromy data. In cases below where the monodromy may not
be obvious (for instance, if there is more than one conjugacy class of elements
of a certain order for a particular automorphism group), our program provides the
monodromy data.

We use Magma to compute the Hurwitz character �V and the inner product
of �V with the irreducible Q-characters. The Q-character tables for the groups
considered in this paper are well known in the literature so, alternatively, the com-
putations could be done by hand.

4.2. Reduced automorphism group A4. If a hyperelliptic curve has reduced au-
tomorphism group isomorphic to A4, its full automorphism group is isomorphic to
SL2.3/ or A4 �C2. For 3� g � 20 the former group occurs in genus 4 and in all
even genera greater than or equal to 8, while the latter group occurs in odd genera
at least 5.

The group SL2.3/ has seven conjugacy classes. The identity, the unique element
of order 2, and all the order-4 elements form three distinct conjugacy classes. The
order-3 and order-6 elements each split into two conjugacy classes. The group ring
QŒG� has Wedderburn decomposition

QŒSL2.3/�ŠQ˚Q.�3/˚M2.Q/˚M2.Q.�3//˚M3.Q/:
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Conjugacy class order

Character 1 2 3 3 4 6 6

�1 1 1 1 1 1 1 1

�2 2 2 �1 �1 2 �1 �1

�3 2 �2 �1 �1 0 1 1

�4 4 �4 1 1 0 �1 �1

�5 3 3 0 0 �1 0 0

Table 3. Q-character table for SL2.3/.

So SL2.3/ has two Q-characters of degree 1 (which we denote by �1 and �2), two
of degree 2 (which we denote by �3 and �4), and one of degree 3 (which we denote
by �5). The values of these characters on the conjugacy classes of SL2.3/ are well
known [10, §38] and given in Table 3.

Recall from Section 2:

Theorem 1. The hyperelliptic curve of genus 4 with affine model

X W y2
D x.x4

� 1/.x4
C 2
p
�3 x2

C 1/

has a Jacobian variety that decomposes as E2
1 �E

2
2 for two elliptic curves Ei .

Everett Howe used an order-3 automorphism of X to compute that one of the
factors of JX (up to isogeny), say E1, is given by E1 with equation y2 D x3 �

21x2C 12xC 8.

Proof. Shaska [25, Tables 1 and 2, pp. 250, 252] shows that the curve X has
automorphism group SL2.3/ and monodromy type .4.6/; 3.8/; 6.4//. Thus the mon-
odromy consists of elements g1, g2, and g3 2 SL2.3/ of order 4, 3, and 6, respec-
tively. As noted above, the six elements of order 4 are all in the same conjugacy
class. Thus �hgi (the induced character of the trivial character of the subgroup
generated by g 2 G) will be the same for all g of order 4, and likewise for the
elements of order 3 and the elements of order 6, since all order-3 elements generate
conjugate subgroups, as do the order-6 elements. Computing the Hurwitz character
yields

�V D 2�triv� 2�h1Gi
C .�h1Gi

��hg1i
/C .�h1Gi

��hg2i
/C .�h1Gi

��hg3i
/

D 2�trivC�h1Gi
��hg1i

��hg2i
��hg3i

:

The value of �V on conjugacy classes (listed in the same order as in Table 3) is
the 7-tuple .8;�8;�1;�1; 0; 1; 1/. Computing the inner product of the irreducible
Q-characters with �V yields a value of 2 for each of the degree-2 characters and 0
for all the other characters. Applying (4) and Proposition 4 gives JX �E

2
1 �E

2
2 . �
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Similar results may be found for g � 8. See Section 5 for the generalization to
arbitrary even genus.

The group A4 �C2 has four irreducible Q-characters of degree 1 and two of
degree 3. For genus 5, the family of curves with affine model

X W y2
D x12

� ax10
� 33x8

C 2ax6
� 33x4

� ax2
C 1

has automorphism group A4 �C2 and monodromy type .3.8/; 3.8/; 2.12/; 2.12//;
see Shaska [25, Tables 1 and 2, pp. 250, 252]. We compute the Hurwitz character
using the monodromy found through Breuer’s algorithm, and then compute the
inner products of the irreducible Q-characters and the Hurwitz character. The inner
product is 4 for one of the degree-1 characters and 2 for one of the degree-3 char-
acters. By (4), the Jacobian variety of X decomposes into a 2-dimensional variety
and three 1-dimensional varieties. Proposition 4 asserts that the three elliptic curves
in this decomposition are isogenous to one another, so JX � A2 �E

3 for some
abelian surface A2 and elliptic curve E.

Computations similar to those in the genus-5 case give the decompositions for
higher odd genus described in Table 2.

4.3. Reduced automorphism group S4. When a hyperelliptic curve has reduced
automorphism group S4, there are four options for its full automorphism group:
S4 � C2, GL2.3/, and the groups W2 and W3 defined at the beginning of this
section. (The notation for the latter two groups of order 48 is as in [25].)

In genus 3, 11, and 15 there are curves with full automorphism group S4 �C2.
In [23], the Jacobian variety of the genus-3 curve was decomposed into the product
of three isogenous elliptic curves. This result also appears in the literature using
other techniques [21].

The decompositions of the families of genus-11 and genus-15 curves may be
found using monodromy computed with Breuer’s algorithm. The group S4 �C2

has three irreducible Q-characters of degree 1, two of degree 2, and three of de-
gree 3. Combining this information with the technique in Section 3 yields the
decompositions listed in Table 2.

As determined in [25], there is one genus-6 curve, up to isomorphism, with
automorphism group GL2.3/:

X W y2
D x.x4

� 1/.x8
C 14x4

C 1/:

Additionally, there are 1-dimensional families of curves of genus 14 and 18 with
this automorphism group.

The group GL2.3/ has two irreducible Q-characters each of degrees 1, 2, and 3,
as well as one of degree 4. In genus 6, the inner products of the irreducible
Q-characters with the Hurwitz character give values of 2 for one of the degree-2
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characters and for the degree-4 character; from this we may conclude that JX �

E2
1 �E

4
2 . Similar computations yield JX � A

2
3 �A

2
4 for the genus-14 curves and

JX � A
2
3;1 �A

4
3;2 for the genus-18 curves.

For genus 5 and 9 there is one curve with automorphism group W2, and in
genus 17 there is a 1-dimensional family of curves with this automorphism group.
In genus 5 the curve has an affine model

X W y2
D x12

� 33x8
� 33x4

C 1;

in genus 9 a model is

X W y2
D .x8

C 14x4
C 1/.x12

� 33x8
� 33x4

C 1/;

and in genus 17 a model is

X W y2
D .x12

�33x8
�33x4

C1/
�
x24
Cax20

C.759�4a/x16

C2.3aC1288/x12
C.759�4a/x8

Cax4
C1

�
:

This group has eight irreducible Q-characters: three of degree 1, two of degree 2,
and three of degree 3. Computations with the genus-5 curve yield JX �E

2
1 �E

3
2 ,

while for genus 9 we have JX �E1�E
2
2 �A

3
2 and for genus 17, JX �E�A

2
2�A

3
4.

In genus 8 the curve with model

X W y2
D x.x4

� 1/.x12
� 33x8

� 33x4
C 1/

has automorphism group W3 and monodromy type .4.12/; 3.16/; 8.6//. The irre-
ducible Q-characters consist of two each of degrees 1, 2, and 3, as well as one of
degree 4. Computations show the Jacobian of this curve decomposes as A2

2 �E
4.

For higher-genus curves with this automorphism group, see the general results in
Section 5.3.

In [22], in the course of considering different families of curves up to genus
10 we found a genus-8 curve with Jacobian decomposition A4 �E

2
1 �E

2
2 , so the

result above is an improvement on our previous results on the bound on t from
Question 1 in the introduction.

4.4. Reduced automorphism group A5. As we see from Table 1, if a hyperelliptic
curve has reduced automorphism group isomorphic to A5, its full automorphism
group is isomorphic to A5�C2 or SL2.5/. In genus 14 and 20 there is a hyperellip-
tic curve with automorphism group isomorphic to SL2.5/. This group has special
properties that allow us to prove results about the decomposition of Jacobians gen-
erally for any genus. In Section 5.2 we discuss the general results.

Up to isomorphism, there is one curve of genus 5 with automorphism group
A5 �C2, one of genus 9, and one of genus 15. Here we prove the following result,
which was mentioned in Section 2.
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Conjugacy class order

Character 1 2 2 2 3 5 5 6 10 10

�1 1 1 1 1 1 1 1 1 1 1

�2 1 �1 1 �1 1 1 1 �1 �1 �1

�3 6 �6 �2 2 0 1 1 0 �1 �1

�4 6 6 �2 �2 0 1 1 0 1 1

�5 4 4 0 0 1 �1 �1 1 �1 1

�6 4 �4 0 0 1 �1 �1 �1 1 1

�7 5 5 1 1 �1 0 0 �1 0 0

�8 5 �5 1 �1 �1 0 0 1 0 0

Table 4. Q-character table for A5 �C2.

Theorem 2. The genus-5 hyperelliptic curve with affine model

X W y2
D x.x10

C 11x5
� 1/

has JX �E
5 for the elliptic curve E with equation y2 D x.x2C 11x� 1/.

Proof. We see from [25, §4.5] that the curve X has automorphism group A5 �C2

and monodromy type .3.40/; 10.12/; 2.60//— although note that the coefficient 11
in the model given for X was misprinted in [25]. The irreducible Q-characters of
this group consist of two characters each of degrees 1, 3, 4, and 5. The monodromy
consists of elements g1, g2, and g3 2 G of order 3, 10, and 2 respectively; this
may be computed using Breuer’s algorithm [3]. Table 4 gives the values of the
irreducible Q-characters on the conjugacy classes of A5 �C2.

The Hurwitz character is

�V D 2�triv� 2�h1Gi
C .�h1Gi

��hg1i
/C .�h1Gi

��hg2i
/C .�h1Gi

��hg3i
/

D 2�trivC�h1Gi
��hg1i

��hg2i
��hg3i

and its value on conjugacy classes (in the same order as Table 4) is given by the 10-
tuple .10;�10; 2;�2;�2; 0; 0; 2; 0; 0/. The inner product of each of the irreducible
Q-characters with �V results in a value of 0 for all except one of the degree-5
characters, where the inner product is 2. By (4) and Proposition 4 this gives the
desired decomposition. �

Applying this same idea to the genus-9 curve with affine model

X W y2
D x20

� 228x15
C 494x10

� 228x5
C 1

yields inner products with a value of 0 for all irreducible Q-characters except for
one degree-4 and one degree-5 character, where the inner product is 2. Again,
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by (4) and Proposition 4, we find that JX is isogenous to E4
1 �E

5
2 , for elliptic

curves Ei .
Similar computations in genus 15 for a curve with model

X W y2
D x.x10

C 11x� 1/.x20
� 228x15

C 494x10
� 228x5

C 1/

yield the decomposition JX �E
4
1 �E

5
2 �A

3
2.

5. General results

One obstacle to extending these results to higher genus is the computation of the
monodromy for the cover X!X=G. Beyond genus 48, Breuer’s algorithm cannot
currently compute the monodromy in many cases.

The groups SL2.3/, SL2.5/, and W3 all share the following property: If X is
a curve with automorphism group isomorphic to one of these groups, and if m
is the order of any element of the monodromy of the cover X over X=G, then
�hgi i

D �hgj i
whenever jgi j D jgj j Dm. We will denote this common character

by �.m/. Note that this property allows us to compute the Hurwitz character for X
just by knowing the monodromy type. We then apply the technique from Section 3
to produce general decompositions for arbitrary genus.

Keep in mind that our technique does not necessarily guarantee the finest de-
composition of the Jacobian variety. It is possible that for specific genera below
the Jacobian decomposes further.

5.1. The group SL2.3/. Every even genus g > 2, except genus 6, has a hyperellip-
tic curve over k with automorphism group SL2.3/. For a given g, let dDb.g�1/=6c,
and let

G.x/D

dY
iD1

.x12
� aix

10
� 33x8

C 2aix
6
� 33x4

� aix
2
C 1/;

where the ai are distinct elements of k. Table 5 gives affine models and monodromy
for curves of each even genus. These results may be found in [25]. Also recall the
Wedderburn decomposition of QŒSL2.3/� and the irreducible characters of SL2.3/

from Section 4.2.
Computing the Hurwitz character given by (3) requires computing �hgi i

, the
trivial character of hgi i induced to SL2.3/, for each branched point gi . The mon-
odromy types listed in Table 5 give us the order of each branch point. As mentioned
above, for this particular group, the order of the element is sufficient to compute
the induced character. Table 6 lists the values of these induced characters on each
conjugacy class.

Suppose X is a curve of genus g with automorphism group SL2.3/. Let d D
b.g� 1/=6c be as above. The computation of �V depends on the value of g mod 6.
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g mod 6 Affine model Monodromy

0 y2 D x.x4� 1/.x8C 14x4C 1/G.x/ .4.6/; 6.4/; 6.4/; 2.12/; : : : ; 2.12/„ ƒ‚ …
d

/

2 y2 D x.x4� 1/G.x/ .4.6/; 3.8/; 3.8/; 2.12/; : : : ; 2.12/„ ƒ‚ …
d

/

4 y2 D x.x4� 1/.x4C 2sx2C 1/G.x/ .4.6/; 3.8/; 6.4/; 2.12/; : : : ; 2.12/„ ƒ‚ …
d

/

Table 5. Hyperelliptic curves with automorphism group SL2.3/. For each
even genus g > 2, we give a model for the generic hyperelliptic curve of
genus g with automorphism group SL2.3/, together with its monodromy. Here
d Db.g�1/=6c, s2D�3, and G.x/ is as defined at the beginning of Section 5.1.

� Suppose g� 2 mod 6. Applying the monodromy information given in Table 5
to (3) yields

�V D 2�trivC .d C 1/�.1/��.4/� 2�.3/� d�.2/:

Computing the inner product of each irreducible Q-character (see Table 3)
with �V gives JX � A

2
dC1
�A2

2d
.

� Suppose g � 4 mod 6. Applying the monodromy information from Table 5,
we find that

�V D 2�trivC .d C 1/�.1/��.4/��.6/��.3/� d�.2/:

This gives JX � A
2
dC1
�A2

2dC1
.

� Finally, suppose g � 0 mod 6. Using Table 5, we compute that

�V D 2�trivC .d C 1/�.1/��.4/� 2�.6/� d�.2/:

This gives JX � A
2
dC1
�A2

2.dC1/
.

5.2. The group SL2.5/. If g is congruent to 0, 14, 20, or 24 modulo 30 there
is a hyperelliptic curve of genus g with automorphism group SL2.5/. Letting

Conjugacy class order

Character 1 2 3 3 4 6 6

�.2/ 12 12 0 0 0 0 0

�.3/ 8 0 2 2 0 0 0

�.4/ 6 6 0 0 2 0 0

�.6/ 4 4 1 1 0 1 1

Table 6. Induced characters for SL2.3/.



ELLIPTIC FACTORS IN JACOBIANS OF HYPERELLIPTIC CURVES 501

d D b.g�1/=30c, the moduli space of such hyperelliptic curves has dimension d ,
and can be described as follows (see [25, §4.5]): Given d elements a1; : : : ; ad of k,
set

Gi .x/D .ai � 1/x
60
� 36.19ai C 29/x

55
C 6.26239ai � 42079/x

50

� 540.23199ai � 19343/x
45
C 105.737719ai � 953143/x

40

� 72.1815127ai � 145087/x
35
� 4.8302981ai C 49913771/x

30

C 72.1815127ai � 145087/x
25
C 105.737719ai � 953143/x

20

C 540.23199ai � 19343/x
15
C 6.26239ai � 42079/x

10

C 36.19ai C 29/x
5
C .ai � 1/

and

G.x/D

dY
iD1

Gi .x/

F.x/D x30
C 522x25

� 10005x20
� 10005x10

� 522x5
C 1

H.x/D x20
� 228x15

C 494x10
C 228x5

C 1

K.x/D x.x10
C 11x5

� 1/:

Then Table 7 lists models and monodromy for the genus-g hyperelliptic curves
with automorphism group SL2.5/, depending on the congruence class of the genus
modulo 30.

Again, the induced characters depend only upon the order of the element gen-
erating the subgroup. The values for these induced characters on the conjugacy

g mod 30 Affine model Monodromy

0 y2 DK.x/H.x/F.x/G.x/ .4.30/; 6.20/; 10.12/; 2.60/; : : : ; 2.60/„ ƒ‚ …
d

/

14 y2 D F.x/G.x/ .4.30/; 3.40/; 5.24/; 2.60/; : : : ; 2.60/„ ƒ‚ …
d

/

20 y2 DK.x/F.x/G.x/ .4.30/; 3.40/; 10.12/; 2.60/; : : : ; 2.60/„ ƒ‚ …
d

/

24 y2 DH.x/F.x/G.x/ .4.30/; 6.20/; 5.24/; 2.60/; : : : ; 2.60/„ ƒ‚ …
d

/

Table 7. Hyperelliptic curves with automorphism group SL2.5/. For each
genus g congruent to 0, 14, 20, or 24 modulo 30, we give a model for the generic
hyperelliptic curve of genus g with automorphism group SL2.5/, together with
its monodromy. Here d D b.g�1/=30c, and the polynomials F.x/, G.x/, H.x/,
and K.x/ are as defined at the beginning of Section 5.2.
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Conjugacy class order

Character 1 2 3 4 5 5 6 10 10

�.2/ 60 60 0 0 0 0 0 0 0

�.3/ 40 0 4 0 0 0 0 0 0

�.4/ 30 30 0 2 0 0 0 0 0

�.5/ 24 0 0 0 4 4 0 0 0

�.6/ 20 20 2 0 0 0 2 0 0

�.10/ 12 12 0 0 2 2 0 2 2

Table 8. Induced characters for SL2.5/.

classes are listed in Table 8. The group ring for this group is

QŒSL2.5/�Š

Q˚M2.Q.
p
5//˚M3.Q.

p
5//˚M4.Q/˚M4.Q/˚M5.Q/˚M6.Q/:

Computing the inner products of the irreducible Q-characters (which are well
known [10, §38]) with �V (listed below for the four congruence classes of g)
produces decompositions of the form A2

2.dC1/
�A4

j �A
6
k

, where d , j , and k are
determined by the congruence class of g modulo 30, and where d D b.g� 1/=30c
is the dimension of the family of curves with this automorphism group.

� Suppose g � 14 mod 30. Then the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.3/��.5/� d�.2/;

and we have j D 2d C 1 and k D 3d C 1.

� Suppose g � 20 mod 30. Then the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.3/��.10/� d�.2/;

and we have j D 2d C 1 and k D 3d C 2.

� Suppose g � 24 mod 30. Then the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.6/��.5/� d�.2/;

and we have j D 2.d C 1/ and k D 3d C 2.

� Finally, suppose g � 0 mod 30. Then the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.6/��.10/� d�.2/;

so j D 2.d C 1/ and k D 3.d C 1/.
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g mod 12 Affine model Monodromy

0 y2 D .x8C 14x4C 1/H.x/G.x/ .4.12/; 6.8/; 8.6/; 2.24/; : : : ; 2.24/„ ƒ‚ …
d

/

8 y2 DH.x/G.x/ .4.12/; 3.16/; 8.6/; 2.24/; : : : ; 2.24/„ ƒ‚ …
d

/

Table 9. Hyperelliptic curves with automorphism group W3. For each genus g
congruent to 0 or 8 modulo 12, we give a model for the generic hyperelliptic
curve of genus g with automorphism group W3, together with its monodromy.
Here d D b.g � 1/=12c, and the polynomials G.x/ and H.x/ are as defined at
the beginning of Section 5.3.

5.3. The group W3. When g is congruent to 0 or 8 modulo 12, there is a curve
of genus g with automorphism group W3. Models for these curves and their mon-
odromy are listed in Table 9, where we use the notation d D b.g� 1/=12c,

G.x/D

dY
iD1

�
x24
C aix

20
C .759� 4ai /x

16
C 2.3ai C 1288/x

12

C.759� 4ai /x
8
C aix

4
C 1

�
;

and H.x/ D x.x4 � 1/.x12 � 33x8 � 33x4 C 1/. Again, explanations of these
models and monodromy can be found in [25].

The group W3 has seven irreducible Q-characters: two each of degrees 1, 2,
and 3, and one of degree 4. The group ring decomposes as follows:

QŒW3�ŠQ˚Q˚M2.Q/˚M2.Q.
p
2//˚M3.Q/˚M3.Q/˚M4.Q/:

As in the previous two cases, there is only one possible value for the induced
character, except for the characters induced from subgroups generated by order-4
elements. However, only certain order-4 elements show up in the monodromy and
they all have the same induced character. The values for these induced characters
on the conjugacy classes are listed in Table 10.

Conjugacy class order

Character 1 2 3 4 4 6 8 8

�.2/ 24 24 0 0 0 0 0 0

�.3/ 16 0 4 0 0 0 0 0

�.4/ 12 12 0 2 0 0 0 0

�.6/ 8 8 2 0 0 2 0 0

�.8/ 6 6 0 2 0 0 2 2

Table 10. Induced characters for W3.
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We compute the decomposition of the Jacobian in the two cases as follows:

� When g � 8 mod 12, the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.3/��.8/� d�.2/

and JX � A
2
2.dC1/

�A4
2dC1

.

� When g � 0 mod 12, the Hurwitz character is

�V D 2�trivC .d C 1/�.1/��.4/��.6/��.8/� d�.2/

and Jx D A
2
2.dC1/;1

�A4
2.dC1/;2

.
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Isogeny volcanoes

Andrew V. Sutherland

The remarkable structure and computationally explicit form of isogeny graphs
of elliptic curves over a finite field have made these graphs an important tool
for computational number theorists and practitioners of elliptic curve cryptogra-
phy. This expository paper recounts the theory behind isogeny graphs and ex-
amines several recently developed algorithms that realize substantial (and often
dramatic) performance gains by exploiting this theory.

1. Introduction

A volcano is a certain type of graph, one whose shape reminds us of the geological
formation of the same name. A typical volcano consists of a cycle with isomorphic
balanced trees rooted at each vertex.

Figure 1. A volcano.

More formally, let ` be a prime. We define an `-volcano as follows.

Definition 1. An `-volcano V is a connected undirected graph whose vertices are
partitioned into one or more levels V0; : : : ; Vd such that the following hold:

(1) The subgraph on V0 (the surface) is a regular graph of degree at most 2.

MSC2010: primary 11G07, 11Y16; secondary 11G15, 11G20.
Keywords: elliptic curves, isogeny graphs.
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Figure 2. A 3-volcano of depth 2.

(2) For i > 0, each vertex in Vi has exactly one neighbor in level Vi�1, and this
accounts for every edge not on the surface.

(3) For i < d , each vertex in Vi has degree `C 1.

Self-loops and multi-edges are permitted in an `-volcano, but it follows from
condition (2) that these can only occur on the surface. The integer d is the depth
of the volcano (some authors use the term height). When d D 0 only condition (1)
applies, and in this case V is a connected regular graph of degree at most 2. Such
a graph is either a single vertex with up to two self-loops, two vertices connected
by one or two edges, or a simple cycle on three or more vertices (the general case).
Figure 2 gives an overhead view of the volcano depicted in Figure 1, a 3-volcano
of depth 2.

We have defined volcanoes in purely graph-theoretic terms, but we are specif-
ically interested in volcanoes that arise as components of graphs of isogenies be-
tween elliptic curves. Our first objective is to understand how and why volca-
noes arise in such graphs. The definitive work in this area was done by David
Kohel, whose thesis explicates the structure of isogeny graphs of elliptic curves
over finite fields [30]. The term “volcano” came later, in work by Fouquet and
Morain [16; 17] that popularized Kohel’s work and gave one of the first examples
of how isogeny volcanoes could be exploited by algorithms that work with elliptic
curves.

This leads to our second objective: to show how isogeny volcanoes can be used
to develop better algorithms. We illustrate this with four examples of algorithms
that use isogeny volcanoes to solve some standard computational problems related
to elliptic curves over finite fields. In each case, the isogeny volcano approach
yields a substantial practical and asymptotic improvement over the best previous
results.
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2. Isogeny graphs of elliptic curves

We begin by recalling some basic facts about elliptic curves and isogenies, all of
which can be found in standard references such as [31; 41; 42].

2.1. Elliptic curves. Let k be a field. An elliptic curve E=k is a smooth projective
curve of genus 1 over k, together with a distinguished k-rational point 0. If k0=k is
any field extension, the set E.k0/ of k0-rational points of E forms an abelian group
with 0 as its identity element. For convenience we assume that the characteristic
of k is neither 2 nor 3, in which case every elliptic curve E=k can be written as
the projective closure of a short Weierstrass equation of the form

Y 2 DX3C aX C b;

where the coefficients a; b 2k satisfy 4a3C27b2¤0; here the distinguished point 0
is taken to be the “point at infinity” on the projective closure. Distinct Weierstrass
equations may define isomorphic curves: The curves defined by Y 2DX3Ca1XCb1
and Y 2DX3Ca2XCb2 are isomorphic to one another over the algebraic closure k
of k if and only if a2 D u4a1 and b2 D u6b1 for some u 2 k; the isomorphism is
then defined over the field k.u/. It follows that the quantity

j.a; b/D 1728
4a3

4a3C 27b2

depends only on the k-isomorphism class of E, so we may define the j -invariant
j.E/ of E to be j.a; b/ for any model Y 2 DX3C aX C b of E. Note that while
j.E/ lies in k, it only determines the isomorphism class of E over the algebraic
closure k. Elliptic curves with the same j -invariant need not be isomorphic to one
another over k; such curves are said to be twists of each other.

Every j 2 k arises as the j -invariant of an elliptic curve E=k: We have 0 D
j.0; b/ and 1728D j.a; 0/, while if j ¤ 0; 1728 we can take

aD 3j.1728� j / and b D 2j.1728� j /2;

and we find that j D j.a; b/. There is thus a one-to-one correspondence between
the field k and the set of k-isomorphism classes of elliptic curves over k. This is
the vertex set of the isogeny graphs that we wish to define.

An automorphism of an elliptic curve E is an automorphism of E as a curve
that fixes the identity element 0. Most elliptic curves have automorphism groups
of order 2, with the nontrivial automorphism being the map .X; Y / 7! .X;�Y /;
the only exceptions are the elliptic curves with j -invariants equal to 0 and 1728,
which may have extra automorphisms. To simplify matters we will occasionally
exclude these special cases from consideration.



510 ANDREW V. SUTHERLAND

2.2. Isogenies. Let E1 and E2 be elliptic curves over a field k. An isogeny ' W
E1!E2 is a nonzero morphism of elliptic curves, that is, a nonconstant rational
map that takes the identity of E1 to the identity of E2. (We do not require that the
morphism be defined over k; we allow maps defined over the algebraic closure.)
The degree of an isogeny is its degree as a rational map. We call an isogeny of de-
gree n an n-isogeny. Elliptic curves related by an isogeny of degree n are said to be
n-isogenous. We say that two elements j1; j2 of k are n-isogenous over k if there
are n-isogenous elliptic curves E1; E2 over k with j.E1/D j1 and j.E2/D j2.
For a given E=k, if one thinks of j.E/ as representing the set of twists of E, then
saying that j.E1/ and j.E2/ are n-isogenous means that one can choose twists
of E1 and E2 that are n-isogenous. Over an algebraically closed field, the set
of twists is trivial, so the choice of twist is easy; but even over non-algebraically
closed fields, it is easy in practice to find compatible twists.

Every isogeny ' W E1! E2 induces a surjective group homomorphism from
E1.k/ to E2.k/ that has a finite kernel; in this paper, when we speak of the kernel
of an isogeny, we will always mean the set of points in the kernel over k. The kernel
of an n-isogeny typically has cardinality n (in which case the isogeny is said to be
separable), and this is always the case when n is not divisible by the characteristic
of k. We are primarily interested in isogenies of prime degree `¤ char k, and we
shall only distinguish isogenies up to isomorphism, regarding isogenies � and '
as equivalent if � D � ı' ı �0 for some isomorphisms � and �0.

There are two important facts about isogenies that we need. The first is that
every finite subgroup of E1.k/ is the kernel of a separable isogeny over k that
is uniquely determined (up to isomorphism) [41, Proposition III.4.12], and this
isogeny can be explicitly computed using Vélu’s algorithm [48]. The second is that
every n-isogeny ' WE1!E2 has a unique dual isogeny y' WE2!E1 that satisfies

' ı y' D y' ı' D Œn�;

where Œn� is the multiplication-by-n map that sends P 2E1.k/ to nP DPC� � �CP ;
see [41, Theorem III.6.1]. The dual isogeny y' has degree n, and Œn� has degree n2.

The kernel of the multiplication-by-n map is the n-torsion subgroup

EŒn�D fP 2E.k/ W nP D 0g;

and for n not divisible by the characteristic of k we have

EŒn�' Z=nZ�Z=nZ:

For primes `¤ char k, there are `C 1 cyclic subgroups in EŒ`� of order `, each of
which is the kernel of a separable `-isogeny (over k). Every `-isogeny ' from E

arises in this way, since any point in the kernel of ' also lies in the kernel of
y' ı' D Œ`�.



ISOGENY VOLCANOES 511

Not every cyclic subgroup of EŒ`� is the kernel of an isogeny defined over k;
this occurs precisely when the subgroup is invariant under the action of the Galois
groupGDGal.k.EŒ`�/=k/. The Galois group acts linearly onEŒ`�'Z=`Z�Z=`Z,
which we may view as an F`-vector space of dimension two in which the order-`
subgroups of EŒ`� are linear subspaces. If G fixes more than two linear subspaces
of a two-dimensional vector space then it must fix all of them. This yields the
following lemma.

Lemma 2. Let E=k be an elliptic curve with j -invariant not equal to 0 or 1728,
and let ` ¤ char k be a prime. Up to isomorphism, the number of k-rational `-
isogenies from E is 0; 1; 2, or `C 1.

2.3. The modular equation. Let j.�/ be the classical modular function defined
on the upper half plane H. For any � 2 H, the complex numbers j.�/ and j.N�/
are the j -invariants of elliptic curves defined over C that are related by an isogeny
whose kernel is a cyclic group of order N . The minimal polynomial ˆN .Y / of
the function j.Nz/ over the field C.j.z// has coefficients that are integer poly-
nomials in j.z/. If we replace j.z/ with X we obtain the modular polynomial
ˆN 2 ZŒX; Y �, which is symmetric in X and Y and has degree `C 1 in both
variables. It parametrizes pairs of elliptic curves over C related by a cyclic N -
isogeny. The modular equation ˆN .X; Y / D 0 is a canonical equation for the
modular curve Y0.N /D �0.N /nH.

When N is a prime `, every N -isogeny is cyclic, and we have

ˆ`
�
j.E1/; j.E2/

�
D 0 ” j.E1/ and j.E2/ are `-isogenous:

This moduli interpretation remains valid over every field, even those of positive
characteristic.

2.4. The graph of `-isogenies. We now use the modular equation to define the
graph of `-isogenies over a field k of characteristic different from `.

Definition 3. The `-isogeny graph G`.k/ is the directed graph with vertex set k
and edges .j1; j2/ present with multiplicity equal to the multiplicity of j2 as a root
of ˆ`.j1; Y /.

The vertices of G`.k/ are j -invariants, and its edges correspond to (isomorphism
classes of) `-isogenies. Every edge .j1; j2/ that is not incident to 0 or 1728 occurs
with the same multiplicity as .j2; j1/. Thus the subgraph of G`.k/ on knf0; 1728g
is bidirected, and we may view it as an undirected graph. For any fixed k, the
graphs G`.k/ all have the same vertex set, but different edge sets, depending on `.
Given an elliptic curve E=k, we may view j.E/ as a vertex in any of these graphs,
a fact that has many applications.
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2.5. Supersingular and ordinary components. Over a field of positive character-
istic p, an elliptic curve is supersingular if its p-torsion subgroup EŒp� is trivial;
otherwise it is ordinary. If E is supersingular, then so is any elliptic curve isoge-
nous to E; therefore G`.k/ is composed of ordinary and supersingular components.

Every supersingular curve over k can be defined over a quadratic extension
of the prime field of k; thus every supersingular j -invariant in k lies in Fp2 [41,
Theorem V.3.1]. It follows that if E is supersingular, then the roots of ˆ`.j.E/; Y /
all lie in Fp2 . Thus every vertex in a supersingular component of G`.Fp2/ has out-
degree `C 1. (Every vertex other than those equal to or adjacent to 0 or 1728 also
has in-degree `C 1.)

Remark 4. Ramanujan graphs. In fact, G`.Fp2/ has just one supersingular com-
ponent [30, Corollary 78], and when p � 1 mod 12 it is a Ramanujan graph [35],
an expander graph with an essentially optimal expansion factor. This fact has
cryptographic applications [10].

We are primarily interested in the ordinary components of G`.k/, since this is
where we will find isogeny volcanoes. First we need to recall some facts from the
theory of complex multiplication.

2.6. Complex multiplication. A morphism from an elliptic curve E=k to itself
is called an endomorphism; an endomorphism of E is either the zero map or an
isogeny from E to itself. (We do not require that endomorphisms be defined over
the base field k.) The endomorphisms of an elliptic curve E form a ring End.E/
in which addition and multiplication are defined via the formulas

.�C'/.P /D �.P /C'.P / and .�'/.P /D �.'.P // for all P 2E.k/.

For every positive integer n, the multiplication-by-n map Œn� lies in End.E/, and
we have Œn�� D �C � � �C� D n� for all � 2 End.E/. Since Œn� is never the zero
endomorphism, it follows that End.E/ contains a subring isomorphic to Z, which
we shall identify with Z.

When End.E/ is larger than Z we say that E has complex multiplication (CM), a
term that arises from the fact that over the complex numbers, endomorphisms that
do not lie in Z may be viewed as “multiplication-by-˛” maps for some algebraic
integers ˛. Over a finite field Fq , every elliptic curve has complex multiplication;
for ordinary elliptic curves over Fq , the Frobenius endomorphism that sends the
point .X; Y / to .Xq; Y q/ is an example of an endomorphism that does not lie in Z.

When E has complex multiplication there are two possibilities:

End.E/'
�

an order O in an imaginary quadratic field, or
an order O in a definite quaternion algebra;
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and in either case we say that E has CM by O. The second case occurs if and
only if E is supersingular, which is possible only in positive characteristic; we are
primarily interested in the first case. It will be convenient to fix an isomorphism
O �!� End.E/ so that we may regard elements of O as elements of End.E/ and
vice versa.

The endomorphism algebra End0.E/D End.E/˝Q is preserved by isogenies.
Thus if E has complex multiplication, then so does every elliptic curve isogenous
to E, but not necessarily by the same order O.

2.7. Horizontal and vertical isogenies. Let ' WE1!E2 be an `-isogeny of elliptic
curves with CM by imaginary quadratic orders O1 and O2, respectively. Then
O1DZC�1Z and O2DZC�2Z, for some �1; �2 2H. The isogeny y' ı�2 ı' lies in
End.E1/, and this implies that `�2 2 O1; similarly, `�1 2 O2. There are thus three
possibilities:

(1) O1 D O2, in which case we say that ' is horizontal.

(2) ŒO1 W O2�D `, in which case we say that ' is descending.

(3) ŒO2 W O1�D `, in which case we say that ' is ascending.

In the last two cases we say that ' is a vertical `-isogeny. The orders O1 and O2
necessarily have the same fraction field K D End0.E1/D End0.E2/, and both lie
in the maximal order OK , the ring of integers of K.

2.8. The CM torsor. Let E=k be an elliptic curve with CM by an imaginary qua-
dratic order O, and let a be an invertible O-ideal. The a-torsion subgroup

EŒa�D fP 2E.k/ W ˛.P /D 0 for all ˛ 2 ag

is the kernel of a separable isogeny 'a W E ! E 0. Provided that a has norm not
divisible by the characteristic of k, we have deg'aDN.a/D ŒO W a�. Using the fact
that a is invertible, one can show that End.E/' End.E 0/; thus 'a is a horizontal
isogeny.

If a and b are two invertible O-ideals then 'ab D 'a'b. Thus the group of
invertible O-ideals acts on the set of elliptic curves with endomorphism ring O.
When a is a principal ideal we have E 'E 0; hence there is an induced action of
the ideal class group Cl.O/ on the set

EllO.k/D fj.E/ WE=k with End.E/' Og:

This action is faithful (only principal ideals act trivially) and transitive (see [42,
Proposition II.1.2] for a proof in the case that k D C and OD OK , which may be
generalized via [31, Chapters 10, 13]). Provided it is nonempty, the set EllO.k/ is
thus a principal homogeneous space, a torsor, for the group Cl.O/. The cardinality
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of EllO.k/ is either 0 or h, where h D h.O/ D # Cl.O/ is the class number. Thus
either every curve E=k with CM by O can be defined over k, or none of them can.

Remark 5. Decomposing isogenies. The CM action allows us to express hori-
zontal isogenies 'a of large degree as the composition of a sequence of isogenies
of smaller degree. Even if a has prime norm, we may find that Œa� D Œp1 � � � ps�
in Cl.O/, where the pi are prime ideals with norms smaller than a. Under the gen-
eralized Riemann hypothesis (GRH), we can find, in probabilistic subexponential
time, an equivalence Œa� D Œp1 � � � ps� in which the pi have norms that are poly-
logarithmic in the class number h and s DO.log h/; see [11, Theorem 2.1]. This
makes horizontal isogenies asymptotically easier to compute than vertical isogenies
(this holds even without the GRH), which has implications for cryptography; see
[6; 18; 19; 20; 27; 28].

2.9. Horizontal isogenies. Every horizontal `-isogeny ' arises from the action of
an invertible O-ideal l of norm `, namely, the ideal of endomorphisms ˛ 2 O whose
kernels contain the kernel of '. If ` divides the index of O in the maximal order OK
of its fraction fieldK, then no such ideals exist. Otherwise we say that O is maximal
at `, and in this case the number of invertible O-ideals of norm ` is equal to

1C

�
disc.K/
`

�
D

8<:
0 if ` is inert in K;
1 if ` is ramified in K;
2 if ` splits in K:

Each such O-ideal gives rise to a horizontal `-isogeny. In the split case we have
.`/D l � l, and the l-orbits partition EllO.k/ into cycles corresponding to the cosets
of hŒl�i in Cl.O/. When l is principal the ideal class Œl� is trivial, which leads to
self-loops in G`.k/. We can also have Œl�D Œl� even though l¤ l, which gives rise
to double edges in G`.k/.

2.10. Vertical isogenies. Let O be an imaginary quadratic order with discrimi-
nant D, and let O0 D ZC `O be the order of index ` in O. To simplify matters, let
us assume that O and O0 have the same group of units f˙1g; this holds whenever
D < �4, and excludes only the cases OD ZŒi � and OD ZŒ�3�, which correspond
to the special j -invariants 1728 and 0, respectively.

The map that sends each invertible O0-ideal a to the invertible O-ideal aO pre-
serves norms and induces a surjective homomorphism

� W Cl.O0/! Cl.O/:

See [12, Proposition 7.20] for a proof in the case that O is the maximal order; the
general case is proved similarly (see [4, Lemma 3] and [7, §3]). Under a suitable
identification of the class groups Cl.O0/ and Cl.O/ with their torsors EllO0.k/ and
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EllO.k/, the vertical isogenies from EllO0.k/ to EllO.k/ correspond to the map from
Cl.O0/ to Cl.O/ given by �. To show this, let us prove the following lemma.

Lemma 6. Let E 0=k be an elliptic curve with CM by O0. Then there is a unique
ascending `-isogeny from E 0 to an elliptic curve E=k with CM by O.

Proof. The existence of E 0=k implies that EllO0.k/ is nonempty, and since O con-
tains O0, it follows that EllO.k/ is also nonempty.1

Let us suppose that there exists an ascending `-isogeny �1 WE 01!E1, for some
elliptic curve E 01 with CM by O0. Twisting E1 if necessary, we may choose an
invertible O0-ideal a0 so that the horizontal isogeny 'a0 maps E 01 to E 0. If we now
set aD �.a0/ and let E be the image of 'a ı�1, then E has CM by O, and there is
a unique isogeny � WE 0!E such that � ı'a0 D 'a ı�1, by [41, Corollary 4.11].
We have deg� D deg'a deg�1= deg'a0 D `, thus � is an ascending `-isogeny.
It follows that if any elliptic curve E 01=k with CM by O0 admits an ascending
`-isogeny, then so does every such elliptic curve.

We now proceed by induction on d D �`.ŒOK W O�/. Let DK D disc.K/. For
d D 0, every elliptic curve E=k with CM by O admits `C 1 k-rational `-isogenies,
of which 1C

�
DK

`

�
are horizontal. The remaining `�

�
DK

`

�
>0must be descending,

and their duals are ascending `-isogenies from elliptic curves with CM by O0. It
follows that there are a total of

�
`�
�
DK

`

��
h.O/ ascending `-isogenies from EllO0.k/

to EllO.k/. By [12, Theorem 7.24], this is equal to the cardinality h.O0/ of EllO0.k/.
Since there is at least one ascending `-isogeny from each elliptic curve E 0=k with
CM by O0, there must be exactly one in each case.

The argument for d > 0 is similar. By the inductive hypothesis, every elliptic
curve E=k with CM by O admits exactly one ascending `-isogeny, and since ` now
divides ŒOK WO�, there are no horizontal isogenies from E, and all ` of the remaining
`-isogenies from E must by descending. There are thus a total of `h.O/ ascending
`-isogenies from EllO0.k/, which equals the cardinality h.O0/ of EllO0.k/. �

It follows from the proof of Lemma 5 that there is a one-to-one correspondence
between the graph of the function � and the edges of G`.k/ that lead from EllO0.k/

to EllO.k/. Indeed, let us pick a vertex j 01 2 EllO0.k/ and let j1 be its unique neigh-
bor in EllO.k/ given by Lemma 6. If we identify the edge .j 01; j1/ in G`.k/ with the
edge .1Cl.O0/; 1Cl.O// in the graph of �, then every other edge in the correspondence
is determined in a way that is compatible with the actions of Cl.O 0/ and Cl.O/ on
the torsors EllO0.k/ and EllO.k/. Under this correspondence, the vertices in EllO0.k/

that are connected to a given vertex v in EllO.k/ (the children of v) correspond to

1One way to see this is to note that k contains all the roots of the Hilbert class polynomial for O0,
hence it must contain all the roots of the Hilbert class polynomial for O, since the ring class field
of O0 contains the ring class field of O; see Section 3.4.
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a coset of the kernel of �, a cyclic group of order `�
�
DK

`

�
generated by the class

of an invertible O0-ideal of norm `2; see [7, Lemma 3.2].

2.11. Ordinary elliptic curves over finite fields. We now assume that k is a finite
field Fq . Let E=Fq be an ordinary elliptic curve and let �E denote the Frobenius
endomorphism .X; Y / 7! .Xq; Y q/. The trace of Frobenius is given by

t D Tr�E D qC 1� #E.Fq/;

and �E satisfies the characteristic equation �2E�t�ECqD 0. As an element of the
imaginary quadratic order O' End.E/, the Frobenius endomorphism corresponds
to an algebraic integer with trace t and norm q. Thus we have the norm equation

4q D t2� v2DK ;

in which DK is the discriminant of the field K DQ.
p
t2� 4q/ containing O, and

v D ŒOK W ZŒ�E ��. We have

ZŒ�E �� O� OK ;

thus ŒOK W O� divides v, and the same is true for any elliptic curve E=Fq with
Frobenius trace t .

Let us now define

Ellt .Fq/D fj.E/ WE=Fq satisfies Tr�E D tg;

the set of Fp-isomorphism classes of elliptic curves over Fp with a given Frobe-
nius trace t . By a theorem of Tate [47], Ellt .Fq/ corresponds to an isogeny class,
but note that Ellt .Fq/ D Ell�t .Fq/. For any ordinary elliptic curve E=Fq with
Frobenius trace t D Tr�E , we may write Ellt .Fq/ as the disjoint union

Ellt .Fq/D
G

ZŒ�E ��O�OK

EllO.Fq/;

of cardinality equal to the Kronecker class number H.t2 � 4q/; see [40, Defini-
tion 2.1].

2.12. The main theorem. We now arrive at our main theorem, which states that
the ordinary components of G`.Fq/ (other than the components of 0 and 1728)
are `-volcanoes, and characterizes the structure of these components. The proof
follows easily from the material we have presented, as the reader may wish to
verify.

Theorem 7 (Kohel). Let V be an ordinary component of G`.Fq/ that does not
contain 0 or 1728. Then V is an `-volcano for which the following hold:

(1) The vertices in level Vi all have the same endomorphism ring Oi .
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(2) The subgraph on V0 has degree 1C
�
D0

`

�
, where D0 D disc.O0/.

(3) If
�
D0

`

�
� 0, then jV0j is the order of Œl� in Cl.O0/; otherwise jV0j D 1.

(4) The depth of V is d D �`
�
.t2� 4q/=D0

�
=2, where t2 D .Tr�E /2 for any E

with j.E/ 2 V .

(5) We have ` − ŒOK W O0� and ŒOi W OiC1�D ` for 0� i < d .

Remark 8. Special cases. Theorem 7 is easily extended to the case where V
contains 0 or 1728. Parts (1)–(5) still hold; the only necessary modification is
the claim that V is an `-volcano. When V contains 0, if V1 is nonempty then it
contains 1

3

�
`�

�
�3
`

��
vertices, and each vertex in V1 has three incoming edges

from 0 but only one outgoing edge to 0. When V contains 1728, if V1 is nonempty
then it contains 1

2

�
`�
�
�1
`

��
vertices, and each vertex in V1 has two incoming edges

from 1728 but only one outgoing edge to 1728. This 3-to-1 (respectively, 2-to-1)
discrepancy arises from the action of Aut.E/ on the cyclic subgroups of EŒ`� when
j.E/D 0 (respectively, j.E/D 1728). Otherwise, V satisfies all the requirements
of an `-volcano, and most of the algorithms we present in the next section are
equally applicable to V .

Example 9. Let p D 411751 and `D 3. The graph G3.Fp/ has a total of 206254
components, of which 205911 are ordinary and 343 are supersingular. The su-
persingular components all lie in the same isogeny class (which is connected in
G3.Fp2/), while the ordinary components lie in 1283 distinct isogeny classes.

Let us consider the isogeny class Ellt .Fp/ for tD52. We then have 4pD t2�v2D
with v D 2 � 32 � 5 and D D�203. The subgraph G`;t .Fp/ of G`.Fp/ on Ellt .Fp/
(known as a cordillera [33]) consists of ten 3-volcanoes, all of which have depth
d D �`.v/D 2. It contains a total of 1008 vertices distributed as follows:

� 648 vertices lie in six 3-volcanoes with ŒOK W O0�D 10 and jV0j D 12.

� 216 vertices lie in two 3-volcanoes with ŒOK W O0�D 5 and jV0j D 12.

� 108 vertices lie in a 3-volcano with ŒOK W O0�D 2 and jV0j D 12.

� 36 vertices lie in a 3-volcano with ŒOK W O0�D 1 and jV0j D 4.

For comparison:

� G2;52.Fp/ consists of 252 2-volcanoes of depth 1 with jV0j D 1.

� G5;52.Fp/ consists of 144 5-volcanoes of depth 1 with jV0j D 1.

� G7;52.Fp/ consists of 504 7-volcanoes with two vertices and one edge.

� G11;52.Fp/ consists of 1008 11-volcanoes that are all isolated vertices.
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3. Applications

We now consider several applications of isogeny volcanoes, starting with one that
is very simple, but nevertheless instructive.

3.1. Finding the floor. Let E=Fq be an ordinary elliptic curve. Then j.E/ lies in
an ordinary component V of G`.Fq/. We wish to find a vertex on the floor of V ,
that is, a vertex v in level Vd , where d is the depth of V . Such vertices v are easily
distinguished by their (out-)degree, which is the number of roots of ˆ`.v; Y / that
lie in Fq (counted with multiplicity).

Proposition 10. Let v be a vertex in an ordinary component V of depth d inG`.Fq/.
Either deg v � 2 and v 2 Vd , or deg v D `C 1 and v 62 Vd .

Proof. If d D 0 then V D V0 D Vd is a regular graph of degree at most 2 and
v 2 Vd . Otherwise, either v 2 Vd and v has degree 1, or v 62 Vd and v has degree
`C 1. �

We note that if j.E/ is on the floor then EŒ`�.Fq/ is necessarily cyclic (otherwise
there would be another level below the floor). This is useful, for example, when
using the CM method to construct Edwards curves [34], and shows that every
ordinary elliptic curve E=Fq is isogenous to some E 0=Fq with E 0.Fq/ cyclic.

Our strategy for finding the floor is simple: If v0 D j.E/ is not already on the
floor then we will construct a random path from v0 to a vertex vs on the floor. By a
path, we mean a sequence of vertices v0; v1; : : : ; vs such that each pair .vi�1; vi /
is an edge and vi ¤ vi�2 (so backtracking is prohibited).

Algorithm (FINDFLOOR).

Input: An ordinary vertex v0 2G`.Fq/.

Output: A vertex on the floor of the component of v0.

1. If deg v0 � 2 then output v0 and terminate.

2. Pick a random neighbor v1 of v0 and set s 1.

3. While deg vs > 1: Pick a random neighbor vsC1 ¤ vs�1 of vs and increment s.

4. Output vs .

The complexity of FINDFLOOR is given by the following proposition, in which
M.n/ denotes the time to multiply two n-bit integers. It is worth noting that for
large ` the complexity is dominated by the time to substitute v into ˆ`.X; Y /, not
by root-finding (a fact that is occasionally overlooked).

Proposition 11. Given ˆ` 2 FqŒX; Y �, each step of FINDFLOOR can be accom-
plished in O.`2M.n/CM.`n/n/ expected time, where n D log q. The expected
number of steps s is ıCO.1/, where ı is the distance from v0 to the floor.
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Proof. Computing �.Y /Dˆ`.v; Y / involves O.`2/ Fq-operations, or O.`2M.n//
bit operations. The neighbors of v are the distinct roots of �.Y / that lie in Fq ,
which are precisely the roots of f .Y /D gcd.Y q�Y; �.Y //. Computing Y q mod �
involves O.n/ multiplications in the ring FqŒY �=.�/, each of which can be accom-
plished using O.M.`n// bit operations, via Kronecker substitution [22], yielding an
O.M.`n/n/ bound. With the fast Euclidean algorithm the gcd of two polynomials
of degree O.`/ can be computed using O.M.`n/ log `/ bit operations. If log ` < n
then this is bounded by O.M.`n/n/, and otherwise it is bounded by O.`2M.n//.
Thus the total time to compute f .Y / for any particular v is O.`2M.n/CM.`n/n/.

The degree of f .Y / is the number of distinct roots of ˆ`.Y; v/ in Fq . For ` > 3,
this is less than or equal to 2 if and only if v is on the floor. For `� 3 we can count
roots with multiplicity by taking gcds with derivatives of �, within the same time
bound. To find a random root of f .Y / we use the probabilistic splitting algorithm
of [37]; since we need only one root, this takes O.M.`n/n/ expected time.

For every vertex v in a level Vi above the floor, at least 1/3 of v’s neighbors
lie in level ViC1, thus within O.1/ expected steps the path will be extended along
a descending edge. Once this occurs, every subsequent edge in the path must be
descending, since we are not allowed to backtrack along the single ascending edge,
and we will reach the floor within ıCO.1/ steps. �

Remark 12. Removing known roots. As a minor optimization, rather than pick-
ing vsC1 as a root of �.Y /D ˆ`.vs; Y / in step 3 of the FINDFLOOR algorithm,
we may use �.Y /=.Y �vs�1/e , where e is the multiplicity of vs�1 as a root of �.Y /.
This is slightly faster and eliminates the need to check that vsC1 ¤ vs�1.

The FINDFLOOR algorithm finds a path of expected length ıCO.1/ from v0
to the floor. With a bit more effort we can find a path of exactly length ı, using a
simplified version of an algorithm from [17].

Algorithm (FINDSHORTESTPATHTOFLOOR).

Input: An ordinary v0 2G`.Fq/.

Output: A shortest path to the floor of the component of v0.

1. Let v0 D j.E/. If deg v0 � 2 then output v0 and terminate.

2. Pick three neighbors of v0 and extend paths from each of these neighbors in
parallel, stopping as soon as any of them reaches the floor. (If v0 does not have
three distinct neighbors then just pick all of them.)

3. Output a path that reached the floor.

The correctness of the algorithm follows from the fact that at most two of v0’s
neighbors do not lie along descending edges, so one of the three paths must begin
with a descending edge. This path must then consist entirely of descending edges,
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yielding a shortest path to the floor. The algorithm takes at most 3ı steps, each of
which has complexity bounded as in Proposition 11.

The main virtue of FINDSHORTESTPATHTOFLOOR is that it allows us to com-
pute ı, which tells us the level Vd�ı of j.E/ relative to the floor Vd . It effectively
gives us an “altimeter” ı.v/ that may be used to navigate V . We can determine
whether a given edge .v1; v2/ is horizontal, ascending, or descending, by com-
paring ı.v1/ to ı.v2/, and we can determine the exact level of any vertex; see
[43, §4.1] for algorithms and further details. We should also mention that an alter-
native approach based on pairings has recently been developed by Ionica and Joux
[25; 26], which is more efficient when d is large.

3.2. Identifying supersingular curves. Both algorithms in the previous section
assume that their input is the j -invariant of an ordinary elliptic curve. But what if
this is not the case? If we attempt to “find the floor” on the supersingular component
of G`.Fp2/ we will never succeed, since every vertex has out-degree `C 1. On
the other hand, from part (4) of Theorem 7 (and Remark 8), we know that every
ordinary component of G`.Fp2/ has depth less than log` 2p, so we can bound the
length of the shortest path to the floor from any ordinary vertex.

This suggests that, with minor modifications, the algorithm FINDSHORTEST-
PATHTOFLOOR can be used to determine whether a given elliptic curve E=Fq

is ordinary or supersingular. If j.E/ 62 Fp2 then E must be ordinary, so we
may assume v0 D j.E/ 2 Fp2 (even if E is defined over Fp, we want to work
in Fp2). We modify step 2 of the algorithm so that if none of the three paths
reaches the floor within log` 2p steps, it reports that its input is supersingular
and terminates. Otherwise, the algorithm succeeds and can report that its input
is ordinary. This works for any prime `, but using ` D 2 gives the best running
time.

This yields a Las Vegas algorithm to determine whether a given elliptic curve
is ordinary or supersingular in zO.n3/ expected time, where nD log q. For com-
parison, the best previously known Las Vegas algorithm has an expected running
time of zO.n4/, and the best known deterministic algorithm runs in zO.n5/ time.
Remarkably, the average time for a random input is only zO.n2/. This matches the
complexity of the best known Monte Carlo algorithm for this problem, with better
constant factors; see [45] for further details.

3.3. Computing endomorphism rings. We now turn to a more difficult problem:
determining the endomorphism ring of an ordinary elliptic curve E=Fq . We assume
that the trace of Frobenius t D Tr�E is known; this can be computed in polynomial
time using Schoof’s algorithm [39]. By factoring 4q � t2, we can compute the
positive integer v and fundamental discriminant D satisfying the norm equation
4q D t2� v2D. We then know that ZŒ�E � has index v in the maximal order OK ,
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where K DQ.
p
D/. The order O' End.E/ is uniquely determined by its index u

in OK , and u must be a divisor of v. Let us assume D < �4.

We can determine u by determining the level of j.E/ in its component ofG`.Fq/
for each of the primes ` dividing v. If v D `e1

1 � � � `
ew
w is the prime factorization

of v, then uD `d1

1 � � � `
dw
w , where ıi D ei �di is the distance from j.E/ to the floor

of its `i -volcano. But it may not be practical to compute ıi using FINDSHORTEST-
PATHTOFLOOR when `i is large: Its complexity is quasiquadratic in `i , which may
be exponential in log q (and computing ˆ`i

is even harder). More generally, we
do not know any algorithm for computing a vertical `-isogeny whose complexity
is not at least linear in ` (in general, quadratic in `). This would seem to imply that
we cannot avoid a running time that is exponential in log q.

However, as noted in Remark 5, computing horizontal isogenies is easier than
computing vertical isogenies. We now sketch an approach to computing End.E/
that uses horizontal isogenies to handle large primes dividing v, based on the al-
gorithm in [4]. To simplify the presentation, we assume that v is squarefree; the
generalization to arbitrary v is straightforward.

Let L be the lattice of orders in OK that contain ZŒ�E �. Our strategy is to
determine whether u is divisible by a given prime divisor ` of v using a smooth
relation that holds in an order O 2 L if and only if O is maximal at `. This relation
will hold in End.E/ if and only if u is not divisible by `.

A smooth relation R is a multiset fpr1

1 ; : : : ; p
rs
s g in which the pi are invertible

ZŒ�E �-ideals with prime norms pi occurring with multiplicity ri , such that pi
and ri satisfy bounds that are subexponential in log q. We say that R holds in O2L

if the O-ideal RO D .p1O/r1 � � � .psO/
rs is principal. If O0 � O, the existence of the

norm-preserving homomorphism � W Cl.O0/! Cl.O/ defined as in Section 2.10
implies that if R holds in O0, then it holds in O. It thus suffices to find a relation
that holds in the order of index v=` in OK , but not in the order of index ` in OK .
Under the GRH, for ` > 3 we can find such an R in probabilistic subexponential
time [3].

To determine whether R holds in O ' End.E/, we compute the CM action
of ŒRO� 2 Cl.O/ on j.E/ 2 EllO.Fq/. This involves walking ri steps along the
surface of a pi -volcano for each of the pi appearing in R and then checking
whether we wind up back at our starting point j.E/. None of the pi divide v,
so these pi -volcanoes all have depth 0 and consist of either a single edge or a
cycle. We must choose a direction to walk along each cycle (one corresponds
to the action of pi , the other to pi ). There are methods to determine the cor-
rect choice, but in practice we can make s small enough so that it is easy to
simply try every combination of choices and count how many work; see [4] for
details.
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Under the GRH, this algorithm has a subexponential expected running time of
LŒ1=2;

p
3=2� plus the cost of factoring 4q � t2 (the latter is heuristically negli-

gible, using the number field sieve, and provably bounded by LŒ1=2; 1� in [32]).
Bisson [3] has recently improved this to LŒ1=2;

p
2=2� plus the cost of factoring

4q� t2.

Example 13. Let q D 2320C 261 and suppose that E=Fq has Frobenius trace

t D 2306414344576213633891236434392671392737040459558:

Then 4q D t2� v2D, where D D�147759 and v D 22p1p2, with

p1 D 16447689059735824784039;

p2 D 71003976975490059472571:

We can easily determine the level of j.E/ in its 2-volcano by finding a shortest
path to the floor. For p1 and p2 we instead use smooth relations R1 and R2.

Let O1 be the order of index p1 in OK , and O01 the order of index v=p1 in OK .
The relation

R1 D fp5; p
2
19; p

210
23 ; p29; p31; p

145
41 ; p139; p149; p167; p191; p

6
251; p269; p

7
587; p643g

holds in O1 but not in O01 (here p` denotes the ideal of norm ` corresponding to the
reduced binary quadratic form `x2C bxyC cy2 with b � 0). If we now let O2 be
the order of index p2 in OK and O02 the order of index v=p2 in OK , then

R2 D fp11; p
576
13 ; p

2
23; p41; p47; p83; p101; p

28
197; p

3
307; p317; p419; p911g

holds in O2 but not in O02.
Including the time to compute the required modular polynomials and the time

to find the relations R1 and R2, the total time to compute End.E/ in this example
is less than half an hour. In contrast, it would be completely infeasible to directly
compute a vertical isogeny of degree p1 or p2; writing down even a single element
of the kernel of such an isogeny would require more than 280 bits.

3.4. Computing Hilbert class polynomials. Let O be an imaginary quadratic order
with discriminant D. The Hilbert class polynomial HD is defined by

HD.X/D
Y

j2EllO.C/

.X � j /:

Equivalently, HD.X/ is the minimal polynomial of the j -invariant of the lattice O

over the field K DQ.
p
D/. Remarkably, its coefficients lie in Z.

The fieldKODK.j.O// is the ring class field of O. If a prime q splits completely
in KO, then HD.X/ splits completely in FqŒX� and its roots form the set EllO.Fq/.
Each root is then the j -invariant of an elliptic curve E=Fq with End.E/' O. We
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must have #E.Fq/D qC 1� t , where the norm equation 4q D t2� v2D uniquely
determines the integers t and v up to sign, for D < �4. We can thus use a root
of HD.X/ in Fq to construct an elliptic curve E=Fq with exactly qC 1� t rational
points; under some reasonable heuristic assumptions about the distribution of prime
numbers, we can achieve any desired cardinality for E.Fq/ by choosing q and D
appropriately [8]. This is known as the CM method, which is commonly used in
elliptic curve cryptography and elliptic curve primality proving.

We now outline an algorithm to compute HD.X/ using the CRT approach de-
scribed in [1; 43]. Under the GRH it runs in O.jDj.logjDj/5Co.1// expected time,
which is quasilinear in the O.jDj logjDj/ size of HD.X/. The same approach can
be used to compute many other types of class polynomials; see [14].

Algorithm (COMPUTEHILBERTCLASSPOLYNOMIAL).

Input: An imaginary quadratic discriminant D.

Output: The Hilbert class polynomial HD.X/.

1. Select a sufficiently large set of primes p that satisfy 4p D t2� v2D.

2. For each prime p, compute HD.X/ mod p as follows:
(a) Generate random elliptic curves E=Fp until #E.Fp/D pC 1� t .
(b) Use volcano climbing to find E 0 isogenous to E with End.E 0/' O.
(c) Enumerate EllO.Fp/ by applying the Cl.O/-action to j.E 0/.
(d) Compute HD.X/D

Q
j2EllO.Fp/

.X � j / mod p.

3. Use the CRT to recover HD.X/ over Z (or over Fq via the explicit CRT).

Isogeny volcanoes play a key role in the efficient implementation of this algo-
rithm, not only in step 2(b), but also in step 2(c), which is the most critical step
and merits further discussion. Given any sequence of generators ˛1; : : : ; ˛k for a
finite abelian group G, if we let Gi D h˛1; : : : ; ˛i i and define ri D ŒGi W Gi�1�,
then every element ˇ of G can be uniquely represented in the form ˇD ˛

e1

1 � � �˛
ek

k
,

with 0� ei < ri . This is a special case of a polycyclic presentation. We can use a
polycyclic presentation of Cl.O/ to enumerate the torsor EllO.Fp/ by enumerating
the list of exponent vectors .e1; : : : ; ek/ in reverse lexicographic order. At each
step we apply the action of the generator ˛i that transforms the current exponent
vector to the next in the list (usually i D 1, since e1 varies most frequently).

Using generators of the form ˛i D Œli �, where li is an invertible O-ideal of prime
norm `i , this amounts to walking along the surfaces of various `-volcanoes. To
make this process as efficient as possible, it is crucial to minimize the size of the
primes `i . This is achieved by choosing l1 to minimize `1 and then minimizing
each `i subject to Œli � 62 hŒl1�; : : : ; Œli�1�i; this is called an optimal presentation
[43, §5.1]. This will often cause us to use a set of generators that is larger than
strictly needed.
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As an example, for D D �79947 the class group Cl.O/ is cyclic of order 100,
generated by the class of an ideal with norm 19. But the optimal presentation for
Cl.O/ uses ideals l1 and l2 with norms 2 and 13, respectively. The classes of these
ideals are not independent, we have Œl2�5 D Œl1�18, but they do form a polycyclic
presentation with r1D 20 and r2D 5. Using this presentation to enumerate EllO.Fp/
is more than 100 times faster than using any single generator of Cl.O/. One can
construct examples where the optimal presentation is exponentially faster than any
presentation that minimizes the number of generators; see [43, §5.3].

Enumerating EllO.Fp/ using a polycyclic presentation involves walking along
the surfaces of various `-volcanoes, as in the previous section when testing rela-
tions. But using an optimal presentation will often mean that some of the primes `i
divide v. This always happens, for example, when D � 1 mod 8, since in this case
`1 D 2 divides v. Thus we must be prepared to walk along the surface of an
`-volcano of nonzero depth. We now give a simple algorithm to do this.

Algorithm (WALKSURFACEPATH).

Input: A vertex v0 on the surface V0 of an `-volcano of depth d and a positive
integer n < #V0.

Output: A path v0; : : : ; vn in V0.

1. If v0 has a single neighbor v1, then return the path v0; v1. Otherwise, walk a
path v0; : : : ; vd and set i  0.

2. While deg viCd D 1: Replace viC1; : : : ; viCd by extending the path v0; : : : ; vi
by d steps, starting from an unvisited neighbor v0iC1 of vi .

3. Extend the path v0; : : : ; viCd to v0; : : : ; viCdC1 and increment i .

4. If i D n then return v0; : : : ; vn; otherwise, go to step 2.

Algorithm WALKSURFACEPATH requires us to know the depth d of the `-
volcano, which we may determine from the norm equation. It works by walking
an arbitrary path to the floor and then backing up d steps to a vertex that must
be on the surface (whenever we leave the surface we must descend to the floor in
exactly d steps). When d or ` is large, this algorithm is not very inefficient and
the pairing-based approach of [25] may be faster. But in the context of computing
Hilbert class polynomials, both d and ` are typically quite small.

Remark 14. Walking the surface with gcds. An alternative approach to walking
the surface using gcds is given in [14]. Suppose we have already enumerated
v0; : : : ; vn along the surface of an `-volcano, and have also taken a single step
from v0 to an adjacent vertex v00 on the surface of an `0-volcano. We can then
compute a path v00; : : : ; v

0
n along the surface of the `-volcano containing v00 by

computing each v0iC1 as the unique root of f .Y /D gcd.ˆ`.v0i ; Y /;ˆ`0.viC1; Y //.
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The vertex v0iC1 is guaranteed to be on the surface, and the root-finding operation
is trivial, since f .Y / has degree 1. This approach is generally much faster than
using either WALKSURFACEPATH or the algorithm in [25], and in practice most
of the vertices in EllO.Fp/ can be enumerated this way; see [14] for further details.

Remark 15. Space complexity. A key virtue of the CRT approach is that by using
the explicit CRT [2, Theorem 3.2], it is possible to directly compute the coefficients
ofHD.X/ modulo an integerm (the characteristic of Fq , for example), without first
computing the coefficients over Z. This means we can compute HD.X/ over Fq

with a space complexity that is quasilinear in h.D/ log q, which may be much
smaller than jDj logjDj. When h.D/ is sufficiently composite (often the case), we
can use a decomposition of the ring class field to find a root of HD.X/ in Fq with a
space complexity quasilinear in h.D/1=2 log q; see [44]. The low space complexity
of the CRT approach has greatly increased the range of feasible discriminants for
the CM method: Examples with jDj � 1016 can now be handled [44], whereas
jDj � 1010 was previously regarded as a practical upper limit [13].

3.5. Computing modular polynomials. All of the algorithms we have discussed
depend on modular polynomials ˆ`.X; Y /; we even used them to define the graph
of `-isogenies. We now outline an algorithm to compute ˆ`, using the CRT ap-
proach described in [7]. Under the GRH, it runs in O.`3.log `/3Co.1// expected
time, which makes it the fastest method known for computing ˆ`.X; Y /.

Algorithm (COMPUTEMODULARPOLYNOMIAL).

Input: An odd prime `.

Output: The modular polynomial ˆ`.X; Y /.

1. Pick an order O with h.O/ > `C 1 and let D D disc.O/.

2. Select a sufficiently large set of primes p that satisfy 4p D t2 � `2v2D, with
` − v and p � 1 mod `.

3. For each prime p, compute ˆ`.X; Y / mod p as follows:

(a) Enumerate EllO.Fp/ starting from a root v0 of HD.X/ mod p.
(b) Use Vélu’s algorithm to compute a descending `-isogeny from v0 to v00.
(c) Enumerate EllO0.Fp/ using v00 as a starting point, where ŒO W O0�D `.
(d) Map the `-volcanoes that make up EllO.Fp/[EllO0.Fp/.
(e) Interpolate ˆ`.X; Y / mod p.

4. Use the CRT to recover ˆ`.X; Y / over Z (or over Fq via the explicit CRT).

The restrictions on p ensure that each element of EllO.Fp/ lies on the surface of
an `-volcano of depth 1 whose floor consists of elements of EllO0.Fp/. An example
with `D 5 and D D�151 is shown in Figure 3.
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Figure 3. A volcano with `D 5 and D D�151.

When we enumerate EllO.Fp/ in step 3(a), we use a polycyclic presentation ˛
for Cl.O/ derived from prime ideals whose norms are all less than ` (for ` > 2 this
is always possible). By expressing the class 
 of an invertible O-ideal of norm `

in terms of ˛, we can then determine all of the horizontal `-isogenies between
elements of EllO.Fp/ without knowing ˆ`. In our example with D D �151, the
presentation ˛ consists of a single generator ˛ corresponding to an ideal of norm 2,
with 
 D ˛3. Thus our enumeration of EllO.Fp/ yields a cycle of 2-isogenies that
we can convert to a cycle of 5-isogenies by simply picking out every third element.

The application of Vélu’s algorithm in step 3(b) involves picking a random
point P of order ` and computing the `-isogeny ' with hP i as its kernel. This
process is greatly facilitated by our choice of p, which ensures that P has coor-
dinates in Fp, rather than an extension field. We may find that ' is a horizontal
`-isogeny, but we can easily detect this and try again with a different P .

As in step 3(a), when we enumerate EllO0.Fp/ in step 3(c) we use a polycyclic
presentation ˇ for Cl.O0/ derived from prime ideals whose norms are all less than `.
There are no horizontal `-isogenies between elements of EllO0.Fp/, but we need
to connect each element of EllO0.Fp/ to its `-isogenous parent in EllO.Fp/. This
is done by identifying one child v0 of each parent and then identifying that child’s
siblings, which are precisely the elements of EllO0.Fp/ related to v0 by a cyclic
isogeny of degree `2. By expressing the class 
 0 of an invertible O0 ideal of norm `2

in terms of ˇ, we can identify the `2-isogeny cycles of siblings in EllO0.Fp/; these
are precisely the cosets of the homomorphism � W Cl.O0/! Cl.O/ in Section 2.10.

After identifying the horizontal isogenies among the vertices v in EllO.Fp/ and
the children of each v, we can completely determine the subgraph of G`.Fp/ on
EllO.Fp/[EllO0.Fp/; this is what it means to “map” the `-volcanoes in step 3(d).
In our example with D D �151 there is just one `-volcano; Figure 4 depicts the
result of mapping this `-volcano when p D 4451.

901 351 2215 2501

28721582701

3188 2970 1478 3328 3508 2464 2976 2566 334118682434676 3147222511803144

Figure 4. The fully labeled example.
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In step 3(e) we compute, for each of `C 2 vertices vi 2 EllO.Fp/, the poly-
nomial �i .Y / D ˆ`.vi ; Y / D

Q
j .Y � vij /, where vij ranges over the ` C 1

neighbors of vi in G`.Fp/. We can then interpolate the coefficients of ˆ`.X; Y /DP
i;j cijX

iY j as follows: If  j .X/ is the unique polynomial of degree at most
`C 1 for which  j .vi / is the coefficient of Y j in �i .Y /, then cij is the coefficient
of X i in  j .X/.

Remark 16. Weber modular polynomials. This algorithm can compute modular
polynomials for many modular functions besides the j -function; see [7, §7]. This
includes the Weber f -function that satisfies .f .z/24 � 16/3 D f .z/24j.z/. The
modular polynomials ˆf

`
.X; Y / for f .z/ are sparser than ˆ`.X; Y / by a factor

of 24, and have coefficients whose binary representation is smaller by a factor of
approximately 72. Thus the total size of ˆf

`
is roughly 1728 times smaller than ˆ`,

and it can be computed nearly 1728 times faster.

Remark 17. Modular polynomials of composite level. A generalization of this
approach that efficiently computes modular polynomials ˆN .X; Y / for composite
values of N can be found in [9].

Remark 18. Evaluating modular polynomials. Most applications that useˆ`.X;Y /,
including all the algorithms we have considered here, only require the instantiated
polynomial �.Y / D ˆ`.j.E/; Y /. A space-efficient algorithm for directly com-
puting �.Y / without using ˆ`.X; Y / appears elsewhere in this volume [46].

The isogeny volcano algorithm for computing ˆ`.X; Y / has substantially in-
creased the feasible range of `: It is now possible to compute ˆ` with `� 10,000,
and for ˆf

`
we can handle `� 60,000. It has also greatly reduced the time required

for these computations, as may be seen in the tables of [7, §8].
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On the evaluation of modular polynomials

Andrew V. Sutherland

We present two algorithms that, given a prime ` and an elliptic curve E=Fq ,
directly compute the polynomial ˆ`.j.E/; Y / 2 FqŒY � whose roots are the j -
invariants of the elliptic curves that are `-isogenous to E. We do not assume
that the modular polynomial ˆ`.X; Y / is given. The algorithms may be adapted
to handle other types of modular polynomials, and we consider applications to
point counting and the computation of endomorphism rings. We demonstrate
the practical efficiency of the algorithms by setting a new point-counting record,
modulo a prime q with more than 5,000 decimal digits, and by evaluating a
modular polynomial of level `D 100,019.

1. Introduction

Isogenies play a crucial role in the theory and application of elliptic curves. A stan-
dard method for identifying (and computing) isogenies uses the classical modular
polynomial ˆ` 2 ZŒX; Y �, which parametrizes pairs of `-isogenous elliptic curves
in terms of their j -invariants. More precisely, over a field F of characteristic not
equal to `, the modular equation ˆ`.j1; j2/ D 0 holds if and only if j1 and j2
are the j -invariants of elliptic curves defined over F that are related by a cyclic
isogeny of degree `. In practical applications, F is typically a finite field Fq , and `
is a prime, as we shall assume throughout. For the sake of simplicity we assume
that q is prime, but this is not essential.

A typical scenario is the following: We are given an elliptic curve E=Fq and
wish to determine whether E admits an `-isogeny defined over Fq , and if so, to
identify one or all of the elliptic curves that are `-isogenous to E. This can be
achieved by computing the instantiated modular polynomial

�`.Y /Dˆ`.j.E/; Y / 2 FqŒY �;

MSC2010: primary 11Y16; secondary 11G15, 11G20.
Keywords: elliptic curves, isogenies, point counting, SEA algorithm.
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and finding its roots in Fq (if any). Each root is the j -invariant of an elliptic curve
that is `-isogenous to E over Fq , and every such j -invariant is a root of �`.Y /.

For large ` the main obstacle to obtaining �` is the size ofˆ`, which isO.`3 log `/
bits; storing ˆ` requires several gigabytes for ` � 103, and many terabytes for
`� 104 — see [8, Table 1]. In practice, alternative modular polynomials that are
smaller than ˆ` by a large constant factor are often used, but their size grows at
the same rate, and this quickly becomes the limiting factor, as noted in [15, §5.2]
and elsewhere. The 2009 INRIA Project-Team TANC report states:

“. . . computing modular polynomials remains the stumbling block for
new point counting records. Clearly, to circumvent the memory prob-
lems, one would need an algorithm that directly obtains the polynomial
specialized in one variable.” [26, p. 9]

Here we present just such an algorithm (two in fact), based on the isogeny vol-
cano approach of [8]. Our basic strategy is to compute the instantiated modular
polynomial �.Y /Dˆ`.j.E/; Y / modulo many “suitable” primes p and apply the
explicit Chinese remainder theorem modulo q (see Section 2.4 and Section 2.5 for
a discussion of the explicit CRT and suitable primes). However, two key issues
arise.

First, if we simply lift the j -invariant j.E/ from Fq 'Z=qZ to Z and reduce the
result modulo p, when we instantiateˆ`.j.E/; Y / the powers of j.E/ we compute
may correspond to integers that are much larger than the coefficients of ˆ`, forcing
us to use many more CRT primes than we would otherwise need. We address this
issue by instead exponentiating in Fq , lifting the powers to Z, and then reducing
them modulo p. This yields our first algorithm, which is well-suited to situations
where q is much larger than `, say log q � `, as in point-counting applications.

Second, to achieve the optimal space complexity we must avoid computing
ˆ` mod p. Indeed, if log q � log `, then ˆ` mod p will not be much smaller
than ˆ` mod q. Our second algorithm uses an online approach to avoid storing all
the coefficients of ˆ` mod p simultaneously. This algorithm is well-suited to situ-
ations where log q is not dramatically larger than log `, say O.log `/ or O.log2`/.
This occurs, for example, in algorithms that compute the endomorphism ring of an
elliptic curve [3], or algorithms to evaluate isogenies of large degree [27].

Under the generalized Riemann hypothesis (GRH), our first algorithm has an
expected running time of O.`3 log3` llog `/ and uses O.`2 log `C ` log q/ space,
assuming log q DO.` log `/.1 This time complexity is the same as (and in practice
is faster than) the time to compute ˆ`, and the space complexity is reduced by up
to a factor of `. When log q� ` the space complexity is nearly optimal: quasilinear

1See Theorem 4 for a more precise bound. Throughout, we write llogn for log logn and lllogn
for log log logn.
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in the size of �`. The second algorithm uses O.`3.log qC log `/ log1Co.1/`/ time
and O.` log q C ` log `/ space, under the GRH. Its space complexity is optimal
for q D�.`/, and when log q DO.log2��`/ its time complexity is better than the
time to compute ˆ`. For log q� log2` its running time becomes less attractive
and the first algorithm may be preferred; alternatively, see Section 3.4 for a hybrid
approach.

In conjunction with the SEA algorithm, the first algorithm allows us to compute
the cardinality of an elliptic curve modulo a prime q with a heuristic2 running
time of O.n4 log3n llogn/, using O.n2 logn/ space, where n D log q. To our
knowledge, all alternative approaches applicable to prime fields increase at least
one of these bounds by a factor of n or more. The running time is competitive
with SEA implementations that rely on precomputed modular polynomials (as can
be found in Magma [4] and PARI [32]), and can easily handle much larger values
of q.

As an important practical optimization, we also evaluate modular polynomi-
als �f

`
.Y / D ˆ

f

`
.f .E/; Y / defined by modular functions f .z/ other than the

j -function. This includes the Weber f-function, whose modular polynomials are
smaller than the classical modular polynomial by a factor of 1728 and can be
computed much more quickly (by roughly the same factor). This speedup also
applies when computing �f

`
.

To demonstrate the capability of the new algorithms, we use a modified version
of the SEA algorithm to count points on an elliptic curve modulo a prime of more
than 5,000 decimal digits, and evaluate a modular polynomial of level `D 100,019
modulo a prime of more than 25,000 decimal digits.

2. Background

This section contains a brief summary of background material that can be found
in standard references such as [31; 39; 40], or in the papers [8; 42], both of which
exploit isogeny volcanoes using a CRT-based approach, as we do here. For the sake
of brevity, we recall only the results we need, and only in the generality necessary.

To simplify the presentation, we assume throughout that Fp and Fq denote prime
fields with ` ¤ p; q, and, where relevant, that q is sufficiently large (typically
q > 2`). But this assumption is not needed for our main result; Algorithms 1
and 2 work correctly for any prime q (even q D `), and can be extended to handle
nonprime q.

2.1. Isogenies. Let E be an elliptic curve defined over a field F. Recall that an
isogeny is a nonconstant morphism  WE! zE of elliptic curves that is also a group

2The heuristic relates to the distribution of Elkies primes and is a standard assumption made when
using the SEA algorithm; without it there is no advantage over Schoof’s algorithm.
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homomorphism from E.F/ to zE.F/. The kernel of an isogeny is a finite subgroup
of E.F/, and when  is separable, the size of its kernel is equal to its degree.
Conversely, every finite subgroup G of E.F/ is the kernel of a separable isogeny
(defined over the fixed field of the stabilizer of G in Gal.F=F/). We say that  is
cyclic if its kernel is cyclic, and call  an N -isogeny when it has degree N . Note
that an isogeny of prime degree `¤ char F is necessarily cyclic and separable.

The classical modular polynomial ˆN is the minimal polynomial of the func-
tion j.Nz/ over the field C.j /, where j.z/ is the modular j -function. As a polyno-
mial in two variables, ˆN 2 ZŒX; Y � is symmetric in X and Y and has the defining
property that the roots of ˆ`.j.E/; Y / are precisely the j -invariants of the elliptic
curves zE that are related to E by a cyclic N -isogeny. In this paper N D ` is prime,
in which case ˆ`.X; Y / has degree `C 1 in each variable.

If E is given by a short Weierstrass equation Y 2 DX3Ca4X Ca6, then  can
be expressed in the form

 .x; y/D

�
 1.x/; cy

d

dx
 1.x/

�
for some c 2 F�. When c D 1 we say that  and its image are normalized. Given a
finite subgroup G of E.F/, a normalized isogeny with G as its kernel can be con-
structed using Vélu’s formulae [45], along with an explicit equation for its image zE.
Conversely, suppose we are given a root z| D j. zE/ of �`.Y /Dˆ`.j.E/; Y /, and
also the values of ˆX .j; z| /, ˆY .j; z| /, ˆXX .j; z| /, ˆXY .j; z| /, and ˆY Y .j; z| /,
where j D j.E/ and

ˆX D
@

@X
ˆ`; ˆY D

@

@Y
ˆ`;

ˆXX D
@2

@X2
ˆ`; ˆXY D

@2

@X@Y
ˆ`; ˆY Y D

@2

@Y 2
ˆ`:

To this data we may apply an algorithm of Elkies [13] that computes an equation
for zE that is the image of a normalized `-isogeny  W E ! zE, along with an
explicit description of its kernel: the monic polynomial h`.X/ whose roots are the
abscissae of the nontrivial points in ker ; see [19, Algorithm 27]. The quantities
ˆXX .j; z| /, ˆXY .j; z| /, and ˆY Y .j; z| / are not strictly necessary; the equation
for zE depends only on j , z| , ˆX .j; z| / and ˆY .j; z| /, and we may then apply
algorithms of Bostan et al. [5] to compute h`.X/, and an equation for  , directly
from E and zE.

2.2. Explicit CM theory. Recall that the endomorphism ring of an ordinary elliptic
curve E over a finite field Fp is isomorphic to an order O in an imaginary quadratic
field K. In this situation E is said to have complex multiplication (CM) by O.
The elliptic curve E=Fp is the reduction of an elliptic curve yE=C that also has
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CM by O. The j -invariant of yE generates the ring class field KO of O, and its
minimal polynomial over K is the Hilbert class polynomial HO 2 ZŒX�, whose
degree is the class number h.O/.3 The prime p splits completely in KO, and HO

splits completely in FpŒX�. For p > 3, the prime p splits completely in KO if and
only if it satisfies the norm equation 4p D t2 � v2D, where D D disc O, and for
D < �4 the integers t D t .p/ and v D v.p/ are uniquely determined up to sign.

We define the set

EllO.Fp/D
˚
j.E/ WE=Fp with End.E/' O

	
;

which consists of the roots of HO in Fp . Let � W O ,! End.E/ denote the normalized
embedding (so �.˛/�! D ˛! for all ˛ 2 O and invariant differentials ! on E; see
[40, Proposition II.1.1, p. 97]). The ideals of O act on EllO.Fp/ via isogenies as
follows. Let a be an O-ideal of norm N , and define EŒa�D

T
˛2a ker �.˛/. There

is a separable N -isogeny from E to zE DE=EŒa�, and the action of a sends j.E/
to j. zE/. Principal ideals act trivially, and this induces a regular action of the class
group Cl.O/ on EllO.Fp/. Thus EllO.Fp/ is a principal homogeneous space, a
torsor, for Cl.O/.

Writing the Cl.O/-action on the left, we note that if a has prime norm `, then
ˆ`.j; Œa�j / D 0 for all j 2 EllO.Fp/. For ` not dividing v.p/, the polynomial
�`.Y / D ˆ`.j; Y / has either one or two roots in Fp, depending on whether `
ramifies or splits in K. In the latter case, the two roots Œa�j and Œa�1�j can be
distinguished using the Elkies kernel polynomial h`.X/, as described in [6, §5]
and [20, §3].

2.3. Polycyclic presentations. In order to efficiently realize the action of Cl.O/ on
EllO.Fp/, it is essential to represent elements of Cl.O/ in terms of a set of generators
with small norm. We will choose O so that Cl.O/ is generated by ideals of norm
bounded by O.1/, via [8, Theorem 3.3], but these generators will typically not be
independent. Thus, as explained in [42, §5.3], we use polycyclic presentations.

Any sequence of generators ˛D .˛1; : : : ; ˛k/ for a finite abelian groupG defines
a polycyclic series

1DG0 CG1 C � � �CGk�1 CGk DG;

with Gi D h˛1; : : : ; ˛i i, in which every quotient Gi=Gi�1 ' h˛i i is cyclic. We
associate to ˛ the sequence of relative orders r.˛/D .r1; : : : ; rk/ defined by ri D
ŒGi WGi�1�. Every element ˇ 2G has a unique ˛-representation of the form

ˇ D ˛e
D ˛

e1

1 � � �˛
ek

k
.0� ei < ri /:

3As in [1], we call HO a Hilbert class polynomial even when O is not the maximal order.
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We also associate to ˛ the matrix of power relations s.˛/D Œsij � defined by

˛
ri

i D ˛
si;1

1 ˛
si;2

2 � � �˛
si; i�1

i�1 .0� sij < rj /;

with sij D 0 for i � j .
We call ˛, together with r.˛/ and s.˛/, a (polycyclic) presentation for G, and if

all the ri are greater than 1, we say that the presentation is minimal. A generic algo-
rithm to compute a minimal polycyclic presentation is given in [42, Algorithm 2.2].
Having constructed such an ˛, we can efficiently enumerate G D Cl.O/ (or the
torsor EllO.Fq/, given a starting point), by enumerating ˛-representations.

2.4. Explicit CRT. Let p1; : : : ; pn be primes with product M , let Mi DM=pi ,
and let aiMi � 1 mod pi . If c 2 Z satisfies c � ci mod pi , then c �

P
i ciaiMi

modM . If M > 2jcj, this congruence uniquely determines c. This is the usual
CRT method.

Now suppose M > 4jcj and let q be a prime (or any integer). Then we may
apply the explicit CRT mod q [2, Theorem 3.1] to compute

c �

�P
i

ciaiMi � rM

�
mod q; (1)

where r is the closest integer to
P
i ciai=pi ; when computing r , it suffices to

approximate each ciai=pi to within 1=.4n/, by [2, Theorem 2.2].
As described in [42, §6], we may use the explicit CRT to simultaneously com-

pute c mod q for many integers c (the coefficients of �`, for example), using an
online algorithm. We first precompute the ai and aiMi mod q. Then, for each
prime pi , we determine the values ci for all the coefficients c (by computing
�` mod pi ), update two partial sums for each coefficient, one for

P
ciaiMi mod q

and one for
P
ciai=pi , and then discard the ci . When the computations for all

the pi have been completed (these may be performed in parallel), we compute r
and apply (1) for each coefficient. The space required by the partial sums is just
O.log q/ bits per coefficient. See [42, §6] for further details, including algorithms
for each step.

2.5. Modular polynomials via isogeny volcanoes. For distinct primes ` and p,
we define the graph of `-isogenies �`.Fp/, with vertex set Fp and edges .j1; j2/
present if and only if ˆ`.j1; j2/ D 0. Ignoring the connected components of 0
and 1728, the ordinary components of �`.Fp/ are `-volcanoes [18; 30], a term we
take to include cycles as a special case [42]. In this paper we focus on `-volcanoes
of a particular form, for which we can compute ˆ` mod p very quickly, via [8,
Algorithm 2.1].

Let O be an order in an imaginary quadratic field K with maximal order OK , let `
be an odd prime not dividing ŒOK WO�, let O0 be the order of index l in O, and assume



ON THE EVALUATION OF MODULAR POLYNOMIALS 537

D D disc O< �4. Let p be a prime of the form 4p D t2� `2v2D with ` − v and
p � 1 mod `. Then p splits completely in the ring class fields of O and O0, but not
in the ring class field of the order of index `2 in O. The requirement p � 1 mod `
ensures that for j.E/ 2 EllO.Fp/ we can choose E so that EŒ`��E.Fp/, which is
critical to the efficiency of both the algorithm in [8] and our algorithms here.

The components of �`.Fp/ that intersect EllO.Fp/ are isomorphic `-volcanoes
with two levels: the surface, whose vertices lie in EllO.Fp/, and the floor, whose
vertices lie in EllO0.Fp/. Each vertex on the surface is connected to 1C

�
D
`

�
D 0; 1

or 2 siblings on the surface, and `�
�
D
`

�
children on the floor. An example with

`D 7 and
�
D
`

�
D 1 is shown below:

Provided that h.O/ � `C 2, this set of `-volcanoes contains enough informa-
tion to completely determine ˆ` mod p. This is the basis of the algorithm in [8,
Algorithm 2.1], which we adapt here. Selecting a sufficiently large set of such
primes p allows one to compute ˆ` over Z (via the CRT), or modulo an arbitrary
prime q (via the explicit CRT). In order to achieve the best complexity bounds, it is
important to choose both the order O and the primes p carefully. We thus introduce
the following definitions, in which c1 and c2 are fixed constants that do not depend
on ` or O. (In our implementation we used c1 D 1:5 and c2 D 256.)

Definition 1. Let O be a quadratic order with discriminantDDu2D0<0, withD0
fundamental, and let c1; c2 > 1 be constants. We say that O is suitable for ` if

(1) `C 2� h.O/� c1`,

(2) 4 < jD0j � c22 ,

(3) `2 � jDj � c22`
2,

(4) gcd.u; 2`D/D 1, and

(5) l0 <min.c2; `/ for all primes l0 j u.

This definition combines the criteria in [8, Definition 4.2] and [8, Theorem 5.1].
Provided that c1 and c2 are not too small, suitable orders exist for every odd prime `;
with c1D 4 and c2D 16, for example, we may use orders with DD�7 �32n for all
` > 3. Ideally we want c1 to be as close to 1 as possible, but this makes it harder to
find suitable orders. For the asymptotic analysis, any values of c1 and c2 will do.

Definition 2. A prime p is suitable for ` and O if p � 1 mod ` and p satisfies
4p D t2� `2v2D for some t; v 2 Z with ` − v and !.v/� 2 log.log vC 3/.

The function !.v/ counts the distinct prime divisors of v. The bound on !.v/
ensures that if O is suitable for ` then many small primes split in O and do not
divide u or v. Such primes allow us to more efficiently enumerate Cl.O/ and Cl.O0/.
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2.6. Selecting primes with the GRH. In order to apply the isogeny volcano method
to compute ˆ` mod q (or �` mod q, as we shall do), we need a sufficiently large
set S of suitable primes p. We deem S to be sufficiently large wheneverP

p2S

logp � BC log 4;

where B is an upper bound on the logarithmic height of the integers whose re-
ductions mod q we wish to compute with the explicit CRT. For ˆ`.X; Y / DP
i;j aijX

iY j , we may bound h.ˆ`/D log maxi;j jaij j using

h.ˆ`/� 6` log `C 18`; (2)

h.ˆ`/� 6` log `C 16`C 14
p
` log `; (3)

as proved in [9]. (We prefer the latter bound when ` > 3187.)
Heuristically (and in practice), it is easy to construct the set S . Given an order O

of discriminant D suitable for `, we fix vD2 if D�1 mod 8 and vD1 otherwise,
and for increasing t�2 mod ` of correct parity we test whether pD.t2�v2`2D/=4
is prime. We add each prime value of p to S , and stop when S is sufficiently large.

Unfortunately, we cannot prove that this method will find any primes, even under
the GRH. Instead, we use Algorithm 6.2 in [8], which picks an upper bound x
and generates random integers t and v in suitable intervals to obtain candidate
primes p D .t2� v2`2D/=4� x that are then tested for primality. The algorithm
periodically increases x, so its expected running time is O.B1C�/, even without the
GRH. To ensure that the bound on !.v/ in Definition 2 is satisfied, unsuitable v’s
are discarded; this occurs with negligible probability.

Under the GRH, there are effective constants c3; c4 > 0 such that x � c3`6 log4`
guarantees at least c4`3 log3` suitable primes less than x, by [8, Theorem 4.4].
Asymptotically, this is far more than theO.`/ primes we need to computeˆ` mod q.
Here we may consider larger values of B , and in general, x DO.B2C `6 log4`/
suffices. We note that S contains O.B= logB/ primes (unconditionally), and under
the GRH we have logp DO.logBC log `/ for all p 2 S .

3. Algorithms

Let q be a prime and let E be an elliptic curve over Fq . A simple algorithm to
compute �`.Y /D ˆ`.j.E/; Y / 2 FqŒY � with the explicit CRT works as follows.
Let y| be the integer in Œ0; q � 1� corresponding to j.E/ 2 Fq ' Z=qZ. For a
sufficiently large set S of suitable primes p, compute ˆ`.X; Y / mod p using the
isogeny volcano algorithm and evaluate ˆ`.y| ; Y / mod p to obtain �` 2 FpŒY �,
and use the explicit CRT mod q to eventually obtain �` 2 FqŒY �.

This naïve algorithm suffers from two significant defects. The most serious is
that we may now require a much larger set S than is needed to compute ˆ` mod q.



ON THE EVALUATION OF MODULAR POLYNOMIALS 539

Compared to the coefficients ofˆ`, which have height h.ˆ`/DO.` log `/ bounded
by inequalities (2) and (3), we now need to use the O.` log `C ` log q/ bound

h.ˆ`.y| ; Y //� h.ˆ`/C .`C 1/ log qC log.`C 2/; (4)

since ˆ`.y| ; Y / involves powers of y| up to y| `C1.
If log q is comparable to log `, then the difference between the bounds in in-

equalities (2) and (3) and the bound in inequality (4) may be negligible. But when
log q is comparable to `, using the bound in inequality (4) increases the running
time dramatically. This issue is addressed by Algorithm 1.

The second defect of the naïve algorithm is that although its space complexity
may be significantly better than the O.`2 log q/ space required to compute ˆ`
mod q, it is still quasiquadratic in `. But the size of �` is linear in `, so we might
hope to do better, and indeed we can. This is achieved by Algorithm 2.

A hybrid approach that combines aspects of both algorithms is discussed in
Section 3.4.

3.1. Algorithm 1. The increase in the height bound from inequalities (2) and (3)
to inequality (4) is caused by the fact that we are exponentiating in the wrong ring.
Rather than lifting j.E/2 Fq to the integer y| and computing powers of its reduction
in Fp (which simulates powering in Z), we should instead compute powers j.E/,
j.E/2, . . . , j.E/`C1 in Fq , lift these values to integers yx1, yx2, . . . , yx`C1, and work
with their reductions in Fp, as in [43, §4.4] (a similar strategy is used in [28]). Of
course the reductions of yx1, yx2, . . . , yx`C1 need not correspond to powers of any
particular element in Fp; nevertheless, if we simply replace each occurrence of X i

in the modular polynomial ˆ`.X; Y / mod p with yxi mod p, we achieve the same
end result using a much smaller height bound.

We now present Algorithm 1 to compute �.Y / D �`.Y / D ˆ`.j.E/; y/. If
desired, the algorithm can also compute the polynomials

�X .Y /D
@ˆ`

@X
.j.E/; Y / and �XX .Y /D

@2ˆ`

@X2
.j.E/; Y /;

which may be used to compute normalized isogenies, as described in Section 3.8.

Algorithm 1.

Input: An odd prime `, a prime q, and j.E/ 2 Fq .

Output: The polynomial �.Y /D ˆ`.j.E/; Y / 2 FqŒY �, and, optionally, �X .Y /
and �XX .Y /.

1. Select an order O suitable for ` and a set of suitable primes S (see Section 2.6),
using the height bound B D 6` log `C 18`C log qC 3 log.`C 2/.

2. Compute the Hilbert class polynomial HO.X/ via [42, Algorithm 2].
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3. Perform CRT precomputation mod q using S (see Section 2.4).

4. Compute integers yxi 2 Œ0; q�1� such that yxi � j.E/i mod q, for 0� i � `C1.

5. For each prime p 2 S :
(a) Compute ˆ`.X; Y / mod p using HO, via [8, Algorithm 2.1].
(b) Compute

�.Y /D
P
i;j

aij yxiY
j mod p;

where ˆ`.X; Y /D
P
i;j aijX

iY j .
(c) (Optional.) Compute

�X .Y /D
P
i;j

iaij yxiY
j mod p

and
�XX .Y /D

P
i;j

i.i � 1/aij yxiY
j mod p:

(d) Update CRT sums for each coefficient ci of � (and of �X and �XX ).

6. Perform CRT postcomputation to obtain � (and �X and �XX ) mod q.

7. Output � and (optionally) �X and �XX .

Proposition 3. The output �.Y / of Algorithm 1 is equal to ˆ`.j.E/; Y / (and
�X .Y /D .@ˆ`=@X/.j.E/; Y / and �XX .Y /D .@2ˆ`=@X2/.j.E/; Y /).

Proof. Let ' D ˆ`.y| ; Y / 2 FqŒY �. Let yxi 2 Z be as in step 4. Write ˆ` asP
i;j aijX

iY j , with aij 2Z and let y�D
P
i;j aij yxiY

j 2ZŒY �. Then '� y� mod q,
and � � y� mod p. To prove � D ', we only need to show h.y�/� B . We haveˇ̌̌̌P

i

aij yxi

ˇ̌̌̌
� .`C 2/q exp h.ˆ`/;

for 0 � j � `C 1, hence h.y�/ � B . The proofs for �X and �XX are analogous.
We note that the last term in B can be reduced to log.`C2/ if �X and �XX are not
being computed. �

Theorem 4. Assume the GRH. Then the expected running time of Algorithm 1 is
O.`2B log2B llogB/, where B DO.` log `C log q/ is as specified in step 1. The
algorithm uses O.` log qC `2 logB/ space.

Proof. We use M.n/DO.n logn llogn/ to denote the cost of multiplication [35].
For step 1, we assume the time spent selecting O is negligible (as noted in Section 2.5,
one may simply choose orders with discriminants of the formDD�7 �32n), and un-
der the GRH the expected time to construct S isO.B1C�/, usingO.B/ space, as ex-
plained in Section 2.6. Step 2 uses O.`2C�/ expected time and O.`.log `C log q//
space, by [42, Theorem 1], since h.D/DO.`/. An analysis as in [42, §6.3] shows
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that the total cost of all CRT operations is O.`M.B/ logB/ time and O.` log q/
space. Step 4 uses O.`M.log q// time and O.` log q/ space.

The set S containsO.B= logB/ primesp, and under the GRH, logpDO.logB/;
see Section 2.6. Step 5(a) dominates the cost per p, taking O.`2 log3B llogB/
expected time and O.`2 logB/ space, by [8]. This yields an O.`2B log2B llogB/
bound for step 5, which dominates, and the total space is O.` log qC`2 logB/. �

When log q D‚.`/, the time bound in Theorem 4 reduces to O.`3 log3` llog `/,
the same as the time to compute ˆ` mod q, and the space bound is O.` log ` log q/,
which is within an O.log `/ factor of the best possible.

3.2. Algorithm 2. We now present Algorithm 2, which for q > ` has optimal
space complexity O.` log q/. When q is reasonably small, say log q D o.log2`/,
Algorithm 2 is also faster than Algorithm 1, but when log q is large it may be
much slower, since it uses the same height bound — inequality (4) — as the naïve
approach (see Section 3.4 for a hybrid approach). The computation of � 2 FpŒY � is
more intricate, so we present it separately as Algorithm 2.1. Unlike Algorithm 1, it
is not so easy to also compute �X and �XX , but an alternative method to compute
normalized isogenies using Algorithm 2 is given in Section 3.8.

Algorithm 2.
Input: An odd prime `, a prime q, and j.E/ 2 Fq .

Output: The polynomial �.Y /Dˆ`.j.E/; Y / 2 FqŒY �.

1. Select an order O suitable for ` and a suitable set of primes S (see Section 2.6),
using the height bound B D 6` log `C 18`C .`C 1/ log qC log.`C 2/.

2. Compute the Hilbert class polynomial HO via [42, Algorithm 2].

3. Perform precomputation for the explicit CRT mod q using S .

4. Let y| be the integer in Œ0; q� 1� congruent to j.E/ mod q.

5. For each prime p 2 S :
(a) Compute �.Y /Dˆ`.y| ; Y / mod p using O and HO via Algorithm 2.1.
(b) Update CRT sums for each coefficient ci of �.

6. Perform postcomputation for the explicit CRT to obtain � 2 FqŒX�.

7. Output �.

Proposition 5. The output �.Y / of Algorithm 2 is equal to ˆ`.j.E/; Y /.

Proof. This follows immediately from Proposition 7 below and the bound

h.ˆ`.y| ; Y //D log max
j

ˇ̌̌̌P
i

aij y|
i

ˇ̌̌̌
� log.`C 2/C .`C 1/ log qC h.ˆ`/� B

on the height of ˆ`.y| ; Y / 2 ZŒY �. �



542 ANDREW V. SUTHERLAND

Theorem 6. Assume the GRH and that log q D O.`k/ for some constant k. The
expected running time of Algorithm 2 is O.`3.log q C log `/ log ` llog2` lllog2`/
and it uses O.` log qC ` log `/ space.

Proof. As in the proof of Theorem 4, the expected running time is dominated by the
time to compute �.Y /, which by Theorem 8 is O.`2 log2p llog2p lllog2p/. There
are O.B= logB/ primes p 2 S , and under the GRH we have logp DO.logB/D
O.log `/. The space complexity is dominated by the O.B/DO.` log `C ` log q/
size of S . �

3.3. Algorithm 2.1. The algorithm in [8, Algorithm 2.1] computes ˆ` mod p by
enumerating the sets EllO.Fp/ and EllO0.Fp/, where O0 D ZC `O, the latter of
which contains approximately `2 elements. To achieve a space complexity that is
quasilinear in `, we cannot afford to store the entire set EllO0.Fp/. We must compute
ˆ`.y| ; Y / mod p using an online algorithm, processing each jk 2 EllO0.Fp/ as we
enumerate it, and then discarding it. Let us consider how this may be done.

Let y1; : : : ; yh.O/ be the elements of EllO.Fp/, as enumerated using a polycyclic
presentation ˛ for Cl.O/. Each yi is `-isogenous to a set Si of siblings in EllO.Fp/,
and to a set Ci of children in EllO0.Fp/; see Section 2.5. Thus we have

ˆ`.X; yi /D

� Q
z| 2Si

.X � z| /

�� Q
z| 2Ci

.X � z| /

�
:

The siblings can be readily identified in our enumeration of EllO.Fp/ using the CM
action (see Section 2.2). To identify the children, we need to be able to determine,
for any given j 2 O0, the set Ci in which it lies. Each Ci is a subset of the torsor
EllO0.Fp/ corresponding to a coset of the subgroup C � Cl.O0/ generated by the
ideals of norm `2; indeed, two children have the same parent if and only if they
are related by an isogeny of degree `2 (the composition of two `-isogenies).

The group Cl.O0/ acts on the cosets of C , and we need to compute this ac-
tion explicitly in terms of the polycyclic presentation ˇ used to enumerate Cl.O0/.
This problem is addressed by a generic group algorithm in the next section that
computes a polycyclic presentation 
 for the quotient Cl.O0/=C , along with the

-representation of the image of each generator in ˇ.

As we enumerate the elements jk of EllO0.Fp/, starting from a child j1 of y1
obtained via Vélu’s algorithm, we keep track of the element ık 2 Cl.O0/ whose
action sends j1 to jk . The image of ık in Cl.O0/=C is the coset of C corresponding
to the set Ci containing jk , and we simply identify Ci with the i-th element of
Cl.O0/=C as enumerated by 
 (in the lexicographic ordering of 
-representations).

Thus we can compute the polynomials �i .X/ D ˆ`.X; yi / as we enumerate
EllO0.Fp/ by accumulating a partial product of linear factors for each �i . But since
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our goal is to evaluate zi D �i .y| / mod p, we simply substitute x D y| mod p into
each linear factor, as we compute it, and accumulate the partial product in zi .

Having computed the values zi for 1 � i � `C 2, we interpolate the unique
polynomial �.Y / of degree at most `C 1 for which �.yi /D zi , using Lagrange
interpolation. This polynomial must be ˆ`.y| ; Y /. We now give the algorithm.

Algorithm 2.1.

Input: An odd prime `, a suitable order O, a suitable prime p, and x 2 Fp.

Output: The polynomial �.Y /Dˆ`.x; Y / 2 FpŒY �.

1. Compute presentations ˛ of Cl.O/ and ˇ of Cl.O0/ suitable for p.

2. Represent generators of the subgroup C � Cl.O0/ defined above in terms of ˇ.

3. Compute the presentation 
 of Cl.O0/=C derived from ˇ, via Algorithm 3.

4. Find a root w1 of HO mod p (compute HO mod p if needed).

5. Enumerate EllO.Fp/ as w1; w2; : : : ; wh.O/ using ˛.

6. Obtain j1 2 EllO0.Fp/ from w1 using Vélu’s algorithm.

7. Set zi  1 and yi  null for 1� i � `C 2.

8. For each jk D ıkj1 in EllO0.Fp/ enumerated using ˇ:

(a) Compute the index i of ık in the 
-enumeration of Cl.O0/=C . If i > `C 2
then proceed to the next jk , skipping steps (b) and (c) below.

(b) If yi D null then set yi to the `-parent of jk (via Vélu’s algorithm) and
for each `-sibling z| of yi in EllO.Fp/ set zi  zi .x� z| /.

(c) Set zi  zi .x� jk/.

9. Interpolate � 2 FpŒY � such that deg� � `C1 and �.yi /D zi for 1� i � `C2.

10. Output �.

The value null assigned to yi in step 7 is used to indicate that the value of yi is
not yet known. Each yi is eventually set to a distinct wj 2 EllO.Fp/.

Remark. In practical implementations, Algorithm 2 selects the primes p 2 S so
that the presentations ˛, ˇ, and 
 are the same for every p and precomputes them
(the only reason they might not be the same is the presence of prime ideals whose
norm divides v D v.p/, but in practice we fix v � 2, as discussed in Section 2.6).

Proposition 7. Algorithm 2.1 outputs �.Y /Dˆ`.x; Y / mod p.

Proof. Let '.Y /Dˆ`.x; Y /. It follows from the discussion above that Algorithm 2.1
computes zi D ˆ`.x; yi / for 1 � i � `C 2. Thus �.yi / D zi D '.yi / for `C 2
values yi 2 EllO.Fp/, and these values are necessarily distinct. The polynomials �
and ' both have degree at most `C 1, therefore � D '. �
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Theorem 8. Assume the GRH. Algorithm 2.1 runs in O.`2n2 log2n llog2n/ ex-
pected time using O.`n/ space, where nD logp.

Proof. The time complexity is dominated by step 8, which enumerates the O.`2/
elements of EllO0.Fp/ using ˇ. By [8, Theorem 5.1] and the suitability of O and p,
we may assume each ˇi D Œbi �, where bi has prime norm bi DO.logn llogn/. Us-
ing Kronecker substitution and probabilistic root-finding [21], the expected time to
find the (at most 2) roots of ˆbi

.jk; Y / is O.nM.n logn llogn//, which dominates
the cost for each jk . Applying M.n/ D O.n logn llogn/ and multiplying by `2

yields the desired time bound. Taking into account h.O/ D O.`/ and p > `, the
computation of HO mod p uses O.`n/ space, by [42, Theorem 1], and this bounds
the total space. �

3.4. A hybrid approach. Algorithm 2 achieves an essentially optimal space com-
plexity, but its time complexity is attractive only when log q is not too large, say
log q DO.log2`/. Algorithm 1 has an excellent time complexity, but achieves an
optimal space complexity only when log q is very large, say log q D�.` log `/. To
address the intermediate range, we present a hybrid approach suggested by Daniel
Kane that has the same space complexity as Algorithm 2 and a time complexity
that is within a polylogarithmic factor of the time complexity of Algorithm 1.

The strategy is to replace the computation of �.Y / D
P
i;j aij yxiY

j mod p
in step 5 of Algorithm 1 with Algorithm 2.2 below. Algorithm 2.2 is similar to
Algorithm 2.1, but rather than accumulating `C2 values zi in parallel, we compute
them individually by enumerating the each of the sets Ci of children yi in turn.

Algorithm 2.2.
Input: An odd prime `, suitable order O, suitable prime p, and x1; : : : ; x`C1 2Fp .

Output: �.Y /D
P
i;j aijxiY

j 2 FpŒY �, where ˆ`.X; Y /D
P
i;j aijX

iY j .

1. Compute presentations ˛, ˇ, and 
 as in Algorithm 2.1.

2. Find a root y1 of HO mod p (compute HO mod p if needed).

3. Enumerate EllO.Fq/ as y1; y2; : : : ; yh.O/ using ˛.

4. Obtain j1 2 EllO0.Fq/ from y1 using Vélu’s algorithm.

5. For i from 1 to `C 2 do the following:
(a) Use ˛ to compute the set Si of siblings of yi in EllO.Fp/.
(b) Use ˇ and 
 to compute the set Ci of children of yi in EllO0.Fp/ (see below).
(c) Compute �i .X/D

Q
z| 2Si

.X � z| /
Q
z| 2Ci

.X � z| /D
P
cikX

k mod p.
(d) Compute zi D

P
k cikxk .

6. Interpolate � 2 FpŒY � such that deg� � `C1 and �.yi /D zi for 1� i � `C2.

7. Output �.
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To compute the set Ci in step 5(b), for each z| 2 Ci we determine the ı 2 Cl.O0/
for which z| D ıj1. Under the GRH, it follows from [11, Theorem 2.1] that we can
express ı in the form ıD Œp1 � � � pt �, where the ideals pi have prime norms bounded
by logc`, for any c >2, with t DO.log `/. Assuming logpDO.log `/, this implies
that we can compute each z| in O.log6C�`/ expected time, for any � > 0.

Proposition 9. Algorithm 2.2 outputs �.Y /D
P
i;j aijxiY

j .

Proof. Let '.y/D
P
i;j aijxiY

j . The roots of �i .X/ are the roots of ˆ`.X; yi /,
thus

P
k cikXk D

P
k;j akjX

ky
j
i , and we have cik D

P
j akjy

j
i . It follows that

�.yi /D zi D
P
k

P
j akjxky

j
i D '.yi /. Since �.Y / and '.Y / both have degree

at most `C 1 and agree at `C 2 distinct values yi , they must be equal. �

Theorem 10. Assume the GRH and that log q D O.` log `/. If Algorithm 1 uses
Algorithm 2.2 to compute �.Y / in step 5, its expected running time isO.`3 log6C�`/
using O.` log qC ` log `/ space.

Proof. It suffices to show that if logp D O.log `/, then Algorithm 2.2 runs in
O.`2 log6C�`/ expected time using O.` log `/ space. The space bound is clear.
For the time bound, the cost of step 5(b) is O.` log6C�`/ (see above), yielding an
O.`2 log6C�`/ bound on the expected time for step 5, which dominates. �

The extra logarithmic factors make the hybrid approach significantly slower than
Algorithm 1 in practice, but it does allow us to achieve an essentially optimal space
complexity with a quasicubic running time across the entire range of parameters.

3.5. Computing a polycyclic presentation for a quotient group. We now give a
generic algorithm to derive a polycyclic presentation 
 for a quotient of finite
abelian groups G=H . This presentation can be used to efficiently compute in G=H ,
and to compute the image of elements of G, as required by Algorithm 2.1.

Algorithm 3.

Input: A minimal polycyclic presentation ˇ D .ˇ1; : : : ; ˇk/ for a finite abelian
group G and a subgroup H D h˛1; : : : ; ˛t i, with each ˛i specified in
terms of ˇ.

Output: A polycyclic presentation 
 for G=H , with 
i D Œˇi � for each ˇi 2 ˇ.

1. Derive a polycyclic presentation ˛ for H from ˛1; : : : ; ˛t by using [42, Algo-
rithm 2.2].

2. Enumerate H using ˛ and create a lookup table TH to test membership in H .

3. Derive a polycyclic presentation 
 for G=H from Œˇ1�; : : : ; Œˇk� by using [42,
Algorithm 2.2], using TH as described below.

4. Output 
 , with relative orders r.
/ and relations s.
/.
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The polycyclic presentation 
 output by Algorithm 3 is not necessarily minimal.
It can be converted to a minimal presentation by simply removing those 
i with
r.
i /D 1, but for the purpose of computing the image in G=H of elements of G
represented in terms of ˇ, it is better not to do so.

Algorithm 2.2 of [42] requires a TABLELOOKUP function that searches for a
given group element in a table of distinct group elements. In Algorithm 3 above,
the elements of G are uniquely represented by their ˇ-representations, but elements
ofG=H are represented as equivalence classes Œı�, with ı 2G, which is not a unique
representation. To implement the TABLELOOKUP function for G=H , we do the
following: Given Œı0� 2G=H and a table TG=H of distinct elements Œıi � in G=H ,
we test whether ı0ı�1i 2 H , for each Œıi � 2 T . With a suitable implementation
of TH (such as a hash table or balanced tree), membership in H can be tested in
O.logjGj/ time, which is dominated by the O.log2jGj/ time to compute ı0ı�1i .

Once Algorithm 3 completes, the problem of uniquely representing elements of
G=H is solved: Every element of G=H has a unique 
-representation.

Theorem 11. Algorithm 3 runs in O.n log2n/ time using O..mC n=m/ logn/
space, where nD jGj and mD jH j.

Proof. The time complexity is dominated by the n=m calls to the TABLELOOKUP

function performed by [42, Algorithm 2.2] in step 3, each of which performs m
operations in G (using ˇ-representations) and m lookups in TH , yielding a total
cots of O.n log2n/. The space bound is the size of TH plus the size of TG=H . �

3.6. Other modular functions. For a modular function g of level N and a prime
` −N , the modular polynomial ˆg

`
is the minimal polynomial of the function g.`z/

over the field C.g/. For suitable functions g, the isogeny volcano algorithm for
computing ˆ`.X; Y / can be adapted to compute ˆg

`
.X; Y /, as described in [8, §7].

There are some restrictions: ˆg
`

must have degree `C 1 in both X and Y , and we
require some additional constraints on the suitable orders O that we use. Specifi-
cally, we require that there is a generator � of O for which g.�/ lies in the ring class
fieldKO. In this case we say that g.�/ is a class invariant, and we letHg

O .X/ denote
its minimal polynomial over K; see [7; 14; 16] for algorithms to compute Hg

O .X/.
We also require the polynomial Hg

O to be defined over Z.
With this setup, there is then a one-to-one correspondence between the roots j.�/

of HO and the roots g.�/ of Hg
O in which ‰g.g.�/; j.�// D 0, where ‰g is the

minimal polynomial of g over C.j /; note that ‰g does not depend on ` and is
assumed to be given. The class group Cl.O/'Gal.KO=K/ acts compatibly on both
sets of roots, and this allows us to compute ˆg

`
modulo suitable primes p using

essentially the same algorithm that is used to compute ˆ` mod p. In particular,
we can enumerate the set EllgO .Fp/ D fx 2 Fp W H

g
O .x/ D 0g using a polycyclic
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presentation ˛ for Cl.O/, provided that we exclude from ˛ generators whose norm
divides the level of g, and similarly for EllgO0.Fp/, where O0 D ZC `O.

Thus Algorithms 1 and 2 can both be adapted to compute instantiated modular
polynomials �g.Y /Dˆg

`
.x; Y / mod q. Some effort may be required to determine

the correspondence between EllO.Fp/ and EllgO .Fp/ in cases where ‰g.X; j.E// or
‰g.g.E/; Y / has multiple roots in Fp; this issue arises when we need to compute a
child or parent using Vélu’s algorithm. There are several techniques for resolving
such ambiguities; see [8, §7.3] and especially [16], which explores this issue in
detail.

We emphasize that the point x at which we are evaluating ˆg
`
.x; Y / may be any

element of Fq; it need not correspond to the “g-invariant” of an elliptic curve.4

This permits a very useful optimization that speeds up our original version of
Algorithm 1 for computing �`.Y / D �

j

`
.Y / by a factor of at least 9, as we now

explain.

3.7. Accelerating the computation of �`.Y / using 
2. Let 
2.z/ be the unique
cube root of j.z/ with integral Fourier expansion, a modular function of level 3
that yields class invariants for O whenever 3 − disc O. As noted in [8, §7.2], for
` > 3 the modular polynomial ˆ
2

`
can be written as

ˆ

2

`
.X; Y /DR.X3; Y 3/Y eCS.X3; Y 3/XY CT .X3; Y 3/X2Y 2�e; (5)

with e D `C 1 mod 3 and R; S; T 2 ZŒX; Y �. We then have the identity

ˆ` DR
3Y eC .S3� 3RST /XY CTX2Y 2�e: (6)

When computing ˆ
2

`
mod p with the isogeny volcano algorithm, one can ex-

ploit (5) to speed up the computation by at least a factor of 3. In addition, the
integer coefficients of ˆ
2

`
are also smaller than those of ˆ` by roughly a factor

of 3; we may use the height bound h.ˆ
2

`
/� 2` log `C 8` from [8, Equation 18].

Let us consider how we may modify Algorithm 1 to exploit (6), thereby accel-
erating the computation of �`.Y /Dˆ`.x; Y / mod q, where x D j.E/ 2 Fq . Let
r.Y /DR.x; Y / mod q, and similarly define s and t in terms of S and T . Rather
than computing ˆ` mod p in step 5(a), we compute ˆ
2

`
mod p and derive R, S ,

and T from (5). We then compute polynomials r , s, and t mod p instead of � in
step 5(b). Finally, we recover r , s, and t mod q in step 6 via the explicit CRT and
output

� D r3Y eC x.s3� 3rst/Y C x2t3Y 2�e (7)

4Every x 2 Fq is j.E/ for some E=Fq , and when E is ordinary, j.E/ is the reduction of some
j.�/D j. yE/ with ZŒ� �D O' End.E/. But g.�/ might not be a class invariant for this O.
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in step 7. Adjusting the height bound B appropriately, this yields a speedup of
nearly a factor of 9. Note that we are not assuming x D j.E/ has a cube root in Fq ,
or that End.E/' O satisfies 3 − disc O; the identity (7) holds for all x.

We can similarly compute �X and �XX . To simplify the formulas, let us define
U D .S3� 3RST / and uD U.x; Y / mod q. Define

r 0.Y /D
@R

@X
.x; Y / and r 00.Y /D

@2R

@X2
.x; Y /;

and similarly for s; t , and u. Note that u, u0, and u00 can all be easily expressed
in terms of r; r 0; r 00; s; s0; s00; t; t 0, and t 00. We replace the computation of �X and
�XX in step 5(c) with analogous computations of r 0; r 00; s0; s00; t 0, and t 00 mod p.
We then obtain r; r 0; r 00; s; s0; s00; t; t 0, and t 00 via the explicit CRT mod q and apply

�X D 3r
2r 0Y eC .uC xu0/Y C .2xt3C 3x2t2t 0/Y 2�e;

�XX D .6rr
0r 0C 3r2r 00/Y e

C .2u0Cu00/Y C .2t3C 12xt2t 0C 6x2t t 0t 0C 3x2t2t 00/Y 2�e:

3.8. Normalized isogenies. We now explain how Algorithms 1 and 2 may be used
to compute normalized isogenies  , first using j -invariants, and then using g-
invariants. Throughout this section j D j.E/ 2 Fq denotes the j -invariant of a
given elliptic curve E=Fq , defined by y2 D x3CAxCB , and �.Y /Dˆ`.j; Y /.
We use z| D j. zE/ to denote a root of �.Y / in Fq . Our goal is to compute an
equation for the image of  WE! zE, and the kernel polynomial h`.X/ for  .

3.8.1. Algorithm 1. When computing �, we also compute the optional outputs �X
and �XX , and then

�Y .Y /D
d

dY
�.Y /; �Y Y .Y /D

d

dY
�Y .Y /; and �XY D

d

dY
�X .Y /:

We then compute the quantities ˆ�.j; z| / D ��.z| /, for � D X; Y;XX;XY; Y Y ,
as defined in Section 2.1, and apply Elkies’s algorithm [19, Algorithm 27] to com-
pute zE and h`.X/.

3.8.2. Algorithm 2. Having computed � and obtained z| , we run Algorithm 2
again, this time with the input z| , obtaining z�.Y / D ˆ`.z| ; Y /, which we now
regard as z�.X/Dˆ`.X; z| /, by the symmetry of ˆ`. We then compute

ˆX .j; z| /D

�
d

dX
z�

�
.j / and ˆY .j; z| /D

�
d

dY
�

�
.z| /;

as well as the quantities

j 0 D
18B

A
j; z| 0 D

�ˆX .j; z| /

`ˆY .j; z| /
j 0; zmD

z| 0

z|
; and zk D

z| 0

1728� z|
;
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as in [19, Algorithm 27]. The normalized equation for zE is then

y2 D x3C
`4 zmzk

48
xC

`6 zm2zk

864
;

and the fastElkies0 algorithm in [5] may be used to compute h`.X/.

3.8.3. Handling g-invariants. We assume that g.E/ is known to be a class invari-
ant (see Section 3.9 below). Let g D g.E/, �g.Y /Dˆg

`
.g; Y /, and let zg D g. zE/

denote a root of �g.Y / in Fq . In the case of Algorithm 1 we compute

ˆ
g
X .g; zg/D �

g
X .zg/ and ˆ

g
Y .g; zg/D

�
d

dY
�g
�
.zg/;

and in the case of Algorithm 2 we make a second call with input zg to obtain
z�g.X/Dˆ

g

`
.X; zg/ as above. We then compute

ˆ
g
X .g; zg/D

�
d

dX
z�g
�
.g/ and ˆ

g
Y .g; zg/D

�
d

dY
�g
�
.zg/:

We assume the modular equation ‰g
`
.G; J /D 0 relating g.z/ to j.z/ can be solved

for j.z/ (for the g.z/ considered in [8], we have degJ ‰
g.G; J /� 2), and let F.G/

satisfy ‰g
`
.F.J /; J /D 0 and F 0 D dF=dG.

To compute the normalized equation for zE, we proceed as in Section 3.8.2,
except now

z| 0 D
�ˆ

g
X .g; zg/F

0.zg/

`ˆ
g
Y .g; zg/=F

0.g/
j 0:

The fastElkies0 algorithm in [5] may then be used to compute h`, or, in the case
of Algorithm 1, one may derive the trace of h` using ˆgXX .g; zg/, ˆ

g
XY .g; zg/,

and ˆgY Y .g; zg/ as in Section 3.8.1, and compute h` as usual. We omit the de-
tails.

3.9. Verifying that g.E/ is a class invariant. Let E=Fq be an elliptic curve that
is not supersingular (see [44] for fast tests), with End.E/' O. As in Section 3.6,
we call an element g.E/ of Fq a class invariant if

(1) Hg
O .X/ splits into linear factors in the ring class field of O , and

(2) g.E/ is a common root of Hg
O .X/ and ‰g.X; j.E//.

For practical applications, we would like to determine whether g.E/ is a class
invariant without computing O (indeed, the application may be to compute O).
This is often easy to do, at least as far as condition (1) is concerned. As noted
in Section 3.6, condition (1) can typically be guaranteed by constraints involving
DD disc O and the levelN of g. Verifying condition (2) is more difficult, in general,
but it can be easily addressed in particular cases if we know that ‰g.X; j.E//
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either has a unique root in Fq (which then must also be a root of Hg.O/ once
condition (1) is satisfied), or that all its roots in Fq are roots of Hg.O/, or of
Hg.O/ for some g with ˆg

`
Dˆ

g

`
. In the latter case we may not determine g.E/

uniquely, but for the purposes of computing a normalized `-isogeny this does not
matter, any choice will work.

Taking 
2 D 3
p
j as an example, condition (1) holds when

�
D
3

�
¤ 0, which

means j.E/ is on the surface of its 3-volcano and has either 0 or 2 siblings. This
can be easily determined using [18] or [42, §4.1]. If we have q � 2 mod 3, the
polynomial ‰g.X; j.E//D X3 � j.E/ has a unique root g.E/ in Fq and condi-
tion (2) also holds. (There are techniques to handle q � 1 mod 3— see [7], for
example — but they assume that O is known.)

As a second example, consider the Weber f-function, which is related to the
j -function by ‰f.X; J / D .X24 � 16/3 �X24J . Now we require

�
D
3

�
¤ 0 and�

D
2

�
D 1. The latter is equivalent to j.E/ being on the surface of its 2-volcano

with 2 siblings. If we also have q � 11 mod 12, then ‰f.X; j.E// has exactly
two roots f.E/ and �f.E/, by [8, Lemma 7.3], and either may be used since
ˆ

f
`
Dˆ

�f
`

.
For a more general solution, having verified condition (1), we may simply com-

pute instantiated polynomials �.Y /Dˆ`.x; Y / for every root x of ‰g.X; j.E//
in Fq . This can be done at essentially no additional cost, and we may then attempt to
compute a normalized isogeny corresponding to each root x, which we validate by
computing the dual isogeny (using the normalization factor cD ` rather than 1) and
checking whether the composition corresponds to scalar multiplication by ` using
randomly generated points in E.Fq/. The cost of these validations is negligible
compared to the cost of computing �.Y / for even one x.

As a final remark, we note that in applications such as point counting where
one is only concerned with the isogeny class of E, in cases where condition (1)
is not satisfied, one may be able to obtain an isogenous zE for which condition (1)
holds by simply climbing to the surface of the relevant `0-volcanoes for the primes
`0 jN (we regard N as fixed so `0 is small; `0 D 2; 3 in the examples above).

4. Applications

In this section we analyze the use of Algorithms 1 and 2 in two particular applica-
tions: counting points and computing endomorphism rings.

Recall that for an elliptic curve E=Fq , an odd prime ` is called an Elkies prime
whenever �.Y /Dˆ`.j.E/; Y / has a root in Fq . This holds if and only if t2�4q is
a square mod `, where t D qC1� #E.Fq/. It follows from the Chebotarev density
theorem that the set of Elkies primes for E has density 1=2. The complexity of
the Schoof-Elkies-Atkin algorithm [36] for computing #E.Fq/ depends critically
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on the number of small Elkies primes, specifically, the least LD L.E/ for whichX
Elkies primes `�L.E/

log ` > log.4
p
q/: (8)

On average, one expects L� log q, but even under the GRH the best proven bound
is LDO.log2C�q/; see Appendix A of [34] by Satoh and Galbraith. This yields a
complexity bound that is actually slightly worse than Schoof’s original algorithm.

For practical purposes, the heuristic assumption L.E/DO.log q/ is often used
when analyzing the complexity of the SEA algorithm. This assumption holds for
almost all elliptic curves [38], but it is known to fail in infinitely many cases [37].
We instead adopt the following weaker heuristic.

Heuristic 12. There exists a constant c such that for all sufficiently large q we
have L.E/� c log q llog q for every elliptic curve E=Fq .

Theorem 13. Assume the GRH and Heuristic 12. Let E=Fq be an elliptic curve
over a prime field Fq and let nD log q. There is a Las Vegas algorithm to compute
#E.Fq/ that runs in O.n4 log3n llogn/ expected time using O.n2 logn/ space.

Proof. Apply the SEA algorithm, using Algorithm 1 to compute �.Y /Dˆ`.j.E/;Y /
(and also �X and �XX ), and ignore the Atkin primes, as in [38, Algorithm 1], for
example. There are O.n= logn/ primes in the sum (8), and under Heuristic 12,
they are bounded by L D O.n logn/. It follows from [38, Table 1] that the ex-
pected time to process each Elkies prime given � is O.n3 log3n llog2n/, which is
dominated by the time to compute �, as is the space. The theorem then follows
from Theorem 4. �

A common application of the SEA algorithm is to search for random curves
of prime (or near prime) order, for use in cryptographic applications. As shown
in [38], we no longer need Heuristic 12 to do this; we can assume L.E/DO.log q/
for a randomly chosen elliptic curve. Additionally, since we expect to count points
on many curves (� log q), we can take advantage of batching, whereby we extend
Algorithm 1 to take multiple inputs j.E1/ 2 Fq1

; : : : ; j.Ek/ 2 Fqk
and produce

corresponding outputs for each (the Fqi
may coincide, but they need not). Provided

k DO.log `/, this does not change the time complexity (relative to the largest Fqi
),

since the most time-consuming steps depend only on `, not j.E/, and the space
complexity is increased by at most a factor of k.5

Let Ea;b denote the elliptic curve defined by y2D x3CaxCb, and for any real
number x > 3, let T .x/ denote the set of all triples .q; a; b/ with q 2 Œx; 2x� prime,
a; b 2 Fq , and #Ea;b prime. The following result strengthens [38, Theorem 3].

5These remarks also apply to Algorithm 2.



552 ANDREW V. SUTHERLAND

Theorem 14. There is a Las Vegas algorithm that, given x, outputs a random triple
.q; a; b/ 2 T .x/ and the prime #Ea;b.Fq/, with q uniformly distributed over the
primes in Œx;2x� and .a;b/ uniformly distributed over the pairs .c;d/2F2q for which
#Ec;d .Fq/ is prime. Under the GRH, its expected running time isO.n5 log2n llogn/
using O.n2 log2n/ space, where nD log x.

Proof. We modify the algorithm in [38] to use Algorithm 1, operating on batches
of O.logn/ inputs at a time. One then obtains an O.n4 logn llogn/ bound on the
average time to compute #Ea;b.Fq/ for primes q 2 Œx; 2x�, and a space complexity
of O.n2 log2n/. The theorem then follows from the proof of [38, Theorem 3]. �

A second application of Algorithms 1 and 2 is in the computation of the endomor-
phism ring of an ordinary elliptic curve. The algorithm in [3] achieves a heuristically
subexponential running time of LŒ1=2;

p
3=2� using LŒ1=2; 1=

p
3� space. Algo-

rithms 1 and 2 both improve the space complexity bound to LŒ1=2; 1=
p
12�, which

is significant, since space is the limiting factor in these computations. Algorithm 2
also provides a slight improvement to the time complexity that is not visible in the
LŒ˛; c� notation but may be practically useful. These remarks also apply to the
algorithm in [27] for evaluating isogenies of large degree.

5. Computations

Using a modified version of the SEA algorithm incorporating Algorithm 1, we
determined the number of points on the elliptic curve

y2 D x3C 2718281828xC 3141592653;

modulo the 5011-digit prime qD 16219299585 �216612�1. The algorithm ignored
the Atkin primes and computed the trace of Frobenius t modulo 700 Elkies primes,
the largest of which was `D 11681; see [41] for details, including the exact value
of t , which is too large to print here. The computation was distributed over 32 cores
(3.0 GHz AMD Phenom II), and took about 6 weeks. Table 1 gives the time taken
for various parts of the computation.

For ` D 11681, the size of �f
`
.Y / D ˆ

f
`
.f.E/; Y / was under 20MB and took

about two hours to compute on a single core. As can be seen in Table 1, the com-
putation of �f

`
accounted for less than 3% of the total running time, despite being

the asymptotically dominant step. This is primarily due to the use of the Weber
f-invariant; with a less advantageous invariant (in the worst case, the j -invariant
with the optimization of Section 3.7), the time spent computing �` would have
been comparable to or greater than the time spent on the remaining steps. But in
any case the computation would still have been quite feasible.

To demonstrate the scalability of the algorithm, we computed �f
`
.Y / for an el-

liptic curve E=Fq , with ` D 100019 and q D 286243 � 1. Running on 32 cores
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Task CPU days

Computing �f
`
.Y / with Algorithm 1 32

Computing Xq mod �` (using [24]) 995
Computing h` using [19, Algorithm 27] 3
Computing Y q and Xq mod h`; E using [22] 326
Computing the eigenvalue �` using BSGS 22

Total 1378

Table 1. Breakdown of time spent computing #E.Fq/ for a 5011-bit prime q.
The computation was performed on 32 cores of a 3.0 GHz AMD Phenom II.

(Algorithms 1 and 2 are both easily parallelized), this computation took less than
a week. We note that the size of the instantiated modular polynomial �f

`
(and �`)

is almost exactly one gigabyte, whereas the size of ˆf
`

is many terabytes, and we
estimate that the size of ˆ` is around 20 or 30 petabytes.
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Constructing and tabulating dihedral function fields

Colin Weir, Renate Scheidler, and Everett W. Howe

We present algorithms for constructing and tabulating degree-` dihedral exten-
sions of Fq.x/, where q � 1 mod 2`. We begin with a Kummer-theoretic al-
gorithm for constructing these function fields with prescribed ramification and
fixed quadratic resolvent field. This algorithm is based on the proof of our
main theorem, which gives an exact count for such fields. We then use this
construction method in a tabulation algorithm to construct all degree-` dihedral
extensions of Fq.x/ up to a given discriminant bound, and we present tabulation
data. We also give a formula for the number of degree-` dihedral extensions of
Fq.x/ with discriminant divisor of degree 2.`� 1/, the minimum possible.

1. Introduction

Two important problems in algebraic and algorithmic number theory are the con-
struction of global fields of a fixed discriminant or prescribed ramification — with
its curve analogue of constructing Galois covers of fixed genus — and the tabulation
of global fields with a certain Galois group up to some discriminant or genus bound.
The latter problem goes hand in hand with asymptotic estimates for the number of
such fields; for example, estimates for cubic number fields were first given in [11]
and for quartics in [2]. There is a sizable body of literature on construction, tabu-
lation, and asymptotic counts of number fields; a comprehensive survey of known
results can be found in [6], and extensive tables of data are available at [19].

Far less is known in the function field setting; only the asymptotic counts for
cubic [10] and abelian [39] extensions have been proved. However, there is a
general program described by Ellenberg and Venkatesh [37] for formulating these
asymptotic estimates for both number fields and function fields. In particular, they
point out the “alarming gap between theory and experiment” in asymptotic predic-
tions for number fields. In the case of cubic number fields, this inconsistency led

MSC2010: primary 11R58; secondary 11Y40.
Keywords: function field, Galois group, dihedral extension, construction, tabulation.
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Roberts [23] to conjecture the secondary term in the theorem of Davenport and
Heilbronn in [11]. His conjecture was later proved independently by Bhargava,
Shankar, and Tsimerman [3] and by Taniguchi and Thorne [35]. In the function
field setting, however, there is practically no experimental data to potentially iden-
tify a similar such gap. The only known algorithm for constructing all cubic func-
tion fields with a given squarefree discriminant is that of [18], although recently
Pohst [22] showed how to construct all non-Galois cubic extensions of Fq.x/ with
a given discriminant, which also leads to such an algorithm. Tabulation methods
for certain classes of cubic function fields can be found in [26] and [25].

This paper represents a next step toward function field tabulation. We present
a method for constructing all degree-` extensions of Fq.x/ with prescribed ram-
ification and with Galois group isomorphic to the dihedral group of order 2`, in
the case where q � 1 mod 2`. We use a Kummer-theoretic approach inspired by
the methods of Cohen [7; 8] for number fields. This construction method can be
converted into a tabulation algorithm in the usual manner via iteration. However,
we are able to use the automorphism group PGL.2; q/ of Fq.x/ to effect significant
improvements. Note that this technique is unique to the function field setting, as
there are no nontrivial automorphisms of the rational numbers. Exploiting Fq.x/-
automorphisms reduces the number of constructions by a factor of order q3 com-
pared to the naïve approach. We present our improved tabulation procedure along
with numerical data obtained from an implementation in Magma [5]. It is important
to note that in the special case `D 3, our algorithm generates complete tables of
non-Galois cubic function fields over Fq.x/ up to a given discriminant bound.

2. Preliminaries

Let ` be an odd prime and let Fq be a finite field of characteristic coprime to 2`.
We denote by K the rational function field over Fq and by Ksep a separable closure
of K. In this paper, a function field will always mean a subfield L of Ksep that
contains K as a subfield of finite index, and by the Galois group of L we mean the
Galois group of its Galois closure over K.

Suppose F=E is a finite extension of functions fields. Let Places.F / denote the
set of places of F , and let e.P 0jP / and f .P 0jP ) denote the ramification index and
relative degree of a place P 0 2 Places.F / lying over P 2 Places.E/, respectively.
The norm of a place P 0 2 Places.F / is the divisor

NF=E.P
0/ WD f .P 0 jP /P;

and the conorm of P 2 Places.E/ is

ConF=E.P / WD
X

P 0 jP

e.P 0 jP /P 0:
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Then NF=E.ConF=E.P //D ŒF WE�P . These definitions extend additively to divi-
sors. We will also use NF=E to denote the norm map on elements of F . Proposition
7.8 in [24] shows that this is reasonable: The norm of a principal divisor .˛/ of
F is the principal divisor .NF=E.˛// of E. Restricting to the cases where the
characteristic is different from 2 and ` guarantees that for the field extensions we
will consider, there are no wildly ramified places. Thus, for the extensions F=E

we will work with, the different is given by

DiffF=E WD

X
P2Places.E/

X
P 0 jP

.e.P 0 jP /� 1/P 0:

The discriminant divisor of F=E is defined as

�F=E WD NF=E.DiffF=E/D
X

P2Places.E/

X
P 0jP

.e.P 0 jP /� 1/f .P 0 jP /P:

When E D K, we drop E from the notation and simply write �F . Note that
deg�F=E D deg DiffF=E , so one can replace DiffF=E by �F=E in the Hurwitz
genus formula ([32, Theorem 3.4.13]). For these reasons, we will henceforth de-
scribe the ramification of a function field in terms of its discriminant divisor.

Let K` be a degree-` function field with Galois group D`, the dihedral group
with 2` elements, and construct the dihedral extension K2` as the Galois closure
of K` over K:

K2`

K`

2

K2

`

h�i

K

2

h�i

`

(1)

Here K2 is the fixed field of the unique index-2 subgroup C` of D` and K` is the
fixed field of an element of order 2 in D`. We note that there are ` such elements
in D`, which give ` subfields of K2` conjugate to K`. The field K2 is called the
quadratic resolvent field of K`; we write K2 D QuadRes K`: We let � denote a
generator of Gal.K2=K/ and � a generator of Gal.K2`=K2/.

3. Description of all degree-` dihedral function fields

Our first goal is to count the number of `-tuples of conjugate dihedral degree-` func-
tion fields with a given discriminant divisor and quadratic resolvent field. There
is a one-to-one correspondence between nonconjugate dihedral degree-` function
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fields K` and their Galois closures K2`. Consequently, instead of counting degree-
` dihedral extensions, we count the number of dihedral Galois fields K2`. We do so
via construction: Given a quadratic function field K2 and discriminant divisor �,
we construct all degree-` cyclic extensions K2` of K2 such that Gal.K2`=K/DD`
and all conjugate index-2 subfields K` of K2` have discriminant divisor �K`

D�.
Since q � 1 mod `, all cyclic `-extensions of K2 are Kummer extensions — that

is, extensions of the form K2.
p̀
˛/ for some ˛ 2K�

2
n .K�

2
/`. In Section 3A we

give necessary and sufficient conditions on ˛ for K2.
p̀
˛/ to be Galois over K

with group D`. In Section 3B, we use virtual units to decompose K�
2
=.K�

2
/` in a

way that allows us to determine the elements ˛ that correspond to nonisomorphic
dihedral function fields. With this information, in Section 3C we compute the dis-
criminant divisor of K` �K2.

p̀
˛/ in terms of .˛/ and �K2

. Next, in Section 3D
we give a constructive proof of the main theorem: an exact count of the number of
nonconjugate dihedral degree-` extensions of K with a given quadratic resolvent
field K2 and discriminant divisor. We close in Section 3E by showing how to give
explicit equations for the function fields we construct.

3A. Kummer theory. Let ` be a prime and let F be a field that contains the `-th
roots of unity. A degree-` Kummer extension of F is an extension of the form F.�/,
where �` is an element of F nF`.

Theorem 3.1 (See [38, Theorem 5.8.5, Proposition 5.8.7, and Theorem 5.8.12]).
Let ` be a prime and let F be a field that contains the `-th roots of unity.

(1) Let F 0 D F.�/ be a Kummer extension of F , with �` D ˛ 2 F n F`. Then
the minimal polynomial of � is T ` �˛, and F 0 is a degree-` Galois extension
of F .

(2) Every degree-` Galois extension F 0 of F is a Kummer extension.

(3) Let F 0 D F.
p̀
˛/ and F 00 D F.

p̀
ˇ/ be two Kummer extensions of F . Then

F 0 Š F 00 if and only if ˛ D ˇj
 ` for some 
 2 F� and some j 2 Z with
1� j � `� 1.

(4) Suppose F is a function field. Let F 0 D F.
p̀
˛/ be a Kummer extension, let P

be a place of F , and let P 0 be a place of F 0 lying over P . Then

e.P 0 jP /D
`

gcd.`; vP .˛//
;

where vP is the additive valuation associated to P .

Note in particular that statement (3) gives a bijection between the Kummer ex-
tensions of F and the nontrivial cyclic subgroups of F�=.F�/`.

Now suppose we are given an odd prime ` and a prime power q � 1 mod 2`,
and let K be the rational function field over Fq . We construct dihedral degree-`
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function fields over K with a given quadratic resolvent field K2 by starting with the
field K2 and constructing, via Kummer’s theorem, cyclic degree-` extensions of
K2 that are Galois over K with Galois group D`. Our next proposition allows us to
recognize when we have such an extension. Before stating the proposition, we note
that the norm map from K2 to K induces a norm map K�

2
=.K�

2
/`!K�=.K�/`,

and that the inclusion K��K�
2

induces a conorm map K�=.K�/`!K�
2
=.K�

2
/`.

Proposition 3.2. Let K2=K be a quadratic function field and let K2.�/ be a Kum-
mer extension of K2, where �` D ˛ 2K�

2
n .K�

2
/`. Let C be the cyclic subgroup

of K�
2
=.K�

2
/` generated by the class of ˛. If C is contained in the image of the

conorm map, then K2.�/ is a cyclic Galois extension of K; if C is contained in
the kernel of the norm map, then K2.�/ is a Galois extension of K with group D`;
and otherwise, K2.�/ is not a Galois extension of K.

Proof. Since K2 is Galois over K, the group Gal.Ksep=K/ acts on K�
2
=.K�

2
/`,

and this action reflects the action of Gal.Ksep=K/ on the set of Kummer extensions
of K2 in Ksep. Thus, the field LDK2.�/ is Galois over K if and only if !.C /DC

for all ! 2 Gal.Ksep=K/, and this will be the case if and only if �.C /D C for the
nontrivial automorphism � of K2 over K.

Suppose �.C /D C , so that L=K is Galois. Since �2 is the identity on C , we
have �.˛/ D ˛i
 ` for some 
 2 K2 and i D ˙1. Let ! be an element of order
2 in Gal.L=K/, so that ! is a lift of � . If i D 1 then we have .!.�/=�/` D 
 `,
so !.�/D �
 � for some `-th root of unity � 2K; replacing 
 with 
 �, we may
assume that � D 1 and !.�/D �
 . Then

� D !2.�/D !.�/ �!.
 /D �
 �!.
 /

so 1 D NK2=K .
 /. By Hilbert 90, we have 
 D "=�."/ for some " 2 K2. Since
�.˛/D ˛
 `, we find that ˛"` is fixed by � , so the image of ˛ in K�

2
=.K�

2
/` lies in

the image of the conorm. On the other hand, if i D�1 then 
 ` DNK2=K .˛/ 2K.
Since 
 2K2 and K2 is a quadratic extension of K, we must have 
 2K. Thus
the image of ˛ in K�

2
=.K�

2
/` lies in the kernel of the norm. We see that if C is

neither in the image of the conorm nor in the kernel of the norm, then K2.�/ is
not Galois over K; this is the final statement of the proposition.

If C is in the image of the conorm, then ˛ D ˇ
 ` for some ˇ 2K and 
 2K2.
Then K2.�/ is the composition of the quadratic extension K2=K with the Kummer
extension K.

p̀
ˇ/=K, so K2.�/ is Galois over K with cyclic Galois group.

Finally, suppose C is killed by the norm map, so that NK2=K .˛/D 

` for some


 2K. Then �.˛/D 
 `=˛, so �.C /D C , and L is Galois over K. If we again let
! be an element of order 2 in Gal.L=K/, then !.�/D 
 �=� for some `-th root of
unity � 2K. If we let � be a generator of Gal.L=K2/, we find that !�! D ��1,
so Gal.L=K/ŠD`. �
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Elements of K2 whose norms are `-th powers in K have divisors of a specific
type, described below.

Proposition 3.3. Let ˛ 2 K�
2

. If NK2=K .˛/ D 
 ` for some 
 2 K�, then the
principal divisor of ˛ takes the form

.˛/D `E0C

.`�1/=2X
iD1

i.D0i �D0�i/;

where E0 is a divisor of K2, the D0i are squarefree effective divisors of K2 with
pairwise disjoint support, and where �.D0i/DD0

�i for all i . Consequently, every
place of K lying under a place in the support of some D0i splits in K2.

Proof. Let P 0 be a place in the support of the principal divisor .˛/, and set nP D

vP ..˛//. Then by the division algorithm we can uniquely write nP D q`C r for
some q; r 2 Z with jr j � .`� 1/=2. Repeating this for all places in the support of
.˛/, we see that the divisor of ˛ can be written uniquely as

.˛/D `E0C

.`�1/=2X
iD1

i.D0i �D0�i/;

where the D0i are squarefree effective divisors with pairwise disjoint support. Ap-
plying the norm map NK2=K to .˛/, we obtain

.NK2=K .˛//D .˛/C .�.˛//

D `.E0C �.E0//C

.`�1/=2X
iD1

i.D0i �D0�i C �.D
0
i/� �.D

0
�i//:

As NK2=K .˛/D 

`, we see that

i.D0i �D0�i C �.D
0
i/� �.D

0
�i//D 0 for 1� i � .`� 1/=2:

This shows that D0i D 0 if and only if D0
�i D 0. If D0i ¤ 0, then D0i and D0

�i are
effective and have disjoint support, forcing D0i D �.D

0
�i/. �

3B. Virtual unit decomposition. Theorem 3.1 states that elements of K�
2

that gen-
erate the same subgroup of K�

2
=.K�

2
/` produce the same Kummer extension. We

wish to construct distinct dihedral function fields by constructing distinct Kummer
extensions of K2. To that end, we decompose the group K�

2
=.K�

2
/` using a func-

tion field definition of virtual units, as inspired by H. Cohen’s work on number
fields [7]. In particular, we show how to construct a basis for the kernel of the
norm map K�

2
=.K�

2
/`!K�=.K�/`:
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We define the (`-)virtual units of K2 to be the elements of the set

V` D f˛ 2K�2 W .˛/ 2 `Div0 K2g:

The map from V` to Div0 K2 that sends ˛ to .˛/=` induces a map from V` to
.Pic0 K2/Œ`�, the `-torsion of the degree-0 divisor class group of K2; this leads to
the exact sequence

1 �! F�q =.F
�
q /
`
�! V`=.K

�
2 /
`
�! .Pic0 K2/Œ`� �! 0:

We also have an exact sequence

1 �! V`=.K
�
2 /
`
�!K�2 =.K

�
2 /
`
�!K�2 =V` �! 1: (2)

To better understand the final term of this sequence, we set

I` D Prin K2=.Prin K2\ `Div0 K2/

and define a map 'WK�
2
! I` by '.˛/ D .˛/C Prin K2 \ `Div0 K2. Then ' is

surjective and ker' D V`, so K�
2
=V` Š I`. All told, we obtain this diagram of

exact sequences, which represents a virtual unit decomposition:

1

��

1

��

1 // F�q =.F
�
q /
` //

��

F�q =.F
�
q /
` //

��

1

��
1 // V`=.K

�
2
/` //

��

K�
2
=.K�

2
/` //

��

K�
2
=V` //

��

1

0 // .Pic0 K2/Œ`�
//

��

Prin K2=`Prin K2
//

��

I` //

��

0

0 0 0

(3)

The middle vertical sequence here shows that the divisor map from K�
2
=.K�

2
/`

to Prin K2=`Prin K2 has kernel F�q =.F
�
q /
`. However, by Proposition 3.2, Kummer

extensions of K2 that are Galois over K with group D` correspond to nontrivial
cyclic subgroups of the kernel of the norm map from K�

2
=.K�

2
/` to K�=.K�/`.

We now describe how the divisor map behaves on this kernel.
Let H be the group

H D
˚
˛ 2K�2 W NK2=K .˛/ 2 .K

�/`
	
; (4)
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so that H=.K�
2
/` is the kernel of the norm map from K�

2
=.K�

2
/` to K�=.K�/`.

Proposition 3.4. The map

H=.K�2 /
`
�! Prin K2=`Prin K2

(induced from the divisor map) is injective, and its image is the group

J` D
˚
.ˇ/C `Prin K2 2 Prin K2=`Prin K2 W NK2=K ..ˇ// 2 `Prin K

	
:

Proof. Let .H / be the group of divisors of elements in H . First we claim that the
sequence

1 �! .F�q /
`
�!H �! .H / �! 0

is exact. To see this, note that the map sending an element of H to its divisor is
clearly surjective. The kernel of this map is the set H \F�q . Let k 2 F�q and suppose
NK2=K .k/ 2 .K

�/`. Then NK2=K .k/D k�.k/D k2 2 .K�/`. As squaring is an
isomorphism of F�q =.F

�
q /
`, we have k 2 .F�q /

`.
It follows from the exact sequence above that the divisor map

H=.K�2 /
`
�! Prin K2=`Prin K2

is injective. Its image is certainly contained in J`. To complete the proof, we must
show that every element of J` lies in the image of H=.K�

2
/`.

Let .ˇ/C `Prin K2 be an element of J`, where ˇ 2K�
2

satisfies NK2=K ..ˇ// 2

`Prin K, say NK2=K ..ˇ//D `.
 / for some 
 2K�. Then NK2=K .ˇ/D c
 ` for
some c 2 F�q . If we let d D c.`�1/=2, then NK2=K .dˇ/D .c
 /

`, so dˇ is an element
of H whose image in Prin K2=`Prin K2 is .ˇ/C `Prin K2. �

Proposition 3.5. The image of .Pic0 K2/Œ`� in Prin K2=`Prin K2 is contained in J`.

Proof. Suppose D0 2 Div0 K2 represents an element of .Pic0 K2/Œ`�, so that `D0

is a principal divisor, say equal to .˛/ for some ˛ 2 K�
2

. Then the divisor of
NK2=K .˛/ is also an `-multiple of a principal divisor. �

Let U` be the image of H=.K�
2
/` in I`, so that

U` D f.˛/CPrin K2\ `Div0 K2 W ˛ 2H g:

Corollary 3.6. The bottom row of Diagram (3) gives rise to an exact sequence

0 �! .Pic0 K2/Œ`� �!H=.K�2 /
`
�! U` �! 0;

which splits (noncanonically).
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Proof. The sequence is obtained from combining the exact sequence

0 �! .Pic0 K2/Œ`� �! J` �! U` �! 0

of subgroups of the bottom row of Diagram (3) with the isomorphism H=.K�
2
/` Š

J`. The sequence splits because all of the groups are `-torsion. �
This corollary, together with Proposition 3.2, gives us the following theorem:

Theorem 3.7. There is a one-to-one correspondence between Kummer extensions
K2`=K2 such that K2` is Galois over K with group D` and the set of nontrivial
cyclic subgroups of .Pic0 K2/Œ`��U`.

3C. The discriminant divisors of D` extensions. Now that we have established
the correspondence of Theorem 3.7 for D` Kummer extensions K2` DK2.

p̀
˛/ of

K2, it remains to compute the discriminant divisor of K` �K2.
p̀
˛/. In particular,

we compute the discriminant divisor�K`
of K` in terms of .˛/ and�K2

. We begin
by describing the discriminant divisor �K2`=K2

. Our description is simplified by
the introduction of the following terminology.

Suppose ˛ is an element of the group H defined by (4). Let D0
1
, . . . , D0

.`�1/=2
be

the divisors arising from the representation of .˛/ as described in Proposition 3.3.
We define the ramification divisor of ˛ to be the divisor

D01C �.D
0
1/C � � �CD0.`�1/=2C �.D

0
.`�1/=2/

of K2, and the reduced ramification divisor of ˛ to be the divisor

NK2=K .D
0
1C � � �CD0.`�1/=2/

of K. Note that the ramification divisor is the conorm of the reduced ramification
divisor.

Lemma 3.8. Let K2 be a quadratic function field over K. Suppose that K2` D

K2.
p̀
˛/ is a Kummer extension of K2 such that K2`=K is Galois with Galois

group D`. Then
�K2`=K2

D .`� 1/D0;

where D0 is the ramification divisor of ˛.

Proof. By Theorem 3.1, for all places P 0 in the support Supp D0 of the divisor
D0, there is a unique place P 00 of K2` lying over P 0 such that e.P 00 jP 0/ D `.
Furthermore, all other places of K2 are unramified in K2`. �

We now compute the degree of the discriminant divisor �K`
, which will in turn

allow us to compute �K`
itself. To that end, we examine the characters of D`.

For subgroups G of D`, let ‰.G/ denote the induced character of D` obtained
from the trivial character of G (see [27, Chapter 3]). The fields K, K2, K` and
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K2` of Diagram (1) are the fixed fields of the four subgroups D`, C`, C2, and 1,
respectively. The induced characters of these groups are linearly dependent and
satisfy the relation

‰.1/C 2‰.D`/D 2‰.C2/C‰.C`/:

Since the Artin L function of an induced character ‰.G/ is the � function of the
fixed field of G (see [16, Chapter 8]), we obtain

�K2`
.s/�2

K .s/D �
2
K`
.s/�K2

.s/:

From the functional equation of the � function, we have

deg�K2`
C 2 deg�K D 2 deg�K`

C deg�K2
;

and since �K D 0 we find

deg�K2`
D 2 deg�K`

C deg�K2
: (5)

By [32, Corollary 3.4.12(a)] we have DiffK2`
D ConK2`=K2

.DiffK2
/CDiffK2`=K2

.
Applying norms yields

�K2`
D ŒK2` WK2��K2

CNK2=K .�K2`=K2
/:

By Lemma 3.8, we obtain

�K2`=K2
D .`� 1/D0;

where D0 is the ramification divisor of any ˛ that defines K2` as a Kummer exten-
sion of K2. Let M be the reduced ramification divisor of ˛. Then

NK2=K .�K2`=K2
/D 2.`� 1/M;

and (5) can be rewritten as

` deg�K2
C 2.`� 1/ deg M D 2 deg�K`

C deg�K2
:

Thus,

deg�K`
D
`� 1

2
deg�K2

C .`� 1/ deg M:

Using this information we can now compute the discriminant divisor of K`.

Theorem 3.9. With notation as above, we have �K`
D

`�1
2
�K2
C .`� 1/M .

Proof. Let E D `�1
2
�K2
C .`�1/M . First note that the only places of K ramified

in K` are those lying over places in the support of M and �K2
as K2`=K2=K

is only ramified at these places. Moreover, for all places P 2 Supp M and all
P 00 2 Places.K2`/ lying over P , we have e.P 00 jP /D `. Similarly, for all places
P 2 Supp�K2

and all P 00 2 Places.K2`/ lying over P , we have e.P 00 jP /D 2.
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As ŒK2` W K`� D 2 − `, all places P 0 2 Places.K`/ lying over M must have
e.P 0 jP / D `. Also, for all P 0 2 Places.K`/ lying over �K2

, e.P 0 jP / � 2.
Applying the identity X

P 0 jP

e.P 0 jP /f .P 0 jP /D `

to any place P 2 Supp�K2
allows at most .`� 1/=2 places P 0 jP to be ramified.

Thus, �K`
divides E. Since both divisors have the same degree, they must be

equal. �
We note that the above proof in fact gives the complete decomposition of the

ramified places of K`=K.

3D. The number of D` function fields. We now prove the main result, Theorem
3.10, which provides the number of nonconjugate degree-` dihedral extensions K`

of K with fixed discriminant divisor �K`
D � and quadratic resolvent field K2.

We use the correspondence of Theorem 3.7 and the discriminant divisor result of
Theorem 3.9. First, we introduce some more notation.

Let M 2 Div.K/ be a squarefree effective divisor. Set N D # Supp M , and
suppose that every place Pi 2 Supp M , 1� i �N , splits in K2 as Pi DP 0iC�.P

0
i /

with P 0i ¤ �.P
0
i /. We then define a set Q`.M / of formal sums by

Q`.M / WD

(
NX

iD1

ni.P
0
i � �.P

0
i // W ni 2 .Z=`Z/

�

)
:

We can view Q`.M / as a subset of the group

Q`.M /D

NX
iD1

.Z=`Z/.P 0i � �.P
0
i //I

note that the natural map Div0 K2! Pic0 K2 reduces to a homomorphism

�WQ`.M / �! Pic0 K2=`Pic0 K2:

We set
T`.M / WD fE0 2Q`.M / W �.E0/D 0g: (6)

Theorem 3.10. Let K2 be a quadratic function field over K D Fq.x/ with discrim-
inant divisor �K2

, with q � 1 mod 2`. Let r denote the `-rank of Pic0 K2, and let
M be a divisor of K that is either zero or a sum of distinct places of K supported
away from �K2

. Let �D `�1
2
�K2
C .`� 1/M .

(1) If M D 0, then the number of nonconjugate dihedral degree-` function fields
K`=K with discriminant divisor �K`

D� and quadratic resolvent field K2

is .`r � 1/=.`� 1/.
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(2) If M ¤ 0 and some P 2 Supp M is inert in K2=K, then there are no dihe-
dral degree-` function fields K`=K with discriminant divisor �K`

D� and
quadratic resolvent field K2.

(3) Suppose M ¤ 0 and that all Pi 2 Supp M split in K2 as Pi D P 0i C �.P
0
i /

with P 0i ¤ �.P
0
i /. Then the number of nonconjugate dihedral degree-` function

fields with discriminant divisor �K`
D� and quadratic resolvent field K2 is

#T`.M /`r=.`� 1/, where T`.M / is defined by (6).

Proof. Let U`;M denote the subset of U` consisting of those classes

.˛/CPrin K2\ `Div0 K2

such that the reduced ramification divisor of ˛ is equal to M . Note that U`;M is
closed under multiplication by nonzero elements of Z=`Z.

Using the correspondence of Theorem 3.7, the conjugacy classes of dihedral
degree-` function fields with discriminant divisor �K`

D� and quadratic resolvent
field K2 are in one-to-one correspondence with the number of nontrivial cyclic
subgroups of .Pic0 K2/Œ`� � U` that can be generated by elements .A;B/ with
B 2 U`;M .

If M D 0, then U`;M consists of the identity, so BD 0 and A can be any nonzero
class in .Pic0 K2/Œ`�. There are `r�1 such pairs, and they generate .`r�1/=.`�1/

different cyclic subgroups.
If M ¤ 0, then #U`;M D #T`.M /. This is because an element ˛ of H gives

rise to an element of U`;M if and only if its divisor is of the form E0 (up to
multiples of `) for some E0 in T`.M /. Thus, there are #T`.M /`r pairs .A;B/ in
.Pic0 K2/Œ`��U` with B 2U`;M , and there are #T`.M /`r=.`�1/ cyclic subgroups
generated by such pairs. �

3E. Defining equations. In this section, we will write down explicit defining equa-
tions for D` extensions of K constructed as above.

Definition 3.11. Given an integer n > 0 and an element 
 of K, let Cn;
 be the
polynomial

Cn;
 .X /D

bn=2cX
rD0

.�
 /r
n

n� r

�
n� r

r

�
X n�2r

in KŒX �. (Note that the coefficient n
n�r

�
n�r

r

�
is in fact an integer, so the definition

makes sense in positive characteristic; see [30, Sequence A082985].)

The polynomials Cn;
 are scaled versions of the Chebyshev polynomials of the
first kind, and it follows that if u and v are elements of a field extension L of K

that satisfy uv D 
 , then

Cn;
 .uC v/D un
C vn:



CONSTRUCTING AND TABULATING DIHEDRAL FUNCTION FIELDS 569

Proposition 3.12. Let ` be an odd prime, let q � 1 mod 2` be a prime power, and
let K2 be a quadratic extension of K D Fq.x/. Let ˛ be an element of K2 nK`

2

such that NK2=K .˛/D 

` for some 
 2K, and let K2` be the Kummer extension

K2.
p̀
˛/, so that K2`=K is Galois with group D`. Then the roots in K2` of the

polynomial
C`;
 .X /�TrK2=K .˛/

are generators for the index-2 subfields of K2`=K.

Proof. Let � be a root of z`�˛, let � be a generator of Gal.K2`=K2/, and let � be
an element of Gal.K2`=K/ that restricts to the nontrivial element of Gal.K2=K/.
Then �.�/ and 
=� are both roots of z`� �.˛/, so � 0.�/D 
=� for some � 0D � i� .
Thus, � C 
=� lies in the fixed field of � 0 (but does not lie in K, for otherwise �
would lie in a quadratic extension of K).

It follows that

C`;
 .� C 
=�/D �
`
C .
=�/` D ˛C �.˛/D TrK2=K .˛/;

so one of the roots of C`;
 .X / � TrK2=K .˛/ generates an index-2 subfield of
K2`=K. Since all of these index-2 subfields are conjugate to one another, the
other roots of the polynomial generate the other fields. �

4. Algorithms and data

4A. Construction algorithm. The correspondence of Theorem 3.7 can be made
explicit, and the proof of Theorem 3.10 is constructive; this leads naturally to
Algorithm 4.1 below. This algorithm takes as input a quadratic function field K2

and an effective squarefree divisor M of K, and outputs all nonconjugate degree-`
dihedral function fields with discriminant divisor `�1

2
�K2
C .`� 1/M and qua-

dratic resolvent field K2. Note that K2 may be the unique degree-2 constant field
extension of K, in which case �K2

D 0.

Algorithm 4.1 (Constructing all D` function fields with a given quadratic resolvent
and given ramification divisor).

Input: A quadratic extension K2 of K, an odd prime `, and a squarefree effective
divisor M of K with support disjoint from that of �K2

.

Output: A set L of defining equations for all the dihedral extensions K` of K

with �K`
D

`�1
2
�K2
C .`� 1/M and with QuadRes K` DK2:

1. Compute fundamental information:

(a) Compute a basis fŒB1�; : : : ; ŒBr �g of .Pic0K2/Œ`� and an element � of F�q nF
�`
q .

(b) Set N  ∅; eventually, N will contain the pairs of places of K2 lying over
the support of M .
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(c) For P 2 Supp M :

i. Ensure P D P 0
0
CP 0

1
in Div K2; upon failure, return the empty set.

ii. N  N [f.P 0
0
;P 0

1
/g.

(d) Use N to compute the set Q`.M /.

2. Compute functions in H representing elements of Q`.M / that map into U`:

(a) Set T  ∅; eventually, T will contain lifts to H of all elements of Q`.M /

(up to the action of .Z=`Z/�) that can be lifted to H .
(b) For E0 2Q`.M / up to the action of .Z=`Z/� such that �.E0/D 0:

i. Find ˇ 2K�
2

such that .ˇ/�E0 mod `.
ii. Repeat ˇ �ˇ until NK2=K .ˇ/ 2 .K

�/`.
iii. T  T [fˇg.

3. Compute virtual units in H :

(a) Set V  ∅; eventually V will contain elements of H \V` whose images
in V`=.K

�
2
/` form a basis for that group.

(b) For ŒBi � in the basis of .Pic0 K2/Œ`� computed in step 1(a):

i. Find �i 2K2 such that .�i/D `Bi .
ii. Repeat �i ��i until NK2=K .�i/ 2 .K

�/`.
iii. V  V [f�ig.

4. Create defining equations:

(a) Set L ∅.
(b) If M D 0 then for all nonzero .zi/ 2 .Z=`Z/

r up to the action of .Z=`Z/�:

i. Compute ˛ WD
Qr

iD1 �
zi

i and 
 2K with 
 ` D NK2=K .˛/:

ii. Let C.X / C`;
 .X /�TrK2=K .˛/, as in Proposition 3.12.
iii. L L[fC.X /g.

(c) If M ¤ 0 then for all ˇ 2 T and for all .zi/ 2 .Z=`Z/
#V :

i. Compute ˛ WD ˇ
Q

i2V �

zi

i and 
 2K with 
 ` D NK2=K .˛/:

ii. Let C.X / C`;
 .X /�TrK2=K .˛/, as in Proposition 3.12.
iii. L L[fC.X /g.

(d) Return L.

Algorithm 4.1 is precisely the construction in the proof of Theorem 3.10, and
thus computes all elements ˛ such that K2.

p̀
˛/ is a Galois dihedral function

field. Notice that the repeat loops in steps 2(b)(ii) and 3(b)(ii) will halt, as by
Proposition 3.4, there is a unique ˇ 2K�

2
with .ˇ/DB0��.B0/�`E0 and ˇ 2H ;

similarly for �.

Remarks 4.2. There are several ways to perform Algorithm 4.1 more efficiently.
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(1) The generators ŒB1�; : : : ; ŒBr � of .Pic0 K2/Œ`� in step 1(a) can be computed
from a set of generators ŒA1�; : : : ; ŒAh� of Pic0 K2 chosen so that the order mi

of ŒAi � is equal to the i -th invariant factor of the group Pic0 K2. Using the ŒAi �,
it is also easy to check whether an element E0 of Q`.M / is in the kernel of
the map �, and, if so, to obtain an element ˇ 2K�

2
such that .ˇ/�E0 mod `,

as is required in step 2(b)(i). We do this as follows: Suppose D0 is a lift of E0

to the degree-0 divisor group of K2. Write ŒD0�D d1ŒA1�C� � �CdhŒAh�. Then
E0 is in the kernel of � if and only if ` divides di whenever mi is divisible
by `. If this is the case, set ei D di=` when ` jmi and ei � di`

�1 mod mi

when ` −mi . Then D0�`.e1A1C� � � ehAh/ is principal, and we can compute
ˇ 2K�

2
with this divisor; this is the desired ˇ.

(2) When K2 has positive genus, it is the function field of an elliptic or hyper-
elliptic curve y2 D f .x/. One could potentially take advantage of faster
arithmetic available for the Jacobians of hyperelliptic curves, instead of the
slower generic arithmetic in Pic0 K2.

Algorithm 4.3 takes as input a pair of effective squarefree divisors D and M

of K with disjoint support and uses Algorithm 4.1 to generate all nonconjugate
degree-` dihedral function fields K` with discriminant divisor `�1

2
DC .`� 1/M .

It takes advantage of the following observation: In order for any degree-` dihe-
dral function fields K` to exist, D must be the discriminant divisor of a quadratic
function field — that is, effective, squarefree, and of even degree. Moreover, all
the places in the support of M must be split over the quadratic resolvent field of
K`, which has discriminant divisor D. If D D 0, then this field is the unique
quadratic constant field extension of K. If D is nonzero, then there are exactly
two quadratic function function fields K2 and K0

2
of discriminant divisor D; they

are in fact twists of one another. Any place P 62 Supp D splits in K2 if and only
if it is inert in K0

2
, and vice versa. Thus, if M is nonzero, only one of K2 and K0

2

needs to be considered in the construction of K`.

Algorithm 4.3 (Constructing all D` function fields from divisors).

Input: An odd prime ` and squarefree effective divisors D and M of K with
disjoint support.

Output: A set L of defining equations for all the degree-` dihedral extensions K`

of K with �K2
DD and �K`

D
`�1

2
DC .`� 1/M .

1. If deg D is even, construct a quadratic field K2 with discriminant divisor D;
otherwise, return “D IS NOT A QUADRATIC DISCRIMINANT DIVISOR”.

2. If D D 0, get L from Algorithm 4.1 with input K2; `;M , return L, and stop.

3. Construct the quadratic twist K0
2

of K2.
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4. If M D 0 then:
(a) Get L1 from Algorithm 4.1 with input K2; `;M .
(b) Get L2 from Algorithm 4.1 with input K0

2
; `;M .

(c) Return L1[L2, and stop.

5. Pick P 2 Supp M .

6. If P D P 0
0
CP 0

1
in Div K2 then set K00

2
 K2; otherwise, set K00

2
 K0

2
.

7. Get L from Algorithm 4.1 with input K00
2
; `;M , return L, and stop.

All finite places P of K correspond to irreducible polynomials fP .x/ 2 Fq Œx�.
Therefore, in step 1 we can easily construct K2 DK.y/ as follows: If D D 0, then
y is simply the square root of a nonsquare in Fq . If D ¤ 0, then K2 is the function
field of the curve

y2
D

Y
P2Supp D

P finite

fP .x/:

4B. Tabulation algorithm. Algorithm 4.1 constructs all degree-` dihedral func-
tion fields with a given discriminant divisor and quadratic resolvent field; by it-
erating this algorithm, we obtain a procedure for tabulating all degree-` dihedral
function fields whose discriminant divisor has degree at most some fixed input
bound B � 0. However, in this context, we can use the automorphism group of
K to significantly reduce the number of quadratic function fields that need to be
considered.

Recall that Aut K D Aut Fq.x/ is isomorphic to PGL.2; q/, the group of frac-
tional linear transformations of x over Fq . The group Aut K also acts on the set
of extension fields of K, and for every � 2 Aut K we have �.�Ki

/ D ��.Ki /.
Therefore, instead of applying Algorithm 4.1 to all suitable K2 and M , we only
need to consider a representative from each orbit of Aut K acting on the set of
suitable quadratic function fields K2. Moreover, for each such field K2 we need
only consider representatives of the action of the stabilizer Stab K2 � PGL.2; q/
on the set of suitable M .

These ideas are captured below in three algorithms. We start with Algorithm 4.4,
which, given an integer B, finds orbit representatives for the set of quadratic func-
tion fields whose discriminant divisors are of degree at most 2B=.`� 1/.

Recall that every quadratic function field K2 can be expressed as K.y/, where
y2 is equal to either a nonsquare in Fq or a squarefree polynomial f .x/ 2 Fq Œx�

of degree 2gC 1 or 2gC 2, where g is the genus of K2. In the former case, K2 is
fixed under PGL.2; q/. In the latter case, the action of � 2 PGL.2; q/ on K2 does
not necessarily preserve the degree of f .x/, but �.K2/ has the same genus as K2;
in fact, the discriminant divisors of K2 and �.K2/ have the same degree, namely
2gC 2.
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In the following algorithm, we will let P .q; `;B; h/ denote the set of noncon-
stant squarefree polynomials f 2 Fq Œx� whose degrees satisfy

ddeg.f /=2e � b2B=.`� 1/c

and whose leading coefficient is either 1 or a fixed nonsquare h 2 Fq .

Algorithm 4.4 (Constructing a list of PGL.2; q/-orbit representatives for quadratic
function fields of bounded discriminant).

Input: A nonnegative integer B, an odd prime `, and a prime power q � 1

mod 2`.

Output: A set R0
B

of pairs .f;S/ such that each f is a squarefree element of
Fq Œx� such that K2 WDKŒy�=.y2�f / has discriminant divisor of degree
at most 2B=.`� 1/, each S is the PGL.2; q/-stabilizer of the class of
f in K�=.K�/2, and such that every quadratic extension K2 of K with
deg�K2

� 2B=.`� 1/ has exactly one PGL.2; q/-orbit representative in
the collection of fields defined by the f .

1. Compute a primitive element h of Fq .

2. Initialize R0
B
 f.h;PGL.2; q//g.

3. Set L.f / 0 for all f 2 P .q; `;B; h/.

4. For all f 2 P .q; `;B; h/:
(a) If L.f /D 0 then

i. S  ∅.
ii. For all � D axCb

cxCd
2 PGL.2; q/:

� f1.x/ .cxC d/2d.degf /=2ef .�.x//.
� If the leading coefficient m of f1 is a square, replace f1 with f1=m;

otherwise, replace f1 with hf1=m.
� L.f1/ 1.
� If f1 D f , then S  S [f�g.

iii. R0
B
 R0

B
[f.f;S/g.

5. Return R0
B

.

Next we have Algorithm 4.5, which constructs minimal polynomials for all
dihedral function fields with discriminant divisors `�1

2
�K2
C .`� 1/M for rep-

resentatives K2 and M obtained from Algorithm 4.4.

Algorithm 4.5 (Tabulating PGL.2; q/-orbit representatives of dihedral function
fields with bounded discriminant).

Input: A nonnegative integer B, an odd prime `, a prime power q � 1 mod 2`,
and the set R0

B
computed by Algorithm 4.4 on input B; `; q.
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Output: A set RB of triples .L2; �;S
0/ such that each � is an effective divisor of

K of degree at most B, the group S 0 is the PGL.2; q/-stabilizer of �, the
set L2 consists of equations defining D` extensions of K with discrimi-
nant divisor �, and such that every D` extension of K with discriminant
divisor of degree at most B has a unique PGL.2; q/-orbit representative
in the collection of fields defined by the elements of the L2.

1. Initialize RB ∅.

2. For .f;S/ 2R0
B

:

(a) Construct K2 DK.x/Œy�=.y2�f / and compute �K2
.

(b) Compute B0 D
�
B=.`� 1/� .deg�K2

/=2
˘

.
(c) Initialize M ∅; eventually, M will contain all effective squarefree divi-

sors of K with support disjoint from �K2
and degree at most B0.

(d) Compute lists

Lj D fP 2 Places.K/ nSupp�K2
W deg P D j g

for 1� j � B0.
(e) For i from 0 to B0 and for every partition nD Œn1; ::; nr � of i :

i. Generate the set Wn D
˚Pr

kD1 Pk W Pk 2Lnk

	
.

ii. M M[Wn.

(f) Compute the set MS of all pairs .M;S 0/ where each M 2M is a unique
orbit representative of S acting on M and S 0 is the stabilizer of M in S .

(g) For .M;S 0/ 2MS :

i. Get L2 from Algorithm 4.1 on input .K2; `;M /.
ii. Compute �D `�1

2
�K2
C .`� 1/M .

iii. RB RB [f.L2; �;S
0/g.

3. Return RB .

Finally, Algorithm 4.6 reapplies Aut K to each of the constructed minimal poly-
nomials to obtain the full list of degree-` dihedral function fields whose discrimi-
nant divisor has degree bounded by B.

Algorithm 4.6 (Tabulating the full list of dihedral function fields with bounded
discriminant).

Input: A nonnegative integer B, an odd prime `, a prime power q � 1 mod 2`,
and the set RB computed by Algorithm 4.5 on input B; `; q.

Output: A set LB of defining equations for all the dihedral extensions K` of K

with deg�K`
� B.

1. Initialize LB ∅.
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2. For .L; �;S 0/ 2RB:
(a) For all distinct representatives � of cosets in PGL.2; q/=S 0 and for all

C.X / 2L, set LB LB [f.�.C.X //; �.�//g.

3. Return LB .

4C. Numerical results. We implemented our algorithms in Magma [5]. In Table 1,
we provide data for all odd primes `, prime powers q � 1 mod 2`, and multiples
B>`�1 of `�1 such that q2B=.`�1/C1< 229. The column headed K2=� gives the
number of quadratic function fields generated by Algorithm 4.4. The number of
function fields constructed by Algorithm 4.5 is given in the column headed K`=�,
and the total number of nonconjugate dihedral degree-` function fields whose dis-
criminant divisor has degree at most B is listed in the column headed K`. The
running times of Algorithms 4.4, 4.5, and 4.6 are listed in the next three columns.
For each `, q and B, we also computed the value RD .q3�q/T5=.T4CT5CT6/,
where Ti denotes the running time of Algorithm 4:i for i D 4; 5; 6. The quantity
R estimates the improvement factor obtained by our tabulation method relative to
simply iterating Algorithm 4.1 over all possible quadratic function fields without
using the PGL.2; q/ action.

Notice that the improvement factor R is highly varied. For fixed ` and B, R

tends to decrease as q increases although the improvement still remains significant.
Why this decrease occurs is unclear; it may be due to the fact that R is not a
sufficiently refined estimate for the actual running time improvement. Overall, the
running time of Algorithm 4.1 is dominated by the construction of the set Q`.M /

and obtaining functions for the principal divisors in steps 2(b)(i) and 3(b)(i). Data
suggests that as B grows, finding the generators of these principal divisors will
tend to dominate the running time. Using Jacobian arithmetic as opposed to divisor
arithmetic as suggested in part (2) of Remarks 4.2 improved the performance of
our tabulation only very marginally, even for larger parameters.

The entries of columns 4 and 5 of Table 1 differ by a factor that is very close
to ` � 1; in other words, for the data we collected, it looks like the number of
quadratic extensions of K with discriminant degree at most 2B=.`� 1/ is about
`� 1 times as large as the number of D` extensions of K with discriminant degree
at most B. When B D 2.`� 1/ this is explained by the results of the following
section, but we do not know whether it is true in general.

5. A formula for the case B D 2.`� 1/

In this section we give an explicit formula for the number of D` extensions whose
discriminant divisor has degree 2.`� 1/.

First we note that there are no D` extensions with discriminant of degree smaller
than 2.`� 1/. To see this, suppose K` is a D` extension of K with Galois closure
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Running time (seconds)

` q B K2=� K`=� K` Alg. 4.4 Alg. 4.5 Alg. 4.6 R

3 7 4 33 17 2,373 0.9 1.1 0.8 132.0
6 782 472 117,285 25.8 35.2 47.1 109.4
8 35,010 18,149 5,763,093 1,321.5 2,416.9 2,505.1 130.1

13 4 61 33 28,470 13.7 3.2 9.5 264.7
6 4,650 2,564 4,824,534 1,379.5 286.1 1,870.2 176.7

19 4 81 41 130,131 82.8 7.6 44.5 385.4
25 4 109 57 390,300 726.8 17.6 149.1 307.3
31 4 129 65 923,025 821.0 31.7 357.2 779.7
37 4 157 81 1,873,458 1,983.1 56.5 731.7 1,031.9
43 4 177 89 3,417,855 4,040.5 100.2 1,341.9 1,452.3
49 4 205 105 5,763,576 20,544.4 189.6 2,376.5 964.8

5 11 8 45 9 6,655 6.1 1.4 2.7 181.2
12 2,858 949 1,058,695 461.5 102.9 463.5 132.1

31 8 109 33 446,865 821.0 29.2 191.0 834.6
41 8 169 45 1,378,420 3,178.2 80.5 602.0 1,436.2

7 29 12 121 19 219,646 546.8 22.6 94.8 828.9
43 12 177 29 1,086,911 4,000.5 95.2 567.8 1,622.2

11 23 20 93 8 48,829 192.7 10.1 23.8 541.3
13 53 24 217 21 1,340,794 10,935.6 235.8 742.8 2,945.5
23 47 44 189 11 519,961 5,951.6 184.2 364.9 2,940.5

Table 1. Function field counts for all ` and q � 1 mod 2` with q
2B

`�1
C1 < 229,

for B � 2.`� 1/. For each `, q, and B given in the first three columns, we list in
column 4 the number of PGL.2; q/-equivalence classes of quadratic extension of
KD Fq.x/ whose discriminants have degree at most 2B=.`�1/. In column 5, we
list the number of PGL.2; q/-equivalence classes of D` extensions of K whose
discriminants have degree at most B, and in column 6 we list the total number
of such extensions. In the next three columns we give the running times of the
algorithms that computed these quantities, and in the final column we give an
estimate of the improvement in running time obtained by using the PGL.2; q/
action in our computations. (Computations were carried out on one core of a
2GHz Intel Xeon X7550, with 64GB of available RAM.)

K2` and quadratic resolvent K2. Theorem 3.9 gives �K`
D

`�1
2
�K2
C .`� 1/M ,

where M is as in Section 3C. Quadratic extensions have discriminants of even
degree, so deg�K`

is divisible by ` � 1. If deg�K`
were zero, K`=K would

be a constant field extension, and would not have Galois group D`. If deg�K`

were `� 1, then either K2 would have genus 0 and deg M D 0, or K2=K would
be a constant field extension and deg M D 1. In the first case, K2`=K2 would be
unramified and hence a constant field extension, so K`=K would also be a constant
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field extension, a contradiction. In the second case, M would be a single place of
degree 1; since every place in M must split in K2, and since the places of K

that split in a quadratic constant field extension are the places of even degree, we
again have a contradiction. On the other hand, there do exist D` extensions with
discriminant divisor of degree 2.`� 1/, as the following theorem shows.

Theorem 5.1. Let ` be an odd prime and let q be a prime power with q� 1 mod 2`.
For every nonnegative even integer d , let Nd be the number of D` extensions of K

whose discriminant divisors have degree 2.`� 1/ and whose quadratic resolvents
have discriminant divisors of degree d . Let X be the modular curve X1.`/. Then

Nd

q3� q
D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

1

2qC 2
if d D 0,

1 if d D 2,

�2C
2#X.Fq/

`� 1
if d D 4,

0 otherwise:

Remark 5.2. For ` D 3, 5, and 7, the modular curve X1.`/ has genus 0, so for
these values of ` the formula for N4 simplifies to

N4

q3� q
D

2.q� `C 2/

`� 1
:

Equations for X1.`/ for larger values of ` are known. For example, Sutherland [33]
gives equations for all ` � 47; as of this writing, Sutherland’s online tables [34]
extend the results of [33] up to `D 181.

Proof of Theorem 5.1. Theorem 3.9 shows that if K` is a D` extension of K with
quadratic resolvent K2, and if deg�K`

D 2.`� 1/, then deg�K2
is 0, 2, or 4.

Let us count the number of D` extensions K` such that deg�K2
D 0; that is,

such that K2 is the unique quadratic extension of K obtained by extending the
constant field from Fq to Fq2 . In this case, we must have deg M D 2. We know
that every place in M splits in K2, and since the places of K that split in K2 are
precisely the places of even degree, M must consist of a single degree-2 place P .

If ˛ 2K2 gives rise to a D` extension of K, its divisor is of the shape given in
Proposition 3.3, where exactly one of the D0i with i > 0 is nonzero (and consists of
a place of K2 lying over P ). Replacing ˛ by a power if necessary, we may assume
that D0

1
and D0

�1
are the only nonzero D0i , and we can choose which of the two

places above P appears in D0
1

and which in D0
�1

. Since K2 has genus 0, we can
modify ˛ by an `-th power so that the divisor E0 from the proposition is 0. If we
let x be a generator of K, so that K2 Š Fq2.x/, then ˛ D b.x � c/=.x � cq/ for
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some b 2 Fq2 and c 2 Fq2 n Fq , and we see that NK2=K .˛/ D bqC1. Since this
norm is supposed to be an `-th power, b itself must be an `-th power, so we may
replace ˛ by ˛=b. We find that for every degree-2 place P of K, we obtain exactly
one D` extension of K2, so N0 D .q

2� q/=2: This leads to the formula for N0 in
the statement of the theorem.

Now let us count the number of D` extensions K` such that deg�K2
D 2; that

is, such that K2 is a genus-0 extension K2 with constant field Fq . Such extensions
are obtained by adjoining to K a square root of a polynomial f that is either
linear or quadratic with nonzero discriminant; the polynomial is determined by the
extension, if we require that its leading coefficient be either 1 or a fixed nonsquare
element of Fq . These extensions are of two different types: The ramification points
of the cover can either be rational over Fq , or not. There are q2C q extensions of
the first type, and q2� q of the second.

Since deg�K2
D 2, we must have deg M D 1, so M consists of a degree-1

place of K that splits in K2. The number of such places is equal to half of the
number of degree-1 places of K2 that are not ramified in K2=K; this is equal to
.q� 1/=2 for extensions with rational ramification, and .qC 1/=2 for extensions
without rational ramification.

As in the case where K2 was a constant field extension, the Kummer extension
K2`=K2 is completely determined by the divisor M . Thus, the number of K`

whose quadratic resolvents are genus-0 extensions of K with rational ramification
is equal to

.q2
C q/ �

q� 1

2
D

q3� q

2
;

while the number whose quadratic resolvents are genus-0 extensions of K without
rational ramification is equal to

.q2
� q/ �

qC 1

2
D

q3� q

2
:

We thus see that N2 D q3� q:

Finally, we count the number of D` extensions K` such that �K2
D 4; that is,

such that K2 is a genus-1 extension of K. In this case, the degree of M is 0, so
that K2` is an unramified degree-` Galois extension of K2.

Let E be an elliptic curve over Fq and let K2 be its function field. Let Aut E (re-
spectively, Aut0E) denote the automorphism group of E in the category of elliptic
curves (respectively, in the category of curves). Then

Aut0E ŠE.Fq/ÌAut E;

where the subgroup E.Fq/ acts on E by translation [29, Proposition X.5.1].
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Up to twists, the unramified degree-` Galois extensions of K2 (with constant
field Fq) are in bijection with the index-` subgroups of E.Fq/ (see [28, §VI.6]);
by duality, the number of such families of twists is equal to the number of order-`
subgroups of E.Fq/, which is equal to

#EŒ`�.Fq/� 1

`� 1
:

Exactly one twist z` D f in each family has the property that NK2=K .f / 2 .K
�/`:

Thus,

N4 D

X
E=Fq

#EŒ`�.Fq/� 1

`� 1
� #fdegree-2 maps E! P1 up to isomorphismgI (7)

here we say that two degree-2 maps �1; �2WE! P1 are isomorphic if there is an
˛ 2 Aut0E such that �2 D �1˛.

Given an E=Fq , we will count the number of isomorphism classes of degree-
2 maps E ! P1 in two steps. First, we count the number of .Aut0E/-orbits of
index-2 genus-0 subfields of the function field K2 of E. Then, for each orbit, we
fix an orbit representative L and we count the number of isomorphism classes of
degree-2 maps E! P1 that send the function field K of P1 to L.

Every index-2 genus-0 subfield of K2 is the fixed field of an involution in Aut0E
that induces �1 on the Jacobian of E. The involutions that induce �1 on the
Jacobian are the maps iQ, for Q 2E.Fq/, defined by iQ.P /DQ�P . The fixed
fields of two such involutions iQ1

and iQ2
lie in the same .Aut0E/-orbit if and

only if iQ1
and iQ2

are conjugate in Aut0E; this translates into the condition that
Q2�˛.Q1/ 2 2E.Fq/ for some ˛ 2 Aut E. Thus, the .Aut0E/-orbits of index-2
genus-0 subfields L are in bijection with the orbits of E.Fq/=2E.Fq/ under the
action of Aut E.

Let L be an index-2 genus-0 subfield of K2, corresponding to an involution
iQ. Let SL denote the set of isomorphism classes of degree-2 maps E ! P1

that send the function field K of P1 to the subfield L of K2, and let � be one
such map. The group PGL.2; q/ acts transitively on SL, so to compute #SL it
suffices to compute the stabilizer of � . Tracing through the definitions, we see
that � 2 PGL.2; q/ stabilizes � if and only if there is an automorphism ˛ of E

(as a curve) such that �� D �˛. Furthermore, every automorphism ˛ of E whose
induced automorphism of K2 sends L to itself gives rise to a � that stabilizes the
isomorphism class of � ; also, two such automorphisms ˛1 ¤ ˛2 will give rise to
distinct �, unless ˛�1

1
˛2 D iQ. We find that we have

#f� 2 PGL.2; q/ W � stabilizes �g D .1=2/#f˛ 2 Aut0E W ˛ stabilizes Lg

D .1=2/#f˛ 2 Aut0E W ˛ commutes with iQg:
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We check that an element .P; a/ 2 E.Fq/ ÌAut E Š Aut0E commutes with iQ
if and only if 2P DQ� a.Q/. This shows that for every element of Aut E that
fixes the image of Q in E.Fq/=2E.Fq/, there are #E.Fq/Œ2� choices for P that
give an element of Aut E0 that commutes with iQ. In other words, if we let O be
the .Aut E/-orbit of Q in E.Fq/=2E.Fq/, then

#f˛ 2 Aut0E W ˛ commutes with iQg D #E.Fq/Œ2�
# Aut E

#O
:

Putting this all together, we obtain

#SL

# PGL.2; q/
D

1

#f� 2 PGL.2; q/ W � stabilizes �g

D
2

#f˛ 2 Aut0E W ˛ commutes with iQg

D
2

# Aut E

#O

#E.Fq/Œ2�
:

The total number of degree-2 maps E! P1 (up to isomorphism) is equal to the
sum

P
L SL, where L ranges over a set of representatives for the .Aut E0/-orbits of

index-2 genus-0 subfields of K2. Summing over these L is the same as summing
over the .Aut E/-orbits O of E.Fq/=2E.Fq/. Thus,

#fdegree-2 maps E! P1g=Š

# PGL.2; q/
D

2

# Aut E

1

#E.Fq/Œ2�

X
orbits O

#O

D
2

# Aut E

1

#E.Fq/Œ2�
#.E.Fq/=2E.Fq//

D
2

# Aut E
:

Combining this with (7) gives

N4

# PGL.2; q/
D

X
E=Fq

#EŒ`�.Fq/� 1

`� 1

2

# Aut E

D
2

`� 1

X
E=Fq

X
P2EŒ`�.Fq/nfOg

1

# Aut E

D
2

`� 1

X
.E;P/=Š

1

# Aut.E;P /
: (8)

Let us explain the notation in the final line. The sum is over isomorphism classes of
pairs .E;P /, where E is an elliptic curve over Fq and P is a nonzero `-torsion point
in E.Fq/; two such pairs .E1;P1/ and .E2;P2/ are isomorphic to one another
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when there is an isomorphism E1!E2 that takes P1 to P2. The automorphism
group of a pair .E;P / consists of the automorphisms of E (as an elliptic curve)
that fix P .

From [17, Proposition 3.3 on p. 240 and Proposition 2.3 on p. 233], we find thatX
.E;P/=Š

1

# Aut.E;P /
D #X.Fq/� c;

where X is the modular curve X1.`/ and c is the number of Fq-rational cusps on X .
Since Fq contains the `-th roots of unity, all of the `� 1 geometric cusps of X are
defined over Fq [31, Theorem 1.3.1, p. 12], so we have c D `� 1. Combining this
with (8) gives the formula for N4 stated in the theorem. �

6. Conclusions and future work

It is interesting that the number of degree-` dihedral function fields with a given
quadratic resolvent K2 and discriminant divisor � D `�1

2
�K2

C .` � 1/M be-
haves quite differently depending on whether or not M is trivial. We see from
Theorem 3.10 that when M D 0, the number of such fields with a given resolvent
field K2 depends exclusively on the `-rank r of Pic0 K2. The probability that the
divisor class group of K2 has a certain `-Sylow subgroup is the focus of various
heuristics of Cohen-Lenstra type. These are discussed further in [1], [14], [15],
and [21], and directly relate to the number of D` function fields with M D 0.

When M ¤ 0, the number of degree-` dihedral function fields with given qua-
dratic resolvent field K2 depends additionally on the cardinality of the set T`.M /

defined in Section 3D. The natural map Div0 K2!Pic0 K2=`Pic0 K2 is surjective,
and when # Supp M is greater than r it is reasonable to expect that the map � from
Section 3D is also surjective, so that a random element of Q`.M / will lie in the
kernel of � with probability

1

#.Pic0 K2=`Pic0 K2/
D

1

`r
:

Now, an element of Q`.M / lies in T`.M / if and only if it is in the kernel of �,
so we expect T`.M / to contain about #Q`.M /=`r D .`� 1/# Supp M=`r elements.
From Theorem 3.10, the number of nonconjugate degree-` dihedral function fields
with quadratic resolvent K2 and with discriminant divisor �D `�1

2
DC .`� 1/M

is #T`.M /`r=.`�1/, which we expect to be approximately .`�1/# Supp M�1. Note
that this is independent of r . When # Supp M is sufficiently large, our data seems
to support this heuristic.

In the case when `D 3, our algorithm tabulates all non-Galois cubic function
fields up to a given degree bound on the discriminant divisor. Galois cubics are
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Number of cubic extensions

q B Non-Galois Galois Total qB�2.q2C qC 1/ Ratio

7 4 2,373 85 2,458 2,793 1.136
6 117,285 1,093 118,378 136,857 1.156
8 5,763,093 4,117 5,767,210 6,705,993 1.163

13 4 28,470 274 28,744 30,927 1.076
6 4,824,534 6,826 4,831,360 5,226,663 1.082

19 4 130,131 571 130,702 137,541 1.052

25 4 390,300 976 391,276 406,875 1.040

31 4 923,025 1,489 924,514 954,273 1.032

37 4 1,873,458 2,110 1,875,568 1,926,183 1.027

43 4 3,417,855 2,839 3,420,694 3,500,157 1.023

49 4 5,763,576 3,676 5,767,252 5,884,851 1.020

Table 2. Cubic function field counts compared to asymptotics, for q � 1 mod 3

and B � 4 with qBC1 < 229. For the q and B given in the first two columns, we
list the number of cubic extensions of Fq.x/ with discriminant divisor of degree
at most B, subdivided into the counts of non-Galois and Galois extensions. The
sixth column gives an estimate for the total number derived from the asymptotic
formula (9), and the seventh column gives the ratio between the estimate and the
actual number from column 5.

easy to count, so we can find the total number of cubic extensions of K whose
discriminant divisors have degree at most some fixed bound. On the other hand,
using a result of Datskovsky and Wright [10, Theorem I.1] we can compute an
asymptotic formula for the number of cubic extensions:

lim
B!1
B even

q�B
X

K3=K
deg�K3

�B

1D
q3

.q2� 1/.q� 1/�K .3/
D

q2C qC 1

q2
: (9)

(Note that the term 2 log q in [10, Theorem I.1] should be simply log q.) In Table 2
we compare this asymptotic expression to actual computations. For each q and
B listed in the first two columns, the entry in column 5 gives the total number of
cubic extensions of Fq.x/ with discriminant divisor of degree at most B, broken
down into the number of non-Galois extensions (column 3) and Galois extensions
(column 4). Column 6 gives the estimate from (9), and column 7 gives the ratio of
the estimate to the actual values.

Note that for BD 4 we have explicit formulas for the number of cubic extensions:
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By Theorem 5.1, the number of non-Galois extensions is

.q3
� q/

�
1

2qC 2
C 1C .q� 1/

�
D q4

�
q2C q

2
;

and it is not hard to show that the number of Galois extensions is .3q2C3qC2/=2;

so the total number of cubic extension is q4Cq2CqC1. It follows that for B D 4

the ratio in column 7 is equal to

1C
q3� q� 1

q4C q2C qC 1
:

As in the number field setting, the leading term of the asymptotic expression
overestimates the actual number of cubic function fields, which leads us to believe
that the secondary term has a negative coefficient. An explicit computation of this
secondary term is currently underway by Yongqiang Zhao (private communication,
2012).

One obstacle to generating larger amounts of data is the memory intensive nature
of Algorithm 4.4 as written. One could obtain most of the results by instead looking
for orbit representatives of PGL.2; q/ acting on elliptic and hyperelliptic curves of
genus g by iterating over these curves and computing their invariants. One would
then only need to store a representative for each set of invariants. This would
largely remove the storage requirements of the algorithm; however, it would also
be a slower process as additional time must be spent computing these invariants.

For primes ` > 3, no asymptotic estimates on counts of degree-` function fields
are known; it may be possible to obtain such estimates by generalizing the work
of [9] or adapting the program of [37] to the case q � 1 mod ` by using results
in [13], [15], and [21]. It would be very interesting to see if the “gaps” for the
number field setting referred to in Section 1 occur here as well. This is research in
progress by the first two authors and several others.

We close by noting that our work is readily extendable to the problem of finding
D` extensions of function fields K other than Fq.x/. This should be reasonably
straightforward if one restricts to cases where .Pic0 K/Œ`� is trivial. Work is also
in progress to extend our algorithms to the cases when q 6� 1 mod `. As in [8],
one can construct cyclic function fields by adjoining the `-th roots of unity to K,
applying Kummer theory to the extension field, and finally taking a fixed field by
the Frobenius automorphism of Fq`�1=Fq . We expect that one can combine this
technique with the work above to construct D` function fields with q 6� 1 mod `.
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