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The remarkable structure and computationally explicit form of isogeny graphs
of elliptic curves over a finite field have made these graphs an important tool
for computational number theorists and practitioners of elliptic curve cryptogra-
phy. This expository paper recounts the theory behind isogeny graphs and ex-
amines several recently developed algorithms that realize substantial (and often
dramatic) performance gains by exploiting this theory.

1. Introduction

A volcano is a certain type of graph, one whose shape reminds us of the geological
formation of the same name. A typical volcano consists of a cycle with isomorphic
balanced trees rooted at each vertex.

Figure 1. A volcano.

More formally, let £ be a prime. We define an £-volcano as follows.

Definition 1. An {-volcano V is a connected undirected graph whose vertices are
partitioned into one or more levels Vy, ..., V; such that the following hold:

(1) The subgraph on Vy (the surface) is a regular graph of degree at most 2.
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508 ANDREW V. SUTHERLAND

Figure 2. A 3-volcano of depth 2.

(2) For i > 0, each vertex in V; has exactly one neighbor in level V;_;, and this
accounts for every edge not on the surface.

(3) Fori < d, each vertex in V; has degree £ + 1.

Self-loops and multi-edges are permitted in an £-volcano, but it follows from
condition (2) that these can only occur on the surface. The integer d is the depth
of the volcano (some authors use the term height). When d = 0 only condition (1)
applies, and in this case V' is a connected regular graph of degree at most 2. Such
a graph is either a single vertex with up to two self-loops, two vertices connected
by one or two edges, or a simple cycle on three or more vertices (the general case).
Figure 2 gives an overhead view of the volcano depicted in Figure 1, a 3-volcano
of depth 2.

We have defined volcanoes in purely graph-theoretic terms, but we are specif-
ically interested in volcanoes that arise as components of graphs of isogenies be-
tween elliptic curves. Our first objective is to understand how and why volca-
noes arise in such graphs. The definitive work in this area was done by David
Kohel, whose thesis explicates the structure of isogeny graphs of elliptic curves
over finite fields [30]. The term “volcano” came later, in work by Fouquet and
Morain [16; 17] that popularized Kohel’s work and gave one of the first examples
of how isogeny volcanoes could be exploited by algorithms that work with elliptic
curves.

This leads to our second objective: to show how isogeny volcanoes can be used
to develop better algorithms. We illustrate this with four examples of algorithms
that use isogeny volcanoes to solve some standard computational problems related
to elliptic curves over finite fields. In each case, the isogeny volcano approach
yields a substantial practical and asymptotic improvement over the best previous
results.
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2. Isogeny graphs of elliptic curves

We begin by recalling some basic facts about elliptic curves and isogenies, all of
which can be found in standard references such as [31; 41; 42].

2.1. Elliptic curves. Let k be a field. An elliptic curve E/k is a smooth projective
curve of genus 1 over k, together with a distinguished k-rational point 0. If K’/ k is
any field extension, the set E(k’) of k’-rational points of E forms an abelian group
with O as its identity element. For convenience we assume that the characteristic
of k is neither 2 nor 3, in which case every elliptic curve E/k can be written as
the projective closure of a short Weierstrass equation of the form

Y2=X3+aX +b,

where the coefficients a, b € k satisfy 4a®+27h% # 0; here the distinguished point 0
is taken to be the “point at infinity” on the projective closure. Distinct Weierstrass
equations may define isomorphic curves: The curves defined by Y2 = X34a; X +b;
and Y2 =X3+a, X +b, are isomorphic to one another over the algebraic closure k
of k if and only if ap = u*a, and b, = u®hy for some u € k; the isomorphism is
then defined over the field k(u). It follows that the quantity

4a3

(a,b) = 1728——&
j(a.b) 4a3 + 272

depends only on the E—isomorphism class of E, so we may define the j-invariant
j(E) of E to be j(a,b) for any model Y? = X3 +aX + b of E. Note that while
Jj(E) lies in k, it only determines the isomorphism class of E over the algebraic
closure k. Elliptic curves with the same j-invariant need not be isomorphic to one
another over k; such curves are said to be twists of each other.

Every j € k arises as the j-invariant of an elliptic curve E/k: We have 0 =
j(0,b) and 1728 = j(a,0), while if j # 0, 1728 we can take

a=3j(1728—j) and b=2/(1728—j)2,

and we find that j = j(a, b). There is thus a one-to-one correspondence between
the field k and the set of E—isomorphism classes of elliptic curves over k. This is
the vertex set of the isogeny graphs that we wish to define.

An automorphism of an elliptic curve E is an automorphism of E as a curve
that fixes the identity element 0. Most elliptic curves have automorphism groups
of order 2, with the nontrivial automorphism being the map (X, Y) — (X, —-Y);
the only exceptions are the elliptic curves with j-invariants equal to 0 and 1728,
which may have extra automorphisms. To simplify matters we will occasionally
exclude these special cases from consideration.
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2.2. Isogenies. Let E and E, be elliptic curves over a field k. An isogeny ¢ :
E{ — E; is a nonzero morphism of elliptic curves, that is, a nonconstant rational
map that takes the identity of E; to the identity of E». (We do not require that the
morphism be defined over k; we allow maps defined over the algebraic closure.)
The degree of an isogeny is its degree as a rational map. We call an isogeny of de-
gree n an n-isogeny. Elliptic curves related by an isogeny of degree n are said to be
n-isogenous. We say that two elements jy, j» of k are n-isogenous over k if there
are n-isogenous elliptic curves E1, E; over k with j(Ey) = j; and j(E») = j».
For a given E/k, if one thinks of j(E) as representing the set of twists of E, then
saying that j(E1) and j(E,) are n-isogenous means that one can choose twists
of E1 and E, that are n-isogenous. Over an algebraically closed field, the set
of twists is trivial, so the choice of twist is easy; but even over non-algebraically
closed fields, it is easy in practice to find compatible twists.

Every isogeny ¢ : E; — E5 induces a surjective group homomorphism from
E1(k) to E5(k) that has a finite kernel; in this paper, when we speak of the kernel
of an isogeny, we will always mean the set of points in the kernel over k. The kernel
of an n-isogeny typically has cardinality »n (in which case the isogeny is said to be
separable), and this is always the case when 7 is not divisible by the characteristic
of k. We are primarily interested in isogenies of prime degree £ # char k, and we
shall only distinguish isogenies up to isomorphism, regarding isogenies ¢ and ¢
as equivalent if ¢ = 1o ¢ o’ for some isomorphisms ¢ and ¢'.

There are two important facts about isogenies that we need. The first is that
every finite subgroup of Ej(k) is the kernel of a separable isogeny over k that
is uniquely determined (up to isomorphism) [41, Proposition II1.4.12], and this
isogeny can be explicitly computed using Vélu’s algorithm [48]. The second is that
every n-isogeny ¢ : E1 — E» has a unique dual isogeny ¢ : E; — E that satisfies

pog=¢gogp=In],

where [n] is the multiplication-by-n map that sends P € E{ (k) tonP = P +---+ P;
see [41, Theorem II1.6.1]. The dual isogeny ¢ has degree n, and [n] has degree n2.

The kernel of the multiplication-by-n map is the n-torsion subgroup
E[n]={P € E(k):nP =0},
and for n not divisible by the characteristic of k we have
En|>~7Z/nZx7Z/nZ.

For primes £ 7 chark, there are £ + 1 cyclic subgroups in E[£] of order £, each of
which is the kernel of a separable £-isogeny (over k). Every £-isogeny ¢ from E
arises in this way, since any point in the kernel of ¢ also lies in the kernel of

gog =[]
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Not every cyclic subgroup of E[{] is the kernel of an isogeny defined over k;
this occurs precisely when the subgroup is invariant under the action of the Galois
group G = Gal(k(E[€])/ k). The Galois group acts linearly on E[{]| ~Z/{ZxZ/{Z,
which we may view as an [Fy-vector space of dimension two in which the order-£
subgroups of E[{] are linear subspaces. If G fixes more than two linear subspaces
of a two-dimensional vector space then it must fix all of them. This yields the
following lemma.

Lemma 2. Let E/k be an elliptic curve with j-invariant not equal to 0 or 1728,
and let £ # chark be a prime. Up to isomorphism, the number of k-rational £-
isogenies from E is 0,1,2, or £ + 1.

2.3. The modular equation. Let j(t) be the classical modular function defined
on the upper half plane H. For any 7 € H, the complex numbers j(t) and j(N 1)
are the j-invariants of elliptic curves defined over C that are related by an isogeny
whose kernel is a cyclic group of order N. The minimal polynomial &y (Y') of
the function j(Nz) over the field C(j(z)) has coefficients that are integer poly-
nomials in j(z). If we replace j(z) with X we obtain the modular polynomial
®y € Z[X,Y], which is symmetric in X and Y and has degree £ + 1 in both
variables. It parametrizes pairs of elliptic curves over C related by a cyclic N-
isogeny. The modular equation ®n(X,Y) = 0 is a canonical equation for the
modular curve Yo(N) = To(N)\H.
When N is a prime £, every N -isogeny is cyclic, and we have

Q(j(E1). j(E2)) =0 <= j(E1) and j(E,) are £-isogenous.

This moduli interpretation remains valid over every field, even those of positive
characteristic.

2.4. The graph of L-isogenies. We now use the modular equation to define the
graph of £-isogenies over a field k of characteristic different from £.

Definition 3. The {-isogeny graph Gy (k) is the directed graph with vertex set k
and edges (j1, j») present with multiplicity equal to the multiplicity of j, as a root

The vertices of Gy (k) are j-invariants, and its edges correspond to (isomorphism
classes of) £-isogenies. Every edge (1, j2) that is not incident to O or 1728 occurs
with the same multiplicity as (j2, j1). Thus the subgraph of G4(k) on k\{0, 1728}
is bidirected, and we may view it as an undirected graph. For any fixed k, the
graphs Gy(k) all have the same vertex set, but different edge sets, depending on £.
Given an elliptic curve E/k, we may view j(E) as a vertex in any of these graphs,
a fact that has many applications.
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2.5. Supersingular and ordinary components. Over a field of positive character-
istic p, an elliptic curve is supersingular if its p-torsion subgroup E|[p] is trivial;
otherwise it is ordinary. If E is supersingular, then so is any elliptic curve isoge-
nous to E; therefore Gy (k) is composed of ordinary and supersingular components.

Every supersingular curve over k can be defined over a quadratic extension
of the prime field of k; thus every supersingular j-invariant in k lies in F p2 [41,
Theorem V.3.1]. It follows that if E is supersingular, then the roots of ®;(j(E),Y)
all lie in [ 2. Thus every vertex in a supersingular component of G¢(F ,2) has out-
degree £ + 1. (Every vertex other than those equal to or adjacent to 0 or 1728 also
has in-degree £ + 1.)

Remark 4. Ramanujan graphs. In fact, G¢(F ,2) has just one supersingular com-
ponent [30, Corollary 78], and when p = 1 mod 12 it is a Ramanujan graph [35],
an expander graph with an essentially optimal expansion factor. This fact has
cryptographic applications [10].

We are primarily interested in the ordinary components of Gy (k), since this is
where we will find isogeny volcanoes. First we need to recall some facts from the
theory of complex multiplication.

2.6. Complex multiplication. A morphism from an elliptic curve E/k to itself
is called an endomorphism; an endomorphism of E is either the zero map or an
isogeny from E to itself. (We do not require that endomorphisms be defined over
the base field k.) The endomorphisms of an elliptic curve E form a ring End(E)
in which addition and multiplication are defined via the formulas

(@ +9)(P)=¢(P)+¢(P) and (p¢)(P)=¢(¢p(P)) forall P E(k).

For every positive integer n, the multiplication-by-n map [r] lies in End(E), and
we have [n]¢p =¢ +---+ ¢ = n¢ for all ¢ € End(F). Since [1] is never the zero
endomorphism, it follows that End(E) contains a subring isomorphic to Z, which
we shall identify with Z.

When End(F) is larger than Z we say that E has complex multiplication (CM), a
term that arises from the fact that over the complex numbers, endomorphisms that
do not lie in Z may be viewed as “multiplication-by-«” maps for some algebraic
integers «. Over a finite field [, every elliptic curve has complex multiplication;
for ordinary elliptic curves over [, the Frobenius endomorphism that sends the
point (X,Y) to (X4, Y?) is an example of an endomorphism that does not lie in Z.

When E has complex multiplication there are two possibilities:
an order O in an imaginary quadratic field, or

End(E) ~
(E) an order O in a definite quaternion algebra,
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and in either case we say that £ has CM by O. The second case occurs if and
only if E is supersingular, which is possible only in positive characteristic; we are
primarily interested in the first case. It will be convenient to fix an isomorphism
0 = End(FE) so that we may regard elements of O as elements of End(F) and
vice versa.

The endomorphism algebra End®(E) = End(E) ® @ is preserved by isogenies.
Thus if £ has complex multiplication, then so does every elliptic curve isogenous
to E, but not necessarily by the same order O.

2.7. Horizontal and vertical isogenies. Let ¢ : E1 — E» be an £-isogeny of elliptic
curves with CM by imaginary quadratic orders 0; and O;, respectively. Then
01 =7+ 11Z and O, = Z + 157, for some 71, 75 € H. The isogeny ¢ o 7o 0 ¢ lies in
End(E1), and this implies that £75 € O1; similarly, £7; € O,. There are thus three
possibilities:

(1) 07 = 05, in which case we say that ¢ is horizontal.
(2) [01 : O3] = £, in which case we say that ¢ is descending.
(3) [0z : 01] = ¢, in which case we say that ¢ is ascending.

In the last two cases we say that ¢ is a vertical £-isogeny. The orders O and 0,
necessarily have the same fraction field K = End®(E;) = End®(E>), and both lie
in the maximal order Ok, the ring of integers of K.

2.8. The CM torsor. Let E/k be an elliptic curve with CM by an imaginary qua-
dratic order O, and let a be an invertible O-ideal. The a-torsion subgroup

E[a] ={P € E(k):a(P) =0 forall « € a}

is the kernel of a separable isogeny ¢, : E — E’. Provided that a has norm not
divisible by the characteristic of k, we have deg ¢, = N(a) = [0 : a]. Using the fact
that a is invertible, one can show that End(E) ~ End(E’); thus ¢, is a horizontal
isogeny.

If a and b are two invertible O-ideals then ¢qp = @qpp. Thus the group of
invertible O-ideals acts on the set of elliptic curves with endomorphism ring O.
When a is a principal ideal we have E ~ E’; hence there is an induced action of
the ideal class group C1(0) on the set

Ellg(k) = {j(E) : E/k with End(E) ~ O}

This action is faithful (only principal ideals act trivially) and transitive (see [42,
Proposition II.1.2] for a proof in the case that k = C and O = Ok, which may be
generalized via [31, Chapters 10, 13]). Provided it is nonempty, the set Ellg(k) is
thus a principal homogeneous space, a torsor, for the group Cl(0). The cardinality
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of Ellg(k) is either O or h, where h = h(0) = #CI(0) is the class number. Thus
either every curve E/k with CM by O can be defined over k, or none of them can.

Remark 5. Decomposing isogenies. The CM action allows us to express hori-
zontal isogenies @ of large degree as the composition of a sequence of isogenies
of smaller degree. Even if a has prime norm, we may find that [a] = [py - - - ps]
in C1(0), where the p; are prime ideals with norms smaller than a. Under the gen-
eralized Riemann hypothesis (GRH), we can find, in probabilistic subexponential
time, an equivalence [a] = [p; ---ps] in which the p; have norms that are poly-
logarithmic in the class number 4 and s = O(log h); see [11, Theorem 2.1]. This
makes horizontal isogenies asymptotically easier to compute than vertical isogenies
(this holds even without the GRH), which has implications for cryptography; see
[6; 18; 19; 20; 27; 28].

2.9. Horizontal isogenies. Every horizontal {-isogeny ¢ arises from the action of
an invertible O-ideal [ of norm £, namely, the ideal of endomorphisms « € O whose
kernels contain the kernel of ¢. If £ divides the index of O in the maximal order Og
of its fraction field K, then no such ideals exist. Otherwise we say that O is maximal
at £, and in this case the number of invertible 0-ideals of norm £ is equal to

disc(K) 0 %f { %s inerF in I?,
+ 7 =41 if £ is ramified in K,
2 if £ splits in K.

Each such O-ideal gives rise to a horizontal £-isogeny. In the split case we have
(£) = (-1, and the [-orbits partition Ellg(k) into cycles corresponding to the cosets
of ([(]) in C1(0). When [ is principal the ideal class [[] is trivial, which leads to
self-loops in G (k). We can also have [[] = [[] even though [ # [, which gives rise
to double edges in Gy (k).

2.10. Vertical isogenies. Let O be an imaginary quadratic order with discrimi-
nant D, and let 0’ = Z + £0 be the order of index £ in 0. To simplify matters, let
us assume that O and 0’ have the same group of units {£1}; this holds whenever
D < —4, and excludes only the cases O = Z[i] and 0 = Z[{3], which correspond
to the special j-invariants 1728 and 0, respectively.

The map that sends each invertible 0’-ideal a to the invertible O-ideal a0 pre-
serves norms and induces a surjective homomorphism

p: CI(0") — CI(0).

See [12, Proposition 7.20] for a proof in the case that O is the maximal order; the
general case is proved similarly (see [4, Lemma 3] and [7, §3]). Under a suitable
identification of the class groups C1(0”) and CI(0) with their torsors Ellgs (k) and
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Ellg(k), the vertical isogenies from Ellg (k) to Ellg(k) correspond to the map from
Cl1(0’) to C1(0) given by p. To show this, let us prove the following lemma.

Lemma 6. Let E'/k be an elliptic curve with CM by O'. Then there is a unique
ascending L-isogeny from E' to an elliptic curve E |k with CM by O.

Proof. The existence of E’/k implies that Ellgs (k) is nonempty, and since O con-
tains O, it follows that Ellg(k) is also nonempty.!

Let us suppose that there exists an ascending {-isogeny ¢ : E{ — E1, for some
elliptic curve E{ with CM by 0’. Twisting E; if necessary, we may choose an
invertible 0’-ideal a so that the horizontal isogeny ¢y maps E] to E’. If we now
set a = p(a’) and let E be the image of ¢4 0 ¢y, then E has CM by 0, and there is
a unique isogeny ¢ : E/ — E such that ¢ o oy = @, 0 ¢1, by [41, Corollary 4.11].
We have deg ¢ = degp,deg i/ degpy = £, thus ¢ is an ascending £-isogeny.
It follows that if any elliptic curve Ej/k with CM by 0 admits an ascending
£-isogeny, then so does every such elliptic curve.

We now proceed by induction on d = vy([Og : 0]). Let Dg = disc(K). For
d =0, every elliptic curve E/k with CM by O admits £ + 1 k-rational £-isogenies,
of which 1+ (%) are horizontal. The remaining £ — (DTK) > 0 must be descending,
and their duals are ascending £-isogenies from elliptic curves with CM by @', It
follows that there are a total of (£— (DTK))h(@) ascending {-isogenies from Ellgr (k)
to Ellg(k). By [12, Theorem 7.24], this is equal to the cardinality /(0") of Ellg (k).
Since there is at least one ascending £-isogeny from each elliptic curve E’/k with
CM by 0O’, there must be exactly one in each case.

The argument for d > 0 is similar. By the inductive hypothesis, every elliptic
curve E/k with CM by O admits exactly one ascending £-isogeny, and since £ now
divides [Og : O], there are no horizontal isogenies from E, and all £ of the remaining
£-isogenies from E must by descending. There are thus a total of £/(0) ascending
{-isogenies from Ellgr (k), which equals the cardinality 4(0") of Ellg (k). d

It follows from the proof of Lemma 5 that there is a one-to-one correspondence
between the graph of the function p and the edges of G (k) that lead from Elle (k)
to Ellg(k). Indeed, let us pick a vertex j; € Ellgr(k) and let j; be its unique neigh-
bor in Ellg(k) given by Lemma 6. If we identify the edge (j{, j1) in G¢(k) with the
edge (1cie)» lci(o)) in the graph of p, then every other edge in the correspondence
is determined in a way that is compatible with the actions of C1(O’) and CI(O) on
the torsors Ellgs (k) and Ellg(k). Under this correspondence, the vertices in Ellg/ (k)
that are connected to a given vertex v in Ellg(k) (the children of v) correspond to

10One way to see this is to note that k contains all the roots of the Hilbert class polynomial for 0/,
hence it must contain all the roots of the Hilbert class polynomial for O, since the ring class field
of O’ contains the ring class field of O; see Section 3.4.
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a coset of the kernel of p, a cyclic group of order £ — (%) generated by the class
of an invertible 0’-ideal of norm ¢2; see [7, Lemma 3.2].

2.11. Ordinary elliptic curves over finite fields. We now assume that k is a finite
field F,4. Let E/F, be an ordinary elliptic curve and let 7 g denote the Frobenius
endomorphism (X, Y) — (X4, Y?). The trace of Frobenius is given by

t=Trng =q+1—-#E(F,).

and g satisfies the characteristic equation n% —tng +¢q =0. As an element of the
imaginary quadratic order O ~ End(FE), the Frobenius endomorphism corresponds
to an algebraic integer with trace ¢t and norm ¢g. Thus we have the norm equation

4q =12 —v?Dg,

in which Dg is the discriminant of the field K = Q(/¢2? — 4¢) containing 0, and
v =[Ok : Z[rE]]. We have

Zlrg] €0 C Ok,

thus [0k : O] divides v, and the same is true for any elliptic curve E/F, with
Frobenius trace ¢.
Let us now define

Ell;(Fy) ={j(E) : E/F, satisfies Trmg =t},

the set of F p-isomorphism classes of elliptic curves over [, with a given Frobe-
nius trace ¢. By a theorem of Tate [47], Ell;(F,) corresponds to an isogeny class,
but note that Ell;(F,) = Ell;(F,4). For any ordinary elliptic curve E/F, with
Frobenius trace t = Tr g, we may write Ell;([F,) as the disjoint union

Ell,(F)= ||  Ello(Fy).

7[rg]CO0C0k

of cardinality equal to the Kronecker class number H (12 — 4q); see [40, Defini-
tion 2.1].

2.12. The main theorem. We now arrive at our main theorem, which states that
the ordinary components of G,(F;) (other than the components of 0 and 1728)
are £-volcanoes, and characterizes the structure of these components. The proof
follows easily from the material we have presented, as the reader may wish to
verify.

Theorem 7 (Kohel). Let V' be an ordinary component of Gy(F4) that does not
contain 0 or 1728. Then V is an £-volcano for which the following hold:

(1) The vertices in level V; all have the same endomorphism ring 0;.
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(2) The subgraph on Vy has degree 1 + (%), where Dy = disc(0p).
3) If (%) > 0, then |Vy| is the order of [I] in C1(Q¢); otherwise |Vo| = 1.

(4) Thedepth of V isd = Vg((tz — 4q)/D0)/2, where t?> = (Trg)? for any E
with j(E) e V.

(5) We have £ } [Ok : Opl and [0; : 0;j41] =L for 0 <i <d.

Remark 8. Special cases. Theorem 7 is easily extended to the case where V
contains 0 or 1728. Parts (1)—(5) still hold; the only necessary modification is
the claim that V' is an £-volcano. When V' contains 0, if V7 is nonempty then it
contains %(Z — (_T?)) vertices, and each vertex in V; has three incoming edges
from O but only one outgoing edge to 0. When V' contains 1728, if V7 is nonempty
then it contains %(Z — (_T})) vertices, and each vertex in V; has two incoming edges
from 1728 but only one outgoing edge to 1728. This 3-to-1 (respectively, 2-to-1)
discrepancy arises from the action of Aut(E) on the cyclic subgroups of E[{] when
J(E) = 0 (respectively, j(E) = 1728). Otherwise, V satisfies all the requirements
of an £-volcano, and most of the algorithms we present in the next section are

equally applicable to V.

Example 9. Let p = 411751 and £ = 3. The graph G3(F,) has a total of 206254
components, of which 205911 are ordinary and 343 are supersingular. The su-
persingular components all lie in the same isogeny class (which is connected in
G3(F 2)), while the ordinary components lie in 1283 distinct isogeny classes.

Let us consider the isogeny class Ell; (F ,) for t =52. We then have 4p = t2—v%D
with v =2-32-5 and D = —203. The subgraph Gy ,(F,) of G¢(Fp) on Ell;(F)
(known as a cordillera [33]) consists of ten 3-volcanoes, all of which have depth
d = vg(v) = 2. It contains a total of 1008 vertices distributed as follows:

e 648 vertices lie in six 3-volcanoes with [Og : Op] = 10 and |Vp| = 12.
e 216 vertices lie in two 3-volcanoes with [Og : O¢] = 5 and | Vp| = 12.
e 108 vertices lie in a 3-volcano with [Og : Og] =2 and |Vy| = 12.

* 36 vertices lie in a 3-volcano with [0k : Op] = 1 and |Vy| = 4.
For comparison:

* G2,52(F) consists of 252 2-volcanoes of depth 1 with |Vp| = 1.
* Gs5,52(Fp) consists of 144 5-volcanoes of depth 1 with |Vp| = 1.
* G7,52(F ) consists of 504 7-volcanoes with two vertices and one edge.

* G11,52(Fp) consists of 1008 11-volcanoes that are all isolated vertices.
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3. Applications

We now consider several applications of isogeny volcanoes, starting with one that
is very simple, but nevertheless instructive.

3.1. Finding the floor. Let E/F, be an ordinary elliptic curve. Then j(E) lies in
an ordinary component V' of G, (F;). We wish to find a vertex on the floor of V,
that is, a vertex v in level Vy, where d is the depth of V. Such vertices v are easily
distinguished by their (out-)degree, which is the number of roots of ®;(v, Y) that
lie in F; (counted with multiplicity).

Proposition 10. Let v be a vertex in an ordinary component V of depth d in G¢(Fy).
Either degv <2 andv € Vi, ordegv =L+ 1 and v € V.

Proof. If d = 0 then V = V3 = V; is a regular graph of degree at most 2 and
v € V;. Otherwise, either v € V; and v has degree 1, or v ¢ V; and v has degree
£+ 1. O

We note that if j(E) is on the floor then E[(]([F,) is necessarily cyclic (otherwise
there would be another level below the floor). This is useful, for example, when
using the CM method to construct Edwards curves [34], and shows that every
ordinary elliptic curve E/F, is isogenous to some E’/F, with E'(F,) cyclic.

Our strategy for finding the floor is simple: If vg = j(E) is not already on the
floor then we will construct a random path from v to a vertex vg on the floor. By a
path, we mean a sequence of vertices vg, v1, ..., Ug such that each pair (v;_1, v;)
is an edge and v; # v;_5 (so backtracking is prohibited).

Algorithm (FINDFLOOR).

Input:  An ordinary vertex vo € Gy(Fy).

Output: A vertex on the floor of the component of vg.

1. If degvg < 2 then output vy and terminate.

2. Pick a random neighbor v; of vg and set s < 1.

3. While deg vs > 1: Pick a random neighbor vy # vs—; of vs and increment s.
4. Output vy.

The complexity of FINDFLOOR is given by the following proposition, in which
M(n) denotes the time to multiply two n-bit integers. It is worth noting that for
large £ the complexity is dominated by the time to substitute v into ®;(X, Y), not
by root-finding (a fact that is occasionally overlooked).

Proposition 11. Given ®; € F4[X, Y], each step of FINDFLOOR can be accom-
plished in O((*M(n) 4+ M(£n)n) expected time, where n = logq. The expected
number of steps s is § + O(1), where § is the distance from vy to the floor.
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Proof. Computing ¢(Y) = ®y(v,Y) involves O(£?) [F4-operations, or O({>M(n))
bit operations. The neighbors of v are the distinct roots of ¢(Y) that lie in Fg,
which are precisely the roots of f(Y)=gcd(Y?—Y,¢(Y)). Computing ¥4 mod ¢
involves O(n) multiplications in the ring F,[Y]/(¢), each of which can be accom-
plished using O (M(£n)) bit operations, via Kronecker substitution [22], yielding an
O(M(£n)n) bound. With the fast Euclidean algorithm the gcd of two polynomials
of degree O({) can be computed using O(M(£n)log £) bit operations. If logf < n
then this is bounded by O(M(£n)n), and otherwise it is bounded by O (£2M(n)).
Thus the total time to compute f(Y') for any particular v is O(£2M(n) + M(£n)n).

The degree of f(Y) is the number of distinct roots of ®(Y, v) in F,. For £ > 3,
this is less than or equal to 2 if and only if v is on the floor. For £ < 3 we can count
roots with multiplicity by taking gcds with derivatives of ¢, within the same time
bound. To find a random root of f(Y) we use the probabilistic splitting algorithm
of [37]; since we need only one root, this takes O(M(£n)n) expected time.

For every vertex v in a level V; above the floor, at least 1/3 of v’s neighbors
lie in level V; 1, thus within O(1) expected steps the path will be extended along
a descending edge. Once this occurs, every subsequent edge in the path must be
descending, since we are not allowed to backtrack along the single ascending edge,
and we will reach the floor within § + O(1) steps. O

Remark 12. Removing known roots. As a minor optimization, rather than pick-
ing vgy1 as aroot of ¢(Y) = Oy(vs, Y) in step 3 of the FINDFLOOR algorithm,
we may use ¢(Y) /(Y —vs—1)¢, where e is the multiplicity of vs—1 as aroot of ¢ (Y).
This is slightly faster and eliminates the need to check that vs4+1 # vs—1.

The FINDFLOOR algorithm finds a path of expected length § + O(1) from v
to the floor. With a bit more effort we can find a path of exactly length §, using a
simplified version of an algorithm from [17].

Algorithm (FINDSHORTESTPATHTOFLOOR).

Input:  An ordinary vg € G (Fy).

Output: A shortest path to the floor of the component of vg.
1. Let vg = j(E). If degvg < 2 then output vg and terminate.

2. Pick three neighbors of vg and extend paths from each of these neighbors in
parallel, stopping as soon as any of them reaches the floor. (If vy does not have
three distinct neighbors then just pick all of them.)

3. Output a path that reached the floor.
The correctness of the algorithm follows from the fact that at most two of vg’s

neighbors do not lie along descending edges, so one of the three paths must begin
with a descending edge. This path must then consist entirely of descending edges,
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yielding a shortest path to the floor. The algorithm takes at most 3§ steps, each of
which has complexity bounded as in Proposition 11.

The main virtue of FINDSHORTESTPATHTOFLOOR is that it allows us to com-
pute &, which tells us the level V;_gs of j(FE) relative to the floor V. It effectively
gives us an “altimeter” §(v) that may be used to navigate V. We can determine
whether a given edge (v1, v2) is horizontal, ascending, or descending, by com-
paring §(vq) to §(v2), and we can determine the exact level of any vertex; see
[43, §4.1] for algorithms and further details. We should also mention that an alter-
native approach based on pairings has recently been developed by Ionica and Joux
[25; 26], which is more efficient when d is large.

3.2. Identifying supersingular curves. Both algorithms in the previous section
assume that their input is the j-invariant of an ordinary elliptic curve. But what if
this is not the case? If we attempt to “find the floor”” on the supersingular component
of G¢(F,2) we will never succeed, since every vertex has out-degree £ + 1. On
the other hand, from part (4) of Theorem 7 (and Remark 8), we know that every
ordinary component of Gg¢(F ,2) has depth less than log, 2p, so we can bound the
length of the shortest path to the floor from any ordinary vertex.

This suggests that, with minor modifications, the algorithm FINDSHORTEST-
PATHTOFLOOR can be used to determine whether a given elliptic curve E/F,
is ordinary or supersingular. If j(E) ¢ F,> then E must be ordinary, so we
may assume vo = j(E) € Fp2 (even if E is defined over Fp, we want to work
in F,2). We modify step 2 of the algorithm so that if none of the three paths
reaches the floor within log, 2p steps, it reports that its input is supersingular
and terminates. Otherwise, the algorithm succeeds and can report that its input
is ordinary. This works for any prime £, but using £ = 2 gives the best running
time.

This yields a Las Vegas algorithm to determine whether a given elliptic curve
is ordinary or supersingular in 0(n?) expected time, where n = log g. For com-
parison, the best previously known Las Vegas algorithm has an expected running
time of O (n*), and the best known deterministic algorithm runs in 0 (n°) time.
Remarkably, the average time for a random input is only 5(112). This matches the
complexity of the best known Monte Carlo algorithm for this problem, with better
constant factors; see [45] for further details.

3.3. Computing endomorphism rings. We now turn to a more difficult problem:
determining the endomorphism ring of an ordinary elliptic curve E/F,. We assume
that the trace of Frobenius ¢ = Tr g is known; this can be computed in polynomial
time using Schoof’s algorithm [39]. By factoring 4¢ — t2, we can compute the
positive integer v and fundamental discriminant D satisfying the norm equation
4q =t?> —v?D. We then know that Z[£] has index v in the maximal order Ok,
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where K = Q(+/D). The order 0 ~ End(E) is uniquely determined by its index u
in Ok, and ¥ must be a divisor of v. Let us assume D < —4.

We can determine u by determining the level of j(E) in its component of G (F)
for each of the primes £ dividing v. If v = E‘i" ... [ is the prime factorization
of v, then u = Zfl .- -Kﬁw, where 6; = e; —d; is the distance from j(F) to the floor
of its £;-volcano. But it may not be practical to compute §; using FINDSHORTEST-
PATHTOFLOOR when ¢; is large: Its complexity is quasiquadratic in £;, which may
be exponential in log ¢ (and computing @, is even harder). More generally, we
do not know any algorithm for computing a vertical £-isogeny whose complexity
is not at least linear in £ (in general, quadratic in £). This would seem to imply that
we cannot avoid a running time that is exponential in log g.

However, as noted in Remark 5, computing horizontal isogenies is easier than
computing vertical isogenies. We now sketch an approach to computing End(FE)
that uses horizontal isogenies to handle large primes dividing v, based on the al-
gorithm in [4]. To simplify the presentation, we assume that v is squarefree; the
generalization to arbitrary v is straightforward.

Let & be the lattice of orders in Ok that contain Z[wg]. Our strategy is to
determine whether u is divisible by a given prime divisor £ of v using a smooth
relation that holds in an order O € & if and only if O is maximal at £. This relation
will hold in End(F) if and only if u is not divisible by .

A smooth relation R is a multiset {p',...,ps*} in which the p; are invertible
Z|rg]-ideals with prime norms p; occurring with multiplicity r;, such that p;
and r; satisfy bounds that are subexponential in log g. We say that R holds in 0 € &
if the O-ideal Rg = (p10)"! --- (ps0)”s is principal. If 0’ C O, the existence of the
norm-preserving homomorphism p : CI(0’) — CI(0) defined as in Section 2.10
implies that if R holds in ©’, then it holds in O. It thus suffices to find a relation
that holds in the order of index v/£ in Ok, but not in the order of index £ in Og.
Under the GRH, for £ > 3 we can find such an R in probabilistic subexponential
time [3].

To determine whether R holds in 0 ~ End(E), we compute the CM action
of [Rg] € CI(0) on j(E) € Ellp(F4). This involves walking r; steps along the
surface of a p;-volcano for each of the p; appearing in R and then checking
whether we wind up back at our starting point j(E£). None of the p; divide v,
so these p;-volcanoes all have depth O and consist of either a single edge or a
cycle. We must choose a direction to walk along each cycle (one corresponds
to the action of p;, the other to p;). There are methods to determine the cor-
rect choice, but in practice we can make s small enough so that it is easy to
simply try every combination of choices and count how many work; see [4] for
details.
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Under the GRH, this algorithm has a subexponential expected running time of
L[1/2,+/3/2] plus the cost of factoring 4¢q — t2 (the latter is heuristically negli-
gible, using the number field sieve, and provably bounded by L[1/2, 1] in [32]).
Bisson [3] has recently improved this to L[1/2, +/2/2] plus the cost of factoring
4q — 12
Example 13. Let ¢ = 232% 4261 and suppose that E /[, has Frobenius trace

t =2306414344576213633891236434392671392737040459558.
Then 49 = t? —v2D, where D = —147759 and v = 22 p{ p,, with

p1 = 16447689059735824784039,
p2 = 71003976975490059472571.

We can easily determine the level of j(E) in its 2-volcano by finding a shortest
path to the floor. For p; and p, we instead use smooth relations R; and R;.

Let O be the order of index p; in O, and @’1 the order of index v/p; in Og.
The relation

_ 2 =210 —145 - - =6 -7 =
R1 ={ps5.979. P33 - P29,P31, P47 D139, P149.P167. P191. D251+ P269. D557, D643}

holds in Oy but not in 0] (here p; denotes the ideal of norm £ corresponding to the
reduced binary quadratic form £x2 + bxy + cy? with b > 0). If we now let O, be
the order of index p, in Ok and 0/, the order of index v/ p in Ok, then

_ =576 2 — = =28 =3 =
Ry ={p11.973 . P33, P41, P47, 983, P101. P1o7, P307- P317, P419. Po11}

holds in O3 but not in 07,

Including the time to compute the required modular polynomials and the time
to find the relations R and R, the total time to compute End(E) in this example
is less than half an hour. In contrast, it would be completely infeasible to directly
compute a vertical isogeny of degree p; or p,; writing down even a single element
of the kernel of such an isogeny would require more than 289 bits.

3.4. Computing Hilbert class polynomials. Let O be an imaginary quadratic order
with discriminant D. The Hilbert class polynomial Hp is defined by

Hp(X)= [[ x-j).
J€El(C)
Equivalently, Hp (X) is the minimal polynomial of the j-invariant of the lattice O
over the field K = Q(+/D). Remarkably, its coefficients lie in Z.
The field Ko = K(j(0)) is the ring class field of 0. If a prime ¢ splits completely
in Kg, then Hp (X) splits completely in F,[X] and its roots form the set Ellg([F4).
Each root is then the j-invariant of an elliptic curve E/F; with End(E) >~ 0. We
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must have #E(F;) = g + 1 —t, where the norm equation 4g = t2 —v2 D uniquely
determines the integers ¢ and v up to sign, for D < —4. We can thus use a root
of Hp(X) in F4 to construct an elliptic curve E/[F, with exactly ¢ 4+ 1 —¢ rational
points; under some reasonable heuristic assumptions about the distribution of prime
numbers, we can achieve any desired cardinality for E([F;) by choosing ¢ and D
appropriately [8]. This is known as the CM method, which is commonly used in
elliptic curve cryptography and elliptic curve primality proving.

We now outline an algorithm to compute Hp (X) using the CRT approach de-
scribed in [1; 43]. Under the GRH it runs in O(|D|(log|D])>T°(M)) expected time,
which is quasilinear in the O(|D|log|D|) size of Hp(X). The same approach can
be used to compute many other types of class polynomials; see [14].

Algorithm (COMPUTEHILBERTCLASSPOLYNOMIAL).

Input:  An imaginary quadratic discriminant D.

Output: The Hilbert class polynomial Hp (X).

1. Select a sufficiently large set of primes p that satisfy 4p =12 —v2D.

2. For each prime p, compute Hp(X) mod p as follows:
(a) Generate random elliptic curves E/F, until #E(F,) = p + 1 —1.
(b) Use volcano climbing to find E’ isogenous to E with End(E”) ~ 0.
(c) Enumerate Ellg(F,) by applying the C1(0)-action to j(E’).
(d) Compute Hp(X) = HjeEll(r,([Fp)(X —j) mod p.
3. Use the CRT to recover Hp(X) over Z (or over [, via the explicit CRT).

Isogeny volcanoes play a key role in the efficient implementation of this algo-
rithm, not only in step 2(b), but also in step 2(c), which is the most critical step
and merits further discussion. Given any sequence of generators o7, ..., o for a
finite abelian group G, if we let G; = (a1, ...,®;) and define r; = [G; : G;—1],
then every element 8 of G can be uniquely represented in the form g = cx‘f1 . -azk,
with 0 <e; < r;. This is a special case of a polycyclic presentation. We can use a
polycyclic presentation of C1(0) to enumerate the torsor Ellg([F,) by enumerating
the list of exponent vectors (e, ..., ex) in reverse lexicographic order. At each
step we apply the action of the generator «; that transforms the current exponent
vector to the next in the list (usually i = 1, since e; varies most frequently).

Using generators of the form «; = [[;], where [; is an invertible O-ideal of prime
norm £;, this amounts to walking along the surfaces of various £-volcanoes. To
make this process as efficient as possible, it is crucial to minimize the size of the
primes £;. This is achieved by choosing [} to minimize £; and then minimizing
each £; subject to [l;] & ([l1],...,[li—1]); this is called an optimal presentation
[43, §5.1]. This will often cause us to use a set of generators that is larger than
strictly needed.
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As an example, for D = —79947 the class group CI(0) is cyclic of order 100,
generated by the class of an ideal with norm 19. But the optimal presentation for
CI(0) uses ideals [1 and [, with norms 2 and 13, respectively. The classes of these
ideals are not independent, we have [[3]° = [(;]'8, but they do form a polycyclic
presentation with 1 =20 and r, = 5. Using this presentation to enumerate Ellg(F »)
is more than 100 times faster than using any single generator of C1(0). One can
construct examples where the optimal presentation is exponentially faster than any
presentation that minimizes the number of generators; see [43, §5.3].

Enumerating Ellg([F ,) using a polycyclic presentation involves walking along
the surfaces of various £-volcanoes, as in the previous section when testing rela-
tions. But using an optimal presentation will often mean that some of the primes ¢;
divide v. This always happens, for example, when D = 1 mod 8, since in this case
£, = 2 divides v. Thus we must be prepared to walk along the surface of an
£-volcano of nonzero depth. We now give a simple algorithm to do this.

Algorithm (WALKSURFACEPATH).

Input: A vertex vg on the surface Vp of an £-volcano of depth d and a positive
integer n < #Vj.

Output: A path vy, ..., v, in V.

1. If vo has a single neighbor vy, then return the path vg, v;. Otherwise, walk a
path vg,...,vg and set i < 0.

2. While degv;+4 = 1: Replace v; 41, ..., v;+4 by extending the path v, ..., v;
by d steps, starting from an unvisited neighbor v; 41 of v;.

3. Extend the path vg, ..., v; 44 to vg, ..., Vj4441 and increment i.

4. If i = n then return vy, . .., v,; otherwise, go to step 2.

Algorithm WALKSURFACEPATH requires us to know the depth d of the ¢-
volcano, which we may determine from the norm equation. It works by walking
an arbitrary path to the floor and then backing up d steps to a vertex that must
be on the surface (whenever we leave the surface we must descend to the floor in
exactly d steps). When d or £ is large, this algorithm is not very inefficient and
the pairing-based approach of [25] may be faster. But in the context of computing
Hilbert class polynomials, both d and £ are typically quite small.

Remark 14. Walking the surface with gcds. An alternative approach to walking
the surface using gecds is given in [14]. Suppose we have already enumerated
Vo, ..., Vs along the surface of an £-volcano, and have also taken a single step
from vy to an adjacent vertex v, on the surface of an £’-volcano. We can then
compute a path vy, ..., v, along the surface of the {-volcano containing v, by
computing each v;_, as the unique root of f(¥) = ged(P¢(v;,Y), Py (vit1,Y)).
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The vertex v; 41 1s guaranteed to be on the surface, and the root-finding operation
is trivial, since f(Y) has degree 1. This approach is generally much faster than
using either WALKSURFACEPATH or the algorithm in [25], and in practice most
of the vertices in Ellg(F ,) can be enumerated this way; see [14] for further details.

Remark 15. Space complexity. A key virtue of the CRT approach is that by using
the explicit CRT [2, Theorem 3.2], it is possible to directly compute the coefficients
of Hp(X) modulo an integer m (the characteristic of F,, for example), without first
computing the coefficients over Z. This means we can compute Hp (X) over F,
with a space complexity that is quasilinear in #(D)loggq, which may be much
smaller than | D|log|D|. When k(D) is sufficiently composite (often the case), we
can use a decomposition of the ring class field to find a root of Hp (X) in F, with a
space complexity quasilinear in 2(D) 1/2 log g; see [44]. The low space complexity
of the CRT approach has greatly increased the range of feasible discriminants for
the CM method: Examples with |D| &~ 10'® can now be handled [44], whereas
|D| ~ 10'° was previously regarded as a practical upper limit [13].

3.5. Computing modular polynomials. All of the algorithms we have discussed
depend on modular polynomials (X, Y); we even used them to define the graph
of £-isogenies. We now outline an algorithm to compute ®;, using the CRT ap-
proach described in [7]. Under the GRH, it runs in O(£3(log £)31°(M) expected
time, which makes it the fastest method known for computing ®;(X,Y).

Algorithm (COMPUTEMODULARPOLYNOMIAL).
Input:  An odd prime £.
Output: The modular polynomial ®,(X,Y).

1. Pick an order O with #(0) > £ + 1 and let D = disc(0).

2. Select a sufficiently large set of primes p that satisfy 4p = 12 — {?v? D, with
£tvand p=1modX.

3. For each prime p, compute (X, Y) mod p as follows:
(a) Enumerate Ellg(F,) starting from a root vg of Hp(X) mod p.
(b) Use Vélu’s algorithm to compute a descending £-isogeny from vy to vy,.
(c) Enumerate Elle (F ») using vy as a starting point, where [0 : 0'] = £.
(d) Map the £-volcanoes that make up Ellg(F ) U Ellg/(F ).
(e) Interpolate ®y(X,Y) mod p.

4. Use the CRT to recover ®;(X,Y') over Z (or over F, via the explicit CRT).

The restrictions on p ensure that each element of Ellg(F ) lies on the surface of
an £-volcano of depth 1 whose floor consists of elements of Ellg/(F ). An example
with £ = 5 and D = —151 is shown in Figure 3.
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NV

Figure 3. A volcano with £ =5and D = —151.

When we enumerate Ellg([F ) in step 3(a), we use a polycyclic presentation o
for C1(0) derived from prime ideals whose norms are all less than £ (for £ > 2 this
is always possible). By expressing the class y of an invertible O-ideal of norm £
in terms of &, we can then determine all of the horizontal £-isogenies between
elements of Ellg(F,) without knowing ®;. In our example with D = —151, the
presentation & consists of a single generator ¢« corresponding to an ideal of norm 2,
with y = 3. Thus our enumeration of Ellg(F p) yields a cycle of 2-isogenies that
we can convert to a cycle of 5-isogenies by simply picking out every third element.

The application of Vélu’s algorithm in step 3(b) involves picking a random
point P of order £ and computing the £-isogeny ¢ with (P) as its kernel. This
process is greatly facilitated by our choice of p, which ensures that P has coor-
dinates in [, rather than an extension field. We may find that ¢ is a horizontal
£-isogeny, but we can easily detect this and try again with a different P.

As in step 3(a), when we enumerate Elle/ (F ) in step 3(c) we use a polycyclic
presentation B for C1(0”) derived from prime ideals whose norms are all less than £.
There are no horizontal £-isogenies between elements of Elle/(F ), but we need
to connect each element of Ellg(Fp) to its £-isogenous parent in Ellg(F ). This
is done by identifying one child v” of each parent and then identifying that child’s
siblings, which are precisely the elements of Ellg/(F ) related to v’ by a cyclic
isogeny of degree £2. By expressing the class y’ of an invertible 0’ ideal of norm £2
in terms of B, we can identify the {2-isogeny cycles of siblings in Ellg (F p); these
are precisely the cosets of the homomorphism p : CI(0") — C1(0) in Section 2.10.

After identifying the horizontal isogenies among the vertices v in Ellg(F ) and
the children of each v, we can completely determine the subgraph of G, (F,) on
Ellg(F ) UEllg (Fp); this is what it means to “map” the £-volcanoes in step 3(d).
In our example with D = —151 there is just one £-volcano; Figure 4 depicts the
result of mapping this £-volcano when p = 4451.

701 1582 2872

901 2501

3188 2970 1478 3328 3508 2464 2976 2566 676 2434 1868 3341 3144 1180 2225 3147

Figure 4. The fully labeled example.
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In step 3(e) we compute, for each of £ + 2 vertices v; € Ellg(F,), the poly-

nomial ¢; (Y) = Oy(v;,Y) = ]_[j (Y — v;j), where v;; ranges over the £ + 1
neighbors of v; in G¢(F,). We can then interpolate the coefficients of ®;(X,Y) =
> jcijX 'Y/ as follows: If ¥ (X) is the unique polynomial of degree at most
£+ 1 for which v (v;) is the coefficient of Y/ in ¢; (Y), then cij is the coefficient
of X' in ¥ (X).
Remark 16. Weber modular polynomials. This algorithm can compute modular
polynomials for many modular functions besides the j-function; see [7, §7]. This
includes the Weber f-function that satisfies ( f(z)%* —16)3 = f(2)?*j(z). The
modular polynomials @{ (X,Y) for f(z) are sparser than ®;(X,Y) by a factor
of 24, and have coefficients whose binary representation is smaller by a factor of
approximately 72. Thus the total size of CIDZ is roughly 1728 times smaller than ®g,
and it can be computed nearly 1728 times faster.

Remark 17. Modular polynomials of composite level. A generalization of this
approach that efficiently computes modular polynomials @ (X, Y') for composite
values of N can be found in [9].

Remark 18. Evaluating modular polynomials. Most applications that use @y (X,Y),
including all the algorithms we have considered here, only require the instantiated
polynomial ¢(Y) = ®¢(j(E),Y). A space-efficient algorithm for directly com-
puting ¢ (Y') without using (X, Y') appears elsewhere in this volume [46].

The isogeny volcano algorithm for computing ®;(X, Y') has substantially in-
creased the feasible range of £: It is now possible to compute &, with £ &~ 10,000,
and for @[ we can handle £ a2 60,000. It has also greatly reduced the time required
for these computations, as may be seen in the tables of [7, §8].
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