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We report on some experiments and theoretical investigations concerning weak
approximation and the transcendental Brauer-Manin obstruction for Kummer
surfaces of certain products of elliptic curves.

1. Introduction

Weak approximation. Consider a geometrically integral, projective variety S over
the field Q of rational numbers. We say that S fulfills weak approximation when
the following is true: For every finite set fp1; : : : ;plg of prime numbers and every
vector

.x0;x1; : : : ;xl/ 2 S.R/�S.Qp1
/� � � � �S.Qpl

/;

there exists a sequence of Q-rational points that simultaneously converges to xi in
the pi-adic topology for i D 1; : : : ; l and to x0 with respect to the real topology. In
a more formal language, this means that the set S.Q/ of the rational points on S

is dense in the set S.AQ/ of all adelic points.
Even for Fano varieties, which are generally expected to have many rational

points, weak approximation is not always fulfilled. Well-known counterexamples
are due to Sir Peter Swinnerton-Dyer [26], L. J. Mordell [20], J. W. S. Cassels and
M. J. T. Guy [4], and many others.

For varieties of intermediate type — K3 surfaces, for example — the situation is
yet more obscure. In fact, proving the much weaker statement that #S.Q/D1

is usually a formidable task in its own [18; 17]. It seems therefore that proving
weak approximation, even for a single K3 surface, is presently out of reach and
that experiments are asked for.
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Obstructions and colorings. To test weak approximation experimentally is, how-
ever, an ill-posed problem, at least from the strictly formal point of view. The
reason is that weak approximation is not a finite phenomenon. It is strongly infinite
in nature.

An interesting situation occurs when a certain “obstruction” is responsible for
the failure of weak approximation. This means that S.Qp/ breaks somehow regu-
larly into open-closed subsets, each of which behaves uniformly as far as approx-
imation by Q-rational points is concerned. As S.Qp/ is compact, it is clear that
finitely many subsets U1; : : : ;Uk � S.Qp/ will suffice. When such a behavior
appears, we speak of a coloring and call the subsets the colors of S.Qp/.

The Brauer-Manin obstructions. It is well-known that a class ˛ 2 Br.S/ in the
Grothendieck-Brauer group of S induces such a coloring. For a point x 2 S.Qp/,
its color is obtained as invQp

.˛jx/ 2Q=Z. If ˛ is of order N then not more than N

colors may occur.
As a result, a failure of weak approximation may appear. Indeed, for a Q-rational

point x one must have
P

p invQp
.˛jx/D 0, but the same need not be true for an

adelic point. This phenomenon is called the Brauer-Manin obstruction [19].
There is a canonical filtration on Br.S/, which gives rise to a distinction be-

tween algebraic and transcendental Brauer classes. Correspondingly, there are the
algebraic and the transcendental Brauer-Manin obstructions.

The algebraic Brauer-Manin obstruction is rather well understood. At least on
S.Qp/good � S.Qp/, the p-adic points with good reduction, it yields extremely
regular colorings [5; 6; 11]. For example, a coloring by two colors is possible only
when there is an unramified two-sheeted covering � W X ! S.Qp/good. The two
colors are then given by the subsets

fx 2 S.Qp/ j �
�1.x/D∅g and fx 2 S.Qp/ j #��1.x/D 2g:

Explicit computations of the algebraic Brauer-Manin obstruction have been done
for many classes of varieties. Most of the examples were Fano. For instance, we
gave a systematic treatment of the (algebraic) Brauer-Manin obstruction for cubic
surfaces in [9; 10]. Concerning K3 surfaces, computations for diagonal quartic
surfaces are provided by M. Bright [3]. Furthermore, it is known that there is no
algebraic Brauer-Manin obstruction on a generic Kummer surface, or in the generic
case of a Kummer surface associated to the product of two elliptic curves [25,
Proposition 1.4(ii)].

The transcendental Brauer-Manin obstruction. The transcendental Brauer-Manin
obstruction is much less understood and seems to be by far more difficult, at least
at present. Historically, the first example of a variety where weak approximation
is violated due to a transcendental Brauer class was constructed by D. Harari [12].
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Concerning K3 surfaces, the available literature is still rather small. The inter-
ested reader is encouraged to consult the articles [13; 14; 15; 16; 22; 24; 27], at least
in order to recognize the enormous efforts made by the authors. For example, the
entire Ph.D. thesis of Th. Preu is devoted to the computation of the transcendental
Brauer-Manin obstruction for single diagonal quartic surface.

An exceptional case, which seems to be a bit more accessible, is provided by
the Kummer surfaces S WD Kum.E �E0/ for two elliptic curves E and E0. Here
the Brauer group, which is typically purely transcendental, was described in detail
by A. N. Skorobogatov and Yu. G. Zarhin in [25].

The present article. For this reason, in the present article we will deal with Kum-
mer surfaces, defined over Q, of the type described in the preceding paragraph. To
keep the theory simple, we will restrict ourselves to the case that both curves have
their full 2-torsion defined over the base field. We may start with equations for the
elliptic curves of the form

E W y2
D x.x� a/.x� b/ and E0 W y2

D x.x� a0/.x� b0/;

for a; b; a0; b0 2Q. Then S WDKum.E�E0/ is a double cover of P1�P1, an affine
chart of which is given by the equation

z2
D x.x� a/.x� b/u.u� a0/.u� b0/: (1)

The goal of the article is to report on our experiments and theoretical investigations
concerning weak approximation and the transcendental Brauer-Manin obstruction
for Kummer surfaces of this particular type.

Remark 1.1. To be precise, Equation (1) defines a model of the Kummer surface
with 16 singular points of type A1. In the minimal regular model, the singularities
are replaced by projective lines. As Br.P1

k
/ D Br.k/, the evaluation of a Brauer

class on a projective line is automatically constant. Thus, we may work as well
with the singular model.

The results. Among the Kummer surfaces of type (1) for integers a, b, a0, b0 of
absolute value at most 200, we determined all those for which there is a transcen-
dental Brauer-Manin obstruction arising from a 2-torsion Brauer class.

We found that there are exactly 3418 such surfaces having a nontrivial 2-torsion
Brauer class. In three cases, this class was algebraic. Moreover, we identified the
adelic subsets of the surfaces where the Brauer class gives no obstruction. On only
six of the surfaces, it happened that no adelic point was excluded.

On the other hand, we developed a memory-friendly point searching algorithm
for Kummer surfaces of the form above. The sets of Q-rational points found turned
out to be compatible with the idea that the Brauer-Manin obstruction might be the
only obstruction to weak approximation.
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2. The transcendental Brauer group

Generalities. The cohomological Grothendieck-Brauer group of an algebraic va-
riety S over a field k is equipped with a canonical three-step filtration, defined by
the Hochschild-Serre spectral sequence.

(i) Br0.S/ � Br.S/ is the image of Br.k/ under the natural map. When S has
a k-rational point, we have Br0.S/ Š Br.k/; when k is a number field, the
existence of an adelic point suffices. The group Br0.S/ does not contribute
to the Brauer-Manin obstruction.

(ii) The quotient Br1.S/=Br0.S/ is isomorphic to H 1.Gal.ksep=k/;Pic.Sksep//.
This subquotient is called the algebraic part of the Brauer group. For k a
number field, it is responsible for the algebraic Brauer-Manin obstruction.

(iii) Finally, Br.S/=Br1.S/ injects into Br.Sksep/. This quotient is called the tran-
scendental part of the Brauer group. Nevertheless, every Brauer class that is
not algebraic is usually said to be transcendental. For k a number field, the
corresponding obstruction is a transcendental Brauer-Manin obstruction.

When S is the Kummer surface corresponding to the product of two elliptic
curves, the Brauer group of S is well understood due to the work of A. N. Skoro-
bogatov and Yu. G. Zarhin [25]. For us, the proposition below will be sufficient.

Notation. We will denote the 2-torsion part of an abelian group A by A2.

Proposition 2.1 (Skorobogatov and Zarhin). Let

E W y2
D x.x� a/.x� b/ and E0 W v2

D u.u� a0/.u� b0/

be elliptic curves over a field k of characteristic zero, and let S WD Kum.E �E0/

be the corresponding Kummer surface. Suppose that the 2-torsion points of E and
E0 are defined over k and that E

k
and E0

k
are not isogenous to one another. Then

Br.S/2=Br.k/2 D im
�
Br.S/2! Br.S

k
/2
�
Š ker.� W F4

2! .k�=k�2/4/;

where � is given by the matrix

Maba0b0 WD

0BB@
1 ab a0b0 �aa0

ab 1 aa0 a0.a0� b0/

a0b0 aa0 1 a.a� b/

�aa0 a0.a0� b0/ a.a� b/ 1

1CCA : (2)

Remark 2.2. The reader should keep in mind that the matrix in Equation (2) is
supposed to be giving a linear map from F4

2
to .k�=k�2/4. Thus, the entries of the

matrix (although written as elements of k) represent classes of k�=k�2, and the
null space of the matrix is a subspace of F4

2
.
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Proof of Proposition 2.1. The equality on the left hand side expresses the absence
of algebraic Brauer classes, which is shown in [25, Proposition 3.5.i]. The isomor-
phism on the right is established by combining [25, Propositions 3.5.ii and 3.5.iii]
with [25, Lemma 3.6]. The reader might want to compare [25, Proposition 3.7]. �

Consider the case where k is algebraically closed. Then the Kummer sequence
induces a short exact sequence

0! Pic.S/=2 Pic.S/!H 2
ét.S; �2/! Br.S/2! 0:

We have dimF2
Pic.S/=2 Pic.S/ D 16C dimF2

NS.E �E0/=2 NS.E �E0/ D 18

and dimF2
H 2

ét.S; �2/ D 22. This explains why Br.S/2 Š F4
2
. More canonically,

there are isomorphisms

Br.S/2 ŠH 2
ét.E �E0; �2/=.H

2
ét.E; �2/˚H 2

ét.E
0; �2//Š Hom.EŒ2�;E0Œ2�/:

Remark 2.3. If k is a field of characteristic zero, the assumption that the 2-torsion
points are defined over k implies that Gal.k=k/ operates trivially on Br.S

k
/2. We

see explicitly that

Br.S/2=Br.k/2 ¤ Br.S
k
/

Gal.k=k/
2

Š F4
2;

in general.

Assume that k is algebraically closed. For two rational functions f;g 2 k.S/,
we denote by .f;g/ the quaternion algebra

k.S/fI;J g=.I2
�f;J 2

�g; IJ CJI/

over k.S/. Cohomologically, f and g define classes in H 1.Gal.k.S/=k.S//; �2/

via the Kummer sequence. The Brauer class of .f;g/ is the cup product of these
two classes in

H 2.Gal.k.S/=k.S//; �˝2
2
/DH 2.Gal.k.S/=k.S//; �2/

�H 2.Gal.k.S/=k.S//; k.S/�/:

The symbol . � ; � / is thus bilinear and symmetric.

Fact 2.4. Let k be an algebraically closed field of characteristic 0, let a, b, a0, b0 be
elements of k, and let S be as in Proposition 2.1. Then, in terms of the canonical
injection Br.S/ ,! Br.k.S//, a basis of Br.S/2 is given by the four quaternion
algebras

A�;� WD ..x��/.x� b/; .u� �/.u� b0//;

for � 2 f0; ag and � 2 f0; a0g. Here the standard vectors in F4
2

correspond to these
four algebras. More precisely, e1 corresponds to Aa;a0 , e2 to Aa;0, e3 to A0;a0 ,
and e4 to A0;0.
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Proof. This is [25, Lemma 3.6] together with [25, formula (20)]. �
Remark 2.5. Using bilinearity, we find for nine of the 15 nontrivial classes a de-
scription as a single quaternion algebra, similar to the type above. For the six
classes corresponding to the vectors .1; 0; 0; 1/, .0; 1; 1; 0/, .1; 1; 1; 0/, .1; 1; 0; 1/,
.1; 0; 1; 1/, and .0; 1; 1; 1/, we need at least two such algebras.

Observations 2.6 (Isomorphy, twisting).

(i) We may replace .a; b/ by .�a; b� a/ or .�b; a� b/ without changing S , and
similarly for .a0; b0/. Indeed, these substitutions simply come from applying
the translations A1

k
! A1

k
given by x 7! x��, for �D a; b.

(ii) It is also possible to replace .a; b; a0; b0/ with the vector .�2a; �2b; a0; b0/ or
the vector .�a; �b; �a0; �b0/, for � 2 k. The reason is that the twist

E.�/
W �y2

D x.x� a/.x� b/

is isomorphic to the elliptic curve given by Y 2 DX.X ��a/.X ��b/.

One hypothesis of Proposition 2.1 is that E
k

and E0
k

are not isogenous. Only mi-
nor modifications to the proposition are necessary to deal with the case when these
curves are isogenous. The isogeny causes NS.E

k
�E0

k
/=2 NS.E

k
�E0

k
/ to have di-

mension higher than two, so the homomorphism F4
2
ŠHom.EŒ2�;E0Œ2�/!Br.S

k
/2

is only a surjection, not a bijection.
Over a non-algebraically closed field, the situation is as follows. If E and E0

are isogenous over k then dimF2
Pic.S/=2 Pic.S/ > 16C 2D 18. As the additional

generator evaluates trivially, it will be found in ker Maba0b0 [25, Lemma 3.6]. Thus,
the homomorphism ker Maba0b0� Br.S/2=Br.k/2 has a nontrivial kernel.

An isogeny defined over a proper field extension l=k causes the same effect
over l , but not over k. As Pic.S/=2 Pic.S/¨ Pic.Sl/=2 Pic.Sl/, it may, however,
happen that a Brauer class is annihilated by the extension l=k; that is, that a vec-
tor in ker Maba0b0 describes an algebraic Brauer class. By the Hochschild-Serre
spectral sequence, we have H 2

ét.S; �2/=Br.k/2 �H 2
ét.Sk

; �2/. Hence, there are
no other algebraic 2-torsion Brauer classes than these.

The transcendental Brauer-Manin obstruction.

Lemma 2.7. Let k be a local field of characteristic zero, let E Wy2Dx.x�a/.x�b/

and E0 W v2 D u.u� a0/.u� b0/ be elliptic curves over k with all 2-torsion points
defined over k, and let S WD Kum.E �E0/, given explicitly by

z2
D x.x� a/.x� b/u.u� a0/.u� b0/: (3)

Let ˛ 2 Br.S/2 be a Brauer class, represented by an Azumaya algebra over k.S/

of the type
N

i A�i ;�i
. Then the local evaluation map ev˛ W S.k/! 1

2
Z=Z is given
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by

.x;uI z/ 7! ev˛..x;uI z//D
X

i

�
.x��i/.x� b/; .u� �i/.u� b0/

�
k
:

Here . � ; � /k denotes the k-Hilbert symbol [2, Chapter 1, §6].

Proof. By definition, ev˛..x;uI z//D inv.˛j.x;uIz//. Further, ˛j.x;uIz/ is the Azu-
maya algebra

N
i..x��i/.x� b/; .u� �i/.u� b0// over k. Now observe that the

quaternion algebra .s; t/ splits if and only if t is a norm from k.
p

s/. This is tested
by the norm residue symbol .t; k.

p
s/=k/, which agrees with the classical Hilbert

symbol .s; t/k . �

Remarks 2.8.

(i) For us, the Hilbert symbol takes values in .1
2

Z=Z;C/. This differs from the
classical setting, where the values are taken in .f˙1g; � /.

(ii) According to Proposition 2.1, Br.S/2=Br.k/2 � F4
2

. Further, by Fact 2.4, we
have an explicit basis, which is given by Azumaya algebras; that is, for each
class in Br.S/2=Br.k/2, we chose a lift to Br.S/2. For k a local field, this
lift is normalized such that ev˛..1;1I � //D 0. Indeed, for x close to1 in
k, .x��/.x� b/ is automatically a square.

The next lemma shows that the evaluation map is constant near the singular
points.

Lemma 2.9. Let p > 2 be a prime number, and let a, b, a0, b0 be elements of Zp

such that E W y2 D x.x � a/.x � b/ and E0 W v2 D u.u� a0/.u� b0/ are elliptic
curves that are not isogenous to each other. Suppose that

min.�p.a/; �p.b//Dmin.�p.a0/; �p.b0//D 0

and put

l WDmax.�p.a/; �p.b/; �p.a� b/; �p.a
0/; �p.b

0/; �p.a
0
� b0//:

Consider the surface S over Qp defined by z2 D x.x� a/.x� b/u.u� a0/.u� b0/.
Then for every ˛ 2 Br.S/2, the evaluation map S.Qp/!Q=Z is constant on the
subset

T WD
˚
.x;uI z/ 2 S.Qp/

ˇ̌
�p.x/ < 0 or �p.u/ < 0

	
[

[
�2f0;a;bg
�2f0;a0;b0g

˚
.x;uI z/ 2 S.Qp/

ˇ̌
x � �;u� � .mod plC1/

	
depicted in Figure 1.
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0

a0

b0

1

0 a b 1

Figure 1. The set T .

Proof. It suffices to prove the lemma for ˛ ranging over a lift to Br.S/2 of a basis for
Br.S/2=Br.Qp/2; we will use the basis given in Fact 2.4. We first consider the ba-
sis element e1, corresponding to the Hilbert symbol ..x�a/.x�b/; .u�a0/.u�b0//p .
We will show that if ab and a0b0 and �aa0 are all squares, then the Hilbert symbol
will be 0 on the set T .

Using the equation of the surface, we see that

..x� a/.x� b/; .u� a0/.u� b0//p D ..x� a/.x� b/;�xu/p (4)

D .�xu; .u� a0/.u� b0//p:

Let us distinguish three cases. In all cases, we observe that a Hilbert symbol is
zero when at least one of its arguments is a square.

First case. Suppose that either �p.x/ < 0 or �p.u/ < 0. If the first condition
holds, then .x � a/.x � b/ is a square, while if the second condition holds, then
.u� a0/.u� b0/ is a square. Thus the Hilbert symbol is 0 in this case.

Second case. Suppose that x � 0 or u� 0 .mod plC1/.
If x � 0 .mod plC1/ then .x� a/.x� b/� ab .mod plC1/. Since

�p.ab/D �p.a/C �p.b/Dmax.�p.a/; �p.b//� l;

the numbers .x� a/.x� b/ and ab belong to the same square class. Thus, if ab is
a square, the Hilbert symbol will be 0.

Analogously, if u� 0 .mod plC1/ then .u�a0/.u�b0/� a0b0 .mod plC1/, so
that .u� a0/.u� b0/ is in the square class of a0b0. It follows that if a0b0 is a square,
the Hilbert symbol will be 0.

Third case. Suppose that x � � and u � � .mod plC1/ where � 2 fa; bg and
� 2 fa0; b0g.

Suppose, for example that x � a .mod plC1/ and u � a0 .mod plC1/. Then,
in particular, x � a .mod p�.a/C1/ and u� a0 .mod p�.a

0/C1/. This implies that
�xu��aa0 .mod p�.a/C�.a

0/C1/ so that �xu is in the square class of �aa0. In
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particular, if �aa0 is a square then the Hilbert symbol is 0. The other possibilities
for the residue classes of x and u yield the square classes of �ab0, �ba0, and �bb0,
which are all trivial when ab, a0b0, and �aa0 are squares.

We see that the evaluation map is constant on the set T if and only if the vector

.1; ab; a0b0;�aa0/t 2 .Q�p=Q�2p /4

is zero. This is exactly the first column of the matrix Maba0b0 given in Equation (2).
For the Hilbert symbols ..x�a/.x�b/;u.u�b0//p , .x.x�b/; .u�a0/.u�b0//p ,

and .x.x� b/;u.u� b0//p, the calculations are completely analogous. They lead
to the second, third, and fourth columns of Maba0b0 .

Hence we see that, for a combination of Hilbert symbols, the evaluation map is
constant on the set T if and only if it represents a Brauer class. �

Remarks 2.10.

(i) In Lemma 2.9, the assumption that

min.�p.a/; �p.b//Dmin.�p.a0/; �p.b0//D 0

is not a restriction in view of Remark 2.16(i), below.

(ii) A result similar to Lemma 2.9 holds for p D 2 as well; however, the condition
in the first set in the definition of T must be strengthened to �2.x/ < �2 or
�2.u/ < �2, and the congruences in the other sets in the definition of T must
be taken modulo 2lC3. The proof is essentially the same.

Proposition 2.11. Let k be either R or the field Qp for a prime p. Let E W y2 D

x.x� a/.x� b/ and E0 W v2 D u.u� a0/.u� b0/ be elliptic curves over k with all
2-torsion points defined over k, and let S WD Kum.E �E0/ be the corresponding
Kummer surface. Suppose that E and E0 are not isogenous to one another, and
that both E and E0 have good reduction if k D Qp. Then for every ˛ 2 Br.S/2,
the evaluation map ev˛ W S.k/!Q=Z is constant.

Proof. First suppose that k DQp. Then the assertion of the lemma is a particular
case of a very general result [6, Proposition 2.4] due to J.-L. Colliot-Thélène and
A. N. Skorobogatov. (Using Lemma 2.9 and elementary properties of the Hilbert
symbol, one could also provide an elementary argument that is specific for the
present situation.)

Next, suppose that k D R. Without loss of generality, we may assume that a>

b > 0 and a0 > b0 > 0. Then it will suffice to prove the assertion for representatives
of e2 and e3, that is, for ..x�a/.x�b/;u.u�b0//R and .x.x�b/; .u�a0/.u�b0//R.

Consider e2. Suppose .x;uI z/ is an R-rational point on the model of S given
by Equation (3). If ..x� a/.x� b/;u.u� b0//R D

1
2

then .x� a/.x� b/ < 0 and
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u.u� b0/ < 0. Hence, b < x < a and 0< u< b0. But then

z2
D x.x� a/.x� b/u.u� a0/.u� b0/ < 0;

a contradiction. Thus, the evaluation map is constant.
For e3, the argument is analogous. �

Algorithm 2.12.

Input: Integers a, b, a0, and b0; a prime number p; and a Brauer class ˛ 2Br.S/2
for the surface

S W z2
D x.x� a/.x� b/u.u� a0/.u� b0/;

given as a combination of Hilbert symbols.

Output: The coloring of S.Qp/ defined by ev˛ W S.Qp/!
1
2

Z=Z.

1. Calculate l WD max.�p.a/; �p.b/; �p.a � b/; �p.a
0/; �p.b

0/; �p.a
0 � b0//, the

bound established in Lemma 2.9.

2. Initialize three lists S0, S1, and S2, the first two being empty, the third contain-
ing all triples .x0;u0;p/ for x0;u0 2 f0; : : : ;p�1g. A triple .x0;u0;p

e/ shall
represent the subset

f.x;uI z/ 2 S.Qp/ j �p.x�x0/� e; �p.u�u0/� eg:

3. Run through S2. For each element .x0;u0;p
e/, execute the following opera-

tions.

(a) Test whether the corresponding set is nonempty. If not, delete the element
.x0;u0;p

e/.
(b) If e� lC1 and �p.x��/� lC1 for some�2f0; a; bg, and �p.u��/� lC1

for a � 2 f0; a0; b0g, then move .x0;u0;p
e/ to S0.

(c) Test naïvely, using the elementary properties of the Hilbert symbol, whether
the elements in the corresponding set all have the same evaluation. If this
test succeeds then move .x0;u0;p

e/ to S0 or S1, depending on whether
the value is 0 or 1

2
.

(d) Otherwise, replace .x0;u0;p
e/ by the p2 triples .x0Cipe;u0Cjpe;peC1/

for i; j 2 f0; : : : ;p� 1g.

4. If S2 is empty then output S0 and S1 and terminate. Otherwise, go back to
step 3.

Example 2.13. Consider the Kummer surface S over Q given by

z2
D x.x� 1/.x� 25/u.uC 25/.uC 36/:

Then weak approximation is violated on S .
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Proof. This is caused by a transcendental Brauer-Manin obstruction. In fact, the
matrix (2) is

M D

0BB@
1 25 900 25

25 1 �25 �275

900 �25 1 �24

25 �275 �24 1

1CCAbD
0BB@

1 1 1 1

1 1 �1 �11

1 �1 1 �6

1 �11 �6 1

1CCA ;
and its kernel is he1i. Hence there is a transcendental Brauer class on S , represented
by the quaternion algebra ..x� 1/.x� 25/; .uC 25/.uC 36//.

Now the argument is completely elementary. For every .x;uI z/ 2 S.Qp/ with
z ¤ 0, one has X

p

..x� 1/.x� 25/; .uC 25/.uC 36//p D 0;

according to the sum formula for the Hilbert symbol. The bad primes of the elliptic
curves y2 D x.x � 1/.x � 25/ and y2 D x.x C 25/.x C 36/ are 2; 3; 5, and 11.
Hence, the sum is actually only over these four primes.

Our implementation of Algorithm 2.12 shows that the local evaluation map is
constant at the primes 2, 3, and 11, but not at 5. Hence, 5-adic points such that
..x� 1/.x� 25/; .uC 25/.uC 36//5 D

1
2

may not be approximated by Q-rational
ones.

Examples of such 5-adic points include those with .x;u/D .2; 5/. Indeed,

2 � .2� 1/ � .2� 25/ � 5 � .5C 25/ � .5C 36/D�11316 � 52

is a 5-adic square, but .2� 1/ � .2� 25/ D �23 is a nonsquare and �5..5C 25/ �

.5C 36//D 1 is odd. �
Remarks 2.14.

(i) The constancy of the local evaluation maps at 3 and 11 and the nonconstancy
at 5 also follow from the criterion formulated as Theorem 2.19 below.

(ii) In the coloring obtained on S.Q5/, all the points such that x;u 6� 0 .mod 5/

have color zero. This is rather different from the colorings typically obtained
from an algebraic Brauer class. The reader should compare the situation de-
scribed in [5], where, on the cone over an elliptic curve, three sets of equal
sizes appear.

Normal form, ranks, asymptotics. Let k be a field, let a, b, a0, and b0 be elements
of k� with a¤ b and a0 ¤ b0, and let S be the Kummer surface

z2
D x.x� a/.x� b/u.u� a0/.u� b0/:

There are two types of nontrivial Brauer classes ˛ 2 Br.S/2=Br.k/2.
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Type 1: ˛ may be expressed by a single Hilbert symbol. There are nine cases for
the kernel vector of Maba0b0 . As seen in Observations 2.6(i), a suitable translation
of A1 �A1 transforms the surface into an isomorphic one with kernel vector e1.
Then ab, a0b0, and �aa0 are squares in k. Note that this implies that �ba0, �ab0,
and �bb0 are squares as well.

Type 2: To express ˛, two Hilbert symbols are necessary. There are six cases
for the kernel vector of Maba0b0 . A suitable translation of A1 �A1 transforms the
surface into an isomorphic one with kernel vector e2 C e3. Then aa0, bb0, and
.a� b/.a0� b0/ are squares.

Corollary 2.15. Let p be a prime number, let a, b, a0, and b0 be elements of Q�p
with a¤ b and a0 ¤ b0, and let S be the Kummer surface

z2
D x.x� a/.x� b/u.u� a0/.u� b0/:

Suppose that �p.a/ � �p.b/, that �p.a0/ � �p.b0/, and that Br.S/2=Br.k/2 ¤ 0.
Then �p.aa0/ is even.

Proof. The assertion is that the expression

m WDmin.�p.a/; �p.b/; �p.a� b//Cmin.�p.a0/; �p.b0/; �p.a0� b0//

is even as soon as Br.S/2=Br.k/2 ¤ 0. As m is invariant under translations as
described in Observations 2.6(i), we may suppose that either e1 or e2 C e3 lies
in ker Maba0b0 . In both cases the assertion is easily checked. Note that either
minimum is adopted by at least two of the three valuations. �

Remarks 2.16.

(i) Suppose k D Qp. Then, by Observations 2.6(ii), we may assume without
loss of generality that a; b; a0; b0 2 Zp, that min.�p.a/; �p.b// D 0, and that
min.�p.a0/; �p.b0// D 0; 1. By Corollary 2.15, the assumption that Maba0b0

has a nontrivial kernel ensures that min.�p.a0/; �p.b0//D 0, too.

(ii) Suppose that k DQ and that there is a Brauer class of type 1. Reasoning as
in the preceding remark, we see that we may suppose that a, b, a0, and b0 are
integers with gcd.a; b/D gcd.a0; b0/D 1. Hence there is a normal form with
a > b, with a0 < b0, and with a; b;�a0;�b0 2 Z\Q�2. Up to the involution
.a; b; a0; b0/ 7! .�a0;�b0;�a;�b/, this normal form is unique. The geometric
interpretation of this involution is that it interchanges the two elliptic curves
and twists them both by �1.

Proposition 2.17. Let k be a field of characteristic zero, let E W y2 D x.x �

a/.x � b/ and E0 W v2 D u.u � a0/.u � b0/ be elliptic curves over k with all 2-
torsion points defined over k, and let S WD Kum.E �E0/ be the corresponding
Kummer surface. Suppose that E and E0 are not isogenous to each other.
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(i) We have dim Br.S/2=Br.k/2 � 4 and dim Br.S/2=Br.k/2 ¤ 3. Further,
dim Br.S/2=Br.k/2 D 4 is possible only when �1 is a square in k.

(ii) Suppose k DQp for a prime p. If both E and E0 have potential good reduc-
tion then dim Br.S/2=Br.k/2 is even.

(iii) If k D R then dim Br.S/2=Br.k/2 D 2.

Proof. All of these assertions will follow from Proposition 2.1. Recall that Maba0b0

is a matrix with entries in the F2-vector space k�=k�2.
Statement (i): The inequality dim Br.S/2=Br.k/2 � 4 is clear. If the vector

space had dimension three, the matrix Maba0b0 would have column rank one. But
this is impossible for a symmetric matrix having zeroes on the diagonal. Further,
dim Br.S/2=Br.k/2 D 4 requires Maba0b0 to be the zero matrix. In particular, aa0

and �aa0 both have to be squares in k. This implies that �1 is a square, too.
Statement (ii): Standard considerations (see [23, Proposition VII.5.5], for ex-

ample) show that the elliptic curve given by y2 D x.x ��/.x � �/ has potential
good reduction if and only if �=� 2 Z�p and �=� 6� 1 .mod p/. This implies, in
particular, that p > 2.

If Br.S/2=Br.k/2 D 0 the assertion is trivially true, so let us assume that
Br.S/2=Br.k/2 ¤ 0. Then, by Remark 2.16(i), we may assume that the elements
a, b, a� b, a0, b0, a0� b0 all lie in Z�p. But for p-adic units, being a square in Qp

or not is tested by the Legendre symbol. Thus Maba0b0 is essentially an alternating
matrix with entries in F2. Such matrices have even rank.

Statement (iii): After applying one of the translations A1�A1!A1�A1 given
by .x;u/ 7! .x ��;u� �/ for � 2 f0; a; bg and � 2 f0; a0; b0g, we may assume
that a> b > 0 and a0 > b0 > 0. Then

Maba0b0 D

0BB@
C C C �

C C C C

C C C C

� C C C

1CCA
has kernel he2; e3i. �
Remarks 2.18. We discuss some asymptotic estimates for the number of surfaces
with Brauer groups of various types.

(i) Let N > 0. Then the number of pairs .a; b/ such that a and b are perfect
squares, a< b, and a; b� a<N is asymptotically CN for

C WD 1
2

�
log.
p

2C 1/C
p

2� 1
�
:

Indeed, the Stieltjes integralZ N

1

�p
xCN �

p
x
�

d
p

x
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has exactly this behavior. Assuming that isogenies are rare, we find that the
number of surfaces over Q with integer parameters of absolute value at most
N and a 2-torsion Brauer class of type 1 is asymptotically

1

2

�
6

�2

�2

C 2N 2
� 0:077544N 2:

(ii) On the other hand, a 2-torsion Brauer class of type 2 yields a Q-rational point
on the intersection of three quadrics in P6. The Manin conjecture leads to the
naïve expectation of growth of the type cN logdN for some integer d � 0.

(iii) The number of all Kummer surfaces of the form considered and with param-
eters up to N is O.N 4/. Thus, only a very small fraction have a nontrivial
2-torsion Brauer class.

Even fewer surfaces should have odd torsion in their Brauer group. Indeed,
for l-torsion, one must have

HomGal.Q=Q/
.EŒl �;E0Œl �/¤ 0

(see [25, Proposition 3.3]). Consequently, #E.Fp/ � #E0.Fp/ .mod l/ for
every prime p ¤ l that is good for both E and E0. Based on this, our com-
putations show that, up to N D 200, no surface has an l-torsion Brauer class
for l � 5. Further, at most eight pairs of j -invariants allow a 3-torsion Brauer
class.

(iv) It is possible over Q to have a 2-dimensional 2-torsion Brauer group. For this,
in the normal form of Remark 2.16(ii), one needs that a� b and b0 � a0 are
perfect squares. Further, these surfaces have four normal forms instead of two,
as there are two Brauer classes of type 1. These examples correspond to pairs
of Pythagorean triples, and we therefore have two Kummer surfaces, differing
from each other by a twist by .�1/. The asymptotics of Pythagorean triples
[1] shows that there are asymptotically

4

�4
log2.1C

p
2/N � 0:031899N

surfaces over Q with integer parameters of absolute value at most N and a
Brauer group of dimension two.

(v) Some actual numbers are listed in Table 1. For a precise description of the
sample, see Section 4B below.

Trivial evaluation.

Theorem 2.19. Let p > 2 be a prime number and let a, b, a0, b0 be nonzero
elements of Zp such that a¤ b and a0 ¤ b0. Let S be the Kummer surface given
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Bound Dimension 2 Dimension 1, type 1 Dimension 1, type 2

Total Algebraic Total Algebraic

50 0 183 1 38 0
100 0 766 2 98 0
200 2 3049 3 367 0
500 12 18825 4 1457 0

1000 20 77249 8 4398 0
2000 42 305812 11 12052 0

Table 1. Number of surfaces with bounded parameters whose Brauer groups
have 2-torsion of various types. The first column gives the bound N on the
parameters of the surfaces we computed; see Section 4B for a precise descrip-
tion of the parameters allowed. The remaining columns give the number of
such surfaces whose Brauer groups have 2-torsion subgroups of dimension 2,
of dimension 1 and type 1, and of dimension 1 and type 2. For the 1-dimensional
cases, the number of algebraic classes is listed as well.

by z2 D x.x� a/.x� b/u.u� a0/.u� b0/. Assume that e1 is a kernel vector of the
matrix Maba0b0 and let ˛ 2 Br.S/2 be the corresponding Brauer class.

(i) Suppose that either a � b 6� 0 .mod p/ or a0 � b0 6� 0 .mod p/. Then the
evaluation map ev˛ W S.Qp/!Q=Z is constant.

(ii) If a 6� b .mod p/ and a0 6� b0 .mod p/, and if not all four numbers are p-adic
units, then the evaluation map ev˛ W S.Qp/!Q=Z is nonconstant.

Proof. First step: Preparations. We are interested in the Hilbert symbol

..x� a/.x� b/; .u� a0/.u� b0//p:

Recall that a=b, a0=b0, and �bb0 are all squares in Qp.
A Qp-rational point on S corresponds to a pair of points on the elliptic curves

�y2D x.x�a/.x�b/ and �v2D u.u�a0/.u�b0/ for a common value of �. The
Hilbert symbol then simplifies to .�x; �u/p.

Second step: 2-descent. By 2-descent (see for example [23, Proposition X.1.4]),
the elliptic curve E W Y 2 DX.X � a/.X � b/ has a point in the square class of x

if and only if the system

xz2
1 � tz2

2 D a

xz2
1 �xtz2

3 D b

is solvable. Eliminating t , we obtain x2z2
1
z2

3
�xz2

1
z2

2
D axz2

3
� bz2

2
, which gives

.xz2
3 � z2

2/.xz2
1 � b/D .a� b/xz2

3 :
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Dividing by �bxz2
3

yields�
1�

z2
2

z2
3

1

x

��
1�

z2
1

b
x

�
D 1�

a

b
:

In other words, E has a point in the square class of x if and only if the equation
.1� v2x/.1�w2x=b/D 1� a=b is solvable.

Third step: Application to the Kummer surface S . As �y2 D x.x� a/.x� b/ is
equivalent to y02 D �x.�x��a/.�x��b/ and b and �b0 are squares, we see that
S has a point with coordinates in the square classes of x and u if and only if

.1� v2�x/.1�w2x=b/D 1� a=b

.1� v02�u/.1�w02x=b0/D 1� a0=b0

has a solution .v; w; v0; w0; �/ 2 .Q�p/
5.

Proof of (i): Without loss of generality, assume that a � b 6� 0 .mod p/ and
a0=b0 2 Zp. Let .x;uI z/ 2 S.Qp/ be any point such that z ¤ 0.

Then Lemma 2.21(i) (below) shows that .u=b0; �u/p D 0. Furthermore, by
Lemma 2.21(iii), at least one of x=b and �x is a square in Qp . In the case �x 2Q�2p ,
the assertion .�x; �u/p D 0 is clearly true. If x=b 2Q�2p then

0D .u=b0; �u/p D .��=b
0; �u/p D ..�x/=.�bb0/; �u/p D .�x; �u/p:

Proof of (ii): Again without loss of generality, assume that p2 j a, that b is a
unit, and that a0=b0 2 Zp. We claim that, for �D �b, there is a point on S such
that x D p and 2 j �p.u/, so that �uD�bu is a nonsquare.

Indeed, it is obvious that �bp.p � a/.p � b/ 2 Q�2p . Further, by Hensel’s
Lemma, it suffices to find a pair .U1;U2/ 2 F�p � F�p of nonsquares such that
.1 � U1/.1 � U2/ D 1 � a0=b0. For this, a counting argument applies. In fact,
each U1 2 Fp n f0; 1; a

0=b0g uniquely determines its partner. As this set contains
.p� 1/=2 nonsquares and only .p� 5/=2 squares, the assertion follows. �

Remarks 2.20.

(i) It might seem strange to use a descent argument over a local field. It seems
to us, however, that a direct argument is neither more elegant nor shorter.

(ii) Using the descent argument above, we also recover the constancy of the eval-
uation map in the case of good reduction. Indeed, Lemma 2.21(ii) implies
that either at least one of x=b and �x is a square, or both have even valuation.
The first two cases are dealt with as above. Otherwise, �b is a square, hence
��=b0 is a square, too, and one has to show that 2 j �p.�u/. But this is implied
by Lemma 2.21(ii) when looking at the second equation.
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Lemma 2.21. Let p > 2 be a prime number, let A and B be nonzero elements
of Qp , and let Q2Q�p be a square. Suppose that the equation .1�Av2/.1�Bw2/D

1�Q is solvable in Q�p �Q�p.

(i) We have .A;B/p D 0.

(ii) If Q 2 Z�p then either A 2 Q�2p , or B 2 Q�2p , or both A and B are of even
valuation.

(iii) If Q 2 Z�p and Q� 1 .mod p/ then either A 2Q�2p or B 2Q�2p .

Proof. Statement (i): We have that Av2CBw2�AB.vw/2 is a square. When all
three summands are of the same valuation, they must be units. The assertion is then
clearly true. Otherwise, at most two of the three summands have minimal valuation.
Then their sum is a square, too. According to the definition of the Hilbert symbol
[2, p. 55], we have either .A;B/p D 0 or .A;�AB/p D 0 or .B;�AB/p D 0.
These three statements are equivalent to each other.

Statement (ii): We have �p.1�Q/ � 0. On the other hand, if both A and B

are nonsquares then �p.1�Av2/; �p.1�Bw2/� 0. This implies equality, hence
Av2;Bw2 2 Zp . Both must be units as Av2CBw2�AB.vw/2 is, by assumption,
a square in Z�p.

Statement (iii): If A and B were both nonsquares then �p.1�Av2/ � 0 and
�p.1�Bw2/� 0. As �p.1�Q/ > 0, this is a contradiction. �

Experiments with Algorithm 2.12 show that surprisingly often there are nontriv-
ial Brauer classes with trivial p-adic evaluation. This is partially explained by the
following result.

Theorem 2.22. Let p > 2 be a prime number and let a; b; a0; b0 2Qp be such that
E Wy2Dx.x�a/.x�b/ and E0 W v2Du.u�a0/.u�b0/ are elliptic curves. Suppose
that E and E0 are not isogenous to each other, and let S be the corresponding
Kummer surface.

(i) If dim Br.S/2=Br.Qp/2 � 2 then there is a nonzero ˛ 2 Br.S/2 such that ev˛
is the zero map.

(ii) If dim Br.S/2=Br.Qp/2D 4 then the subspace of classes with constant evalua-
tion map is of dimension 4 when both E and E0 have potential good reduction.
The dimension is 3 when neither curve has potential good reduction and 2 in
the mixed case.

Proof. By Remark 2.16(i), we may assume without loss of generality that a and
b lie in Zp and are not both divisible by p, and that the same holds for a0 and b0.
The case in which both E and E0 have potential good reduction has already been
treated in Proposition 2.11.
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Statement (ii). If neither curve has potential good reduction, we can apply a
translation of A1 �A1, as in Observations 2.6(i), to reduce to the case a � b 6�

0 .mod p/ and a0 � b0 6� 0 .mod p/. Then, by virtue of Theorem 2.19(ii), the
Brauer classes corresponding to he1; e2; e3i have constant evaluation maps, but
eve4

is nonconstant.
Further, when only E0 has potential good reduction, the same arguments show

that the Brauer classes corresponding to he1; e2i have constant evaluation maps,
while those of e3, e4, and e3C e4 are nonconstant.

Statement (i). Only the case that at least one of the curves E and E0 does
not have potential good reduction requires a proof. Hence, we may assume that
a; b 2 Zp and a� b 6� 0 .mod p/. Then ab 2Q�2p .

The upper left 2 � 2-block of Maba0b0 is zero. If the block
�

a0b0 aa0

�aa0 a0.a0�b0/

�
occurring in the lower left has trivial kernel then the 2�2-block in the upper right is
certainly not the zero matrix. Therefore dim ker Maba0b0 � 1, a contradiction. Thus,
there is a Brauer class represented by a vector from he1; e2i. By Theorem 2.19(i),
its evaluation map is constant. �

3. A point search algorithm for special Kummer surfaces

The surfaces we are studying are double covers of P1 �P1, given by equations of
the form

w2
D fab.x;y/fa0b0.u; v/:

Here, fab is the binary quartic form fab.x;y/ WD xy.x � ay/.x � by/. Thus, a
point .Œx W y�; Œu W v�/ 2 .P1 �P1/.Q/ leads to a point on the surface if and only if
the square classes of fab.x;y/ and fa0b0.u; v/ coincide, or one of them is zero.

We will call the solutions with fab.x;y/ or fa0b0.u; v/ zero the trivial solutions
of the equation. Obviously, there is a huge number of trivial solutions. Our aim is
to describe an efficient algorithm that searches for nontrivial solutions and does not
care about the trivial ones. In its simplest version, our algorithm works as follows.

Algorithm 3.1 (Point search).

Input: Two sequences a1; : : : ; ak and b1; : : : ; bk of integers and a search bound
B > 0.

Output: All solutions of the equations

w2
D fai bi

.x;y/faj bj
.u; v/

for which x, y, u, and v are integers with jxj; jyj; juj; jvj � B.

1. Compute the bound

L WD B.1Cmaxfjai j; jbi j j i D 1; : : : ; kg/
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for the linear factors.

2. Store the squarefree parts of the integers in Œ1; : : : ;L� in an array T .

3. Enumerate in an iterated loop representatives for all points Œx W y� 2 P1.Q/ with
x;y 2 Z, jxj; jyj � B, and x;y ¤ 0.

4. For each point Œx W y� enumerated, execute the operations below.

(a) Run a loop over i D 1; : : : ; k to compute the four linear factors x, y, x�aiy,
and x� biy of fai ;bi

.
(b) Store the squarefree parts of the factors in m1; : : : ;m4. (Use the table T to

compute the squarefree parts.)
(c) Put

p1 WD
m1

gcd.m1;m2/

m2

gcd.m1;m2/

p2 WD
m3

gcd.m3;m4/

m4

gcd.m3;m4/

p3 WD
p1

gcd.p1;p2/

p2

gcd.p1;p2/
:

Thus, p3 is a representative of the square class of fai bi
.x;y/.

(d) Store the quadruple .x;y; i; h.p3// in a list. Here, h is a hash function.

5. Sort the list by the last component.

6. Split the list into parts. Each part corresponds to a single value of h.p3/. (At
this point, we have detected all collisions of the hash function.)

7. Run in an iterated loop over all the collisions and check whether

..x;y; i; h.p3//; .x
0;y0; i 0; h.p03///

corresponds to a solution .Œx W y�; Œx0 W y0�/ of the equation

w2
D fai bi

.x;y/fai0 bi0 .x
0;y0/:

Output all the solutions found.

Remarks 3.2.

(i) For practical search bounds B, the first integer overflow occurs when we mul-
tiply p1=gcd.p1;p2/ and p2=gcd.p1;p2/. But we can think of this reduction
modulo 264 as being a part of our hash function. Note that the final check of
fai bi

.x;y/fai0 bi0 .x
0;y0/ being a square can be done without multiprecision

integers by inspecting the gcd’s of the eight factors.

(ii) One disadvantage of Algorithm 3.1 is obvious. It requires more memory than
is reasonably available by present standards. We solved this problem by the
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introduction of what we call a multiplicative paging. This is an approach
motivated by the simple additive paging as described in [8]. In addition, our
memory-optimized point search algorithm is based on the following observa-
tion.

Lemma 3.3. Let p be a good prime. Then, for each pair .x;y/ with gcd.x;y/D 1,
at most one of the factors x, y, .x� ay/, and .x� by/ is divisible by p. �

Algorithm 3.4 (Point search using multivariate paging).

Input: The same as in Algorithm 3.1.

Output: The same as in Algorithm 3.1.

1. Compute the bound L and the square-class representatives as in Algorithm 3.1.

2. Compute the upper bound

C WD 2 maxfjai j; jbi j j i D 1; : : : ; kg

for the possible bad primes.

3. Initialize an array of boolean variables of length L. Use the value false for the
initialization. We will call this array the markers of the factors already treated.

4. In a loop, run over all good primes below L. Start with the biggest prime and
stop when the upper bound C is reached; that is, work in decreasing order. For
each prime pp, execute the steps below. We call pp the page prime.

(a) Run over all multiples m of pp not exceeding L and such that the pp-adic
valuation is odd. For each m, do the following.

i. Check whether m is marked as already treated. In this case, continue
with the next m.

ii. Test whether x, y, x � aiy, or x � biy can represent this value. Here,
use the constraints jxj; jyj � B and i 2 f1; : : : ; kg.

iii. For each possible representation with gcd.x;y/D1, check to see whether
x, y, x� aiy, or x� biy is marked as already treated. Otherwise, store
the quadruples .x;y; i; h.p3// into a list.

iv. Mark the value of m as treated and continue with the next m.

(b) As in Algorithm 3.1, construct all solutions by inspecting the collisions of
the hash function.

5. Up to now, all solutions were found such that w has at least one prime factor
bigger than the bad primes bound. To get the remaining ones, use Algorithm 3.1
but skip all values of x;y that are marked as treated factors. Further, break
step 4 of Algorithm 3.1 early if m3 or m4 is marked as treated.
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Remark 3.5. The last step computes all solutions in smooth numbers — that is,
points such that the square classes of fab.x;y/ and fa0b0.u; v/ are smooth with
respect to the bad primes bound C defined in step 2. It is an experimental observa-
tion that this step takes only a small fraction of the running time, but gives a large
percentage of the solutions. The algorithm may easily be modified such that only
the solutions in smooth numbers are found. For this, the markers for treated factors
have to be initialized in an appropriate way.

4. Some experiments

4A. Coloring by covering — a search for regular colorings. As noted in the intro-
duction, on various types of surfaces [3; 11], the (algebraic) Brauer-Manin obstruc-
tion leads to very regular colorings. Carrying this knowledge over to the special
Kummer surfaces given by

S W w2
D f4.x;y/g4.u; v/;

one is led to test the following: For a Q-rational point with w ¤ 0, write �w2
1
D

f4.x;y/ and �w2
2
D g4.u; v/ and expect the color to be given by the square class

of �.
For p-adic points, this defines a coloring with four or eight colors, depending

on whether p > 2 or p D 2. At the infinite place, the color is given by the sign
of �. Motivated by [3; 11], we assume that the p-adic color of a rational point has
a meaning only when p divides the conductor of one of the elliptic curves used
to construct S . Further, we restricted ourselves to the square classes of even p-
adic valuation (for the primes of bad reduction). This does not exclude all rational
points reducing to the singular locus at a bad prime.

Thus, we get a coloring of the Q-rational points with 2kC1 colors for a surface
with k relevant odd primes. Weak approximation would imply that the color map
is a surjection. In the case of a visible obstruction, we would expect that at most
half of the possible colors are in the image of the color map.

For a systematic test, we used the 184 elliptic curves with odd conductor and
jaj; jbj < 100. This led to 16,836 surfaces. Table 2 gives an overview of the
number of colors that occurred. The table indicates that our result is negative:
It seems that there is no obstruction factoring over such a coloring. We expect
that one would find Q-rational points of all colors for a sufficiently large search
bound.

On one core of an Intel Core 2 Duo E8300 processor, the running times were
18.5 hours for search bound 30,000 and 275 hours for search bound 100,000, but
only 51 minutes for smooth solutions with respect to a bad prime bound of 200

and bound 100,000.
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#Bad primes 2 3 4 5 6 7 8

#Surfaces 4 182 1678 5777 7409 1726 60
#Colors 8 16 32 64 128 256 512

B D 1000 8 15–16 26–32 32–64 33–127 31–157 27– 81
B D 3000 8 16 30–32 49–64 67–128 81–226 92–192
B D 10000 8 16 32 57–64 93–128 142–254 207–352
B D 30000 8 16 32 62–64 109–128 196–256 303–474
B D 100000 8 16 32 64 121–128 232–256 387–505

B D 10000, smooth 8 16 31–32 54–64 79–128 99–236 113–197
B D 30000, smooth 8 16 32 59–64 92–128 146–253 161–300
B D 100000, smooth 8 16 32 61–64 108–128 185–256 230–381

Table 2. Number of colors attained by Q-rational points of bounded height on
Kummer surfaces of products of elliptic curves, classified by the number of bad
primes and the search bound B. The second row of the table indicates the number
of surfaces we analyzed with the given number of bad primes. For each number
of bad primes and each search bound B, we list the lowest and highest number
of colors attained by Q-rational points of height at most B, ranging over the
surfaces with the given number of bad primes. For the rows in which the search
bound is annotated with the word “smooth”, we consider only rational points that
are smooth in the sense of Remark 3.5.

4B. Investigating the Brauer-Manin obstruction — a sample. We determined all
Kummer surfaces of the form

z2
D x.x� a/.x� b/u.u� a0/.u� b0/;

with integer parameters of absolute value at most 200, that have a transcendental
2-torsion Brauer class.

More precisely, we determined all .a; b; a0; b0/ 2 Z4 such that

gcd.a; b/D 1; a> b > 0; a� b � 200; b � 200;

gcd.a0; b0/D 1; a0 < b0 < 0; a0� b0 � �200; b0 � �200;

and such that the matrix Maba0b0 has nonzero kernel. We made sure that only one
of the four equivalent quadruples

.a; b; a0; b0/; .�a0;�b0;�a;�b/; .a; a�b; a0; a0�b0/; .�a0; b0�a0;�a; b�a/

was on the list, and we ignored the quadruples where .a; b/ and .a0; b0/ define
geometrically isomorphic elliptic curves.

This led to 3075 surfaces with a kernel vector of type 1 and 367 surfaces with
a kernel vector of type 2, together with two surfaces with Br.S/2 of dimension two.
The latter correspond to the quadruples .25; 9;�169;�25/ and .25; 16;�169;�25/.
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#Relevant primes 0 1 2 3 4 5 6
#Surfaces 6 428 1577 1119 276 9 1

Table 3. Number of surfaces with a given number of relevant primes.

Among the 3075 surfaces, 26 actually have Br.S/2 D 0, due to a Q-isogeny be-
tween the corresponding elliptic curves.

The complete list of these surfaces, the exact equations we worked with, and
more details are available on both author’s web pages in the file ants_X_data.txt.

4C. The BM-relevant primes — the p-adic point of view. We say that a Brauer
class ˛ 2Br.S/ works at a prime p if the local evaluation map ev˛;p is nonconstant.
For every surface in the sample described in Section 4B, we used Algorithm 2.12
and Theorem 2.19 to determine all of the BM-relevant primes p — that is, those
for which there is a Brauer class working at p.

For the two surfaces with Br.S/2 of dimension two, the situation is as follows:
In the case of the parameter vector .25; 9;�169;�25/, one Brauer class works at 2

and 13, another at 5 and 13, and the third at all three. For the surface corresponding
to .25; 16;�169;�25/, one Brauer class works at 3 and 13, another at 5 and 13,
and the last at all three.

Table 3 lists the number of surfaces in our sample set having a given number of
relevant primes. The one example with six relevant primes is .196; 75;�361;�169/,
for which the Brauer class works at 2, 5, 7, 11, 13, and 19.

For three surfaces, it happened that the corresponding elliptic curves were isoge-
nous over a proper extension of Q. In these cases, the Brauer-Manin obstruction
is algebraic. For two of the surfaces, it worked at one prime, while for the third it
worked at two.

4D. The BM-relevant primes — Q-rational points. When the Brauer class ˛ works
at l primes p1; : : : ;pl , there are 2l vectors with entries in

˚
0; 1

2

	
. By the Brauer-

Manin obstruction, half of these vectors cannot be obtained as values of .ev˛;p1
.x/;

: : : ; ev˛;pl
.x// for Q-rational points x 2 S.Q/. For every surface in our sample

set, and for every vector not forbidden by the Brauer-Manin obstruction, we used
Algorithm 3.4 to test whether there is a rational point giving rise to the vector.

It turned out that this was indeed the case. Thus, no further obstruction becomes
visible via this coloring. However, in some of the cases rather high search bounds
were necessary. Table 4 shows, for the extreme case of six relevant primes, the
number of vectors hit for several search bounds. Somewhat surprisingly, the small-
est solution for each color was smooth with respect to a bad prime bound of 800.

For the other surfaces in the sample, lower search bounds were sufficient, but
the differences were enormous. We summarize our observations in Table 5.
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Bound 50 100 200 400 800 1600 3200 6400 12800 25600 50000
#Vecs 5 10 14 20 24 26 28 30 31 31 32

Table 4. Numbers of evaluation vectors obtained from rational points of
bounded height for the surface with parameters .196; 75;�361;�169/.

Search bound B

#Primes #Surfaces 50 100 200 400 800 1600 3200 6400 12800

2 1577 190 56 22 — — — — — —
3 1119 555 187 48 1 — — — — —
4 262 262 200 127 67 36 24 13 4 —
5 9 9 9 8 8 8 5 3 1 —

Table 5. Search bounds required to obtain all possible evaluation vectors from
rational points. For each entry in the first column, we list in the second column
the number of surfaces in our sample having that number of relevant primes.
For each search bound B in columns 3 through 11, we list the number of these
surfaces for which the rational points of height at most B do not account for all
valuations vectors not forbidden by the Brauer-Manin obstruction.

Remark 4.1. There is the expectation that the behavior of the evaluation map ev˛;p
is strongly connected to the type of bad reduction at the prime p. For algebraic
Brauer classes, such a connection is well known; for example, see [11]. In the
transcendental case, there are only partial results; see for example [13, §4].

For our examples, the reductions Sp are rational surfaces having one or two
double lines. Further, ev˛;p is necessarily constant on the set of Q-rational points
reducing to a smooth point. The finer structure seems to be complicated; compare
Lemma 2.9.
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Bouvier, Thorsten Kleinjung, and Peter L. Montgomery

87Two grumpy giants and a baby — Daniel J. Bernstein and Tanja Lange

113Improved techniques for computing the ideal class group and a system of fundamental units in number fields —
Jean-François Biasse and Claus Fieker

135Conditionally bounding analytic ranks of elliptic curves — Jonathan W. Bober

145A database of elliptic curves over Q(
√

5): a first report — Jonathan Bober, Alyson Deines, Ariah Klages-Mundt,
Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, Paul Sharaba, and William Stein

167Finding simultaneous Diophantine approximations with prescribed quality — Wieb Bosma and Ionica Smeets

187Success and challenges in determining the rational points on curves — Nils Bruin

213Solving quadratic equations in dimension 5 or more without factoring — Pierre Castel

235Counting value sets: algorithm and complexity — Qi Cheng, Joshua E. Hill, and Daqing Wan

249Haberland’s formula and numerical computation of Petersson scalar products — Henri Cohen

271Approximate common divisors via lattices — Henry Cohn and Nadia Heninger

295Explicit descent in the Picard group of a cyclic cover of the projective line — Brendan Creutz

317Computing equations of curves with many points — Virgile Ducet and Claus Fieker

335Computing the unit group, class group, and compact representations in algebraic function fields — Kirsten
Eisenträger and Sean Hallgren

359The complex polynomials P(x) with Gal(P(x)− t)∼= M23 — Noam D. Elkies

369Experiments with the transcendental Brauer-Manin obstruction — Andreas-Stephan Elsenhans and Jörg Jahnel

395Explicit 5-descent on elliptic curves — Tom Fisher

413On the density of abelian surfaces with Tate-Shafarevich group of order five times a square — Stefan Keil and
Remke Kloosterman

437Improved CRT algorithm for class polynomials in genus 2 — Kristin E. Lauter and Damien Robert

463Fast computation of isomorphisms of hyperelliptic curves and explicit Galois descent — Reynald Lercier,
Christophe Ritzenthaler, and Jeroen Sijsling

487Elliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups — Jennifer Paulhus

507Isogeny volcanoes — Andrew V. Sutherland

531On the evaluation of modular polynomials — Andrew V. Sutherland

557Constructing and tabulating dihedral function fields — Colin Weir, Renate Scheidler, and Everett W. Howe

A
N

T
S

X
:

Tenth
A

lgorithm
ic

N
um

ber
Theory

Sym
posium

H
ow

e,Kedlaya
O

B
S

1

http://dx.doi.org/10.2140/obs.2013.1.1
http://dx.doi.org/10.2140/obs.2013.1.21
http://dx.doi.org/10.2140/obs.2013.1.41
http://dx.doi.org/10.2140/obs.2013.1.63
http://dx.doi.org/10.2140/obs.2013.1.87
http://dx.doi.org/10.2140/obs.2013.1.113
http://dx.doi.org/10.2140/obs.2013.1.135
http://dx.doi.org/10.2140/obs.2013.1.145
http://dx.doi.org/10.2140/obs.2013.1.167
http://dx.doi.org/10.2140/obs.2013.1.187
http://dx.doi.org/10.2140/obs.2013.1.213
http://dx.doi.org/10.2140/obs.2013.1.235
http://dx.doi.org/10.2140/obs.2013.1.249
http://dx.doi.org/10.2140/obs.2013.1.271
http://dx.doi.org/10.2140/obs.2013.1.295
http://dx.doi.org/10.2140/obs.2013.1.317
http://dx.doi.org/10.2140/obs.2013.1.335
http://dx.doi.org/10.2140/obs.2013.1.359
http://dx.doi.org/10.2140/obs.2013.1.395
http://dx.doi.org/10.2140/obs.2013.1.413
http://dx.doi.org/10.2140/obs.2013.1.437
http://dx.doi.org/10.2140/obs.2013.1.463
http://dx.doi.org/10.2140/obs.2013.1.487
http://dx.doi.org/10.2140/obs.2013.1.507
http://dx.doi.org/10.2140/obs.2013.1.531
http://dx.doi.org/10.2140/obs.2013.1.557

	1. Introduction
	2. The transcendental Brauer group
	3. A point search algorithm for special Kummer surfaces
	4. Some experiments
	4A. Coloring by covering---a search for regular colorings
	4B. Investigating the Brauer-Manin obstruction---a sample
	4C. The BM-relevant primes---the p-adic point of view
	4D. The BM-relevant primes---Q-rational points

	References
	
	

