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Preface

The Algorithmic Number Theory Symposium (ANTS), held biennially since
1994, is the premier international forum for research in computational number the-
ory. ANTS is devoted to algorithmic aspects of number theory, including elemen-
tary, algebraic, and analytic number theory, the geometry of numbers, arithmetic
algebraic geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the tenth ANTS meeting, held July 9-13,
2012 at the University of California, San Diego. The scientific program of ANTS X
consisted of 5 invited lectures, 25 contributed talks, a poster session, and a rump
session. The invited speakers were Manjul Bhargava (Princeton University), Nils
Bruin (Simon Fraser University), Wen-Ching Winnie Li (Pennsylvania State Uni-
versity), Nils-Peter Skoruppa (Universitidt Siegen), and Andrew Sutherland (Mas-
sachusetts Institute of Technology). Extended abstracts of the presentations of
Bruin and Sutherland are included in this volume.

The contributed talks were presentations of papers chosen through a competitive
review process. Each of the 55 papers submitted for consideration was reviewed
by at least three members of the program committee, often with input from one or
more external reviewers as well. Revised and edited versions of the 25 accepted
papers are included in this volume.

At each ANTS since 2006, the Number Theory Foundation has sponsored the
Selfridge Prize, an award for the best contributed paper, as judged by the program
committee. The Selfridge Prize for ANTS X was awarded to Andrew Sutherland
for his paper On the evaluation of modular polynomials.

Abstracts of all presentations (including invited presentations and posters), PDF
slides of many presentations, and the versions of the contributed papers that were
presented at the conference can be found on the conference web site:

http://math.ucsd.edu/~kedlaya/ants10/

For each of the previous ANTS conferences, the proceedings volume was pro-
duced before the meeting and was available at the meeting. This publication time-
line allowed for very little editing and did not permit authors to revise their papers
to incorporate insights gained from discussions during the conference. Following a
suggestion raised in previous years, the ANTS X organizing committee decided to
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produce the proceedings volume after the conference. The committee also decided
to switch publishers; we are proud to note that this volume is the inaugural volume
of the Open Book Series of Mathematical Sciences Publishers.

A word about bibliographic references: The editors tried their best to find online
versions of the references that are cited in the ANTS papers. If you are reading a
PDF version of one of the papers in this volume, and if one of its references has
a title that is colored blue, then the title is a hyperlink to an online copy of the
reference. If you are reading a printed copy of an ANTS paper, the hyperlinks will
unfortunately no longer work. However, there are still ways to find online versions
of cited references. For example, the AMS Digital Mathematics Registry includes
a useful list of journal archives:

http://www.ams.org/dmr/JournalList.html

For some of the ANTS references that appear in journals that are not on the AMS
list, the editors were nevertheless able to track down online versions. For these
references, we spell out the URL of the paper in the bibliographic entry.

The editors are grateful to the authors of the papers in this volume for their
flexibility and graciousness during the editing process. The editors are equally
grateful to Silvio Levy and Alex Scorpan, our contacts at Mathematical Sciences
Publishers, for their flexibility and graciousness. We hope that the reader will find
the value added by the editing to be sufficient recompense for the extra year’s wait
for the volume to appear.

Everett Howe and Kiran Kedlaya
San Diego, November 2013

Local organizing committee.

Alina Bucur University of California, San Diego
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Kristin Lauter Microsoft Research

Program committee.

Dan Bernstein University of Illinois, Chicago

Alina Bucur University of California, San Diego

Joe Buhler Center for Communications Research, La Jolla
Henri Cohen Université de Bordeaux 1

Chantal David Concordia University

Steven Galbraith University of Auckland


http://www.ams.org/dmr/JournalList.html

PREFACE ix

Dan Gordon Center for Communications Research, La Jolla
Everett Howe (cochair) Center for Communications Research, La Jolla
Kiran Kedlaya (cochair) University of California, San Diego

Jiirgen Kliiners Universitdt Paderborn

Kristin Lauter Microsoft Research

Fernando Rodriguez Villegas University of Texas, Austin

Peter Stevenhagen Universiteit Leiden

Michael Stoll Universitdt Bayreuth

Bianca Viray Brown University

Financial sponsors. We are thankful for support from Microsoft Research, the
National Science Foundation, the National Security Agency, the Number Theory
Foundation, and the University of California, San Diego.

Previous and future ANTS meetings.

Year Location Proceedings

I 1994 Cornell University (Ithaca, NY, USA) LNCS 877
II 1996 Université Bordeaux 1 (Talence, France) LNCS 1122
IIT 1998 Reed College (Portland, OR, USA) LNCS 1423
IV 2000 Universiteit Leiden (The Netherlands) LNCS 1838
V 2002 University of Sydney (Australia) LNCS 2369
VI 2004 University of Vermont (Burlington, VT, USA)  LNCS 3076
VII 2006 Technische Universitit Berlin (Germany) LNCS 4076
VIII 2008 Banff Centre (Banff, Alberta, Canada) LNCS 5011
IX 2010 INRIA (Nancy, France) LNCS 6197

X 2012 University of California (San Diego, CA, USA) OBS 1
XI 2014 Hotel Hyundai (Gyeonglu, Korea)

Proceedings of the previous ANTS meetings have been published in the Springer
Lecture Notes in Computer Science series (LNCS). This volume is the first volume
of the Mathematical Sciences Publishers’ Open Book Series (OBS).

ANTS XI is planned to be held August 7-11, 2014 in GyeongJu, Korea, as a
satellite conference to the International Congress of Mathematicians. The chairs
of the program committee are Jung Hee Cheon (Seoul National University) and
Hyang-Sook Lee (Ewha Womans University).

EVERETT W. HOWE: however@alumni.caltech.edu
Center for Communications Research, 4320 Westerra Court, San Diego, CA 92121-1969,
United States

KIRAN S. KEDLAYA: kedlaya@ucsd.edu
Department of Mathematics, University of California, San Diego, 9500 Gilman Drive #0112,
La Jolla, CA 92093-0112, United States
:.msp


mailto:however@alumni.caltech.edu
mailto:kedlaya@ucsd.edu
http://msp.org




THE OPEN BOOK SERIES 1 (2013) :.
Tenth Algorithmic Number Theory Symposium msp
dx.doi.org/10.2140/0bs.2013.1.1

Deterministic elliptic curve primality proving
for a special sequence of numbers

Alexander Abatzoglou, Alice Silverberg,
Andrew V. Sutherland, and Angela Wong

We give a deterministic algorithm that very quickly proves the primality or com-
positeness of the integers N in a certain sequence, using an elliptic curve E/Q
with complex multiplication by the ring of integers of @(+/—7). The algorithm
uses O(log N) arithmetic operations in the ring Z/ N Z, implying a bit complex-
ity that is quasiquadratic in log N. Notably, neither of the classical “N — 1" or
“N 4+ 1” primality tests apply to the integers in our sequence. We discuss how this
algorithm may be applied, in combination with sieving techniques, to efficiently
search for very large primes. This has allowed us to prove the primality of several
integers with more than 100,000 decimal digits, the largest of which has more
than a million bits in its binary representation. At the time it was found, it was
the largest proven prime N for which no significant partial factorization of N — 1
or N + 1 is known (as of final submission it was second largest).

1. Introduction

With the celebrated result of Agrawal, Kayal, and Saxena [3], one can now un-
equivocally determine the primality or compositeness of any integer in determinis-
tic polynomial time. With the improvements of Lenstra and Pomerance [27], the
AKS algorithm runs in 9] (n®) time, where n is the size of the integer to be tested
(in bits). However, it has long been known that for certain special sequences of
integers, one can do much better. The two most famous examples are the Fermat
numbers Fj = 22 + 1, to which one may apply Pépin’s criterion [35], and the
Mersenne numbers M), = 27 — 1, which are subject to the Lucas-Lehmer test [24].
In both cases, the corresponding algorithms are deterministic and run in 5(n2)
time.

MSC2010: primary 11Y11; secondary 11G05, 14K22.
Keywords: primality, elliptic curves, complex multiplication.
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2 A. ABATZOGLOU, A. SILVERBERG, A. V. SUTHERLAND, AND A. WONG

In fact, every prime admits a proof of its primality that can be verified by a
deterministic algorithm in 9] (n?) time. Pomerance shows in [36] that for every
prime p > 31 there exists an elliptic curve E/F, with an F,-rational point P of
order 2" > (p!/* + 1)2, which allows one to establish the primality of p using
just r elliptic curve group operations. Elliptic curves play a key role in Pomer-
ance’s proof; the best analogous result using classical primality certificates yields
an O (n3) time bound (see [38], and compare [9, Theorem 4.1.9]).

The difficulty in applying Pomerance’s result lies in finding the pair (E, P), a
task for which no efficient method is currently known. Rather than searching for
suitable pairs (E, P), we instead fix a finite set of curves E,/Q, each equipped
with a known rational point P, of infinite order. To each positive integer k we
associate one of the curves E, and define an integer J; for which we give a neces-
sary and sufficient condition for primality: J is prime if and only if the reduction
of P, in E4(Fp) has order 2k+1 for every prime p dividing Ji. Of course p = Jj
when J}, is prime, but this condition can easily be checked without knowing the
prime factorization of Jg. This yields a deterministic algorithm that runs in 9] (n?)
time (see Algorithm 5.1).

Our results extend the methods used by Gross [20], Denomme and Savin [11],
Tsumura [44], and Gurevich and Kunyavskii [22], all of which fit within a gen-
eral framework laid out by Chudnovsky and Chudnovsky in [8] for determining
the primality of integers in special sequences using elliptic curves with complex
multiplication (CM). The elliptic curves that we use lie in the family of quadratic
twists defined by the equations

E;: y2 = x3—35a%x — 9843, (D)

for squarefree integers a such that E,(Q) has positive rank. Each curve has good
reduction outside of 2, 7, and the prime divisors of a, and has CM by Z[«], where

1+ VT
e

For each curve E,, we fix a point P, € E,(Q) of infinite order with P, & 2E;(Q).
For each positive integer &, let

o

jk =1+ 2aF € 7[al],
Je = jijk = 1+2(* +a*) +2kT2 e N.
The integer sequence Jy satisfies the linear recurrence relation
Ji+a =4Jky3 = TJgy2 +8Jp 1 — 4k,

with initial values J; = J, = 11, J3 =23, and J4 = 67. Then (by Lemma 4.5) Jj
is composite for k = 0 (mod 8) and for k = 6 (mod 24). To each other value of
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k we assign a squarefree integer @, based on the congruence class of k¥ (mod 72),
as listed in Table 1. Our choice of a is based on two criteria. First, it ensures
that when Jj is prime, the Frobenius endomorphism of E, mod J; corresponds
to complex multiplication by ji (rather than — j;) and

Eo(Z) W Z) ~7)2Z x7/2* 7.

Second, it implies that when J}, is prime, the reduction of the point P, has order
2k+1in E(Z/ JxZ). The second condition is actually stronger than necessary (in
general, one only needs P, to have order greater than 2k/2+1) put it simplifies
matters. Note that choosing a sequence of the form j; = 1 + Ay means that
E.(Z|a]/(Ji)) =~ Z[x]/ A, whenever J is prime and jj is the Frobenius endo-
morphism of £, mod J (see Lemma 4.6).

We prove in Theorem 4.1 that the integer Jj is prime if and only if the point P,
has order 2¥+1 on “E, mod J”. More precisely, we prove that if one applies
the standard formulas for the elliptic curve group law to compute scalar multiples
Q; = 2! P, using projective coordinates Q; = [x;, y;, z;] in the ring Z/ J Z, then
Jx is prime if and only if gcd(Jg, zx) = 1 and zx 41 = 0. This allows us to deter-
mine whether J} is prime or composite using O (k) operations in the ring Z/J; Z,
yielding a bit complexity of O(k2logk loglogk) = O(k?2) (see Proposition 5.2
for a more precise bound).

We note that, unlike the Fermat numbers, the Mersenne numbers, and many
similar numbers of a special form, the integers J; are not amenable to any of the
classical “N — 1” or “N + 1” type primality tests (or combined tests) that are
typically used to find very large primes (indeed, the 500 largest primes currently
listed in [7] all have the shape ab™ £ 1 for some small integers a and b).

In combination with a sieving approach described in Section 5, we have used
our algorithm to determine the primality of Jj for all k < 1.2 x 10%. The prime
values of Ji are listed in Table 4. At the time it was found, the prime J1,111,930,
which has 334,725 decimal digits, was the largest proven prime N for which no
significant partial factorization of either N — 1 or N 4 1 was known [1]. On July
4, 2012 it was superseded by a 377,922 digit prime found by David Broadhurst
[6] for which no significant factorization of N — 1 or N + 1 is known; Broadhurst
constructed an ECPP primality proof for this prime, but it is not a Pomerance proof.

Generalizations have been suggested to the settings of higher-dimensional abelian
varieties with complex multiplication, algebraic tori, and group schemes by Chud-
novsky and Chudnovsky [8], Gross [20], and Gurevich and Kunyavskii [21], re-
spectively. In the PhD theses of the first and fourth authors, and in a forthcoming
paper, we are extending the results in this paper to a more general framework. In
that paper we will also explain why, when restricting to elliptic curves over Q, this
method requires curves with CM by Q(+/—D) with D = 1,2, 3, or 7.
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2. Relation to prior work

In [8], Chudnovsky and Chudnovsky consider certain sequences of integers s; =
Normg /(1 + ocoa]f ), defined by algebraic integers g and «; in an imaginary
quadratic field K = Q(+/D). They give sufficient conditions for the primality
of sy, using an elliptic curve E with CM by K. In our setting, D = —7, a9 = 2,
a1 = (1++/=7)/2, and Ji = sx. The key difference here is that we give necessary
and sufficient criteria for primality that can be efficiently checked by a deterministic
algorithm. This is achieved by carefully selecting the curves E,/Q that we use,
so that in each case we are able to prove that the point P, € E,(Q) reduces to a
point of maximal order 2k+1 on E, mod Ji, whenever J is prime. Without such
a construction, we know of no way to obtain any nontrivial point on £ mod s in
deterministic polynomial time.

Our work is a direct extension of the techniques developed by Gross [20; 45],
Denomme and Savin [11], Tsumura [44], and Gurevich and Kunyavskii [22], who
use elliptic curves with CM by the ring of integers of Q(i) or Q(+/—3) to test
the primality of Mersenne, Fermat, and related numbers. However, as noted by
Pomerance [37, §4], the integers considered in [11] can be proved prime using
classical methods that are more efficient and do not involve elliptic curves, and
the same applies to [20; 44; 45; 22]. But this is not the case for the sequence we
consider here.

3. Background and notation

3A. Elliptic curve primality proving. Primality proving algorithms based on el-
liptic curves have been proposed since the mid-1980s. Bosma [5] and Chudnovsky
and Chudnovsky [8] considered a setting similar to the one employed here, using
elliptic curves to prove the primality of numbers of a special form; Bosma proposed
the use of elliptic curves with complex multiplication by Q(i) or Q(+~/—3), while
Chudnovsky and Chudnovsky considered a wider range of elliptic curves and other
algebraic varieties. Goldwasser and Kilian [16; 17] gave the first general purpose el-
liptic curve primality proving algorithm, using randomly generated elliptic curves.
Atkin and Morain [4; 32] developed an improved version of the Goldwasser-Kilian
algorithm that uses the CM method to construct the elliptic curves used, rather than
generating them at random (it does rely on probabilistic methods for root-finding).
With asymptotic improvements due to Shallit, the Atkin-Morain algorithm has a
heuristic expected running time of 5(114), which makes it the method of choice for
general purpose primality proving [33]. Gordon [18] proposed a general purpose
compositeness test using supersingular reductions of CM elliptic curves over Q.
Throughout this paper, if £ C P? is an elliptic curve over @, we shall write
points [x, y,z] € E(Q) so that x, y,z € Z and ged(x, y,z) = 1, and we may use
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(x, y) to denote the projective point [x, y, 1].

We say that a point P = [x, y,z] € E(Q) is zero mod N when N divides z;
otherwise P is nonzero mod N. Note that if P is zero mod N then P is zero
mod p for all primes p dividing N.

Definition 3.1. Given an elliptic curve E over @, a point P = [x, y, z] € E(Q),
and N € Z, we say that P is strongly nonzero mod N if gcd(z, N) = 1.

If P is strongly nonzero mod N, then P is nonzero mod p for every prime p
dividing N, and if N is prime, then P is strongly nonzero mod N if and only if P
is nonzero mod N.

We rely on this fundamental result, which can be found in [16; 26; 17]:

Proposition 3.2. Letr E/Q be an elliptic curve, let N be a positive integer prime
to disc(E), let P € E(Q), and let m > (N'Y/* + 1)2. Suppose mP is zero mod N
and (m/q) P is strongly nonzero mod N for all primes q|m. Then N is prime.

To make practical use of Proposition 3.2, one needs to know the prime factor-
ization of m. For general elliptic curve primality proving this presents a challenge;
the algorithms of Goldwasser-Kilian and Atkin-Morain use different approaches
to ensure that m has an easy factorization, but both must then recursively construct
primality proofs for the primes ¢ dividing m. In our restricted setting we effectively
fix the prime factorization of m = 2K*1 ahead of time.

Next we give a variant of Proposition 3.2 that replaces “strongly nonzero” with
“nonzero”, at the expense of m being a prime power with a larger lower bound.

Proposition 3.3. Let E/Q be an elliptic curve, let p be a prime, let N be an odd
positive integer prime to p disc(E), and let P € E(Q). Suppose b is a positive
integer such that p? > (\/N/3 + 1) and p® P is zero mod N and p®='P is
nonzero mod N. Then N is prime.

Proof. Since pb ~1 P is nonzero mod N, there are a prime divisor ¢ of N and a
positive integer r such that ¢” exactly divides N and p?~1 P is nonzero mod ¢”.
Let E1(Z/q"Z) denote the kernel of the reduction map E(Z/q"7) — E(Fy). It
follows, for example, from [29, Theorem 4.1] that E1(Z/q" Z) is a g-group. Let
P’ € E(Z/q"Z) be the reduction of P mod ¢” and let P” be the image of P’
in E(Fy). If pP=1P” = 0 then p>~'P’ € E1(Z/q"Z), so p>~' P’ has order a
power of g. But by assumption it has order p, which is prime to N. This is a
contradiction, so P” has order p?. If N were composite, then ¢ < N/3 since N
is odd, so by the Hasse bound,

PP <IEFY] < (Vg+1D? < (VN/3+ 1),
contradicting the hypothesis that pb > (\/N_/ES +1)2. O
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3B. Complex multiplication and Frobenius endomorphism. For any number field
F, let Of denote its ring of integers. If E is an elliptic curve over a field K, and
Qg is the space of holomorphic differentials on E over K, then Qg is a one-
dimensional K-vector space, and there is a canonical ring homomorphism

Endg (E) — Endg (Q) = K. 2)

Suppose now that E is an elliptic curve over an imaginary quadratic field K, and
that £ has complex multiplication (CM) by Og, meaning that Endg (E) >~ Og.
Then the image of the map in (2) is Og. Let ¢ : Ok — Endg(E) denote the
inverse map. Suppose that p is a prime ideal of K at which E has good reduction
and let E denote the reduction of E mod p. Then the composition

Ok => Endg (E) < Endg /p(E),

where the first map is ¥ and the second is induced by reduction mod p, gives a
canonical embedding
Ok — End(E). ©)

The Frobenius endomorphism of E is (x,y) — (x4, y?) where ¢ = Normg o (p);
under the embedding in (3), the Frobenius endomorphism is the image of a partic-
ular generator 7 of the (principal) ideal p. By abuse of notation, we say that the
Frobenius endomorphism is 7.

4. Main theorem

In this section we state and prove our main result, Theorem 4.1, which gives a
necessary and sufficient condition for the primality of the numbers Jj.
Fix a particular square root of —7 and let K = Q(+/—7). Let

_ VT
=

a Ok,

and for each positive integer k, let
jk=1422* €Z[a] and Ji = Normg/o(jx) = jkjr €N

Note that Jj is prime in Z if and only if jj is prime in Og. Note also that
Normg /g(@) = a@ = 2.

Recall the family of elliptic curves E, defined by (1). Lemma 4.5 below shows
that J is composite if k = 0 (mod 8) or k = 6 (mod 24), so we omit these cases
from our primality criterion. For each remaining value of k, Table 1 lists the
twisting parameter a and the point P, € E,(Q) we associate to k. For each of
these a, the elliptic curve E, has rank one over Q, and the point P, is a generator
for E,4(Q) modulo torsion.
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k a P,
k =0or2 (mod3) —1 (1,8)
k=4,7,13,22 (mod 24) =5 (15,50)
k =10 (mod 24) —6 (21,63)
k=1,19,49,67 (mod 72) —17 (81, 440)
k = 25,43 (mod 72) —111 (—633,12384)

Table 1. The twisting parameters a and points Py .

Theorem 4.1. Fix k > 1 such that k # 0 (mod 8) and k % 6 (mod 24). Let P, €
E,(Q) be as in Table 1 (depending on k). The following are equivalent:

() 2K*t1 P, is zero mod Ji and 2k P, is strongly nonzero mod Jy;
(1) Jy is prime.

Remark 4.2. Applying Proposition 3.3 with N = Ji, p=2,and b =k + 1, we
can add an equivalent condition in Theorem 4.1 as long as k > 6, namely:

(iii) 2¥*T1 P, is zero mod J and 2% P, is nonzero mod Jj.

We shall prove Theorem 4.1 via a series of lemmas, but let us first outline the
proof. One direction is easy: Since 2K*1 > (J kl /4y 1)2 for all k > 1, if (i) holds
then so does (ii), by Proposition 3.2 (where the hypothesis ged(Jg, disc(Eg)) = 1
holds by Lemma 4.5 below).

Now fix a and P, as in Table 1, and let ﬁa denote the reduction of P, modulo j.
We first compute a set S, such that if k € S, and j is prime, then E,(Og/(ji)) =~
Ok /(20F) as 0 x-modules. We then compute a set 7, such that if k € T, and j
is prime, then P, does not lie in ¢ E, (Ok/(jr)) if and only if k € T, (note that
o € Og — End(E,)). For k € S, N Ty, the point P, has order 251 whenever Jr
is prime.

We now fill in the details. Many of the explicit calculations below were per-
formed with the assistance of the Sage computer algebra system [43].

4A. The linear recurrence sequence Jy. As noted in the introduction, the se-
quence Jj satisfies the linear recurrence relation

Jk+a =443 — T4 + 841 —4Jk. “)

We now prove this, and also note some periodic properties of this sequence. See
[12] or [28, Chapter 6] for basic properties of linear recurrence sequences.

Definition 4.3. We call a sequence ay. (purely) periodic if there exists an integer m
such that ay = ag4,, for all k. The minimal such m is the period of the sequence.
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Lemma 4.4. The sequence Jy, satisfies (4). If p is an odd prime and p C Ok is a
prime ideal above (p), then the sequence Ji mod p is periodic, with period equal
to the least common multiple of the orders of 2 and o in (Og /p)*.

Proof. The characteristic polynomial of the linear recurrence in (4) is
f)=x*—4x3 +7x2 —8x+4=(x -1 (x —2)(x2—x +2),

whose roots are 1,2, «, and «. It follows that the sequences 1% , 2k s ok , and &k,
and any linear combination of these sequences, satisfy (4). Thus Jj satisfies (4).
One easily checks that the lemma is true for p = 7, so assume p # 7. Let A be
the 4 x 4 matrix with 4; ; = J;4+j—1. Then detA = —212.7 is nonzero mod D,
hence its rows are linearly independent over [ . It follows from Theorems 6.19
and 6.27 of [28] that the sequence J; mod p is periodic, with period equal to the
lcm of the orders of the roots of f in F; (which we note are distinct). These roots
all lie in Ok /p >~ F,a, where d € {1, 2} is the residue degree of p. Since @ = 2/a,
the order of @ in (Og /p)* divides the lcm of the orders of 2 and «. The lemma
follows. O

When p is an odd prime, let m, denote the period of the sequence J; mod p.
Lemma 4.4 implies that m,, always divides p? — 1, and it divides p — 1 whenever
p splits in K.

Lemma 4.5.

(1) Ji is divisible by 3 if and only if k = 0 (mod 8).

(ii) Jg is divisible by 5 if and only if k = 6 (mod 24).
(iii) Jr =2 (mod 7) if k =0 (mod 3), and J;, = 4 (mod 7) otherwise.

(iv) Fork > 1, we have Ji = 3 (mod 8) if k is even, and J, = 7 (mod 8) if k is

odd.

(v) Ji is divisible by 17 if and only if k = 54 (mod 144).

(vi) Ji is not divisible by 37.
Proof. Lemma 4.4 allows us to compute the periods m3 = 8, ms = 24, m7 = 3,
m17 = 144, and m37 = 36. It then suffices to check, for p = 3,5, 17, and 37, when
Jx =0 (mod p) for 1 <k < mp, and to determine the values of J; (mod 7) for
1<k<3.

It is easy to check that «* 4+ &% = 3 (mod 4) for odd k > 1, and o* + a* =
1 (mod 4) otherwise. Since J; = 1 4 2(a* + @*) + 25*2, we have (iv).

As an alternative proof for one direction of (i) and (ii), note that o and & each
has order 8 in (Ox /(3))*. Hence if k = 0 (mod 8), then J; = 1 + 2(a* +a*) +
2642 = 1 4+ 2(1 + 1)+ 1 = 0 (mod 3). Similarly, «® = 2 = @® (mod 5), so
Jy =142(4)4+1=0 (mod 5) when k = 6 (mod 24). |
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4B. The set S,. For each squarefree integer ¢ we define the set of integers

e feon () ()1

where (—) denotes the (generalized) Jacobi symbol.

If jj is prime in Ok, then the Frobenius endomorphism of E, over the finite
field Ok /(jx) corresponds to either ji or —j. For elliptic curves over Q with
complex multiplication, one can easily determine which is the case.

Lemma 4.6. Suppose a is a squarefree integer, k > 1, and jj is prime in Og.
Then:

(1) k € S, if and only if the Frobenius endomorphism of E, over the finite field
Ok / (k) is Jis
(i) ifk € Sa, then E4(Ok/(jx)) =~ Ok /(2ak) as Ox-modules.

Proof. The elliptic curve E, is the curve in Theorem 1 of [42, p. 1117], with
D = —7 and 7w = ji. By [42, p. 1135], the Frobenius endomorphism of E, over

Ok /(jk) is '
a Jk .
(Tk) (ﬁ) LS

Part (i) then follows from the definition of S,. For (ii), note that (i) implies that if
k € S,, then

Eq(0k/(jx)) = ker(ji — 1) = ker(2a¥) ~ Og / (20%).
which completes the proof. O
The next lemma follows directly from Lemma 4.5(iv).
Lemma 4.7. Let k > 1.
0 (7)1 (2)-f e
We now explicitly compute the sets S, for the values of a used in Theorem 4.1.

Lemma 4.8. Fora € {—1,—5,—6,—17,—111} the sets S, are as in Table 2.
Proof. Since ji = 1+ 2%, and o = 4 (mod ~/—7), and 23 = 1 (mod 7), we have

Je Y (122K (1 ifk =1 (mod3),
/—7) 7 | =1 ifk =0,2 (mod 3).
We now need to compute (Ja—k) fora =—1,—-5,—6,—17, and —111. The case

a = —1 is given by Lemma 4.7(i). As in the proof of Lemma 4.5, applying
Lemma 4.4 to the odd primes p = 3,5, 17,37 that can divide a, we found that
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a m Sqs =1{k > 1:k mod m is as below}

-1 3 0,2
=5 24 0,2,4,5,7,9,12, 13, 16, 18, 21, 22, 23
-6 24 3,7,9,10, 11, 12, 13, 17, 20, 22
—17 144 0,1,5,7,9,10, 13, 14, 15, 18, 19, 20, 22, 23, 27, 30, 31,
33,34, 36, 42, 43, 44, 45, 49, 50, 53, 56, 61, 62, 63, 66, 67,
68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 90, 91,
92,93, 97, 99, 100, 104, 106, 108, 110, 111, 112, 114, 117,
118, 121, 122, 123, 125, 126, 128, 129, 133, 135, 136, 137,
138, 139, 141, 143
111 72 2,4,6,9, 14, 15, 18, 20, 22, 23, 25, 30, 33, 34, 35, 37, 38,
39,41, 42, 43, 47, 49, 50, 52, 53, 54, 55, 57, 58, 63, 65, 66,
67, 68,70

Table 2. The sets S,.

the periods m) of the sequences Jx mod p are m3 = 8, ms = 24, my7 = 144,
and m37 = 36. Since (}—kl) = —1, it follows from quadratic reciprocity that for
a =—5,—17,and —111, the period of the sequence (J“—k) divides the least common
multiple of the periods m, for p dividing a. For a = —6, by Lemma 4.7(ii) the
period of (Jz_k) is 2, which already divides m3 = 8. Since the period of the sequence
(j—%) is 3, we find the period m of (J“—k) (j—%) listed in Table 2 by Faking the least
common multiple of 3 and the m,, for p dividing a. To compute Sg, it then suffices
to compute (Ja—k) and check when (Ja_k) = (%), forl <k <m+1. O
4C. The set T,. We now define the sets Tj.

Definition 4.9. Let a be a squarefree integer, and suppose that P € E;(K). Then
the field K(a~!(P)) has degree 1 or 2 over K, so it can be written in the form
K(/8p) with §p € K. Let

oo ()

For the values of a listed in Table 1, let 7, = Tp, and let 6, = dp,.

Lemma 4.10. Suppose that k > 1, ji is prime in Og, and a is a squarefree integer.
Suppose that P € E4(K), and let P denote the reduction of P mod ji. Then
P ¢akq(Ok/(jk)) if and only if k € Tp.

Proof. Let L = K(a~!'(P)) = K(y) for some y € L such that y2 = §p. Fix
a Q € E4(Q) such that Q = P. Since ker(e) C E;[2] C E4(K), we have
K(Q) = L = K(y). Fix a prime ideal p of L above (ji), let F = Og/(jx), let
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Q € E,(F) be the reduction of Q mod p, and let ¥ be the reduction of y mod p.
Then F(Q) = F(§).

Now P € aE4(F) if and only if Q € E4(F). By the above, this happens if and
only if ¥ € [, that is, if and only if §p is a square modulo Jjp. d

Lemma 4.11. We can take
5_1 =, 5_5 =—50l, 5_5 =—3\/—7, 5_17 =, 5_111 = -3.

Proof. The action of the endomorphism « on the elliptic curve E, and its reductions
is as follows (see Proposition 11.2.3.1 of [41, p. 111]). For (x, y) € E,, we have

alx,y) =
2x2 +a(T—s)x +a?(=7—-21s) y (2x?+a(14—2s)x +a*(28 + 14s))
(=3+s)x+a(=7+5s) ~—(GB+s)x2—a(@2+28)x—a2(77-17s) ]’
where s = +/—7. Solving for R in «R = P, yields é, in each case. O

Lemma 4.12. [fk > 1 then (f‘—k) =—1

Proof. Let M = K (ﬁ) By the reciprocity law of global class field theory we
have

[ [Uk- My/Kp) =1,
p

where (ji, Mp/Ky) is the norm residue symbol.
Let f(x) = x2 — ji € Ok, [x]. For k > 1 we have

|f(D]g = |20F|, =27EFD <272 = 4, = | F'(1)?, .

and Hensel’s lemma implies that f(x) has arootin Og,. Thus jx is a square in Ky
and (jg, Mo/Kqy) = 1.

Identify Kz with Q5. Applying Theorem 1 of [40, p. 20] with a = j; and b = «,
and using @° = 5 + «, gives (jg, @) = —1, where (jk, ) is the Hilbert symbol.
Thus ji & Normyg, g, (M), and therefore (ji, Mz/Kgz) = —1.

If p is a prime ideal of Ok that does not divide 2, then M,/ K is unramified.
By local class field theory we then have
o )ordp k)

(jk, Mp/Kp) = (E

Since j is prime to 2, we have ordy (ji) = ordg(jz) = 0, hence

l_[(jk’ Mp/Kp) _ H(%)ordp(jk) _ R(%)ordp(ﬂc) _ (%)

pt2 pt2
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Therefore
. o
=TT 0k My/Ky) = () Gie: Mo/ Ke) Gie: Ma/ Ka) = ().
P Jk
as desired. O

Lemma 4.13. Fora € {—1,—5,—6,—17,—111} the sets T, are as follows:

Ty ={k>1},

T_s ={k>1:k=34,78,11,13,14,15,16,17,20,22 (mod 24)},
T¢ =1k>1:k=1,510,12,15,19,20,21,22,23 (mod 24)},
T_17 =tk >1},

Toii={k>1:k=1,2,3,6 (mod8).

Proof. We apply Lemma 4.11 and the definition of 7,;. Lemma 4.12 implies that
T_1 =T_17 ={k > 1}. For a = —6 we use quadratic reciprocity in quadratic fields
(see Theorem 8.15 of [25, p. 257]) to compute (‘/:) For the remaining cases we
compute (7> = 3) = ( Jk) and ( 2) = ( J/f) as in the proof of Lemma 4.8, and apply

% = —1 from Lemma 4. 12 |
4D. Proof of Theorem 4.1.

Lemma 4.14. Let a be a squarefree integer. Suppose that P € E4(K), k€ S;NTp,
and jy is prime. Let P denote the reduction of P mod ji. Then the annihilator of
Pin Ok is divisible by ak+1,

Proof. We have Eq(Og/(jx)) ~ Ok /(2a¥) = Ok /(@a¥t1), by Lemma 4.6(ii). It
then suffices to show P € aE,(Og /(ji)), which follows from Lemma 4.10. O

The congruence conditions for k in Table 1 come from taking S, N 7, excluding
the cases handled by Lemma 4.5, and adjusting to give disjoint sets.

We now prove Theorem 4.1. Suppose that k > 1, k %0 (mod 8), k % 6 (mod 24),
and Jy is prime. Let a and P, be as listed in Table 1. Then k € S, N T,. Let
P denote the reduction of P, mod j;. We have Ea(@K/(jk)) ~ @K/(2ak)
by Lemma 4.6(ii), and therefore the annihilator of P in Og divides 2a*. By
Lemma 4.14, the annihilator of P in O is divisible by ak*1. Since 2a* di-
vides 2K+1 but o**1 does not divide 2%, we must have 2¥+1 P = 0 and 2k P # 0.
Therefore 25+ P, is zero mod J; and 2% P, is strongly nonzero mod J.

For the converse, note that disc(E,) = —2'2-73 .45, so Lemma 4.5 shows that
gcd(Jg, disc(Ey)) = 1 if k #£ 0 (mod 8) and k £ 6 (mod 24). We can therefore
apply Proposition 3.2 with m = 251 noting that

2k+1 > ((32k+1)% 4+ 1)2 > (Jkl/4 + 1)2
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for all k > 2, and for k = 2 we have 2841 =8 > (111/4 +-1)2 = (J/* 4+ 1)2. This
proves Theorem 4.1.

Remark. As pointed out by Richard Pinch, P, € 2E,(Og/(ji)) if and only if all
x(P,) —e; are squares mod ji, where E, is y2 = ]_[?=1(x —e¢;) and x(P,) is the
x-coordinate. We tested for divisibility by « instead of by 2, to make it clearer how
this approach (as initiated by Gross in [20]) makes use of the O x-module structure
of E4(Og/(jk)). Such an approach is useful for further generalizations.

5. Algorithm

A naive implementation of Theorem 4.1 is entirely straightforward, but here we
describe a particularly efficient implementation and analyze its complexity. We
then discuss how the algorithm may be used in combination with sieving to search
for prime values of J, and give some computational results.

S5A. Implementation. There are two features of the primality criterion given by

Theorem 4.1 worth noting. First, it is only necessary to perform the operation of

adding a point on the elliptic curve to itself (doubling), no general additions are

required. Second, testing whether a projective point P = [x, y, z] is zero or strongly

nonzero modulo an integer J; only involves the z-coordinate: P is zero mod Jy if

and only if Ji |z, and P is strongly nonzero mod Jj if and only if ged(z, J) = 1.
To reduce the cost of doubling, we transform the curve

Eq.: y?=x>-35a%x—984°
to the Montgomery form [31]
EaB: By2=x3+Ax2+x.

Such a transformation is not possible over Q, but it can be done over Q(v/=7). In
general, one transforms a short Weierstrass equation y? = f(x) = x> + asx + ag
into Montgomery form by choosing a root y of f(x) and setting B = (3y2 —
614)_1/2 and A = 3yB; see, for example, [34]. For the curve E,, we choose
y = 2(=7+ +v/=T7)a, yielding

—-15-3v-7 T+ 3+/=7
=——— and B=—"7—.
8 56a
With this transformation, the point P, = (xg, yo) on E, corresponds to the point
(B(xo —y), Byo) on the Montgomery curve E4, g, and is defined over Q(~/—7).

In order to apply this transformation modulo Ji, we need a square root of —7
in Z/JxZ. If Ji is prime and d = 7Ux+tD/4 then

A

d?=7Yk=D/2.7 = (Jl) 7= -7 (mod Jy),
k
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since J =3 (mod 4) and J; =2,4 (mod 7) is a quadratic residue modulo 7. If we
find that d2 # —7 (mod Ji ), then we immediately know that J; must be composite
and no further computation is required.

With the transformation to Montgomery form, the formulas for doubling a point
on E, become particularly simple. If P =[xy, y1, z1] is a projective point on E4 p
and 2P = [x;, ¥2, 23], we may determine [x3, z2] from [x1, z1] via

dx1z1 = (x1 +21)% — (x1 — 21)%, (5)
X2 = (x1 421 (x1 —21)%,
22 = 4x121((x1 — 21)> 4+ C(4x121)),
where C = %(A +2)= 3—12(1 —34/=7). Note that C does not depend on P (or
even a), and may be precomputed. Thus doubling requires just 2 squarings, 3
multiplications, and 4 additions in Z/Ji Z.
We now present the algorithm, which exploits the transformation of E, into

Montgomery form. We assume that elements of Z/J;Z are uniquely represented
as integers in [0, J; — 1].

Algorithm 5.1.

Input:  Positive integers k and Jy.

Output: True if Ji is prime and false if Jj is composite.
1. If k =0 (mod 8) or k = 6 (mod 24) then return false.
2. Compute d = 7Yx+D/4 mod Jp.

3. If d? # —7 (mod Ji) then return false.

4. Determine a via Table 1, depending on k£ (mod 72).

5

. Compute r = (=7 4+ d)a/2 mod Ji, B = (7 + 3d)/(56a) mod Ji, and C =
(1-3d)/32 mod Jg.

6. Let x; = B(xo—r) mod Ji and z; = 1, where P, = (xg, yo) is as in Table 1.
7. Fori from 1to k + 1, compute [x;, z;] from [x;—1, z;i—1] via (5).

8. If ged(zg, Jx) =1 and Ji |z 4 then return frue, otherwise return false.

The tests in step 1 rule out cases where Jj is divisible by 3 or 5, by Lemma 4.5;
Ji is then composite, since Ji > 5 for all k. This also ensures ged(a, Ji) = 1 (see
Lemma 4.5), so the divisions in step 5 are all valid (Jg is never divisible by 2 or 7).

By Remark 4.2, for k > 6 the condition gcd(zg, Ji) = 1 in step 8 can be replaced
with z; %% 0 mod Jy.

Proposition 5.2. Algorithm 5.1 performs 6k + o(k) multiplications and 4k ad-
ditions in 7] JyZ. Its time complexity is O(k?logk loglogk) and it uses O (k)
space.



DETERMINISTIC ELLIPTIC CURVE PRIMALITY PROVING 15

k step 2 step 7 k step2  step 7 k step 2 step 7
21041 0.00 0.01 21441 0.88 550 21741 133 983
2141 000 0.02 2541 526 322 218 L1 723 5010
21241 002 0.15 21641 275 183 21941 3310 23600
2341 015 0091 220 4 1 13700 107000

Table 3. Timings for Algorithm 5.1 (CPU seconds on a 3.0 GHz AMD Phenom I1 945).

Proof. Using standard techniques for fast exponentiation [46], step 2 uses k + o (k)
multiplications in Z/Ji Z. Steps 5-6 perform O(1) operations in Z/J;Z and step 7
uses 5k multiplications and 4k additions. The cost of the divisions in step 5 are
comparatively negligible, as is the cost of step 8. Multiplications (and additions) in
7/ JiZ have a bit complexity of O(M(k)), where M(k) counts the bit operations
needed to multiply two k-bit integers [14, Theorem 9.8]. The bound on the time
complexity of Algorithm 5.1 then follows from the Schonhage-Strassen [39] bound:
M(k) = O(klogkloglogk). The space complexity bound is immediate: The
algorithm only needs to keep track of two pairs [x;, z;] and [x;—1, z;—1] at any one
time, and elements of Z/J;Z can be represented using O (k) bits. O

Table 3 gives timings for Algorithm 5.1 when implemented using the gmp library
[19] for all integer arithmetic, including the gcd computations. We list the times for
step 2 and step 7 separately (the time spent on the other steps is negligible). In the
typical case, where Jy is composite, the algorithm is very likely! to terminate in
step 2, which effectively determines whether J is a strong probable prime base —7,
as in [9, Algorithm 3.5.3]. To obtain representative timings at the values of k listed,
we temporarily modified the algorithm to skip step 2.

We note that the timings for step 7 are suboptimal due to the fact that we used
the gmp function mpz_mod to perform modular reductions. A lower level imple-
mentation (using Montgomery reduction [30], for example) might improve these
timings by perhaps 20 or 30 percent.

We remark that Algorithm 5.1 can easily be augmented, at essentially no addi-
tional cost, to retain an intermediate point Q = [xg, Vs, Zs], Where s =k + 1 —r is
chosen so that the order 2" of Q is the least power of 2 greater than (J kl /4 +1)2. The
value of y; may be obtained as a square root of y2 = (x3 + Ax2z + x522)/(Bzs)
by computing (ysz)(" k+1/4 When Jy is prime, the algorithm can then output a
Pomerance-style certificate (E4,p, Q,r, Ji) for the primality of Ji. This certifi-
cate has the virtue that it can be verified using just 2.5k + O(1) multiplications in
Z/JiZ, versus the 6k + o(k) multiplications used by Algorithm 5.1, by checking
that the point Q has order 2" on the elliptic curve E4 g mod Jk.

1 Indeed, we have yet to encounter even a single Jy that is a strong pseudoprime base —7.
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5B. Searching for prime values of Ji. While one can directly apply Algorithm 5.1
to any particular Ji, when searching a large range 1 < k < n for prime values of
Jy it is more efficient to first sieve the interval [1, n] to eliminate values of k for
which Jj cannot be prime.

For example, as noted in Lemma 4.5, if kK = 0 (mod 8) then Jj is divisible by 3.
More generally, for any small prime £, one can very quickly compute J; mod £
for all k < n by applying the linear recurrence (4) for Ji, working modulo £. If
£ < /n, then the sequence J; mod £ will necessarily cycle, but in any case it takes
very little time to identify all the values of k < n for which Jj is divisible by ¢; the

k Jk a k Jk a k Jk a

2 11 -1 319 427..247 -5 17807 110..799 -1

3 23 -1 375 307..023 -1 18445 125..407 =5

4 67 =5 467 152..727 -1 19318 793..763 =5

5 151 -1 489 639...239 —1 26207 495..799 -1

7 487 =5 494 204...963 —1 27140 359..907 -1

9 2039 -1 543 115...143 —1 31324 116..867 =5
10 4211 —6 643 145..399 —17 36397 155..007 =5
17 524087 —1 684 321...531 -1 47294 327..963 -1
18 1046579 -1 725 706...551 -1 53849 583..567 —1
28 107..427 =5 1129 291..591 —17 83578 122..491 —6
38 109..043 -1 1428 297...011 -1 114730 593..411 -6
49 225..791 -—-17 2259 425...023 -1 132269 345..831 -1
53 360..711 -1 2734 415...123 -5 136539 864...023 -1
60 461..451 -1 2828 822...787 —1 147647 599..399 -1
63 368..943 -1 3148 175..227 =5 167068 120..027 =5
65 147..007 -1 3230 849...483 —1 167950 388..883 -5
77 604..191 —1 3779 156...127 —1 257298 104..179 -1
84 773..531 -1 5537 254...887 —1 342647 423..399 -1
87 618..703 -1 5759 171..279 —1 414349 120..207 =5
100 507..507 =5 7069 382..207 =5 418033 118..831 —17
109 259..207 -5 7189 508...207 -5 470053 451..407 =5
147 713..023 -1 7540 233...107 -5 475757 536..791 -1
170 598..611 -1 7729 183..591 —I111 483244 347..667 -5
213 526..239 -1 9247 168...687 =5 680337 279..759 -1
235 220..519 -17 10484 398...747 -1 810653 295..711 —1
287 994..999 -1 15795 234...023 -1 857637 115..519 -1
1111930 767..411 —6

Table 4. Prime values of J ~ 2k+2 for k < 1.2 x 106. The column labeled a
gives the value of the twisting factor.
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total time required is just O(n log{), versus O(n?) if one were to instead apply a
trial division by £ to each Jy.

We used this approach to sieve the interval [1, n] for those k for which Jj is
not divisible by any prime £ < L. Of course one still needs to consider J; < L,
but this is a small set consisting of roughly log, L values, each of which can be
tested very quickly. With n = 10° and L = 23, sieving reduces the number of
potentially prime J; by a factor of more than 10, leaving 93,707 integers Jj as
candidate primes to be tested with Algorithm 5.1. The prime values of J; found
by the algorithm are listed in Table 4, along with the corresponding value of a.
As noted in the introduction, we have extended these results to n = 1.2 x 10°,
finding one additional prime with k = 1,111,930, which is also listed in Table 4.
The data in Table 4 suggests that prime values of J; may be more common than
prime values of Mersenne numbers My ; there are 78 primes J; with fewer than
one million bits, but only 33 Mersenne primes in this range. This can be at least
partly explained by the fact that M,, can be prime only when 7 is prime, whereas
the values of k for which Jj can be prime are not so severely constrained. By
analyzing these constraints in detail, it may be possible to give a heuristic estimate
for the density of primes in the sequence J, but we leave this to a future article.
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Imaginary quadratic fields with
isomorphic abelian Galois groups

Athanasios Angelakis and Peter Stevenhagen

In 1976, Onabe discovered that, in contrast to the Neukirch-Uchida results that
were proved around the same time, a number field K is not completely charac-
terized by its absolute abelian Galois group Ag. The first examples of noniso-
morphic K having isomorphic Ax were obtained on the basis of a classification
by Kubota of idele class character groups in terms of their infinite families of
Ulm invariants, and did not yield a description of Ag. In this paper, we provide
a direct “computation” of the profinite group Ax for imaginary quadratic K, and
use it to obtain many different K that all have the same minimal absolute abelian
Galois group.

1. Introduction

The absolute Galois group Gg of a number field K is a large profinite group that
we cannot currently describe in very precise terms. This makes it impossible to
answer fundamental questions on Gk, such as the inverse Galois problem over K.
Still, Neukirch [7] proved that normal number fields are completely characterized
by their absolute Galois groups: If Gk, and Gk, are isomorphic as topological
groups, then K7 and K, are isomorphic number fields. The result was refined
by Ikeda, Iwasawa, and Uchida ([8], [9, Chapter XII, §2]), who disposed of the
restriction to normal number fields, and showed that every topological isomor-
phism Gk, = Gk, is actually induced by an inner automorphism of Gg. The
same statements hold if all absolute Galois groups are replaced by their maximal
prosolvable quotients.

It was discovered by Onabe [10] that the situation changes if one moves a further
step down from G, to its maximal abelian quotient Ax = Gk /[Gk, Gk], which
is the Galois group Ax = Gal(K®/K) of the maximal abelian extension K*° of K.

MSC2010: primary 11R37; secondary 20K35.
Keywords: absolute Galois group, class field theory, group extensions.
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Even though the Hilbert problem of explicitly generating K for general number
fields K is still open after more than a century, the group Ag can be described by
class field theory, as a quotient of the idele class group of K.

Kubota [5] studied the group X of continuous characters on Ag, and expressed
the structure of the p-primary parts of this countable abelian torsion group in terms
of an infinite number of so-called Ulm invariants. It had been shown by Kaplansky
[4, Theorem 14] that such invariants determine the isomorphism type of a count-
able reduced abelian torsion group. Onabe computed the Ulm invariants of Xg
explicitly for a number of small imaginary quadratic fields K, and concluded from
this that there exist nonisomorphic imaginary quadratic fields K and K’ for which
the absolute abelian Galois groups Ax and Ak’ are isomorphic as profinite groups.
This may even happen in cases where K and K’ have different class numbers, but
the explicit example K = Q(v/—2), K’ = Q(+/=5) of this that occurs in Onabe’s
main theorem [10, Theorem 2] is incorrect. This is because the value of the finite
Ulm invariants in [5, Theorem 4] is incorrect for the prime 2 in case the ground field
is a special number field in the sense of our Lemma 3.2. As it happens, Q(v/—5)
and the exceptional field @(~/—2) do have different Ulm invariants at 2. The nature
of Kubota’s error is similar to an error in Grunwald’s theorem that was corrected
by a theorem of Wang occurring in Kubota’s paper [5, Theorem 1]. It is related to
the noncyclic nature of the 2-power cyclotomic extension @ C Q@({z0).

In this paper, we obtain Onabe’s corrected results by a direct class field theoretic
approach that completely avoids Kubota’s dualization and the machinery of Ulm
invariants. We show that the imaginary quadratic fields K # Q(+/—2) that are said
to be of ‘type A’ in [10] share a minimal absolute abelian Galois group that can be
described completely explicitly as

A =2*>x[] z/nz.
n>1
The numerical data that we present suggest that these fields are in fact very common
among imaginary quadratic fields: More than 97% of the 2356 fields of odd prime
class number hg = p < 100 are of this nature. We believe (Conjecture 7.1) that
there are actually infinitely many K for which Ak is the minimal group above.
Our belief is supported by certain reasonable assumptions on the average splitting
behavior of exact sequences of abelian groups, and these assumptions are tested
numerically in the final section of the paper.

2. Galois groups as Z-modules

The profinite abelian Galois groups that we study in this paper naturally come with
a topology for which the identity has a basis of open neighborhoods that are open
subgroups of finite index. This implies that they are not simply Z-modules, but that
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the exponentiation in these groups with ordinary integers extends to exponentiation
with elements of the profinite completion 7 = hmn Z/nZ of 7. By the Chinese
remainder theorem, we have a decomposition of the profinite ring 7= I1 pZp into
a product of rings of p-adic integers, with the index p ranging over all primes.
As Z-modules, our Galois groups decompose correspondingly as a product of pro-
p-groups.

It is instructive to look first at the Z-module structure of the absolute abelian
Galois group Ag of @, which we know very explicitly by the Kronecker-Weber
theorem. This theorem states that @ is the maximal cyclotomic extension of @,
and that an element o € Ag acts on the roots of unity that generate @ by exponen-
tiation. More precisely, we have o ({) = ¢¥ for all roots of unity, with u a uniquely
defined element in the unit group 7* of the ring Z. This yields the well-known
isomorphism Ag = Gal(Q®/Q) = 7* = 1,7,

For odd p, the group Z; consists of a finite torsion subgroup 7, of (p — 1)-st
roots of unity, and we have an isomorphism

Ly =Ty x(1+ pZp) =Ty xZp

because 1 4 pZ, is a free Z,-module generated by 1 + p. For p = 2 the same
is true with 7, = {£1} and 1 4 47, the free Z,-module generated by 1 +4 = 5.
Taking the product over all p, we obtain

A@ T@ XZ (1)

with T = ]_[p T}, the product of the torsion subgroups 7, C @’; of the multiplica-
tive groups of the completions Q,, of Q. More canonically, Tg is the closure of the
torsion subgroup of Ag = Gal(Q®/Q), and Ag/ T@ is a free Z-module of rank 1.
The invariant field of Tg inside @ is the unique Z-extension of Q.

Even though it looks at first sight as if the isomorphism type of Tg depends on
the properties of prime numbers, one should realize that in an infinite product of
finite cyclic groups, the Chinese remainder theorem allows us to rearrange factors
in many different ways. One has for instance a noncanonical isomorphism

To = ]_[ T, =[] z/nz. 2)

n>1

as both of these products, when written as a countable product of cyclic groups
of prime power order, have an infinite number of factors Z/ (k7 for each prime
power ¢k Note that, for the product [ | p Ip of cyclic groups of order p —1 (for
p # 2), this statement is not completely trivial: It follows from the existence, by the
well-known theorem of Dirichlet, of infinitely many primes p that are congruent
to 1 mod £¥, but not to 1 mod £K+1,
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Now suppose that K is an arbitrary number field, with ring of integers O. By
class field theory, Ak is the quotient of the idele class group Cx = (]_[;O <o K g) /K*
of K by the connected component of the identity. In the case of imaginary quadratic
fields K, this connected component is the subgroup K5 = C* C Ck coming from
the unique infinite prime of K, and in this case the Artin isomorphism for the
absolute abelian Galois group Ax of K reads

ax=R/k* = ([] k3) /" (3)
p

Here K* = ]_[;3 Ky is the group of finite ideles of K, that is, the restricted direct
product of the groups K;‘ at the finite primes p of K, taken with respect to the unit
groups @;‘ of the local rings of integers. For the purposes of this paper, which tries
to describe Ak as a profinite abelian group, it is convenient to treat the isomorphism
for Ag in (3) as an identity — as we have written it down.

The expression (3) is somewhat more involved than the corresponding identity
Ag = 7* for the rational number field, but we will show in Lemma 3.2 that the
inertial part of Ak, that is, the subgroup Ux C Ak generated by all inertia groups
@; C Ck, admits a description very similar to (1).

Denote by 0= ]_[p Oy, the profinite completion of the ring of integers O of K. In
the case that K is imaginary quadratic, the inertial part of Ag takes the form

vk = ([Toy)/0" = 6/ux. @
p

since the unit group 0* of O is then equal to the group pg of roots of unity in K.
Apart from the quadratic fields of discriminant —3 and —4, which have 6 and 4
roots of unity, respectively, we always have g = {£1}, and (4) can be viewed as
the analogue for K of the group 7* = Ag.

In the next section, we determine the structure of the group 0* /K. As the
approach works for any number field, we will not assume that K is imaginary
quadratic until the very end of that section.

3. Structure of the inertial part

Let K be any number field, and 0= ]_[p O, the profinite completion of its ring of
integers. Denote by T}, C @;'J‘ the subgroup of local roots of unity in K7, and put

Tx =[[Tc[]o;=0" (5)
p p

The analogue of (1) for K is the following.
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Lemma 3.1. The closure of the torsion subgroup of 0* is equal to Tk, and 0 * Tk
is a free Z-module of rank [K : Q). Less canonically, we have an isomorphism

0* = Tg x 71K,

Proof. As the finite torsion subgroup 7, C @;‘ is closed in @;, the first statement

follows from the definition of the product topology on 0* = [1,05.
Reduction modulo p in the local unit group @; gives rise to an exact sequence

l—1+p—0; —k; — 1

that can be split by mapping the elements of the unit group k;‘ of the residue class
field to their Teichmiiller representatives in @;. These form the cyclic group of
order #k;‘ = Np—1in T, consisting of the elements of order coprime to p =
char(k,). The kernel of reduction 1 + p is by [3, one-unit theorem, p. 231] a
finitely generated Z,-module of free rank [K}, : Q,] having a finite torsion group
consisting of roots of unity in 7}, of p-power order. Combining these facts, we find
that @; /Ty is free over Z, of rank [K}, : Q,] or, less canonically, that we have a
local isomorphism
0p = Ty x ZI[HK" @l

for each prime p. Taking the product over all p, and using the fact that the sum
of the local degrees at p equals the global degree [K : @], we obtain the desired
global conclusion. U

In order to derive a characterization of Tx = ]_[p T, for arbitrary number fields K

similar to (2), we observe that we have an exact divisibility ¢ || #T, of the order
of T, by a prime power ¢k if and only if the local field K, at p contains a primitive
¢k -th root of unity, but not a primitive £5+1-th root of unity. We may reword this
as: The prime p splits completely in the cyclotomic extension K C K({y« ), but not
in the cyclotomic extension K C K({yx+1). If such p exist at all for €% then there
are infinitely many of them, by the Chebotarev density theorem.

Thus, Tk can be written as a product of groups (Z/¢%7)% = Map(Z,7/¢*7)
that are themselves countable products of cyclic groups of order ¢k, The prime
powers £k > 1 that occur for K are all but those for which we have an equality

K(Cer) = K(Ggrt1).

For K = Q all prime powers ¢k occur, but for general K, there are finitely many
prime powers that may disappear. This is due to the fact that the infinite cyclotomic
extension @ C Q({yoo) with group Zj can partially “collapse” over K.
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To describe the exceptional prime powers ¢k that disappear for K, we consider,
for £ an odd prime, the number

w(l) = wi (£) = #irgeo (K(8))

of £-power roots of unity in the field K(¢;). For almost all £, this number equals £,
and we call £ exceptional for K if it is divisible by £2. Note that no odd exceptional
prime numbers exist for imaginary quadratic fields K.

For the prime £ = 2, we consider instead the number

w(2) = wk (2) = #paee (K(4))

of 2-power roots in K({4) = K(i). If K contains i = {4, or if w(2) is divisible
by 8, we call 2 exceptional for K. Note that the only imaginary quadratic fields K
for which 2 is exceptional are Q(i) and Q(v/—=2).

The number w(K) of exceptional roots of unity for K is now defined as

wK)= ] w@®.

£ exceptional

Note that w(K) refers to roots of unity that may or may not be contained in K
itself, and that every prime £ dividing w(K) occurs with exponent at least 2. The
prime powers ¢k > 1 that do not occur when Tk is written as a direct product of
groups (Z/£%Z)7 are the strict divisors of w({) at exceptional primes £, with the
exceptional prime £ = 2 giving rise to a special case.

Lemma 3.2. Let K be a number field, and w = w(K) its number of exceptional
roots of unity. Then we have a noncanonical isomorphism of profinite groups

Tk = l_[ T, = l_[ Z/nwZ,
p n>1

except when 2 is exceptional for K and i = {4 is not contained in K. In this special
case, we have

Tk =[[Twv=[]@/22x2/nw2).
p

n>1
The group Tk is isomorphic to the group Tg in (2) if and only if we have w = 1.
Proof. If £ is odd, the tower of field extensions
K(le) C K(E2) C--- C K(Ger) C K(grt1) o

is a Zy-extension, and the steps K({yx) C K({yk+1) with k > 1 in this tower that
are equalities are exactly those for which £5 1 divides w(£).
Similarly, the tower of field extensions

K(¢4) CK(Lg) C--- C K(Cox) C K(Cpr41) C -
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is a Zp-extension in which the steps K({5x) C K({k+1) with k > 2 that are equal-
ities are exactly those for which 2K+ divides w(2). The extension K = K({2) C
K(¢4) that we have in the remaining case k = 1 is an equality if and only if K
contains i = (4.

Thus, a prime power ¢k > 2 that does not occur when Tk is written as a product
of groups (Z/£X7)” is the same as a strict divisor £% > 2 of w({) at an exceptional
prime £. The special prime power ¢ = 2 does not occur if and only if i = ¢4 is
in K. Note that in this case, 2 is by definition exceptional for K.

It is clear that replacing the group [ [,~; Z/nZ from (2) by [[,~; Z/nwZ has
the effect of removing cyclic summands of order £% with £¥*1 | w, and this shows
that the groups given in the Lemma are indeed isomorphic to Tx. Only for w =1
we obtain the group T in which all prime powers ¢k arise. O

Lemmas 3.1 and 3.2 tell us what 0* looks like as a Z-module. In particular, it
shows that the dependence on K is limited to the degree [K : Q)], which is reflected
in the rank of the free 2—part of 0*, and the nature of the exceptional roots of unity
for K. For the group 6“*/ UK, the same is true, but the proof requires an extra
argument, and the following lemma.

Lemma 3.3. There are infinitely many primes p of K for which we have
ged(#ug, #Ty/#pk) = 1.

Proof. For every prime power ¢k > 1 that exactly divides #u g, the extension
K = K(Eyx) C K(gyk+1) is a cyclic extension of prime degree £. For different
prime powers £X || #ux, we get different extensions, so infinitely many primes p
of K are inert in all of them. For such p, we have gcd(#ug , #7T,/#ug) =1. O

Lemma 3.4. We have a noncanonical isomorphism Tg /ug = Tk.

Proof. Pick a prime pg of K that satisfies the conditions of Lemma 3.3. Then pg
embeds as a direct summand in 7}, and we can write Ty, = g X Tp, /LK as a
product of two cyclic groups of coprime order. It follows that the natural exact
sequence
1 — 1_[ Ty, — Tx/uk — Tpo/ ik — 1
pF#po

can be split using the composed map Ty, /g — Tpy — Tk — Tk / |tk - This makes
Tk / ik isomorphic to the product of ]—[p;é,J o Iy and a cyclic group for which the
order is a product of prime powers that already “occur” infinitely often in Tx. Thus
Tk / itk is isomorphic to a product of exactly the same groups (Z/£XZ)% that occur
in Tk, and therefore isomorphic to Tk itself. O

For imaginary quadratic K, where 0* / Lk constitutes the inertial part Ux of Ag
from (4), we summarize the results of this section in the following way.
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Theorem 3.5. Let K be an imaginary quadratic field. Then the subgroup Tx /iLx
of Uk is a direct summand of Ug. For K # Q(i), Q(~/—2), we have isomorphisms

oo
Uk =@*/;LK ~ 72 x(Tx /1K) ~7%x l—[ Z/nZ
n=1
of profinite groups.
For K equal to Q(i) or @(+/—2), the prime 2 is exceptional for K, and the groups
Tk /iuk = Tk are different as they do not have cyclic summands of order 2 and 4,
respectively.

4. Extensions of Galois groups

In the previous section, all results could easily be stated and proved for arbitrary
number fields. From now on, K will denote an imaginary quadratic field. In order
to describe the full group Ag from (3), we consider the exact sequence

1—>UK=6*//,LK—>AK=KA*/K*1>C1K—>1 (6)

that describes the class group Clg of K in idelic terms. Here ¥ maps the class
of the finite idele (xp), € K* to the class of its associated ideal ]_[p pér, with
ep = ordy xy.

The sequence (6) shows that Uk is an open subgroup of Ak of index equal to the
class number g of K. In view of Theorem 3.5, this immediately yields Onabe’s
discovery that different K can have the same absolute abelian Galois group.

Theorem 4.1. An imaginary quadratic number field K # Q(i), Q(+/—=2) of class
number 1 has absolute abelian Galois group isomorphic to

G=7>x[]z/nz.
n>1

In Onabe’s paper [10, §5], the group G, which is not explicitly given but charac-
terized by its infinitely many Ulm invariants, is referred to as ‘of type A’. We
will refer to G as the minimal Galois group, as every absolute abelian Galois
group of an imaginary quadratic field K # Q(i), @(+/—2) contains a subgroup
isomorphic to G. We will show that there are actually many more K having this
absolute abelian Galois group than the seven fields K of class number 1 to which
the preceding theorem applies.

Now take for K any imaginary quadratic field of class number kg > 1. Then
Theorem 3.5 and the sequence (6) show that Ax is an abelian group extension of
Clk by the minimal Galois group G from Theorem 4.1. If the extension (6) were
split, we would find that A is isomorphic to G x Clg = G; but it turns out that
splitting at this level never occurs for nontrivial Clg, in the following strong sense.
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Theorem 4.2. For every imaginary quadratic field K of class number hg > 1, the
sequence (0) is totally nonsplit; that is, there is no nontrivial subgroup C C Clg
for which the associated subextension 1 — Ux — ¥~ 1[C] — C — 1 is split.

Proof. Suppose there is a non-trivial subgroup C C Clg over which the exten-
sion (6) splits, and pick [a] € C of prime order p. Then there exists an element

((xp)p mod K*) € v~ ([a]) C Ak = K*/K*

of order p. In other words, there exists « € K* such that we have xf =aek ;‘ for
all p, and such that o generates the ideal a”. But this implies by [1, Chapter IX,
Theorem 1] that « is a p-th power in K*, and hence that a is a principal ideal.
Contradiction. d

At first sight, Theorem 4.2 seems to indicate that in the case hg > 1, the
group Ag will not be isomorphic to the minimal Galois group G == Ug. However,
finite abelian groups requiring no more than k generators do allow extensions by
free Z-modules of finite rank k that are again free of rank k, just like they do with
free Z-modules in the classical setting of finitely generated abelian groups. The
standard example for k = 1 is the extension

1 — 2227 ——7/p7 —1

for an integer p # 0, prime or not. Applying to this the functor Hom(—, M) for a
multiplicatively written Z-module M, we obtain an isomorphism

M/MP? = Ext(Z/pZ, M) @)
by the Hom-Ext-sequence from homological algebra [6]. We will use it in Section 5.

Lemma 4.3. Let B be a finite abelian group, F a free Z-module of finite rank k,
and

l—F—FE—B—1

an exact sequence of Z-modules. Then E is free of rank k if and only if this se-
quence is totally nonsplit.

Proof. One may reduce the statement to the familiar case of modules over principal
ideal domains by writing 7= ]_[p Z,, and consider the individual p-parts of the
sequence. As a matter of convention, note that in the degenerate case where B is
the trivial group, there are no nontrivial subgroups C C B over which the sequence
splits, making the sequence by definition totally nonsplit. O

In order to apply the preceding lemma, we replace the extension (6) by the
pushout under the quotient map Ux = 0* /ug — Ux/Tg = 0%/ Tk from Uk to



30 ATHANASIOS ANGELAKIS AND PETER STEVENHAGEN

its maximal Z-free quotient. This yields the exact sequence of Z-modules
1 — 0*/Tx — K*/(K*-Tg) — Clg — 1 ®)
in which Clg is finite and 0* / Tk is free of rank 2 over Vi by Lemma 3.1.

Theorem 4.4. Let K be an imaginary quadratic field of class number hg > 1,
and suppose the sequence (8) is totally nonsplit. Then the absolute abelian Galois
group of K is the minimal group G occurring in Theorem 4.1.

Proof. If the extension (8) is totally nonsplit, then K*/ (K *.Tk) is free of rank 2
over Z by Lemma 4.3. In this case the exact sequence of Z-modules

1 — Tx/ug — Ag = K*/K* — K*/(K* - Tg) — 1
is split, and Ag is isomorphic to Ux = G = 72 x (Tx/K). |

Remark. We will use Theorem 4.4 in this paper to find many imaginary quadratic
fields K having the same minimal absolute abelian Galois group G. It is how-
ever interesting to note that this is the only way in which this can be done, as
Theorem 4.4 actually admits a converse: If the absolute abelian Galois group of
an imaginary quadratic field K of class number sg > 1 is the minimal group G,
then the sequence (8) is totally nonsplit. The proof, which we do not include in
this paper, will be given in the forthcoming doctoral thesis of the first author.

It is instructive to see what all the preceding extensions of Galois groups amount
to in terms of field extensions. The diagram of fields in Figure 1 lists all subfields
of the extension K C K® corresponding to the various subgroups we considered
in analyzing the structure of Ax = Gal(K?/K).

We denote by H the Hilbert class field of K. This is the maximal totally unram-
ified abelian extension of K, and it is finite over K with group Clg. The inertial
part of Ak is the Galois group Ux = Gal(K?®/H), which is isomorphic to G for
all imaginary quadratic fields K # Q(i), @(+/—2). The fundamental sequence (6)
corresponds to the tower of fields

K C HC K™,

By Theorem 3.5, the invariant field L of the closure Tx /g of the torsion subgroup
of Uk is an extension of H with group Z2. The tower of field extensions

KCHCL

corresponds to the exact sequence of Galois groups (8).

We define L as the “maximal 7-extension” of K , that is, as the compositum of
the Z,-extensions of K for all primes p. As is well-known, an imaginary quadratic
field admits two independent Z,-extensions for each prime p, so F' = Gal(Lo/K)
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Figure 1. The structure of A x =Gal(K*®/K).

is a free Z-module of rank 2, and L is the invariant field under the closure Ty
of the torsion subgroup of Ag. The image of the restriction map 7Ty — Clg is
the maximal subgroup of Clg over which (8) splits. The invariant subfield of H
corresponding to it is the intersection Lo N H. The totally nonsplit case occurs
when H is contained in Lg, leading to Lo N H = H and Lo = L. In this case
Gal(L/K)=Gal(Lo/K) isitself a free Z-module of rank 2, and A K 1S an extension
of 72 by Tk / ik that is isomorphic to G.

5. Finding minimal Galois groups

In order to use Theorem 4.4 and find imaginary quadratic K for which the absolute
abelian Galois group Ak is the minimal group G from Theorem 4.1, we need an
algorithm that can effectively determine, on input K, whether the sequence of Z-
modules

(8) 1— 0*/Tx — K*/(K*-Tg) — Clg —> 1

from Section 4 is totally nonsplit. This means that for every ideal class [a] € Clg
of prime order, the subextension E[a] of (8) lying over the subgroup ([a]) C Clg
is nonsplit.
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Any profinite abelian group M is a module over 7 = ]_[ Zp, and can be written
accordingly as a product M = ]_[ M), of p-primary parts, where Mp = M @57, i
a pro- p-group and Z,-module. In the same way, an exact sequence of Z- modules
is a “product” of exact sequences for their p-primary parts, and splitting over a
group of prime order p only involves p-primary parts for that p.

For the free Z-module M = 0* / Tk in (8), we write T}, for the torsion subgroup
of 0y = (0®zZp)* =[], Op- Then the p-primary part of M is the pro-p-group

M, =03/T, =[]©}/Ty) = Z3. )
plp
In order to verify the hypothesis of Theorem 4.4, we need to check that the exten-
sion E[a] has nontrivial class in Ext({[a]), M) for all [a] € Clg of prime order p.
We can do this by verifying in each case that the element of M/M? = M, /M If’ cor-
responding to it under the isomorphism (7) is nontrivial. This yields the following
theorem.

Theorem 5.1. Let K be an imaginary quadratic field, and define for each prime
number p dividing hg the homomorphism

¢p : Clg[p] — @;/Tp(@;)p

that sends the class of a p-torsion ideal a coprime to p to the class of a generator
of the ideal a®. Then (8) is totally nonsplit if and only if all maps ¢, are injective.

Proof. Under the isomorphism (7), the class of the extension

1—>M—>Ei>Z/pZ—>l

in Ext(Z/ pZ, M) corresponds by [6, Chapter III, Proposition 1.1] to the residue
class of the element
(f~1(1 mod pZ))? € M/MP.

In the case of E[a], we apply this to M = 0*/ Tk, and choose the identification
7/ pZ = ([a]) under which 1 mod pZ is the inverse of [a]. Then f~!(1 mod pZ)
is the residue class in K*/(K* - Tx) of any finite idele x € K* that is mapped to
ideal class of a~! under the map v from (6).

We pick a in its ideal class coprime to p, and take for x = (x;), an idele that
locally generates a~! at all p. If @ € K* generates a”, then xPq is an idele in 0*
that lies in the same class modulo K* as x?, and its image

(f7'(1 mod p2))? = x? = xPa € M/MP = M,/M} =05/ T,(03)?

corresponds to the class of E[a] in Ext({[a]),0*/Tk). As the idele x = (xp);
has components x, € @; at p | p by the choice of a, we see that this image in
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My/ M} = 0,/ Tp(04)? is the element ¢, ([a]) we defined. The map ¢ is clearly
a homomorphism, and we want it to assume nontrivial values on the elements of
order p in Clg|[p], for each prime p dividing #g. The result follows. O

Remark. In Theorem 5.1, it is not really necessary to restrict to representing ideals
a that are coprime to p. One may take K ;,‘ /Tp(K ; )? as the target space of ¢, to
accommodate all a, with K, = K ®7 Z,, and observe that the image of ¢,, is in the
subgroup @; /Ty (@;)1’, as the valuations of a? at the primes over p are divisible
by p.
Remark. It is possible to prove Theorem 5.1 without explicit reference to homo-
logical algebra. What the proof shows is that, in order to lift an ideal class of
arbitrary order n under (8), it is necessary and sufficient that its n-th power is
generated by an element « that is locally everywhere a n-th power up to multipli-
cation by local roots of unity. This extra leeway in comparison with the situation in
Theorem 4.2 makes it into an interesting splitting problem for the group extensions
involved, as this condition on @ may or may not be satisfied. Note that at primes
outside n, the divisibility of the valuation of o by n automatically implies the local
condition.

In Onabe’s paper, which assumes throughout that Cl itself is a cyclic group of
prime order, the same criterion is obtained from an analysis of the Ulm invariants
occurring in Kubota’s setup [5].

Our Theorem 5.1 itself does not assume any restriction on Clg, but its use in
finding K with minimal absolute Galois group G does imply certain restrictions on
the structure of Clg. The most obvious implication of the injectivity of the map ¢,
in the theorem is a bound on the p-rank of Clg, which is defined as the dimension
of the group Clg / Cllp( as an [Fp-vector space.

Corollary 5.2. If Clg has p-rank at least 3 for some p, then the sequence (8)
splits over a subgroup of Clg of order p.

Proof. It follows from the isomorphism in (9) that the image of ¢, lies in a group
that is isomorphic to (Z/pZ)?. If Clg has p-rank at least 3, then ¢p will not be
injective. Now apply Theorem 5.1. O

As numerical computations in uncountable Z-modules such as K* J(K*-Tk)
can only be performed with finite precision, it is not immediately obvious that the
splitting type of an idelic extension as (8) can be found by a finite computation.
The maps ¢, in Theorem 5.1 however are linear maps between finite-dimensional
[Fp-vector spaces that lend themselves very well to explicit computations. One just
needs some standard algebraic number theory to compute these spaces explicitly.
A high-level description of an algorithm that determines whether the extension (8)
is totally nonsplit is then easily written down.
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Algorithm 5.3.
Input:  An imaginary quadratic number field K.
Output: No if the extension (8) for K is not totally nonsplit, yes otherwise.

1. Compute the class group Clg of K. If Clg has p-rank at least 3 for some p,
output no and stop.

2. For each prime p dividing hg, compute n € {1,2} O-ideals coprime to p such
that their classes in Clg generate Clg[p], and generators x1 up to x, for their
p-th powers. Check whether xy is trivial in 05/ 7, (07)?. If it is, output no and
stop. If n = 2, check whether x5 is trivial in 03/ T}, - (x1) - (05)?. If it is, output
no and stop.

3. If all primes p | hg are dealt with without stopping, output yes and stop.

Step 1 is a standard task in computational algebraic number theory. For imag-
inary quadratic fields, it is often implemented in terms of binary quadratic forms,
and particularly easy. From an explicit presentation of the group, it is also standard
to find the global elements x; and, if needed, x». The rest of Step 2 takes place
in a finite group, and this means that we only compute in the rings 0, up to small
precision. For instance, computations in Z’; / Tp(Z,)? amount to computations
modulo p? for odd p, and modulo p3 for p = 2.

6. Splitting behavior at 2

The splitting behavior of the sequence (8) depends strongly on the structure of
the p-primary parts of Clg at the primes p | hg. In view of Theorem 5.1 and
Corollary 5.2, fields with cyclic class groups and few small primes dividing A g
appear to be more likely to have minimal Galois group G. In Section 7, we will
provide numerical data to examine the average splitting behavior.

For odd primes p, class groups of p-rank at least 3 arising in Corollary 5.2 are
very rare, at least numerically and according to the Cohen-Lenstra heuristics. At
the prime 2, the situation is a bit different, as the 2-torsion subgroup of Clg admits
a classical explicit description going back to Gauss. Roughly speaking, his theorem
on ambiguous ideal classes states that Clg[2] is an [F,-vector space generated by
the classes of the primes p of K lying over the rational primes that ramify in
@ C K, subject to a single relation coming from the principal ideal (/D). Thus,
the 2-rank of Clg for a discriminant with ¢ distinct prime divisors equals ¢ — 1.
In view of Corollary 5.2, our method to construct K with absolute abelian Galois
group G does not apply if the discriminant Dg of K has more than 3 distinct prime
divisors.

If —Dg is a prime number, then i is odd, and there is nothing to check at the
prime 2.
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For Dk with two distinct prime divisors, the 2-rank of Clg equals 1, and we
can replace the computation at p = 2 in Algorithm 5.3 by something that is much
simpler.

Theorem 6.1. Let K be an imaginary quadratic field with even class number, and
suppose that its 2-class group is cyclic. Then the sequence (8) is nonsplit over
Clk|[2] if and only if the discriminant Dk of K is of one of the following types:

(1) Dx = —pq for primes p = —q =5 mod §;
(2) Dx = —4p for a prime p =5 mod §;
(3) Dx = —8p for a prime p = +3 mod 8.

Proof. If K has a nontrivial cyclic 2-class group, then Dg = 0, 1 mod 4 is divisible
by exactly two different primes.

If Dk is odd, we have Dg = —pgq for primes p = 1 mod 4 and ¢ = 3 mod 4,
and the ramified primes p and ¢ of K are in the unique ideal class of order 2 in Clg.
Their squares are ideals generated by the integers p and —¢q that become squares
in the genus field F = Q(,/p, /—¢) of K, which is a quadratic extension of K
with group C; x C, over Q that is locally unramified at 2.

If we have Dg =5 mod 8§, then 2 is inert in Q C K, and 2 splits in K C F. This
means that K and F have isomorphic completions at their primes over 2, and that
p and —q are local squares at 2. In this case ¢, is the trivial map in Theorem 5.1,
and is not injective.

If we have D =1 mod 8 then 2 splits in Q@ C K. In the case p = —¢ =1 mod §
the integers p and —q are squares in Z;, and ¢, is again the trivial map. In the
other case p = —q = 5 mod 8, the generators p and —q are nonsquares in Z7, also
up to multiplication by elements in 7> = {Z1}. In this case ¢, is injective.

If Dk is even, we either have Dg = —4p foraprime p =1 mod 4 or Dg =—8p
for an odd prime p. In the case Dg = —4p the ramified prime over 2 is in the ideal
class of order 2. For p = 1 mod 8, the local field Q2(,/=p) = Q2(i) contains
a square root of 2i, and ¢, is not injective. For p = 5 mod 8, the local field
Q2(/=p) = @2(+/3) does not contain a square root of &2, and ¢» is injective.

In the case Dg = —8p the ramified primes over both 2 and p are in the ideal
class of order 2. For p = 41 mod 8 the generator + p is a local square at 2. For
p = £3 mod 8 it is not. O

In the case where the 2-rank of Clg exceeds 1, the situation is even simpler.

Theorem 6.2. Let K be an imaginary quadratic field for which the 2-class group
is noncyclic. Then the map ¢, in Theorem 5.1 is not injective.

Proof. As every 2-torsion element in Clg is the class of a ramified prime p, its
square can be generated by a rational prime number. This implies that the image
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of ¢, is contained in the cyclic subgroup
73 [{F1}(Z3)* € 0%/ T2(@*)°
of order 2. Thus ¢, is not injective if Clg has noncyclic 2-part. |

In view of Theorem 4.4 and the remark following it, imaginary quadratic fields
K for which Ak is the minimal Galois group from Theorem 4.1 can only be
found among those K for which —Dg is prime, or in the infinite families from
Theorem 6.1. In the next section, we will find many of such K.

7. Computational results

In Onabe’s paper [10], only cyclic class groups Clg of prime order p <7 are con-
sidered. In this case there are just 2 types of splitting behavior for the extension (8),
and Onabe provides a list of the first few K with hig = p <7, together with the type
of splitting they represent. For hgx = 2 the list is in accordance with Theorem 6.1.
In the cases i = 3 and hg = 5 there are only 2 split examples against 10 and 7
nonsplit examples, and for zg = 7 no nonsplit examples are found. This suggests
that ¢, is rather likely to be injective for increasing values of hg = p.

This belief is confirmed if we extend Onabe’s list by including all imaginary
quadratic K of odd prime class number hx = p < 100. By the work of Watkins [11],
we now know, much more precisely than Onabe did, what the exact list of fields
with given small class number looks like. The extended list, with the 65 out of 2356
cases in which the extension (8) splits mentioned explicitly, is given in Table 1.

As the nonsplit types give rise to fields K having the minimal group G as its
absolute Galois group, one is inevitably led to the following conjecture.

Conjecture 7.1. There are infinitely many imaginary quadratic fields K for which
the absolute abelian Galois group is isomorphic to

G=7>x[]z/nz.
n>1

The numerical evidence may be strong, but we do not even have a theorem
that there are infinitely many prime numbers that occur as the class number of an
imaginary quadratic field. And even if we had, we have no theorem telling us what
the distribution between split and nonsplit will be.

From Table 1, one easily gets the impression that among all K with hg = p,
the fraction for which the sequence (8) splits is about 1/ p. In particular, assuming
infinitely many imaginary quadratic fields to have prime class number, we would
expect 100% of these fields to have the minimal absolute abelian Galois group G.

If we fix the class number hg = p, the list of K will be finite, making it impos-
sible to study the average distribution of the splitting behavior over Clg|[p]. For
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p #{K:hg = p} #Nonsplit — Dk for split K
2 18 8 35,51,91, 115,123, 187,235,267, 403, 427
3 16 13 107,331, 643
5 25 19 347,443,739,1051, 1123, 1723
7 31 27 859, 1163,2707,5107
11 41 36 9403, 5179, 2027, 10987, 13267
13 37 34 1667,2963, 11923
17 45 41 383, 8539, 16699, 25243
19 47 43 4327,17299, 17539, 17683
23 68 65 2411, 9587,21163
29 83 80 47563,74827,110947
31 73 70 9203, 12923, 46867
37 85 83 20011, 28283
41 109 106 14887,21487, 96763
43 106 105 42683
47 107 107 —
53 114 114 —
59 128 126 125731, 166363
61 132 131 101483
67 120 119 652723
71 150 150 —
73 119 117 358747,597403
79 175 174 64303
83 150 150 —
89 192 189 48779, 165587, 348883
97 185 184 130051

Table 1. Splitting types for fields K with hg = p < 100. The second column
gives the number of imaginary quadratic fields with class number p; the third
column gives the number of such fields for which the sequence (8) does not split;
and the fourth column gives — D g for the fields K for which (8) splits.

this reason, we computed the average splitting behavior over Clg[p] for the set S,
of imaginary quadratic fields K for which the class number has a single factor p.

More precisely, Table 2 lists, for the first N, imaginary quadratic fields K € S,
of absolute discriminant | Dg | > B, the fraction f, of K for which the sequence
(8) is split over Clg[p]. We started counting for absolute discriminants exceeding
By to avoid the influence that using many very small discriminants may have on
observing the asymptotic behavior. Numerically, the values for p - f, ~ 1 in the
table show that the fraction f, is indeed close to 1/ p.

For the first three odd primes, we also looked at the distribution of the splitting
over the three kinds of local behavior in K of the prime p (split, inert or ramified)
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p Np By P fp V4 Np By P fp
3 300 107 0.960 43 2150 10° 1.080
5 500 107 0.930 47 470 107 0.900
7 700 107 0.960 53 530 10° 1.000
11 1100 107 0.990 59 590 10° 0.900
13 1300 107 1.070 61 1830 10° 0.933
17 1700 107 0.920 67 670 10° 0.900
19 1900 107 1.000 71 1000 10° 1.136
23 2300 107 1.030 73 3650 10° 0.900
29 2900 10° 1.000 79 1399 107 1.130
31 3100 10° 0.970 83 1660 106 1.000
37 3700 10° 0.930 89 890 10° 1.100
41 4100 10° 1.060 97 970 108 1.100

Table 2. Splitting fractions at p for hg divisible by p < 100. For the given
values of p, Np, and Bp, we consider the first N, imaginary quadratic fields K
with | Dg| > Bp and whose class numbers are divisible by a single factor of p.
The fourth column gives the value of p - fj,, where f} is the fraction of these
fields for which the sequence (8) is split over Clg[p].

and concluded that, at least numerically, there is no clearly visible influence; see
Table 3.

p N, B, P Split Inert Ramified
3 300 107 0.960 0.925 0.947 1.025

5 500 107 0.930 0.833 0.990 1.022

7

700 107 0.960 0.972 0.963 0.897

Table 3. Splitting fractions at p according to local behavior at p. The first four
columns are as in Table 2. The remaining columns give the values of p times the
quantity analogous to fp, where we further limit our attention to fields in which
p has the prescribed splitting behavior.

We further did a few computations that confirmed the natural hypothesis that the
splitting behaviors at different primes p and ¢ that both divide the class number
once are independent of each other.
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Iterated Coleman integration
for hyperelliptic curves

Jennifer S. Balakrishnan

The Coleman integral is a p-adic line integral. Double Coleman integrals on
elliptic curves appear in Kim’s nonabelian Chabauty method, the first numerical
examples of which were given by the author, Kedlaya, and Kim. This paper
describes the algorithms used to produce those examples, as well as techniques
to compute higher iterated integrals on hyperelliptic curves, building on previous
joint work with Bradshaw and Kedlaya.

1. Introduction

In a series of papers in the 1980s, Coleman gave a p-adic theory of integration on
the projective line [8], then on curves and abelian varieties [9; 7]. This integration
theory relies on locally defined antiderivatives that are extended analytically by the
principle of Frobenius equivariance. In joint work with Bradshaw and Kedlaya [1],
we made this construction explicit and gave algorithms to compute single Coleman
integrals for hyperelliptic curves.

Having algorithms to compute Coleman integrals allows one to compute p-adic
regulators in K-theory [8; 7], carry out the method of Chabauty-Coleman for
finding rational points on higher genus curves [15], and utilize Kim’s nonabelian
analogue of the Chabauty method [14].

Kim’s method, in the case of rank-1 elliptic curves, allows one to find integral
points via the computation of double Coleman integrals. Indeed, Coleman’s theory
of integration is not limited to single integrals; it gives rise to an entire class of

MSC2010: primary 11S80; secondary 11Y35, 11Y50.
Keywords: Coleman integration, p-adic integration, iterated Coleman integration, hyperelliptic
curves, nonabelian Chabauty, integral points.
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locally analytic functions, the Coleman functions, on which antidifferentiation is
well-defined. In other words, one can define iterated p-adic integrals [4; 8]

[Cot

which behave formally like iterated path integrals

1 pty th—1
/[ Sn(tn) -+ fi(t1) dty -~ dty.
0J0 0

Let us fix some notation. Let C be a genus-g hyperelliptic curve over an unram-
ified extension K of @, having good reduction. Let k = [, denote its residue field,
where ¢ = p™. We will assume that C is given by a model of the form y2 = f(x),
where f is a monic separable polynomial with deg f =2g + 1.

Our methods for computing iterated integrals are similar in spirit to those de-
tailed in [1]. We begin with algorithms for tiny iterated integrals, use Frobenius
equivariance to write down a linear system yielding the values of integrals between
points in different residue disks, and, if needed, use basic properties of integration
to correct endpoints. We begin with some basic properties of iterated path integrals.

2. Iterated path integrals

We follow the convention of Kim [14] and define our integrals as follows:

/PQ 5152"'5n—1é§n:=/PQ 51(R1)/PRl £2(R2) .“/PRn—z 5:1—1(R;1—1)/;0Rn_l En,

for a collection of dummy parameters Ry,..., R,—1 and 1-forms &q,...,&,.
We begin by recalling some key formal properties satisfied by iterated path in-
tegrals [6].

Proposition 2.1. Let &1,...,&, be 1-forms, holomorphic at points P, Q on C.
Then:

) [p 616262 =0,
(2) Xt permutations o J& @)@ () Dtin) = [T}=1 JF @i
G) JR wiy - wi, = (1) [§ 03, 0.

As an easy corollary of Proposition 2.1(2), we have:

Corollary 2.2. For a 1-form w; and points P, Q as before,

Q 1 Q n
/ a)ia)i---wiz—'(/ a)i) .
P n:\Jp
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When possible, we will use this to write an iterated integral in terms of a single
integral.

3. p-adic cohomology

We briefly recall some p-adic cohomology from [12], necessary for formulating
the integration algorithms.

Let C’ be the affine curve obtained by deleting the Weierstrass points from C,
and let A = K|[x, y,z]/(y2— f(x),yz —1) be the coordinate ring of C’. Let A"
denote the Monsky-Washnitzer weak completion of A; it is the ring consisting of
infinite sums of the form

o0
B.
> B e K, deBi <2
i=—00

further subject to the condition that v, (B;(x)) grows faster than a linear function
of i as i — +o00. We make a ring out of these using the relation yZ = f(x).

These functions are holomorphic on the space over which we integrate, so we
consider odd 1-forms written as

dx
o=gx.y) = gy eAl
y
Any such differential can be written as

w=dF +cowo + -+ c2g 121, (D
with F € AT, ¢; € K, and

Namely, the set of differentials {a)i}izi 51 forms a basis of the odd part of the
de Rham cohomology of A, which we denote as H(} R(CH™.
One computes the p-power Frobenius action ¢* on Hﬂ} r(C ")~ as follows:

* Let ¢k denote the unique automorphism lifting Frobenius from F, to K. Ex-
tend ¢k to AT by setting

¢(x) = xP,
1
_ d(f)(xP)— f(x)P\2
p(y) = y’”(l + 0P )
(1) @(f)(xP) = f(x)P)
> (12) y2P! '

i=0
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¢ Use the relations
y* = f(x),
i T B S B Ay, j—1 dx
dx'y’)y = (2ix" " y/ T4 jxt f(x)y )5

to reduce large powers of x and large (in absolute value) powers of y to write
¢*(w) in the form (1).

This reduction process is known as Kedlaya’s algorithm [12], and we will repeat-
edly use this algorithm to reduce iterated integrals involving w € A¥ ‘21—; to iterated
integrals in terms of basis elements w;.

4. Integrals: lemmas

Recall that we use Kedlaya’s algorithm to compute single Coleman integrals as
follows:

Algorithm 4.1 (Coleman integration in non-Weierstrass disks [1]).

Input:  The basis differentials (a)i)l.zial, points P, Q € C(Cp) in non-Weierstrass
residue disks, and a positive integer m such that the residue fields of P, Q
are contained in Fpm.

Output: The integrals ( f; PQ a)i)l.zigl.
1. Calculate the action of the m-th power of Frobenius on each basis element (see

Remark 4.2):

2g—1
(@™ *w; =dh; + Z Mijw;.
j=0
2. By a change of variables, we obtain
2g-1 0 ¢ (P) 0
(M —=1)ij | @ =hi(P)—hi(Q)— wi — wi (2
2.
=0 P P ¢ (Q)

(the fundamental linear system). Since the eigenvalues of the matrix M are
algebraic integers of C-norm pm/2 # 1 (see [12, §2]), the matrix M — [ is
invertible, and we may solve (2) to obtain the integrals f PQ w;.

Remark 4.2. To compute the action of ¢™, first carry out Kedlaya’s algorithm to

write
2g—1

¢ wi =dg; + Z Bijw;.
j=0
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If we view h, g as column vectors and M, B as matrices, induction on m shows
that

h=¢""'(g)+B¢" *(g)+ -+ Bok(B)--- ¢ *(B)g,
M = Bgg(B)--- 9% (B).

Note, however, that when points P, Q € C(Cp) are in the same residue disk, the
“tiny” Coleman integral between them can be computed using a local parametriza-
tion, just as in the case of a real-valued line integral. This is also true when the
integrals are iterated (see Section 5).

However, to compute general iterated integrals, we will need to employ the
analogue of “additivity in endpoints” to link integrals between different residue
disks. First, let us consider the case where we are breaking up the path by one
point.

Lemma 4.3. Let P, P’, Q be points on C such that a path is to be taken from P
to Q via P'. Let &1, ...,&, be a collection of 1-forms holomorphic at the points
P, P, Q. Then

0 n o P’
/Psl‘-'sﬁg/pslma [ bt

Proof. We proceed by induction. The case n = 1 is clear. Let us suppose the
statement holds for n = k. Then

/PQ 1 b = (LQEI---sk)(R)LRsk+1
k

P/

0 R
=(§ ot [ ses )@ [ e

Observe that the summand with i = k can be rewritten as

Q R (0] P’ R
([ aa)w [Can=([ as)@ ([ st [ )

and that further, the terms with i < k give us

k=1 .o P’

> . 16 i Eit1 Ekt1

i=0
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Thus we have

/PQSI"'E’CH:g/:,ze‘?l“'fi/PP/&H---SkH

0 P’ Qo
_|_(P/ glgk)(/P §k+1)+/}” €1 §k+1
Q 7
:;/P/ Elmél'/P Eiv1 k1,

as desired. |
Applying Lemma 4.3 twice, we obtain a link between different residue disks:

Lemma 4.4 (Link lemma). Let points P, P', Q’, Q be on C such that a path is
to be taken from P to P' to Q' to Q. Let &1,...,&, be a collection of 1-forms
holomorphic at the points P, P’, Q, Q'. Then

/PQsl---sn=§/jsl---a(§;/ﬁ&+l---sjflpp/sj+1---sn).

Below we record a specific case of the link lemma, which we shall use through-
out this paper.

Example 4.5 (Link lemma for double integrals). Suppose we have two differentials
£0.&1. Then

/PQ £ok1 :/PP/EO& +/P/Q/§0§1 +/; £ok1 +/PP/51 /P/Q Eo+/P/Q/$1 /j £o.

5. Tiny iterated integrals
We begin with an algorithm to compute tiny iterated integrals.

Algorithm 5.1 (Tiny iterated integrals).

Input:  Points P, Q € C(Cp) in the same residue disk (neither equal to the point
at infinity) and differentials &1, ..., &, without poles in the disk of P.

Output: The integral fPQ E162 - &y.

1. Compute a parametrization (x (1), y(z)) at P in terms of a local coordinate ¢.
2. For each k, write & (x, y) in terms of ¢: &, (¢) := & (x(t), y(t)).

3. Let I,,+1(¢) :=1.
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4. Compute, for k =n,...,2, in descending order,

Ry t(Rr—1)
Ie(t) = /P Eeler = /0 £0(0) [g1 ().

with Ry _; in the disk of P.

5. Upon computing I,(t), we arrive at the desired integral:

¢ t(Q)
/ E1&- & =1(0) = / E1(u)I2(u).
P 0

We show how we carry out Algorithm 5.1 for double integrals on an elliptic curve.

Example 5.2 (A tiny double integral). Let C be the elliptic curve
yr=x(x—1)(x+9),

let p =7, and consider the points P = (9,36), Q = ¢(P), and

R=(a+x(P).vfla+x(P))),

so that R is in the same disk as P and Q. Furthermore, let wg = ‘21—; and w1 = %

We compute the double integral f PQ wow1.
First compute the local coordinates at P:

x(1) =9+1+0(t*°)

B 21, 119 o 65 3 2219 4 7
V() =36+ 31+ 17551 ~55006" T 93551488° 500607936

° 4+ 0(°).

Then setting I := [ x ‘21—;, and making it a definite integral, we have

R
dx

IR /x
2|P P 2y

a
dx(t)
= x (7
/0 ©250)
15 5. 91 3 1121 4 2129 s
=597 2304% T 9953289 T 191102976 T 15364714240°
360185 36737231

__ 200lsS 6
7925422620672 + 7988826001637376

from which we arrive at
x(Q)—x(P) dx(R
i~ L@ (X R@)
0 2y(R(a))
=47 4+5. 7427 +4.742.7 + 0(7%).

a’ + 0(a®),
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6. Iterated integrals: linear system

As in the case of computing single integrals, to compute general iterated Cole-
man integrals, we use Kedlaya’s algorithm to calculate the action of Frobenius on
de Rham cohomology. This gives us a linear system that allows us to solve for all
(2g)" n-fold iterated integrals on basis differentials.

Theorem 6.1. Let P, Q € C(Cp) be non-Weierstrass points such that the residue
fields of P, Q are contained in Fpym. Let M be the matrix of the action of the
m-th power of Frobenius on the basis differentials wy, ..., w2g—1. For constants
,,,,, in_, computable in terms of (n — 1)-fold iterated integrals and n-fold tiny iter-
ated integrals, the n-fold iterated Coleman integrals on basis differentials between
P, Q can be computed via a linear system of the form

: . :
12 wig-- iy | = (Tgyxegyr —MHE") | Cigin_,

Proof. By the link lemma (Lemma 4.4), we can reduce to the case where both P
and Q are Teichmiiller points (points fixed by some power of ¢). Then we have

(]
- /P @) (@) (@™ (@3,). 3)

Recall that given wy, . .., w2g—1 a basis for HC}R (C")~, we have

2g—1
(9™ w;, = dfi, + Z M;, jw;.

J=0

Substituting this expression in for each factor of (3) and expanding yields the linear
system. O

To illustrate our methods, in the next section, we present a more explicit version
of this theorem, accompanied by algorithms, in the case of double integrals. We
show how these are used in Kim’s nonabelian Chabauty method in Section 8.
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7. Explicit double integrals

7A. The linear system for double integrals between Teichmiiller points. In this
subsection, we make explicit one aspect of Theorem 6.1: We give an algorithm to
compute double integrals between Teichmiiller points.

Algorithm 7.1 (Double Coleman integration between Teichmiiller points).

Input:  The basis differentials (a),-)l.zi 61, Teichmiiller points P, Q € C(Cp) in
non-Weierstrass residue disks, and a positive integer m such that the
residue fields of P, Q are contained in [Fpm.

2g—1

Output: The double integrals ( f PQ w; a)j)l. i=0"

1. Calculate the action of the m-th power of Frobenius on each basis element:
2g—1
@™o =dfi+ > Mijo;.

Jj=0

2. Use Algorithm 4.1 to compute the single Coleman integrals | PQ w; on all basis
differentials.

3. Use Step 2 and linearity to recover the other single Coleman integrals:

Q Q 2g—1
/ dﬁfk,f S Mo, fi
P P i

foreach i, k.

4. Use the results of the above two steps to write down, for each i, k, the constant
0
Cik =/P dfi(R)(fi(R) — fi(P)(fi(Q) — fi(P))

Q2g—1
j=0

0 2g—1 19) 2g—1
@) [ Y Mgy — [ ﬁ(R)( S Myjo; (R)).
P P —
Jj=0 j=0
5. Recover the double integrals (see Remark 7.2 below) via the linear system
fPQ @o Wo €00
fPQ wo W1 Co1

= (I4g2x4g2 - (Mt)®2)_1

o
fP Wrg—1W2g—1 C2g—1,2g—1



50 JENNIFER S. BALAKRISHNAN

Remark 7.2. We obtain the linear system in the following manner. Since P, O
are Teichmiiller, we have

0 ¢ (Q) o .
/1m%=/ M%Z/(W)w%) “)
P ¢™M(P) P
We begin by expanding the right side of (4).
Recall that given wy, ..., wzg—1 a basis for HC}R (C")~, we have
2g—1

(¢m)*a), =df; + Z Mijw;.
j=0
Thus we have

0
/ &™) (@i wp)
P

o
= [ @™ @emr @
19) 2g—1 2g—1
:[ (dfz + Z Mija)j)(dfk + Z Mkja)j)
s j=0 j=0
0 2g—1 2g—1 2g—1 2g—1
=/;) dﬁdfk+(ZMijwj)dfk+dﬁ ZMkja)j+ ZM,’ja)j ZMkja)j.
=0 j=0 j=0 =0

We expand the first three quantities separately. First, we have
0 0 R
bLMMzLWM%jﬁ

[0

= [ an® (R~ £e(P)
0 o

— | an Gy £ [ " anir)

P P

0
=L¢%@X&@D<&@Kﬂ@—ﬁ@»

Next, we have

2g—1

0 0281 R
/P (;) Mijwj)dka/P ;) Mijwj(R)/P dfx

1s) 2g—1
:/P Z MijCl)j(R)(fk(R)_fk(P))'

Jj=0
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The third term (via integration by parts) is
1s) 2g—1
[ (5 )
P o
1s) R 281
[P (5 )
P AN

R 28-1 R=0 0
— H(®) /P (EO Mkjwj) - [ fi(R)(j;) Mk,-wj(R))
2g—1 2g—1

0 0
=ﬁ(Q)/P J;)Mk,-wj—/P fi(R)(;) Mkjwj(R))-

Denote the sum of these terms by c;; in other words,

2g—1

o
ik = [P afi (R fe(R) — fi(PY(fi(Q) — fi(P))
2g—1

(0]
n / Y Mijo;(R)(fi(R) = fi(P))

2g—1 2g—1

0 0
+ﬁ(Q)/P ;)Mkjwj—/P fi(R)(;) Mk,-w,-(R)).

Then rearranging terms, our linear system reads

.fPQ wo Wo €00
[
f wo w1 n—1 Co1
d ) = (I4gz><4g2 —(M")® )
Lo ' Crg—12g—
p W2g—1W2g—1 2g—1,2g—1

7B. Linking double integrals. Let P’ and Q' be in the disks of P and Q, re-
spectively. Using the link lemma for double integrals (Example 4.5), we may link
double integrals between different residue disks:

o
/ wj W,
P
P’ Q/ Q P’ Q ’ Q
=/ a),'a)k-f—/ a)ia)k—i-/ wiwk+/ wk/ a)i-i-/ a)k/ w; .
P P/ Q/ P / 4 /7
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Algorithm 7.3 (Double Coleman integration using intermediary Teichmiiller points).

Input:  The basis differentials (w; lzi 61, points P, Q € C(C,) in non-Weierstrass
residue disks.

Output: The double integrals

[0) 2g—1
([ )"
P i,j=0

1. Compute Teichmiiller points P/, Q' in the disks of P, Q, respectively.

2. Use Algorithm 4.1 to compute the single integrals | PQ wi. || If/ wi. [, QQ/w,- for
all 7.

3. Use Algorithm 5.1 to compute the tiny double integrals || 15 w; Wk, |, QQ, Wi W .

2g—1

4. Use Algorithm 7.1 to compute the double integrals {fPQ,,a)l- Wi} im0

5. Correct endpoints using

o
/a)iwk
P
P’ o’ o P’ o o’ o
=/ a)l-a)k—i-/ a)ia)k—i-/ a)ia)k+/ a)k/ a),'—l-/ a)k/ w;.
P P/ Q/ P ’ ’ ’

7C.Without Teichmiiller points. Alternatively, instead of finding Teichmiiller points
and correcting endpoints, we can directly compute double integrals using a slightly
different linear system. Indeed, using the link lemma for double integrals, we take
¢(P) and ¢ (Q) to be the points in the disks of P and Q, respectively, which gives

o o(P) $(Q) 0
/ a)ia)k=/ w,-a)k+/ a)ia)k—l—/ w; W
P P o(P) $(Q)

o(P) o 9(0) o
+/ a)k/ a)i—i-/ a)k/ wi. (5
P o(P) o(P) $(Q)

To write down a linear system without Teichmiiller points, we begin as before,
with

2g—1 2g—1

#(Q) o o
[ a),-a)k:/ ¢*(Cl)iwk):Cik+/ ( E Aijwj)( E Akja)j). (6)
¢ P P j=0 j=0

(P)

Putting together (5) and (6), we get
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' -1
fPQ wjwg | = (14g2><4g2 _(Mt)®2)

P P
cik = [50py @i ok — ([F 1) ([4p) k)
3 08 o0) [y

(N

This gives us the following alternative to Algorithm 7.1.
Algorithm 7.4 (Double Coleman integration).

Input:  The basis differentials (a)i)l.zi 81 , points P, O € C(Q)) in non-Weierstrass
residue disks or in Weierstrass disks in the region of convergence.
2g—1

Output: The double integrals ( /, PQ w; a)j)i =0

1. Use Algorithm 4.1 to compute the single integrals [’ PQ w;, X(SJQ)) w; foralli.

2. Use Algorithm 5.1 to compute f¢P(P) w; W, f¢Q(Q) w; wy, forall i, k
3. Asin Step 4 of Algorithm 7.1, compute the constants c; for all 7, k.
4. Recover the double integrals using the linear system (7).

Example 7.5. Let C be the genus-2 curve y2 = x> —x% + x3 + x?2 —2x + 1 and
let P=(1,—1),0 = (—1,—1) and p = 7. We compute double integrals on basis
differentials:

JE wowo =2-T2+ T3 +4-74 + 0(7%),

JE wowi = T2 +5-T3 4374+ 0(7%),

[ wowr =4-T+5- T2+ 73+ 0(7%),

[ wows =T+5-T2+3-7*+ 0(7%),

[ w100 =T +6-T3+5-7* + 0(7%),
fPQa)la)l =4.724+3-7>+ 0(7°),

JE w10y =5-T+6-T2+2-T3+4.7*+ 0(7%),
JE w103 =243-T+72+4-72+ 0(7%),

J2 wrwp = T2 +4-73+ 0(74),

[ wrw1 =4-T+6-T>+4-73+5.74+ 0(7%),
[ wpan =2+5-7+3-72+ 0(73),
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J2 wrw3 =5+2-743-72+ 0(7%),

[ w300 =3-T+2-T2+5-72+5-T* + 0(7%),
[ w301 =5+5-T+72+6-T3+0(7%),

[ w300 =6+T7+5-72+ 0(73),

[ 0303 =2+6-7T+5-7>+ 0(73).

Example 7.6. Using the previous example, we verify the Fubini identity
0 0 0 0
/ a)ja),-—i-/ a)l-a)jz(/ w,)(/ a)j).
P P P P

wo=5T+2-T+5 T +7*+4.7° + 0(7%),

We have
o

01 =6-T4+6-72+2-7>+4.7*+3.7° + 0(79),
0

T

Wy =5+5T46-7T*+2-7° + 0(7°),

0
/ 03 =5+3-T+4-T>+3-724+6-7*+2-7° + 0(7°).
P

We see, for example, that

0 0 0 0
/wowl—i—/ a)lwo=2~72+4~73+2~74+0(75)=(/ wo)(/ a)l)
P P P P

0 0 0 0
/6()26()3-1—/ w3wy = 4+4-7+72+0(73):(/ 6()2)(/ a)3).
P P P P

7D. Weierstrass points. Suppose one of P or ( is a finite Weierstrass point. Then
directly using the linear system as above fails, since the f; have essential singular-
ities at finite Weierstrass points. We remedy this as follows:

Proposition 7.7. Let Q be a non-Weierstrass point, P a finite Weierstrass point,
and S be a point in the residue disk of P, near the boundary. Then the integral
from P to Q can be computed as a sum of integrals:

) S 0] S 19)
/ a)iwk=/ a)ia)k+/ a)ia)k—i-/ wk/ w;.
P P S P S

Proof. This follows from Lemma 4.3 in the case of n =2, where P/ = S. O

To compute tiny iterated integrals in a Weierstrass disk, we modify Algorithm 5.1
slightly:
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Algorithm 7.8 (Tiny iterated integral in a Weierstrass disk).

Input: A Weierstrass point P, the degree d of a totally ramified extension, and
basis differentials w;, w;.

Output: The integral

S S R t=1 u=t
/ w; ®j =/ a)i(R)/ w; =/ a),'(R)/ w;.
P P P t=0 u=0

Compute local coordinates (x(u),u) at P.
Leta = pl/d. Rescale coordinates so that y := au, x := x(au).

_ i dx . .
Compute I>(u) = [ x/ 5y as a power series in u.

Ll

Compute the appropriate definite integral using the step above:

S .d t d
[ X8 / x(au)u = I,(1)
R 2y Jo u

(where R = (x(t),t)). Call this definite integral (now a power series in ¢) /5.

5. Now since R = (x(1), ), we have f}‘f wjwj = fol x(t)' 1, d);—y).

Suppose P is a finite Weierstrass point. While one could compute the integral
/, PQ w; wj directly using Algorithm 7.4 for all of the tiny double integrals (and
Algorithm 7.8 for the other double integrals), in practice, that approach is expen-
sive, as it requires the computation of several intermediate integrals with Frobenius
of points that are defined over ramified extensions. This, in turn, makes the requi-
site degree d extension for convergence quite large.

Instead, the key idea is to compute a local parametrization at the finite Weier-
strass point P and to use this to compute the indefinite integral | ; ;. Then to com-
pute integrals involving “boundary points,” one can simply evaluate this indefinite
integral at the appropriate points, instead of directly computing parametrizations,
and thus integrals, over a totally ramified extension of Q. This idea is also used
to evaluate double integrals involving boundary points.

Algorithm 7.9 (Intermediary integrals for double integrals with a Weierstrass end-

point).

Input: A finite Weierstrass point P, a non-Weierstrass point Q, the degree d
of a totally ramified extension, the desired precision n of Q,, and basis
differentials w;, ;.

Output: Necessary things for the eventual computation of || PQ w; ;.

1. Compute (x(2),?) local coordinates at P to precision nd.

2. Let S = (x(a),a), where a = p'/4.
dx(t)

3. Compute as a power series in #, I>(t) = [ x(t)' @)
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4. Compute the definite integral || 1‘5 w; = Ix(a).

5. Forall i < j, compute the definite integral || 1‘? w; wj via Algorithm 5.1. Keep
the intermediary indefinite integral.

6. Forall i = j, use the fact that fl‘,g wi wj = %(fl‘,g a),')2 to compute the double
integral in terms of the single integral.
7. For all i > j, use the fact that fP W wj = fP wj w; +fP ; fP w; to compute

f p wj wj (instead of directly computing it as a double integral).

8. Compute g ) w; = ¢(S) - f p w; by the indefinite integral in Step 3. Use

this to deduce f¢( )a)l wj forz =j.
9. Use the indefinite integral in Step 5 to get f o(S )a)i wj fori < j.
10. Repeat the trick in Step 7 to get fd’(s) w;wj fori > j.

11. Compute f¢(Q) w; and use it to deduce f¢(Q) w;i w; fori = j.

f¢(Q)

12. Compute wjwj fori < j.

13. Repeat the trick in Step 7 to get f $(Q)

14. Use fS w;i =fP w,-—fP wi to gethQ w;.
Algorithm 7.10 (Double integrals from a Weierstrass endpoint).

w;wj fori < j.

Input: A finite Weierstrass point P, a non-Weierstrass point Q, and basis differ-
entials w;, w;.

Output: The double integrals || PQ w; ;.
1. Compute all of the integrals as in Algorithm 7.9.

2. Compute double integrals |, SQ w; wj using the terms in Step 1 as appropriate in
Algorithm 7.4. (See Remark 7.11 for an additional improvement to this step.)

3. Recover the double integrals fPQ Wi wj = f;f w; W) —i—fSQ w; ©; —{—fj,g wj fSQ w;
by using additivity.

Remark 7.11. In the case of g = 1, the linear system only yields one double
integral not obtainable through single integrals. Indeed, for 0 < i, j <1, we have

o 1 0 2 o (% o o
/ a)ia)i=—(/ a)i) and / a)ia)j=—/ a)ja)i—i-/ wi/ wj.
s 2\ Js s s s s

So it suffices to compute | SQ wo 1. Thus, rather than computing all of the con-
stants cgo, €01, €10, €11 and their correction factors (see (7)), if we precompute the
two double integrals that are express1ble in terms of smgle integrals, as well as the
product of single integrals that relates f § w1 to f § wowi, it suffices to compute
co1 (and its correction factor) to solve for the other three constants and f § WoW1.
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In other words, the linear system in Algorithm 7.4 tells us that

P : P
k= Jyopy @i ok — ([ i) ([ py k)
~(f5 wi)( ¢((pQ)) k) + [50) @i Ok

’

(Isxa— (M) | [ wion | =

which we write as

) X00
Vo1 Lo1

4 0 _ | bor |
501 — Vo1 X10
i1 X11

where the Vector on the left consists of integrals (with igo = f 5§ Wowo,111= f § W1O1,
S01 = f 5§ @o f s i all computed), and the Vector on the right consists of constants
(with £9; computed). So we solve for vy := fS wo W1, X00, X10, X11, since know-
ing vg1 gives us the complete set of double integrals on basis differentials. While
this only gives a constant speedup in terms of complexity, in practice, this helps
when § is defined over a highly ramified extension of Q.

As numerical checks, one may use the following corollaries of Proposition 7.7.

Corollary 7.12. For P, Q Weierstrass points and S a third point, we have additiv-
ity in endpoints: fPQ w; Wj +f5 w; wj = fl‘,g w; ;.

Corollary 7.13. For P, Q Weierstrass points, we have

(¢ (0
/ a),-a)j+/ a)ja),-=0.
P P

It is worth noting that in general, unlike in the case of a single Coleman integral,
for P and Q both Weierstrass points, unless i = k, the double Coleman integral
f p Wi @) 1s not necessarlly 0. However in the case of i = k, the integral can be

computedasfPa),w,— (fP ,) =0.

Example 7.14. Consider the curve y? = x(x — 1)(x + 9), over @7, and the points
P1=(1,0), P, =(0,0),and Q = (—1,4). We have

0
wo w
I, @owo 2724573 +4.7* +3.75 + 0(75)

[Ewor| | 6745724473 16-7% + 0(7%)
[ w10 Tl 2 7+3- 7437+ 7P+ 0(7%)
le 14+5-7+5-724+4-7*+4-75 + 0(7%)
Pla)lwl



58 JENNIFER S. BALAKRISHNAN

and

0
wo W
Jp, @00 2724573 44.74 +3.75 + 0(79)

przwowl B 2-7247346-74+5-7° + 0(7%)

12 w100 6-7+5-774+6:-77+3-7+3.7°+ 0(7% |~
0 14+5-74+5-7P4+4-7*+4.7° + 0(7%
[p, w101

from which we see that | If: > wow1 # 0 and likewise || If: > wiwo # 0.

8. Kim’s nonabelian Chabauty method

We now present the motivation for all of the algorithms thus far. Let €/Z be the

minimal regular model of an elliptic curve C/Q of analytic rank 1 with Tamagawa

numbers all 1. Let ¥ = € — {co} and wy = %, w1 = % Taking a tangential

basepoint b at oo (or letting b be an integral 2-torsion point), we have the analytic
functions

z z
10gw0(2)=/b wo, D2(2)=/b wow1.

With this setup, we have:
Theorem 8.1 [2; 14]. Suppose P is a point of infinite order in €(Z). Then
*(Z) C €(Zp) is in the zero set of
£(2) 1= (1024 (P))* D2(2) = (logy (2))* D2(P).
Corollary 8.2 [2; 14]. The expression
Dy (P)
(long(P))2

is independent of the point P of infinite order in €(Z).

®)

Example 8.3. We revisit Example 1 in [2]. Let E be the rank-1 elliptic curve
y2 = x3 —1323x + 3942, with minimal model ¢ having Cremona label 65al. Con-
sider the following points on E which are integral on ¢: b = (3,0), P = (39, 108),
0 = (-33,-108), R = (147,1728). Using Algorithm 7.10, we compute the inte-
grals

P
/ wow; =4-114+4-1124+7-11°34+9-11* +5-11°+ 0(117),
b

P
/ wo=4-114+7-112 49113 +3-11* +5.11°+7- 115+ 0(117),
b
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0
/ wowy =4-114+4-112+7-1134+9-11* +5-11°+ 0(117),
b

Q

/ wo=T-114+3- 1124113 +7-11* +5-11°+3- 115+ 0(117),
b

R
/ wow; =5-114+6-1124+7-113 4+ 5. 11* +3-11° +9-11°+ 0(117),

S

R
/ wo=3-114+7-1124+2-113+3.11*+7- 115+ 0(117),
b

and we see that the ratio in Corollary 8.2 is constant on integral points:
Dy(P)  D2(Q)  DaR)

2 2 2’
(logyy (P))”  (logy,(Q))"  (logy,(R))
=3 117 +642-11+10-112+3-113 +5-11* + 0(11°).

However, for S = (103, 980), which is not integral on €, we see that

S
/ wowy =3-114+10-112+4-1124+10-11*+7-11° +10-11° + 0(117)
b

S
/ wo=114+7-1124+5-11°+ 0(117)
b
D(S)
2
(log,, (5))

Example 8.4. We give a variation on Example 4 in [2]. Let E be the rank-1
elliptic curve y2 = x3 — 16x + 16, with minimal model ¢ having Cremona label
37al. Letting P, Q be two fixed integral points on E, we can use the link lemma
to rewrite Theorem 8.1 so that the relevant double integral is no longer from a
tangential basepoint. Indeed, integral points z occur in the zero set of

z 2 P 2 Qwow1 pQwo Pw1
((/b w) =(f ) )IPUI,Q wo)t{ (7 fﬁ,)z ]
(e ol )

Slightly modifying Algorithm 7.4 to take as endpoint a parameter z (see [3, §7.2.2]
for more details), we can recover the integral points

=3-11"'+10+6-11+9-112+8-113 + 6-11* + 0(11°).

{(0, £4), (4, £4), (—4, £4), (8. £20), (24, £116)}.

Remark 8.5. Note that in the classical Chabauty method, one can use the Jacobian
of the curve J to find the global constant of integration (see [5; 10]). In particular,
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the points on J form a Z-module and we have multiplication-by-n morphisms
[n]: J(Qp) — J(Qp), which gives n [, PQ w = f[%]((PQ))w. By choosing n carefully,
we can ensure that [r] P and [n]Q both lie in the residue disk of the identity, and
pulling back to the curve, all integrals can be computed by tiny integrals. For
iterated integrals, we do not have appropriate endomorphisms available.
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Finding ECM-friendly curves
through a study of Galois properties

Razvan Barbulescu, Joppe W. Bos, Cyril Bouvier,
Thorsten Kleinjung, and Peter L. Montgomery

We prove some divisibility properties of the cardinality of elliptic curve groups
modulo primes. These proofs explain the good behavior of certain parameters
when using Montgomery or Edwards curves in the setting of the elliptic curve
method (ECM) for integer factorization. The ideas behind the proofs help us to
find new infinite families of elliptic curves with good division properties increas-
ing the success probability of ECM.

1. Introduction

The elliptic curve method (ECM) for integer factorization [22] is the asymptotically
fastest known method for finding relatively small factors p of large integers N. In
practice, ECM is used, on the one hand, to factor large integers. For instance, the
2011 ECM record is a 241-bit factor of 2!18! —1 [12]. On the other hand, ECM
is used to factor many small (100- to 200-bit) integers as part of the number field
sieve [26; 21; 4], the most efficient general purpose integer factorization method.
Traditionally, the elliptic curve arithmetic used in ECM is implemented us-
ing Montgomery curves [23] (for example, in the widely used GMP-ECM soft-
ware [35]). Generalizing the work of Euler and Gauss, Edwards [15] introduced a
new normal form for elliptic curves which results in a fast realization of the elliptic
curve group operation in practice. These “Edwards curves” have been generalized
by Bernstein and Lange [9] for use in cryptography. Bernstein et al. [8] explored
the possibility of using these curves in the ECM setting. After Hisil et al. [18]
published a coordinate system which results in the fastest known realization of
MSC2010: primary 14H52; secondary 11Y05.
Keywords: elliptic curve method (ECM), Edwards curves, Montgomery curves, torsion properties,

Galois groups.
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curve arithmetic, a follow-up paper by Bernstein et al. [7] discusses the use of the
so-called “a = —1” twisted Edwards curves in ECM.

It is common to construct or search for curves which have favorable properties.
The success of ECM depends on the smoothness of the cardinality of the curve
considered modulo the unknown prime divisor p of N. This usually means con-
structing curves with large torsion group over Q or finding curves such that the
order of the elliptic curve, when considered modulo a family of primes, is always
divisible by an additional factor. Examples are the Suyama construction [32], the
curves proposed by Atkin and Morain [3], a translation of these techniques to Ed-
wards curves [8; 7], and a family of curves suitable for Cunningham numbers [13].

In this paper we study and prove divisibility properties of the cardinality of
elliptic curves over prime fields. We do this by studying properties of Galois groups
of torsion points using Chebotarev’s theorem [24]. Furthermore, we investigate
some elliptic curve parameters for which ECM finds exceptionally many primes in
practice, but which do not fit in any of the known cases of good torsion properties.
We prove this behavior and provide parametrizations for infinite families of elliptic
curves with these properties.

2. Galois properties of torsion points of elliptic curves

In this section we give a systematic way to compute the probability that the order of
a given elliptic curve reduced by an arbitrary prime is divisible by a certain prime
power.

2A. Torsion properties of elliptic curves.

Definition 2.1. Let K be a finite Galois extension of @, let p be a prime, and
let p be a prime ideal of K above p with residue field kp. The decomposition
group Dec(p) of p is the subgroup of Gal(K /@) that stabilizes p. Denote by ¥
the canonical morphism from Dec(p) to Gal(k,/F,) and let ¢, be the Frobenius
automorphism on the field k,. We define

Frobenius(p) = | (a(p))_l(qﬁp).
plp

We say that a set S of primes admits a natural density equal to §, and we write
P(S) =4, if
#(S NII(N))
im ——————
N—oo # H(N )
exists and equals §, where IT(N) is the set of primes up to N. If event(p) is a

property which can be defined for all primes except a finite set, when we write
P(event(p)) we tacitly exclude the primes where event(p) cannot be defined.
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Theorem 2.2 (Chebotarev, [24]). Let K be a finite Galois extension of Q. Let
H C Gal(K/Q) be a conjugacy class. Then

#H
#Gal(K/Q)’

Before applying Chebotarev’s theorem to the case of elliptic curves we introduce
some notation. For every elliptic curve E over a field F' and for all integers m > 2,
we let F'(E[m]) denote the smallest extension of F' over which all of the geometric
m-torsion points of E are rational. The next result is classical, but we present its
proof for the intuition it brings.

P(Frobenius(p) = H) =

Proposition 2.3. For every integer m > 2 and elliptic curve E over a perfect
field F, the following hold.:

(1) F(E[m])/F is a Galois extension.
(2) There is an injective morphism t,, : Gal(F(E[m])/ F) — Aut(E(F)[m]).

Proof. Since the addition law of E can be expressed by rational functions over F,
there exist polynomials f;,, gn € F[X, Y] such that the coordinates of the points
in E(F)[m)] are the solutions of the system ( f;, = 0, gm = 0). Therefore F(E[m])
is the splitting field of Resy ( fin, gm) and Resy ( f, g€m) and in particular is Galois.
This proves statement (1).

For each o € Gal(F(E[m])/F) we denote by (,,(c) the function that sends
(x,y) € E(F)[m] to (6(x),0(y)). Thanks to the discussion above, i,,(c) sends
points of E(F)[m] to E(F)[m)]. Since the addition law can be expressed by rational
functions over F, for each o we have 1,,(0) € Aut(E (F)[m]). One easily checks
that ¢, is a group morphism and its kernel is the identity, proving statement (2). [

Notation. Let £ be an elliptic curve over (2 and let m > 2 be an integer. We fix
generators for E(Q)[m], thereby inducing an isomorphism

Vm : Aut(E(Q)[m]) - GLa2(Z/mZ).

Let ¢, be the injection given by Proposition 2.3, and let py, : Gal(Q(E[m])/Q) —
GL,(Z/mZ) be the injective morphism Yy, © L.

Let p be a prime such that £ has good reduction at p and p + m. If k is
an extension field of [F,, we write E (k) for the group of k-rational points on the
reduction of £ modulo p. Let L,(f) be the injection of Gal([F,(E[m])/F,) into
Aut(E(F p)[m]) given by Proposition 2.3. By [29, Proposition VII.3.1] there is a
canonical isomorphism r,” from Aut(E(Q)[m]) to Aut(E(F »)[m]) for each prime
ideal p over p.

Remark 2.4. Note that # Gal(Q(E[m])/Q) is bounded by #GL,(Z/mZ). For
every prime 7 we have # GL,(Z/nZ) = (& —1)?(7 + 1)7, and for every integer
k > 1 we have #GL,(Z/7*t17) = n*#GLy(Z /7% 7).
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Notation. For all g € GL,(Z/mZ) we put Fix(g) = {v € (Z/mZ)? | g(v) = v}.
If C is a conjugacy class of elements of GL,(Z/mZ), we let Fix(C) denote the
isomorphism class of the group Fix(g), for some g € C; this isomorphism class
does not depend on the choice of g. We use analogous notations for the fixed

groups of elements of, and conjugacy classes in, the groups Aut(E(Q)[m]) and
Aut(E(F p)[m]).
Theorem 2.5. Let E be an elliptic curve over Q and let m > 2 be an integer. Put
K = Q(E[m]). Let T be a subgroup of Z/mZ x Z/mZ. Then:
_ #g € pm(Gal(K/Q)) | Fix(g) ~ T’}

#Gal(K/Q) '
(2) Let a and n be positive integers such that a < n and gcd(a,n) = 1, and let ¢y,

be a primitive n-th root of unity. Put

Ga = {o € Gal(K(8n)/Q) | 0(En) =}

(1) P(E(Fp)[m] ~T)

Then
#o € G4 | Fix(pm(0|x)) = T}

#Ga ’
Proof. Let p  m be a prime for which E has good reduction and let p be a prime
ideal of K over p. Let H denote the set {o € Gal(K/Q) | Fix(t;;(0)) >~ T}. First

note that E(Fp)[m] :Fix(t,(,f) (¢p)) where ¢, is the Frobenius in Gal(F, (E[m])/Fp).
Since the diagram

Dec(p) = Gal(Q(E[m])/Q) —> Aut(E(@)[m])

a®) lr’%’)
(p)

Gal(kp/Fp) — > Gal(Fp(E[m])/Fy) <~ Aut(E(F ,)m])

P(E([Fp)[m] ~T|p=a rnodn) =

is commutative and since Frobenius(p) C Gal(K/Q) is the conjugacy class gener-
ated by (@®)~1(¢,) we have E(F,)[m] = Fix(, (Frobenius(p))).

Decompose H into a disjoint union of conjugacy classes Ci,...,Cy. Then
Fix(;;, (Frobenius(p))) >~ T if and only if Frobenius(p) is one of the C;. Thanks
to Theorem 2.2 we obtain

4

P(E(Fp)m] ~ T) = Z P(Frobenius(p) = C,')
i=1
X s #H
N Z #Gal(K/Q) #Gal(K/Q)

i=1

This proves statement (1).
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Using similar arguments, we see that to prove statement (2) we have to evaluate

P(Frobenius(p) e{Cy,....Cy},p=a modn)
P(p =a modn) )

Let p be a prime and p a prime ideal as in the first part of the proof, and let 3 be a
prime ideal of K(¢,) lying over p. Furthermore let Ci.....C & be the conjugacy
classes of Gal(K({,)/@Q) that are in the preimages of Cy, ..., Cxy and whose ele-
ments o satisty 0({,) = ¢%. Since Gal(K({,)/Q) maps , to primitive n-th roots
of unity we have for o € (aP)~1 (¢pp) that o(5p) = {,’i for some b. Together with
o(x) = x? mod P this gives 2 = ¢ mod P. If we exclude the finitely many
primes dividing the norms of {5 — 1 forc =1,...,n —1 we obtain b = p mod n.
Since Frobenius(K (&), p), the Frobenius conjugacy class for K(¢;), is the preim-
age of Frobenius(p), the argument above gives

P(Frobenius(p) € {C1,...,Cn}, p =a modn)
= P(Frobenius(K (¢y), p) € {Cy,..., éﬁ})
Considering the denominator P(p = a mod n) similarly completes the proof. [

Remark 2.6. Put K = Q(E[m]). If [K(¢n) : Q(Ln)] = [K : Q] then one has
P(E(Fp)[m] ~T | p=a modn) = P(E(F,)[m] ~T)
for a coprime to n. Indeed, according to Galois theory,
Gal(K (£)/Q)/ Gal(K($n)/ K) ~ Gal(K/Q)

through & +— o|g. Since [K () : Q(&,)] = [K : Q], we have [K(&,) : K] = ¢(n) and
therefore each element o of Gal(K/Q) extends in exactly one way to an element
of Gal(K(¢,)/Q) which satisfies 0 ({,) = {+. Note that for n € {3, 4} the condition
is equivalent to ¢, & K.

The families constructed by Brier and Clavier [13], which were developed to
help factor integers N such that the n-th cyclotomic polynomial has roots modulo
all prime factors of N, modify [K () : Q({,)] by imposing a large torsion subgroup
over Q(&y).

The following corollary is an important particular case of Theorem 2.5.

Corollary 2.7. Let E be an elliptic curve over Q and let w be a prime number. Put
K = Q(E(x]). Then

#{g € pr(Gal(K/Q)) | det(g —1d) = 0, g # Id}
#Gal(K/Q) ’
1
#Gal(K/Q)"

P(E(Fp)[r] ~Z/nZ) =

P(E(Fp)[n] ~ Z/nZ xZ/nZ) =
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T T dl Ptheor(El , T, T) d2 Ptheor(EZ’ T, T)
Pexper(El » I, T) Pexper(E2a T, T)
3 7/3Zx17/3Z 48 L ~0.02083 16 = =0.06250
0.02082 0.06245
3 7/37 48 29 ~0.4167 16 % =0.2500
0.4165 0.2501
5 Z/57x7/57 480 445 ~0.002083 32 35 =0.03125
0.002091 0.03123
5 7/57 480 2 ~0.2375 32 19=03125
0.2373 0.3125

Table 1. Theoretical and experimental values of P(E, 7, T):= P(E (Fp)[r]=T)
for the elliptic curves E; and E», for several primes 7 and groups 7. The
theoretical values were obtained from Corollary 2.7, and the experimental values
were computed using all primes less than 22°. The columns labeled d; and do
give the degrees of the number fields Q(E1 []) and Q(E2[r]), respectively.

Example 2.8. We compute these probabilities for the curves Eq : y2 = x3 +5x +7
and E3 : y?2 = x3 — 11x + 14 and the primes 7 = 3 and 7 = 5. Here E; illus-
trates the generic case, whereas E» has special Galois groups. One checks with
Sage [30] that [QQ(E[3]) : Q] = 48. Since #GL,(Z/3Z) = 48, Proposition 2.3 tells
us that p3(Gal(Q(E1[3])/Q)) = GL2(Z/37). The group GL,(Z/37) contains 20
nonidentity elements having 1 as an eigenvalue. From Corollary 2.7 we find
P(E1(Fp)81~2/32) =323, P(E1(Fp)31~=2/3Zx7/37) = k.

We used the same method for all the probabilities displayed in Table 1, where we
compare them to experimental values.

Note that the relative difference between theoretical and experimental values
never exceeds 0.4%. It is interesting to observe that reducing the Galois group
does not necessarily increase the probabilities, as it is shown for m = 3.

2B. Effective computations of Q(E [m]) and p, (Gal(Q(E [m])/Q)) for prime
powers. The main tools we use to compute Q(E[m]) and its Galois group are the
division polynomials, as defined below.

Definition 2.9. Let E : y2 =x3+4ax+bbean elliptic curve over () and m > 2
an integer. The m-division polynomial P,, is the monic polynomial whose roots
are the x-coordinates of all the affine m-torsion points of E. We also define P,>%
to be the monic polynomial whose roots are the x-coordinates of the affine points
of order exactly m.
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Proposition 2.10. For all m > 2 the polynomials Pp, and Py2% lie in Q[X]. Fur-
thermore, deg(Py,) = (m? 4+ 2 —31)/2, where 1 is the remainder of m modulo 2.

Proof. For a proof we refer to [29, Exercise 111.3.7, pp. 105-106]. O

Note that one obtains different division polynomials for other shapes of elliptic
curves (Weierstrass, Montgomery, Edwards, and so on). Nevertheless, the Galois
group Gal(Q(E[m])/Q) is independent of the model of E, and can be computed
with the division polynomials of Definition 2.9 because, in characteristic different
from 2 and 3, every curve can be written in short Weierstrass form.

One can compute Q(E[x]) for any prime 7 > 3 using the following method.

1. Make a first extension of Q through an irreducible factor of P, to obtain a
number field F; where P, has a root o/1.

2. Let fo(y) =y — (ozf +aay +b) € Fi[y] and F, be the splitting field of f5.
There is a 7-torsion point My of E defined over F5. In F5, Py has (m —1)/2
trivial roots representing the x coordinates of the multiples of M.

3. Let F3 be the extension of F, defined by an irreducible factor of P, € F>[x]
other than those corresponding to the trivial roots.

4. Let ap be a new root of Py in F3. Let f4(y) = y? — (&3 4+ aaz + b) € F3[y]
and let Fy4 be the splitting field of f4. Then F4 contains all the r-torsion of E.

The case of prime powers 7% with k > 2 is handled recursively. Having com-
puted Q(E[7*71]), we obtain Q(E[7*]) by repeating the four steps above with
P;Tliw instead of P, and by defining trivial roots to be the x-coordinates of the
points {P + M, | P € E[zx*~1]}.

In practice, we observe that in general Py, f>, P,gFZ) and fy are irreducible,
where P,ng) is P, divided by the factors corresponding to the trivial roots. If this
is the case, then using the formula deg(P,) = (72 — 1)/2 from Proposition 2.10,
we find that the absolute degree of Fjy is

72—1 7l—x

2
2 2

By Remark 2.4, #GL,(Z/nZ) is also equal to ( — 1)?(;r + 1)1, so in general we
expect pr (Gal(Q(E[r])/Q)) = GLa(Z/nZ). Also, we observed that in general
the degree of the extension Q(E[7*])/Q(E[x*1]) is n*.

The next theorem shows that the observations above are almost always true. It
is a restatement of items (1) and (6) from the introduction of [27].

2= -1+ .

Theorem 2.11 (Serre). Let E be an elliptic curve without complex multiplication.

(1) For all primes 1 the sequence of indices

[GL2(Z/7%2Z) : p .« (Gal(Q(E[7¥])/Q))] fork >1
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is nondecreasing and bounded by a constant depending on E and 1.

(2) For all primes 1 outside a finite set depending on E and for all k > 1,
Pk (Gal(Q(E[7¥])/Q) = GL,(2/7* 2).

Definition 2.12. Put I(E, 7, k) = [GL2(Z/7*Z) : px (Gal(Q(E[7¥])/Q))]. If E
does not admit complex multiplication, we define Serre’s exponent to be the integer

n(E,m)y=min{n € Z~o |VYk >n: I(E,m,k+1)=I(E, 7, k)}.

In [28] Serre showed that in some cases one can prove that /(E,w, k) = 1
for all positive integers k. Indeed, Serre proved that the surjectivity of p,« (or
the equivalent equality /(E, w,k) = 1) follows from the surjectivity of p, (or
the equivalent equality I(E, w, 1) = 1) for all rational elliptic curves £ without
complex multiplication and for all primes = > 5. In order to have the same kind
of results for m = 2 (respectively, m = 3) one has to suppose that ps, p4 and pg
are surjective (respectively, p3 and pg are surjective).

Serre also conjectured that only a finite number of primes, not depending on the
curve E, can occur in the second point of Theorem 2.11. The current conjecture is
that for all rational elliptic curves without complex multiplication and all primes
w > 37, pr is surjective. Zywina [36] describes an algorithm that computes, for
a given E, the primes 7 for which p; is not surjective; Zywina has checked the
conjecture for all elliptic curves in Magma’s database (currently this covers curves
with conductor at most 140,000). For other recent progress on this conjecture of
Serre, see [11] and [10].

Remark 2.13. One application of Serre’s results is as follows. Experiments show
that if E is an elliptic curve over Q) without complex multiplication, then E([F,) is
close to a cyclic group for almost all primes p, regardless of the rank of £ over Q.
For a given bound B, computing

PAn > B |Z/nZxZ/nZ C E(Fp)) (1)

goes beyond the scope of this paper. However, if & is a prime such that p, is
surjective, then Corollary 2.7 shows that

1
a(mr 4+ 1)(r —1)%

This suggests that the probability in expression (1) should be O(1/B3).

PZ/nZxZ]nZ C E(Fp)) =

The method described above allows us to compute Q(E[m]) as an extension
tower. Then it is easy to obtain its absolute degree and a primitive element. Identify-
ing pn (Gal(Q(E[m])/Q)) up to conjugacy is easy when there is only one subgroup
(up to conjugacy) of GL,(Z/mZ) with the right order. When this is not the case
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we use fixed generators for E(Q)[m] to check for each g € GL3(Z/mZ) whether g
gives rise to an automorphism on Q(E[m]). In practice, the bottleneck of this
method is the factorization of polynomials with coefficients over number fields.
A faster probabilistic algorithm for computing Gal(Q(E[r])/Q) was proposed
by Sutherland [31]. This algorithm was not known by the authors at the time of
writing and would have helped to accelerate the computation of the examples.

2C. Divisibility by a prime power. 1t is well-known that, for a given prime 7, the
cardinality of a randomly chosen elliptic curve over [, has a larger probability of
being divisible by 7 than a randomly chosen integer of size p (see [22, Proposi-
tion 1.14, p. 660]). In this subsection we shall consider the analogous problem,
where instead of fixing p and varying E, we fix an £/Q and vary p.

Notation. Let 77 be a prime and let i, j, and k be nonnegative integers such that
i <j.Weput

Pailisj) =P(EFp)n* =2/ 2% 2/77 7).
Let £ < m be integers. When it is defined we write

Prk(Cmli, )
=P(E(F) " = Z/n'ZxZ/n™Z | E(Fp)[n*| ~2/7'Zx2/77 7).

When it is clear from the context, v is omitted.

Remark 2.14. Since for every integer m > 0 and every prime p coprime to m we
have E(Fp)[m] C Z/mZ x Z/mZ, it follows that p, x(i, j) = 0 for j > k. In
the case j <k, if ppx(€,m |1, j) is defined, it equals 1 if ({,m) = (7, j) and
equals 0 if (€,m) # (i, j). Finally, for j = k, there are only three conditional
probabilities which can be nonzero: p, x(i,k | i,k), ppx(i,.k +11]i,k), and
Pk +1,k+1|k k).

Theorem 2.15. Let w be a prime and E an elliptic curve over Q. If k is an in-
teger such that I(E,n,k + 1) = I(E, m, k) (for example, if E has no complex
multiplication and k > n(E, i), then we have

Prkk+ 1L,k +1kk)=1/7"
Prik( k+ 11k k)=(x—1)(w+1)?/x*, and
Pri(.k+1]ik)y=1/m for0<i<k.

Proof. Let M = (Z/7%7)2. For all g € GL, (M), we consider the set

Lift(g) = {h € GLo(M) | hlxm = g} = {g + 757 (*5) |a.b,c.d € 2/ 7},



72 BARBULESCU, BOS, BOUVIER, KLEINJUNG, AND MONTGOMERY
whose cardinality is 7#. Since I(E, .k + 1) = I(E, m, k) we have

#Gal(Q(E[7*])/Q)  #GLy(Z/n*7)
#Gal(Q(E[7*+1])/Q) #GLy(Z/7*+127)’

which equals 1/7* by Remark 2.4. So for all g € p .« (Gal(Q(E[7*])/Q)), we
have Lift(g) C p x+1 (Gal(Q(E [7k+1])/Q)). Thanks to Theorem 2.5, the proof
will follow if we count for each g the number of lifts with a given fixed group.

For g = 1Id € p« (Gal(Q(E [7¥])/Q)), there is only one element of Lift(g)
fixing (Z/7**172)2, 50 ppx(k + 1,k +1 |k, k) =1/7".

The element g = Id can be lifted in exactly 7% — 1 —#GL,(Z/7Z) ways to an
element in GL,(Z/7¥*1Z) that fixes the ¥ -torsion and a point of order 7¥+1, but
not all the 7%+ 1-torsion. Therefore Prklk, k+ 1k k)=(r—1)(m+1)*/7%.

Every element of GL;,(Z/ 7k 7) that fixes a line, but is not the identity, can be
lifted in exactly 3 ways to an element of GL,(Z/ 7k+17) that fixes a line of
(Z/7**17)2. This shows that Pkl k+1]ik)y=n3/7*=1/n. O

The theorem below uses the information on Gal(Q(E[z"(£-™)])/Q) for a given
prime 7 in order to compute the probabilities of divisibility by any power of .
It also gives a formula for the average m-adic valuation v, of #E([F,), which we
define as

Ur = ) kP(vz(#E(Fp)) = k),

k>1
where v, denotes m-adic valuation. We do not claim that v, is equal to

1
li
xi>ngo #I1(x)

> v HE(Fp)),

DP=X

although we expect this to be true.
Notation. Let 7 be a prime. We set y, (h) = 7" Z?:o 7t pn (€, n), and we define

piv1i+1,i+1) itk=2i+1,
0 otherwise

§(k) = {

and

Lk/2]
Sulh) =2 (560 + Y- pee(t.k=0))

{=h

Theorem 2.16. Let 7w be a prime, let E an elliptic curve over Q, and let n be a
positive integer such that 1(E,m,k) = I(E, m,n) for all k > n (for example, a
curve without complex multiplication and n > n(E, )). Then, for every k > 1,
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P(#E(Fp) = 0 mod 7*)
1 Sk (0) if 1 <k <n,
=% yplk —n—1)+ Si(k —n) ifn<k<2n,
" Yu() + pu(n,n)n?" L —g4n=1=k p (n.n) if k> 2n.

Furthermore, vy is finite, and we have

n—2 n—1
vn—zzmw €>+—an(z m+Y Y pii)+ ”f;*fl) pn(n.n).
{=0i=L+1

Proof. Let k be a positive integer. Using Figure 1, one checks that

Lk /2]
PH#E(F,) =0mod¥) = > pr_g(L.k — ) +8(k). 2)
£=0

Letcy = 1/n%, ¢ = (w = 1)(;w + 1)? /7, and c3 = 1/7. With these notations,
the situation can be illustrated by Figure 1. For j > n and £ < n, the probability
pj (L, j) is the product of the conditional probabilities of the unique path from
(€, j) to (£, n) in the graph of Figure 1 times the probability p,(£,n). For j > n
and £ > n, the probability p; (£, j) is the product of the conditional probabilities
of the unique path from (¢, j) to (n,n) in the graph of Figure 1 times the proba-
bility py(n,n).

There are three cases that are to be treated separately: 1 <k <n,n <k <2n
and k > 2n. For 1 <k < n, the result follows from (2). Let us give the computation

ey

. C]_ LC 7(:7
TUHEE) 2

n=2 e|l—> 6 —>» 0 -——-»
22cy €3 C3
) o >0 — > 8 >
1,1 1,2 C3 C3 “Cs
° ° o —> o —» O ---»
0,0 0,1 0,2(;3 Cs3 “‘C3

Figure 1. The node with coordinates (i, j) represents the event (E([Fp)[rrj] ~
Z)n'7 x Z)n! Z). The arrows represent the conditional probabilities of
Theorem 2.15.
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in more detail for the case for k > 2n, with k = 2i:

P(#E(Fp) =0 mod %)

= 26,20 =0 +8Q2i) =Y pai¢(£,2i — )

£=0 £=0
n—1 i—1
=Y pai (0,20 =0+ Y poi (€, 2i =) + pili, i)
n—1 ) i—1 ' .
= Z c%’_l_”pn ,n)+ Z c%’_ﬂ_lczc{_”pn(n, n)+ci " pn(n,n).
{=0 {=n

This leads to the desired formula. The case k > 2n odd and the case n < k < 2n
are treated similarly.

To prove the statements about v, we note that P(#E(F,) = 0 mod nk) is
O(1/7%) as k — oo. Thus, the sum defining v is absolutely convergent, and
we are justified in rearranging terms to find

Un = Y _ kP(v(#E(Fp) =k) =Y P#E(F,) =0 mod z¥).
k>1 k>1
Substituting in our formulas for the summands in the last expression, we obtain
the formula for v, given in the theorem. O

Example 2.17. Let us compare the theoretical and experimental average valuation
of t =2, m =3 and w = 5 for the curves

Ei: y?=x>4+5x4+7 and Ez: y?>=x>—10875x 4+ 526250,

which do not admit complex multiplication. (We exclude E; in this example be-
cause it does have complex multiplication.) For E1, we apply Theorem 2.16 with
n = 1 and compute the necessary probabilities with Corollary 2.7 knowing that
the Galois groups are isomorphic to GL,(Z /7 7). For E3, we apply Theorem 2.16
withn =3 forr =2 and n = 1 for # = 3 and & = 5, and compute the necessary
probabilities with Theorem 2.5 (when n = 3) and Corollary 2.7 (when n = 1). The
results are shown in Table 2.

In order to apply Theorem 2.16, one has to show that I(E, w, k) = I(E, w,n)
forall k >n (orn > n(E, ) since E; and E3 do not have complex multiplication).
For E;, we were able to prove that n(E, ) = 1formr =2, 7 =3, and 7 =5 by
using the remarks at the end of Section 2B. For E3, Andrew Sutherland computed
for us the Galois groups up to the 2°-, 33-, and 5%-torsion. These computations
lead us to believe that n(E3,2) = 3, n(E3,3) = 1, and n(£3,5) = 1, but we have
been unable to prove that these values are correct; in particular, this means that the
theoretical probabilities for E3 given in Table 2 are conjectural.
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T n(El, 71) ﬁJ'[,theor I’L(E3, 7[) ﬁn,lheor
ﬁﬂ,exper ﬁJ'[,exper
2 1 5 ~ 1.556 3 83 ~1.554
1.555 1.554
3 1 2F ~0.680 1 2~ 1219
0.679 1.218
5 1 S ~0.302 1 122 ~ 0.807
0.301 0.807

Table 2. Theoretical and experimental values of the average m-adic valuation
of #E1(Fp) and #E3(Fp), for m = 2,3,5. The theoretical values come from
Theorem 2.16, and the experimental values were computed using all primes less
than 22°. The values of n(E3, ) and those of U heor for E3 are conjectural.

3. Applications to some families of elliptic curves

As shown in the preceding section, changing the torsion properties is equivalent
to modifying the Galois group. One can view the imposition of rational torsion
points as a way of modifying the Galois group. In this section we change the Galois
group either by splitting the division polynomials or by imposing some equations
that directly modify the Galois group. With these ideas, we find new infinite ECM-
friendly families and we explain the properties of some known curves.

3A. Preliminaries on Montgomery and twisted Edwards curves. Let K be a field
whose characteristic is neither 2 nor 3.

Edwards curves. For a,d € K, with ad(a — d) # 0, the twisted Edwards curve
ax?+y? =1+4dx?y? is denoted by E, 4. The “a = —1” twisted Edwards curves
are denoted by E ;. In [8] completed twisted Edwards curves are defined by

Eqa={((X:2),(Y:T))eP' xP! |aX?>T>+Y?Z% = Z?>T?> +dX?Y?}.

The completed points are the affine (x, y) embedded into P! x P! by the map

(x,y) > ((x : 1), (y: 1)); see [8] for more information. We denote (1 : 0) by oc.
Figure 2 gives an overview of all the 2- and 4-torsion, as well as some of the

8-torsion points, on E a,d» as specified in [8].

Montgomery curves and the Suyama family. Take A, B € K with B(A4%? —4) # 0.

The Montgomery curve By? = x3 + Ax2 + x associated to (4, B) is denoted by

M4, p (see [23]) and its completion in P2 by MA’B.

Remark 3.1. If a,d, A, B € K are such that d = (A—2)/B anda = (A +2)/B,

then there is a birational map between E a,d and M A,B given by

((x:2),(y:0) > (C+y)x:(t+y)z:(t—y)x)
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1-torsion

0,1)
2-torsion

0, -1) (00, /) (00,—/9)
/ \ 4 4+ 4-torsion
(£va=1,0) (£vVd~1, 00) (£v—a1 ﬁ’i%) (imﬁ’iiﬁ)

T 1 8-torsion

(xsg, iﬁx;;) (56\8, + d_ljc\s_l)

Figure 2. An overview of all 1-, 2-, and 4-torsion and some 8-torsion points
on twisted Edwards curves. The xg and Xg in the 8-torsion points are such that
adxg —2ax§ +1=0and ad)?g —2d)?§ +1=0.

(see [6]). Therefore M A,B and E a,d have the same group structure over any field
where they are both defined, and in particular they have the same torsion prop-
erties. Any statement in twisted Edwards language can be easily translated into
Montgomery coordinates and vice versa.

A Montgomery curve for which there exist x3, y3, k, Xo0, Yoo € @ such that

P3(x3) =0, By% = xg’ + Ax% + X3 (3-torsion point),

3 2

b Ax by

k=23 , 2 = 33 + 23 + 3 (nontorsion point),  (3)
Yoo X3o + AXE, + Xoo

Xoo = xg’ (Suyama equation)

is called a Suyama curve. As described in [32; 34], the solutions of (3) can be
parametrized by a rational value denoted o. For all o € @\{0, +1, £3, £5, i%},
the associated Suyama curve has positive rank and a rational point of order 3.

Remark 3.2. In the following, when we say that a twisted Edwards curve E, 4
(or a Montgomery curve M4, g) has good reduction modulo a prime p, we also
suppose that we have v, (a) = vp(d) = vp(a —d) = 0 (respectively, v, (A —2) =
Vp(A +2) = vy(B) = 0 for a Montgomery curve). In this case the reduction map
is simply given by reducing the coefficients modulo p. The results below are also
true for primes of good reduction which do not satisfy these conditions, by slightly
modifying the statements and the proofs. Moreover, in ECM, if the conditions are
not satisfied, we immediately find the factor p.

3B. The generic Galois group of a family of curves. In the following, when we
talk about the Galois group of the m-torsion of a family of curves, we mean a group
isomorphic to the Galois group of the m-torsion for all curves of the family except
for a sparse set of curves (which can have a smaller Galois group).
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For example, let us consider the Galois group of the 2-torsion for the family
(€, y2 =x3+rx?+x|r eQ\{£2}}. The Galois group of the 2-torsion of the
curve € : y2 = x3 + Ax? + x over Q(A) is Z/27Z. Hence, for most values of r the
Galois group is Z/2Z and for a sparse set of values the Galois group is the trivial
group. So, we say that the Galois group of the 2-torsion of this family is Z/27.

To our best knowledge, there is no implementation of an algorithm computing
Galois groups of polynomials with coefficients in a function field. Instead we can
compute the Galois group for every curve of the family, so we can guess the Galois
group of the family from a finite number of instantiations. In practice, we took a
dozen random curves in the family; if the Galois groups of the m-torsion for these
curves were all the same, we guessed that it was the Galois group of the m-torsion
of the family of curves.

3C. Study of the 2¥-torsion of Montgomery and twisted Edwards curves. The
rational torsion of a Montgomery/twisted Edwards curve is Z/27 but it is known
that 4 divides the order of the curve when reduced modulo any prime p [32]. The
following theorem gives more detail on the 2k _torsion.

Theorem 3.3. Let E = E, 4 be a twisted Edwards curve (respectively, a Mont-
gomery curve My p) over Q. Let p be a prime such that E has good reduction
at p.

(1) Suppose p =3 (mod 4). Ifa/d (respectively, A> — 4) is a quadratic residue
modulo p, then E(Fp)[4] ~ Z/27 x 7 /4Z.

(2) Suppose p =1 (mod 4). If a (respectively, (A + 2)/B) is a quadratic residue
modulo p (in particular, if a = +£1) and a/d (respectively, A*> —4) is a
quadratic residue modulo p, then 7 /27 x 7 /47 C E(F)[4].

(3) Suppose p =1 (mod 4). If a/d (respectively, A*> — 4) is a quadratic non-
residue modulo p and a — d (respectively, B) is a quadratic residue modulo p,
then E(Fp)[8] ~ 7/87.

Proof. Using Remark 3.1, it is enough to prove the results in the Edwards language,
which follow by some calculations using Figure 2. O

Theorem 3.3 suggests that by imposing equations on the parameters ¢ and d
we can improve the torsion properties. The case where a/d is a square has been
studied in [8] for the family of Edwards curves with a = 1 and rational torsion
group Z/27 x Z/8Z, and in [7] for the family with ¢ = —1 and rational torsion
group 7/27 x 7 /47 . Here we focus on two other equations:

2

dce@Q,a=—c (A+2= —Bc¢? for Montgomery curves), €))

JeeQ,a—d=c? (B = ¢? for Montgomery curves). ®))
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The cardinality of the Galois group of the 4-torsion for generic Montgomery
curves is 16; this is reduced to 8 for the family of curves satisfying (4). Using
Theorem 2.5, we can compute the changes of probabilities due to this new Galois
group. For all curves satisfying (4) and all primes p = 1 (mod 4), the probability
of having Z/27 x 7 /27 as the 4-torsion group becomes 0 instead of 1; the proba-
bilities of having 7 /27 x 7 /47 and 7 /47 x 7 /47 as the 4-torsion group become %
instead of %.

The Galois group of the 8-torsion of the family of curves satisfying (5) has car-
dinality 128, instead of 256 for generic Montgomery curves. Using Theorem 2.5,
one can see that the probabilities of having an 8-torsion point are improved.

Using Theorem 2.16, one can show that for both families of curves — the family
satisfying (4) and the one satisfying (5) — the probability that the cardinality is
divisible by 8 increases from % to %, and the average valuation of 2 increase from
90 4
3D. Better twisted Edwards curves with torsion 7 [27 x 7 |47 using division poly-
nomials. In this section we search for curves such that some of the factors of the
division polynomials split; by doing so, we hope to change the Galois groups. As
an example we consider the family of a = —1 twisted Edwards curves E; with
7/27 x 7 /4Z-torsion; these curves are exactly the ones with d = —e* (see [7]).
The technique might be used in any context.

Looking for subfamilies. For a generic d, the polynomial P splits into three
irreducible factors: two of degree 4 and one of degree 16. If one takes d = —e*,
the polynomial of degree 16 splits into three factors: two of degree 4, called Pg g
and Pg, 1, and one of degree 8, called Pg . By trying to force one of these three
polynomials to split, we found four families, as shown in Table 3.

In all these families the generic average valuation of 2 is increased by % —rising
from 13—4 up to % — except for the family e = (g —g~')/2, for which it is increased
by % bringing it to the same valuation as for the family of twisted Edwards curves
with @ = 1 and torsion isomorphic to Z/27 x 7 /87Z. Note that these four families
cover all the curves presented in the first three columns of [7, Table 3.1], except

2 19

the two curves with e = = and e = -, which have a generic Galois group for the

6
7
8-torsion.

The family e = (g — g~ 1)/2. In this section, we study in more detail the family
e = (g —g~1)/2. Using Theorem 2.5 one can prove that the group order modulo
all primes is divisible by 16. However, we give an alternative proof which is also of
independent interest. We need the following theorem which computes the 8-torsion

points that double to the 4-torsion points (£v—d 1, £v/—d~1).
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Degrees of factors of Avg. 2-adic val. over p that are

Special form of e Pso Pg1 Pgpx 1mod4 3 mod4 all p
none 4 4 8 16/3 4 14/3
g* 4 4 4,4  17/3 4 29/6
g% +2g+1)/(2g+1) 4 4 4,4 17/3 4 29/6
g%/2 2,2 4 8 17/3 4 29/6
(g—ghH/2 2,2 272 8 17/3 5 16/3

Table 3. Averages, over different subsets of primes, of the 2-adic valuation of
#E(Fp), for E in one of several subfamilies of twisted Edwards curves E; with
torsion group isomorphic to Z/2Z x Z/4Z. The subfamilies all have d = —e*,
where e is further specialized according to the entries in the first column. The
second through fourth columns give the degrees of the factors of the polynomi-
als Pg ; defined in the article. The fifth through seventh columns give the average
2-adic valuation of #E(F,) as p ranges through primes that are 1 modulo 4,
primes that are 3 modulo 4, and all primes, respectively.

Theorem 3.4. Let E; be a twisted Edwards curve over Q with d = —e?, where
e=(g—g™1)/2 for some g € Q\{—1,0, 1}. Let p > 3 be a prime of good reduction.
If t €{l,—1}is such thattg(g — 1)(g + 1) is a quadratic residue modulo p, then
the points (x,y) € Eg(Fp) for which there is a w € {1, —1} such that

4rg2—w
y= :I:\/ g and x=+g%y (6)

(g—tw)3(g +1tw)
have order 8, and double to (:I:e_l, te_l).

Proof. For all points (x, y) of order 8, neither x nor y is equal to O or co. Following
Theorem 2.10 of [8] we find that a point (x, y) doubles to

((2xy 1 4dx?y?), (x2+y2: 1 —dx2y2))
= (@xy: —x2+y?), (x> + y2:2— (—x% +y?))).
Let s,t € {1,—1} be such that (x, y) doubles to (se™!,ze~1). Then

2xy s x2+ y2 t
—=- and ————-=—.
—x24+y2 e 2—(—x2+4+y2) e
From the first equality we obtain (x/y)? + 2esx/y + e? = 1 + 2. Write e =
(g — g~ 1)/2, so that we obtain (x/y + se)? = ((g + g~ 1)/2)?. It follows that
x/y € {xg,£1/g}, depending on the sign s and the sign after taking the square
root. This gives x2 = G?y? with G? € {g2, g 2}.

From the second equality we obtain (e —¢)x2 + (e +1)y? = 2¢, and substituting
x2 = G?y? results in ((e —t)G? + (e +t))y? = 2t. This can be solved for y
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when 2¢((e —t)G? + (e + 1)) is a quadratic residue modulo p. This is equivalent
to checking if either of

_ 1)3

2t((e—Dg*+ (e + 1) = At 1)g(g+ 1), (7)
_ 3

2t(e—1) + (e + 1)g?) = ‘e 1);8 +1 (3)

is a quadratic residue modulo p. By assumption, tg(g — 1)(g + 1) is a quadratic
residue modulo p. Hence, expressions (7) and (8) are both quadratic residues
modulo p. Solving for y and keeping track of all the signs results in the formulas
in (6). |

Corollary 3.5. Let E = E; be a twisted Edwards curve over Q such that d =
—((g—g™hH/2)* for some g € @\ {—1,0,1}, and let p > 3 be a prime of good
reduction. Then E(Q) has torsion group isomorphic to 7/27 x 7 /47, and the
group order of E(Fp) is divisible by 16.

Proof. The proof depends on the congruence class of p modulo 4.

If p =1 (mod 4) then —1 is a quadratic residue modulo p. Hence, the 4-torsion
points (£, 0) exist (see Figure 2) and 16 | #E([F,).

If p = 3 (mod 4) then —1 is a quadratic nonresidue modulo p. Then exactly
oneof {g(g—1)(g+1),—g(g—1)(g+ 1)} is a quadratic residue modulo p. Using
Theorem 3.4 it follows that the curve E([F,) has rational points of order 8, and

hence 16 | #E([Fp). |
Corollary 3.5 explains the good behavior of the curve with d = —(%)4 and
torsion group isomorphic to Z/2Z x Z/4Z found in [7]. This parameter can be

expressed as d = —(%)4 =—((g—gH/2)* for g = % and, therefore, the group

order is divisible by an additional factor of 2.

Corollary 3.6. Let g € Q\ {—1,0,1}, letd = —((g — g~ ")/2)*, and let p = 1
(mod 4) be a prime of good reduction for the curve E4. If g(g —1)(g+ 1) isa
quadratic residue modulo p, then the group order of E;(Fp) is divisible by 32.

Proof. All 16 of the 4-torsion points are in E4([F,) (see Figure 2). By Theorem 3.4
we have at least one 8-torsion point. Hence, 32 | #E; (Fp). |

We generated different values g € Q by setting g = ;— with 1 <7 < j <200 such
that gcd(i, j) = 1. This resulted in 12,231 possible values for g, and Sage [30]
found 614 nontorsion points. As expected, we observed that they behave similarly
to the good curve found in [7].
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Parametrization. In [7] a “generating curve” is specified which parametrizes d and
the coordinates of the nontorsion points. Arithmetic on this generating curve can
be used to generate an infinite family of twisted Edwards curves with torsion group
isomorphic to Z/2Z x Z/4Z and with a nontorsion point. Using ideas from [13]
we found a parametrization that does not involve a generating curve, and hence
requires no curve arithmetic.

Theorem 3.7. Lett € Q\ {0, £1, £3, +1/3} and set

3(12—1) 4 1 94 —212 49
e=—-——, d=—€", Xoo=——5—5, Vo= —fjf—-
8t 4e3 + 3e 9t4—9

Then the twisted Edwards curve —x* 4+ y? = 1 + dx?y? has torsion subgroup
isomorphic to 7 /27 X 7 /47, and (X0, Yoo) IS @ nontorsion point.

Proof. Since t # 0 and t # +£1, we see that e, d, X0 and yoo are nonzero rationals;
further, e # £1 because t # +3 and ¢t # £1/3, so d # —1. Thus, the twisted
Edwards curves E; is nonsingular, and its torsion subgroup is Z/27 x 7 /47 be-
cause d = —e*. A calculation shows that the point (Xo0, Yoo) is on the curve; it is
a nontorsion point because Xxoo ¢ {0, 00,71, —e~1}. O

This rational parametrization allowed us to impose additional conditions on the
parameter e. For the four families, except e = g2 which is treated below, the
parameter e is given by an elliptic curve of rank 0 over ().

Corollary 3.8. Let P = (x, y) be a nontorsion point on the rank-1 elliptic curve
y2 = x3 —36x over Q. Lett = (x 4 6)/(x — 6) and let e be as in Theorem 3.7.
Then the curve E_ 4 belongs to the family e = g2 and has positive rank over Q.

3E. Better Suyama curves by a direct change of the Galois group. In this sec-
tion we will present two families that change the Galois group of the 4- and 8-
torsion without modifying the factorization pattern of the 4- and 8-division poly-
nomial.

Suyama-11. Kruppa observed in [19] that among the Suyama curves, the one cor-
responding to o = 11 finds exceptionally many primes. Barbulescu [5] extended
this single example to an infinite family which we present in detail here.

Experiments show that the 0 = 11 curve differs from other Suyama curves only
by its probabilities to have a given 2% -torsion group when reduced modulo primes
p = 1 (mod 4). The reason is that the 0 = 11 curve satisfies (4). Section 3C
illustrates the changes in probabilities of the 0 = 11 curve when compared to
curves which do not satisfy (4) and shows that (4) improves the average valuation
of 2 from 1—3? to %

We will refer to the set of Suyama curves that satisfy (4) as Suyama-11. When
solving the system formed by Suyama’s system plus (4), we obtain an elliptic
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parametrization for 0. Given a point (¥, v) on the curve
Eg, 1 v =u®—u®—120u + 432,

the associated o is obtained as 0 = 5 + 120/(u —24). The group Eq,,(Q) is
generated by the points Po, = (—6, 30), P, = (—12,0), and Q, = (4, 0) of orders
00, 2, and 2, respectively. We exclude 0, £ Pso, P2, O3, P> + O3, and Q» £ P,
which are the points producing invalid values of 0. The points £R, Q> £ R
lead to isomorphic curves. Note that the 0 = 11 curve corresponds to the point
(44,280) = Poo + P>.

Edwards 7/67Z: Suyama-11 in disguise. In [7, §5] it is shown that the a = —1
twisted Edwards curves with Z/6Z-torsion over @Q are precisely the curves E
with
16u3u? —u+1)
(u—1)%u +1)?

where u is a rational parameter.! In particular, according to [7, §5.3] one can
translate any Suyama curve into Edwards language and then impose the condition
that —a is a square to obtain curves of the a = —1 type. Finally, [7, §5.5] points
out that this family has exceptional torsion properties.

d = )

In order to understand the properties of this family, we translate it back into
Montgomery language using Remark 3.1. Thus, we are interested in Suyama
curves that satisfy the equation 4 42 = —Bc? (the Montgomery equivalent for —a
being a square). This is the Suyama-11 family, so its torsion properties were ex-
plained on page 81. These two families have been discovered independently in [5]
and [7].

Suyama-%. In experiments by Zimmermann, new Suyama curves with exceptional
torsion properties were discovered, such as o = %. Further experiments show that
their special properties are related to the 2k _torsion and exclusively concern primes
p =1 (mod 4). Indeed, the 0 = % curve with satisfies (5). Section 3C illustrates
the changes in probabilities of that curve when compared to curves which do not
satisfy (5), and shows that (5) improves the average valuation of 2 from % to %1

We refer to the set of Suyama curves satisfying (5) as Suyama-%. When solving
the system formed by Suyama’s system together with (5), we obtain an elliptic

parametrization for ¢. Given a point (#, v) on the curve
.23
Egy,y 1 V" =u”—5u,

the associated o is obtained as o0 = u. The group Eq, ,(Q) is generated by the
points P = (—1,2) and P> = (0, 0) of orders oo and 2, respectively. We exclude

UIn the proof of [7, Theorem 5.1], the fraction corresponding to (9) is missing a minus sign.
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the points 0, £ P, P2, and P, £ P, which produce invalid values of o. If two
points in Eq, ,(Q) differ by P, they correspond to isomorphic curves. The curve

9

. . . . 9 3
associated to o = 7 is obtained from the point (Z’ —g) = [2] Pso.

3F. Comparison. Table 4 gives a summary of all the families discussed in this
article. The theoretical average valuations were computed with Theorem 2.16,
Theorem 2.5, and Corollary 2.7, under some assumptions on Serre’s exponent (see
Example 2.17 for more information).

Note that, when we impose torsion points over 0, the average valuation does
not simply increase by 1, as can be seen in Table 4 for the average valuation of 3.

Famlly Curve na 52,theor ns 53,thf:0r
62,exper 1_)3,£:)(per
Suyama o=12 2 D~3333 1 3~1.688
3.331 1.689
Suyama-11 o=11 2 La3667 1 3~1.688
3.369 1.687
Suyama-§ o=2 3 La3667 1 3 ~1.688
3.364 1.687
Z/2xZ/AZ e=11 3 Hxd667 10 2L ~0.680
(Twisted Edwards E_4) 4.666 0.679
e=(g—g /2 g§=32 3 %5333 1* 2 ~0.680
5.332 0.679
e=g? g=3 3 224833 1* 2 ~0.680
4.833 0.680
e=g2/2 g§=32 3 2 x4833 1* 2 ~0.680
4.831 0.679

2
e= % g=1 3 2a4833  1* 2 ~0.680
g+ 4.833 0.679

Table 4. Theoretical and experimental values of v, and v3 for sample curves
from the families discussed in this paper. The theoretical values come from
Theorem 2.16, and the experimental values were computed using all primes less
than 22°. The columns labeled 715 and n3 give the values of n(E,2) and n(E, 3).
The notation n = 1* means that the Galois group is isomorphic to GL,(Z /7 Z).
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4. Conclusion and further work

We have used Galois theory in order to analyze the torsion properties of ellip-
tic curves. We have determined the behavior of generic elliptic curves and ex-
plained the exceptional properties of some known curves (Edwards curves of tor-
sion Z/27 x 7 /47 and 7/67). The new techniques suggested by the theoretical
study have helped us to find infinite families of curves having exceptional torsion
properties. We list some questions which were not addressed in this work:

e How does Serre’s work relate to the independence of the m- and m’-torsion
probabilities for coprime integers m and m’?

e [s there a model predicting the success probability of ECM from the probabil-
ities given in Theorem 2.16?

e Is it possible to effectively use the resolvent method [14] in order to compute
equations which improve the torsion properties?
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Two grumpy giants and a baby

Daniel J. Bernstein and Tanja Lange

Pollard’s rho algorithm, along with parallelized, vectorized, and negating vari-
ants, is the standard method to compute discrete logarithms in generic prime-
order groups. This paper presents two reasons that Pollard’s rho algorithm
is farther from optimality than generally believed. First, “higher-degree local
anticollisions” make the rho walk less random than the predictions made by
the conventional Brent-Pollard heuristic. Second, even a truly random walk
is suboptimal, because it suffers from “global anticollisions” that can at least
partially be avoided. For example, after (1.5 4 0(1))~/¢ additions in a group of
order £ (without fast negation), the baby-step-giant-step method has probability
0.5625 + o(1) of finding a uniform random discrete logarithm; a truly random
walk would have probability 0.6753 ...+ 0(1); and this paper’s new two-grumpy-
giants-and-a-baby method has probability 0.71875 4 o(1).

1. Introduction

Fix a prime £. The discrete-logarithm problem for a group G of order £ is the
problem of finding log, /2, given a generator g of G and an element / of G. The
notation log,  means the unique s € Z/¢ such that h = g*, where G is written
multiplicatively.

The difficulty of finding discrete logarithms depends on G. For example, if G is
the additive group Z/£ (encoded as bit strings representing {0, 1,...,£— 1} in the
usual way), then log, / is simply /2/g, which can be computed in polynomial time
using the extended Euclidean algorithm. As a more difficult example, consider the
case that p = 2¢ + 1 is prime and G is the order-¢ subgroup of the multiplicative
group I]:; (again encoded in the usual way); index-calculus attacks then run in time
subexponential in p and thus in £. However, if G is the order-{ subgroup of F;
where p — 1 is a much larger multiple of ¢, then index-calculus attacks become

MSC2010: 11Y16.
Keywords: Pollard rho, baby-step giant-step, discrete logarithms, complexity.
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much slower in terms of £; the standard algorithms are then the baby-step-giant-
step method, using at most (2 + o(1))~/¢ multiplications in G, and the rho method,
which if tweaked carefully uses on average (\/n_/Z +0(1))~/£ multiplications in G.

This paper focuses on generic discrete-logarithm algorithms such as the baby-
step-giant-step method and the rho method. “Generic” means that these algorithms
work for any order-£ group G, using oracles to compute 1 € G and to compute
a,b > ab for any a,b € G. See Section 2 for a precise definition.

If G is an elliptic-curve group chosen according to standard criteria then the
best discrete-logarithm algorithms available are variants of the baby-step-giant-step
method and the rho method, taking advantage of the negligible cost of computing
inverses in G. There is a standard “inverting” (or “negating”) variant of the concept
of a generic algorithm, also discussed in Section 2. This paper emphasizes the
noninverting case, but all of the ideas can be adapted to the inverting case.

Measuring algorithm cost. The most fundamental metric for generic discrete-log-
arithm algorithms, and the metric used throughout this paper, is the probability
of discovering a uniform random discrete logarithm within 7 multiplications. By
appropriate integration over m one obtains the average number of multiplications
to find a discrete logarithm, the variance, and so on. We caution the reader that
comparing probabilities of two algorithms for one m can produce different results
from comparing averages, maxima, and so forth; for example, the rho method is
faster than baby-step-giant-step on average but much slower in the worst case.

One can interpret a uniform random discrete logarithm as log, / for a uniform
random pair (g, /1), or as log, & for a fixed g and a uniform random /. The follow-
ing trivial “worst-case-to-average-case reduction” shows that a worst-case discrete
logarithm is at most negligibly harder than a uniform random discrete logarithm:
One computes log, / as log, /' —r where h’ = hg” for a uniform random r € Z/¢.

There are many reasons that simply counting multiplications, the number m
above, does not adequately capture the cost of these algorithms:

¢ A multiplication count ignores overhead; that is, the costs of computations
other than multiplications. For example, the ongoing ECC2K-130 computa-
tion uses a very restricted set of Frobenius powers, sacrificing approximately
2% in the number of multiplications, because this reduces the overhead enough
to speed up the entire computation.

¢ A multiplication count ignores issues of memory usage. For some algorithms,
such as the baby-step-giant-step method, memory usage grows with V', while
for others, such as the rho method, memory usage is constant (or near-constant).

¢ A multiplication count is blind to optimizations of the multiplication operation.
The question here is not simply how fast multiplication can be, but how mul-
tiplication algorithms interact with higher-level choices in these algorithms.
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For example, Cheon, Hong, and Kim in [10] showed how to look ahead one
step in the rho method for [F;*J and combine two multiplications into one at the
expense of very little overhead, although memory usage increases.

¢ A multiplication count ignores issues of parallelization. Pollard’s original rho
method is difficult to parallelize effectively, but “distinguished point” variants
of the rho method are heavily parallelizable with little overhead.

e A multiplication count ignores issues of vectorization. Modern processors
can operate on a vector of words in one clock cycle, but this requires that the
operation be the same across the entire vector. This issue was raised in a recent
discussion of whether the negation map on an elliptic curve can actually be
used to speed up the rho method, rather than merely to save multiplications;
see [6] and [3] for the two sides of the argument.

An improvement in multiplication counts does not necessarily indicate an improve-
ment in more sophisticated cost metrics. It is nevertheless reasonable to begin with
an analysis of multiplication counts, as is done in a large fraction of the literature;
followup analyses can then ask whether improved multiplication counts are still
achievable by algorithms optimized for other cost metrics.

Contents of this paper. Brent and Pollard in [7] identified a source of nonrandom-
ness in the rho method, and quantified the loss of success probability produced
by this nonrandomness, under plausible heuristic assumptions. The Brent-Pollard
nonrandomness (with various simplifications and in various special cases) has been
stated by many authors as the main deficiency in the rho method, and the rho
method has been the workhorse of large-scale discrete-logarithm computations.
There appears to be a widespread belief that, except for the Brent-Pollard non-
randomness, the rho method is the best conceivable generic discrete-logarithm
algorithm. Of course, the rho method can take more than 2+/¢ multiplications
in the worst case while the baby-step-giant-step method is guaranteed to finish
within 2+/¢ multiplications, but the rho method is believed to be the best way to
spend a significantly smaller number of multiplications.

This paper shows that there are actually at least two more steps separating the
rho method from optimality. First, the rho method is actually less random and
less successful than the Brent-Pollard prediction, because the rho method suffers
from a tower of what we call “local anticollisions”; Brent and Pollard account only
for “degree-1 local anticollisions”. Second, and more importantly, the rho method
would not be optimal even if it were perfectly random, because it continues to
suffer from what we call “global anticollisions”. We introduce a new “two grumpy
giants and a baby” algorithm that avoids many of these global anticollisions.

This new algorithm, like the original baby-step-giant-step algorithm, has low
overhead but high memory. We have not found a low-memory variant. This means
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that, for the moment, the algorithm is useful only for discrete-logarithm problems
small enough to fit into fast memory. The algorithm nevertheless challenges the
idea that the rho method is optimal for larger problems. The same approach might
also be useful for “implicit” discrete-logarithm problems in which rho-type itera-
tion is inapplicable, such as stage 2 of the p — 1 factorization method, but those
problems involve many overheads not considered in this paper.

Section 2 describes the general concept of anticollisions. Section 3 reviews
the Brent-Pollard nonrandomness. Section 4 discusses higher-degree anticollisions
in the rho method. Section 5 reports computations of optimal discrete-logarithm
algorithms for small £. Section 6 presents our new algorithm.

2. Anticollisions

This section introduces the concept of anticollisions in generic discrete-logarithm
algorithms. This section begins by reviewing one of the standard ways to define such
algorithms; readers familiar with the definition should still skim it to see our notation.

Generic discrete-logarithm algorithms. The standard way to formalize the idea
that a generic algorithm works for any order-£ group G is to give the algorithm
access to an oracle that computes 1 € G' and an oracle that computes the function
a,b > ab from G x G to G. The elements of G are encoded as a size-£ set G of
strings.

An m-multiplication generic algorithm is one that calls the a, b — ab oracle
m times. The algorithm obtains 1 for free, and has g and / as inputs, so overall
it sees m + 3 group elements. We write wg = 1, w; = g, wp = h, and w; for
i > 3 as the (i —2)nd output of the a,b — ab oracle: In other words, w; =
wjwyg for some j,k €{0,1,...,i —1} computed by the algorithm as functions of
wo, W1, ..., w;j—1. These functions can also flip coins (that is, take as an additional
input a sequence bg, by, . .. of uniform random bits that are independent of each
other, of g, of /2, and so on.), but cannot make oracle calls.

The standard way to formalize the idea that a generic algorithm does not take
advantage of the structure of G is to hide this structure by randomizing it. For
example, one can take G as the additive group Z/¢, and take G as the usual binary
representation of {0, 1,...,£ — 1}, but choose a uniform random injection from G
to G rather than the usual encoding. One defines the generic success probability
of a generic algorithm by averaging not only over log, / but also over the choices
of this injection.

To allow inverting algorithms one also allows free access to an oracle that com-
putes a — 1/a. Equivalently, one allows the algorithm to compute w; as either
wjwg or wj/wg, and one also provides 1/w;. Of course, one can simulate this
inversion oracle using approximately log, ¢ calls to the multiplication oracle, since
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1/a= a1 an algorithm that uses only a small number of inversions can thus be
simulated at negligible cost without inversions.

Slopes. Each w; can be written as h¥i g”i for a pair (x;, y;) € (Z/£)? trivially
computable by the algorithm. Specifically, wyg = 1 = h*0 g0 where (x¢, o) =
(0,0); wy = g = h*1g?t where (x1,y1) = (0,1); wy, = h = h*2g>2 where
(x2, y2) = (1,0); if w; is computed as w; wy then w; = h*i g¥" where (x;, y;) =
(xj,yj) + (xk, yk); and if an inverting algorithm computes w; as w;/wy then
w; = h*1 g¥" where (xi, yi) = (xXj, yj) — (Xk, Vi)

Normally these algorithms find log, / by finding collisions in the map

(x,y)—>h*g”

from (Z/€)* to G. A collision h*i g¥i = h*i g% with (x;, y;) # (xj, yj) must have
X; # Xxj (otherwise g”7 = g% so y; = y; since g generates G), so the negative
of the slope (y; — yi)/(xj — x;) is exactly log, h. The discrete logarithms found
by wg, w1, ..., Wy are thus exactly the negatives of the (4 3)(m +2)/2 slopes
(excluding any infinite slopes) between the m+3 points (xg, Vo), - - -, (Xm+2, Ym+2)
in (Z/£)*. The number of discrete logarithms found in this way is the number d
of distinct non-infinite slopes. The generic chance of encountering such a collision
is exactly d/£.

In the remaining cases, occurring with probability 1 — d /£, these algorithms
simply guess log, /1. The success chance of this guess is 0 if the guess matches one
of the negated slopes discussed above; otherwise the conditional success chance
of this guess is 1/(£ — d), so the success chance of this guess is 1/£. The overall
generic success chance of the algorithm is thus between d /¢ and (d + 1)/, de-
pending on the strategy for this final guess. In the extreme case d = £ this guess
does not exist and the generic success chance is 1.

(Similar comments apply to inverting algorithms, but the bound on d is doubled,
because there are twice as many opportunities to find —log, /1. Specifically, com-
paring w; to w; finds the slope (y; — yi)/(x; — x;), while comparing w; to 1/w;
finds (yj + yi)/(xj + xi).)

A similar model for generic discrete-logarithm algorithms was introduced by
Shoup in [23], along with the bound O(m?/{) on the generic success probability
of m-multiplication algorithms. Nechaev in [15] three years earlier had proven
the collision-probability bound O(m?2/£) in a weaker model, where algorithms are
permitted only to remotely manipulate group elements without inspecting strings
representing the group elements. Nechaev’s model is equivalent to Shoup’s model
when one measures algorithm cost as the number of multiplications, but is more
restrictive than Shoup’s model in more sophisticated cost metrics; for example,
Nechaev’s model is unable to express the rho algorithm.
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Chateauneuf, Ling, and Stinson in [9] introduced the idea of counting distinct
slopes. They pointed out that the success probability of the baby-step-giant-step
method is a factor 2 4+ o(1) away from the obvious quantification of the Nechaev-
Shoup bound: m multiplications allow only m1/2 baby steps and m /2 giant steps (if
m is even), producing (m/2 + 2)(m/2 + 1) ~ m? /4 slopes, while one can imagine
m + 3 points in (Z/£)? potentially having as many as (m + 3)(m +2)/2 ~ m?/2
distinct slopes.

Computer searches reported in [9, Section 3] found for each £ < 100 a set of
only marginally more than ~/2¢ points with slopes covering Z/{. However, these
sets of points do not form addition chains, and as far as we can tell the shortest
addition chains for all of the constructions in [9] are worse than the baby-step-
giant-step method in the number of multiplications used. The cost model used in
[9] allows a, b > a*b’ as a single oracle call for any (s, 7); we view that cost model
as excessively simplified, and are skeptical that algorithms optimized for that cost
model will be of any use in practice.

Anticollisions. We use the word “anticollision” to refer to an appearance of a use-
less slope — a slope that cannot create a new collision because the same slope has
appeared before. Formally, an anticollision is a pair (i, j) with i > j such that
either

® Xj =Xjor

e (yj —yi)/(xj —x;) equals (yjs — yi)/(xj» — x;r) for some pair (i’, j’) lexi-
cographically smaller than (i, j) with i’ > ;.

The number of anticollisions is exactly the gap (m + 3)(m + 2)/2 — d, where as
above d is the number of distinct non-infinite slopes. Our objective in this paper is
to understand why anticollisions occur in addition chains in (Z/¢)?, and how these
anticollisions can be avoided.

In Section 3 we review a standard heuristic by Brent and Pollard that can be
viewed as identifying some anticollisions in the tho method, making the rho method
somewhat less effective than a truly random walk would be. In Section 4 we iden-
tify a larger set of anticollisions in the rho method, making the rho method even less
effective than predicted by Brent and Pollard. This difference is most noticeable
for rho walks that use a very small number of steps, such as hardware-optimized
walks or typical walks on equivalence classes modulo Frobenius on Koblitz curves.

It should be obvious that even a truly random walk produces a large number
of anticollisions when m grows to the scale of V€. In Section 6 we show that at
least a constant fraction of these anticollisions can be eliminated: We construct
an explicit and efficient addition chain with significantly fewer anticollisions, and
thus significantly higher success probability, than a truly random walk.
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3. Review of the Brent-Pollard nonrandomness

This section reviews the nonrandomness that Brent and Pollard pointed out in the
rho method. The literature contains three formulas for this nonrandomness, in
three different levels of generality, backed by two different heuristic arguments. As
discussed in Section 4, these heuristics account for “degree-1 local anticollisions’
but do not account for “higher-degree local anticollisions”.

’

The rho method. The rho method precomputes r distinct “steps”
$1,52,...,8, € G—{l}

(as some initial w’s), and then moves from w; to w;4+1 = w;s;, where j is a
function of w;. Write p; for the probability that step s; is used.

We suppress standard details of efficient parallelization and collision detection
here, since our emphasis is on the success probability achieved after 7 multipli-
cations. Inserting each new group element into an appropriate data structure will
immediately recognize the first collision without consuming any multiplications.

The JV Jormula. Brent and Pollard in [7, Section 2] introduced the following
heuristic argument, concluding that if the values wy, ..., w;, are distinct then
W41 collides with one of those values with probability approximately mV /£,
where V is defined below. This implies that the total chance of a collision within m
multiplications (that is, within wy, . .., Wy, +7) is approximately 1 —(1—V/ 6)’”2/ 2,
which in turn implies that the average number of multiplications for a collision is
approximately \/71_/2 Nz /~/V . For comparison, a truly random walk would have
V=1

This argument applies to a more general form of the rho method, in which some
function F is applied to w; to produce w;41. The first collision might be unlucky
enough to involve wy, but otherwise it has the form w; 1 = w; 1 with w; # wjy,
revealing a collision F(w;) = F(w;) in the function F. Applications vary in how
they construct F' and in the use that they make of a collision.

Assume, heuristically, that the probability of w; matching any particular value
y is proportional to the number of preimages of y; in other words, assume that
Pr{w; = y] = #F~1(y)/{, where F~!(y) means {x : F(x) = y}. This heuristic is
obviously wrong for wg, but this is a minor error in context; the heuristic seems

plausible for wy, ..., wy,, which are each generated as outputs of F.
Assume that wy, ..., w,, are distinct. Define X as the set of preimages of
Wi, ..., Wy, so that X is the disjoint union of F~'(wy),..., F~'(wy,). Then

the expected size of X is

ZPr[xeX]:ZZPr[F(x) =w,—]=ZZZPr[F(x) = yand w; = y].
x x i x iy
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Assume, heuristically, that F(x) = y and w; = y are independent events. Then

D PrlxeX]=) ") ) Pi{F(x) = y]Pw; = y|
X iy X
:ZZ#F_I(J/)Z/E
iy
=mYy #F ' (y)*/L.
y

Define V as the variance over y of ##!(y). The average over y of #F~!(y)
isl,soV = (Zy #F_l(y)z/ﬁ) — 1, so the expected size of X is mV + m. There
are m known elements wy, ..., w,,—1 of X; the expected number of elements of
X other than wy, ..., w,,—1 is mV. By hypothesis w,, is none of wy, ..., Wy—1;
if w,, were uniformly distributed subject to this constraint then it would have prob-
ability mV /(£ —m) ~ mV /£ of being in X and thus leading to a collision in the
next step.

The \J1-)"; pl.2 Jormula. As part of [1] we introduced the following streamlined
heuristic argument, concluding that the collision probability for w,, 4 is approxi-
mately m(1—-); pl.z) /€. This implies that the average number of multiplications

.« . . . 2

for a collision is approximately /7 /2+/£/ /1 — Y Di

Fix a group element v, and let w and w’ be two independent uniform random
elements. Consider the event that w and w’ both map to v but w # w’. This
event occurs if there are distinct 7, j such that the following three conditions hold
simultaneously:

s v=ys;w =sjW;

e s; i1s chosen for w;

e sj is chosen for w’.

These conditions have probability 1/£2, p;, and p ; respectively. Summing over
all (i, j) gives the overall probability

(Z Pipj)/ﬁz = (Z pivi=) P?)ﬂ2 = (1 - Zpiz)/zz'
i#] i,j i i

Hence the probability of an immediate collision from w and w’ is (1 - plz) /L,
where we added over the £ choices of v.

After m + 3 group elements one has approximately 72 /2 potentially colliding
pairs. If the inputs to the iteration function were independent uniformly distributed

2
random points then the probability of success would be 1— (1 - (1 - plz) / Z)m /2
and the average number of iterations before a collision would be approximately
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\/ /2] V1 — D pl.z. The inputs to the iteration function in Pollard’s rho method
are not actually independent, but this has no obvious effect on the average number
of iterations.

Relating the two formulas. We originally obtained the formula v'1—); pl.2 by
specializing and simplifying the Brent-Pollard +/V formula as follows.

The potential preimages of y are y/sy, y/s2,...,y/sr, which are actual preim-
ages with probabilities pq, ps,..., pr respectively. A subset I of {1,2,...,r}
matches the set of indices of preimages with probability ( [Licr p,') ( ]_[i¢ (1= pi)),
so the average of #F~1(y)? is

Z#Iz(l_[ Pi) (1_[(1 - Pi))-
Ji iel idI

It is easy to see that most monomials (for example, pq p, p3) have coefficient 0

in this sum; the only exceptions are linear monomials p;, which have coefficient

1, and quadratic monomials p; p; with i < j, which have coefficient 2. The sum

therefore equals

Sopi+2 Y pins =Zpi+(2pi)2—2p?=2—zp?-
; i i i i

i,ji<j
Hence V =1-Y; p?.

The /1 —1/r formula. In traditional “adding walks” (credited to Lenstra in [20,
p. 66]; see also [21, p. 295] and [25]), each p; is 1/r, and V11— Zi pl.2 18 \/1 —1/r.
This /1 —1/r formula first appeared in [25], with credit to the subsequent paper
[4] by Blackburn and Murphy. The heuristic argument in [4] is the same as the
Brent-Pollard argument.

Case study: Koblitz curves. The vV1—); pl.2 formula was first used to optimize
walks on Koblitz curves. These walks map a curve point W to W + ¢* (W), where
¢ is the Frobenius map and i is chosen as a function of the Hamming weight of
the normal-basis representation of the x-coordinate of W. The Hamming weight
is not uniformly distributed, and any reasonable function of the Hamming weight
is also not uniformly distributed, so the /1 — 1/ formula does not apply. Note
that these are “multiplying walks” rather than “adding walks” if W = x; H + y;G
then W + ¢! (W) = s;x; H + s;y;G for certain constants s; € (Z/£)*), but the
heuristics in this section are trivially adapted to this setting.

As a concrete example we repeat from [1] the analysis of our ongoing attack
on ECC2K-130. All Hamming weights of x-coordinates of group elements are
even, and experiments show that the distribution of even-weighted words of length
131 is close to the distribution of x-coordinates of group elements. Any iteration
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function defined in this way therefore inevitably introduces an extra factor to the
running time of

11— (131)}/2260 ~ 1053211,

even if all 66 weights use different scalars s;. We extract just 3 bits of weight
information, using only 8 different values for the scalars, to reduce the time per
iteration. The values are determined by HW(xp,)/2 mod 8; the distribution of

D (1611.3_12 j) for 0 < j <7 gives probabilities

0.1414, 0.1443, 0.1359, 0.1212, 0.1086, 0.1057, 0.1141, 0.1288,

giving a total increase of the number of iterations by a factor of 1.069993.

4. Higher-degree local anticollisions

Consider the rtho method using r “steps” s1,52,...,5 € G, as in the previous
section. The method multiplies w; by one of these steps to obtain w; 41, multiplies
wj+1 by one of these steps to obtain w;4 5, and so on.

Assume that the step w;41/w; is different from the step w;4,/w;+1, but that
w;41/w; is the same as an earlier step w;y,/wj41, and that w;4o/w; 1 is the
same as the step w; 41 /wj. There are anticollisions (i +1, j +2) and (i +2, j +1),
exactly the phenomenon discussed in the previous section: For example, w; 1 can-
not equal w; 4, unless w; equals w; 1 1. There is, however, also a local anticollision
(i +2, j +2) not discussed in the previous section: w; 4, cannot equal w; 4, unless
w; equals w;. The point is that the ratio w;4,/w; is a product of two steps, and
the ratio wj 4, /wj; is a product of the same two steps in the opposite order.

We compute the heuristic impact of these “degree-2 local anticollisions”, to-
gether with the degree-1 local anticollisions of Section 3, as follows. Assume
for simplicity that 1, sy, 2, ..., S¢, sf, 8182, - .., S157, s%, ey 828, oy Sr2—1’
Sp—18y, s2 are distinct. Write F(w) for the group element that w maps to. Fix
a group element v, and consider the event that two independent uniform random
group elements w, w’ have F(F(w)) = v = F(F(w’)) with no collisions among
w,w’, F(w), F(w’). This event occurs if there are i,i’, j, j’ with s; # s;/ and
sjsi # sjrs;ir such that the following conditions hold simultaneously:

*V=4Sj5iw = Sj/Si/w/;
e F(w)=sjw;

o F(siw) = sjsiw;

e F(w') =spw';

o F(spyw') =sjrspw’.
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These conditions have probability 1/£2, p;, pj» pi’» and pjs respectively. Given
the first condition, the remaining conditions are independent of each other, since
w =v/(sjs;), siw = v/sj, w = v/(sjssir), and spyw’ = v/sjs are distinct. This
event thus has probability Y p; pj pi pjs/¢* where the sum is over all i, j,i’, j'
with s; # sj and s;s; # sjss;7. The complement of the sum is over all 7, j,i’, j’
with s; = sjs or sj5; = sjrsiy —that is, with j = j’ or with i’ = j # j' =1i. The
complement is thus

Zpﬁ > =Y+ (Xn) X
J J J

Ljii#j

and the original sumis 1 —3; p] (ZJ p]) +2; p] Adding over all v gives
probability (1 — )" j p} - i Pj ) +2.; p; #)/¢ of this type of two-step collision
between w and w’.

For example, if p; = 1/r for all i, then the degree-1-and-2 nonrandomness
factor is 1/y/1—1/r —1/r2 +1/r3, whereas the Brent-Pollard (degree-1) non-
randomness factor is 1/+/1 —1/r. These factors are noticeably different if r is
small.

Beyond degree 2. More generally, a “degree-k local anticollision” (i +k, j + k)
occurs when the product of & successive steps w;1/w;i, Wi+2/Wj+1, ... matches
the product of k successive steps w;1/wj, Wj42/wWj41, ..., without a lower-
degree local anticollision occurring. We define a “degree-(k, k) local anticollision”
(i +k, j+ k') similarly.

Given the vector (51, 52, ..., Sy), one can straightforwardly compute the overall
heuristic effect of local anticollisions of degree at most k, by summing the products
Piy:e Pig Pi e Di, for which 1, s;,, Sil s SiySiys Sit Sy - - - Ar€ distinct. Experiments
indicate that the largest contribution is usually from the smallest degrees.

We emphasize that the results depend on the vector (sq, s, ..., S,), because
generic commutative-group equations such as s;5, = s,51 are not the only mul-
tiplicative dependencies among sy, §2,...,S,. One can check that s¢,s3,...,5;
have no nongeneric multiplicative dependencies of small degree (and modify them
to avoid such dependencies), but they always have medium-degree nongeneric mul-
tiplicative dependencies, including mixed-degree nongeneric multiplicative depen-
dencies.

If 51,55, ..., 5 have only generic dependencies of degree at most & then the sum
described above is expressible as a polynomial in the easily computed quantities
I,=> j p}, Iy=>.p iP 4. and so forth, by a simple inclusion-exclusion argument.
For example, the degree- 1 nonrandomness factor is 1/+/1 — I, as in Section 3; the
degree-<2 nonrandomness factor is 1/+/1 — 1, — I 2 + 14, as explained above; the
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degree-<3 nonrandomness factor is 1/\/1 — I, — 122 + 14— 3123 + 71,14 —415g;
the degree-<4 nonrandomness factor is

1/ 1=I—13+14—313+7114—416—1314+531314—561,15—1713+331s;
and so on. In the uniform case these factors are
1/V1=1/r,
UVI=1/r=1/r2+1/r3,
UVI=1/r—1/r2=2/r3 +7/r* —4/r5,

and so on.

Case study: r = 6. Hildebrand showed in [13] that almost every r-adding walk
(with p; = 1/r) reaches a nearly uniform distribution in Z/£ within 02/ =1
steps; in particular, within o(\€) steps for > 6. Implementors optimizing Pol-
lard’s rho method for hardware often want r to be as small as possible to minimize
overhead (the storage required for precomputed steps and the cost of accessing
that storage), and in light of Hildebrand’s result can reasonably choose r = 6. This
raises the question of how random a 6-adding walk is; perhaps it is better to take a
larger value of r, increasing overhead but reducing nonrandomness.

For r = 6, with p; = py = p3 = ps = ps = pe¢ = 1/6 and generic sq, ..., Sq,
the heuristic nonrandomness factors are given (to 6 decimal places) in Table 1.
These factors converge to approximately 1.129162 as the degree increases; see
Appendix A. Evidently the Brent-Pollard heuristic captures most of the impact of
local anticollisions for r = 6, but not all of the impact.

We tried 232 experiments for £ = 1009. Each experiment generated 6 uniform
random steps s1, 52, ..., S¢ (Without enforcing distinctness, and without any con-
straints on higher-degree multiplicative dependencies), carried out a random walk
using s1, §2, ..., S¢ With equal probability, and stopped at the first collision. The
average walk length was approximately 1.150076 times \/71_/2«/z ; note that this

Degree  Factor Degree Factor Degree Factor
1 1.095445 <6 1.123767 <11 1.126654
<2 1.110984 <7 1.124696 <12 1.126926
<3 1.117208 <8 1.125383 <13 1.127151
<4 1.120473 <9 1.125909 <14 1.127341
<5 1.122452 <10 1.126322 <15 1.127503

Table 1. Approximate values of heuristic nonrandomness factors for the case
r =06, with py = py = p3 = py = p5s = pg = 1/6 and generic s, ..., Sg-
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14 Factor Experiments L Factor Experiments
1009 1.150076 232 100000007 1.131149 232
10007 1.147874 232 1000000007 1.130194 232
100003 1.141283 232 10000000019  1.129680 232
1000003 1.136122 232 100000000003  1.129395 228
10000019  1.132946 232 1000000000039  1.129326 226

Table 2. Observed average walk length until a collision, for a uniform random
walk in Z/¢ using 6 uniform random adding steps. “Factor” is the observed
average walk length divided by \/7/2 V'€, rounded to 6 digits after the decimal
point. “Experiments” is the number of experiments carried out for £.

does not count the multiplications used to generate 51, 52, ...,5¢. We then tried
several larger values of £; the resulting nonrandomness factors are shown in Table 2.
Our heuristics predict that these numbers will converge to approximately 1.129162
as £ — oo, rather than 1.095445.

Note that for small £ there is a larger chance of low-degree dependencies among
the steps s;, so it is not a surprise that smaller values of £ have larger nonrandom-
ness factors. We do not know whether a quantitative analysis of this phenomenon
would predict the numbers shown in Table 2 for small £, or whether other phenom-
ena also play a role.

Case study: Koblitz curves, revisited. Consider again the ECC2K-130 walk intro-
duced in [1]. Here £ = 680564733841876926932320129493409985129.

For 0 < j <7 define ¢ as the Frobenius map on the ECC2K-130 curve, and define
sj € Z/€ as 14 196511074115861092422032515080945363956/ 3. This walk
moves from P to P+ ¢/13(P) = s; P if the Hamming weight of the x-coordinate
of P is congruent to 2j modulo 16; this occurs with probability (almost exactly)
pi=2 (1611'1-12j)/2130‘

The only small-degree multiplicative dependencies among sy, . . ., 7 are generic
commutative-group equations such as 515, = s,51. We already reported this in
[1, Section 2] to explain why the walk is highly unlikely to enter a short cycle.
We point out here that this has a larger effect, namely minimizing small-degree
anticollisions. We now analyze the impact of the small-degree anticollisions that
remain, those that arise from the generic commutative-group equations.

For degree 1 the nonrandomness factor is 1/4/1— I ~ 1.069993. For degree
< 2 the nonrandomness factor is 1/+/1 — I, — 122 + 14 ~ 1.078620. For degree
<3itis 1/vV1 =1 — 13 =313 + 14 + 71214 — 41 ~ 1.081370. For degree <4
itis ~ 1.082550.

Case study: Mixed walks. The same type of analysis also applies to “mixed walks”

combining noncommuting steps such as w — ws;, w — wsy, and w > w2,
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Degree  Factor Degree  Factor Degree Factor
1 1.224745 <5 1.285444 <38 1.293067
<2 1.248075 <6 1.288605 <9 1.294325
<3 1.269973 <7 1.291514 <10 1.295107
<4 1.277533

Table 3. Approximate values of heuristic nonrandomness factors for the mixed walk
W w1, W ws,, and w — w2, with generic s; and s, and equiprobable steps.

14 Factor Experiments 14 Factor Experiments
1009 1.292381 241 10000019 1.297130 236
10007 1.298240 24 100000007 1.297071 232
100003 1297896 240 1000000007 1.297020 232
1000003  1.297360 237 10000000019  1.297018 232

Table 4. Observed average walk length until a collision, for a uniform random walk
in Z/{ using 2 uniform random adding steps and 1 doubling step. Columns have
the same meaning as in Table 2.

A sequence of such steps maps w to a monomial such as w4s1s§; we sum the
products p;, -+ pi, Pt Piy for which the monomials corresponding to (), (i),
(i1). (i1.i2), (i{.15), and so on, are distinct. The heuristic nonrandomness factor
for degree <k is the reciprocal of the square root of this sum.

For three equiprobable steps w > ws;, w+>ws», and w w2, with generic s, and
87, the heuristic nonrandomness factors are given (to 6 decimal places) in Table 3.

We tried experiments analogous to the 6-adding experiments described above.
Each experiment generated 2 uniform random group elements s, 55, carried out
a random walk using w — wsy, w > ws,, and w > w? starting from a uniform
random group element, and stopped at the first collision. Table 4 shows the result-
ing average walk lengths for various values of £. The dependence on £ is much
smaller here than it was in Table 2. The numerical data seems consistent with
the idea that the limit of the actual nonrandomness factors as £ — oo matches the
limit of the degree-<k heuristic nonrandomness factors as k — co: somewhere
between 1.295 and 1.298, very far from the traditional degree-1 nonrandomness
factor \/3/2 & 1.224745.

For comparison, Teske in [25, Table 5] reported using 1.776+/¢ multiplications
on average for 2000 experiments with the same type of walk. Teske’s cycle-
detection method cost a factor of approximately 1.13 in the number of multipli-
cations, according to [25, Section 2.2], so 1.776 /¢ corresponds to an observed
nonrandomness factor of 1.776/ (1.13\/71_/2) ~ 1.254. This might seem notice-
ably different not just from 1.224745 but also from our 1.297. However, since the
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standard deviation of random-walk lengths is on the same scale as the average, it
is statistically unremarkable to see differences of a few percent after only 2000
experiments.

Optimizing asymptotics. It is frequently stated that the rho method, like a truly
random walk, finishes in (\/71_/2 + 0(1))+/€ multiplications on average.

However, the experimental results by Sattler and Schnorr [20, p. 76] and by
Teske [25] showed clearly that \/71_/2 4+ 0(1) is not achieved by small values of r,
and in particular by Pollard’s original rho method. The Brent-Pollard nonrandom-
ness, and in particular the /1 — 1/r formula, indicates that \/71_/2 4+ o(1) is not
achieved by any bounded r; one must have 1/r € o(1), that is, r — 0o as £ — oo.
On the other hand, if » grows too quickly then the cost of setting up r steps is
nonnegligible.

This analysis does not contradict \/n_/Z + o(1). However, it does indicate that
some care is required in the algorithm details, and that \/n_/Z +0(1) can be replaced
by \/JT_/2+ O(£~74) but not by \/71’_/2+ o(L™1/%),

To optimize the o(1) one might try choosing steps that are particularly easy to
compute. For example, one might take 53 = 5153, S4 = 5253, and so on, where
s1, Sy are random. We point out, however, that such choices are particularly prone
to higher-degree anticollisions. We recommend taking into account not just the
number of steps and the number of multiplications required to precompute those
steps, but also the impact of higher-degree anticollisions.

5. Searching for better chains for small primes

If £ is small then by simply enumerating addition chains one can find generic
discrete-logarithm algorithms that use fewer multiplications than the rho method.

This section reports, for each small prime £, the results of two different computer
searches. One search greedily obtained as many slopes as it could after each multi-
plication, deferring anticollisions as long as possible. The other search minimized
the number of multiplications required to find an average slope. Chains found
by such searches are directly usable in discrete-logarithm computations for these
values of £; perhaps they also provide some indication of what one can hope to
achieve for much larger values of £. These searches also show that merely counting
the size of a slope cover, as in [9, Section 3], underestimates the cost of discrete-
logarithm algorithms, although one can hope that the gap becomes negligible as £
increases.

A continuing theme in this section is that the obvious quantification of the
Nechaev-Shoup bound is not tight. The bound says that an m-addition chain has
<(m + 3)(m + 2)/2 slopes; but there is actually a gap, increasing with m, between
(m 4 3)(m + 2)/2 and the maximum number of slopes in an m-addition chain.
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This section explains part of this gap by identifying two types of anticollisions
that addition chains cannot avoid and stating an improved bound that accounts
for these anticollisions. However, the improved bound is still not tight for most
of these values of £, and for long chains the improved bound is only negligibly
stronger than the Nechaev-Shoup bound.

Greedy slopes. Define d; as the number of distinct finite slopes among the points
(X0, ¥0)s (X1, ¥1), (X2, ¥2), ..., (xi, yi) in (Z/£)?. For example, the chain

(0,0),(0,1),(1,0),(0,2),(1,2),(1,4)

in (Z/7)2 has (do, dy,d>, d3, dy, ds) =(0,0,2,3,5,7): There are 2 distinct finite
slopes among (0, 0), (0, 1), (1, 0); 3 distinct finite slopes among (0, 0), (0, 1), (1, 0),
(0,2); 5 distinct finite slopes among (0, 0), (0, 1), (1, 0), (0, 2), (1, 2); and 7 distinct
finite slopes among (0, 0), (0, 1), (1,0), (0, 2), (1, 2), (1,4).

For each prime £ < 128 we computed the lexicographically maximum sequence
(do.d,,...) for all infinite addition chains starting (0, 0), (0, 1), (1,0) in (Z/£)>.
These maxima, truncated to the first occurrence of £, are displayed in Table 5. For
example, Table 5 lists (0,0, 2, 3,5,7) for £ = 7, indicating that the lexicographic
maximum is (0,0,2,3,5,7,7,7,7,7,...): One always has dy = 0, d; = 0, and
dy = 2; the maximum possible d3 is 3; given d3 = 3, the maximum possible d is
5; given d3 = 3 and d4 = 5, the maximum possible d5 is 7.

This computation was not quite instantaneous, because it naturally ended up
computing all finite chains achieving the truncated maximum (and, along the way,
all chains achieving every prefix of the truncated maximum). There are, for ex-
ample, 5420 length-21 chains that match the (dy, d1,...) shown in Table 5 for
£ =109.

Minimal weight. We also computed £-slope addition chains of minimal weight for
each prime ¢ < 48. Here “weight” means ) ;- i (d; — d;_1). Dividing this weight
by £ produces the average, over all s € Z /£, of the number of multiplications (plus
2 to account for the inputs g and /) used to find slope s. It might make more
sense to compute (¢ — 1)-slope addition chains of minimal weight, since a generic
discrete-logarithm algorithm that finds £ — 1 slopes also recognizes the remaining
slope by exclusion, but the gap becomes negligible as £ increases.

Lexicographically maximizing (dy, d1, .. .), as in Table 5, does not always pro-
duce minimal-weight £-slope addition chains. For example, the chain

(0,0), (0,1),(1,0), (0,2),(0,3),(1,3),(1,6), (2,12),(2,14), (2,16), (3,17), (4,28)

for £ =29 has weight 210 with (dy, d1,...) =(0,0,2,3,4,7,10, 14, 19, 23,27, 29),
while chains achieving the lexicographic maximum in Table 5 have weight 211. We
similarly found weight 299 (compared to 300) for £ = 37, weight 372 (compared
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L Weight dod; ...
2 4 002
3
5

7 0023
15 00235
7 25 002357
11 50 0023571011
13 64 0023571013
17 9% 00235710141617
19 113 00235710141719
23 148 0023571014192223
29 211 00235710141923262829
31 230 002357101419232831
37 300 0023571014192329333637
41 347 0023571014192429343941
43 375 002357101419242934384243
47 425 002357101419243035404447
53 510 0023571014192430364145505253
59 596 002357101419243036424852575859
61 631 002357101419243035424852565961
67 727 0023571014192430364147535963 6667
71 788 00235710141924303642485460667071
73 815 00235710141924303643505662677173
79 919 00235710141924303743495764697376 79
83 978 00235710141924303744515965727780 83
89 1081 00235710141924303744536066748084 87 89
97 1224 00235710141924303744516169788388 92 96 97
101 1307 00235710141924303745536069768289 93 97100101
103 1351 00235710141924303745526067748389 94 98102103
107 1422 00235710141924303745536170778491 96100 104 107
109 1466 00235710141924303744526068778491 98102106108 109
113 1536 00235710141924303744526270788694 99105109113
127 1806 00235710141924303745536373849298105112118122126127

Table 5. For each £ < 128, the lexicographically maximum (dgy,d;,...).
“Weight” means D ;> i(d; —dj—1).

to 375) for £ = 43, and weight 423 (compared to 425) for £ = 47. It is not clear
whether this gap becomes negligible as £ increases.

Some obstructions. We explain here two simple ways that anticollisions appear in
addition chains. Every addition chain produces at least a linear number of anticol-
lisions that follow these simple patterns.
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First, doubling a point (x;, y;) produces two anticollisions: The slopes from
2(xj,yj) to (xj, yj) and to (0, 0) are the same as the slope from (x;, yj) to (0,0).
Doubling another point (xx, yi) produces three anticollisions: The slope from
2(xk, yk) to 2(xj, yj) is the same as the slope from (xg, yx) to (x;j, yj). A third
doubling produces four anticollisions, and so on; doubling 7 points produces a
total of n(n + 3)/2 anticollisions of this type.

Second, adding (x;, y;) to a distinct point (x;, y;) produces two anticollisions:
The slopes from (x;, y;) + (xj, yj) to (x;, y;) and to (x;, yj) are the same as the
slopes from (x;j, yj) and from (x;, ;) to (0,0). Subsequently adding the same
(xi, yi) to another point (xg, yx) produces three anticollisions: The slope from
(xi, yi) + (xk. yi) to (xi, yi) + (xj, y;) is the same as the slope from (xg, yx) to
(xj. »j), exactly as in Section 3.

Applying these principles easily explains the initial pattern 0, 0, 2, 3, 5, 7 that
appears in Table 5. The first addition (whether or not a doubling) must produce
at least two anticollisions, and therefore produces at most one new slope to the
previous three points; this explains the 3. The second addition also produces at
least two anticollisions, and therefore at most two new slopes to the previous four
points; this explains the 5. One might think that the next step is 8, but having only
two anticollisions in each of the first three additions would imply that those three
additions include at most one doubling and no other reuse of summands, for a total
of at least five summands, while there are only four nonzero summands available
for the first three additions.

More generally, a chain of m > 2 nontrivial additions involves 2 inputs selected
from m 4+ 1 nonzero points, so there must be at least m — 1 repetitions of inputs.
These repetitions produce at least 71 —2 occurrences of three anticollisions (one dou-
bling is free), on top of m occurrences of two anticollisions and one anticollision
for the infinite slope from (0, 0) to (0, 1), for a total of at least 3m — 1 anticollisions,
and thus a total of at most (m + 3)(m +2)/2— (3m —1) = (m? —m +8)/2 slopes.
This explains 5, 7, 10, 14, 19 in Table 5 but does not explain 24.

6. Two grumpy giants and a baby

This section presents the algorithm featured in the title of this paper. This algo-
rithm is, as the name suggests, a modification to the standard baby-step-giant-step
method. The modification increases the number of different slopes produced within
m multiplications, and for a typical range of m increases the number beyond the
effectiveness of the rho method.

In the baby-step-giant-step algorithm the baby steps compute /2% g”i for (x;, y;) €
(0,0)+{0,1,2,...,[+2€]}(0, 1) and the giant steps compute 4~ g¥i for (x;, y;) €
(1,0)+{0,1,2,..., [V/£]}(0, [/€]). The first observation is that the slopes within
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one type of step are constant; the second observation is that once all steps are
done all £ slopes appear. Our idea is to make the lines of fixed slope shorter;
that is, we introduce more players. Note that introducing a second baby is not
useful: Lines between the points in (x, y) +{0,1,2,...,[+~/£]}(0, 1) and (0, 0) +
{0,1,2, ..., [V€]}0, 1) repeat each slope ~ +/£ times. We thus need to introduce
more giants to make progress.

The two-grumpy-giants-and-a-baby method is parametrized by a positive integer
n, normally proportional to V{; the reader should imagine n being approximately
0.5+/£. The number of multiplications in the method is approximately 37n. Here is
the set of points (x;, ;) € (Z/£)? produced by the method:

Baby: (0,0)+{0,...,n—1}(0,1)
Giantl : (1,0)+{1,...,n}(0,n)
Giant2: (2,0)—{1,...,n}(0,n+1)

The initial negation (0, —(n + 1)) for Giant2 has negligible cost, approximately
log, ¢ multiplications. Choosing n and n + 1 for the steps in the y direction for
the two giants gives a good coverage of slopes since n and n 4 1 are coprime. The
grumpy giants make big steps (on the scale of V) and quickly walk in opposite
directions away from each other. Luckily they are not minding the baby.

We now analyze the slopes covered by this method. Again it is not interesting to
look at the slopes among one type of points. The slope between a point (0, i) in the
Baby set and a point (1, jz) in the Giantl set is jn —i; this means that all slopes in
{1,...,n?} are covered. The slope between (0, i) in the Baby set and (2, —j (n +
1)) in the Giant2 setis (—j(n+ 1) —i)/2 € {~n* —2n+1,...,—n —1}/2; there
are n? distinct slopes here, almost exactly covering {—n2 —2n+1,...,—n— 1} /2.
The slope between (1,in) in the Giantl set and (2, —j(n + 1)) in the Giant2 set is
—jn+1)—ine {—2112 —n,...,—2n— 1}; there are another n2 distinct slopes
here, covering about half the elements of {—2n2 —n,...,—2n— 1}.

To summarize, there are three sets of n? distinct slopes here, all between —2n?—
n + 1 and n2. One can hope for a total of 3n? distinct slopes if £ > 3n? + n, but
this hope runs into two obstacles. The first obstacle is that the “odd” elements of
{—n2 —2n+1,...,—n— 1} can bump into the other sets when computing (27 +
1)/2 =i+ (£ +1)/2; but for £ € 4n* + O(n) this effect loses only O(n) elements.
The second obstacle is that any Giant1-Giant2 slopes between (—n? —2n)/2 and
(—n —2)/2 will bump into {—n2 —2n+1,...,—n— 1}/2 for the “even” elements
of {—n2 —2n+1,...,—n— 1}. This is approximately the rightmost 1/4 of the
Giant1-Giant2 interval, but only 72 /8 4+ O(n) of the Giant1-Giant2 slopes are in
this interval. Overall there are 2312 /8 4+ O(n) distinct slopes, that is, (0.71875 +
o(1))¢ distinct slopes.



106 DANIEL J. BERNSTEIN AND TANJA LANGE

For comparison, the same (3 + o(1))n multiplications allow the original baby-
step-giant-step method to compute (1.5 4+ o(1))n baby steps and (1.5 + o(1))n
giant steps, producing only (2.25 + o(1))n? = (0.5625 + o(1))£ distinct slopes.
The same number of multiplications in the rho method (with r € 1/0(1) differ-
ent steps, simulating a uniform random walk within a factor 1 4+ o(1)) produces
(9 + o(1))n?/2 = (1.125 + o(1))¢ random slopes, and thus (1 —exp(1.125) +
o(1))¢ = (0.6753 ...+ o(1))£ distinct slopes with overwhelming probability. We
have performed computer experiments to check each of these numbers.

Weighing the giants. We repeat a warning from Section 1: One algorithm can be
better than another after a particular number of multiplications but nevertheless
have worse average-case performance.

For example, the baby-step-giant-step method has two standard variants, which
we call the baby-steps-then-giant-steps method (introduced by Shanks in [22, pages
419-420]) and the interleaved-baby-step-giant-step method (introduced much later
by Pollard in [17, p. 439, top]). Both variants (with giant steps chosen to be of
size (1 + 0(1))~/€) reach 100% success probability using (2 + o(1))~/¢ multi-
plications, while the rho method has a lower success probability for that number
of multiplications. Average-case performance tells a quite different story: The
baby-steps-then-giant-steps method uses (1.5 + 0(1))~/¢ multiplications on aver-
age; the interleaved-baby-step-giant-step method is better, using (4/3 +o(1))v€ =
(1.3333... + 0(1))«/Z multiplications on average; the rho method (again with
1/r € o(1)) is best, using (\/71_/2+ 0(1))vV€ = (1.2533 ... 4 o(1)) /£ multiplica-
tions on average.

Our analysis above shows that the two-grumpy-giants-and-a-baby method is
more effective than the rho method (and the baby-step-giant-step method) as a way
to use (1.5 + o(1))+/£ multiplications. One might nevertheless guess that the rho
method has better average-case performance; for example, an anonymous referee
stated that the new method “presumably has worse average-case running time”.

Our computer experiments indicate that the (interleaved-)two-grumpy-giants-
and-a-baby method actually has better average-case running time than the rho
method. For example, for £ = 65537, we found a chain of weight 20644183 =
(1.23046 .. .)¢!3 with the two-grumpy-giants-and-a-baby method. Here we chose
n = 146, used (suboptimal) binary addition chains for (0,%) and (0,{ —n — 1),
and then cycled between points (0, i) and (1,in) and (2, —i (n + 1)) until we had
£ different slopes. For £ = 1000003 we found a chain of weight 1205458963 =
(1.20545 .. .)¢13 in the same way with n = 558.

Variants. We have been exploring many variants of this algorithm. We have found
experimentally that a 4-giants algorithm (two in one direction, two in the other,
with computer-optimized shifts of the initial positions) outperforms this 2-giants
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algorithm for m ~ Vi We speculate that gradually increasing the number of giants
will produce an algorithm with (0.5 4 o(1))m? distinct slopes, the best possible
result (automatically also optimizing the average number of multiplications, the
maximum, and so on), but it is not clear how to choose the shift distances properly.
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Appendix A. Computing limits of anticollision factors

This appendix shows, for each integer r > 3, a reasonably fast method to compute
the limit of the sequence of generic uniform heuristic nonrandomness factors

1//1=1/r,
UN1=1/r=1/r2+1/r3,
Uy I=1/r=1/r2=2/r3 +7/r4 —4/r,

considered in Section 4. For example, these factors converge to approximately
1.129162 for r = 6.

We are indebted to Neil Sloane’s Online Encyclopedia of Integer Sequences [24]
for leading us to [5] (by a search for the integer 4229523740916 shown below),
and to Armin Straub for explaining how to use [2] and [18] to compute the sum
>k tx/r?* discussed here. Our contribution here is the connection described
below between anticollision factors and sums of squares of multinomials.

Review of sums of squares of multinomials. Define U = }_; > ; si/s; in the r-
variable function field Q(sq, ..., s;), and define uj, as the constant coefficient of
Uk Consider the problem of computing D ;- ux/ r2k.

Note that UK = Dt 2ojroji SintSig/Sji e Sjys SO U is the number of
tuples (i1,...,ik, j1,-.., jk) such that s; ---s;, /sj,---sj, = I; that is, such that
(i1,...,1ix) is a permutation of (ji, ..., jix). The tuples counted here were named
“abelian squares” by Erdds in 1961, according to [19]; uy here is “ £, (k)” in the
notation of [19].
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For example, 1o = 1; u; = r; and uy = 2r? —r, which one can partition into
counting 2r% — 2r tuples (i1, 2, ji, j) with iy # ip and {iy,i2} = {j1, j»}, and r
tuples with i; =i, = j; = j,. More generally, the number of ways for s;,- - - s,

k
ai,az;....ar

k 2
ur =
k Z (al’aZv--'var

ai,az,...,ar.
aj+az+-+a,=k

() Z (oaa)
o m drai gy, \d1.A2, A ’

m=0 ~ 7 = 41,42,...,
a+ar+-+am=~k,
a1>0,a>,>0,...,a;,>0

to equal s7'--- 57" is the multinomial coefficient ( ), so

Richmond and Rousseau, proving a conjecture of Ruehr, showed in [18] that
uy, is asymptotically r2¥+7/2 /(47 k)" =1D/2 35 k — co. See also [19, Theorem 4]
for another proof. We conclude that ) ; uy/ r2k converges for r > 3 (and not for
r = 3). For example, with r = 6, the ratio uy /r2¥ is asymptotically 63 /(47k)?-3,
50 Yy uy/r?k converges, and the tail Y4, ug/r?* is ©(1/n'").

This ® is not an explicit bound; [18] and [19] are not stated constructively. How-
ever, inspecting examples strongly suggests that (uy/r2K)/(r"/2 J(4nk)"—1/2)
converges upwards to 1 as k — oo, so it seems reasonably safe to hypothesize that
uy/r?* is at most 2r"/2 /(47 k)"~D/2_ This hypothesis implies that

2,,]‘/2

Z r2k — Z (47‘[k)(’ 1)/2

k>n
oo 2 r/2
< / gk
w (4rl)C—D72
4r7/2
= (4ﬂ)(r—1)/2(,, _ 3)n(r—3)/2 ’

so to compute tight bounds on ) ; uy/ r2k it suffices to compute Y o<x<, Uk/ r2k
for a moderately large integer .

One can easily use the multinomial formula above to compute, for example,
that u19 = 4229523740916 for r = 6, but if k and r are not very small then it is
much more efficient to compute uj from the generating function ) ; u XKk =
(Zk xk/ k!2)r in the power-series ring Q[x]. Barrucand in [2] pointed out this
formula for u; and explained how to use it to compute a recurrence for uy. For
r = 6 we simply computed the 6th power of ) ", x* /K12 in Q[x]/x39°!, obtaining
the exact values of u for 0 <k < 5000 and concluding that Zoskgsooo uk/62k ~
1.275007093. This computation was fast enough that we did not bother to explore
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optimizations such as computing (Z k xk / k!z)r modulo various small primes or
analyzing the numerical stability of Barrucand’s recurrence.

Anticollision factors via sums of squares of multinomials. Define hj, as the num-

ber of tuples (i1,i2,...,0k, J1s J2,-++» Jk) e{l,...,r}Zk such that
Siy F Sj1s SiySia F SjySjas oees AN Sy Siye e Sip FSjySjy e Sy
in the polynomial ring Z[s,...,s,]. For example, hg = 1; h; = r? —r; and

hy=r%—r3—r2+4r.
The degree-<k generic uniform heuristic nonrandomness factor is 1/+/hy /r2k.

The goal of this appendix is to compute limy_, o 1/+v/hx /12%.
Define Hj as the sum of quotients s;,---s;, /sj,-8j, over the same tuples

(i1,... ik, J1,- .., jx) counted by hj. For k > 1 the product

HeaU = Heey 303708

ik Jk
is the sum of quotients s;,- - - s;, /sj,---sj, over the tuples (i1,..., ik, j1...., jk)
with
Siy 7 Sj1s SiySia F Sj1Sjas oo AN i Siye e Sig_y F Sjy iyt Sjgy -

These are the same as the tuples contributing to Hj, except for tuples having
SiySint**Sip = Sj;8jy -+ Sj.. The product Hy_,U is therefore the same as Hy,
except for its constant coefficient. The constant coefficient of Hy is 0, so Hy =
Hj_1U — ¢y, where ¢y, is the constant coefficient of Hy_; U.

By induction Hj, = Uk —c U1 —¢,Uk—2 —---—cy. Recall that the constant
coefficient of Uk is Up, s0 0 = uy — cluk 1 — Calj_y —---— k. In other words,
(1—cix —cpx? =+ )1 +uyx +upyx? +---) = 1 in the power-series ring Z[x].
For the same reason, the product (1 —cyx — -« — cx¥) (1 +uyx + -+ + ugxk) is

k+1_ 2k

1 —(crug +---+cpup)x cee—CpUEx, so

C1 Clk _
(12 ) (1 e ) 21

where €5 = (cug + -+ cxur)/r* T2 + -+ cpuy /r**. The bounds

Uk+1 Uk42
+++

0<e¢, =<
p2k+2 T p2k+4

show that €, — 0 as k — o0, so
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Mapping s; — 1, so — 1, ..., s, > | takes Hj to hy and takes U to r2, so

hy = hg_yr? —ck; that is, hk/VZk = hk_l/i’Zk_2 — ck/rzk. By induction,

Hence

hy L0 Ck
2k 2 4 2k
Dy ¢ 1
lim =l-—=-=—--- = .
k—o0 12k rz ot T+uy/r2+us/r4+---

The desired value limy_, o 1/+/hy /r2¥ is therefore the square root of the sum
Dok U/ r2k computed above. In particular, for r = 6 we find

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

1
lim ——— ~ 1.129162.

N
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Improved techniques for computing the
ideal class group and a system of
fundamental units in number fields

Jean-Francois Biasse and Claus Fieker

We describe improvements to the subexponential methods for computing the
ideal class group, the regulator and a system of fundamental units in number
fields under the generalized Riemann hypothesis. We use sieving techniques
adapted from the number field sieve algorithm to derive relations between ele-
ments of the ideal class group, and p-adic approximations to manage the loss of
precision during the computation of units. These improvements are particularly
efficient for number fields of small degree for which a speedup of an order of
magnitude is achieved with respect to the standard methods.

1. Introduction

Let K = ((f) be a number field of degree n and discriminant A. In this paper,
we present improved fast methods for computing the structure of the ideal class
group of the maximal order Og of K, along with the regulator and a system of
fundamental units of Og.

Class group and unit group computation are two of the four principal tasks for
computational algebraic number theory postulated by Zassenhaus (together with
the computation of the ring of integers and the Galois group). In particular, they
occur in the resolution of Diophantine equations. For example, the Pell equation

T?2—AU?*=1, T,Ué€Z,

boils down to finding the fundamental unit in a real quadratic number field of
discriminant A (see [26]). In addition, the Schéffer equation

e L R LA =
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can be solved using solutions to the Pell equation [24]. Unit computations are
key ingredients in solving almost all Diophantine equations, for example when
solving Thue equations [8]. On the other hand, the computation of the ideal
class group Cl(Og) of a number field K allows in particular to provide numerical
evidence in favor of unproven conjectures such as the heuristics of Cohen and
Lenstra [14] on the ideal class group of a quadratic number field, Littlewood’s
bounds [32] on L(1, y), or Bach’s bound on the minimal bound B such that ideals
of norm lower than B generate the ideal class group. The class group enters also
into the computation of the Mordell-Weil group of elliptic curves with the descent
method, or the Brauer group computations for representation theory [16].

In 1968, Shanks [41; 42] proposed an algorithm relying on the baby-step giant-
step method to compute the structure of the class number and the regulator of a qua-
dratic number field in time O(|A|Y/41€), or O(JA|Y/51€) under the extended Rie-
mann hypothesis [30]. In 1985 Pohst and Zassenhaus [37] published an algorithm
that could determine the class group of arbitrary number fields. Then, a subexpo-
nential strategy for the computation of the group structure of the class group of
an imaginary quadratic field was described in 1989 by Hafner and McCurley [21].
The expected running time of this method is bounded by La(1/2,v/2 + o(1))
where

La(a, B) := ePloglAD* (loglogl AT

Buchmann [11] generalized this result to the case of an arbitrary extension, the
heuristic complexity being valid for fixed degree n and A tending to infinity. In a
recent work [6], Biasse described an algorithm achieving the heuristic complexity
LA(1/3,0(1)) for certain classes of number fields where both the discriminant
and the degree tend to infinity.

In parallel with theoretical improvements, considerable efforts have been in-
vested to make the implementations of the subexponential methods efficient. In
the quadratic case, Jacobson [25] described an algorithm based on the quadratic
sieve for deriving relations between elements of Cl(Og). He successfully used it
for computing the class group and the fundamental unit of quadratic number fields.
His implementation contained some of the practical improvements described in
the context of factorization such as self-initialization and the single large prime
variant. This strategy was later improved by Biasse [7] who used a double large
prime variant and a dedicated Gaussian elimination technique. Attempts have been
made to generalize sieving techniques to general number fields [12; 34]. A variant
of the number field sieve was used for deriving relations in the class group of
cubic fields. On special classes of cubic number fields for which the regulator can
be precomputed, it allowed the computation of the ideal class group. Promising
timings were presented in [12; 34], for sizes of factor base that do not (to the best
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of our knowledge) certify the result under the generalized Riemann hypothesis.
In particular, a significant speedup was obtained over the standard random ideal
factorization method.

Our contribution. In this paper, we present an algorithm based on sieving tech-
niques adapted from recent implementations of the number field sieve [28] for
computing Cl(Og) under the generalized Riemann hypothesis (GRH) for an ar-
bitrary number field K. We also describe a p-adic method for computing the
regulator and a system of fundamental units. We show that these methods allow a
significant improvement for number fields of low degree over the current state of
the art based on enumeration techniques.

2. Generalities on number fields

Let K be a number field of degree d. It has r; < d real embeddings (0;);<r,
and 2r, complex embeddings (0;),, <i <4 coming as r2 pairs of conjugates, which
we number so that 0;4,, = 0; for r; <i <ry + ra. The field K is isomorphic
to Og ® Q where Ok denotes the ring of integers of K. We can embed K in
Kr:= K®R >~ R" x C", and extend the 0; to Kg. Let T, be the Hermitian
form on Ky defined by T>(x,x’) := ), 0;(x)0; (x'), and let || x| := /T2(x, x)
be the corresponding Ly-norm. Choose («;); <4 such that Ox = @; Za;; then
the discriminant of K is given by A = det®(Ta(a;, 7). The norm of an element
x € K is defined as N'(x) = []; 0 (x).

Let $ be the group of nonzero fractional ideals of K and % C ¢ is the subgroup of
principal fractional ideals. The norm of integral ideals is given by N(/) :=[Og : I],
which extends to fractional ideals by N(I/J) := N(I)/N(J). The norm of a
principal ideal agrees with the norm of its generator: N(xOg) = |[N(x)|.

The ideal class group of Ok is defined by Cl(Og) := $/%. We denote by |[a]
the class of a fractional ideal a in Cl(Og) and by & the cardinality of Cl(Og).
Elements of $ admit a unique decomposition as a power product of prime ideals
of Ok (with possibly negative exponents). An element x € O is said to be a unit if
(x)0g = Ok, or equivalently if |N'(x)| = 1. The units of Og form a multiplicative
group of the form

U= px(y1) x---x(yr),

where p is the torsion subgroup of U, r := ry 4+ rp — 1 and the generators y; of
the nontorsion part are called a system of fundamental units. The regulator is an
invariant of K which allows us to certify the calculation of CI(Og) and U. It is
defined as R = Vol(T") where T is the lattice generated by vectors of the form

(c1loglyil1, ..., cre1loglyilr+1),

with |x|; ;= |oj(x)| fori <r+4+1,c¢1 =1 fori <rq, ¢; =2 otherwise.
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3. The subexponential strategy

The idea behind the algorithm of Buchmann [11] is to find a set of ideals & =

{p1,...,pn} whose classes generate Cl(Og), and then consider the surjective mor-
phism v
z [ — Cl(0k)
(e1.....en) —T1; p;" ——[T;[pil*.

From the fundamental theorem of homomorphisms, the ideal class group satisfies
Cl(Og) ~ 7N/ ker(r o ¢). Therefore, the knowledge of ker(sr o ¢), which has the
structure of a Z-lattice, enables us to derive Cl(Og). In the meantime, elements of
ker(¢) give us units as power-products of relations. From these units, we hope to
derive a system of fundamental units of Og. The subexponential strategy can be
broken down into three essential tasks: collecting relations, calculating the class
group and calculating the unit group. The subexponentiality is a consequence of a
careful choice of B.

3.1. Relation collection. A preliminary step to the relation collection is the choice
of a generating set B = {p1,...,pn} of Cl(Og). We choose the set of prime ideals
of norm bounded by an integer B. The use of the Minkowski bound certifies the
result unconditionally, but it causes the algorithm to take a time exponential in
the size of A. To achieve subexponentiality, many authors chose the bound of
Bach [2], who proved that under GRH, Cl(Og) was generated by the classes of the
prime ideals p satisfying N'(p) < 12(log |A])2. Although asymptotically better, in
practice this bound can be larger than the one described by Belabas et al. [4] who
stated that under GRH, the class group is generated by the classes of the prime
ideals of norm bounded by B provided that
3 log N(p) (1_ IOgN(p”’))
N(pm/2) log B

(m,p):N(p")<B

2.468n 4+ 1.832r
log B )
In the rest of the paper, we assume that % is constructed with the bound of
Belabas et al. Indeed, Bach’s bound enlarges the dimensions of the matrices that

> %log|A| —1.9n—0.785r, +

are processed during the computation of C1(Og), thus inducing a slow-down that
is not compensated by the fact that the relations are found more rapidly.
During the relation collection phase, we collect relations of the form

(@) =p7" -y,

where ¢; € K. We progressively build the matrix M := (¢;, ;) € ZF*N where k is
the number of relations collected so far. Let A C ker(;r o ¢) be the lattice generated
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by the rows of M. Operations on the rows of M allow us to retrieve a basis
for A and its determinant. To determine if A has rank N, we perform operations
modulo a random wordsize prime p. In particular, the LU decomposition of M
modulo p allows us to identify the prime ideals that do not contribute to the rank
of A. Additional relations involving these primes increase the rank of M, whose
rows eventually generate a finite index sublattice of ker(sr). To find this index, we
compute the Hermite normal form (HNF) of M, that is, we perform unimodular
operations encoded by U € GL(Z) such that

(h]l o --- 0
h22 ) :
uomMm=| : = . 0 |,
k k- hNN

\ ©) )

with 0 < h;; < hj; whenever j <i and h;; = 0 whenever j > i. Once the HNF of
M is computed, adding new rows can be done very efficiently. In the meantime, the
product [ [; h;,; gives us an indication on [A : ker(s o ¢)], as we see in Section 3.3.

3.2. Class group computation. Given a matrix A € ZV*N whose rows generate

ker(s o ), unimodular transformations on both rows and columns of A4 yield the
structure of Cl(Og). More precisely, for every nonsingular matrix 4 € ZV*V,

there exist unimodular matrices U, V € ZN*N guch that
S :=UAV =diag(dy,...,dn),

where dj 41 | d; for alli with 1 <i < N. The matrix S is called the Smith normal
form (SNF) of A.

Theorem 1. If the rows of A€ ZN*N are a basis for ker(wog) and diag(dy ,...,dn)
is the SNF of A, then

Cl(@K) ~ Z/dlz XX Z/dNZ.

Once enough relations have been found, the rows of M generate ker(x o ¢), and
the N nonzero rows of the HNF of M are a matrix 4 € ZV*N whose rows are
a basis for ker( o ¢), and the SNF of A gives us Cl(Og). However, finding the
structure of C1(Og) can also be done by computing the SNF of a matrix which is
in practice significantly smaller than A, namely the essential part of A. Indeed, for
each matrix H in HNF, there exists an index / such that 4; ; = 1 for all i > [. The
upper left [ x [ submatrix of H is called its essential part. As the classes of p;
for i > [ are generated by those of the p;, j </, the SNF of the essential part of A
suffices to recover C1(Og).
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3.3. Regulator and fundamental units computation. Computing the regulator and
a system of fundamental units of K consists of finding kernel vectors of M. Indeed,
if X =(x1,...,xy) satisfies XM = 0, then we have

(H ¢;‘f)@K = Okg.

In other words, y := ]_[i¢f " is a unit. Every kernel vector X of M yields a unit,
and we want to compute the group generated by all those elements as well as the
regulator of this group, defined to be zero if the group is not of full rank. So far,
finding of relations between units is mostly done using real linear algebra (LLL),
the core problem here being the numerical instability of the matrices. This in
itself is a consequence of the well-known fact that units are very large in general:
Writing the fundamental unit of a real quadratic fields explicitly with the canon-
ical basis needs exponentially many digits while it is always possible to find a
product representation of size polynomial in log|A| (see [13; 43]). At the end
of the procedure, we verify that the assumption we made on the completeness of
the lattice of relations is true. To this end, we use an approximation of the Euler

product
nR = HVIAL L (5 —

on (zn)rz s (5= Dex ),

where (g (s) =D, 1/N(a)* is the usual ¢-function associated to K and || is the
cardinality of u. Indeed, it allows us to derive a bound /#* in polynomial time
under ERH that satisfies 2* < hR < 2h*; see [3]. If the values det(T") and det(A)
do not satisfy this inequality, then we need to collect more relations.

4. Sieving techniques

In this section, we describe sieving techniques to derive relations in C1(O k) for gen-
eral number fields. This is a generalization of Jacobson’s results [25] for quadratic
number fields. Similar ideas were suggested in [12; 34] but the corresponding
algorithms were either not implemented or are no longer available for compari-
son. Here we provide numerical data illustrating the considerable impact of these
techniques for class group and unit group computation in the case of low degree
number fields.

Given a generating set B = {p1, ... pn} for C1(Og), the usual method for deriv-
ing relations consists of computing random exponents € := (eq,...,ey), o € Og
and a reduced ideal /; such that

pit Py = (@) 1.
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Then, every time Iz is %B-smooth (that is, is a power product of elements of &),
we obtain a relation. As the arithmetic of ideals is rather expensive when n > 2,
the relation search in the computer algebra software PARI [35] and versions 2.x
for x < 18 of Magma [9] consists of enumerating short elements of /; via the
Fincke-Pohst method [18].

Our method consists of deriving relations from smooth values of polynomials,
thus avoiding the cost of the ideal arithmetic and of the ideal reduction. Our method
for finding smooth values is based on the recent development of the number field
sieve algorithm [28]. The use of trivial methods such as trial division for finding
smooth values of our polynomials would yield the same theoretical complexity, but
would be impractical for large discriminants. The most efficient implementation of
the enumeration-based strategy for finding relations is the one of PARI. Therefore,
in the following, we assess the impact of our sieving method by comparing its
performance with those of PARI.

4.1. Polynomial selection. Let a be a B-smooth ideal of Og. In this section, we
show how to provide polynomials P € Z[X, Y] of degree n derived from a such
that every (x, y) € Z2 such that P(x, y) is B-smooth yields a relation. Note that
in theory, a can be any ideal, however, we obtained the best results by choosing
a=0g. Let o and 8 be two linearly independent elements of a. Then, we create
by interpolation a Py g € Z[X, Y] such that

Py p(x,y)=N(xa+yB) forall x,ye 72

Every time ¢y, y := xo + yp has a smooth norm, we add the relation correspond-
ing to the principal ideal (¢y,,) to the relation matrix. Before applying sieving
algorithms to P, g to derive relations, we need to ensure that it is likely to yield
enough smooth values. Polynomial selection is an important part of the number
field sieve algorithm, and so it is in our algorithm. However, the specificities of
our context prevent us from directly adapting the methods of NFS for selecting
the sieving polynomial. First of all, we can afford to find relations with many
different choices of @ and 8, whereas the choice of a sieving polynomial in the
NFS algorithm is fixed. We require that our choices of « and f yield polynomials
with small coefficients, and that we have a sufficient randomization at the infinite
places to avoid drawing ¢y, spanning the same subgroup of the unit group of Ok .

To randomize the choice of o, 8, we consider random coefficients aq, ..., a, € R"
such that )" _, a; = 0. For every such n-tuple d, we define the embedding

V;:a—>R", a (a1loglali,...,anloglal,).

For every choice of a, the set of elements of the form y;(«) for « € a is a
lattice A of R” for which we can find an LLL reduced basis for the norm
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2
ne

T2a S(X1,. .., Xn) r—>e2‘“xf+-'-+eza”x
For every choice of d, the first two vectors «, B of an LLL reduced basis of A}
are potential candidates for the creation of a polynomial yielding smooth values.
Every time we draw such a pair of elements of a, we need to make sure that they
do not generate the same Z-module as another pair previously used. To prevent
this from happening, every time we draw a pair «, 8 by the previous method, we
express them in terms of the canonical Z-basis of Og. Thus, to every pair «, 8
corresponds the matrix My g € 7?*" of their coordinates. The HNF of My g
uniquely represents the Z-module spanned by («, 8). Thus, to avoid duplicates,
we store a hash of the HNF of M, g in a hash table every time we use a pair
(o, B) to draw relations. We summarize the procedure of the selection of a sieving
polynomial in Algorithm 1.

Algorithm 1 (Polynomial selection).

Input: a, (A1,...,Ay), HashTable.
Output: Sieving polynomial P, g corresponding to o, B € a.
1: while a new «, B has not been found do

2: Draw |a1| < A1,..., |an| < A, at random such that a; +---+a, = 0.

3: Let o and B be the first two elements of a LLL-reduced basis of A for
a=(ay,...,an).

4 Compute the hash %, g of the HNF of M, g.

5: if hy g ¢ HashTable then

6: Compute by interpolation P, g € Z[X, Y] with Py g(x,y) =N(xa+yp).

7 end if

8: end while

9: return «a,f, Py g.

4.2. Line sieving. The quadratic sieve algorithm [39] used to derive smooth values
of a binary quadratic form generalizes to the case of polynomials of arbitrary degree.
Its design follows from the observation that if P € Z[X, Y] is a polynomial of
degree n, then

p|P(rp,yo) forall yo€Z = p|P(rp+ip,yo) forallieZ (1)

Given yg € Z, we wish to find the x € [—1/2, I/2] such that P(x, yg) is B-smooth,
where B is the bound on the norm of the prime ideals in the factor base. Instead
of trying them all, we prefer to isolate a short list of good candidates that we
test by trial division. If p | P(x, yo) for many p < B, then P(x, y¢) is likely
to be B-smooth. From (1), we know that once we have one root r, of P(X, yo)
mod p, then we can derive all the others by translation by (p,0). Line sieving
consists of initializing to zero an array S of length I whose cells represent the x €
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[—1/2,1/2]. Then, for each p < B, we compute the smallest roots x, € [—1/2, /2]
of P(X, yo) mod p and repeat

S[xp] < S[xp]l +logp, xp < xp+ p.

Then, whenever S[x] & log P(x, yg) for x € [—1/2, 1/2], the value P(x, yo) is
likely to be B-smooth. We summarize this procedure in Algorithm 2.

Algorithm 2 (Line sieving).

Input: P e Z[X,Y],I,B,yoeZ.
Output: Smooth values of P(X, yo) in [—1/2,1/2].
L« @;S[x]<«Oforall x e [-1/2,1/2].
for p < B do
Let x, be the smallest root of P(X, yg) mod p in [—1/2,1/2].
while r, < 1/2 do
S[xp] <= S[xp] +1log p, xp < xp + p.
end while
end for
for x € [-1/2,1/2] do
if S[x] &~ log P(x, yo) then
If P(x,yp) is B-smooth, L <— L U {x}.
end if
end for
return L.

R A A S ot

_
w2 o

4.3. Lattice sieving. Let Py g(X,Y) € Z[X,Y] be the sieving polynomial de-
scribed in Section 4.1, B the bound on the norm of the ideals in the factor base,
and I, J € Z~¢. Every pair (x,y) € [-1/2,1/2[x[1, J] such that Py g(x,y) is
B-smooth yields a relations. Therefore, one can repeat the line sieving operation
on Py g(X, yo) for every yo € [1, J]. This method is efficient when sieving with
primes p < I. but when the primes are significantly larger than 7, the root compu-
tation at Step 3 of Algorithm 2 is often performed for nothing since there is a good
chance that none of the x € [—1/2, I/2[ will be a root of P, g(X, yg) mod p. A
way around that is to have an array S of length /J representing [—1/2, [ /2[ and
to fill it by line sieving methods for the primes p < I and by lattice sieving for the
other primes.

The lattice sieve was first described by Pollard [38]. Since then, it has been exten-
sively studied and improved in the past 15 years, and the most recent developments
of this methods yielded the factorization of RSA768 (see [28]). This strategy relies
on a one-time enumeration of roots of Py g(X,Y) mod p in [-1/2,1/2[x[1, J].
The entry x < IJ of the array S that we use to store the logarithmic contributions
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corresponds to the pair (i, j) € [-1/2,1/2[ x [1, J] where
i=x—-1/2) modlI, j=x-i—-1/2)/1.

As in the line sieving case, every entry of S is initialized to zero, and for every
p < B andevery (i, j) € [-1/2,1/2[x[1,J] such that p | Py g(i, j), we want
to perform the operation S[x] < S[x] + log p. Line sieving repeated on every
line j < J allows us to efficiently do this for p < I. For the others, we fol-
lowed the approach of [19], as it is done in [28] for the factorization of RSA768.
By [19, Proposition 1], we know that for every p such that we have a root r,
of Py g(X, 1) modulo p, there exists a basis {(a,b), (c,d)} of the lattice spanned
by {(rp, 1), (p,0)} that satisfies

e h>0andd > 0;

e J<a<0<c<lI;

ec—a>1.
This basis is computed via an algorithm described in [19] that relies on the con-
tinued fraction expansion of r,. It satisfies p | Py g(ia + jc,ib + jd) for all
(i, j) € Z2. To fill the array S, we start from (i, j) = (0, 0) which is a common
root modulo all primes. Then, by induction, we construct the next pair (i’, j’) from
(i, j) by choosing

e (i,j)+ (a,b)ifi > —a;

e (i,j)+(a,b)+(c,d)if [ —c <i < —a.
4.4. Special-q. The sieving space [—1/2, 1/2[x[1, J] only contains a limited num-
ber of pairs (i, j) yielding a smooth value. Enlarging / and J might cause its size to
rapidly exceed single precision. For a fixed prime ¢, the special-g strategy consists
of sieving with a polynomial P; derived from the original sieving polynomial P
such that

Y@, j)el[—-1/2,1/2[x[1,J], 3(x,y)€Z> Py(i,j)=P(x,y),
V(i) e[=1/2.1/2[x[1,J]. q|Pq(i. ).

This strategy was used by Pollard in his original paper [38] to sieve on the rational
side, but most current implementations use it on the algebraic side as well [28].
To create P, for a given g, we need a root r4 of P modulo ¢. Then, we find a

reduced basis (ao, bo), (a1, b1) of the lattice spanned by the vectors (g, 0), (74, 1).
The polynomial P is then simply given by

Py(i,j) = P(iag+ jai,ibo + jb1).
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The reduced basis is given by successive Gaussian reductions, as explained in [19].
Then, to sieve with a given polynomial P, we repeat the procedure described
in Section 4.3 for many different polynomials of the form P,. Fortunately, once
the roots of P mod p for all p < B have been computed, it is possible to use these
values to compute the roots of P; mod p for p < B. Indeed,

P(iap + jay,ibo + jb1) =0 mod p

means that there is some root r;, of P(X,1) mod p such that r, = % mod p.
This implies that we have Py (rg ,1) =0 mod p for 0TJo1
i a1 — rpbl
ri=—=——2%— mod p,
P J ao— rpbO P

which gives us a root of P, (X, 1) mod p from (ag, bo), (a1,b1) and a root of
P(X,1) mod p. We summarize our procedure to derive relations from an ideal
a € Ok in Algorithm 3.

Algorithm 3 (Sieving procedure).

Input: aCO0g, B={p|Np) <B}, I,J €Z~y.
Select a, B € Ok and a sieving polynomial P, g with Algorithm 1.
For all p < B, compute the roots of Py g(X, 1) mod p.
for ¢ < B do
Compute Py and its roots modulo the p < B as in Section 4.4.
Let S be an array of size /J initialized to 0.
for p <1 do
Do S[x] < S[x] + log p for each x representing (i, j) € [—1/2,1/2[ X
[1, J] such that p | P, (i, j) by repeating Algorithm 2 for each line j < J.
end for
for p > I do
10 Calculate a basis {(a, b), (¢, d)} of the lattice of points in [—1/2, /2] X
[1, J] that are roots of P, (X,Y) mod p with the method of Section 4.3.
11: Do S[x] < S[x] + log p for each x representing (i, j) € [—1/2, /2] X
[1, J] such that p | P, (i, j) by using the method of Section 4.3.
12:  end for
13: end for
14: for x <1J do
15:  if S[x] ~log P4 (i, j), where x represent (i, j) € [-1/2,1/2[x[1, J] then
16: If log P4(i, j) is B-smooth, store the corresponding relation.
17:  end if
18: end for

NN AN

2o *®
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4.5. Overall relation collection phase. A necessary condition to compute the class
group and the unit group is to produce a full-rank relation matrix M. Our sieving
methods allow us to derive relations in Cl1(Og ) very rapidly, but it is hard to force a
given prime to occur in a relation. The best performance is obtained by sieving with
the trivial ideal O . If we want to see a given prime ideal p | (p) occur in a relation,
one can use the special-g with ¢ = p, or sieve with the ideal p. However, even
after using those methods, some prime ideals still do not contribute to the rank
of M. Rather than sieving in random power-products involving missing primes,
one might prefer to switch to enumeration-based methods to complete the relation
search. To identify the primes that need to appear in a relation, we perform an LU
decomposition of the relation matrix modulo a random wordsize prime. We try to
produce enough relations with sieving so that the rank of M is 97% of #%. Then
we find additional relations with enumeration. We summarize this procedure:

Algorithm 4 (Full rank relation matrix computation).

Input: K, B.
Output: A full-rank relation matrix for the primes of norm bounded by B.
L B<{p|Np) <B}={p1,....pn}.
2: Derive N relations by repeating Algorithm 3 with a = (1). Let M be the
relation matrix.
3: Perform an LU decomposition of M and let EmptyList be the list of zero
columns.
for p € EmptyList do
Sieve with p, update M.
end for
Update EmptyList by updating the LU decomposition of M.
for p € EmptyList do
Find a relation involving p by enumerating short elements in random power-
products.
10: end for
11: return M.

R A A

To assess the advantage of sieving over enumeration techniques, we need to
isolate its contribution to the performances of the class group and unit group com-
putation. To do this, we used a modified version of the function bnfinit of the
computer algebra software PARI that accepts in input a list of precomputed rela-
tions. We interfaced via Sage this version of PARI with a development version of
Magma containing a function creating relations with the sieving algorithm. The
Magma function tries to create enough relations so that the rank of M is 97%
of #B and passes it to PARI which adds new relations with enumeration methods
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and calculates the class group and the unit group. We compared the performance
of this approach to the traditional bnfinit function of PARI. There are two main
reasons for using a hybrid version. The first one is that PARI’s implementation of
enumeration techniques is the most efficient. As these are necessary to finish the
creation of the relation matrix after calling the sieving algorithm, it is interesting
to see how the two perform together. Another reason for this choice is the fact that
many different algorithms contribute to the computation of the class group and the
unit group. In particular, we use time-consuming linear algebra methods such as
the HNF computation. Our methodology avoids the risk of seeing the influence of
the quality of the implementation of other algorithms occurring in the class group
and unit group computation.

We performed our computations on a 2.6 GHz Opteron with 4 GB of memory.
We used a branch of the development version 2.6.0 of PARI provided by Loic
Grenié and the development version of Magma, interfaced via Sage 4.7.2. We
allocated 3 GB of memory to the computation made with PARI. For each size d,
we drew at random 10 number fields with discriminant satisfying log,|A| = d. For
each discriminant, we computed the class group and the unit group with bnfinit,
which we refer to as the PARI method, and with the hybrid version which we refer
to as the PARI+Sieving method. The average timings, in CPU sec (rounded to
the nearest integer), are presented in Table 1. They illustrate the impact of sieving
methods for small degree number fields. It is very strong for number fields of
degree 3, 4, and 5, for which we often witness a speedup by a factor at least 10,
while it is rather moderate for degree-6 number fields, and negligible for number
fields of degree 7 and 8. Finding smooth values of a polynomial gets more difficult
when we increase its degree, but it is not the only reason why the impact of sieving
decreases with the degree. Indeed, for degree 6 number field, our sieving algorithm
still derives relations at a competitive pace, but there are many linear dependencies

n log,|A| PARI PARI+Sieving n log,|A| PARI PARI+Sieving
3 120 76 11 5 120 33 18
3 140 694 66 5 140 295 64
3 160 6828 333 5 160 3402 378
3 180 29807 2453 5 180 16048 2342
4 120 38 7 6 120 40 111
4 140 366 24 6 140 294 161
4 160 4266 175 6 160 1709 1012
4 180 31661 1201 6 180 14549 8413

Table 1. Impact of sieving on class group and unit group computation of small
degree number fields. Timings in CPU-seconds.



126 JEAN-FRANCOIS BIASSE AND CLAUS FIEKER

n Magma 2.18 PARI PARI+Sieving

20 0.7 0.5 0.2
30 6 5 3
40 22 44 66
45 128 271 556
50 170 593 1562
54 1453 1085 9251

Table 2. Impact of the quadratic sieve on computations in fields generated by a
root of X2 4 4(10" + 1). Timings in CPU-seconds.

whereas enumeration allows a more targeted search, thus avoiding linear depen-
dencies. To put these improvements into perspective, we show in Table 2 the
impact of Jacobson’s self-initializing quadratic sieve [25] which is implemented in
Magma 2.18. The timings for PARI and PARI+Sieving are derived under the same
setting as for Table 1. In addition, we added the performances of Magma 2.18
which uses different methods for linear algebra. Timings for the same series of
number fields were reported by Jacobson in [25, Table A.3] on a 296-MHz Sun
processor (for a fair comparison one has to take into account the verification time
since the timings of Table 1 and Table 2 correspond to a certification under GRH).

5. Computing the unit group

Assume that we have created a relation matrix (e;, ;) corresponding to the relations
e, €, N
(@) =py"" -y

Every kernel vector allows us to derive a unit of Og. Let 81, ..., B be a generating
set of the units created so far. We compute a new unit 8’, and we wish to find a
new minimal generating set for (81, ..., Bk, B). Usually this is done by computing
(real) logarithms of the units followed by some approximate linear algebra to find
a (tentative) relation as well as the (tentative) new basis. This is then followed
by some verification of the relation to guarantee correctness, by using real based
computations. The difficulty comes from the fact that the entries in the real matrix
differ vastly in size — by several orders of magnitude — thus making it necessary
to work with a huge precision; in fact the precision is also subexponential in the
discriminant for guaranteed results.

Here, we propose to use p-adic logarithms instead. The key advantage comes
from the much better control of error propagation in the linear algebra: Unless
division by nonunits happens, linear algebra does not increase errors. However,
while the correctness is based on the unproven Leopoldt conjecture about the non-
vanishing of the p-adic regulator, this is not a problem in practice: Any relation



IMPROVED TECHNIQUES FOR NUMBER FIELD COMPUTATIONS 127

found by the p-adic method can easily be verified unconditionally, thus a failure
of the algorithm would provide a counterexample to Leopoldt’s conjecture.

We start by choosing a prime p such that the p-adic splitting field K, has moder-
ate degree; here we allow at most degree 2. In practice, we search for the smallest
prime p > 10000 such that the p-adic splitting field is unramified of degree < 2.
Then we have n embeddings ¢; : K — K, and we define amap L, : K* — K3
given by x — (log ¢; (x));, where ¢; is the usual p-adic logarithm extended to K.
In order to estimate the necessary p-adic precision, we also need the usual real
logarithmic embedding, denoted by L : K* — R" ™1, We are looking for a (rational)
solution (x;); € @1 to 3" x; L,(B:) = Lp(B’). Using p-adic linear algebra we
will instead get a p-adic solution (or a proof that 8’ is independent). Using standard
rational reconstruction techniques, we derive the rational solution from the p-adic
one and then the integral relation between the units. In order to estimate the p-adic
precision, we bound numerator and denominator using Cramer’s rule and universal
lower bounds on the logarithms of units. The rational solution then also satisfies
> x;iL(Bi) = L(B’). Let (¢;); be a basis for (f1,..., Bs, B’). By Cramer’s rule,

xi =det(Lp(B1)..... Lp(B)..... Lp(Bs))/det(Lp(B1).. ... Lp(Bs)).

Since the (unknown) (&;) form a basis, we see that

det(Lp(B1),.--  Lp(B'), ..., Lp(Bs))/det(Lp(etr), ..., Lp(cs))

is an integer and the same is true for L instead of L,; thus we can write x; as a quo-
tient of integers. In either case, to make sense of the determinants, we will have to
select an appropriate number of rows to make the matrices square. To bound the in-
tegers, we make use of the Hadamard bound for det(L(81), ..., L(8'),..., L(Bs))
and some universal lower bound for det(L (¢;));. For the lower bound we use lower
bounds of logarithms of nontorsion units: ||L(;)|2 > %(log d)/d? (see [17,
3.5]), or, if the unit group has full rank, s =r = ry +r, — 1, we use lower regulator
bounds, possibly coming from the Euler product. Having obtained bounds from the
real logarithm (L) with low precision, we calculate the p-adic precision required
to find x; using p-adic linear algebra and rational reconstruction. In the course
of the computation it can happen that the p-adic determinants (p-adic regulators)
have nontrivial valuation. In this case we have to restart the computation with
a correspondingly higher precision to account for the loss. Since the Leopoldt
conjecture has not been proved, we also need to verify the solution by computing
a low-precision estimate for H > xiL(Bi) — L(B) H to compare it to the lower
bound used above.

From the relation x; we can easily obtain a presentation of the new basis «; in
terms of the §;, 8. For optimization, we then proceed to compute a new basis &;
such that the real logarithms are (roughly) LLL-reduced. We note that we do not
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rely on any LLL estimates here, so any heuristic algorithm that aims at reducing
the apparent size will do. Since we do not have any LLL algorithm that will accept
real input (as opposed to rational), it is important that this does not influence the
correctness.

5.1. Advantages of the p-adic method. There are two core advantages of the p-
adic logarithms over the ordinary, complex, ones: First, the linear algebra problems
we need to solve in order to find dependencies or relations between units have a
much simpler error analysis. In fact, contrary to the complex case, it is possible
through the use of ring based operations to solve linear equations without any
additional loss of precision. This is very important in the context of unit computa-
tion since the matrices representing the image of L(«) are very badly conditioned
for classical numerical methods. The other advantage of the p-adic logarithms is
more subtle: If we assume Leopoldt’s conjecture to hold for the field(s) we are
interested in, then instead of doing linear algebra over R with a precision of say ¢
to find dependencies, it is sufficient to work with a real precision of ¢/2 and a
p-adic precision of ¢ /2 as well. Thus, assuming classical multiplication, we gain
a factor of about 4 through the use of lower precision. Using fast multiplication
(in high precision), the gain is smaller but still noticeable. But the most important
advantage is the much easier precision control: Instead of complicated and very
delicate estimates for linear algebra problems, all we need are upper bounds on
linear combinations with integral coefficients — which are trivial to obtain.

We should also mention that one disadvantage of the p-adic method lies in the
total lack of control over the real size of the units, thus it needs to be paired with
a crude (and uncritical for correctness) size reduction algorithm. Also, it is (cur-
rently) not possible to avoid completely the use of complex (or real) logarithms, as
the p-adic method is not capable to proving a unit to be torsion without knowledge
of bounds on the real size.

5.2. Lower bound from Euler product. Suppose that, as in the class group algo-
rithm, we are given an approximation of the Euler product; that is, we have a real
number E such that 1 /\/5 <hR/E < /2. After the relation matrix has full rank,
and assuming the factor base is large enough for correctness, we have an upper
bound for the class number, thus a lower bound for R. This lower bound will be
several orders of magnitude larger than the universal bounds available otherwise.

5.3. Saturation. After the initial steps of the algorithm, when the relation matrix
has full rank, we have a tentative class number / and a tentative regulator R. Ex-
perimentally, at this point, 2R does not approximate the Euler product very well —
the product will be off by several orders of magnitude. However, after finding
one or two more relations, the product has the same size as the Euler product;



IMPROVED TECHNIQUES FOR NUMBER FIELD COMPUTATIONS 129

it frequently even looks like only a factor of 2 is missing in either 4 or R. To
find the last missing relation can easily take more time than the entire previous
run, therefore we suggest using saturation methods instead. At this point in the
algorithm the relations define a subgroup U of the S-unit group Ug where S is the
factor basis. From the Euler product we know that the index (Ug : U) =: b is small,
let’s say b < B. For any prime p | b there is some u € Ug \ U such that u? € U.
Let us fix the prime p. For any prime ideal Q ¢ S such that p | N(Q) — 1 we
can define the map ¢g : U — [F”é / ([F"é)p mapping S-units into the multiplicative
group of the residue class field modulo p-th powers. The Chebotarev theorem [44]
guarantees that if u € U is not a p-th power, there will be some Q such that ¢ (u)
is nontrivial, that is, u is not a p-th power modulo Q. We now simply intersect
ker ¢ for several Q until either the intersection is U or it does not change for
five consecutive Q. We expect that any u € U/ (\ker$o will have a p-th root
in Ug but not in U. Therefore v” = u is a new relation that will change 4R by
p. Repeating this for all p < B until we cannot enlarge U any more we find the
missing relations. Similar techniques have been used a long time but were confined
to the unit group [45; 36]. This appears to be the first time that saturation has been
applied to the full relation lattice.

5.4. Representation. During the execution of the algorithm, all (S-)units are nat-
urally represented as power products of the relations coming from the sieving (or
the saturation). It is well known that the explicit representation of the units with
respect to a fixed basis for the field can require exponentially large coefficients, so it
is important to operate on the power products as much as possible. However, even
the exponent vectors constructed for the basis of the unit group, or the saturation,
will become huge, so we need to “size reduce” the power products. In particular,
this happens even if the resulting element is not too large. Using ideas of [13] for
compact representations and [22] for reduced divisors in function fields, we can
find a representation for those elements that depends only on the logarithmic size
(and the number field) rather than the execution path. For any prime p we can write
any unitu = [ | rl-e =11 af’ " with elements such that the size of a; depends on the
discriminant and p only. The length of the product comes from L (u). Furthermore,
in this presentation it is easy to test for p-th powers as only a¢ needs to be tested
and this is a small element.

5.5. Example. To illustrate the power of the p-adic method, we look at a to-
tally real quartic field generated by a root of

x* 4 17211x3 4 5213x% — 176910463 x — 4958.

The discriminant A of the maximal order has 38 digits. In the course of the com-
putation, we found 534 relations involving prime ideals of norm up to 3000 =
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0.41og?|A| describing a trivial class group. We then searched for 5 further rela-
tions to obtain units ¥; (1 <i <5). As power products of the relations, the units
are given via exponent vectors ¢; with |e;||oo ranging between 108° and 10160
and 20 < |lei|l1/]leilloo < 92. So, while not uniformly large, the exponents are
nonsparse, involving huge integers. Using a decimal precision of 170 digits, we
establish that the logarithms of the units are roughly || L (1;)||oo ~ 10160, The first
three units are indeed independent, giving a basis for a subgroup of full rank, the
fourth is then dependent. Choosing the prime p = 10337 we get Q,, as a splitting
field. Using a p-adic precision of 245 digits (that is, working in Z, mod p?4°), we
compute the dependency for the fourth unit, involving exponents of around 10369,
The new unit group is then tentatively LLL reduced, producing a new basis where
the || L(if;)|| oo are bounded by 107 only. The last unit then involves a much smaller
dependency, here the exponents are only around 106°.

Unfortunately, looking at the Euler product, the unit group is not complete.
However, the saturation technique outlined above takes 1 sec to determine that
the product of the three basis elements is (probably) a square. Finding a better
representation where the exponents are all powers of 2 takes less than 1 sec and
then we can enlarge the unit group easily.

Due to the implementation, the p-adic precision used was actually higher: Chang-
ing (increasing) precision is very computationally expensive, so we try to avoid this
and simply double the precision. We used a precision of 320 for the p-adics and
a maximal precision of 1000 for the real precision. The computation of the log is
the dominating part: We spent 50 sec or 90% of the total processing time here.

6. Conclusion

We introduced new techniques to enhance the performances of the subexponential
methods for computing the class group and the unit group of a number field. In
particular, sieving allows a speedup of an order of magnitude for number fields
of small degree. These techniques could be developed even further. Indeed, we
have not taken into account all the improvements to sieving techniques described
in the context of the number field sieve algorithm, such as large prime variations or
cache-friendly methods. It is also notable that fast techniques for deriving relations
in the class group of a small degree number field have applications in evaluating
isogenies between small genus curves via complex multiplication methods. Indeed,
in that case, evaluating isogenies between genus g curves involves relations in the
class group of a degree 2g number field.
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Conditionally bounding analytic ranks
of elliptic curves

Jonathan W. Bober

We describe a method for bounding the rank of an elliptic curve under the as-
sumptions of the Birch and Swinnerton-Dyer conjecture and the generalized
Riemann hypothesis. As an example, we compute, under these conjectures,
exact upper bounds for curves which are known to have rank at least as large
as 20,21,22,23, and 24. For the known curve of rank at least 28, we get a
bound of 30.

1. Introduction

Determining the rank of an elliptic curve is a difficult problem, and there is cur-
rently no known unconditional algorithm for determining the rank of a given curve.
The basic method for rigorously determining the rank of a curve is to find an upper
bound for the rank by computing the size of some Selmer groups and to find a
lower bound for the rank by finding enough independent rational points. In theory,
if one continues this process long enough, and the Shafarevich-Tate group of the
curve is finite, the upper and lower bounds should eventually coincide and the rank
will be determined exactly.

In practice, things are not so simple. Finding points on the curve is sometimes
not too bad, but the upper bounds for the rank are more problematic. Even the
computation of the 2-Selmer rank is difficult, and it becomes prohibitively time-
consuming as the coefficients of the elliptic curve grow; it is easy to write down
a curve for which the state-of-the-art program for computing the 2-Selmer group,
John Cremona’s mwrank [5], will effectively take “forever.”

If one is willing to accept the Birch and Swinnerton-Dyer conjecture that the
rank of an elliptic curve is the same as the order of vanishing of its L-function
at the central point, then it is possible to use the L-function to get information

MSC2010: primary 11M41; secondary 14G10.
Keywords: elliptic curve, rank, L-function, explicit formula.
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about the rank. In fact, when the order of vanishing is between 0 and 3, it can
be possible to compute the L-function to enough precision and use some extra
information about the curve to determine the analytic rank exactly, as is done in
[3], for example. When the rank is larger than this, though, currently the best one
can do is determine that the first » derivatives of the L-function are very close to
0 and the (r + 1)-st is not, which will provide a very good guess for the rank and
a rigorous upper bound, assuming BSD.

This approach has its own problems, as it is much easier to write down a curve
of large conductor than it is to compute the L-function of such a curve. For exam-
ple, the known curve of rank at least 28 [8], which we will write down later, has
conductor N ~ 3.5 x 10'#!, and current methods (such as those described in [19])
typically require summing on the order of /N terms to compute the central value
of the L-function. (It would take a computer about 10°3 cpu-years just to add 1 to
itself 1079 times.)

We present here a third method which is rather effective at bounding the rank,
especially when the rank is large compared to the conductor, as long as one is
willing to assume both the Birch and Swinnerton-Dyer conjecture and the Riemann
Hypothesis for the L-function of the curve. This method is not completely new.
It is based on Mestre’s method [14] for (conditionally) bounding the rank of an
elliptic curve based only on its conductor, and it was used by Fermigier [9] to
study ranks of elliptic curves in certain families. However, it does not seem to
have gained much traction and does not seem to have been used much, if at all,
since.

The idea, in brief, is as follows. Take f(x) to be a function such that (0) =1
and f(x) > 0 for all real x. Then, assuming the Riemann hypothesis, the sum
> f(y), where 1/2 + iy runs over the nontrivial zeros of L(s, E) (counted with
multiplicity), will be an upper bound for the analytic rank of E. Moreover, for
certain choices of f(x) this sum may be efficiently evaluated using the explicit
formula for the L-function attached to E.

This method has recently been implemented by the author, and is available as
part of William Stein’s PSAGE [21] add-ons to Sage [22]. As an example of what it
can do, we will examine 6 curves known to have rather large rank. We denote these
curves by E,, where the index », taking the values 20, 21,22, 23, 24, 28 represents
a known lower bound for the rank. We will write down these curves later (they are
all taken from A. Dujella’s website [6], and at the time of discovery each held the
record for the curve with largest number of known independent rational points).
The exact rank is not known for any of these curves. However, conditionally we
may claim:

Theorem 1.1. Assuming BSD and GRH, E; has rank exactly n for n = 20,21, 22,
23, and 24, while E,g has rank 28 or 30.
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Remark 1.2. Around the time that I was writing this paper, Andrew Booker and
Jo Dwyer were able to exactly compute the rank of E,g, again assuming the Birch
and Swinnerton-Dyer conjecture and the Riemann Hypothesis for L(s, E,g). They
use the method described here, but by using the optimization procedure described
in Section 3 of [1] they are able to select a better test function as input to the explicit
formula, and they get a correspondingly better bound.

2. Bounding ranks

2A. The method. Let

o0

L. E)=)Y Z—Z =T LG B)!
4

n=1

be the L-function of an elliptic curve, normalized so that the completed L-function
A(s, E) satisfies the functional equation A(s, £) = e A(l —s, E), and let ¢, be
defined by
L'(s,E) < n
= —.
L(s, E) i

More explicitly, if we define «(p) and B(p) by

Lp(s, E)=(1—a(p)p™)1=B(p)p™).

(note that o and B are only well defined up to permutation, and that at least one of
them will be 0 when p is a prime of bad reduction), then

cpm = (a(p)™ + B(p)™) log p,

and ¢, = 0 when 7 is not a prime power.
Our main tool will be the explicit formula for L(s, E), which we state in a
friendly form in the following lemma.

Lemma 2.1. Suppose that f(z) is an entire function with f(x +iy) < x~(1+9)
for |y| <1+ ¢, for some € > 0, and that the Fourier transform of f

Fo) = /_ F(0)e 2T dx

exists and is such that

converges absolutely. Then
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2 b4 —00 T
1 X c(n) [ +(logn ~( logn
52 (5 (557)) o

where 1/2 + iy runs over the nontrivial zeros of L(s, E), where E is an elliptic
curve with conductor N.

Y= FORER - fo 22 sl [~ Lasinsoa)

Proof. A proof of the explicit formula in this form, or in a similar form, can be
found in various sources — for example, [11, Theorem 5.12] —so we give only a
brief sketch. The idea is to integrate the function

L'(s, E)

F(S)—L(S, B’

where F(1/2+is) = f(s), on a vertical line to the right of the critical strip and,
in the reverse direction, on a vertical line to the left of the critical strip. By the
residue theorem, this integral will be equal to 2 Zy f(y). One now applies the
functional equation to write the integral in the left half-plane as an integral in the
right half-plane.

The sum over the Fourier coefficients of f arises from shifting contours to the
region of absolute convergence and using the Dirichlet series for L'(s)/L(s), while
the other terms arise from shifting the remaining integrals to the line N (s) = 1/2.

The conditions on f(z) are exactly those needed to make sure that this process
can go through without trouble. Of course, it is also important that L(s, E) is
entire and that it satisfies a functional equation [25; 24; 2]. O

A convenient function to use in an application of the explicit formula is

sin(Amz) )2

1= s = (20

which has the simple Fourier transform

J?(X:A)=(%) (1—‘2‘) x| < A.

With this choice of f, Equation (1) takes the form

) _logN_loan 1. OOE’ ) .
Xy:f(y,A)— +”9%{/ F(1+zt)f(t,A)dt}

A2m Am N

1 [2mA/log p]

k1
i X ter Y s (1-550). @

p=<exp(2mA) k=1
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Since f(y;A) >0 as long as y is real, and f(0; A) = 1, Equation (2) will give
an upper bound for the order of vanishing of L(s, E) at s = 1/2, as long as the
Riemann Hypothesis holds for L (s, E). And if A is not too large, we can quickly
evaluate the right-hand side of Equation (2) to calculate this upper bound. It is also
worth noting that, assuming RH,

1 [27A/log p] 1 k log p
— lim — § E - k k —
Am A log p pkm(“u” +¢“p))(l 2A )
p=<exp(2mA) k=1

= ords—y/2L(s. E)

so that, in principle, we should be able to get as good a bound for the rank as we like
through this method. However, as the length of the prime sum grows exponentially
in A, this method quickly becomes infeasible once A gets a little larger than 4.

2B. Some curves. As an example, we examine 6 elliptic curves from Dujella’s
online tables. They are

Ea: y? + xy = x> —431092980766333677958362095891166x
+ 5156283555366643659035652799871176909391533088196,

Esi:p? +xy+ p = x3 + x2 — 215843772422443922015169952702159835x
— 19474361277787151947255961435459054151501792241320535

Eax:y? 4+ xy+y=x3—940299517776391362903023121165864x
4 10707363070719743033425295515449274534651125011362,

Eaz:y? 4+ xy+y = x3 —19252966408674012828065964616418441723x
+ 32685500727716376257923347071452044295907443056345614006,

Ezq:y? +xy +y = x> —120039822036992245303534619191166796374x
+504224992484910670010801799168082726759443756222911415116,

5 s o (20067762415575526585033208 x 10%°
Exg:y"+xy+y=x"—x"— X
+ 209338542750930230312178956502
3448161179503055646703298569039072037485594 x 1040
+ 4359319180361266008296291939448732243429 '

Each E}, has n known independent rational points of infinite order, so has at
least rank n. (See [16; 17; 10; 12; 13; 8], or [6] for quick reference.) Using
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Curve logNg A >, f(y;4) ]Oﬁgn]XE

Eyy 170.09 2.0 21.70 13.54
Ey;  196.68 2.5 22.68 12.52
E,, 18272 2.0 23.71 14.54
E,3 205.06 2.5 24.49 13.05
E,y 21993 25 25.57 14.00
E,s 32590 3.2 31.30 16.21

Table 1. Computed upper bounds for the ranks of some curves, along with a
heuristic guess of what these bounds should for a typical elliptic curve. The sum
over the zeros here is rounded up; other numbers are rounded to nearest.

the methods described above, we compute rank bounds for each of these curves.
These are listed in Table 1. The global root number can be computed for each
curve. (In Sage, E.root_number (), which uses PARI [18], will finish quickly for
E»>o, E>q, and E,, and within a few hours for E,3 and E,4. For E,g it is best
to see the mailing list discussion which gives the factorization of the discriminant
[7].) In each case the root number agrees with the parity of the known number of
independent points, so to get a tight upper bound for the rank we only need to get
within 2 of the number of known independent points, and so the computation in
Table 1 gives the proof of Theorem 1.1.

2C. Curves of small conductor. For further testing, this method was also run on
all elliptic curves up with conductor below 180000 (from Cremona’s tables [4])
using A = 2.0, a computation which ran in under a day on a fast 8§ core computer.
In this range there are 790677 isogeny classes of elliptic curves, and for all but
9882 isogeny classes it turns out that

L; f(y:2.0) | = rank(E);

in the remaining cases,
| > f(y:2.0) | =rank(E) +1,
12
so consideration of the root number of the curve gives the exact rank.

3. Further comments

3A. Some evidence towards BSD. There is a way in which these computations
can be seen as giving mild evidence in support of the Birch and Swinnerton-Dyer
conjecture. The upper bound computed for a curve E is the value of the sum
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Zy f(y;A), and as f(y; A) decays fairly rapidly as y grows, one does not expect
this sum to be very large for a typical elliptic curve.

To obtain a crude approximation to what we might expect the value of this sum
to be, consider that the local zero density of a typical L(s, E) near the central point
is approximately 277 /log Ng. Then, if the zeros are spaced uniformly at random
(an assumption that is not really correct, but is close enough to true for our crude
purposes), we might expect that

logNE log Ng

oA

Zf(% A) ~ / f(t: A)dt =

possibly with a small adjustment to take into account the parity of the rank. (More
precisely, we might expect that if we average this sum over all elliptic curves of
conductor close to Ng, the answer will not be too far from this integral.) Thus,
when this sum is significantly larger than this estimate, it indicates an extreme
concentration of zeros near the central point. (It is also possible to arrive at more
refined version of this heuristic by considering the explicit formula. In such a
case, it is necessary to assume that the family of elliptic curves considered is large
enough that a, (E) averages to zero for each p, and we notice that the integral of
the I'-factor plays a small role as well.)
As some further small evidence for this heuristic, we note that the average of

logN Zf(y 2.0)

over all isogeny classes up to 180000 is approximately .9638. The small difference
from 1 should be accounted for by the I'-factor, which tends to push zeros away
from the central point.

It should also be possible to refine this heuristic somewhat to make a guess as
to what the sum should be for a high rank curve by making the assumption that a
zero of high order at the central point will push other zeros away.

3B. Correctness tests. The method described here is simple enough that it is easy
to implement, which reduces the likeliness of bugs. It is still important to test it
where possible, however, in order to have more confidence in its correctness.

As described in Section 2C, this code was run on every isogeny class up to
conductor 180000, and the fact that the computed upper bound for the rank was
never too small gives some confidence that the computation was done correctly. As
a further test, one can also compute many zeros for the L-function of an elliptic
curve of small conductor, compute the sum over zeros directly, and verify that
it agrees with our explicit formula implementation. Table 2 lists some example
curves with small conductor for which this was done. The agreement there is
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A E # zeros Direct Equation (2) Difference
2.0 1la 200000 0.00270875 0.00269961 9.17 x 10~
15a 200000 0.00483749 0.00482836 9.13x107°

17a 200000 0.00559516 0.00558605 9.11x 1076

37a 200000 1.00369174 1.00368272 9.01x107°

118a 200000 1.00636141 1.00635255 8.86x107°

389a 159650 2.00947449 2.00946618 8.30 x 107°

5077a 85520 3.01508240 3.01507647 5.92x107°
11197a 70950 3.02102728 3.02102250 4.77 x 10~°

2.5 1la 200000 0.00172459 0.00172653 1.94x 10~
15a 200000 0.00170962 0.00171159 1.96x 107

17a 200000 0.00250017 0.00250215 1.97x 107

37a 200000 1.00335149 1.00335352 2.03x107°

118a 200000 2.00585774 2.00586023 2.49x 106

389a 159650 3.00797500 3.00797902 4.02 x 10~°

5077a 85520 1.00543612 1.00543825 2.14x107°
11197a 70950 3.01798029 3.01798504 4.75x 107°

Table 2. Sum of f(y;2.0) and f(y;2.5) computed directly with many zeros
and using our implementation of (2). The curve labels correspond to isogeny
classes in Cremona’s tables [4] and the zeros were computed using Rubinstein’s

lcalc [20].

between 107> and 10, which is roughly the precision to which the integral in
the explicit formula was calculated, and is in line with what should be expected
using what is a fairly small number of zeros.
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We describe a tabulation of (conjecturally) modular elliptic curves over the field
@(ﬁ) up to the first elliptic curve of rank 2. Using an efficient implementation
of an algorithm of Lassina Dembélé, we computed tables of Hilbert modular
forms of weight (2, 2) over Q( V5), and via a variety of methods we constructed
corresponding elliptic curves, including (again, conjecturally) all elliptic curves
over @(ﬁ) that have conductor with norm less than or equal to 1831.

1. Introduction

1A. Elliptic curves over (). Tables of elliptic curves over Q have been of great
value in mathematical research. Some of the first such tables were those in Antwerp
IV [4], which included all elliptic curves over Q of conductor up to 200, and also
a table of all elliptic curves with bad reduction only at 2 and 3.

Cremona’s book [10] gives a detailed description of algorithms that together out-
put a list of all elliptic curves over Q0 of any given conductor, along with extensive
data about each curve. The proof that his algorithm outputs all curves of given
conductor had to wait for the proof of the full modularity theorem in [8]. Cremona
has subsequently computed tables [12] of all elliptic curves over Q of conductor
up to 300,000, including Mordell-Weil groups and other extensive data about each
curve.

In another direction, Stein and Watkins (see [33; 1]) created a table of 136,832,795
elliptic curves over Q of conductor < 108, and a table of 11,378,911 elliptic curves
over @ of prime conductor < 10!°, There are many curves of large discriminant
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missing from the Stein-Watkins tables, since these tables are made by enumerating
curves with relatively small defining equations, and discarding those of large con-
ductor, rather than systematically finding all curves of given conductor no matter
how large the defining equation.

1B. Why Q(+/5)? Like Q, the field F = Q(+/5) is a totally real field, and many
of the theorems and ideas about elliptic curves over @ have been generalized to
totally real fields. As is the case over Q, there is a notion of modularity of elliptic
curves over F, and work of Zhang [36] has extended many results of Gross and
Zagier [20] and Kolyvagin [24] to the context of elliptic curves over totally real
fields.

If we order totally real number fields K by the absolute value of their discrim-
inant, then F = Q(+/5) comes next after @ (the Minkowski bound implies that
|Dg| > (n"/n!)?, where n = [K : Q], so if n > 3 then | Dg| > 20). That 5 divides
disc(F) = 5 thwarts attempts to easily generalize the method of Taylor and Wiles
to elliptic curves over F, which makes Q(+/5) even more interesting. Furthermore
F is a PID and elliptic curves over F' admit global minimal models and have well-
defined notions of minimal discriminants. The field F also has 31 CM j -invariants,
which is far more than any other quadratic field (see Section 5). Letting ¢ = HT“G,
we have that the group of units {1} x (@) of the ring R = O = Z[¢p] of integers
of F is infinite, leading to additional complications. Finally, F has even degree,
which makes certain computations more difficult, as the cohomological techniques
of [19] are not available.

1C. Modularity conjecture. The following conjecture is open:

Conjecture 1.1 (Modularity). The set of L-functions of elliptic curves over F
equals the set of L-functions associated to cuspidal Hilbert modular newforms
over F of weight (2, 2) with rational Hecke eigenvalues.

Given the progress on modularity theorems initiated by [35], we are optimistic that
Conjecture 1.1 will be proved. We assume Conjecture 1.1 for the rest of this paper.

In Section 2 we sketch how to compute Hilbert modular forms using arithmetic
in quaternion algebras. Section 3 gives numerous methods for finding an elliptic
curve corresponding to a Hilbert modular form. It should be noted that these are
the methods originally used to make the tables — in hindsight, it was discovered
that some of the elliptic curves found using the more specific techniques could
be found using a better implementation of the sieved enumeration of Section 3B.
Section 4 addresses how to find all curves that are isogenous to a given curve. In
Section 5 we enumerate the CM j-invariants in F. We discuss some projects for
future work in Section 6. Finally, Section 7 contains tables that summarize various
information about our dataset [5].
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2. Computing Hilbert modular forms over F

In Section 2A we sketch Dembélé’s approach to computing Hilbert modular forms
over I, then in Section 2B we make some remarks about our fast implementation.

2A. Hilbert modular forms and quaternion algebras. Dembélé [14] introduced
an algebraic approach via the Jacquet-Langlands correspondence to computing
Hilbert modular forms of weight (2, 2) over F. The Hamiltonian quaternion al-
gebra F[i, j, k] over F is ramified exactly at the two infinite places, and contains
the maximal order
S =R[3(1=¢i +¢)). 5(=¢i + j +¢k). 3(pi =9 + k). 30 +¢j —¢k)].

For any nonzero ideal nin R = OF, let P! (R /n) be the set of equivalence classes of
column vectors with two coprime entries @, b € R /n modulo the action of (R /n)*.
We use the notation [« : b] to denote the equivalence class of (Z) For each prime
p | n, we fix a choice of isomorphism F[i, j, k]® Fy, ~ M,(Fy), which induces a left
action of $* on P!(R/n). The action of T, for p 4 n, is Ty([x]) = > _[ox], where
the sum is over the classes [«] € S/S* with Nyeq(a) = 7y (reduced quaternion
norm), where iy, is a fixed choice of totally positive generator of p. The Jacquet-
Langlands correspondence implies that the space of Hilbert modular forms of level
n and weight (2, 2) is noncanonically isomorphic as a module over the Hecke

algebra
T = Z[T, : p nonzero prime ideal of R]

to the finite dimensional complex vector space V = C[S*\P!(R/n)].

2B. Remarks on computing with PL(R /n). In order to implement the algorithm
sketched in Section 2A, it is critical that we can compute with P! (R /n) very, very
quickly. For example, to apply the method of Section 3G below, in some cases
we have to compute tens of thousands of Hecke operators. Thus in this section we
make some additional remarks about this fast implementation.

When n = p¢ is a prime power, it is straightforward to efficiently enumerate
representative elements of P!(R /p®), since each element [x : y] of P'(R/p®) has
a unique representative of the form [1 : 5] or [a : 1] with a divisible by p, and these
are all distinct. It is easy to put any [x : y] in this canonical form and enumerate the
elements of P!(R/p®), after choosing a way to enumerate the elements of R /p®.
An enumeration of R /p¢ is easy to give once we decide on how to represent R /p€.

In general, consider the factorization n =[]/, pff . We have a bijection between
PY(R/n)and [T/2, PY(R/ pfi ), which allows us to reduce to the prime power case,
at the expense of having to compute the bijection R/n = [[ R/ pfi . To this end,
we represent elements of R /n as m-tuples in [[ R/ pfi , thus making computation
of the bijection trivial.
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To minimize dynamic memory allocation, thus speeding up the code by an order
of magnitude, in the implementation we make some arbitrary bounds; this is not a
serious constraint, since the linear algebra needed to isolate eigenforms for levels
beyond this bound is prohibitive. We assume m < 16 and each individual pl.ei <231,
where p; is the residue characteristic of p;. In all cases, we represent an element
of R/ pff as a pair of 64-bit integers, and represent an element of R/n as an array
of 16 pairs of 64-bit integers. We use this representation in all cases, even if n is
divisible by less than 16 primes; the gain in speed coming from avoiding dynamic
memory allocation more than compensates for the wasted memory.

Let p¢ be one of the prime power factors of n, and let p be the residue charac-
teristic of p. We have one of the following cases:

 psplits in R; then R/p = Z/pZ and we represent elements of R /p¢ as pairs
(a,0) mod p¢ with the usual addition and multiplication in the first factor.

e p is inert in R; then R/p® =~ (Z/p°Z)[x]/(x*> — x — 1), and we represent
elements by pairs (a, b) € Z/ p¢Z with multiplication

(a,b)(c,d) = (ac +bd,ad + bd +bc) mod p°.

e p is ramified and e = 2 f is even; this is exactly the same as the case when p
is inert but with e replaced by f, since R/p¢R = (Z/p’ Z)[x]/(x? —x —1).

e p is ramified (so p = 5) and e =2 f — 1 is odd; the ring 4 = R/p€ is trickier
than the rest, because it is not of the form Z[x]/(m, g) where m € Z and
g € Z|x]. We have A ~ (Z/5/ Z)[x]/(x?— 5,5/~ x), and represent elements
of A as pairs (a,b) € (Z/5/) x (Z/5/~1Z), with arithmetic given by

(a,b)+ (c,d)=(a+c mod 5/, b+d mode_l)
(a,b)-(c,d) = (ac + 5bd mod 5/, ad +bc mod Sf_l).

We find that ¢ € R+— (1/2,1/2).

3. Strategies for finding an elliptic curve attached to a Hilbert modular form

In this section we describe various strategies to find an elliptic curve associated to
each of the Hilbert modular forms computed in Section 2. Let f be a rational cusp-
idal Hilbert newform of weight (2, 2) as in Section 2. According to Conjecture 1.1,
there is some elliptic curve Ey over F such that L(f,s) = L(E,s). (Note that
Ey is only well defined up to isogeny.) Unlike the case for elliptic curves over
Q (see [10]), there seems to be no known efficient direct algorithm to find Ey.
Nonetheless, there are several approaches coming from various directions, which
are each efficient in some cases.
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Everywhere below, we continue to assume that Conjecture 1.1 is true and assume
that we have computed (as in Section 2) the Hecke eigenvalues ay, € Z of all rational
Hilbert newforms of some level n, for Norm(p) < B a good prime, where B is large
enough to distinguish newforms. In some cases we will need far more ay, in order
to compute with the L-function attached to a newform. We will also need the a
for bad p in a few cases, which we obtain using the functional equation for the
L-function (as an application of Dokchitser’s algorithm [16]).

We define the norm conductor of an elliptic curve over F to be the absolute
norm of the conductor ideal of the curve.

In Section 3A we give a very simple enumeration method for finding curves,
then in Section 3B we refine it by taking into account point counts modulo primes;
together, these two methods found a substantial fraction of our curves. Sections 3C
and 3D describe methods for searching in certain families of curves, for example,
curves with a torsion point of given order or curves with a given irreducible mod
£ Galois representation. Section 3E is about how to find all twists of a curve with
bounded norm conductor. In Section 3F we mention the Cremona-Lingham algo-
rithm, which relies on computing all S-integral points on many auxiliary curves.
Finally, Section 3G explains in detail an algorithm of Dembélé that uses explicit
computations with special values of L-functions to find curves.

3A. Extremely naive enumeration. The most naive strategy is to systematically
enumerate elliptic curves E: y2 = x3 4+ ax + b, with a, b € R, and for each E,
to compute a,(E) for p not dividing Disc(E) by counting points on E reduced
modulo p. If all the a,(E) match with those of the input newform f up to the
bound B, we then compute the conductor ng, and if it equals n, we conclude from
the sufficient largeness of B that E is in the isogeny class of E.

Under our hypotheses, this approach provides a deterministic and terminating
algorithm to find all Er. However, it can be extremely slow when n is small but
the simplest curve in the isogeny class of E¢ has large coefficients. For example,
using this search method it would be infeasible to find the curve (1) computed by
Fisher using the visibility of I11[7].

3B. Sieved enumeration. A refinement to the approach discussed above uses the
ayp values to impose congruence conditions modulo p on E. If f is a newform
with Hecke eigenvalues ay, then #E #(R/p) = N(p)+1—a,. Given p not dividing
the level n, we can find all elliptic curves modulo p with the specified number of
points, especially when N(p) + 1 —ay, has few prime factors. We impose these
congruence conditions at multiple primes p;, use the Chinese remainder theorem,
and lift the resulting elliptic curves modulo R/ []p; to nonsingular elliptic curves
over R.
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While this method, like the previous one, will eventually terminate, it too is very
ineffective if every E in the class of isogenous elliptic curves corresponding to f
has large coefficients. However in practice, by optimally choosing the number of
primes p;, a reasonably efficient implementation of this method can be obtained.

3C. Torsion families. We find elliptic curves of small conductor by specializing
explicit parametrizations of families of elliptic curves over F having specified tor-
sion subgroups. We use the parametrizations of [25].

Theorem 3.1 (Kamienny and Najman, [22]). The following is a complete list of
torsion structures for elliptic curves over F:

Z/mZ, 1<m<10, m =12,
722 &7/2mZ, 1<m<4,
7/157.

Moreover, there is a unique elliptic curve over F with 15-torsion.
We use the following proposition to determine in which family to search.

Proposition 3.2. Letr £ be a prime and let E be an elliptic curve over F. Then
L | #E'(F)or for some elliptic curve E' in the isogeny class of E if and only if
| N(p) + 1 —ay for all odd primes p at which E has good reduction.

Proof. If £ | #E’(F)or, from the injectivity of the reduction map at good primes
[23, Appendix], we have that £ | #E'(F,) = N(p) + 1 —a,. The converse statement
is one of the main results of [23]. O

By applying Proposition 3.2 for all a, with p up to some bound, we can decide
whether or not it is likely that some elliptic curve in the isogeny class of E contains
an F-rational {-torsion point. If this is the case, then we search over those families
of elliptic curves with rational £-torsion. With a relatively small search space, we
thus find many elliptic curves with large coefficients more quickly than with the
algorithm of Section 3A. For example, we first found the elliptic curve E given by

V2 4y =x> + (279 —43) x + (—80¢ + 128)

with norm conductor 145 by searching for elliptic curves with torsion subgroup
7]77.

3D. Congruence families. Suppose that we are searching for an elliptic curve E
and we already know another elliptic curve E’ with E[{] ~ E’[{], where £ is some
prime and E[{] is irreducible. Twists of the modular curve X (£) parametrize pairs
of elliptic curves with isomorphic £-torsion subgroups, so finding rational points on
the correct twist allows us to find curves with the same mod ¢ Galois representation
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as E’. Using this idea, we found the curve E given by

yi+exy=x+(p—1)x?
1 (=257364¢ — 159063) x + (—75257037¢ — 46511406) (1)

with conductor —6¢ + 42, which has norm 1476. Just given the a;, we noticed
that E[7] ~ E’[7], where E’ has norm conductor 369. The curve E’ had already
been found via naive search, since it is given by the equation y2 + (¢ +1) y =
x3 4+ (¢ — 1) x2 + (—2¢) x. For any elliptic curve, the equation for the correct
twist of X (7) was found both by Halberstadt and Kraus [21] and by Fisher [18],
whose methods also yield formulas for the appropriate twists of X (9) and X(11).

Fisher had already implemented Magma [6] routines to find £-congruent elliptic
curves over @ using these equations and was able to modify his work for Q(+/5).
Fortunately, our curve E was then easily found.

3E. Twisting. Let E be an elliptic curve over F. A twist E’ of E is an elliptic
curve over F that is isomorphic to E over some extension of F. A quadratic twist
is a twist in which the extension has degree 2. We can use twisting to find elliptic
curves that may otherwise be difficult to find as follows: Starting with a known
elliptic curve E of some (small) conductor, we compute its twists of conductor up
to some bound, and add them to our table.

More explicitly, if E is given by y? = x3 +ax + b and d € F*, then the twist
E® of E by d is given by dy? = x> + ax + b; in particular, we may assume that
d is squarefree. The following is well known:

Proposition 3.3. If n is the conductor of E and d € OF is nonzero, squarefree and
coprime to n, then the conductor of E d is divisible by d’n.

Proof. There are choices of Weierstrass equations such that A(E9) = 21249 A(E),
where A is the discriminant. Thus the elliptic curve £ 4 has bad reduction at each
prime that divides d, because twisting introduces a 6th power of the squarefree
d into the discriminant, and d is coprime to A(E), so no change of Weierstrass
equation can remove this 6th power. Moreover, £ d ig isomorphic to E over an
extension of the base field, so E4 has potentially good reduction at each prime
dividing d. Thus the reduction at each prime dividing d is additive. The conductor
is unchanged at the primes dividing n because of the formula relating the conductor,
discriminant and reduction type (see [31, App. C,§15]), that formation of Néron
models commutes with unramified base change, and the fact that at the primes that
divide n the minimal discriminant of E< is the same as that of E. O

To find all twists E4 with norm conductor at most B, we twist E by all d of the
form +¢%dyd,, where § € {0, 1}, d, is a product of a fixed choice of generators for
the prime divisors of n, d; is a squarefree product of a fixed choice of generators of
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primes not dividing n, and |N(d)| < /B/C, where C is the norm of the product
of the primes that exactly divide n. We know from 3.3 that this search is exhaustive.

For example, let E be given by y2 4+ xy + ¢y = x3 + (—¢ — 1) x? of con-
ductor 5¢ — 3 having norm 31. Following the above strategy to find twists of
norm conductor < B := 1831, we have C = 31 and squarefree d; such that
IN(d1)| < /B/C~76.... Thus d; € {1,2, ¢, 2¢} and checking all possibilities
for ¢®dyd,, we find the elliptic curve £~%~2 having norm conductor 775 and the
elliptic curve £3¢73 having norm conductor 961. Other twists have larger norm
conductors; for example, E2 has norm conductor 126976 = 212.31.

3F. Elliptic Curves with good reduction outside S. We use the algorithm of Cre-
mona and Lingham from [11] to find all elliptic curves E having good reduction at
primes outside of a finite set S of primes in F. This algorithm has limitations over
a general number field K due to the difficulty of finding a generating set for £ (K)
and points on E defined over Og. Using Cremona’s Magma implementation of
the algorithm, we found several elliptic curves not found by other methods, for
example, 2+ (¢ + 1) xy 4+ y =x3 —x2 4+ (=19¢ — 39) x + (—143¢ —4), which
has norm conductor 1331.

3G. Special values of twisted L-series. In [15], Lassina Dembélé outlines some
methods for finding modular elliptic curves from Hilbert modular forms over real
quadratic fields. Formally, these methods are not proven to be any better than a
direct search procedure, as they involve making a large number of guesses, and a
priori we do not know just how many guesses we will need to make. And unlike
other methods described in this paper, this method requires many Hecke eigen-
values, and computing these takes a lot of time. However, this method certainly
works extremely well in many cases, and after tuning it by using large tables of
elliptic curves that we had already computed, we are able to use it to find more
elliptic curves that we would have had no hope of finding otherwise; we will give
an example of one of these elliptic curves later.

When the level n is not square, Dembélé’s method relies on computing or guess-
ing periods of the elliptic curve by using special values of L-functions of twists
of the elliptic curve. In particular, the only inputs required are the level of the
Hilbert modular form and its L-series. So we suppose that we know the level
n = (N) of the form, where N is totally positive, and that we have sufficiently
many coefficients of its L-series ayp,,dp,,dp;, .. ..

Let 0 and 0, denote the embeddings of F into the real numbers, with o (p) &~
1.61803.... For an elliptic curve E over F we get two associated embeddings
into the complex numbers, and hence a pair of period lattices. Let QE denote
the smallest positive real period corresponding to the embedding o, and similarly
define 2% to be the smallest period which lies on the positive imaginary axis. We
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will refer to these as the periods of E, and as the period lattices are interchanged
when E is replaced with its conjugate elliptic curve, we let QT and QE_ denote
the least real and imaginary periods of the lattice under the embedding 0.

For ease, we write

++ _otot +- _ oto-

Qg —QEQE Q _QEQE

Qg —QEQE Qp =QpQE.
We refer to these numbers as the mixed periods of E.
3G.1. Recovering the elliptic curve from its mixed periods. If we know these mixed
periods to sufficient precision, it is not hard to recover the elliptic curve E. Without
the knowledge of the discriminant of the elliptic curve, we do not know the lattice
type of the elliptic curve and its conjugate, but there are only a few possibilities
for what they might be. This gives us a few possibilities for the j-invariant of

E. Observe that o1 (j (E)) is either j(r1(E)) or j(t2(E)) and 02(j (E)) is either
j(ti(E)) or j(r(E)), where

Qt QF 1 Q" 1 Q7
Ey=—£_="E Ey=-(1+=£t_|=-(1+=£
Tl( ) QE_}_ Q—iE_, TZ( ) 2( +QE+) B +Q+

E

- QT Q7 — 1 Qt— 1 Q-

_ E _ "'FE _ E _ E
TI(E)_QE'}__ﬁ ‘L’z(E)—§<1+Q—_iE_+)—§ 1+E
E

and j(7) is the familiar
J(x) = e7FT 1 744 + 196884e27T 4 21493760e47T - ..

We try each pair of possible embeddings for j(E) in turn, and recognize pos-
sibilities for j(E) as an algebraic number. We then construct elliptic curves E’
corresponding to each possibility for j(E). By computing a few a,(E), we should
be able to determine whether we have chosen the correct j-invariant, in which case
E’ will be a twist of E. We can then recognize which twist it is in order to recover
E.

In practice, of course, as we have limited precision, and as j(£) will not be
an algebraic integer, it may not be feasible to directly determine its exact value,
especially if its denominator is large.

To get around the problem of limited precision, we suppose that we have some
extra information; namely, the discriminant A g of the elliptic curve we are looking
for. With A g in hand we can directly determine which t to choose: If o1 (Ag) >0
then 1 (j (E)) = j (11 (E)), and if 0y (Ag) < 0 then 01 (j (E)) = j(z2(E)), and
similarly for o,. We then compute o1 (c4(E)) = (j ()01 (AE)) 173 and 0 (c4(E)) =
(j (o2 (AE)) 3.
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Using the approximations of the two embeddings of ¢4, we can recognize cq4
approximately as an algebraic integer. Specifically, we compute

O[:01(6’4)4-02(6’4) and 13201(04)—02(6’4).

2 25

Then ¢4 = a + ,6\/3, and we can find cg.

In practice, there are two important difficulties we must overcome: We do not
know A g and it may be quite difficult to get high precision approximations to
the mixed periods, and thus we may not be able to easily compute c4. Thus, we
actually proceed by choosing a Agyess from which we compute half-integers o and
B and an integer a + by ~ « + /5, arbitrarily rounding either a or b if necessary.
We then make some choice of search range M, and for each pair of integers m
and n, bounded in absolute value by M, we try each ¢4 gyess = (@ +m) + (b +n)g.

Given ¢4, guess, WE attempt to solve

— 3
C6,guess — + \/64,guess - 1728Aguess’

and, if we can, we use these to construct a elliptic curve Egyess. If Eguess has
the correct conductor and the correct Hecke eigenvalues, we declare that we have
found the correct elliptic curve; otherwise, we proceed to the next guess.

For a choice of Agyess, we will generally start with the conductor Ng, and then
continue by trying unit multiples and by adding in powers of factors of Ng.

3G.2. Guessing the mixed periods. We have thus far ignored the issue of actually
finding the mixed periods of the elliptic curve that we are looking for. Finding
them presents an extra difficulty as our procedure involves even more guesswork.
Dembélé’s idea is to use special values of twists of the L-function L( f,s). Specif-
ically, we twist by primitive quadratic Dirichlet characters over O, which are
homomorphisms x: (Of/c)* — +1, pulled back to OF.

In the case of odd prime conductor, which we will stick to here, there is just
a single primitive quadratic character, which is the quadratic residue symbol. A
simple way to compute it is by making a table of squares, or by choosing a primitive
root of g € (OF/c)*, assigning x(g) = —1, and again making a table by extending
multiplicatively. Alternatively, one could use a reciprocity formula as described
in [7]. For general conductor, one can compute with products of characters having
prime conductor.

For a given f and a primitive y, we can construct the twisted L-function

x(m)any

L(fixs)= Y, N

mCOFf

where m is a totally positive generator of m. (Note that x is not well defined
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on ideals, but is well defined on totally positive generators of ideals.) L(f, x, s)
will satisfy a functional equation similar to that of L( f,s), but the conductor is
multiplied by Norm(c)? and the sign is multiplied by y(—N).

Oda [28] conjectured relations between the periods of f and the associated ellip-
tic curve E and gave some relations between the periods of f and central values of
L(s, x,1). Stronger versions of these relations are conjectured, and they are what
Dembélé uses to obtain information about the mixed periods of E. Specifically,
Dembélé distills the following conjecture from [2], which we further simplify to
state specifically for Q(+/5).

Conjecture 3.4. If x is a primitive quadratic character with conductor ¢ relatively
prime to the conductor of E, with x(¢) = s" and x(1 — ¢) = s, (Where s,s" €
{+,—} ={£1}), then

Q%S/ = CXT(;)L(E, Xs 1)\/3,

for some integer cy, where T() is the Gauss sum

(x) = Z X(oz)exp(ZniTr(oc/mx/g)),

o mod ¢

with m a totally positive generator of ¢.

Remark. The Gauss sum is more innocuous than it seems. For odd conductor
¢ it is of size y/Norm(c), while for an even conductor it is of size /2 Norm(c).
Its sign is a 4-th root of unity, and whether it is real or imaginary can be deduced
directly from the conjecture, as it matches with the sign of stls/. In particular, 7(x)
is real when x(—1) = 1 and imaginary when x(—1) = —1, which is a condition
on Norm(c) mod 4, as x(—1) = Norm(c) (mod 4). This can all be deduced, for
example, from [7].

Also, note that Dembélé writes this conjecture with an additional factor of 472,
this factor does not occur with the definition of L( f,s) that we have given.

Remark. Contained in this conjecture is the obstruction to carrying out the method
described here when n is a square. If the sign of the functional equation of L(f,s)
is €7, then the sign of L(f, x,s) will be x(—N)er. When n is a perfect square,
this is completely determined by whether or not x(¢) = x(1 — ¢), so we can only
obtain information about either Q™= and QT+ or Q=1 and @1, and we need
three of these values to find E.

With this conjecture in place, we can describe a method for guessing the mixed
periods of E. Now, to proceed, we construct four lists of characters up to some
conductor bound M (we are restricting to odd prime modulus here for simplicity,
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as primitivity is ensured, but this is not necessary):

S ={x mod p: x(¢)=s". x(1-¢)=s. (p.n) =1, Norm(p) < M. x(—N) =¢s}.

Here s, s” € {+, —} = {#1} again, and we restrict our choice of characters to force
the functional equation of L(s, x, f) to have positive sign so that there is a good
chance that it does not vanish as the central point. We will consider these lists to
be ordered by the norms of the conductors of the characters in increasing order,
and index their elements as Xf)’sl, Xsl’s/, X;’S/, .... For each character we compute
the central value of the twisted L-function to get four new lists

£ = {i%' \/SNorm(p) L(E, x. 1), x € S} = L5, L5, ).

These numbers should now all be integer multiples of the mixed periods, so to get
an idea of which integer multiples they might be, we compute each of the ratios

4 9
LS,S st’s/
=2 c@ k=12...
H c ’
Ek X,S(’s

attempt to recognize these as rational numbers, and choose as an initial guess

9/ _1
Q3 e = L5 1 N I
E,guess — =0 cm § numerator ﬁs,s, ck=1,2,... .
k

3G.3. An example. We give an example of an elliptic curve that we were only able
to find by using this method. At level n = (—38¢ 4+ 26) we found a newform f,
computed

a)(f)=-1,  a2p+n(f) =1,
a@(f)=-1, a=3p+1) (/) = =1 a3p42)(f) = -6,

axo00p—101)(f) = 168,

and determined, by examining the L-function, that the sign of the functional equa-
tion should be —1. (In fact, we do not really need to know the sign of the functional
equation, as we would quickly determine that +1 is wrong when attempting to
find the mixed periods.) Computing the sets of characters described above, and
choosing the first 3 of each, we have

ST ={X(p+6)» X(7)1 X(T90—4)}» STV = {X(“30+1)s X(5o—2): X(g—9)}
St = {X(ap+3) XGo—3) X(=20+13)) ST ={X(0+9)s X©0—5)> X(0+13)}-
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By using the 5133 eigenvalues above as input to Rubinstein’s 1calc [29], we
compute the lists of approximate values

L7~ ={-33.5784397862407, —3.73093775400387, —18.6546887691646 },
LT =1{ 18.2648617736017i, 32.8767511924831i, 3.65297235421633i },
LT7 =1{ 41.4805656925342i, 8.29611313850694i, 41.4805677827298i },
LT ={ 32.4909970742969, 162.454985515474, 162.454973589303  }.
Note that 1calc will warn us that we do not have enough coefficients to obtain
good accuracy, and we make no claim as far as the accuracy of these values is
concerned. Hoping that the ends will justify the means, we proceed forward.

Dividing each list by the first entry, and recognizing the quotients as rational
numbers, we get the lists

{1.000, 9.00000000005519, 1.80000000009351 } ~ {1,9,9/5},

{1.000, 0.555555555555555, 5.00000000068986 } ~ {1,5/9, 5},

{1.000, 4.99999999999994, 0.999999949610245} ~ {1, 5, 1},

{1.000, 0.199999999822733, 0.200000014505165} ~ {1,1/5,1/5},
which may give an indication of the accuracy of our values. We now proceed with
the guesses

QE suess —33.5784397862407/9 =~ —3.73093775402141,
Q7T A~ 18.2648617736017i/5 ~ 3.65297235472034i,

E ,guess
+— ~ . ~ .
QE,guessN 41.4805656925342i /5~ 8.296113138506831,
QET ~ 32.4909970742969 = 32.4909970742969.
,guess

These cannot possibly be all correct, as QE_QE’L = Q;FQE_. Still, we can
choose any three and get a reasonable guess, and in fact we may choose all possible
triples, dividing some of the guesses by small rational numbers, and choosing the
fourth guess to be consistent with the first three; we build a list of possible embed-
dings of j (), which will contain the possibility o1 (j(E)) &~ 1.365554233954 x
1012, 05 (j(E)) ~ 221270.95861123, which is a possibility if

-t ++
-+ _ o+ +— _ o+— —+ _ ""E,guess ++ _ "“E,guess
QE - QE,guess’ QE - QE,guess’ QE - 2 ’ QE - 8 :

Cycling through many discriminants, we eventually try

Aguess =@ '25 ' (19(»0 - 13)»
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which leads us to the guess
01 (¢4 guess) = (01 (E))01 (Aguess)) /> ~ 107850.372979378,
02(C4 guess) = (02 (E))02(Aguess)) /> ~ 476.625892034286.
We have enough precision to easily recognize this as

108327 +48019+/5
C4,guess = +2 V3 =48019¢ + 30154,

and

\/Ci,guess - 1728Aguess

does in fact have two square roots: +(15835084¢ + 9796985). We try both of
them, and the choice with the minus sign gives the elliptic curve

P2+ oxy 49y =x3+(@—1)x%+ (—1001¢ — 628) x + (17899¢ + 11079) ,

which has the correct conductor. We compute a few values of a;, for this elliptic
curve, and it turns out to be the one that we are looking for.

4. Enumerating the elliptic curves in an isogeny class

Given an elliptic curve E/F, we wish to find representatives up to isomorphism
for all elliptic curves E’/ F that are isogenous to E via an isogeny defined over F.
The analogue of this problem over Q has an algorithmic solution as explained in
[10, §3.8]; it relies on:

(1) Mazur’s theorem [27] that if ¥: E — E’ is a Q-rational isogeny of prime
degree, then deg(y) < 163.

(2) Formulas of Vélu [34] that provide a way to explicitly enumerate all p-isogenies
(if any) with domain E. Vélu’s formulas are valid for any number field, but
so far there has not been an explicit generalization of Mazur’s theorem for any
number field other than Q.

Remark. Assume the generalized Riemann hypothesis. Then work of Larson and
Vaintrob from [26] implies that there is an effectively computable constant Cg
such that if ¢: E — E’ is a prime-degree isogeny defined over F and E’ and E
are not isomorphic over F, then ¢ has degree at most Cr.

Since we are interested in specific isogeny classes, we can use the algorithm de-
scribed in [3] that takes as input a specific non-CM elliptic curve E over a number
field K, and outputs a provably finite list of primes p such that £ might have a
p-isogeny. The algorithm is particularly easy to implement in the case when K is
a quadratic field, as explained in [3, §2.3.4]. Using this algorithm combined with
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Vélu’s formulas, we were able to enumerate al/l/ isomorphism classes of elliptic
curves isogenous to the elliptic curves we found via the methods of Section 3, and
thus divide our isogeny classes into isomorphism classes.

5. CM elliptic curves over F

In this section we make some general remarks about CM elliptic curves over F.
The main surprise is that there are 31 distinct Q-isomorphism classes of CM elliptic
curves defined over F, more than for any other quadratic field.

Proposition 5.1. The field F has more isomorphism classes of CM elliptic curves
than any other quadratic field.

Proof. Let K be a quadratic extension of (). Let Hp denote the Hilbert class
polynomial of the CM order Op of discriminant D, so Hp € Q[X] is the mini-
mal polynomial of the j-invariant jp of any elliptic curve E = Ep with CM by
Op. Since K is Galois, we have jp € K if and only if Hp is either linear or
quadratic with both roots in K. The D for which Hp is linear are the thirteen val-
ues —3,—4,-7,-8,—11,-12,-16,—-19, -27, —28, —43, —67, —163. According
to [9], the D for which Hp is quadratic are the following 29 discriminants:

—15,-20,-24,-32,-35,-36,—-40,—48, —51, -52, —60,
—64,-72,-75,-88,-91,-99,—-100,—-112, —-115, —123,
—147,-148, —187, =232, 235, -267, —403, —427.

By computing discriminants of these Hilbert class polynomials, we obtain Table 1.
The claim follows because the Q(+/5) row is largest, containing 9 entries. There
are thus 31 = 2-9 + 13 distinct CM j-invariants in Q(+/5). O

6. Related future projects

It would be natural to extend the tables to the first known elliptic curve of rank 3
over F, which may be the elliptic curve y? 4+ y = x3 —2x + 1 of norm conductor
163% = 26569. It would also be interesting to make a table in the style of [33],
and compute analytic ranks of the large number of elliptic curves that we would
find; this would benefit from Sutherland’s smalljac program, which has very fast
code for computing L-series coefficients. Some aspects of the tables could also be
generalized to modular abelian varieties A ¢ attached to Hilbert modular newforms
with not necessarily rational Hecke eigenvalues; in particular, we could enumerate
the A¢ up to some norm conductor, and numerically compute their analytic ranks.
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K D

Q(2) —24,-32,—64,—88

Q(3) —36,-48

Q(/5) —15,-20,-35,—40,—60,—75,—100, —115, —235
Qe -2

QW7 —112

Q(V13) —52,-91,—403

Q17) —51,-187

QW21) —147
Q(W29) —232
Q(+/33) —99
Q37 —148
Q(v41) —123
Q(V61) —427
Q(+/89) —267

Table 1. Quadratic fields K and the values of D for which Hp has roots in K
but not in Q.

7. Tables

As explained in Sections 3 and 4, assuming Conjecture 1.1, we found the complete
list of elliptic curves with norm conductor up to 1831, which is the first norm con-
ductor of a rank 2 elliptic curve over F. The complete dataset can be downloaded
from [5].

In each of the following tables #isom refers to the number of isomorphism
classes of elliptic curves, #isog refers to the number of isogeny classes of elliptic
curves, n refers to the conductor of the given elliptic curve, /N(n) is the norm of
the conductor, and Weierstrass equations are given in the form [ay, a5, as, aq, ag].

Table 2 gives the number of elliptic curves and isogeny classes we found. Note
that in these counts we do not exclude conjugate elliptic curves, that is, if o denotes

Rank #Isog #Isom Smallest N(n)

0 745 2174 31
1 667 1192 199
2 2 2 1831

Total 1414 3368 —

Table 2. Number of isogeny classes and number of isomorphism classes of el-
liptic curves over F of norm conductor at most 1831.
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Size of isogeny class

Bound on N(n) 1 2 3 4 6 8 10 Total
199 2 21 3 20 8 9 1 64
1831 498 530 36 243 66 38 3 1414

Table 3. Number of isogeny classes of a given size for elliptic curves over F
with norm conductors no larger than a given bound.

the nontrivial element of Gal(F/Q), then we count E and E? separately if they
are not isomorphic.

Table 3 gives counts of the number of isogeny classes of elliptic curves in our
data of each size; note that we find some isogeny classes of cardinality 10, which
is bigger than what one observes with elliptic curves over Q).

Table 4 gives the number of elliptic curves and isogeny classes up to a given
norm conductor bound. Note that the first elliptic curve of rank 1 has norm con-
ductor 199, and there are no elliptic curves of norm conductor 200.

#Isogeny classes #Isomorphism classes
Rank Rank

Bound on N(n) 0 1 2 Total 0 1 2 Total
200 62 2 0 64 257 6 0 263
400 151 32 0 183 580 59 0 639
600 246 94 0 340 827 155 0 982
800 334 172 0 506 1085 285 0O 1370
1000 395 237 0 632 1247 399 0 1646
1200 492 321 0 813 1484 551 0 2035
1400 574 411 0 985 1731 723 0 2454
1600 669 531 0 1200 1970 972 0 2942
1800 729 655 0 1384 2128 1178 0 3306
1831 745 667 2 1414 2174 1192 2 3368

Table 4. Number of isogeny classes and number of isomorphism classes of el-
liptic curves over F with specified rank and with norm conductors no larger than
a given bound.

Table 5 gives the number of elliptic curves and isogeny classes with isogenies of
each degree; note that we do not see all possible isogeny degrees. For example, the
elliptic curve Xo(19) has rank 1 over F, so there are infinitely many elliptic curves
over F with degree 19 isogenies (unlike over @ where X;(19) has rank 0). We
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Type #Isog #Isom Example curve N(n)
none 498 498 [Jeo+1, 1, 1, 0, 0] 991
deg2 652 2298 [ ¢@,—p+1, 0, —4, 3¢p—75] 99
deg 3 289 950 [ o, -, 0, —2¢—2, 20+1] 1004
deg 5 65 158 [ 1, 0, 0, —28, 272] 900
deg 7 19 38 [ 0, o+Le+1, ¢—1,-3p—3] 1025

Table 5. Number of isogeny classes and number of isomorphism classes of el-
liptic curves over F of norm conductor at most 1831 having isogenies of a given
type. “None” indicates curves having no cyclic isogenies.

also give an example of an elliptic curve (that need not have minimal conductor)
with an isogeny of the given degree.

Table 6 gives the number of elliptic curves with each torsion structure, along
with an example of an elliptic curve (again, not necessarily with minimal conductor)
with that torsion structure.

Group structure  #Isom Example curve Nn)
0 79 | 0, -1, 1, -8, 7] 225

z/27 1453 | ®, -1, 0,—p—1, ¢—3] 164

7/37 202 | 1, 0, 1, -1, -2] 100

7/47 243 Je+1, ¢—1, @, 0, 0] 79

2] 87/27 312 | 0, ¢o+1, 0, ®, 0] 256
7/57 56 [ 1, 1, 1, 22, -9] 100

7/67 183 [ 1, ®, I, p—1, 0] 55

7]177 13 [ 0, o—Loe+1, 0, -] 41

7/87 20 [ L ¢+l o @, of 31

2] & 7/47 51 [e+1, 0, 0, —4, -3¢ —2] 99
7/97 6 | 0, —@+1, 1, -1, 0] 76

7/107 12 [e+1, ®, ®, 0, 0] 36
7/127 6 [ ¢ o+1, 0, 20—3, —p+2] 220

7]27 &7/67 11 0, 1, 0, -1, 0] 80
7/157 Il 1, 1, 1, -3, 1] 100

7]27 &7/87 2 ] 1, 1, 1, -5, 2] 45

Table 6. Number of isomorphism classes of elliptic curves over F of norm con-
ductor at most 1831 having given torsion subgroups.

We computed the invariants in the Birch and Swinnerton-Dyer conjecture for
our elliptic curves, and solved for the conjectural order of II1; Table 7 gives the
number of elliptic curves in our data having each order of III, and Table 8 lists
elliptic curves of minimal conductor exhibiting each of these orders.
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#I11 1 4 9 16 25 36
#Isom 3191 84 43 16 2 2

Table 7. Number of isomorphism classes of elliptic curves over F of norm con-
ductor at most 1831 having given order of I11.

#I11  First elliptic curve over F having III of this order N(n)
1 [lLe+1,¢0,0,0] 31

4 [1,1,1,—110,—880] 45

9 [¢+1.—¢,1,—54686¢ — 35336, —7490886¢ — 4653177 76
16 [1.g.¢+1,—4976733¢ — 3075797, —6393196918¢ — 3951212998 45
25 [0,—1,1,—7820,—263580] 121

36 [1.—p+ 1,9, 1326667¢ — 2146665, 880354255¢ — 1424443332 ] 1580

Table 8. Elliptic curves over F of smallest norm conductor having III of a given order.
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Finding simultaneous Diophantine approximations
with prescribed quality

Wieb Bosma and Ionica Smeets

We give an algorithm that finds a sequence of approximations with Dirichlet
coefficients bounded by a constant only depending on the dimension. The algo-
rithm uses LLL lattice basis reduction. We present a version of the algorithm
that runs in polynomial time of the input.

1. Introduction

The regular continued fraction algorithm is a classical algorithm to approximate
reals by rational numbers. The denominators of continued fraction convergents
furnish, for every a € R, infinitely many integers ¢ such that

lgall <¢~",
where || x|| denotes the distance between x and the nearest integer. The exponent
—1 of ¢ is minimal; if it is replaced by any number e < —1, then there exist real
numbers « such that only finitely many integers ¢ satisfy ||q a|| < ¢°.
Hurwitz [9] proved that the continued fraction algorithm finds, for every a €
R\ @, an infinite sequence of increasing integers ¢, with

1 _
||qna||<%qn1-

If the constant 1/+/5 is replaced by any smaller one, then this statement is false.
Legendre [15] showed that the continued fraction algorithm finds all good approx-
imations, in the sense that if for some positive integer ¢

1 -1
lgal <5q .

then ¢ is one of the ¢, found by the algorithm.

MSC2010: primary 11J13; secondary 11Y16, 11J70.
Keywords: simultaneous Diophantine approximation, LLL lattice reduction.
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As to the generalization of approximations in higher dimensions Dirichlet [16]
proved the following theorem; see Chapter II of [19].

Theorem 1.1. Let an n xm matrix A with entries a;j € R\ Q be given and suppose
that 1, a1, ...,a;m are linearly independent over Q for some i with 1 <i < n.
There exist infinitely many coprime m-tuples of integers (q1,...,qm) such that,
with ¢ = max |g;| > 1, we have

j

max g1 a1 + -+ gm dim| <qm/n, (1)

If the exponent —m/n is replaced by any smaller number, there exists a matrix A
for which the inequality holds for only finitely many coprime tuples (41,42, ..., qm).

Definition 1.2. Let an n xm matrix 4 with entries a;; € R\ Q be given. The Dirich-

let coefficient of an m-tuple (¢1,...,qm) is qm/"max g1 air + -+ gm aim|| .
1

The proof of the theorem does not give an efficient way of finding a series
of approximations with a Dirichlet coefficient less than 1. For the case m = 1
the first multidimensional continued fraction algorithm was given by Jacobi [10].
Many more followed, see for instance Perron [18], Brun [5; 6], Lagarias [14] and
Just [11]. Brentjes [4] gives a detailed history and description of such algorithms.
Schweiger’s book [20] gives a broad overview. For n = 1 there is, amongst others,
the algorithm by Ferguson and Forcade [8]. However, there is no efficient algorithm
guaranteed to find a series of approximations with Dirichlet coefficient smaller
than 1.

In 1982 the LLL algorithm for lattice basis reduction was published in [17].
The authors noted that their algorithm could be used for finding Diophantine ap-
proximations of given rationals with Dirichlet coefficient only depending on the
dimension; see Corollary 2.4. Just [11] developed an algorithm based on lattice
reduction that detects Z-linear dependence in the a;, in the case m = 1. If no such
dependence is found her algorithm returns integers ¢ with

n 1/2
max [|ga;]| EC( aiz) q—l/(2n(n—1))’
/ z
where c is a constant depending on n. The exponent —1/(2n(n — 1)) is larger than
the Dirichlet exponent —1/n. Lagarias [13] used the LLL algorithm in a series of
lattices to find good approximations for the case m = 1. Let ay,...,a, € Q and
let N be a positive integer; suppose there exists Q € N with 1 < O < N such that
max; || Q aj|| <e. Then Lagarias’s algorithm on input ay,...,a, and N finds in
polynomial time a ¢ with 1 < ¢ <2"/2N such that max; [|q aj|| < V5n2n=D/2¢
One difference with our work is that Lagarias focuses on the quality ||¢ a;||, while
we focus on the Dirichlet coefficient ¢!/"||q a ill. We also consider the case m > 1.
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The main result of the present paper is an algorithm that by iterating the LLL
algorithm gives a series of approximations of given rationals with optimal Dirich-
let exponent. Where the LLL algorithm gives one approximation, our dynamic
algorithm gives a series of successive approximations. To be more precise: For
a given n X m-matrix A with entries a;; € Q and a given upper bound ¢gmayx the
algorithm returns a sequence of m-tuples (g1, ..., gm) such that for every Q with
2(m+n+3)(m+n)/(4m) < O < @max one of these m-tuples satisfies

mjaxlqjl <0

and
o (m-+n+3)(m-+n)/(4n) Q—m/n.

max lgidiy + -+ + gmdim|| =

The exponent —m/n of Q can not be improved, and therefore we say that these
approximations have optimal Dirichlet exponent.

Our algorithm is a multidimensional continued fraction algorithm in the sense
that we work in a lattice basis and that we only interchange basis vectors and
add integer multiples of basis vectors to another. Our algorithm differs from other
multidimensional continued fraction algorithms in that the lattice is not fixed across
iterations. In Lemma 3.6 we show that if there exists an extremely good approxi-
mation, our algorithm finds a very good one. We derive in Theorem 3.8 how the
output of our algorithm gives a lower bound on the quality of possible approxima-
tions with coefficients up to a certain limit. In Section 4 we show that a slightly
modified version of our algorithm runs in polynomial time. In Section 5 we present
some numerical data.

An earlier version of this paper appeared as Chapter V of Smeets’s thesis [21].

2. Lattice reduction and the LLL algorithm

In this section we give the definitions and results that we need for our algorithm.
Let r be a positive integer. A subset L of the r-dimensional real Euclidean
vector space R” is called a lattice if there exists a basis by, ..., b, of R" such that

r r
L=ZZbi = {Zzibi ‘ zi €Zfori = 1,...,r}.
i=1 i=1
We say that by, ..., b, is a basis for L. The determinant of the lattice L is defined
by |det(by, ..., b,)| and we denote it as det L.
For any linearly independent by, ..., b, € R” the Gram-Schmidt process yields
an orthogonal basis b7, ..., by for R”, defined inductively by

i—1
1);":[9,»—2:/L,‘jlﬂ< forl1 <i<r
j=1
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and

(bi. b7)

Mij = =5

(bF.b7)

where (,) denotes the ordinary inner product on R”.
We call a basis by, ..., b, for alattice L reduced if
|/¢Lij|§% forl<j<i=<r
and
|bF + pai—ab [P < 3pE )2 forl<i<r,

where |x| denotes the Euclidean length of x.

Proposition 2.1 [17, Proposition 1.6]. Let by,...,b, be a reduced basis for a
lattice L in R". Then

(1) |by| = 207D/ (et L)V,

) |b1|?> <277V |x|? for every nonzero x € L,
r

@) [ bl <27~/ det L.

i=1
Proposition 2.2 [17, Proposition 1.26]. Let L C 7" be a lattice with a basis
bi,by,...,b.,and let F € R, F > 2, be such that |b,—|2 < Fforl1<i<vr. Then
the number of arithmetic operations needed by the LLL algorithm is O(r* log F)
and the integers on which these operations are performed each have binary length
O(rlog F).

In the following lemma the approach suggested in the original LLL-paper for
finding (simultaneous) Diophantine approximations is generalized to the case m > 1.

Lemma 2.3. Let an n x m-matrix A with entries a;j € R and an € € (0, 1) be given.
Let L be the lattice formed by the columns of the (m + n) X (m + n)-matrix

_1 0 .- 06111 alm_
0 1 0 azr -+ am
B = 0 --- 0 lanl e dum | > (2)
0 -0 0 ¢ 0
0~ 00 0 ¢

with ¢ = (2~ (m+n=1)/4g)(m+n)/m
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The LLL algorithm applied to L will yield an m-tuple (q1, ..., qm) of integers
with
max |(1j| < 2(m+n—1)(m+n)/(4m)8—n/m 3)
; =

and

max ||g1a;1 + -+ gmaim| < e.
l

Proof. The LLL algorithm finds a reduced basis by, ..., by+, for the lattice L.
For each vector b in this basis there exist p; € Z, for 1 <i <n, and ¢g; € Z, for
1 < j < m, such that

[qiaii +--+ qgmaim— p1|

h— d1an1 + -+ dmanm — Pn
cq1

Cdm

Proposition 2.1(i) gives an upper bound for the length of the first basis vector,

|b1 | < 2(m+n—1)/4cm/(m+n)'

From this vector b; we find integers ¢1, . .., ¢m, such that
max |¢;| < o(m+n—1)/4 .—n/(m+n) 4)
; =<
and
max [|g1a1 + -+ + maim| < 20T D4 m/(nn) ()
l
Substituting ¢ = (2~ +n=D/4g)(m+m)/m gives the results. O

From (4) and (5) we obtain the following corollary.

Corollary 2.4. For any n x m-matrix A with entries a;j € R the LLL algorithm
can be used to obtain an m-tuple (q;, . .., qm) that satisfies, with ¢ = max; |g;|,

max lqrai1 + -+ + gmaim| < 20mtn—Dn+m)/(4n) =m/n

3. The iterated LLL algorithm

We iterate the LLL algorithm over a series of lattices to find a sequence of approx-
imations. We start with a lattice determined by a basis of the form (2). After the
LLL algorithm finds a reduced basis for this lattice, we decrease the constant ¢ by
dividing the last m rows of the matrix by a constant d greater than 1. By doing
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s0, ¢ is divided by d™/(m+1) We repeat this process until the upper bound (3) for
max |¢g;| guaranteed by the LLL algorithm exceeds a given upper bound ¢max.
To ease notation we put d =2 and ¢ = 1/2.

Algorithm 3.1 (Iterated LLL algorithm (ILLL)).
Input:  An n x m-matrix A with entries a;; in R, and an upper bound gmax > 1.
Output: For each integer kK > 1 no larger than the k' defined in (8), a vector
q(k) € 7™ with
max |g; (k)| < 20T Dlm+m/m) okn/m 6)
and ’
max l¢1 (k) a1 + -+ gm(k) aim|| < 1/2%. @

1. Construct the basis matrix B as given in (2) from A.
2. Apply the LLL algorithm to B.

3. Deduce ¢y, ..., qm from the first vector in the reduced basis returned by the
LLL algorithm.

4. Divide the last m rows of B by 20m+m/m

5. Stop if the upper bound for ¢ guaranteed by the algorithm (6) exceeds ¢max;
else go to Step 2.

Remark 3.2. The number 207+7)/™ iy Step 4 may be replaced by d ™+™m/m for
any real number d > 1. When we additionally set ¢ = 1/d this yields

max |Qj (k)| < 2(m+n—1)(m+n)/(4m)dkn/m
; =
and
max g1 (k)ait + -+ gm(k)aim|| < d™*.
In this paper, with the exception of the numerical examples in Section 5, we always

take d =2 and e = 1/2.
Define

e "_(m+n—1)(m+n) +m10g2qmax—‘. ®

4n n

Lemma 3.3. Let an n X m-matrix A with entries a;jj in R and an upper bound
Gmax > 1 be given. With this input, the number of times the ILLL algorithm applies
the LLL algorithm equals k' from (8).

Proof. One derives the number of iterations by solving k from the stopping crite-

rion (6)
Gmax < 2(m+n—1)(m+n)/(4m)2kn/m’
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that is:
m m+n—1)(m+n)
— 108> Gmax = + k.
n 4n
We stop iterating as soon as the integer k reaches the ceiling &’ as in (8). O

For each k > 1 we define
C(k) — (2—k—(m+n—5)/48)(m+n)/m )
Note that ¢(1) is the constant ¢ from Lemma 2.3. In the k-th iteration we are
working in the lattice defined by the basis in (2) with ¢ replaced by c(k).

Lemma 3.4. The output q(k) = (q1(k),q2(k), ..., qm(k)) of the ILLL algorithm
satisfies (6) and (7), for 1 <k <k'.

Proof. Since we take ¢ = 1/2, in the k-th iteration we use

C(k) — (2—k—(m+n—1)/4)(m+n)/m.

Substituting ¢ (k) for ¢ in (4) and (5) yields (6) and (7), respectively. O

The following theorem gives the main result of the present paper, as mentioned
in the introduction. The algorithm returns a sequence of approximations with all
coefficients smaller than Q, optimal Dirichlet exponent and Dirichlet coefficient
only depending on the dimensions m and n .

Theorem 3.5. Let an n x m-matrix A with entries a;j in R, and qmax > 1 be given.
The ILLL algorithm finds a sequence of m-tuples (q1, . .., qm) of integers such that
for every Q with 2mtnt3)m+m/(4m) < 0 < 4 one of these m-tuples satisfies

max |¢j| = @  and
J

max [[q1aiy + - gmai| < 20D/ g7/,
i

Proof. Take k € N such that
2(k—1)n/m < Q_24m/((m+n+3)(m+n)) < 2kn/m‘ ©)
From Lemma 3.4 we know that ¢(k) = (q1(k),q2(k), ..., qm(k)) satisfies the
inequality

max |q;j (k)| < 2(mtnt3)(mtm)/(4m) H(k=Dn/m < o)
j

From the right side of inequality (9) it follows that

1
—<?2

(m+n+3)(m+n)/(4n) Q—m/n
2k '
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From Lemma 3.4 and this inequality we derive that
1
max || q1 (k) @iy + -+ + qm(k) aim|| < F < pmtnE3)mim/4m) =m/n
l

Proposition 2.1(2) guarantees that if there exists an extremely short vector in the
lattice, then the LLL algorithm finds a rather short lattice vector. We extend this
result to the realm of successive approximations. In the next lemma we show that
for every very good approximation (satisfying (11)), the ILLL algorithm finds a
rather good one (satisfying (14)) not too far away from it (as specified by (13)).

Lemma 3.6. Let an n x m-matrix A with entries a;j in R, a real number 0 < § < 1,

and an integer s > 1 be given. If there exists an m-tuple (sy,...,Sm) of integers
with
s = max |s;| > 2(m+n—1)n/(4m)(ﬁ)ﬂ/@(m-i-n)) (10)
j m
and
max 511 + -+ Smatim|| < 857", (1D
1
then applying the ILLL algorithm with
> 2074y (10 N1CETED (12)
né?
yields an m-tuple (q1, . ..,qm) of integers with
max |g;| < 207 Hm@=1-+4m/ 4m) (i)n/(Z(mH)) s (13)
j né?
and
max llqiait + - + gmaiml| < 202 /nssT", (14)
1

Proof. Let 1 <k <k’ be an integer. Proposition 2.1(2) gives that for each m-tuple
¢ (k) found by the algorithm, we have

D llgr®)aiy + -+ + gmK)aimll* + c(k)* > qj(k)*

i=1 j=1

n m
< omtn-l (Z Isiary + -+ + smaim||* + c(k)* Zs}).

i=1 j=1
From this and (10) and (11) it follows that

max [lgy (k) + -+ gm (K)aim]|> <277 (082572707 4 ¢(k)*ms?). (15)
l
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Take the smallest positive integer K such that

¢(K) < \/g §s—lmFm/n, (16)

We find for the K-th iteration from (15) and (16)
max ||qy (K)aj1 + -+ + gm(K)aim| < 20"T/2 /nss=min,
1

which gives (14).

We show that under assumption (12) the ILLL algorithm performs at least K
iterations. We may assume K > 1, since the ILLL algorithm always performs at
least 1 iteration. From Lemma 3.3 we find that if g, satisfies

Gmax > 2Kn/m2(m+n—1)(m+n)/(4m),

then the ILLL algorithm performs at least K iterations. Our choice of K implies

—(m4n+3)(m+n)/(4
c(K—1)= c(1) _ 23 mtn)/ (hm) [T sg-minin
20m+m)(K=2)/m 2oty (K—2)/m p”
and we obtain
2Kn/m _ y=(m+n—3)n/(4m) (ﬂ)”/ Clmtm)
né? :

From this we find that

Gmax > 2"

2 4m(n—1)+4n)/(4m) (ﬂ)”/ Glmtm)

né?
is a sufficient condition to guarantee that the algorithm performs at least K itera-
tions.

Furthermore, either 2~+m/m [y [y §s=m+m/n < (K) or K = 1. In the
former case we find from (4) that

S.

max |g; (K)| < 20 Fn=D/4¢(gy=n/tntn) o om+n=1)/4yn/m (ﬂ)n/@(mﬂ))
J

ns?

In the latter case we obtain from (4) that

max |g; (1)] < 20mFn=D/4¢(q)=n/(mtn) — plmtn=1)/45(m-+tn+3)n/(4m)
' =
and’ by (10)7
y(m+n—1)/45(m+n+3)n/(4m) _ »(m+n—1)/4on/my(m+n—1)n/(4m)
(m4n—1)/4n/m ( 1 n/2(m+n)
<2 2 (n52) 5.
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We conclude that for all K > 1,

S. O

n/(2(m+n))
mjax |Qj (K)| < 2(m2+m(n—l)+4n)/(4m) (ﬂ)

né?
From (13) and (14) we obtain the following corollary.

Corollary 3.7. With the assumptions of Lemma 3.6, the ILLL algorithm can be
used to obtain an m-tuple (q1, ..., qm) of integers that satisfies

¢"'" max | qrag + -+ gmaim|

< 2(m2+m(3n—1)+4n+2n2)/(4n)mm/(2(m+n))(n82)n/(2(m+n))’
where again ¢ = max |q;|.
J

Theorem 3.8. Let an n x m-matrix A with entries a;j in R and qmax > 1 be given.
Assume that y is such that for every m-tuple (q1,...,qm) returned by the ILLL
algorithm, we have

gmn max lgrai1 + ... gmaim| >y, whereq = mjax lg;l. (17)
Set
5= 2—(m+n)(m2+m(3n—1)+4n+2n2)/(4n2)m—m/(2n)n—1/2y(m+n)/n' (18)
Let (s1,...,Sm) be an m-tuple of integers, and set s = max; |s;|. If
s> 2(m+"—1>”/<4m)(ﬁ)"/(ﬂmﬂ)) (19)
m
and
2\ n/(2(m+n))
5 < 2—(m2+m(n—1)+4n)/(4m) <%) Gmax (20)
then
sm/n max |[s1a;1 + - + Smaim| > 0. 20
1

Proof. Assume that every vector returned by our algorithm satisfies (17) and that
there exists an m-tuple (s, ..., ) satisfying (19) and (20) but not satisfying
Equation (21). From Equation (20) it follows that gpn,x satisfies (12). We apply
Lemma 3.6 and find that the algorithm finds an m-tuple (g1, ..., ¢n) that satis-
fies (17). Substituting § as given in (18) gives

m/

q "mlax lgrair + -+ gmaim|| < v.

in contradiction with our assumption. O
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4. A polynomial time version of the ILLL algorithm

We have used real numbers in our theoretical results, but in a practical implemen-
tation of the algorithm we only use rational numbers. Without loss of generality
we may assume that these numbers are in the interval [0, 1]. In this section we
describe the changes to the algorithm and we show that this modified version of
the algorithm runs in polynomial time.

As input for the rational algorithm we take

e the dimensions m and n,

e a rational number ¢ € (0, 1),

e an integer M that is large compared to

2
(m+n)* m+n loge.
m m

e an n x m-matrix 4 with entries 0 < a;; < 1, where each a;; = p;j /2™ for
some integer p;;,
® an integer gmax < oM

Remark 4.1. In this rational algorithm all irrational numbers are approximated
by rational numbers with denominator 2™ . Thus M denotes the precision that is
used.

When we construct the matrix B in Step 1 of the ILLL algorithm we approximate
¢ as given in (2) by a rational number

é\ — 2—M |’2Mc‘| — 2—M [2M (2—(m+n—1)/48)(m+n)/m‘| ) (22)

Hencec <¢<c+2™M,
In iteration k& we use a rational ¢ (k) that for k > 2 is given by

¢ (ky=2"M[2M¢ () —1)27 /M) and ¢ (1) = ¢ as in (22),

and we change Step 4 of the ILLL algorithm to “Multiply the last 7 rows of B by
¢ (k—1)/ ¢ (k).” The other steps of the rational iterated algorithm are as described
in Section 3.

The running time of the rational algorithm.

Theorem 4.2. Let the input be given as described above. Then the number of arith-
metic operations needed by the ILLL algorithm and the binary length of the integers
on which these operations are performed are both bounded by a polynomial in m,
n,and M.

Proof. The number of times we apply the LLL algorithm is not changed by ratio-
nalizing ¢, so we find the number of iterations k’ from Lemma 3.3

= "_(m—l-n—l)(m—i-n) n mlogzqmax—‘ - "mM—‘
4n n n
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It is obvious that Steps 1, 3, 4 and 5 of the algorithm are polynomial in the size
of the input and we focus on the LLL-step. We determine an upper bound for the
length of a basis vector used at the beginning of an iteration in the ILLL algorithm.

In the first application of the LLL algorithm the length of the initial basis vectors
as given in (2) is bounded by

|b,~|2§max{1,a%j+---+a,zlj —I—méz} <m-4n forl<i<m+n,
J

where we use that 0 < a;; <1 and ¢ < 1.

The input of each following application of the LLL algorithm is derived from the
reduced basis found in the previous iteration by making some of the entries strictly
smaller. Part (2) of Proposition 2.1 yields that for every vector b; in a reduced basis

we have
m-+n

|b;|? < 20mEmntn=D/2(ge L)2 TT |b:] 72
j=1
j#i

The determinant of our starting lattice is given by ¢ and the determinants of all
subsequent lattices are strictly smaller. Every vector b; in the lattice is at least
as long as the shortest nonzero vector in the lattice. Thus for each i we have
|bi|?> > ZLM Combining this yields

|bi|2 < 2(m+n+2M)(m+n—l)/2 CA,Zm < 2(m+n+2M)(m+n—1)/2

for every vector used as input for the LLL-step after the first iteration.
Thus we have

|bi|2 < max {m +n, 2(m+n+2M)(m+n—1)/2} — 2(m+n+2M)(m+n—1)/2 (23)

for any basis vector that is used as input for an LLL-step in the ILLL algorithm.

Proposition 2.2 shows that for a given basis by, ..., by 4y for 7Mt" with F € R,
F > 2 such that |b;|> < F for 1 <i < m + n the number of arithmetic operations
needed to find a reduced basis from this input is O((m + n)*log F). For matrices
with entries in @ we need to clear denominators before applying this proposition.
Thus for a basis with basis vectors |p;|> < F and rational entries that can all be
written as fractions with denominator 2 the number of arithmetic operations is
O((m + n)* log(22M F)).

Combining this with (23) and the number of iterations yields the theorem. [

Approximation results from the rational algorithm. Assume that the input matrix
A (with entries a;; = 27M p;; € Q) is an approximation of an n x m-matrix A
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(with entries o;; € R), found by putting a;; = 27M [2M g;;]. In this subsection

we derive the approximation results guaranteed by the rational iterated algorithm
for the ojj € R.

According to (4) and (5) the LLL algorithm, applied with ¢ instead of ¢, is
guaranteed to find an m-tuple (¢1, . .., ¢m) such that

¢ = max |Qj| < 2(m+n—1)(m+n)/(4m)g—n/m
" =

and

max [lg1ais + - + gmdim||
< 2(m+n—1)/4((2—(m+n—1)/4€)(m+")/m + 2—M)m/(m+n)
< o 4 plmAn=1)/4=Mm/(m-+n)

the last inequality following from the fact that (x + y)* <x* + y* ifa < 1 and

x,y>0.
For the «;; we find that

ml,aX lgiei1 + -+ gmiml|

< max lg1ai1 + -+ + gmaim|| +mq 27"
<e+ 2(m+n—1)/4—Mm/(m+n) +m 8—n/m 2(m+n—1)(m+n)/(4m)—M.
In the introduction to Section 4 we have chosen M large enough to guarantee that

the error introduced by rationalizing the entries is negligible.
We show that the difference between ¢ (k) and c(k) is bounded by 2/2M .

Lemma 4.3. For each integer k > 0,

k
. 2
’ M 3 gime)/
ctky<c¢(k)<eclk)+2 . 02 tunTn m<c(k)+2—M.
1=

Proof. We use induction. For k = 0 we have ¢ (0) =2~M |_c (0)2M -| and trivially

¢(0) <¢(0) < c(0) + %M

Assume that

k—1
ck=1)<ék—-D)<ctk—1)4+2"M Z y—i(m+n)/m
i=0

and consider ¢ (k). From the definition of ¢ (k) and the induction assumption it
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follows that
& (ky =2"M[¢ (k — 1) 2= (m+m/my M7
> o= mtm/m g 1) > p=lmAm/m (k1) = ¢(k)

and
¢ (k) =2"M[¢ (k —1)2~tmtm/myM]
< mAm/m e _ 1)y 4 2~M
k—1
X i=0
— C(k) +2—M Zz—i(m-i-n)/m‘
. i=0
Finally note that 3 27/(n+m/m < 3 for all k. O

i=0
One can derive analogues of Theorem 3.5, Lemma 3.6 and Theorem 3.8 for the
polynomial version of the ILLL algorithm by carefully adjusting for the introduced
error. We do not give the details, since in practice this error is negligible.

5. Experimental data

In this section we present some experimental data from the rational ILLL algorithm.
In our experiments we choose the dimensions 7 and n and iteration speed d, so
&= % We fill the m x n matrix A with random numbers in the interval [0, 1] and
repeat the entire ILLL algorithm for a large number of these random matrices to
find our results. First we look at the distribution of the approximation quality. Then
we look at the growth of the denominators ¢ found by the algorithm.

The distribution of the approximation qualities. For one-dimensional continued
fractions the approximation coefficients ®; are defined as

a— —

Ok = 6];% qk

’

where py/qy is the kth convergent of a.
For the multidimensional case we define ® in a similar way:

Ok = q(k)"/" max [lg1 (k) @iy + -+ g (k) aim|-

The one-dimensional case m = n = 1. We compare the distribution of the ®y
found by the ILLL algorithm for m = n = 1 and various values of d with the
distribution of the ® as produced by the continued fraction algorithm with the
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best approximation properties. For this optimal continued fraction algorithm it
was shown in [2] that for almost all a, the limit

1
lim N#{k:lSkENand(@kfz}

N—o0

is equal to F(z), where

z
if0<z<1/v5,
logG th=== /f
1 1 —/1-422
F(z) = (\/1—422+10g(G—Z)) if1/v/5<z<1/2,
log G 2z
1 if1/2<z<1,

with G = (v/5+1)/2.

The optimal continued fraction algorithm finds rational approximations of which
the denominators grow with maximal rate, and it finds all approximations with
O < 1/2; for all this, see [1; 2; 3].

The following figures display distribution functions for ®y; that is, we show the
fraction of the ® found up to the value given on the horizontal axis.

We plot the distribution of the ®; found by the ILLL algorithm form =n =1
and d = 2 in Figure 1. The ILLL algorithm might find the same approximation
more than once. We see in Figure 1 that for d = 2 the distribution function dif-
fers depending on whether we leave in the duplicates or sort them out. With the
duplicate approximations removed the distribution of ® strongly resembles F(z)
of the optimal continued fraction. The duplicates that the ILLL algorithm finds are
usually good approximations: If they are much better than necessary they will also
be an admissible solution in the next few iterations.

Optimal CF
d = 2 with duplicates
* d = 2 without duplicates

Figure 1. Distribution function for ® from ILLL withm =n =1and d =2,
with and without the duplicate approximations, compared to that of ®; for
optimal continued fractions.
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Optimal CF
d = 64 with duplicates
* d = 64 without duplicates

00 02 04 06 08 10

Figure 2. Distribution function for ® from ILLL withm =»n =1 and d = 64,
with and without the duplicate approximations, compared to that of ®; for
optimal continued fractions.

For larger d we do not find so many duplicates, because the quality has to im-
prove much more in every iteration; also see Figure 2 for an example with d = 64.
From now on we remove duplicates from our results.

The multidimensional case. In this section we show some results for the distribu-
tion of the ®;’s found by the ILLL algorithm. For fixed 7 and 7 there also appears
to be a limit distribution for ®y as d grows. See Figure 3 (right) for an example
with m = 3 and n = 2, and compare this with the left half of the same figure. In
this section we fix d = 512.

10~ 10~
e
*

08 081
06
04

*
A
04| A

02

0.0 L 0.0 L L L
0.0 02 0.4 0.6 0.0 0.2 04 0.6

Figure 3. Distribution function for ®; from ILLL (with duplicates removed)
ford =2,8,128 and 512. Left: m =n = 1. Right: m =3 and n = 2.

In Figure 4 we show some distributions for cases where either m2 or n is 1.
In Figure 5 we show some distributions for cases where m = n.

Remark 5.1. Very rarely the ILLL algorithm returns an approximation with ®; > 1.

The denominators q. For regular continued fractions, denominators grow expo-
nentially fast; to be more precise, for almost all x we have (see Section 3.5 of [7])

Ik _

lim q]i e:‘rz/(1210g2)’

k—o00
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m=1,n=5

m=n=1
m=n=
m=n=3
*x m=n=4
m=n=>5

V-

;
;
:
/
J
.

Figure 5. Distribution of ®j from ILLL when m = n.

For optimal continued fractions, the constant 772 /(12 log 2) in this expression is
replaced by 72 /(1210og G), where G = (+/5 4 1)/2. For multidimensional contin-
ued fraction algorithms little is known about the distribution of the denominators ¢; .
Lagarias defined in [12] the notion of a best simultaneous Diophantine approxima-
tion and showed that for the ordered denominators 1 = g¢; < g, < --- of best
approximations for ay, ..., a, we have

lim infq,* > 1+

k—00 on+1°

We look at the growth of the denominators ¢ = max; |g;| that are found by the
ILLL algorithm. Dirichlet’s Theorem 1.1 suggests that if ¢ grows exponentially
with a rate of m/n, then infinitely many approximations with Dirichlet coefficient
smaller than 1 can be found. In the iterated LLL algorithm it is guaranteed by (6)
that ¢ (k) is smaller than a constant times dX"/™_ Our experiments indicate that
q(k) is about dk™/™ or equivalently that e("1029x)/(kn) is about d; see Figure 6,
which gives a histogram of solutions that satisfy e(™1082x)/(kn) —
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m=1,n=1,d=2 m=1,n=1,d=128
600 200 |
500 £ 3
400 | 150
300 £ 100 |
200 £ :
100 - S0 ¢

05 1 15 2 25 3 115 120 125 130

m=2,n=2,d==64 m=2,n=4,d=64
250 250
500 200
100 100
50 ] 50

575 60 62.5 65 67.5 70 575 60 62.5 65 67.5 70

7 m=5n=1,d=16 m=1,n=5d=16
1000 400 ¢
800 [ 300 L
600 ¢ 200 |
400 | ;
200 | 100 ¢

12 14 16 18 20 12 14 16 18 20

Figure 6. Histograms of e(™10ga(®)/(kn) for various values of m,n and d.
In these experiments we used gpmax = 10*° and repeated the ILLL algorithm
| 2000/k" | times, with k" from Lemma 3.3.
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Success and challenges in determining
the rational points on curves

Nils Bruin

We give an overview of current computational methods for determining the
rational points on algebraic curves. We discuss how two methods, based on
embedding a curve in an abelian variety, provide a practical method for deciding
whether the curve has rational points and, if some additional technical condition
is met, for the determination of these points.

While we cannot prove the methods are always successful, we do have a
heuristic that makes us expect so. This means that the main problem becomes
the determination of rational points on abelian varieties, in particular the deter-
mination of the free rank of the finitely generated group they form. We discuss
some methods that provide bounds on this rank.

Finally, we report on some recent progress on applying these methods to non-
hyperelliptic curves of genus 3.

1. Introduction

This article is an extended abstract from an invited lecture delivered on July 13,
2012, as part of the Tenth Algorithmic Number Theory Symposium (ANTS X),
at the University of California, San Diego. It discusses current computational
methods for determining the rational points on algebraic curves. Two methods,
Mordell-Weil sieving (see Section 4) and Chabauty’s method (see Section 5) to-
gether provide a procedure that often decides whether a curve has any rational
points and, if so, determines them. While we cannot prove that these methods will
always succeed, we do have some heuristics that indicate that this is quite likely.
Both methods rely on embedding a curve in an abelian variety J and on having a
rather detailed description of the rational points on J. There is presently no proven
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Keywords: Selmer group, descent, Mordell-Weil sieving, rational points, curves, Chabauty,
coverings.
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algorithm for determining the rational points on an abelian variety, but here too we
have methods that frequently work in practice. In fact, if Tate-Shafarevich groups
are finite, as they are conjectured to be, then it would theoretically be possible to
compute the rational points on an abelian variety.

The main point of this article is that the computational bottleneck for determin-
ing rational points on curves presently lies in the determination of rational points on
abelian varieties. Our main tool is the computation of Selmer sets via finite descent.

After reviewing the Mordell-Weil sieve and Chabauty’s method in Sections 4
and 5, we give a brief description in Section 7 of recent joint work [14] with Bjorn
Poonen and Michael Stoll to provide a description of descent computations which,
to our knowledge, encompasses all previous methods for doing such computations
for curves.

We note in Section 8 that descent methods also help in deciding whether a
curve C can be embedded in its Jacobian, a requirement for the curve to have
rational points and for the application of the Mordell-Weil sieve and Chabauty’s
method. A good description of Selmer groups also helps in constructing covering
collections, which can be used to transform problems where Chabauty’s method
does not apply into problems where it may.

The most difficult ingredient in descent computations usually is the determina-
tion of unit groups and ideal class groups of number fields. Especially for number
fields of larger degrees, this can be extremely challenging. In Section 7 we describe
some ways one can reduce the maximal degree to be considered: from 63 to 28
in the case of smooth plane quartic curves. This has allowed us to perform the
required calculations for some genus-3 curves. To our knowledge, these are the
first examples of curves with simple Jacobians and trivial automorphism groups
to which the methods have been successfully applied. Previous applications made
essential use of decompositions of the Jacobian or of the automorphisms to get
descriptions more favorable to computation.

Since in general curves have trivial automorphism groups, we believe these ex-
amples present evidence that these methods are indeed quite generally applicable,
although the computational challenges can be daunting.

We cannot hope to give an exhaustive account of the subject here. Instead, we
intend to provide the reader with a bit of insight into how the different methods
interact and what the fundamental ideas and problems are. We have also included
ample literature references for further reading.

2. Statement of the problems
Consider the equation

Xyt xty 4oy -2+ 1=0. (1)
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Can you determine the solutions x, y € @ to this equation? Can you determine
whether this equation has any rational solutions at all? These are questions about
rational points on curves, and such questions are about as old as mathematics itself.
(See Proposition 9.3 for results on this particular equation.)

We concern ourselves with curves C defined over (0, and we want to study the
set of rational points C(Q). Every curve has a projective closure, which has at
most finitely many additional rational points. Furthermore, every curve admits a
morphism from a nonsingular curve that is an isomorphism outside the finitely
many singularities, which are easily determined and tested for rationality. We can
therefore restrict our attention to nonsingular, absolutely irreducible, projective
curves.

The reader does not lose much, and may gain a more concrete conception, by
thinking of C as a smooth plane curve such as the projective closure of the curve
defined by Equation (1). Although much of what we discuss holds with suitable
modifications over arbitrary number fields, we will limit ourselves to @ for the
sake of concreteness and ease of notation.

A common theme in arithmetic geometry is that geometry determines arithmetic:
The geometric classification of curves C has deep ramifications for the structure
of C(Q). There are:

e Curves of genus 0. These are always isomorphic to plane conics. Either such a
curve C has no rational points at all, or C admits a parametrization ¢: P! — C,
providing an explicit bijection between P! (Q) and C(Q).

e Curves of genus 1. If C has any rational points, then C is isomorphic to an
elliptic curve. In that case, Mordell’s Theorem [46] implies that C(Q) can be
described as a finitely generated abelian group.

e Curves of general type (genus at least 2). Faltings’s Theorem [28] states that
C(Q) is a finite set.

We concentrate on two explicit questions.
Decision Problem. Given a curve C over Q, decide if C(Q) = @.

Determination Problem. Given a curve C over (, give an explicit description

of C(Q).

We assume that the curve is given to us in a sufficiently explicit way, for instance
by explicit equations like Equation (1). For genus-0 curves, both questions have a
reasonably satisfactory solution [44, pp. 512-513] (and see [58] for a modern algo-
rithmic perspective). For genus-1 curves, a satisfactory answer to the determination
problem is usually considered to be an explicit listing of a finite set of generators
of C(Q) equipped with its group structure. We are primarily interested in curves
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of general type. For those curves the set C(Q) is finite, so an explicit listing of the
set would provide a satisfactory solution to the determination problem.

As we discuss in Section 4, the most important step is to realize C as a subvariety
of an abelian variety J. If we take J to be the Jacobian of C then a rational point
on C gives rise to such an embedding. If we can prove no such embedding exists,
then we can conclude that C(Q) is empty.

Challenge A. Given a curve C over Q of positive genus, determine an embedding
of C into its Jacobian or prove no such embedding exists.

The main advantage of considering C as a subvariety of an abelian variety J,
rather than of a rational space such as P2, is that the set of rational points of J is
much sparser: The Mordell-Weil Theorem [63] states that J(Q) is a finitely gener-
ated group. We can use knowledge about J(Q) to obtain information about C(Q).
This leads to our second challenge.

Challenge B. Given a curve C of positive genus, determine J(Q), where J is the
Jacobian of C.

Note that if C is of genus 1, then an embedding as in Challenge A establishes
an isomorphism between C and J, so Challenge B provides a solution to the deter-
mination problem. In the remainder of this text we take C to be a curve of general
type.

A major component in determining J(Q) is determining the rank of its free part.
A conjectural link suggested by Birch and Swinnerton-Dyer [4] for elliptic curves
connects this rank to the vanishing of an L-function at a special point. For elliptic
curves over ( with an L-function that vanishes to order at most 1, this is now
proved [38; 43], but for more general abelian varieties even the existence of the
function at the point is not generally established.

The only general unconditional approach uses descent to provide a hopefully
sharp upper bound on the rank. The ideas are most easily explained in the language
of Galois cohomology (see Section 6).

Once a bound on the rank is determined, one can try to prove that the bound
is sharp by exhibiting sufficiently many independent points on J. Finding them
is only a computational problem. Since these points can be drawn from an obvi-
ously enumerable set of candidates, generators will eventually be found. Finding
generators efficiently is a serious computational problem, but we will ignore it here.

The traditional way of showing that a set generates all of J(Q) is by computing
canonical heights. However, a good algorithm for computing canonical heights
efficiently is only available for curves of genus up to 2; see [31; 35; 60; 61]. For
our purposes, one only needs a subgroup of J(Q), of finite index prime to some
predetermined number B. Proving that a set generates such a group is usually
much easier to establish; see Remark 4.6.
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Since (sharply) bounding the rank of J (@) is a crucial step for the methods in
Sections 4 and 5, we describe in Section 7 a way to actually compute or approxi-
mate the rather abstract objects introduced in Section 6. While one can concentrate
on the geometry of J (see [3; 37]), this becomes unwieldy for more complicated J.
Another approach emphasizes that J represents the group Pic®(C) of degree-0
divisor classes on C and tries to express as much of the data as possible in terms
of objects directly related to the curve [18; 21; 23; 48; 49; 53; 54; 56]. We closely
follow the exposition in [14].

In Section 8 we describe how the constructions in Section 7 can also be used to
attack some related problems, and in Section 9 we give some examples, taken from
[14], of successful applications of these methods to smooth plane quartic curves. To
our knowledge, these are the first examples fully carried out for curves with trivial
automorphism groups. Previous applications all made essential use of nontrivial
automorphisms to simplify computations. The fact that these procedures are also
shown to be practical when no such automorphisms are available is a hopeful sign
that they are applicable in generality.

3. Local considerations

Let C be a curve over @ and let K 2 Q be a field extension. Then C(Q) € C(K).
Hence, if C has a Q-rational point then C(R) # @ and C(Q,) # @ for all primes p.

We introduce some notation to express this observation more concisely. We call
R the completion of Q at the infinite prime and write R = Q.. We write

Qo ={p€Z~1: pisprime} U {co}.

The consideration of all completions of @ at once leads to the ring A of adeles.
We will only use it here as a concise piece of opaque notation and define for a
projective curve C the set

cay:= [] c@v.
veEQqQ

The observation above now translates to
C(Q) #o implies C(A) # 2. 2
Fact 3.1. One can decide algorithmically whether C(A) = @.

Determining whether C(R) = @ is a straightforward application of calculus and
the intermediate value theorem. Determining whether C(Q,) = & is also com-
putable thanks to Hensel’s lifting criterion (see [10] for a collection of algorithms).
Furthermore, for all but a finite and explicitly computable set of primes p we can
immediately conclude that C(Q)) is nonempty.
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The implication (2) is mainly useful for its contrapositive: if we can show that
C(A) is empty (that is, that C(Qy) is empty for some v) then we can conclude
that C(Q) is empty. The converse of implication (2), known as the local-global
principle, is known to hold for genus-0 curves. Hence, if C is a genus-0 curve and
C(A) # @ then C has a rational point.

However, for curves of positive genus the local-global principle is known to
fail. For instance, for curves of genus 2 over (), one can prove that the subset
of curves C with C(A) # & has asymptotic density about 0.85, measured with
respect to an appropriate height [50]. However, one would expect the set of curves
with a rational point to have asymptotic density 0 — see for instance [52, Conjec-
ture 2.2(i)] for a formal statement of this folklore conjecture in the case of plane
curves — so many curves with points everywhere locally should have no rational
points at all.

4. The Mordell-Weil sieve

Let C be a smooth projective curve of genus g > 2. In this section we discuss a
method that allows us to obtain significant information on C(Q) by considering an
embedding of C into an abelian variety J (usually its Jacobian) for which we can
determine J(Q). We write t: C — J for the embedding.

The rational points on an abelian variety are sufficiently sparse that the topolog-
ical closure J(Q) C J(A) is significantly smaller than J(A). We observe that

C(Q) Cc CA)NJ(Q).

The latter set is amenable to computation, or at least to approximation. As it turns
out, the small step of taking into consideration a little bit of extra global data, in
the form of JC_QD , provides considerable extra information.

In [57], Scharaschkin presents the method and shows, subject to the standard
conjecture that I11(J/Q) is finite, that the obstruction to the existence of rational
points on C that this method exhibits can be interpreted in terms of the Brauer-
Manin obstruction [59]. See [12; 33; 49] for applications and [15] for a larger
scale experiment. Details are provided in [17], including an optimal strategy for
avoiding a combinatorial explosion to which this method is prone. See also [20]
for an application of to determining integral points on curves.

Let p be a prime of good reduction of the embedding ¢: C — J, meaning that
there are smooth proper models 6 and $ over Z, of C and J, respectively, and
a morphism (": € — ¢ that restricts to ¢ on the generic fiber. (The conditions on
the type of reduction can be significantly relaxed.) We write C(F,) = €(F,) and
J(Fp) = $(Fp). We use that J(Qp) = $(Zp) and write pp: J(Q) — J(Fp) for
the induced reduction map. Via the same principle we obtain a reduction map
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C(Q) — C(Fp). Furthermore, we write ¢,: C(F,) — J(Fp) for the map that ¢/
induces on the rational points of the reductions.

Let us fix a finite set .S of primes of good reduction of J and a positive integer B.
We consider the commutative diagram

J(@
BJ(Q)

Jos

J(Fp)
1_[ C(Fp) Ls 1_[Bim/Op’

PES peS

C(@) -

where pg and (g are the obvious maps induced by {p, : p € S} and {t, : p € S}
respectively.
Each of the four sets in this diagram is finite, so determining

Vs,p =impg Nimig

is a matter of combinatorics. For sufficiently large B and S, the map pg ot will be
an injection, so in that case the size of Vg p provides an upper bound on the size
of C(Q). In any case, if Vg, p is empty, then C has no rational points.

If the domains of pg and ¢ are sufficiently small relative to their codomain, one
would expect the intersection of their images to be rather small. One can formulate
a reasonable heuristic argument that supports this.

Heuristic 4.1 (Poonen [47]). Subject to plausible assumptions that im g and im pg
behave in a way that can be suitably modeled by a random process, one expects
that for suitably chosen B and S, the set Vg p consists only of images of C((Q).

While pg and tg are maps between finite sets, both B, S have to be quite large
in practice for Heuristic 4.1 to apply. So, while Vg p is likely a very small set, it
tends to be an intersection of two rather large sets. For practical computations, one
has to take some care in constructing the set via appropriate steps. See [17] for
some strategies for doing so.

We are left with finding an appropriate embedding ¢: C — J into an abelian
variety. A canonical choice for J is the Jacobian of C. It is a g-dimensional abelian
variety representing the degree-0 divisor classes on C; that is, J(Q) = Pic®(C/Q).
This equality is Galois-equivariant, so J(Q) consists of the Galois-invariant divi-
sor classes Pic®(C/@Q)C(@/D_ The latter can be strictly larger than Pic®(C/Q),
the set of linear equivalence classes that contain divisors that are defined over Q.
However, for the problem at hand, this is not an issue (see [7], for instance, for
some related theory).



194 NILS BRUIN

Lemma 4.2 (Standard result). Let C be a curve over a field k, where k is either
a finite field or a number field such that C(ky) is nonempty for all places v of k.
Then every Galois-invariant divisor class on C contains a divisor defined over k.

For our applications, if C(Q,) = @ for any place v € Qq, the results in Section 3
already imply that C(Q) = &, so we only need to work with J(Q) when we can
represent its points by divisors over Q. This allows us to avoid constructing a
projective model for J as a variety.

A point on a curve C gives rise to a degree-1 divisor class. Since on a curve of
positive genus no two such divisors are linearly equivalent, we obtain an injection
C (@) — Pic'(C/Q). Similarly to how J is a variety that represents Pic?, there is
also a variety Pic! (C), that represents Pic'. Indeed, there is a natural morphism
C — Pic!(C). There is a natural action of J on Pic! (C), corresponding to addition
of divisor classes, that equips Pic 1(C) with the structure of a @-torsor under J. A
rational point on Pic! (C) induces an isomorphism between J and Pic! (C). If there
is no such point, then C has no degree 1 divisors and hence certainly no rational
points. Therefore, a reformulation of Challenge A is:

Challenge A’. Given a curve C over @Q of positive genus, determine a divisor class
2 € Pic! (C/Q) or prove no such divisor class exists.

If 0 exists then the map ¢: C — J it induces corresponds to

C(Q) — Pic®(C/Q)
P——[P]—0.
For an appropriate reduction 9, modulo p, we get the corresponding map
C(Fp) — Pic®(C/F,)

given by P — [P]—0,. This suggests the procedure below for solving the decision
problem. First note that a choice of smooth projective model for C also provides
us with an explicitly enumerable set containing C(Q) — namely, P"(Q) — so if C
has a rational point we can find it in finite time by enumeration (but see Remark 4.5
for drastic improvements).

Remark 4.3. We use the term algorithm in the strict sense: a Turing machine or
an equivalent computing device that is guaranteed to produce a correct answer in
finite time when given correct input. We use the word procedure for a less formal
concept than an algorithm. We allow a procedure to include steps that are not
guaranteed to succeed, and we do not require that a procedure will stop for all
valid input. We do require the guarantee that if a procedure finishes then its output
is correct.
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Procedure 4.4 (Decision procedure).
Input: A curve C over Q (or more generally, a number field).
Output: A rational point on C or a proof that there is none.

First parallel thread:

0. Enumerate candidates for C(Q). If a point is found, we have shown that C(Q)
is not empty.

Second parallel thread:
1. Testif C(A) = @. If that is the case then C(Q) is empty too. See Fact 3.1.

2. (Challenge A’) Find d € Pic' (C/Q) or prove it doesn’t exist. We either obtain
an embedding (: C — J or we prove that C(Q) is empty.

3. (Challenge B) Find a finite set of generators for J(Q).

4. Choose appropriate S and B.

5. Compute Vg, p. This involves computing J([F,), using for instance [39; 42].
6. If Vg p = @ then C(Q) is empty. Otherwise, increase S and B and go to step 5.

Remark 4.5. Once we have determined generators for J(Q), we can enumerate
candidates for C(Q) much more efficiently by enumerating J(Q). Furthermore,
the set Vg p provides us with a list of cosets modulo BJ(Q) that may contain
elements of C(Q), further reducing the number of candidates to consider. This
makes it feasible to search up to height bounds that are doubly exponential in time.
See [20] for an application to finding integral points on curves.

We do not have a proof that this procedure will always terminate, but Heuristic 4.1
suggests it should. Indeed, in [15] we describe an experiment where we test how
well the decision procedure works in practice. We consider genus-2 curves admit-
ting models of the form

y2 = foxO+ fsx+--+ fo with fo,..., fe€{=3,-2,...,3}.

For nearly all the roughly 200,000 isomorphism classes represented, we were able
to solve the decision problem. For 42 curves we were unable to unconditionally
complete step 2. For those we obtained a presumably accurate bound on the rank of
J(Q) by assuming the Birch and Swinnerton-Dyer conjecture. The Mordell-Weil
sieving itself never posed an insurmountable problem.

The main practical problem with the procedure above is that if either of steps 2
or 3 fails, we have no way of continuing. We can weaken the requirement for step 3
slightly.

Remark 4.6. We only need a set of elements in J(Q) that generate J(Q)/BJ(Q),
so a subgroup of finite index prime to B in J(Q) would already be enough. If
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one knows the rank of J(Q) then one can usually quickly deduce that a given set
generates such a group by considering its image under

J(@Q) — Tlpes I (Fp)-

for some suitable set of primes S. For instance, let ¢ be a prime dividing B. If
we know that J(Q)/qJ(Q) ~ (Z/qZ)" and the codomain has a direct factor of the
form ]_[521 (Z/q% 7), with ey, ...,e; > 1, onto which the group generated by our
given set surjects, then the set generates a subgroup of finite index prime to g.

5. Isolating rational points: Chabauty’s method

While Mordell-Weil sieving can provide a proof that C(Q) is empty, it will not
prove that C(Q) is finite, let alone determine C(Q), if there is a rational point
on C. Yet for large enough B and S the map C(Q) — Vg p is injective, and
Heuristic 4.1 predicts that for suitable values of B and S it is surjective as well.
Thus, given a rational point P € C(Q), we mainly need a way to prove the equality

C(Q)N((P)+ BJ(Q)) ={u(P)}. 3)

Inspired by Skolem’s ideas for subvarieties of multiplicative groups, Chabauty [24]
observed that one can construct a nonzero p-adic analytic function

0p: J(Qp) —— Q,

that vanishes on J(Q), provided that the rank r of J(Q) is strictly smaller than the
dimension g of J. (Actually, he observed that one can construct such functions
locally, and gets the desired result by doing so on a finite open covering of the
rational points.) The fact that analytic functions have isolated zeros allows one
to conclude that C has only finitely many rational points and, with a bit of extra
work, to establish statements like equality (3). See [26] for one of the first modern
treatments of the method and [23], [32], and [34] for a flexible way of applying it.

In order to avoid some technical complications, we take a prime p at which C
has good reduction. We write J (1)(@1,) for the kernel of the reduction homomor-
phism J(Qp) — J(Fp) and we write A, = J(Q) N J(l)(@p) for the part of the
Mordell-Weil group that lies in the kernel of reduction.

The function ®, in question arises from the p-adic integration of a regular differ-
ential w. We consider regular differentials obtained by lifting a regular differential
 on C over [, so our differentials have good reduction at p as well. We sketch
the details here.

Let P € C(Qp). We choose a uniformizer 7 € F,,(C) at the reduction P € C(F,)
of P and lift it to a uniformizer ¢ € Q,(C) at P. Let w be a regular differen-
tial on C with good reduction as described above. We have w = h dt for some
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function /2 € Q,(C) regular at P. Localization at P provides a homomorphism
Q,(C) — Qp((1)). Regularity and good reduction imply that when we identify /
with its image, we have /h(t) € Z,[[t]]. We can compute a formal power series

/;0 h(t)dt € Qp[[z]],

and it is straightforward to check that its radius of convergence is at least 1. Let
@, be an algebraic closure of @, and extend the p-adic absolute value in the
natural way to @p. For any point Q € C (@p) that reduces to P € C(F,), we have
|#(Q)|p < 1. Hence we can define the integral of @ from P to Q by the formula

o 1(Q)
/ w = / h(t)dt,
P 0

which is easily checked to not depend on the choice of . Note that every divisor
class in J (1)(@p) admits a representative of the form

[Q1+--+ Qg —2gP],

where each Q; € C (@p) reduces to P € C (Fp). We define the integral of w over
this divisor class by

g r0i
a):Z/P o.

i=1

/[Q1+~-~+Qg—g1’]

One can check that the regularity of @ implies that this provides a well-defined
group homomorphism J1(Q,) — Q.

Letwy,...,wg be a basis of the space of regular differentials of the reduction
of C at p and let @y, ..., wg be alift of that basis. We have a Z,-bilinear pairing

TV(@p) x (Z,)% - Qp
taking (D, (Ay,... ,Ag)) to
/ Ao+ + Agwg.
D

We see that if the Z-rank r of J(Q) is strictly less than g, then the Z,-submodule
generated by A, C J (1)(@1,) has Zp,-rank at most r < g, so there is a nonzero
differential w, such that

/ wp, =0 forall DeA,=J@QnJD@,).
D
In particular, for a rational point P € C(Q), we can define

0 _
O, p(0) = / wp for O € C(Qp) that reduce to P € C(Fp).
P
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It follows that ®, p(Q) = 0 for every Q € C(Q) with the same reduction as P
modulo p. The following is straightforward to prove by applying Hensel’s lemma
to the appropriate power series expansion.

Proposition 5.1 [26, proof of Theorem 4]. If P € C(Q) and the reduction @ is
nonzero at pp(P) € C(Fp), then we have

tC(Q)N(P)+ Ap) ={L(P)}.

We obtain the following procedure (see Remark 4.3 for the technical meaning
of this word).

Procedure 5.2 (Determination procedure).

Input: A curve C of genus g > 1 with J(Q) of free rank r < g.

Output: The elements of C(Q).

1. Choose S and B, and search for points {Py,..., P} C C(Q) such that

{Pi1,.... P} + BJ(Q)=Vs p+ BJ(Q).

2. For each point P, find a prime p such that BJ(Q) C A, and @,(P) # 0 € F.
If this succeeds, you have proved that

C@={P1..... P}
3. If step 2 fails, go to step 1 and choose larger S and B.

Remark 5.3. The linearity of the integration pairing in the first component implies
that for any D € J(l)(@p) and m € Z we have that

/ C()ZWI/C().
mD D

Since J (1) (Qp) C J(Qp) is of finite index, say index m, we have for any D € J(Qp)
that mD € J( (Qp), so we can use this identity to extend the integration pairing to
all of J(Q)p). This provides a rigid analytic continuation of ®,_ p to all of C(Qj)
that vanishes at C(Q) — see also [2].

We cannot prove that step 1 of the determination procedure will succeed, but
Heuristic 4.1 suggests it should. We cannot prove that step 2 will succeed eventu-
ally either, but given that @, (p,(P)) = 0 requires the vanishing of a power series
coefficient in F,, we expect that this happens only one in p cases on average.
Indeed, in practice finding an appropriate p in step 2 never seems to be a problem.

Combining Mordell-Weil sieving with Chabauty’s method yields the significant
benefit that larger residue characteristics pose no problem. Results typical for
Chabauty’s method by itself bound #C(Q) in terms of #C([F,), and these bounds
are rarely sharp (see [26] and [62]).
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A more significant restriction is that the procedure is not guaranteed to apply at
all if » > g. One remedy is to use covers. One determines a finite set of covers
¢i: Di — C withi =1, ..., m and where the D; are curves of genus larger than g,
such that

C@ = ¢i(i(@),

i=1

in the hope that the determination procedure does apply to each of Dq,..., D;. In
Section 8C we see how the ideas from Section 6, in particular Proposition 6.3, can
be used to construct such covering sets.

6. Theory of finite descent

Let us first consider Challenge B, finding (a finite index subgroup of) the group
J(Q). The first observation is that J (1)(@p) is torsion-free for p > 2 (see [41]),
so the reduction map J(Q) — J(F,) is injective on the torsion subgroup J(Q)ers.
As a consequence, by computing J([F,) for a small number of primes p, which we
have to do for Mordell-Weil sieving anyway, we easily obtain a bound on the size
of J(Q)ors- This bound is often sharp, so simply exhibiting enough torsion points
usually suffices for determining J(Q)ors-

More generally, the kernel of the multiplication-by-n morphism J — J, denoted
by J[n], is 0-dimensional. Determining an approximation of it points over, say, C,
is straightforward. One can then recognize which of these torsion points are defined
over Q. Once J(Q)ors is obtained, we are left with determining the free part. The
structure theorem for finitely generated abelian groups gives us that

J©Q _ T @
nJ(@) 1 (@ers

J(@) = J(@)iors xZ"  and x(Z/nZ)".
That means that if we can compute the size of J(Q)/nJ(Q), we can compute r.

Since the multiplication-by-n morphism J 2 T is surjective over algebraically
closed fields, we have a short exact sequence of Galois modules

0 — J[n)(@) J(@) —— J(@) 0. )

The abstract language of Galois cohomology allows us to derive a description of the
set J(Q)/nJ(Q) that facilitates a clean proof of the weak Mordell-Weil theorem.
It also provides a road map for computing bounds on 7. In this section we make a
detour into this abstract world. In the next section we investigate how to compute
some of the objects introduced here.
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For a Galois module M (Q) we write H(Q, M) = H! (Gal(Q/Q), M (Q)). Tak-
ing cohomology of the short exact sequence (4), we obtain the exact sequence

J@Q ¥
nJ(Q)

HY(Q, J[n) — HY(Q, J). %)

Thus, if we can bound the size of the image of the connecting homomorphism y
then a corresponding bound on r follows.

Indeed, we can consider the same sequence over localizations @, of @, and by
identifying each Gal(Q,/Q,) with a decomposition subgroup of Gal(Q/Q) we
obtain the following commutative diagram:

J(@Q@ v

0 G HY(Q, J[n)
J(@v) Yv

0 27 (@) HY(Qy, J[n)).

Since rational points are also Q,-rational, it follows that im y lies in the n-Selmer
group of J, defined by

Sel"(J/Q) = {6 € H'(Q, J[n]) : resy(8) € imy, for all v € Qg}.

Part of the proof that J(Q) is finitely generated is establishing that Sel”(J/Q)
is finite, which is known as the weak Mordell-Weil theorem. This fact follows
from another interpretation of the set H!(Q, J[n]), which also has computational
significance. Some technical language is required to properly formulate this inter-
pretation.

Let k be a field with separable closure &, let M be a finite group with a Gal(k / k)-
action and let X and Y be k-varieties. By limiting ourselves here to a finite
group M, we guarantee that M can be represented by an affine group scheme; this
helps in proving Proposition 6.1 below and simplifies the definition of an X -torsor
under M. Dropping the assumption that M be finite invalidates the statement
in general (see [5, §6.7]), but the statement does hold under various alternative
conditions.

An X -torsor under a finite M is an unramified morphism ¢:Y — X of de-
gree #M between k-varieties, together with an isomorphism M — Autz(Y/X) of
groups with Gal(k / k)-action; see [45, § IIL4].

Let ¢:Y — X and ¢": Y’ — X be X-torsors under a finite M. An isomorphism
of X -torsors is an isomorphism of k-varieties 0: Y — Y’ such that ¢ = ¢’ oo
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and such that the induced isomorphism Autz(Y/X) — Autz(Y’/X) is compatible
with the isomorphisms M — Autz(Y/X) and M — Autz(Y'/X).

Let X be the base change of X to k. Via base change, we can obtain from any
X -torsor under M an Xi-torsor under My. We say that two torsors are twists of
one another if they becomes isomorphic to one another upon base change to k.

If M is not abelian there is still an object denoted H!(k, M), but it is no longer
a group — it is merely a set with a distinguished element, called the trivial class.
From Theorem II1.4.3(a) (p. 121) and Proposition I11.4.6 (p. 123) of [45] we obtain
the following result.

Proposition 6.1 (Twisting principle). Let ¢: Y — X be an X -torsor under a finite
M. There is a bijection between H'(k, M) and the set of isomorphism classes of
twists of 1Y — X, and a natural map y: X (k) — H'(k, M), such that

(1) the bijection sends the trivial class of H'(k, M) to the class of ¢, and

(2) for every x € X(k), if y(x) corresponds to a twist ¢: Yy — X, then x has a
k-rational preimage on Y.

In fact, if a twist ¢’: Y’ — X has a point y € Y’/(k) then Y’ is isomorphic to Yy,
where x = ¢’(y). It follows that the image of y consists exactly of those twists
for which Y’/ (k) is nonempty. We can approximate the image by considering those
that have adelic points.

Definition 6.2. Let ¢: Y — X be an M -cover over Q). We define the Selmer set
to be

Sel(Q,Y N X)={l¢"Y - X]e H'(Q, M) : Y'(A) # &}
= {5 € H'(Q, M) :1tesy(8) € imy, forall v e Q@}.

Note that the multiplication-by-n morphism in the exact sequence (4) yields
a J-torsor J — J under the group M = J[n](Q). Indeed, this map y and the
connecting homomorphism in Equation (5) agree, as do the concepts of Selmer set
and group.

Of particular importance for us is the case where k is a number field. For ease
of notation, we restrict to the case k = Q. Let Q;" be the maximal unramified
extension of @, in @,. We say a class is unramified if it becomes trivial under
the restriction H'(Qy, M) — H'(Q", M). A class in H'(Q, M) is unramified
at v if res, maps it to an unramified class. For a finite set S C Qg we write
H'(Q, M; S) for the subgroup of classes unramified at all places outside of S.
We find that H'! (Q, M ; S) is finite; this is analogous to Hermite’s result that there
are only finitely many number fields of bounded degree unramified outside a finite
set of primes.
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Proposition 6.3 (Chevalley-Weil [25]). Let X and Y be smooth projective vari-
eties over Q, let M be a finite Gal(Q/Q)-group, and let ¢: Y — X be an X -torsor
under M. Let S C Qq contain the archimedean places, the places of bad reduction
of ¢, and the places of residue characteristic dividing |M |. Then

V(X(Q)) C Sel(@.Y -2 X) c H' (@, M: ).
In particular, y (X (Q)) is finite.

The version in [25] states that ¢~ (X (Q)) lies in Y (L) for some fixed number
field L, the compositum of degree-| M | extensions unramified outside S of the
splitting field of M. This formulation is not very conducive to computation. A
more promising approach is to try to find reasonable computational descriptions of
H'(k, M) and y for k = Q and k = Q,,. General theory gives us that the map ¥,
for k = Q, is continuous and therefore locally constant. If we can determine the
neighborhood on which y,, is constant, we can determine im ), and thus compute
Sel(Q, Y 5 X).

7. Computing Selmer groups

In this section we describe a method for computing (or at least approximating)
Selmer groups that goes back to Cassels (see [21] for a survey), and that has been
developed and used by many others [23; 48; 53; 54; 56]. The presentation here
closely follows that in [14].

We continue our philosophy that points on J are most conveniently represented
by divisors on C. We would like to describe J[n] as a Galois module. We do so by
presenting a finite Galois-stable set of generators A = {6y,...,6;}. Since this is
a finite Gal(k / k)-set, it can be viewed as the k-points of an affine 0-dimensional
variety over k, which we also denote by A. Its coordinate ring is some finite k-
algebra L. Note that L is a field only when Gal(k /k) acts transitively on A. In
general, L is a direct sum of fields, corresponding to the Galois orbits of A.

A certificate that 6 € A is n-torsion as a divisor class on C can be given as a
function fy whose divisor is linearly equivalent to n6. If we take these functions
Galois-covariantly, we can combine them into a function f € k(C) ® L.

We construct an n-torsion Galois module directly from A by taking the twisted

power
d

() =@ (2)~

which as a group is simply (Z/ nZ)?, but has its Galois action twisted so that the
coordinates are permuted according to the action on A. The fact that A generates
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J[n] is expressed in the surjectivity of the third arrow in the short exact sequence

7\2
()—>R—>(_) J[n] 0,

nz

where the map to J[n] consists of evaluating the formal linear combinations and
R is defined to be the kernel of that map. If we are able to choose a Galois-stable
basis for J[n] then R is trivial and we obtain an isomorphism to J[n]. In general,
we have to choose A larger than that. In fact, the Galois group may act transitively
on the nonzero elements of J[n], in which case A = J[n]\ {0} is the only choice.

If M is a finite Galois module, we let MV denote the Cartier dual Hom (M, k)
of M. We note that

(Z/n2)*)Y = (Z/nZ)")* = uf,

and, thanks to the Weil pairing, that J[n]¥ = J[n]. We obtain

0 J[n] i RY 0.

Taking Galois cohomology yields a map from H!(k, J[n]) to H'(k, ,u,?). From
Kummer theory we know that H!(k, 1) = k> /k>", and with a little extra work
we find that H!(k, ,unA) = L*/L*". Hence we obtain the following commutative
diagram with exact rows:

J(k) 7 L*
nJ (k) Lxn

|

0 — Jn)(k) — (u)(k) — RV (k) — H'(k, J[n]) — H'(k.pn2)

Note that we represent elements of J(k)/nJ (k) by divisors on C. Our function
f provides a partial map

Div(C/k) - — — + L*
> npP—— ] s
PeC(k) PeC(k)

defined for divisors supported away from poles and zeros of f. The main work,
for which we refer the reader to [14], is to prove that this map induces the map ¥
above.

For k = @ and S C Qq a finite set containing the infinite place and the primes
dividing n, we also need to describe the subgroup H!(Q, ,unA; S). To that end,
we denote by Oy, s the ring of the elements of L that are integral over Zg. This
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ring decomposes into a direct product of Dedekind domains, namely the rings of
S-integers of the number fields constituting L. If Oy, s is a principal ideal ring,
which can be ensured by enlarging S if necessary, then

Computing an explicit representation amounts to determining class groups and unit
groups in number fields.

Our explicit description of the map § also makes it possible to determine neigh-
borhoods on which the local version y, is constant. The arguments used are similar
to those that show that elements u, v € Q7 represent the same class in Q5 / @;2
when 2¢(u —v) € 1 4+ 87, for some € € Z.

For appropriate sets S, 7" C Qg we define

Sel” (@, J) := {8 € H'(Q, u2) : resy(8) € im 7y }
C {8 €0F 5/07"s :resy(8) € imy, forall v € T},

where, for a large enough finite set 7' C 2q, the inclusion stabilizes to an equality.

We have a map Sel”(J/Q) — Sel” (Q, J ) but this need be neither surjective nor
injective. We do know that the kernel is contained in the group K defined by the
exact sequence

0 —— JInl(k) — pg (k) — RY(k) — K ——0,

and in practice K is frequently trivial. In any case, we can use Sel” (@, J) to
obtain an upper bound on the rank of J(Q). It may be larger than the one that can
be derived from the actual Selmer group, but it has the advantage that it is more
easily computed. There are also auxiliary computations one can do to obtain more
detailed information on the difference; see [14, Appendix A].

Requiring a set A as above is often too demanding. Indeed, in general one does
not expect a more favorable choice than A = J[n]\ {0} to be available. In that case,
L is usually a number field of degree n28 — 1, where g is the genus of C. So even
in the case g = 3 and n = 2 one expects to have to compute with a number field
of degree 63.

At the expense of getting even further removed from a description of H(Q, J[n]),
one can use a smaller set A. We restrict to the case n = 2. We take A to be a set
so that the differences of elements of A generate J[2]. We consider the submodule
E of even weight vectors,

sum

0—— E—— (Z/22)A —— Z/2Z —— 0,

and we obtain a short exact sequence
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0 R E Jn] 0.

Taking cohomology of the dual sequence gives
H'(k, pp) — H'(k, u8) —— H'(k, EV),

which leads to 5

Lx2kx

Provided that Pic®(C/ k) = J(k), which holds for us by Lemma 4.2, we can show
that the part of H!(k, EV) relevant to us lies in the subgroup we can describe, and
we obtain a map

c H'(k, EY).

_J(k) L
Y (k) L¥2kx

which we can use in essentially the same way as above. One can choose A to be
the set of classes of odd theta characteristics, which has size 2671(28 — 1), less
than half of what we needed before. For g = 3 this results in an algebra L of
degree 28.

8. Application of descent to other problems

8A. Descent on the curve. 1f we embed the curve C in its Jacobian then we can
restrict the maps y and ¥ to C. In that case we can construct a C-torsor under
J[n] by pulling C back along the multiplication-by-n map J — J. The result is
an unramified cover ¢: D — C of degree n’é.

We can compute approximations of Sel(Q, D KN¥e) ) using the same approach
as in Section 7. If that approximation turns out to be empty, then C has no rational
points. This can happen even if C(A) is nonempty. When it works, this method is
easier to apply than Mordell-Weil sieving, because the data we need is required for
determining J(Q) anyway, and we do not have to actually find generators for J(Q).

Given that the map ¥ is computed by evaluating a function on representative
divisors, we can evaluate y directly on C, without choosing an embedding in J,
and even if such an embedding does not exist. See [16] for a more thorough analysis
of this method for hyperelliptic curves.

8B. Finding an embedding in J. A curve C has a degree-n point for some 7. For
instance, on a curve of genus g > 2, the canonical divisor class always contains a
rational effective divisor, so one can take n < 2g — 2. It follows that Pic" (C )

and hence that multiplication-by-n yields a cover Pic! — J. Note that over Q we
have J ~ Pic!(C) in a way that is compatible with the multiplication-by-n map,
so this cover expresses Pic! as a J-torsor under J[n]. By Proposition 6.1, this
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torsor corresponds to some class in H!(Q, J[n]). In fact, if C(A) # @, we have
[Pic! (C)] € Sel”(J/Q). If we have succeeded in determining J(Q), we can check
if [Pic' (C)] lies in the image of J(@). If it does, then we have an explicit rational
point that we can lift to Pic' (C). If it does not then we have proved that Pic! (C)
does not have a rational point, and therefore neither does C.

We can also adapt the ideas from Section 8A to do further descent computations
on Pic!, although doing a descent directly on C yields stronger information for our
purposes — see [27].

8C. Covering collections. Proposition 6.3 also provides useful information when
Chabauty’s method (Section 5) does not apply because J(Q) is of too high rank.
As we saw in Section 8A, we can use the embedding C — J to obtain unramified
Galois covers D -2 C. As Proposition 6.3 shows, one has

C@ = U ¢'(D'(Q)).
(D' % Clese@,p% )

Note that D (and hence any of the D’) is of higher genus than C, so Chabauty’s
method might apply to D’ even if it does not to C; see also [64]. A priori it may
seem computationally unattractive to compute with a curve of much higher genus.
However, by construction, the curve D is far from general; for example, it has
many automorphisms. That usually means that its Jacobian can be decomposed
into factors of lower dimension. For instance, if C is a hyperelliptic curve and
D is a C-torsor under J[2], the Jacobian of D has many elliptic isogeny factors,
although not necessarily over Q. This means that many of the computations that
would normally take place on the Jacobian of D can now be done on elliptic curves.
This greatly simplifies computations and has led to a variant of Chabauty’s method
commonly referred to as elliptic curve Chabauty. See [36] for a special case and
[8], [9] for the general case, as well as an application that amounts to a Chabauty
computation on a 12-dimensional abelian variety. See also [16] on how to use
descent computation to determine which twists to consider and [13] for an iterated
application of these ideas. See [11] for an application to a curve of genus 3 admit-
ting a double cover; this example involves Mordell-Weil sieving and a Chabauty
computation on a genus-5 curve embedded in an abelian surface presented as the
Jacobian of an otherwise unrelated curve of genus 2.

9. Smooth plane quartics

As an example, let us see how the ideas in the previous sections apply to smooth
plane quartics — that is, nonhyperelliptic genus-3 curves. In a way, this is the
simplest collection of truly general curves, in the sense that genus-2 curves are
always hyperelliptic and hence necessarily have a nontrivial automorphism. The
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examples come from [14], to which the reader is referred for further details and
references.

Let C C P? be a smooth plane quartic curve over @. We apply the procedure
described in Section 7 for n = 2. The set A has a particularly explicit description.
A smooth plane quartic has 28 bitangents. If [ and m are degree-1 forms on C that
describe bitangents, then //m obviously induces a function on the curve whose
divisor is twice another divisor. That divisor therefore represents a 2-torsion class.
It is a matter of combinatorics to compute that every nonzero 2-torsion point can
be described this way (in fact, in 6 different ways). Let A C (P?)* be the 0-
dimensional, degree-28 locus in the dual space corresponding to these 28 bitan-
gents, and let L be the affine coordinate ring of A, so that L is a finite algebra over
Q of degree 28.

The Galois group of (a splitting field of) L is a subgroup of Spg(F,), which is
also the generic Galois group of J[2]. For this full group, the module (Z/27)%
has unique submodules E and R of dimensions 27 and 21 respectively, giving us
a unique sequence of Sp¢(F,)-modules

0 R E J[2] 0.

If we identify the conjugacy class in Spg () of the group through which Gal(Q/Q)
acts on L, then we can determine the action on the sequence via restriction. This
means we can determine the sequence

0—— J2](Q) —— EV(Q) —— RY(Q)

by identifying the Galois group of L as a subgroup of Sp¢(F»). Determining Galois
groups is one of the classic problems in computational algebraic number theory.

For each # € A we obtain a linear form /gy € L[x, y, z], where x, y, z are the
coordinates on P2, Evaluating 7 at a point on C amounts to evaluating /g at that
point.

In order to compute Sel”(Q, J), we need to compute the ideal class group and
unit group of L, for which we need an integral basis as well. The computation of
class groups, unit groups, and integral bases are three further classical problems in
computational algebraic number theory.

We give some examples.

Proposition 9.1. If C is the curve
x3y—x2y2 —xzzz—xy22+xz3 +y3z =0
in [P’é, then J(Q) = ([(0:1:0)—(0:0:1)]) ~Z/51Z and
C(@Q@)={(1:1:1),(0:1:0),(0:0:1),(1:0:0),(1:1:0),(1:0:1)}.
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For this example the Galois group of L is a member of the unique index-36
conjugacy class of Spe(F,). For that group we find that RY (Q) = Z/2Z and that
EY(Q) = 0. A priori this leaves room for a nontrivial kernel in

Sel?(Q, J) — Sel” (Q, J).

However, we find that RY(Q;) = RY(Q) and EY(Q;) = EY(Q) and that the
image of RY(Q;) does not lie in the image of y,. This means that the map is an
injection anyway and, since Sel”(Q, J) = 0, that J(Q) is finite and of odd order.
Further investigation shows that there is 51-torsion. Finding the rational points of
C from the finite set J(Q) is trivial.

Proposition 9.2. Let C be the curve
xzy2 —xy3 —x3z—2x%22 4 yzz2 —xz3 4 yz3 =0
in Pé. If the generalized Riemann hypothesis holds, then J(Q) ~ Z and
C@)={(1:1:0),(=1:0:1),(0:=1:1),(0:1:0),
(1:1:—=1),(0:0:1),(1:0:0), (1:4:-3)}.
For this curve, the Galois group of L is all of Spe(F,). Then RY(Q) =0, so
Sel?(Q, J) C Sel” (@, J).

Further computation shows that the latter has size 2, so J(Q) has rank at most 1.
Furthermore, we have J(F3;) ~ Z/85Z and J(F;) ~ Z/336Z. These group orders
are coprime, so J(Q) is torsion free. It is straightforward to exhibit a nontriv-
ial point in J(Q), so it follows the rank is 1. A straightforward application of
Chabauty’s method yields the rest of the statement.

We invoke the generalized Riemann hypothesis to verify the class group infor-
mation. The Minkowski bound of L (which is a field in this case) is 1,008,340,641,
so a dedicated enthusiast could probably confirm the class group information un-
conditionally.

Proposition 9.3. Ler C be the curve in IP’GZ:D defined by
x4+t xtyz42oxyzt— 222 42t =0,

Then C(R) # @ and C(Qp) # @ for all p, but if the generalized Riemann hypoth-
esis holds, then C(Q) = @.

For this curve we verify that its y-Selmer set is empty. The Minkowski bound
for L exceeds 1022 so unconditional verification is out of the question.
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Solving quadratic equations in dimension 5 or more
without factoring

Pierre Castel

Let Q be a 5 x 5 symmetric matrix with integral entries and with det Q # 0,
but neither positive nor negative definite. We describe a probabilistic algorithm
which solves the equation xQx = 0 over Z without factoring det Q. The
method can easily be generalized to forms of higher dimensions by reduction
to a suitable subspace.

1. Introduction

Solving quadratic equations in dimension 1 is trivial: Since the equation is ax? = 0,
the only solution is x = 0. In two dimensions, the homogeneous equation is
ax? +bxy + cy? = 0, and the solution is obtained by computing a square root. In
dimension 3, the equation is

ax? +by?+cz? +2dxy +2exz +2fyz =0,

where the coefficients are integers. Since the polynomial becomes more compli-
cated as the dimension increases, we use matrix notation instead. We define QO
as the associated quadratic form. If we denote by X = (x, y, z) the row vector
containing the variables, the equation becomes

a d e
X|d b f|X=0.
e [ ¢
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If the equation has a solution, several algorithms exist for finding solutions, for
instance see Simon [11] or Cremona [3]. In dimension 3 it is known that find-
ing a (nontrivial) isotropic vector is equivalent to factoring the determinant of the
form.

The situation is almost the same in dimension 4 when the determinant is a square:
Solutions may not exist, and if a solution exists, finding one is equivalent to factor-
ing the determinant.

The situation is quite different in dimensions greater than or equal to 5. The
Hasse-Minkowski theorem [9] asserts that in such dimensions a nontrivial solution
always exists. It is easy to see that one just needs the result in dimension 5, since
larger dimensions can handled by restricting the form to a subspace of dimension 5
where the form has a suitable signature. This is why we will focus on quadratic
forms in dimension 5. As in dimensions 3 and 4, there exist algorithms such as
the ones given in [10], but since they are generalizations of algorithms in smaller
dimensions, they still need the factorization of the determinant, which rapidly be-
comes prohibitive. Thus, if we know the factorization of the determinant we can
easily find a solution, so the question is whether it is possible to find a solution (in
polynomial time) without factorizing the determinant. The goal of this paper is to
show that this is indeed possible; in other words, we will give an algorithm which
finds a (nontrivial) isotropic vector for a 5-dimensional quadratic form which does
not require the factorization of the determinant.

As already mentioned, this algorithm can also be used for forms of higher di-
mensions by restricting the form to a dimension 5 subspace where the restricted
form has a suitable signature. The solution is found over the integers, but since the
equation is homogeneous, this is equivalent to finding a rational solution.

The first part of this paper gives the definitions needed to understand the algo-
rithm, the second part explains how the algorithm works, and the last part gives
some ideas of the complexity of the method. The full analysis of its complexity is
not done here, since it requires a number of tools from analytic number theory and
the Cebotarev density theorem [6]. I refer the interested reader to [1].

Basic definitions and notation

To begin, we give definitions and basic properties which we need.
We denote the set of integral quadratic forms as follows.

Definition 1.1. Let n be a nonzero positive integer. We denote by Sym(n, Z) the
set of n X n symmetric matrices with nonzero determinant and integral entries.

We recall the definition of the Smith normal form of a matrix; for more details,
see [2].
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Definition 1.2 (Smith normal form). Let A be an n x n matrix with coefficients in Z
and nonzero determinant. There exists a unique matrix in Smith normal form B
such that B = VAU with U and V' elements of GL,(Z). If we set d; = b; ;, the d;
are called the elementary divisors of the matrix A, and we have

d 0 ... 0
A=yt 0 & y1

()

0 ... 0 dy

with d;j 41 | d; for 1 <i <n.

Definition 1.3. For a matrix M € /M, (Z) with nonzero determinant, we denote by
di(M),...,d,(M) its elementary divisors (given by its Smith normal form). If
there is no possible confusion, they will be denoted dy, ..., dy,.

We can now add a restriction to the set of quadratic forms.

Definition 1.4. Let 7 be a nonzero positive integer. We denote by Sym*(n, Z) the
set of n X n symmetric matrices with nonzero determinant and integral entries, such
that their coefficient d» as defined above is equal to 1.

2. The algorithm

2A. The main idea. The key idea of the method is to increase by 1 the dimension
of the form by adding a row and a column, then to use an efficient algorithm to
find solutions to our new form, and finally to deduce a solution to the original form
by considering intersections of hyperbolic spaces of suitable dimensions.

Since Simon’s algorithm [10] is very efficient when the factorization of the de-
terminant is known, we are going to build a new 6-dimensional quadratic form Qg
starting from @, whose determinant will be equal to 2p where p is an odd prime
number. We will call this the completion step. To do this, we choose an integral
vector X = (x,...,Xxs) of dimension 5 and an integer z and we complete Q in
the following way:

Os = Q . (1)

Lemma 2.1. Let Q be a symmetric matrix with integral entries and with det Q # 0.
If we complete Q to the form Q¢ as described in (1) above, then we have

det Qg = zdet Q — 'X Co(Q)X, (2)
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where Co(Q) is the matrix of cofactors of the matrix Q.

Proof. Simply use the formula involving the cofactors of Q¢ for computing its de-
terminant, and expand it along the row and then the column containing the x;. U

Some special cases may occur: There exist cases where all the values taken
by det Q¢ have a common factor. To avoid these cases we will have to do some
minimizations of the form Q before completing it. In order to be able to do a
complexity analysis of the algorithm we will need the determinant of Q¢ to be odd,
so we will also have to perform a reduction of the even part of the determinant.

2B. Minimizations. The values taken by the determinant of the form Q¢ will fol-
low from the next result.

Theorem 2.2. Let Q € Sym(5,7Z) and A = det Q. Then for all X € Z° and for all
z € Z we have that d>(Q) divides det Q¢, where Qg is defined by (1).

Proof. Consider the Smith normal form of Q: There exist three matrices D, U,
and V' with integer entries such that D is diagonal with the elementary divisors
on the diagonal, U and V have determinant 1, and D = UQV'. Because of the
relation (2), let us consider the values of —’X Co(Q)X (mod A). We have
Co(Q) = Co(V™ 1 Co(D) Co(U™)

= (det V)(detU) 'V Co(D) U

= j:’(U ’Co(D)V)

= 4/(U Co(D)V).
Since D is the diagonal matrix of elementary divisors, it follows that Co(D) is
also diagonal and that every coefficient is divisible by d»(Q). We thus have

X Co(Q)X = +'X {(U Co(D)V)X
=0 (mod d2(Q)).

Combining this congruence with the formula (2) proves the result. O

Remark. If d{(Q) # det Q it will not be possible to have det Q¢ equal to a prime
or twice an odd prime number, so we will first need to minimize Q so as to obtain
an equivalent form Q' such that d>(Q’) = 1.

Remark 2.3. If we perform a change of basis using the matrix V' of the previous
result with d;(Q) # 1 and d;+1(Q) = 1, the first i columns and rows will be
divisible by d; (Q).

We are now going to explain what to do in order to avoid the case d>(Q) # 1.
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Case ds # 1.
Proposition 2.4. Let Q € Sym(5, Z) such that ds(Q) # 1. There exist two 5 x5
matrices with integral entries G and Q ¢ such that

dsQs = 'GQG,

1
detQr = ﬁdetQ.
5

The proof is given by the following algorithm.
Algorithm 2.5 (Minimization 5).
Input:  Q € Sym(5, Z) such that ds(Q) # 1 and m # 1 € Z dividing d5(Q).

Output: Qr: a form equivalent to Q such that det Qr = (1/ m?)det Q;
G : the corresponding change of basis such that dsQ s = '‘GQG.

1. Set G :=1ds.
2. Set Qf :=(1/m)Q.
3. Return Oy, G.

When the coefficient d5 of the Smith normal form of Q is different from 1, the
whole matrix Q is divisible by d5, so the minimization simply consists in dividing
the matrix by ds and the corresponding change of basis G is equal to Ids.

Casedy # 1 and ds = 1.

Proposition 2.6. Let Q € Sym(5, Z) such that dq(Q) # 1 and d5(Q) = 1. There
exist two 5 X 5 matrices with integral entries G and Q y such that

dyO5 = 'GOG.
1

dethzﬁdetQ.
4

The proof is given by the following algorithm.
Algorithm 2.7 (Minimization 4).
Input:  Q € Sym(5,Z) such that d4(Q) # 1 and d5(Q) =1, m # 1 € Z divid-
ing d4(Q).
Output: Qy: aform equivalent to Q such that det Qr = (1/ m3)det Q;
G : the corresponding change of basis such that mQ s = ‘GQG.

1. Let V be the V matrix given by the SNF of Q.
2. Let H be the diagonal matrix such that for 1 <i <4, H;; =1 and Hs 5 = m.
3. Set G:=VxH; Q' :=(1/m)'GOG.
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4. Apply the LLL algorithm for indefinite forms to Q’ (see [11] for more details).
Let O be the returned form and G’ the corresponding change of basis.

5. SetG:=G xG'.
6. Return Q¢, G.

As stated in Remark 2.3, after the change of basis in step 1, the first four columns
and rows are divisible by d4. Thus we apply this change of basis, multiply the last
row and column by d4, and divide the whole matrix by dg4.

Remark. The notion of equivalence between quadratic forms used here simply
means that both corresponding quadratic equations have the same solutions up to
a change of basis.

Caseds # 1 and dy = 1.

Proposition 2.8. Let Q € Sym(5, Z) such that d3(Q) # 1 and d4(Q) = 1. There
exist two 5 X 5 matrices with integer entries G and Q y such that

d3Qr = 'GQG,
1
detQf = —det Q.
ds
The proof is given by the following algorithm:

Algorithm 2.9 (Minimization 3).

Input:  Q € Sym(5,7) such that d3(Q) # 1 and d4(Q) =1, m # 1 € Z divid-
ing d3(Q).

Output: Q: a form equivalent to Q such that det Q¢ = (1/m) det Q;
G : the corresponding change of basis such that mQy = ‘GQG.

1. Let V be the V matrix given by the SNF of Q.

2. Let H be the diagonal matrix such that for 1 <i <3, H;; =1 and Hy 4 =
H5’5 =m.

3. Set G:=VxH; Q' :=(1/m)'GOG.

4. Apply the LLL algorithm to Q’. Let Q be the returned form and G’ the
corresponding change of basis.

5. SetG:=GxG.
6. Return O, G.

The minimizing method for this case is essentially the same as for the previous
one.
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Case dy # 1 and d3 = 1. This case is much more complicated than the previous
ones. If we try to do it in the same way, we will multiply the determinant by some
factor which is of course not what we want. The idea is first to perform a change of
basis thanks to the matrix V' given by the SNF of Q, and then to work on the 3 x 3
block that remains which may not be divisible by d»(Q). What we need to do in
order to be able to apply the same method is to be in the case where the upper-left
coefficient of this block is already divisible by d»(Q). We are thus going to do a
special change of basis in order to succeed. The method is given by the following
result.

Proposition 2.10. Let Q € Sym(5, Z) such that d>(Q) # 1 and d3 = 1. Let m be
an integer such that m # 1 and m | d»(Q). There exist two 5 X 5 matrices with
integral entries G and Q r, with G unimodular, and such that

mQy = 'GQG,
1
det Oy = —det Q.
m

Proof. We first compute the SNF of Q, so that D = UQV where D, U, V have
integral entries and U and V are unimodular. We apply the change of basis given by
the matrix V. The quadratic form Q' = VQV is equivalent to the form Q and its
first two rows and columns are divisible by m. Denote by Q3 the restriction of Q’
to the space spanned by the last three columns of the matrix V. This corresponds
to the submatrix (Q3);,; = (Q');,; with 3 <i <5,3 < j <5. We now want to
have 03,1 =0 (mod m). We apply a Gram-Schmidt orthogonalization process
to the matrix O3 modulo m. If we find a noninvertible element modulo m, this
means that we have found a factor of m. In that case we start the process again
by replacing m by its divisor. During the process, if we find a vector whose norm
is 0 modulo m, we just have to skip this step since this vector is exactly the one
we need. Otherwise the process ends and gives us a change of basis such that in
this new basis, the form Q3 (mod m) has the shape

a 0
b (mod m).
0 ¢

We must now solve the following quadratic equation:
ax? +by?+cz? =0 (mod m). 3)

Since we do not want to factor m, we have to use a method which does not use its
factorization. Such a method is described in [8]: If the coefficient a is not invertible
modulo m we have found a factor of m, so we can continue the process with both
factors, obtain the solution for each of them and combine them using the Chinese



220 PIERRE CASTEL

remainder theorem and Hensel lifting if needed. We are thus reduced to the case
where a is invertible modulo m. Solving (3) is equivalent to solving the equation

x2+ba"'y? = —ca='z? (mod m). 4)

If we take the arbitrary choice z = 1, we have exactly the type of equation that is
solved in [8]. We thus use this method to obtain a solution S of (3). We complete
the single vector family {S} to a unimodular matrix G, and we extend the matrix G
to a matrix G’ of dimension 5 by taking the identity matrix Ids and replacing the
3 x 3 lower-right block by G. We now apply G’ to Q’ and obtain Q” which has
the form

mM2’2\ mM2,3
|
/ I¥ali /20 o mm o
'G'Q'G'= Q" = | Mk * * |,
|
mM3,2‘ k k k
I % * *

where the * are integers. It is now possible to use the same methods explained in
the previous cases: We multiply the last rows and columns by m and divide the
whole matrix by m. O

Remark. The case where we find a factor of m practically never happens. The
reason is simply that the forms used to test the algorithm always have a determinant
which is very hard to factor. So finding a factor in such a way is quite hopeless.

The corresponding algorithm is the following.

Algorithm 2.11 (Minimization 2).
Input:  Q € Sym(5,Z) such that d»(Q) # 1 and d3(Q) = 1, m # 1 € Z divid-
ing d2(Q).

Output: Qy: aform equivalent form to Q;
G : the corresponding change of basis such that m’Q s = '‘GQG with
1 <m'|m.

Compute the SNF of Q with the algorithm described in [5].

Set G:=V and Q := 'GQG.

Let O3 be the 3 x 3 bottom-right submatrix of Q.

e

Apply a modified Gram-Schmidt orthogonalization process (see below) to O3
and m.

5. If the Gram-Schmidt process returns a vector, store it in S and go to step 10. If
it returns an integer m’, go back to step 4 with m = m’.

6. Denote by D3 the returned matrix and by G3 the corresponding change of basis.
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7. Letd = ged(D3[1,1],m). If d # 1, go back to step 5 with m = d.
8. Use the Pollard-Schnorr algorithm [8] to solve
2 D3[292] 2__D3[3’3]

Dill.1]° D[l 1] (mod m).

Let S be a solution.
9. Set S :=[S,1].

10. Let H be a 3 x 3 matrix whose first column is equal to S and whose columns
form a Z3 basis. This can be done using the Hermite normal form algorithm.

11. Set G5 :=G3 x H.

12. Let G be the block-diagonal 5 x 5 matrix such that the 2 x 2 upper-left block
is the identity and the 3 x 3 bottom-right block is equal to G3.

13. Set G := G x G and Q' := (1/m) 'GQG.

14. Apply the LLL algorithm to reduce Q’, and denote by Q the returned form
and by G’ the corresponding change of basis.

15. Set G := G xG'.
16. Return Qr, G.

The minimization algorithm. We can now give the complete algorithm that mini-
mizes an integral quadratic form of dimension 5.

Algorithm 2.12 (Minimization).
Input:  Q € Sym(5, 7).
Output: Q; € Sym™* (5, Z) equivalent to Q;
B : the corresponding change of basis.

Set Q; := Q.
Compute the SNF D of Q.
If di = det O, go to step 8.
Ifds # 1seti:=>5.
Leti <5besuchthatd; # 1 and dj+1 =1 ord; =dsifds # 1.
Set B :=1ds.
While dy # det Q;:
(a) Switch according to i:

Case i = 5: apply Algorithm 2.5 to Q; and d;.

Case i = 4: apply Algorithm 2.7 to Q; and d;.
Case i = 3: apply Algorithm 2.9 to Q; and d;.

N ok w
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Case i = 2: apply Algorithm 2.11 to Q; and d;.
(b) Let Q¢ and G be the returned matrices.
(c) Set Q;:=Qf and B:= B xG.
(d) Compute the SNF D of Q;.
(e) Let d; be the diagonal coefficient of the SNF of Q; such that d; # 1 with
di_|_1 =1 and dl‘ = ds if ds 75 1.
8. Return Qy, B.

Remark. This algorithm computes the Smith normal form at any step. To do this,
it is strongly recommended to use the method described in [5] which is optimized
and also gives the corresponding matrices U and V.

Remark. In this algorithm, we do not use a divisor m of d;, but d; itself. Using a
divisor would force the algorithm to use factorization.

Remark. Algorithms 2.7, 2.9, and 2.11 include a reduction step using an LLL
algorithm for indefinite quadratic forms given in [11]. This reduction is done to
have concrete bounds for the size of the coefficients at the end of the algorithm.

2C. Reducing the even part of the determinant. After performing the minimiza-
tion step, we get a form whose coefficient d; is equal to 1. We now need to have
an equivalent form whose determinant is odd. This is performed by what we call
the reducing the even part step.

Lemma 2.13. Let Q € Sym™* (5, Z) be indefinite. Let v be the quotient in the Eu-
clidean division of the 2-adic valuation of det Q by 2. There exist two matrices Q'
and G such that

1
detG = —,
21}
0'='GQGq,

va(det Q) =0orl,
0’ € Sym*(5, 7).

Proof. If det Q is odd, we simply take G = Ids and Q' = Q. Thus assume
that vy (det Q) # 0. We compute the SNF of Q and obtain unimodular integer
matrices U, V' and a diagonal matrix D such that D = UQV, and d1,; = |det Q|.
Since d(Q) = 1 the other diagonal coefficients of D are all equal to 1. We
apply to Q the change of basis given by the matrix V. The first row and the first
column of Q” = WQV are divisible by 2v2(%@) [ et v be the quotient in the
Euclidean division of the 2-adic valuation of det Q by 2, F be the diagonal matrix
whose upper-left entry is equal to 1/2% and the others equal to 1. If vy (det Q) is
even, the determinant of FQ”F = Q' is odd. Otherwise the determinant of Q'
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is divisible by 2 but not by 4. So we take G = V x F. It remains to show that
Q' € Sym* (5, Z). We know that Q € Sym*(5, Z). Since the change of basis given
by the SNF is unimodular the invariant factors have not changed during the process.
The last operation is done on the first column and only with a power of 2, so it also
does not change the invariant factors, and so we have Q" € Sym* (5, 7). O

The corresponding algorithm is as follows.
Algorithm 2.14 (Reduction of the even part—1I).
Input:  Q € Sym™*(5, Z) indefinite, of dimension 5, of determinant A.

Output: Q' € Sym*(5,Z) indefinite, of determinant 2%n with n odd and k =
va(det Q) (mod 2), Q' equivalent to Q;
G the corresponding change of basis.

1. If A=1 (mod 2), return Q, Ids.
2. Set G :=1ds.
3. Let vy be the 2-adic valuation of A.
4. Let v be the quotient in the Euclidean division of v, by 2.
5. Let U, V and D be the matrices given by the SNF of Q such that D = UQV'.
6. Set Q':= VOV and G :=G x V.
7. Let H be the diagonal matrix such that ;1 = 1/2Y and H;; = 1 otherwise.
8. Set ':="HQ'H and G :=G x H.
9. Return Q’, G.
Lemma 2.15. Let Q € Sym* (5, Z) indefinite and such that det Q =2k, k € 7, odd.
There exist two matrices Q' and G such that
1
detG = 7
0'=2x1GOG,
det Q' =k (mod 2).

Proof. As in proof of the previous lemma, we begin by computing the Smith normal
form of Q to obtain integer matrices U, V unimodular and D diagonal such that
D =UQV and d;,; = |det Q|. We apply to Q the change of basis given by the
matrix V' and obtain Q' which has the following form:

*
*
*
*
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We are now interested in the form Q; which is the restriction of the form Q to
the subspace generated by the second and third vectors of the basis. Denote this
form by the following matrix: [ § lc’ ]. We are looking for a change of basis such
that the coefficient a in the new basis will be even. This means that we want a
pair (x, y) such that ax? 4 cy? = 0 (mod 2). We solve this equation, apply the
corresponding change of basis to (1, and we multiply the whole matrix by 2. The
determinant of the form is now divisible by 2° but not by 27. We rescale the
first two vectors by a factor 2. The determinant is now divisible by 22. We then
compute the SNF of this matrix and apply the change of basis according to the
matrix V. Since the determinant is divisible by 4, we have two possibilities: If the
kernel modulo 2 has dimension 1, the first row and the first column are divisible
by 2 and the upper left coefficient is divisible by 4. In this case, we rescale the
first vector by 2. Otherwise, the kernel has dimension 2. In this case, the first two
rows and columns are divisible by 2. Consider the upper-left 2 x 2 block of the
matrix. This corresponds to the restriction of the form to the subspace generated
by the first two vectors of the basis. We are going to apply a change of basis such
that the upper-left coefficient will be divisible by 4. This corresponds to solving
the equation ax? + c¢y? = 0 (mod 2) which can be done as explained above. Once
the change of basis is done, we simply rescale the first vector by 2. In such a basis,
the determinant of the form is now odd. It remains to show that this form belongs
to Sym™* (5, Z). Indeed, since the determinants of the changes of basis that we have
applied are all equal to a power of 2 they are invertible modulo the odd primes
factors of the determinant of the form, and it follows that the rank of the form is
unchanged, so we have Q' € Sym*(5, 7). |

The corresponding algorithm is as follows.

Algorithm 2.16 (Reduction of the even part—II).

Input: Q€ Sym*(n, Z) indefinite, with det O = A = 2K with n odd and k = 0
or 1.

Output: Q’, a form in Sym™* (5, Z) with odd determinant and same solutions as Q
up to a change of basis;
G the corresponding change of basis.

If A=1 (mod 2) return Q, Ids.

Set G :=Ids.

Let v be the 2-adic valuation of A.

Let U, V and D be the matrices given by the SNF of Q such that D = UQV'.
Set Q" := WOV and G :=G x V.

If (¢ 5. 5.5) = (1,1) (mod 2),

SN i e
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(a) set H :=1d5 and H[3,2] :=1,
(b) set Q":="HQ'H and G := G x H.
7. 1f (5 5, 95,3) = (1,0) (mod 2),

10000
00001

(@ setH:={01000],
000T1O0
00100

(b) set Q' :='HQ'H and G := G x H.
8. Set 0":=2xQ".
9. Set P :=1ds and P[2,2] := 1/2.
10. Set Q' := 'PQ'P and G :=G x P.
11. Let U’, V' and D’ be the matrices given by the SNF of Q' such that D =UQ'V .
12. Set Q' := W' Q'V' and G := G x V.
13. If g1 ; =0 (mod 4),
(a) set R:=1ds5 and R[1,1]:=1/2,
(b) set Q':= 'RO'Rand G := G x R,
(¢c) return Q', G.
14. Repeat steps 6 to 2 with (¢} 1,43 »)-
15. Set R :=Ids and R[1, 1] := 1/2.
16. Set Q" := 'RQ'R and G := G x R.
17. Return Q’, G.

2D. Completion. We now explain how to complete the form to a form of dimen-
sion 6 in the way announced in Section 2A, and in particular how to choose the
value of z. Controlling this value will allow us to change the signature of the
completed form Q.

Lemma 2.17. Ler Q € Sym(5, Z) be an indefinite form with signature (r, s) and
determinant A. Let X be a 5-dimensional column vector with integral entries
and B be a coset representative of the coset of 'X Co(Q)X modulo A. Let
X Co(Q)X — B
z:=
A

X
Q6=|:g( Z]'

and
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The signature of Qg is determined by the signs of ,g and det Q as follows:

(r,s+1) if BdetQ > 0;

. t ] _
signature of Q¢ (r+1,s) if BdetQ <O.

Moreover we have B = —det Qs.

Proof. As seen in Section 2A, the formula (2) gives us the determinant of the
form Qg:
det Qg = zdet Q — 'X Co(Q)X.

We also have defined the quantities: B = X Co(Q)X and f a coset representative
of the coset of 8 modulo A which is also equal to 8 —zA = —det Q¢. Since the
link between Q and Qg is the addition of a row and a column, if we consider the
restriction of Q to the subspace generated by the first 5 vectors of the basis, we get
back exactly the form Q. Thus if we add a row and a column, we do not change its
signature on this subspace. It follows that we can deduce the signature of Q¢ from
the signature of Q by simply considering the sign of their determinant. Indeed,
we know that sgn(det Q) = (—1)%. If det Q > 0, we have s = 0 (mod 2). We
take B > 0 and have det Qg < 0. We have changed the sign of the determinant, so
the signature of Qg is (r, s + 1). The others cases are done in the same way, and
combining them gives the formula for the signature given in the lemma. |

In order to be able to compute a solution, we need the signature (u, v) of Qg
to satisfy u > 2 and v > 2. The following algorithm will choose the value of
so that this is satisfied. The algorithm for completing the form and controlling the
signature is the following.

Algorithm 2.18 (Completion).

Input:  Q: an indefinite, nondegenerate dimension 5 integral quadratic form;
k > 1 an integer.

Output: Qe: an indefinite, nondegenerate dimension 6 integral quadratic form
with signature (r, s) such that r > 2 and s > 2, of the form: [ ,?( )g ],
and such that |det Q¢| < k|det O|.

1. Compute the signature (7, s) of Q.

2. Choose an integer vector X whose coordinates are nonnegative integers less
than |det Q.

3. Set B:= X Co(Q)X and B := B (mod det Q) with 0 < B < |det Q.
4. Ifr =1anddet Q >0, set B := B —|det Q|.
5. Ifs=1,set f:=pB —det Q.

_B-B
6. Setz:= =Tk
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7. Add a random multiple of |det Q| to B so that |det Qg| < k|det Q| while re-
specting the signature condition, and update the value of z.
X
8. Return Qg = [ t)Q( z ]
Remark. The bounds on X in step 2 are chosen in this way since everything is then
reduced modulo det Q. Changing the bounds would not change the complexity of
the whole algorithm.

Remark. At the end of the algorithm, the determinant of Qg is always equal to .
This is a consequence of the choice of the value of z.

Remark. We will use this algorithm until we obtain a 8 of the form 2 x p with p
an odd prime number. This choice will be explained in Section 2E.

2E. Computing a solution. The complete algorithm for finding a nonzero isotro-
pic vector for a quadratic form dimension 5 without factoring the determinant is
as follows.

Algorithm 2.19 (Solving).

Input:  Q, an integral indefinite, nondegenerate quadratic form of dimension 5.
Output: X, a nonzero integral isotropic vector for Q.

1. Apply the minimization Algorithm 2.12 to Q.

2. Apply Algorithms 2.14 and 2.16 to the result of step 1.

3. Apply the completion Algorithm 2.18 to the result of step 2 until the determinant
of the returned form Q¢ is equal to £2p where p is an odd prime number.

Solve the equation ‘XQ¢X = 0.

Write Q¢ = H & Q4 where H is a hyperbolic plane.
Solve the equation ‘XQ4X = 0.

Write Q4 = H' & Q» where H' is a hyperbolic plane.

Deduce from the previous steps a solution S to the equation ‘XQX = 0.

e S A

Return S.

Theorem 2.20. Let Q be an integral indefinite, nondegenerate quadratic form of
dimension 5. Then Algorithm 2.19, applied to Q, outputs a nonzero integral vec-
tor S that is a solution to the equation 'XQX = 0 without factorizing any integer.

Remark. The above algorithm is based on the fact that the method developed by
Simon in [11] is very efficient as soon as the factorization of the determinant of
the form is known. This theorem shows that there exists an efficient algorithm
even when the factorization is not known or when it is not possible to factor the
determinant in a reasonable amount of time.
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Proof. This proof follows the steps of the algorithm. We are going to divide the
proof in the same way as the algorithm is divided:

1: Minimizations
2: Reducing the even part

3: Choice of the signature and completion of Q while imposing the form of the
determinant

: Computing a solution for Q¢
: Decomposition in a sum with a hyperbolic plane
: Computing a solution for Q4

: Decomposition in a sum with a hyperbolic plane

[« B I NV | B N

: Computing a solution for Q

Step 1: We apply Algorithm 2.12 to Q. At the end of this step, we have a form
0® e Sym* (5, Z) equivalent to Q, an invertible matrix G, and a nonzero rational
number A® such that 0@ = 1@ G, 0G,.

Step 2: We successively apply Algorithms 2.14 and 2.16 to Q@ in order to
have a form with an odd determinant. At the end of this step, we obtain a form
0®) e Sym* (5, Z) equivalent to Q, an invertible matrix G, and a nonzero rational
number A such that 0@ = A3 1G30@ G5 and the determinant A of 0 is
odd.

Step 3: We apply Algorithm 2.18 and choose k = 10° (the value of k will
be detailed in a further paper) until the determinant of the returned form is equal
to £2p with p an odd prime number; the condition 2 X p is necessary because
of some conditions on local solubility at 2. It is possible to show that a vector X
verifying these conditions can always be found efficiently by using an effective
version of the Cebotarev density theorem [6]. At the end of this step, we have a
form Q¢ whose restriction to the subspace generated by the first 5 vectors of the
basis is equal to 0®), whose determinant is equal to £2p with p an odd prime
number, and whose signature (r, s) is such that r > 2 and s > 2.

Step 4: We use the algorithm described in [11], and obtain a nonzero integral
vector T such that ‘TQeT = 0. We divide T by the GCD of its coordinates in
order to have 7" primitive.

Step 5: This step consists in finding a hyperbolic plane containing the vector 7.
The existence of such a plane is given by the result in [9, p.55, Proposition 3.]. We
first write the form Q¢ in a unimodular basis whose first vector is the vector 7" (the
basis can be found by using the HNF of a primitive vector), we denote by G4 such
a change of basis. We then have Q( ) = 'G4Q6G4 and the u J} er-left coefficient
is 0. Let R = (0V[1,2], 01, 3], ‘”[1 41, 0P11,5], 011, 6]), and let G
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be a unimodular matrix such that RGs = (a,0, 0,0, 0), where a is the GCD of the

coefficients of the vector R. Since a divides the first row and the first column of
the matrix Q él) we have a? | det Qél), but since det le) = +£2p with p prime, we
must therefore have a = 1. Such a G5 matrix is given by the HNF of the vector R.

We can now set Gg = [ (1) ((;)5 ], and we then have

(01 0 00 0]
1 by bz by b5 bg
@ _ MW, [0b3 * * x x
6 = 0606 0o = 0 by x * * %
0 bs * * * =%
0 bg * * * x*

Now let G7 be the following matrix:

(1 [722] ~bs —bs —bs —bs |
0 1 0O 0 0 0
G,=|0 0 1 0 0 0
0 0 0 1 0 0
0O 0 0 0 1 0
oo 0 0 0 1 |
We have det G7 = 1, and
(01,0000
10000
00
& =16107Gr=| [ o ’
04
00,
| 00 i

where Q4 € Sym(4, Z). We also have det Q4 = —det Q¢. The coefficient in this
matrix is either 0 or 1 according to the parity of the coefficient b5, but it will not
change anything in the rest of the algorithm. We regroup all the changes of basis
and set Gg = G4 X Gg X G7. We then have QS) = 'GgQ¢Gg. This step ends with
the computation of the matrices Q 23) and Gg.

Step 6: We now work on the quadratic form Q4 defined above. Its determinant
is —det O, which is still equal to F2p with p a prime number. We are going to
show that the equation ‘XQ4X = 0 has a nontrivial solution: We know that Q4
is indefinite; indeed, the form Q(3) has been completed in order to have r > 2
and s > 2. We have decomposed this form into the sum of a hyperbolic plane
and a dimension 4 quadratic form Q 4, but the signature of a quadratic form on a
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hyperbolic plane is (1, 1), and Q?) has the same signature as (¢, so the signa-
ture Q4 is (r —1,s — 1) and we have r — 1 > 1, s — 1 > 1, showing that Q4 is
indefinite hence that there exists real solutions. We now need to show the existence
of a solution over Q for every prime number £. If £ is an odd prime number not
dividing det Q 4, the consideration of Hilbert symbols shows that solutions always
exist. Two cases remain: £ =2 and £ | det Q4. We know that det Q4 = +2p isnota
square neither in Q2 nor in Q,, since the valuations are odd and p # 2, so there exist
local solutions, and using the local-global principle allows us to conclude. Since
solutions exist, we can now use Simon’s algorithm to compute such a solution, and
since the determinant is equal to =2 p with p prime, we do not need to use any
factorization. We denote by R a primitive solution.

Step 7: This step is the same as the step 5, but the work is done over the
form Qil). Let B be the corresponding change of basis.

Step 8: We have to recall the changes of basis done on the matrix Q4. We set

100000 ]
010000
|
Go = OO‘
00, B
00:
0 0] J
and
P:ngGg.
We thus have a matrix P such that
[0 1, C
G P
¢ _ O
PQgP = 0 :1 ,3: 0
S
0, 0 10

with o, B = 0 or 1. We note that the first and the third columns of P are solutions of
the equation ‘XQgX = 0. But they also are orthogonal vectors for Q. It follows
that every linear combination of these vectors still is a solution for Q. We now
consider a combination such that the last coordinate is 0, denote it by J. We then
have

J = v with U € 7°.
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We know that ‘JQgJ = 0, but we give the computation in detail:

|
|
voer <[ w 01| @7 Y]V
iy 2| Lo
= UQ®U |
=0.

Thus U is a nonzero solution to the equation 2XQ ) X =0. We then set S = G, G3 U,
and we have ‘SQS = 0. We are finally done. O

Remark. The condition of having the determinant equal to =2 x p with p an odd
prime is necessary due to the condition of local solubility over @,. The 2 can be
replaced by 2251 with k € N, but the analysis is much more complicated in this
case and it practically does not affect the running time of the algorithm.

Remark. The complexity of the algorithm is not done here, but the number of
vectors X that we need to try in step 3 until we have a determinant of the desired
shape is O(log|det Q).

2F. Generalization to higher dimensions. The algorithm given above is for qua-
dratic forms of dimension 5. It is easy to generalize it to higher dimensions: Indeed,
since the algorithm needs a form of dimension 5 as an input, if the given form has a
larger dimension, we simply need to restrict the form to a subspace of dimension 5.
The only condition required is that the restriction of the form must have a signature
(r,s) that verifies » > 1 and s > 1 so that the decomposition as the sum of two
hyperbolic planes is possible. When a solution to the restriction is found, we simply
lift the solution to the original space by setting the remaining coordinates to 0.

3. Overview of performance

This algorithm has been implemented in the PARI/GP language, see [7]. Since
the proof of the complexity of this algorithm requires a considerable amount of
additional work it will not be detailed here, but will be explained in a further
work. However, we give an overview of the global performances of the algorithm
with the two following figures. The comparisons are made with the method given
by Simon in [11] and [10]. These algorithms have also been implemented in
the PARI/GP language and can downloaded from the author’s webpage (http://
www.math.unicaen.fr/~simon).
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6+ —o— Algorithm 2.19
—— Simon’s algorithm

time (in sec.)

40 60 80 100 120 140 160
determinant size (in digits)

These values have been computed by averaging over 100 random forms for each
point. The forms are the same for each algorithm. We can clearly observe the fact
that the factorization of the determinant makes Simon’s algorithm very slow for
determinants with size larger than 50 digits. The graph below shows the same
comparison, but this time, the method used for building the forms is made in such
a way that the algorithm often needs to do minimizations. We still can see the
“wall” due to the factorization of the determinant in Simon’s method.

16 |
—e— Algorithm 2.19

14 | —»— Simon’s algorithm

12 ¢

time (in sec.)

40 60 80 100 120 140 160
determinant size (in digits)
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Counting value sets: algorithm and complexity

Qi Cheng, Joshua E. Hill, and Daqging Wan

Let p be a prime. Given a polynomial in F,m [x] of degree d over the finite field
[Fpm, one can view it as a map from Fpm to Fpm, and examine the image of this
map, also known as the value set of the polynomial. In this paper, we present the
first nontrivial algorithm and the first complexity result on explicitly computing
the cardinality of this value set. We show an elementary connection between
this cardinality and the number of points on a family of varieties in affine space.
We then apply Lauder and Wan’s p-adic point-counting algorithm to count these
points, resulting in a nontrivial algorithm for calculating the cardinality of the
value set. The running time of our algorithm is (pmd)©@ . In particular, this is
a polynomial-time algorithm for fixed d if p is reasonably small. We also show
that the problem is #P-hard when the polynomial is given in a sparse represen-
tation, p = 2, and m is allowed to vary, or when the polynomial is given as a
straight-line program, m = 1 and p is allowed to vary. Additionally, we prove
that it is NP-hard to decide whether a polynomial represented by a straight-line
program has a root in a prime-order finite field, thus resolving an open problem
proposed by Kaltofen and Koiran.

1. Introduction

Let f € F4[x] be a polynomial of degree d with coefficients in a finite field having
g = p™ elements, where p is prime. Denote the image set of this polynomial by

Vi ={f ()| o € Fg}

and denote the cardinality of this set by # (V).
There are a few trivial bounds on # (V) that can be immediately established.
There are only ¢ elements in the field, so # (V) < g. Additionally, any polynomial

MSC2010: primary 11Y16; secondary 11Y40, 68Q17.

Keywords: finite field, polynomial value set cardinality, point counting, polynomial time,
randomized polynomial time, RP-reduction, NP-hard, #P-hard, straight-line program, sparse
polynomial, subset sum problem.
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of degree d can have at most d roots, thus for all a € V¢, f(x) = a is satisfied at
most d times. This is true for every element in V¢, so # (Vy)d > g, whence

(5] =#0p =a.

where [ -] is the ceiling function.

Both of these bounds can be achieved: If # (V) = ¢, then f is called a permu-
tation polynomial, and if # (Vy) = [q/d ], then f is said to have a minimal value
set.

The problem of computing # (V) has been studied in various forms for at least
the last 115 years, but exact formulas for # (V) are known only for polynomials
of very specific forms. Results that apply to general polynomials are asymptotic
in nature, or provide estimates whose errors have reasonable bounds only on aver-
age [14].

The fundamental problem of determining the value set cardinality # (V) can
be thought of as a much more general version of the problem of determining
whether a particular polynomial is a permutation polynomial. Shparlinski [17]
provides a baby-step giant-step type test that determines if a given polynomial
is a permutation polynomial by extending the ideas in [20] to an algorithm that
runs in time O((dg)®/7). This is still fully exponential in logg. Ma and von zur
Gathen [13] provide a ZPP (zero-error probabilistic polynomial-time) algorithm
for testing if a given polynomial is a permutation polynomial. According to [10],
the first deterministic polynomial-time algorithm for testing permutation polyno-
mials was obtained by Lenstra using the classification of exceptional polynomials,
which in turn depends on the classification of finite simple groups. Subsequently,
an elementary approach based on the Gao-Kaltofen-Lauder factorization algorithm
was given by Kayal [10].

Essentially nothing is known about the complexity of the more general prob-
lem of exactly computing # (V¢), and no nontrivial algorithms for this problem
are known. For instance, no baby-step giant-step type algorithm for computing
# (Vy) is known, and no probabilistic polynomial-time algorithm for this problem
is known. Finding a nontrivial algorithm and proving a nontrivial complexity result
for the value counting problem were raised as open problems in [13], where a
probabilistic approximation algorithm is given. In this paper, we provide the first
nontrivial algorithm and the first nontrivial complexity result for the exact counting
of the value set problem.

1A. Our results. Perhaps the most obvious method to calculate # (V) is to evalu-
ate the polynomial at each point in [, and count how many distinct images result.
This algorithm has a time and space complexity (d q)O(l). One can also approach
this problem by operating on points in the codomain. One has f(x) = a for some
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x € [y if and only if f,(X) = f(X)—a has a zero in Fg; this algorithm again has
a time complexity (dq)P®, but the space complexity is improved considerably to
(d log q) 0.

In this paper we present several results on determining the cardinality of value
sets. On the algorithmic side, we show an elementary connection between this
cardinality and the number of points on a family of varieties in affine space. We
then apply Lauder and Wan’s p-adic point-counting algorithm [12], resulting in
a nontrivial algorithm for calculating the image set cardinality in the case that p
is sufficiently small (that is, p = O((d logq)€) for some positive constant C).
Precisely, we have the following.

Theorem 5.2. There exists an explicit deterministic algorithm and an explicit poly-
nomial R such that for any [ € F4[x] of degree d, where ¢ = p™ (p prime), the
algorithm computes # (Vy), the cardinality of the image set, in a number of bit
operations bounded by R(m?d? p?).

The running time of this algorithm is polynomial in both p and m, but is expo-
nential in d. In particular, this is a polynomial-time algorithm for fixed d if the
characteristic p is small: ¢ = p™ can be large, but p = O((d log¢)€).

On the complexity side, we have several hardness results on the value set prob-
lem. We frame these results using some standard classes in complexity theory,
which we outline here. NP is the complexity class of decision problem whose
positive solutions can be verified in polynomial time. NP-hard is the computa-
tional class of decision problems that all NP problems can be reduced to using a
polynomial-time reduction. NP-complete is the complexity class of all NP-hard
problems whose solution can be verified in polynomial time (that is, NP-complete
is the intersection of NP-hard and NP). Co-NP-complete is the complexity class
of problems where answering the logical complement of the decision problem is
NP-complete.

The corresponding counting complexity theory classes that we use are as follows.
#P (read “sharp-P”) is the set of counting problems whose corresponding decision
problem is in NP. #P-hard is the computational class of counting problems that
all #P problems can be reduced to using a polynomial-time counting reduction.
#P-complete is the intersection of #P-hard and #P.

With a field of characteristic 2, we have the following.

Theorem 4.3. The problem of counting the value set of a sparse polynomial over
a finite field of characteristic 2 is #P-hard.

The central approach in our proof of this theorem is to reduce the problem of
counting satisfying assignments for a 3SAT formula to the problem of value set
counting.

Over a prime-order finite field, we have the following.
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Theorem 4.6. Over a prime-order finite field [, the problem of counting the value
set is #P-hard under RP-reduction (randomized polynomial-time reduction) if the
polynomial is given as a straight-line program.

Additionally, we prove that it is NP-hard to decide whether a polynomial in
Z|x] represented by a straight-line program has a root in a prime-order finite field,
thus resolving an open problem proposed in [7; 8]. We accomplish the complexity
results over prime-order finite fields by reducing the prime-order finite field subset
sum problem (PFFSSP) to these problems.

In the PFFSSP, given a prime p, an integer b, and a set of integers S =
{a1,as,...,a;s}, we want to decide the solvability of the equation

aixi+axxz+---+asx; =b (mod p)

with x; € {0, 1} for 1 <i <t. The main idea comes from the observation that if
t <log p/3, there is a sparse polynomial (x) € Fp[x] such that as x runs over [,
the vector

(@(x),a(x+1),...,0(x+1—1))

runs over all the elements in {0, 1}’. In fact, a lightly modified version of the
quadratic character a(x) = (x(?~1/2 4 xP=1)/2 suffices. So the PEFSSP can be
reduced to deciding whether the sparse shift polynomial Z;;é ai+1a(x+i)—b=0
has a solution in [.

2. Background

2A. The subset sum problem. To prove the complexity results, we use the subset
sum problem (SSP) extensively. The SSP is a well-known problem in computer
science; we describe three versions of it. Let an integer b and a set of positive
integers S = {ay,az,...,a;} be given.

(1) Decision version: The goal is to decide whether there exists a subset 7 C S
such that the sum of all the integers in T equals b.

(2) Search version: The goal is to find a subset 7' € S such that the sum of all
the integers in 7" equals b.

(3) Counting version: The goal is to count the number of subsets 7" C S such that
the sum of all the integers in T equals b.

The decision version of the SSP is a classical NP-complete problem. The counting
version of the SSP is #P-complete, which can be easily derived from proofs of the
NP-completeness of the decision version, for example [5, Theorem 34.15].

One can view the SSP as a problem of solving the linear equation

ayxy+azxa+---+arx; =b
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with x; € {0, 1} for 1 <i <¢. The prime-order finite field subset sum problem is a
similar problem where in addition to b and .S, one is given a prime p, and the goal
is to decide the solvability of the equation

aixi+azxz+---+arx; =b (mod p)
with x; € {0, 1} for 1 <i <t.

Proposition 2.1. The prime-order finite field subset sum problem is NP-hard under
RP-reduction.

Proof. To reduce the subset sum problem to the prime-order finite field subset
sum problem, one finds a prime p > Z§=1 a;, which can be done in randomized
polynomial time. O

Remark. To make the reduction deterministic, one needs to derandomize the prob-
lem of finding a large prime, which appears to be difficult [18].

2B. Polynomial representations. There are different ways to represent a polyno-
mial over a field F. The dense representation lists all the coefficients of a poly-
nomial, including the zero coefficients. The sparse representation lists only the
nonzero coefficients, along with the degrees of the corresponding terms. If most
of the coefficients of a polynomial are zero, then the sparse representation is much
shorter than the dense representation. A sparse shift representation of a polynomial
in [F[x] is a list of n triples (a;, b;, ;) € F xFxZx>q which represents the polynomial

> ai(x+b)*

1<i<n

More generally, a straight-line program for a univariate polynomial in Z[x] or
Fp[x] is a sequence of assignments, starting from x; = 1 and x> = x. After that,
the i-th assignment has the form

Xi =Xj O Xk

where 0 < j, k < i and © is one of the three operations +, —, x. We first let
« be an element in F,m such that F,m = Fpla]. A straight-line program for a
univariate polynomial in F,m[x] can be defined similarly, except that the sequence
starts from x1 =« and x, = x. One can verify that a straight-line program computes
a univariate polynomial, and that sparse polynomials and sparse shift polynomials
have short straight-line programs. A polynomial produced by a short straight-line
program may have very high degree, and most of its coefficients may be nonzero,
so it may be costly to write it in either a dense form or a sparse form.
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3. Hardness of solving straight-line polynomials

It is known that deciding whether there is a root in a finite field for a sparse polyno-
mial is NP-hard [11]. In a related work, it was shown that deciding whether there
is a p-adic rational root for a sparse polynomial is NP-hard [1]. However, the
complexity of deciding the solvability of a straight-line polynomial in Z[x] within
a prime-order finite field was not known. This open problem was proposed in [7]
and [8]. We resolve this problem within this section, and this same idea will be
used later on to prove the hardness result of the value set counting problem.

Let p be an odd prime. Let y be the quadratic character modulo p; that is, y(x)
equals 1, —1, or 0, depending on whether x is a quadratic residue, a quadratic
nonresidue, or is congruent to 0 modulo p. For x € [, we have y(x) = x(P-1/2,
Consider the list

XD, x(2), ..., x(p—=1). )]

It is a sequence in {1, —1}?~!. The following bound is a standard consequence of
the celebrated Weil bound for character sums; see [16] for a detailed proof.

Proposition 3.1. Let (b1, by, ..., b;) be a sequence in {1, —1}!. Then the number
of x € [ such that

1) =b1, x(x+ 1) =ba, ..., x(x +t—1) = b,

lies between p/2' —t(3+ /p) and p/2" +t(3+ /D).

The proposition implies that if ¢ < (log p)/3, then every possible sequence in
{—1, 1}! occurs as a consecutive subsequence in expression (1). In many situations
it is more convenient to use binary 0/1 sequences, which suggests instead using
the polynomial (x(®?~1/2 4 1)/2, but this results in a small problem at x = 0. We
instead use the sparse polynomial

a(x) = (xPD/2 4 xP71y /o, 2)

The polynomial «(x) takes values in {0, 1} if x € F,, and a(x) = 1 if and only if
x(x)=1.

Corollary 3.2. Ift < (log p)/3, then for any binary sequence (by,b>,...,bt) €
{0, 1} there exists an x € [F,, such that

a(x)=by, a(x+1)=by,...,a(x+t—1)=b;.
In other words, if ¢ < (log p)/3, the map
x> (a(x).a(x+1),...,a(x +1—1))

is a surjective map from [, to {0, 1}*; one can view this map as sending an algebraic
object to a combinatorial object.
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Given a straight-line polynomial f(x) € Z[x] and a prime p, how hard is it
to decide whether the polynomial has a solution in F,? We now prove that this
problem is NP-hard.

Theorem 3.3. Given a sparse shift polynomial f(x) € Z|x] and a large prime p,
it is NP-hard to decide whether f(x) has a root in F, under RP-reduction.

Proof. We reduce the (decision version of the) subset sum problem to this problem.
Given b € Z>¢9 and S ={ay,az,...,a:} € Z>p, one can find a prime p such that
p > max(2¥, Zle a;) and construct a sparse shift polynomial

B(x) = Za,a(x—kz) b. 3)

If the polynomial has a solution modulo p, then the answer to the subset sum
problem is “yes”, since for every x € F, we have a(x +1) € {0, 1}.

In the other direction, if the answer to the subset sum problem is “yes”, then
according to Corollary 3.2, the polynomial has a solution in [,. Note that the
reduction can be computed in randomized polynomial time. O

4. Complexity of the value set counting problem

In this section, we prove several results about the complexity of the value set count-
ing problem.

4A. Finite fields of characteristic 2. We will use a problem about NC(S) circuits to
prove that counting the value set of a sparse polynomial in a field of characteristic
2 is #P-hard. A Boolean circuit is in NCg if every output bit of the circuit depends
only on at most 5 input bits. We can view a circuit with n input bits and m output
bits as a map from {0, 1}" to {0, 1}"* and call the image of the map the value set
of the circuit. The following proposition is implied in [6]; we provide a sketch of
the proof.

Proposition 4.1. Given a 3SAT formula with n variables and m clauses, one can
construct in polynomial time an NC g circuit with n +m input bits and n +m outputs
bits, such that if there are M satisfying assignments for the 3S AT formula, then
the cardinality of the value set of the NCg circuit is 2" — 2"~ M In particular,
if the 3S AT formula can not be satisfied, then the circuit computes a permutation
from {0, 1} 10 {0, 1},

Proof. Denote the variables and the clauses of the 3SAT formula by x1, x2,..., Xz
and C1, Cy, ..., Cy, respectively. Build a circuit with n + m input bits and
n + m output bits as follows. The input bits will be denoted by x1, x2,...,Xp



242 QI CHENG, JOSHUA E. HILL, AND DAQING WAN

and y1,y2,...,Ym, and the output bits will be denoted by z1,z2,...,2z, and
w1, W2, ..., Ws. Set z; = x; for 1 <i <n, and set

wi = (Ci A(Yi ® Y(i+1moam)) V (=Ci A yi)

for 1 <i < m. In other words, if C; is evaluated to be TRUE, then output
Vi @ Y(i+1(modm)) @ W;, and otherwise output y; as w;. Note that C; depends

only on 3 variables from {x1, x2,...,Xx,}, sO we obtain an NC(S) circuit. After
fixing an assignment to the x;, the z; are also fixed, and the transformation from
(Y1, ¥Y2,--+>Ym) to (w1, Wa, ..., Wy) is linear over F,. One can verify that the

linear transformation has rank m — 1 if the assignment satisfies all the clauses, and
it has rank m (that is, it has full rank) if some of the clauses are not satisfied. So
the cardinality of the value set of the circuit is

M2 (2" — MM = tm _pm=l g O

If we replace the Boolean gates in the Ncg circuit by algebraic gates over [,
we obtain an algebraic circuit that computes a polynomial map from [} M 1o itself,
where each polynomial depends only on 5 variables and has degree equal to or less
than 5. There is an Fy-basis for Fyntm, say w1, w2, ..., wy4+m, which induces a
bijection from F2 1™ to Fpu+m given by

n+m
(X1,X2, ..., Xpgm) > X = Z X Wj;

i=1
the inverse of this map can be represented by sparse polynomials in Fyn+m[x].
Us