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We give an overview of current computational methods for determining the
rational points on algebraic curves. We discuss how two methods, based on
embedding a curve in an abelian variety, provide a practical method for deciding
whether the curve has rational points and, if some additional technical condition
is met, for the determination of these points.

While we cannot prove the methods are always successful, we do have a
heuristic that makes us expect so. This means that the main problem becomes
the determination of rational points on abelian varieties, in particular the deter-
mination of the free rank of the finitely generated group they form. We discuss
some methods that provide bounds on this rank.

Finally, we report on some recent progress on applying these methods to non-
hyperelliptic curves of genus 3.

1. Introduction

This article is an extended abstract from an invited lecture delivered on July 13,
2012, as part of the Tenth Algorithmic Number Theory Symposium (ANTS X),
at the University of California, San Diego. It discusses current computational
methods for determining the rational points on algebraic curves. Two methods,
Mordell-Weil sieving (see Section 4) and Chabauty’s method (see Section 5) to-
gether provide a procedure that often decides whether a curve has any rational
points and, if so, determines them. While we cannot prove that these methods will
always succeed, we do have some heuristics that indicate that this is quite likely.

Both methods rely on embedding a curve in an abelian variety J and on having a
rather detailed description of the rational points on J . There is presently no proven
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algorithm for determining the rational points on an abelian variety, but here too we
have methods that frequently work in practice. In fact, if Tate-Shafarevich groups
are finite, as they are conjectured to be, then it would theoretically be possible to
compute the rational points on an abelian variety.

The main point of this article is that the computational bottleneck for determin-
ing rational points on curves presently lies in the determination of rational points on
abelian varieties. Our main tool is the computation of Selmer sets via finite descent.

After reviewing the Mordell-Weil sieve and Chabauty’s method in Sections 4
and 5, we give a brief description in Section 7 of recent joint work [14] with Bjorn
Poonen and Michael Stoll to provide a description of descent computations which,
to our knowledge, encompasses all previous methods for doing such computations
for curves.

We note in Section 8 that descent methods also help in deciding whether a
curve C can be embedded in its Jacobian, a requirement for the curve to have
rational points and for the application of the Mordell-Weil sieve and Chabauty’s
method. A good description of Selmer groups also helps in constructing covering
collections, which can be used to transform problems where Chabauty’s method
does not apply into problems where it may.

The most difficult ingredient in descent computations usually is the determina-
tion of unit groups and ideal class groups of number fields. Especially for number
fields of larger degrees, this can be extremely challenging. In Section 7 we describe
some ways one can reduce the maximal degree to be considered: from 63 to 28

in the case of smooth plane quartic curves. This has allowed us to perform the
required calculations for some genus-3 curves. To our knowledge, these are the
first examples of curves with simple Jacobians and trivial automorphism groups
to which the methods have been successfully applied. Previous applications made
essential use of decompositions of the Jacobian or of the automorphisms to get
descriptions more favorable to computation.

Since in general curves have trivial automorphism groups, we believe these ex-
amples present evidence that these methods are indeed quite generally applicable,
although the computational challenges can be daunting.

We cannot hope to give an exhaustive account of the subject here. Instead, we
intend to provide the reader with a bit of insight into how the different methods
interact and what the fundamental ideas and problems are. We have also included
ample literature references for further reading.

2. Statement of the problems

Consider the equation

x4
Cy4

Cx2yC 2xy �y2
C 1D 0: (1)
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Can you determine the solutions x;y 2 Q to this equation? Can you determine
whether this equation has any rational solutions at all? These are questions about
rational points on curves, and such questions are about as old as mathematics itself.
(See Proposition 9.3 for results on this particular equation.)

We concern ourselves with curves C defined over Q, and we want to study the
set of rational points C.Q/. Every curve has a projective closure, which has at
most finitely many additional rational points. Furthermore, every curve admits a
morphism from a nonsingular curve that is an isomorphism outside the finitely
many singularities, which are easily determined and tested for rationality. We can
therefore restrict our attention to nonsingular, absolutely irreducible, projective
curves.

The reader does not lose much, and may gain a more concrete conception, by
thinking of C as a smooth plane curve such as the projective closure of the curve
defined by Equation (1). Although much of what we discuss holds with suitable
modifications over arbitrary number fields, we will limit ourselves to Q for the
sake of concreteness and ease of notation.

A common theme in arithmetic geometry is that geometry determines arithmetic:
The geometric classification of curves C has deep ramifications for the structure
of C.Q/. There are:

� Curves of genus 0. These are always isomorphic to plane conics. Either such a
curve C has no rational points at all, or C admits a parametrization �WP1!C ,
providing an explicit bijection between P1.Q/ and C.Q/.

� Curves of genus 1. If C has any rational points, then C is isomorphic to an
elliptic curve. In that case, Mordell’s Theorem [46] implies that C.Q/ can be
described as a finitely generated abelian group.

� Curves of general type (genus at least 2). Faltings’s Theorem [28] states that
C.Q/ is a finite set.

We concentrate on two explicit questions.

Decision Problem. Given a curve C over Q, decide if C.Q/D∅.

Determination Problem. Given a curve C over Q, give an explicit description
of C.Q/.

We assume that the curve is given to us in a sufficiently explicit way, for instance
by explicit equations like Equation (1). For genus-0 curves, both questions have a
reasonably satisfactory solution [44, pp. 512–513] (and see [58] for a modern algo-
rithmic perspective). For genus-1 curves, a satisfactory answer to the determination
problem is usually considered to be an explicit listing of a finite set of generators
of C.Q/ equipped with its group structure. We are primarily interested in curves
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of general type. For those curves the set C.Q/ is finite, so an explicit listing of the
set would provide a satisfactory solution to the determination problem.

As we discuss in Section 4, the most important step is to realize C as a subvariety
of an abelian variety J . If we take J to be the Jacobian of C then a rational point
on C gives rise to such an embedding. If we can prove no such embedding exists,
then we can conclude that C.Q/ is empty.

Challenge A. Given a curve C over Q of positive genus, determine an embedding
of C into its Jacobian or prove no such embedding exists.

The main advantage of considering C as a subvariety of an abelian variety J ,
rather than of a rational space such as P2, is that the set of rational points of J is
much sparser: The Mordell-Weil Theorem [63] states that J.Q/ is a finitely gener-
ated group. We can use knowledge about J.Q/ to obtain information about C.Q/.
This leads to our second challenge.

Challenge B. Given a curve C of positive genus, determine J.Q/, where J is the
Jacobian of C .

Note that if C is of genus 1, then an embedding as in Challenge A establishes
an isomorphism between C and J , so Challenge B provides a solution to the deter-
mination problem. In the remainder of this text we take C to be a curve of general
type.

A major component in determining J.Q/ is determining the rank of its free part.
A conjectural link suggested by Birch and Swinnerton-Dyer [4] for elliptic curves
connects this rank to the vanishing of an L-function at a special point. For elliptic
curves over Q with an L-function that vanishes to order at most 1, this is now
proved [38; 43], but for more general abelian varieties even the existence of the
function at the point is not generally established.

The only general unconditional approach uses descent to provide a hopefully
sharp upper bound on the rank. The ideas are most easily explained in the language
of Galois cohomology (see Section 6).

Once a bound on the rank is determined, one can try to prove that the bound
is sharp by exhibiting sufficiently many independent points on J . Finding them
is only a computational problem. Since these points can be drawn from an obvi-
ously enumerable set of candidates, generators will eventually be found. Finding
generators efficiently is a serious computational problem, but we will ignore it here.

The traditional way of showing that a set generates all of J.Q/ is by computing
canonical heights. However, a good algorithm for computing canonical heights
efficiently is only available for curves of genus up to 2; see [31; 35; 60; 61]. For
our purposes, one only needs a subgroup of J.Q/, of finite index prime to some
predetermined number B. Proving that a set generates such a group is usually
much easier to establish; see Remark 4.6.
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Since (sharply) bounding the rank of J.Q/ is a crucial step for the methods in
Sections 4 and 5, we describe in Section 7 a way to actually compute or approxi-
mate the rather abstract objects introduced in Section 6. While one can concentrate
on the geometry of J (see [3; 37]), this becomes unwieldy for more complicated J .
Another approach emphasizes that J represents the group Pic0.C / of degree-0
divisor classes on C and tries to express as much of the data as possible in terms
of objects directly related to the curve [18; 21; 23; 48; 49; 53; 54; 56]. We closely
follow the exposition in [14].

In Section 8 we describe how the constructions in Section 7 can also be used to
attack some related problems, and in Section 9 we give some examples, taken from
[14], of successful applications of these methods to smooth plane quartic curves. To
our knowledge, these are the first examples fully carried out for curves with trivial
automorphism groups. Previous applications all made essential use of nontrivial
automorphisms to simplify computations. The fact that these procedures are also
shown to be practical when no such automorphisms are available is a hopeful sign
that they are applicable in generality.

3. Local considerations

Let C be a curve over Q and let K �Q be a field extension. Then C.Q/� C.K/.
Hence, if C has a Q-rational point then C.R/¤∅ and C.Qp/¤∅ for all primes p.

We introduce some notation to express this observation more concisely. We call
R the completion of Q at the infinite prime and write RDQ1. We write

�Q D fp 2 Z>1 W p is primeg[ f1g:

The consideration of all completions of Q at once leads to the ring A of adèles.
We will only use it here as a concise piece of opaque notation and define for a
projective curve C the set

C.A/ WD
Y
v2�Q

C.Qv/:

The observation above now translates to

C.Q/¤∅ implies C.A/¤∅: (2)

Fact 3.1. One can decide algorithmically whether C.A/D∅.

Determining whether C.R/D∅ is a straightforward application of calculus and
the intermediate value theorem. Determining whether C.Qp/ D ∅ is also com-
putable thanks to Hensel’s lifting criterion (see [10] for a collection of algorithms).
Furthermore, for all but a finite and explicitly computable set of primes p we can
immediately conclude that C.Qp/ is nonempty.
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The implication (2) is mainly useful for its contrapositive: if we can show that
C.A/ is empty (that is, that C.Qv/ is empty for some v) then we can conclude
that C.Q/ is empty. The converse of implication (2), known as the local-global
principle, is known to hold for genus-0 curves. Hence, if C is a genus-0 curve and
C.A/¤∅ then C has a rational point.

However, for curves of positive genus the local-global principle is known to
fail. For instance, for curves of genus 2 over Q, one can prove that the subset
of curves C with C.A/ ¤ ∅ has asymptotic density about 0:85, measured with
respect to an appropriate height [50]. However, one would expect the set of curves
with a rational point to have asymptotic density 0 — see for instance [52, Conjec-
ture 2.2(i)] for a formal statement of this folklore conjecture in the case of plane
curves — so many curves with points everywhere locally should have no rational
points at all.

4. The Mordell-Weil sieve

Let C be a smooth projective curve of genus g � 2. In this section we discuss a
method that allows us to obtain significant information on C.Q/ by considering an
embedding of C into an abelian variety J (usually its Jacobian) for which we can
determine J.Q/. We write �WC ! J for the embedding.

The rational points on an abelian variety are sufficiently sparse that the topolog-
ical closure J.Q/� J.A/ is significantly smaller than J.A/. We observe that

C.Q/� C.A/\J.Q/:

The latter set is amenable to computation, or at least to approximation. As it turns
out, the small step of taking into consideration a little bit of extra global data, in
the form of J.Q/, provides considerable extra information.

In [57], Scharaschkin presents the method and shows, subject to the standard
conjecture that X.J=Q/ is finite, that the obstruction to the existence of rational
points on C that this method exhibits can be interpreted in terms of the Brauer-
Manin obstruction [59]. See [12; 33; 49] for applications and [15] for a larger
scale experiment. Details are provided in [17], including an optimal strategy for
avoiding a combinatorial explosion to which this method is prone. See also [20]
for an application of to determining integral points on curves.

Let p be a prime of good reduction of the embedding �WC ! J , meaning that
there are smooth proper models C and J over Zp of C and J , respectively, and
a morphism �0WC! J that restricts to � on the generic fiber. (The conditions on
the type of reduction can be significantly relaxed.) We write C.Fp/D C.Fp/ and
J.Fp/ D J.Fp/. We use that J.Qp/ D J.Zp/ and write �pWJ.Q/! J.Fp/ for
the induced reduction map. Via the same principle we obtain a reduction map
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C.Q/! C.Fp/. Furthermore, we write �pWC.Fp/! J.Fp/ for the map that �0

induces on the rational points of the reductions.
Let us fix a finite set S of primes of good reduction of J and a positive integer B.

We consider the commutative diagram

C.Q/
�

//

��

J.Q/

BJ.Q/

�S

��Y
p2S

C.Fp/ �S
//
Y

p2S

J.Fp/

B im �p
;

where �S and �S are the obvious maps induced by f�p W p 2 Sg and f�p W p 2 Sg

respectively.
Each of the four sets in this diagram is finite, so determining

VS;B D im �S \ im �S

is a matter of combinatorics. For sufficiently large B and S , the map �S ı � will be
an injection, so in that case the size of VS;B provides an upper bound on the size
of C.Q/. In any case, if VS;B is empty, then C has no rational points.

If the domains of �S and �S are sufficiently small relative to their codomain, one
would expect the intersection of their images to be rather small. One can formulate
a reasonable heuristic argument that supports this.

Heuristic 4.1 (Poonen [47]). Subject to plausible assumptions that im �S and im �S

behave in a way that can be suitably modeled by a random process, one expects
that for suitably chosen B and S , the set VS;B consists only of images of C.Q/.

While �S and �S are maps between finite sets, both B;S have to be quite large
in practice for Heuristic 4.1 to apply. So, while VS;B is likely a very small set, it
tends to be an intersection of two rather large sets. For practical computations, one
has to take some care in constructing the set via appropriate steps. See [17] for
some strategies for doing so.

We are left with finding an appropriate embedding �WC ! J into an abelian
variety. A canonical choice for J is the Jacobian of C . It is a g-dimensional abelian
variety representing the degree-0 divisor classes on C ; that is, J.Q/D Pic0.C=Q/.
This equality is Galois-equivariant, so J.Q/ consists of the Galois-invariant divi-
sor classes Pic0.C=Q/Gal.Q=Q/. The latter can be strictly larger than Pic0.C=Q/,
the set of linear equivalence classes that contain divisors that are defined over Q.
However, for the problem at hand, this is not an issue (see [7], for instance, for
some related theory).
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Lemma 4.2 (Standard result). Let C be a curve over a field k, where k is either
a finite field or a number field such that C.kv/ is nonempty for all places v of k.
Then every Galois-invariant divisor class on C contains a divisor defined over k.

For our applications, if C.Qv/D∅ for any place v 2�Q, the results in Section 3
already imply that C.Q/D∅, so we only need to work with J.Q/ when we can
represent its points by divisors over Q. This allows us to avoid constructing a
projective model for J as a variety.

A point on a curve C gives rise to a degree-1 divisor class. Since on a curve of
positive genus no two such divisors are linearly equivalent, we obtain an injection
C.Q/! Pic1.C=Q/. Similarly to how J is a variety that represents Pic0, there is
also a variety Pic1.C /, that represents Pic1. Indeed, there is a natural morphism
C ! Pic1.C /. There is a natural action of J on Pic1.C /, corresponding to addition
of divisor classes, that equips Pic1.C / with the structure of a Q-torsor under J . A
rational point on Pic1.C / induces an isomorphism between J and Pic1.C /. If there
is no such point, then C has no degree 1 divisors and hence certainly no rational
points. Therefore, a reformulation of Challenge A is:

Challenge A0. Given a curve C over Q of positive genus, determine a divisor class
d 2 Pic1.C=Q/ or prove no such divisor class exists.

If d exists then the map �WC ! J it induces corresponds to

C.Q/ // Pic0.C=Q/

P
� // ŒP �� d:

For an appropriate reduction dp modulo p, we get the corresponding map

C.Fp/! Pic0.C=Fp/

given by P 7! ŒP ��dp . This suggests the procedure below for solving the decision
problem. First note that a choice of smooth projective model for C also provides
us with an explicitly enumerable set containing C.Q/ — namely, Pn.Q/ — so if C

has a rational point we can find it in finite time by enumeration (but see Remark 4.5
for drastic improvements).

Remark 4.3. We use the term algorithm in the strict sense: a Turing machine or
an equivalent computing device that is guaranteed to produce a correct answer in
finite time when given correct input. We use the word procedure for a less formal
concept than an algorithm. We allow a procedure to include steps that are not
guaranteed to succeed, and we do not require that a procedure will stop for all
valid input. We do require the guarantee that if a procedure finishes then its output
is correct.
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Procedure 4.4 (Decision procedure).

Input: A curve C over Q (or more generally, a number field).

Output: A rational point on C or a proof that there is none.

First parallel thread:

0. Enumerate candidates for C.Q/. If a point is found, we have shown that C.Q/

is not empty.

Second parallel thread:

1. Test if C.A/D∅. If that is the case then C.Q/ is empty too. See Fact 3.1.

2. (Challenge A0) Find d 2 Pic1.C=Q/ or prove it doesn’t exist. We either obtain
an embedding �WC ! J or we prove that C.Q/ is empty.

3. (Challenge B) Find a finite set of generators for J.Q/.

4. Choose appropriate S and B.

5. Compute VS;B . This involves computing J.Fp/, using for instance [39; 42].

6. If VS;B D∅ then C.Q/ is empty. Otherwise, increase S and B and go to step 5.

Remark 4.5. Once we have determined generators for J.Q/, we can enumerate
candidates for C.Q/ much more efficiently by enumerating J.Q/. Furthermore,
the set VS;B provides us with a list of cosets modulo BJ.Q/ that may contain
elements of C.Q/, further reducing the number of candidates to consider. This
makes it feasible to search up to height bounds that are doubly exponential in time.
See [20] for an application to finding integral points on curves.

We do not have a proof that this procedure will always terminate, but Heuristic 4.1
suggests it should. Indeed, in [15] we describe an experiment where we test how
well the decision procedure works in practice. We consider genus-2 curves admit-
ting models of the form

y2
D f6x6

Cf5x5
C � � �Cf0 with f0; : : : ; f6 2 f�3;�2; : : : ; 3g:

For nearly all the roughly 200,000 isomorphism classes represented, we were able
to solve the decision problem. For 42 curves we were unable to unconditionally
complete step 2. For those we obtained a presumably accurate bound on the rank of
J.Q/ by assuming the Birch and Swinnerton-Dyer conjecture. The Mordell-Weil
sieving itself never posed an insurmountable problem.

The main practical problem with the procedure above is that if either of steps 2
or 3 fails, we have no way of continuing. We can weaken the requirement for step 3
slightly.

Remark 4.6. We only need a set of elements in J.Q/ that generate J.Q/=BJ.Q/,
so a subgroup of finite index prime to B in J.Q/ would already be enough. If
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one knows the rank of J.Q/ then one can usually quickly deduce that a given set
generates such a group by considering its image under

J.Q/ //
Q

p2S J.Fp/:

for some suitable set of primes S . For instance, let q be a prime dividing B. If
we know that J.Q/=qJ.Q/' .Z=qZ/t and the codomain has a direct factor of the
form

Qt
iD1.Z=q

ei Z/, with e1; : : : ; et � 1, onto which the group generated by our
given set surjects, then the set generates a subgroup of finite index prime to q.

5. Isolating rational points: Chabauty’s method

While Mordell-Weil sieving can provide a proof that C.Q/ is empty, it will not
prove that C.Q/ is finite, let alone determine C.Q/, if there is a rational point
on C . Yet for large enough B and S the map C.Q/ ! VS;B is injective, and
Heuristic 4.1 predicts that for suitable values of B and S it is surjective as well.
Thus, given a rational point P 2 C.Q/, we mainly need a way to prove the equality

�C.Q/\ .�.P /CBJ.Q//D f�.P /g: (3)

Inspired by Skolem’s ideas for subvarieties of multiplicative groups, Chabauty [24]
observed that one can construct a nonzero p-adic analytic function

‚pWJ.Qp/ // Qp

that vanishes on J.Q/, provided that the rank r of J.Q/ is strictly smaller than the
dimension g of J . (Actually, he observed that one can construct such functions
locally, and gets the desired result by doing so on a finite open covering of the
rational points.) The fact that analytic functions have isolated zeros allows one
to conclude that C has only finitely many rational points and, with a bit of extra
work, to establish statements like equality (3). See [26] for one of the first modern
treatments of the method and [23], [32], and [34] for a flexible way of applying it.

In order to avoid some technical complications, we take a prime p at which C

has good reduction. We write J .1/.Qp/ for the kernel of the reduction homomor-
phism J.Qp/! J.Fp/ and we write ƒp D J.Q/\ J .1/.Qp/ for the part of the
Mordell-Weil group that lies in the kernel of reduction.

The function ‚p in question arises from the p-adic integration of a regular differ-
ential !. We consider regular differentials obtained by lifting a regular differential
! on C over Fp, so our differentials have good reduction at p as well. We sketch
the details here.

Let P 2C.Qp/. We choose a uniformizer t 2 Fp.C / at the reduction P 2C.Fp/

of P and lift it to a uniformizer t 2 Qp.C / at P . Let ! be a regular differen-
tial on C with good reduction as described above. We have ! D h dt for some
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function h 2 Qp.C / regular at P . Localization at P provides a homomorphism
Qp.C /!Qp..t//. Regularity and good reduction imply that when we identify h

with its image, we have h.t/ 2 Zp ŒŒt ��. We can compute a formal power seriesZ z

tD0

h.t/dt 2Qp ŒŒz��;

and it is straightforward to check that its radius of convergence is at least 1. Let
Qp be an algebraic closure of Qp, and extend the p-adic absolute value in the
natural way to Qp . For any point Q 2 C.Qp/ that reduces to P 2 C.Fp/, we have
jt.Q/jp < 1. Hence we can define the integral of ! from P to Q by the formulaZ Q

P

! D

Z t.Q/

0

h.t/dt;

which is easily checked to not depend on the choice of t . Note that every divisor
class in J .1/.Qp/ admits a representative of the form

ŒQ1C � � �CQg �gP �;

where each Qi 2 C.Qp/ reduces to P 2 C.Fp/. We define the integral of ! over
this divisor class by Z

ŒQ1C���CQg�gP �

! D

gX
iD1

Z Qi

P

!:

One can check that the regularity of ! implies that this provides a well-defined
group homomorphism J 1.Qp/!Qp.

Let !1; : : : ; !g be a basis of the space of regular differentials of the reduction
of C at p and let !1; : : : ; !g be a lift of that basis. We have a Zp-bilinear pairing

J .1/.Qp/� .Zp/
g
!Qp

taking
�
D; .�1; : : : ; �g/

�
to Z

D

�1!1C � � �C�g!g:

We see that if the Z-rank r of J.Q/ is strictly less than g, then the Zp-submodule
generated by ƒp � J .1/.Qp/ has Zp-rank at most r < g, so there is a nonzero
differential !p such thatZ

D

!p D 0 for all D 2ƒp D J.Q/\J .1/.Qp/:

In particular, for a rational point P 2 C.Q/, we can define

‚p;P .Q/D

Z Q

P

!p for Q 2 C.Qp/ that reduce to P 2 C.Fp/:
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It follows that ‚p;P .Q/ D 0 for every Q 2 C.Q/ with the same reduction as P

modulo p. The following is straightforward to prove by applying Hensel’s lemma
to the appropriate power series expansion.

Proposition 5.1 [26, proof of Theorem 4]. If P 2 C.Q/ and the reduction !p is
nonzero at �p.P / 2 C.Fp/, then we have

�C.Q/\ .�.P /Cƒp/D f�.P /g:

We obtain the following procedure (see Remark 4.3 for the technical meaning
of this word).

Procedure 5.2 (Determination procedure).

Input: A curve C of genus g > 1 with J.Q/ of free rank r < g.

Output: The elements of C.Q/.

1. Choose S and B, and search for points fP1; : : : ;Pkg � C.Q/ such that

fP1; : : : ;PkgCBJ.Q/D VS;BCBJ.Q/:

2. For each point Pi , find a prime p such that BJ.Q/�ƒp and !p.P /¤ 0 2 Fp .
If this succeeds, you have proved that

C.Q/D fP1; : : : ;Pkg:

3. If step 2 fails, go to step 1 and choose larger S and B.

Remark 5.3. The linearity of the integration pairing in the first component implies
that for any D 2 J .1/.Qp/ and m 2 Z we have thatZ

mD

! Dm

Z
D

!:

Since J .1/.Qp/�J.Qp/ is of finite index, say index m, we have for any D2J.Qp/

that mD 2 J .1/.Qp/, so we can use this identity to extend the integration pairing to
all of J.Qp/. This provides a rigid analytic continuation of ‚p;P to all of C.Qp/

that vanishes at C.Q/ — see also [2].

We cannot prove that step 1 of the determination procedure will succeed, but
Heuristic 4.1 suggests it should. We cannot prove that step 2 will succeed eventu-
ally either, but given that !p.�p.P //D 0 requires the vanishing of a power series
coefficient in Fp, we expect that this happens only one in p cases on average.
Indeed, in practice finding an appropriate p in step 2 never seems to be a problem.

Combining Mordell-Weil sieving with Chabauty’s method yields the significant
benefit that larger residue characteristics pose no problem. Results typical for
Chabauty’s method by itself bound #C.Q/ in terms of #C.Fp/, and these bounds
are rarely sharp (see [26] and [62]).
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A more significant restriction is that the procedure is not guaranteed to apply at
all if r � g. One remedy is to use covers. One determines a finite set of covers
�i WDi! C with i D 1; : : : ;m and where the Di are curves of genus larger than g,
such that

C.Q/D

m[
iD1

�i.Di.Q//;

in the hope that the determination procedure does apply to each of D1; : : : ;Dr . In
Section 8C we see how the ideas from Section 6, in particular Proposition 6.3, can
be used to construct such covering sets.

6. Theory of finite descent

Let us first consider Challenge B, finding (a finite index subgroup of) the group
J.Q/. The first observation is that J .1/.Qp/ is torsion-free for p > 2 (see [41]),
so the reduction map J.Q/! J.Fp/ is injective on the torsion subgroup J.Q/tors.
As a consequence, by computing J.Fp/ for a small number of primes p, which we
have to do for Mordell-Weil sieving anyway, we easily obtain a bound on the size
of J.Q/tors. This bound is often sharp, so simply exhibiting enough torsion points
usually suffices for determining J.Q/tors.

More generally, the kernel of the multiplication-by-n morphism J ! J , denoted
by J Œn�, is 0-dimensional. Determining an approximation of it points over, say, C,
is straightforward. One can then recognize which of these torsion points are defined
over Q. Once J.Q/tors is obtained, we are left with determining the free part. The
structure theorem for finitely generated abelian groups gives us that

J.Q/' J.Q/tors �Zr and
J.Q/

nJ.Q/
'

J.Q/tors

nJ.Q/tors
� .Z=nZ/r :

That means that if we can compute the size of J.Q/=nJ.Q/, we can compute r .
Since the multiplication-by-n morphism J

n
�!J is surjective over algebraically

closed fields, we have a short exact sequence of Galois modules

0 // J Œn�.Q/ // J.Q/
n

// J.Q/ // 0: (4)

The abstract language of Galois cohomology allows us to derive a description of the
set J.Q/=nJ.Q/ that facilitates a clean proof of the weak Mordell-Weil theorem.
It also provides a road map for computing bounds on r . In this section we make a
detour into this abstract world. In the next section we investigate how to compute
some of the objects introduced here.
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For a Galois module M.Q/ we write H i.Q;M /DH i.Gal.Q=Q/;M.Q//. Tak-
ing cohomology of the short exact sequence (4), we obtain the exact sequence

0 //
J.Q/

nJ.Q/



// H 1.Q;J Œn�/ // H 1.Q;J /: (5)

Thus, if we can bound the size of the image of the connecting homomorphism 


then a corresponding bound on r follows.
Indeed, we can consider the same sequence over localizations Qv of Q, and by

identifying each Gal.Qv=Qv/ with a decomposition subgroup of Gal.Q=Q/ we
obtain the following commutative diagram:

0 //
J.Q/

nJ.Q/



//

��

H 1.Q;J Œn�/

resv

��

0 //
J.Qv/

nJ.Qv/


v
// H 1.Qv;J Œn�/:

Since rational points are also Qv-rational, it follows that im 
 lies in the n-Selmer
group of J , defined by

Seln.J=Q/D
˚
ı 2H 1.Q;J Œn�/ W resv.ı/ 2 im 
v for all v 2�Q

	
:

Part of the proof that J.Q/ is finitely generated is establishing that Seln.J=Q/

is finite, which is known as the weak Mordell-Weil theorem. This fact follows
from another interpretation of the set H 1.Q;J Œn�/, which also has computational
significance. Some technical language is required to properly formulate this inter-
pretation.

Let k be a field with separable closure k, let M be a finite group with a Gal.k=k/-
action and let X and Y be k-varieties. By limiting ourselves here to a finite
group M , we guarantee that M can be represented by an affine group scheme; this
helps in proving Proposition 6.1 below and simplifies the definition of an X -torsor
under M . Dropping the assumption that M be finite invalidates the statement
in general (see [5, §6.7]), but the statement does hold under various alternative
conditions.

An X -torsor under a finite M is an unramified morphism �WY ! X of de-
gree #M between k-varieties, together with an isomorphism M ! Aut

k
.Y=X / of

groups with Gal.k=k/-action; see [45, § III.4].
Let �WY !X and �0WY 0!X be X -torsors under a finite M . An isomorphism

of X -torsors is an isomorphism of k-varieties � WY ! Y 0 such that � D �0 ı �
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and such that the induced isomorphism Aut
k
.Y=X /! Aut

k
.Y 0=X / is compatible

with the isomorphisms M ! Aut
k
.Y=X / and M ! Aut

k
.Y 0=X /.

Let X
k

be the base change of X to k. Via base change, we can obtain from any
X -torsor under M an X

k
-torsor under M

k
. We say that two torsors are twists of

one another if they becomes isomorphic to one another upon base change to k.
If M is not abelian there is still an object denoted H 1.k;M /, but it is no longer

a group — it is merely a set with a distinguished element, called the trivial class.
From Theorem III.4.3(a) (p. 121) and Proposition III.4.6 (p. 123) of [45] we obtain
the following result.

Proposition 6.1 (Twisting principle). Let �WY !X be an X -torsor under a finite
M . There is a bijection between H 1.k;M / and the set of isomorphism classes of
twists of �WY !X , and a natural map 
 WX.k/!H 1.k;M /, such that

(1) the bijection sends the trivial class of H 1.k;M / to the class of �, and

(2) for every x 2X.k/, if 
 .x/ corresponds to a twist �x WYx!X , then x has a
k-rational preimage on Yx .

In fact, if a twist �0WY 0!X has a point y 2 Y 0.k/ then Y 0 is isomorphic to Yx ,
where x D �0.y/. It follows that the image of 
 consists exactly of those twists
for which Y 0.k/ is nonempty. We can approximate the image by considering those
that have adelic points.

Definition 6.2. Let �WY ! X be an M -cover over Q. We define the Selmer set
to be

Sel.Q;Y
�
�!X /D

˚
Œ�0WY 0!X � 2H 1.Q;M / W Y 0.A/¤∅

	
D
˚
ı 2H 1.Q;M / W resv.ı/ 2 im 
v for all v 2�Q

	
:

Note that the multiplication-by-n morphism in the exact sequence (4) yields
a J -torsor J ! J under the group M D J Œn�.Q/. Indeed, this map 
 and the
connecting homomorphism in Equation (5) agree, as do the concepts of Selmer set
and group.

Of particular importance for us is the case where k is a number field. For ease
of notation, we restrict to the case k D Q. Let Qunr

v be the maximal unramified
extension of Qv in Qv. We say a class is unramified if it becomes trivial under
the restriction H 1.Qv;M /!H 1.Qunr

v ;M /. A class in H 1.Q;M / is unramified
at v if resv maps it to an unramified class. For a finite set S � �Q we write
H 1.Q;M IS/ for the subgroup of classes unramified at all places outside of S .
We find that H 1.Q;M IS/ is finite; this is analogous to Hermite’s result that there
are only finitely many number fields of bounded degree unramified outside a finite
set of primes.
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Proposition 6.3 (Chevalley-Weil [25]). Let X and Y be smooth projective vari-
eties over Q, let M be a finite Gal.Q=Q/-group, and let �WY !X be an X -torsor
under M . Let S ��Q contain the archimedean places, the places of bad reduction
of �, and the places of residue characteristic dividing jM j. Then


 .X.Q//� Sel.Q;Y
�
�!X /�H 1.Q;M IS/:

In particular, 
 .X.Q// is finite.

The version in [25] states that ��1.X.Q// lies in Y .L/ for some fixed number
field L, the compositum of degree-jM j extensions unramified outside S of the
splitting field of M . This formulation is not very conducive to computation. A
more promising approach is to try to find reasonable computational descriptions of
H 1.k;M / and 
 for k DQ and k DQv . General theory gives us that the map 
v
for k DQv is continuous and therefore locally constant. If we can determine the
neighborhood on which 
v is constant, we can determine im 
v and thus compute
Sel.Q;Y �!� X /.

7. Computing Selmer groups

In this section we describe a method for computing (or at least approximating)
Selmer groups that goes back to Cassels (see [21] for a survey), and that has been
developed and used by many others [23; 48; 53; 54; 56]. The presentation here
closely follows that in [14].

We continue our philosophy that points on J are most conveniently represented
by divisors on C . We would like to describe J Œn� as a Galois module. We do so by
presenting a finite Galois-stable set of generators �D f�1; : : : ; �dg. Since this is
a finite Gal.k=k/-set, it can be viewed as the k-points of an affine 0-dimensional
variety over k, which we also denote by �. Its coordinate ring is some finite k-
algebra L. Note that L is a field only when Gal.k=k/ acts transitively on �. In
general, L is a direct sum of fields, corresponding to the Galois orbits of �.

A certificate that � 2 � is n-torsion as a divisor class on C can be given as a
function f� whose divisor is linearly equivalent to n� . If we take these functions
Galois-covariantly, we can combine them into a function f 2 k.C /˝k L.

We construct an n-torsion Galois module directly from � by taking the twisted
power �

Z

nZ

��
WD

dM
iD1

�
Z

nZ

�
�i ;

which as a group is simply .Z=nZ/d , but has its Galois action twisted so that the
coordinates are permuted according to the action on �. The fact that � generates
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J Œn� is expressed in the surjectivity of the third arrow in the short exact sequence

0 // R //

�
Z

nZ

��
// J Œn� // 0;

where the map to J Œn� consists of evaluating the formal linear combinations and
R is defined to be the kernel of that map. If we are able to choose a Galois-stable
basis for J Œn� then R is trivial and we obtain an isomorphism to J Œn�. In general,
we have to choose � larger than that. In fact, the Galois group may act transitively
on the nonzero elements of J Œn�, in which case �D J Œn� n f0g is the only choice.

If M is a finite Galois module, we let M_ denote the Cartier dual Hom.M; k�/

of M . We note that

..Z=nZ/�/_ D ..Z=nZ/_/� D ��n ;

and, thanks to the Weil pairing, that J Œn�_ D J Œn�. We obtain

0 // J Œn� // ��n
// R_ // 0:

Taking Galois cohomology yields a map from H 1.k;J Œn�/ to H 1.k; ��n /. From
Kummer theory we know that H 1.k; �n/D k�=k�n, and with a little extra work
we find that H 1.k; ��n /DL�=L�n. Hence we obtain the following commutative
diagram with exact rows:

J.k/

nJ.k/




��

Q

//

L�

L�n

0 // J Œn�.k/ // .��n /.k/
// R_.k/ // H 1.k;J Œn�/ // H 1.k; ��n /

Note that we represent elements of J.k/=nJ.k/ by divisors on C . Our function
f provides a partial map

Div.C=k/ //____ L�X
P2C.k/

nP P � //
Y

P2C.k/

f .P /nP

defined for divisors supported away from poles and zeros of f . The main work,
for which we refer the reader to [14], is to prove that this map induces the map Q

above.

For k DQ and S ��Q a finite set containing the infinite place and the primes
dividing n, we also need to describe the subgroup H 1.Q; ��n IS/. To that end,
we denote by OL;S the ring of the elements of L that are integral over ZS . This
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ring decomposes into a direct product of Dedekind domains, namely the rings of
S-integers of the number fields constituting L. If OL;S is a principal ideal ring,
which can be ensured by enlarging S if necessary, then

H 1.Q; ��n IS/D
O�

L;S

O�n
L;S

:

Computing an explicit representation amounts to determining class groups and unit
groups in number fields.

Our explicit description of the map Q
 also makes it possible to determine neigh-
borhoods on which the local version Q
v is constant. The arguments used are similar
to those that show that elements u; v 2 Q�

2
represent the same class in Q�

2
=Q�2

2

when 2�.u� v/ 2 1C 8Z2 for some � 2 Z.
For appropriate sets S;T ��Q we define

Sel Q
 .Q;J / WD
˚
ı 2H 1.Q; ��n / W resv.ı/ 2 im Q
v

	
�
˚
ı 2 O�L;S=O�n

L;S W resv.ı/ 2 im Q
v for all v 2 T
	
;

where, for a large enough finite set T ��Q, the inclusion stabilizes to an equality.
We have a map Seln.J=Q/! Sel Q
 .Q;J / but this need be neither surjective nor

injective. We do know that the kernel is contained in the group K defined by the
exact sequence

0 // J Œn�.k/ // ��n .k/
// R_.k/ // K // 0;

and in practice K is frequently trivial. In any case, we can use Sel Q
 .Q;J / to
obtain an upper bound on the rank of J.Q/. It may be larger than the one that can
be derived from the actual Selmer group, but it has the advantage that it is more
easily computed. There are also auxiliary computations one can do to obtain more
detailed information on the difference; see [14, Appendix A].

Requiring a set � as above is often too demanding. Indeed, in general one does
not expect a more favorable choice than �D J Œn�nf0g to be available. In that case,
L is usually a number field of degree n2g � 1, where g is the genus of C . So even
in the case g D 3 and nD 2 one expects to have to compute with a number field
of degree 63.

At the expense of getting even further removed from a description of H 1.Q;J Œn�/,
one can use a smaller set �. We restrict to the case nD 2. We take � to be a set
so that the differences of elements of � generate J Œ2�. We consider the submodule
E of even weight vectors,

0 // E // .Z=2Z/�
sum

// Z=2Z // 0;

and we obtain a short exact sequence
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0 // R // E // J Œn� // 0:

Taking cohomology of the dual sequence gives

H 1.k; �2/
// H 1.k; ��

2
/ // H 1.k;E_/;

which leads to
L�

L�2k�
�H 1.k;E_/:

Provided that Pic0.C=k/D J.k/, which holds for us by Lemma 4.2, we can show
that the part of H 1.k;E_/ relevant to us lies in the subgroup we can describe, and
we obtain a map

Q
 W
J.k/

nJ.k/
//

L�

L�2k�

which we can use in essentially the same way as above. One can choose � to be
the set of classes of odd theta characteristics, which has size 2g�1.2g � 1/, less
than half of what we needed before. For g D 3 this results in an algebra L of
degree 28.

8. Application of descent to other problems

8A. Descent on the curve. If we embed the curve C in its Jacobian then we can
restrict the maps 
 and Q
 to C . In that case we can construct a C -torsor under
J Œn� by pulling C back along the multiplication-by-n map J ! J . The result is
an unramified cover �WD! C of degree n2g.

We can compute approximations of Sel.Q;D �!� C / using the same approach
as in Section 7. If that approximation turns out to be empty, then C has no rational
points. This can happen even if C.A/ is nonempty. When it works, this method is
easier to apply than Mordell-Weil sieving, because the data we need is required for
determining J.Q/ anyway, and we do not have to actually find generators for J.Q/.

Given that the map Q
 is computed by evaluating a function on representative
divisors, we can evaluate Q
 directly on C , without choosing an embedding in J ,
and even if such an embedding does not exist. See [16] for a more thorough analysis
of this method for hyperelliptic curves.

8B. Finding an embedding in J . A curve C has a degree-n point for some n. For
instance, on a curve of genus g � 2, the canonical divisor class always contains a
rational effective divisor, so one can take n� 2g� 2. It follows that Picn.C /' J

and hence that multiplication-by-n yields a cover Pic1
! J . Note that over Q we

have J ' Pic1.C / in a way that is compatible with the multiplication-by-n map,
so this cover expresses Pic1 as a J -torsor under J Œn�. By Proposition 6.1, this
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torsor corresponds to some class in H 1.Q;J Œn�/. In fact, if C.A/¤ ∅, we have
ŒPic1.C /� 2 Seln.J=Q/. If we have succeeded in determining J.Q/, we can check
if ŒPic1.C /� lies in the image of J.Q/. If it does, then we have an explicit rational
point that we can lift to Pic1.C /. If it does not then we have proved that Pic1.C /

does not have a rational point, and therefore neither does C .
We can also adapt the ideas from Section 8A to do further descent computations

on Pic1, although doing a descent directly on C yields stronger information for our
purposes — see [27].

8C. Covering collections. Proposition 6.3 also provides useful information when
Chabauty’s method (Section 5) does not apply because J.Q/ is of too high rank.
As we saw in Section 8A, we can use the embedding C ! J to obtain unramified
Galois covers D �!� C . As Proposition 6.3 shows, one has

C.Q/D
[

ŒD0
�0

!C �2Sel.Q;D
�
!C /

�0.D0.Q//:

Note that D (and hence any of the D0) is of higher genus than C , so Chabauty’s
method might apply to D0 even if it does not to C ; see also [64]. A priori it may
seem computationally unattractive to compute with a curve of much higher genus.
However, by construction, the curve D is far from general; for example, it has
many automorphisms. That usually means that its Jacobian can be decomposed
into factors of lower dimension. For instance, if C is a hyperelliptic curve and
D is a C -torsor under J Œ2�, the Jacobian of D has many elliptic isogeny factors,
although not necessarily over Q. This means that many of the computations that
would normally take place on the Jacobian of D can now be done on elliptic curves.
This greatly simplifies computations and has led to a variant of Chabauty’s method
commonly referred to as elliptic curve Chabauty. See [36] for a special case and
[8], [9] for the general case, as well as an application that amounts to a Chabauty
computation on a 12-dimensional abelian variety. See also [16] on how to use
descent computation to determine which twists to consider and [13] for an iterated
application of these ideas. See [11] for an application to a curve of genus 3 admit-
ting a double cover; this example involves Mordell-Weil sieving and a Chabauty
computation on a genus-5 curve embedded in an abelian surface presented as the
Jacobian of an otherwise unrelated curve of genus 2.

9. Smooth plane quartics

As an example, let us see how the ideas in the previous sections apply to smooth
plane quartics — that is, nonhyperelliptic genus-3 curves. In a way, this is the
simplest collection of truly general curves, in the sense that genus-2 curves are
always hyperelliptic and hence necessarily have a nontrivial automorphism. The
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examples come from [14], to which the reader is referred for further details and
references.

Let C � P2 be a smooth plane quartic curve over Q. We apply the procedure
described in Section 7 for nD 2. The set � has a particularly explicit description.
A smooth plane quartic has 28 bitangents. If l and m are degree-1 forms on C that
describe bitangents, then l=m obviously induces a function on the curve whose
divisor is twice another divisor. That divisor therefore represents a 2-torsion class.
It is a matter of combinatorics to compute that every nonzero 2-torsion point can
be described this way (in fact, in 6 different ways). Let � � .P2/� be the 0-
dimensional, degree-28 locus in the dual space corresponding to these 28 bitan-
gents, and let L be the affine coordinate ring of �, so that L is a finite algebra over
Q of degree 28.

The Galois group of (a splitting field of) L is a subgroup of Sp6.F2/, which is
also the generic Galois group of J Œ2�. For this full group, the module .Z=2Z/�

has unique submodules E and R of dimensions 27 and 21 respectively, giving us
a unique sequence of Sp6.F2/-modules

0 // R // E // J Œ2� // 0:

If we identify the conjugacy class in Sp6.F2/ of the group through which Gal.Q=Q/

acts on L, then we can determine the action on the sequence via restriction. This
means we can determine the sequence

0 // J Œ2�.Q/ // E_.Q/ // R_.Q/

by identifying the Galois group of L as a subgroup of Sp6.F2/. Determining Galois
groups is one of the classic problems in computational algebraic number theory.

For each � 2 � we obtain a linear form l� 2 LŒx;y; z�, where x;y; z are the
coordinates on P2. Evaluating Q
 at a point on C amounts to evaluating l� at that
point.

In order to compute Sel Q
 .Q;J /, we need to compute the ideal class group and
unit group of L, for which we need an integral basis as well. The computation of
class groups, unit groups, and integral bases are three further classical problems in
computational algebraic number theory.

We give some examples.

Proposition 9.1. If C is the curve

x3y �x2y2
�x2z2

�xy2zCxz3
Cy3z D 0

in P2
Q

, then J.Q/D hŒ.0 W 1 W 0/� .0 W 0 W 1/�i ' Z=51Z and

C.Q/Df.1 W1 W1/; .0 W1 W0/; .0 W0 W1/; .1 W0 W0/; .1 W1 W0/; .1 W0 W1/g:
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For this example the Galois group of L is a member of the unique index-36

conjugacy class of Sp6.F2/. For that group we find that R_.Q/D Z=2Z and that
E_.Q/D 0. A priori this leaves room for a nontrivial kernel in

Sel2.Q;J /! Sel Q
 .Q;J /:

However, we find that R_.Q2/ D R_.Q/ and E_.Q2/ D E_.Q/ and that the
image of R_.Q2/ does not lie in the image of 
2. This means that the map is an
injection anyway and, since Sel Q
 .Q;J /D 0, that J.Q/ is finite and of odd order.
Further investigation shows that there is 51-torsion. Finding the rational points of
C from the finite set J.Q/ is trivial.

Proposition 9.2. Let C be the curve

x2y2
�xy3

�x3z� 2x2z2
Cy2z2

�xz3
Cyz3

D 0

in P2
Q

. If the generalized Riemann hypothesis holds, then J.Q/' Z and

C.Q/Df.1 W1 W0/; .�1 W0 W1/; .0 W�1 W1/; .0 W1 W0/;

.1 W1 W�1/; .0 W0 W1/; .1 W0 W0/; .1 W4 W�3/g:

For this curve, the Galois group of L is all of Sp6.F2/. Then R_.Q/D 0, so

Sel2.Q;J /� Sel Q
 .Q;J /:

Further computation shows that the latter has size 2, so J.Q/ has rank at most 1.
Furthermore, we have J.F3/' Z=85Z and J.F7/' Z=336Z. These group orders
are coprime, so J.Q/ is torsion free. It is straightforward to exhibit a nontriv-
ial point in J.Q/, so it follows the rank is 1. A straightforward application of
Chabauty’s method yields the rest of the statement.

We invoke the generalized Riemann hypothesis to verify the class group infor-
mation. The Minkowski bound of L (which is a field in this case) is 1,008,340,641,
so a dedicated enthusiast could probably confirm the class group information un-
conditionally.

Proposition 9.3. Let C be the curve in P2
Q

defined by

x4
Cy4

Cx2yzC 2xyz2
�y2z2

C z4
D 0:

Then C.R/¤∅ and C.Qp/¤∅ for all p, but if the generalized Riemann hypoth-
esis holds, then C.Q/D∅.

For this curve we verify that its Q
 -Selmer set is empty. The Minkowski bound
for L exceeds 1022 so unconditional verification is out of the question.
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