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We propose a Las Vegas probabilistic algorithm to compute the zeta function of a genus-3 hyperelliptic
curve defined over a finite field Fq , with explicit real multiplication by an order Z[η] in a totally real
cubic field. Our main result states that this algorithm requires an expected number of Õ((log q)6) bit-
operations, where the constant in the Õ( ) depends on the ring Z[η] and on the degrees of polynomials
representing the endomorphism η. As a proof-of-concept, we compute the zeta function of a curve
defined over a 64-bit prime field, with explicit real multiplication by Z[2 cos(2π/7)].

1. Introduction

Since the discovery of Schoof’s algorithm [25], the problem of efficiently computing zeta functions
of curves defined over finite fields has attracted a lot of attention, as its applications range from the
construction of cryptographic curves to testing conjectures in number theory. We focus on the problem
of computing the zeta function of a hyperelliptic curve C of genus 3 defined over a finite field Fq using
`-adic methods, in the spirit of Schoof’s algorithm and its generalizations [23; 17; 2]. Although these
methods are polynomial with respect to log q , the exponents in the best known complexity bounds grow
quickly with the genus. Another line of research is to use p-adic methods [18; 24; 7; 14], which are
polynomial in the genus but exponential in the size of the characteristic of the underlying finite field.
Variants of these methods [19; 15; 16] allow us to count the points of a curve defined over the rationals
modulo many primes in average polynomial time, which is especially relevant when experimenting with
the Sato–Tate conjecture.

The aim of this paper is to show — both with theoretical proofs and practical experiments — that
the complexity of `-adic methods for genus-3 hyperelliptic curves can be dramatically decreased as
soon as an explicitly computable noninteger endomorphism η ∈ End(Jac(C)) is known. More precisely,
we say that a curve C has explicit real multiplication by Z[η] if the subring Z[η] ⊂ End(Jac(C)) is
isomorphic to an order in a totally real cubic number field, and if we have explicit formulas describing
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η(P −∞) for some fixed base point ∞ and a generic point P of C . By explicit formulas, we mean
polynomials (η(u)i (x, y))i∈{0,1,2,3} and (η(v)i (x, y))i∈{0,1,2,3} in Fq [x, y], such that, when C is given in
odd-degree Weierstrass form, the Mumford coordinates of η((x, y)−∞) are〈∑3

i=0
η
(u)
i (x, y)X i ,

∑2

i=0

(
η
(v)
i (x, y)/η(v)3 (x, y)

)
X i
〉
,

where (x, y) is the generic point of the curve. In cases where C does not have an odd-degree Weierstrass
model, we can work in an extension of degree at most 8 of the base field in order to ensure the existence
of a rational Weierstrass point.

The influence of real multiplication (RM) on the complexity of point counting was investigated for
genus-2 curves in [11], where the complexity was lowered from Õ((log q)8) [13] to Õ((log q)5). For
genus-2 curves, another related active line of research is to mimic the improvement of Elkies and Atkin
by using modular polynomials [3]. However, the main difficulty of this method is to precompute the
modular polynomials, which are much larger than their genus-1 counterparts.

Our main result is the following theorem.

Theorem 1. Let C be a genus-3 hyperelliptic curve defined over a finite field Fq having explicit real multi-
plication by Z[η], where η ∈ End(Jac(C)). We assume that C is given by an odd-degree Weierstrass equa-
tion Y 2

= f (X). The characteristic polynomial of the Frobenius endomorphism on the Jacobian of C can
be computed with a Las Vegas probabilistic algorithm in expected time bounded by c(log q)6(log log q)k,
where k is an absolute constant and c depends only on the degrees of the polynomials η(u)i and η(v)i and
on the ring Z[η].

In this paper, we use the notation Õ( ) as a shorthand for complexity statements hiding polylogarithmic
terms: the complexity in the theorem would be abbreviated Õ((log q)6). We insist on the fact that all
the O( ) and the Õ( ) notation used throughout the paper should be understood up to a multiplicative
constant which may depend on the ring Z[η] and on the degrees of the polynomials η(u)i and η(v)i . There
are natural families of curves for which these degrees are bounded by an absolute constant and for
which Z[η] is fixed: reductions at primes (of good reduction) of a hyperelliptic curve with explicit RM
defined over a number field.

As in Schoof’s algorithm and its generalizations in [23; 17; 2], the `-adic approach consists in com-
puting the characteristic polynomial of the Frobenius endomorphism by computing its action on the
`-torsion of the Jacobian of the curve for sufficiently many `. In order to prove the claimed complexity
bound, we consider primes ` ∈ Z such that `Z[η] splits as a product p1p2p3 of prime ideals. Computing
the kernels of endomorphisms αi in each pi provides us with an algebraic representation of the `-torsion
Jac(C)[`] ⊂Kerα1+Kerα2+Kerα3. Then, we compute from this representation integers a, b, c ∈ Z/`Z

such that the sum π +π∨ of the Frobenius endomorphism and its dual equals a+ bη+ cη2 mod `. Once
enough modular information is known, the values of a, b, c such that π+π∨= a+bη+cη2 are recovered
via the Chinese remainder theorem and the coefficients of the characteristic polynomial of the Frobenius
can be directly expressed in terms of a, b and c. In fact, in practice we do not have to restrict to split
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primes: any partial factorization of `Z[η] provides some modular information on a, b, c mod `. We give
an example with a ramified prime in Section 7.1, but on the theoretical side, considering nonsplit primes
does not improve the asymptotic complexity.

The cornerstone of the complexity analysis is the cost of the computation of the kernels of endomor-
phisms, which is done by solving a polynomial system. Using resultant-based elimination techniques and
degree bounds on Cantor’s polynomials, we prove that we can solve these equations in time quadratic in
the number of solutions, which leads to the claimed complexity bound. For practical computations, we
replace the resultants by Gröbner bases and we retrieve modular information only for small ` to speed up
an exponential collision search which can be massively run in parallel. Although using Gröbner bases
seems to be more efficient in practice, we do not see any hope of proving with rigorous arguments that
it is asymptotically competitive.

As a proof-of-concept, we have implemented our algorithm and we provide experimental results. In
particular, we were able to compute the zeta function of a genus-3 hyperelliptic curve with explicit RM
defined over Fp with p = 264

− 59. To our knowledge, the largest genus-3 computation that had been
achieved previously was the computation of the zeta function of a hyperelliptic curve defined over Fp

with p = 261
− 1, done by Sutherland [27] using generic group methods.

Examples of curves with RM are given by modular curves. For instance, the genus-3 curve y2
=

x7
+3x6

+2x5
− x4
−2x3

−2x2
− x−1 is a quotient of X0(284) and therefore has real multiplication by

an element of Q[x]/(x3
− 3x − 1). This follows from the properties of the Hecke operators as explained

in [26, Chapter 7]. Based on this theory, algorithms for constructing such curves are explained in [10];
however the explicit expression for the real endomorphism is not given. We expect that tracking the
Hecke correspondences along their construction, and using techniques like those in [29] to reconstruct
the rational fractions describing the real endomorphism, could solve this question. In any case, these
are only isolated points in the moduli space. Larger families are obtained from cyclotomic covering.
This line of research has produced several families of hyperelliptic genus-3 curves having explicit RM
by Z[2 cos(2π/7)]. In particular, explicit such families are given in [22] and [28], and explicit formulas
for their RM endomorphisms are obtained in [20]. We use the 1-dimensional family of curves from
[28, Theorem 1 with p = 7] for our experiments. Other families of genus-3 curves (but not necessarily
hyperelliptic) with RM have been made explicit in [5, Chapter 2], following [9]. We would like to point
out that within the moduli space of complex polarized abelian varieties of dimension 3, those with RM
by a fixed order in a cubic field form a moduli space of codimension 3 [21, Section 9.2]. Since Jacobians
of hyperelliptic curves form a codimension-1 space, we would expect the moduli space of hyperelliptic
curves of genus 3 with RM by a given cubic order to have dimension 2.

We finally briefly mention how our algorithm and analysis could be extended in several directions.
First, the complexity analysis leads, with small modifications, to a point-counting algorithm for general
genus-3 hyperelliptic curves (i.e., without RM) with complexity Õ((log q)14). Second, if the curve is not
hyperelliptic, the main difficulty is to define analogues of Cantor’s division polynomials and get bounds
on their degrees. Without them, it is still possible to use an explicit group law to derive a polynomial
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system for the kernel of an endomorphism, but getting a proof for its degree would require a different
approach to the one we took. Still, the complexities with or without RM are expected to remain the same
for plane quartics as for genus-3 hyperelliptic curves. Third, if we go to higher genus hyperelliptic curves
with RM, the main difficulty in extending our approach is in the complexity estimate of the polynomial
system solving, because resultant-based approaches are not competitive when the number of variables
grows, and a tedious analysis like that in [1] seems to be necessary.

The article is organized as follows. Section 2 gives a bird’s-eye view of our algorithm, along with a
complexity analysis relying on the technical results detailed in Sections 3 to 6. Practical experiments are
presented in Section 7.

2. Overview of the algorithm

Let C be a genus-3 hyperelliptic curve over a finite field Fq with explicit RM, and let η be the given explicit
endomorphism. We denote byµ0, µ1, µ2 the coefficients of the minimal polynomial T 3

+µ2T 2
+µ1T+µ0

of η over Q.

2.1. Bounds. The characteristic polynomial of the Frobenius endomorphism π is of the form χπ (T )=
T 6
− σ1T 5

+ σ2T 4
− σ3T 3

+ qσ2T 2
− q2σ1T + q3, and Weil’s bounds give

|σ1| ≤ 6
√

q, |σ2| ≤ 15q, |σ3| ≤ 20q3/2.

In order to take advantage of the explicit RM, we consider the endomorphism ψ =π+π∨, for which we
can derive the real Weil’s polynomial χψ(T )= T 3

−σ1T 2
+(σ2−3q)T −(σ3−2qσ1), which corresponds

to the characteristic polynomial of ψ viewed as an element of the real subfield of End(Jac(C))⊗Q. The
endomorphism ψ belongs to the ring of integers of Q(η). The ring Z[η] might be a proper suborder of
the ring of integers, so let us call 1 its index, so that ψ can be written ψ = a+ bη+ cη2, where a, b, c
are rationals with a denominator that divides 1. By computing formally the characteristic polynomial of
a+ bη+ cη2 in Q(η) and by equating it with the expression for the real Weil’s polynomial χψ(T ), we
obtain a direct way to compute σ1, σ2 and σ3 in terms of a, b, c:

σ1 = 3a− bµ2− 2cµ1+ cµ2
2 ,

σ2− 3q = 3a2
− 2a bµ2+ 2a c (µ2

2− 2µ1)+ b2µ1+ 3b cµ0− b cµ1µ2 − c2 (2µ0µ2+µ
2
1) ,

σ3− 2qσ1 = a3
− a2 bµ2+ a2 c (µ2

2− 2µ1)+ a b2µ1+ a b c (3µ0−µ1µ2)

+a c2 (µ2
1− 2µ0µ2)− b3µ0+ b2 cµ0µ2− b c2µ0µ1+ c3µ2

0 .

(1)

In Section 4, it is shown that the coefficients a, b and c can be bounded in O(
√

q). More precisely, we
denote by Cabc a constant that depends only on η such that their absolute values are bounded by Cabc

√
q .

Since these bounds are much smaller than the bounds for σ1, σ2, σ3, it makes sense to design an algorithm
that reconstructs these coefficients of ψ instead of the coefficients of χπ as in the classical Schoof
algorithm, and this is what we are going to do later on.
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Another important bound that we need concerns the size of small elements that can be found in ideals
of Z[η]. Let ` be a prime that splits completely in Z[η], so that we can write `= p1p2p3, where the pi ’s
are distinct prime ideals of norm `. In Section 5, it is shown that each pi contains a nonzero element
αi = ai + biη+ ciη

2, where ai , bi and ci are integers and are bounded in absolute value by O(`1/3).

2.2. Algorithms. The general RM point counting algorithm is Algorithm 1. We give a description of it,
allowing some black-box primitives that will be detailed in dedicated sections. As mentioned above, we
will work with the a, b, c coefficients of the ψ endomorphism. More precisely, we compute their values
modulo sufficiently many completely split primes ` until we can deduce their values from the bounds of
Lemma 5 by the Chinese remainder theorem, taking into account their potential denominator 1. Then
the coefficients of χπ are deduced by (1).

We now explain how the algorithm works for a given split `. First its decomposition as a product of
prime ideals `Z[η] = p1p2p3 is computed, and for each prime ideal pi , a nonzero element αi of pi is found
with a small representation αi = ai + biη+ ciη

2 as in Lemma 6. In fact, pi is not necessarily principal
and αi need not generate pi . The kernel of αi is denoted by J [αi ] and it contains a subgroup Gi isomor-
phic to Z/`Z×Z/`Z, since the norm of αi is a multiple of `. The two-element representation (`, η−λi )

of the ideal pi implies that λi is an eigenvalue of η regarded as an endomorphism of J [`] ∼= (Z/`Z)6.
On Gi ⊂ J [αi ], the endomorphism η acts as the multiplication by λi . Therefore, ψ = a+bη+cη2 also

acts as a scalar multiplication on this 2-dimensional space, and we write ki ∈ Z/`Z as the corresponding
eigenvalue: for any Di in Gi , we have ψ(Di ) = ki Di . On the other hand, from the definition of ψ , it
follows that ψπ =π2

+q . Therefore, if such a Di is known, we can test which value of ki ∈Z/`Z satisfies

kiπ(Di )= π
2(Di )+ q Di . (2)

Since ` is a prime and Di is of order exactly `, this is also the case for π(Di ). Finding ki can then be
seen as a discrete logarithm problem in the subgroup of order ` generated by π(Di ); hence the solution
is unique. Equating the two expressions for ψ , we get explicit relations between a, b, c modulo `:

a+ bλi + cλ2
i ≡ ki mod `.

Therefore we have a linear system of three equations in three unknowns, the determinant of which is the
Vandermonde determinant of the λi , which are distinct by hypothesis. Hence the system can be solved
and it has a unique solution modulo `.

It remains to show how to construct a divisor Di in Gi , i.e., an element of order ` in the kernel J [αi ].
Since an explicit expression of η as an endomorphism of the Jacobian of C is known, an explicit expression
can be deduced for αi , using the explicit group law. The coordinates of the elements of this kernel are
solutions of a polynomial system that can be directly derived from this expression of αi . Using standard
techniques, it is possible to find the solutions of this system in a finite extension of the base field (of
degree bounded by the degree of the ideal generated by the system, i.e., in O(`2)), from which divisors
in J [αi ] can be constructed. Multiplying by the appropriate cofactor, we can reach all the elements of Gi ,
but we stop as soon as we get a nontrivial one.
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Algorithm 1: Overview of our RM point-counting algorithm

Data: q an odd prime power, and f ∈ Fq [X ] a monic squarefree polynomial of degree 7 such that the
curve Y 2

= f (X) has explicit RM by Z[η].
Result: the characteristic polynomial χπ ∈ Z[T ] of the Frobenius endomorphism on the Jacobian J of

the curve.

R← 1;
while R ≤ 21Cabc

√
q + 1 do

pick the next prime ` that satisfies conditions (C1) to (C4);
compute the ideal decomposition `Z[η] = p1p2p3, corresponding to the eigenvalues λ1, λ2, λ3 of η in

J [`];
for i← 1 to 3 do

compute a small element αi of pi as in Lemma 6;
compute a nonzero element Di of order ` in J [αi ];
find the unique ki ∈ Z/`Z such that kiπ(Di )= π

2(Di )+ q Di ;
find the unique triple (a, b, c) in (Z/`Z)3 such that a+ bλi + cλ2

i = ki , for i in {1, 2, 3};
R← R · `;

reconstruct (a, b, c) using the Chinese remainder theorem;
deduce χπ from (1);

We summarize the conditions that must be satisfied by the primes ` that we work with:

(C1) ` must be different from the characteristic of the base field.

(C2) ` must be coprime to the discriminant of the minimal polynomial of η.

(C3) There must exist αi ∈ pi as in Lemma 6 with norm nondivisible by `3 for i ∈ {1, 2, 3}.

(C4) The ideal `Z[η] must split completely.

The first 3 conditions eliminate only a finite number of `’s that depends only on η, while the last
one eliminates a constant proportion. The condition (C3) implies that there is a unique subgroup Gi of
order `2 in J [αi ] (our description of the algorithm could actually be adapted to handle the cases where
this is not true).

Algorithm 1 is a very natural extension of the one described in [11] for genus-2 curves with RM.
In [11], the action of the real endomorphism ψ = π +π∨ is studied on subspaces J [pi ] of the `-torsion,
and the corresponding eigenvalues are collected and used to reconstruct information modulo `. In genus 3,
we have three such 2-dimensional subspaces and eigenvalues to compute and recombine instead of two
in genus 2. The main differences between the present work and [11] are the way the `-torsion elements
are constructed with polynomial systems and the bounds on the coefficients of ψ . In both cases, going
from dimension 2 to 3 is not immediate.

2.3. Complexity analysis. The field Q(η) is of degree 3, so its Galois group has order at most 6 and by
Chebotarev’s density theorem the density of primes that split completely is at least 1/6. Therefore the
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main loop is done O(log q/ log log q) times, with primes ` that are in O(log q). All the steps that take
place in the number field take a negligible time. For instance, a small generator like the one in Lemma 6
can be found by exhaustive search: only O(`) trials are needed since we are searching over all elements
of the form a+ bη+ cη2, with |a|, |b|, |c| in O(`1/3).

The bottleneck of the algorithm is the computation of a nonzero element of order ` in the kernel J [αi ]

of αi . This part will be treated in detail in Section 3, where it is shown to be feasible in Õ(`4) operations
in Fq . The output is a divisor Di of order ` in J [αi ] that is defined over an extension field Fqδ , where δ
is in O(`2).

In order to check (2), we first need to compute π(Di ) and π2(Di ) which amounts to raising the
coordinates to the q-th power. The cost is Õ(`2 log q) operations in Fq . Then, each Jacobian operation
in the group generated by π(Di ) costs Õ(`2) operations in the base field, and we need O(

√
`) of them

to solve the discrete logarithm problem given by (2). The overall cost of finding ki , once Di is known is
therefore Õ(`2(

√
`+ log q)) operations in Fq .

Finally, the amount of work performed for each ` is Õ(`2(`2
+ log q)) operations in the base field Fq .

Summing up for all the primes, and taking into account the cost of the operations in Fq , we obtain a
global bit-complexity of Õ((log q)6).

3. Computing kernels of endomorphisms

3.1. Modeling the kernel computation by a polynomial system. Let α be an explicit endomorphism of
degree O(`2) on the Jacobian of C, which satisfies the properties of Lemma 6. In particular, α vanishes
on a subspace of J [`]. We want to compute a triangular polynomial system that describes the kernel J [α]
of α. This will provide us with a nice description of a subgroup of the `-torsion on which we will be
able to test the action of ψ = π +π∨ and deduce a, b, c such that ψ = a+ bη+ cη2 mod `.

We first model J [α] by a system of polynomial equations that we will then put in triangular form.
To do so, we consider a generic divisor D = P1 + P2 + P3 − 3∞, where Pi is an affine point of C of
coordinates (xi , yi ). We then write α(D)= 0, i.e, α(P1−∞)+α(P2−∞)=−α(P3−∞). Generically,
we expect each α(Pi −∞) to be of weight 3, and we write 〈ui , vi 〉 for its Mumford form. We derive
our equations by computing the Mumford form 〈u12, v12〉 of α(P1−∞)+α(P2−∞) and then writing
coefficient-wise the conditions u12 = u3 and v12 = −v3. The case where the genericity conditions are
not satisfied is discussed at the end of the section.

Similarly to the Schoof–Pila algorithm, we define polynomials — which are equivalent to Cantor’s
division polynomials — by the formulas

u12(X)= X3
+

2∑
i=0

d̃i (x1, x2, y1, y2)

d̃3(x1, x2)
X i , v12(X)=

2∑
i=0

ẽi (x1, x2, y1, y2)

ẽ3(x1, x2)
X i ,

u3(X)= X3
+

2∑
i=0

di (x3)

d3(x3)
X i , v3(X)= y3

2∑
i=0

ei (x3)

e3(x3)
X i .
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Lemma 2. For any i ∈ {1, 2, 3}, the degrees of d̃i , ẽi , di and ei are in O(`2/3).

Proof. Let us first remark that the d̃i ’s and ẽi ’s are obtained after adding two divisors 〈u1, v1〉 and 〈u2, v2〉

such that the coefficients of the ui and vi are, respectively, the d j/d3 and yi e j/e3 evaluated at xi . Thus,
since this application of the group law involves a number of operations that is bounded independently of
` and q , the degree stays within a constant multiplicative factor, which is captured by the O( ). Therefore
it is enough to prove the result for the di ’s and ei ’s.

Since the endomorphism α satisfies the properties of Lemma 6, it is a linear combination of 1, η
and η2 with coefficients of size O(`1/3). Using the same argument about the group law, we can further
reduce our proof to the case where α = nηk, with k ∈ {0, 1, 2} and n an integer in O(`1/3). But once
again, ηk does not depend on ` so that, provided we can prove that Cantor’s n-division polynomials have
degrees in O(n2), we have proven that nηk(P −∞)= ηk(n(P −∞)) have coefficients whose degrees
are in O(n2), and then so does α(P −∞). This quadratic bound on the degrees of Cantor’s division
polynomials is proven in Lemma 8 of Section 6 and the result follows. �

3.2. Solving the system with resultants. Typical tools for solving a polynomial system are the F4 algo-
rithm, methods based on geometric resolution, or homotopy techniques. To obtain reasonable complexity
bounds, they all require some knowledge of the properties of the system, and this might be hard to provide.
Since we have a system in essentially three variables (in fact, there are six variables x1, x2, x3, y1, y2, y3,
but the yi variables can be directly eliminated by using the equation defining the curve), we prefer to
stick to an approach based on resultants. It ends up having a complexity that is quasiquadratic in the
degree of the ideal, which is the best that can be hoped for anyway for all of the advanced techniques, and
the complexity analysis requires only elementary tools. A complication that can occur with resultants
is that Resx( f, g) is identically zero when f and g have a nonconstant GCD. This is not a problem
in our case since we can divide polynomials f and g by their GCD, by factoring them at the cost of
O(max(deg( f ), deg(g))ω) field operations — where ω ≤ 3 is the exponent of linear algebra — using the
bivariate recombination methods in [4] (the trivariate case can be reduced to the bivariate case by using
the techniques in [31, Section 21.2]). In what follows, the complexities of computing the resultants are
larger than O(max(deg( f ), deg(g))ω), so we can forget about this complication. We also note that since
the system is symmetric with respect to x1 and x2, it may be possible to decrease the degrees by rewriting
the system in terms of elementary symmetric polynomials in x1 and x2; however, we do not consider this
symmetrization process in the analysis since it may only gain a constant factor in the complexity.

Following our modeling, the equality of the u-coordinates gives three equations

d̃i (x1, x2, y1, y2)d3(x3)= d̃3(x1, x2)di (x3), for i ∈ {0, 1, 2}, (3)

of degree O(`2/3) in the xi ’s. By computing resultants with the equations y2
i = f (xi ), we derive three

equations Ei (x1, x2, x3)= 0 whose degrees are still in O(`2/3).
We then eliminate x1 by computing three trivariate resultants Ri (between the two equations E j

with j 6= i). We get three equations Ri (x2, x3)= 0 of degrees O(`4/3) within a complexity of Õ(`10/3)

field operations, as proven in Lemma 4 below.
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Then, we compute bivariate resultants Si (between the two equations R j with j 6= i) to eliminate x2.
From Lemma 3, we get three univariate equations Si (x3) = 0 of degree bounded by O(`8/3) for a
complexity of Õ(`4) field operations. And we compute the polynomial S(x3) as the GCD of the Si (x3),
which belongs to the ideal defined by our original system.

The bound on the degree of S is much larger than `2
− 1, the expected degree of the kernel. Although

we can expect the actual degree to be in O(`2), we need to add the constraints coming from the v-
coordinates to be able to prove it.

The polynomial system coming from v12 =−v3 has the same characteristics as the one coming from
the u-coordinates. Therefore, we can proceed in a similar way and deduce, at a cost of Õ(`4) operations
another univariate polynomial S̃(x3) belonging to the ideal. Now, since all the original equations have
been taken into account, all common roots of S and S̃ will correspond to a solution of the original system
for which we know that there are O(`2) solutions. Therefore taking the squarefree part of the GCD of S
and S̃ yields a polynomial of degree O(`2).

This univariate polynomial can be factored at a cost of Õ(`4) operations in Fq with standard algo-
rithms [30] (there exist asymptotically faster algorithms, but we already fit within our target complexity).
We then deal with each irreducible factor in turn, until one is found that leads to a genuine solution
of the original system. Let δ be the degree of such an irreducible factor φ(x3). In the field extension
Fqδ = Fq [x3]/φ(x3), we have by construction a root x3 of φ. We then solve again the original polynomial
system where x3 is instantiated with this root. This system is bivariate in x1 and x2 and there are O(1)
solutions, that possibly live in another finite extension Fqδ′ of Fqδ . Since the degrees of the bivariate
polynomials are in O(`2/3), by Lemma 3, solving this system costs Õ(`2) operations in Fqδ .

A solution obtained in this way must be checked, because it could come from a vanishing denominator
that has been cleared when constructing the system or from nongeneric situations. But given a set of
candidate coordinates for a Di element of J [αi ], it is cheap to check that this is indeed an element of the
Jacobian and that it is killed by αi . Also, if αi is not a generator of pi , it is necessary to check the order
of Di : if this is a multiple of `, then multiplying Di by the cofactor gives an order-` element. But it is
also possible to get an unlucky element of small order coprime to `, and then we have to take another
solution of the system.

Since an operation in Fqδ requires a number of operations in Fq that is quasilinear in δ, and since the
sum of all the degrees δ of the irreducible factors of GCD(S, S̃) is in O(`2), the amortized cost is Õ(`4)

operations in Fq to deduce a divisor Di in J [αi ].

3.3. Complexity of bi- and tri-variate resultants. In this section, the algorithms work by evaluation and
interpolation, and require that there be enough elements in the base field. If there were not, we would
simply take a field extension Fqδ of Fq , which would add a factor Õ(δ) to the complexity. The complexity
of the algorithms will be polynomial in the number of evaluation points; therefore, the final complexity
will be logarithmic in δ, so the cost of taking a field extension would be negligible in the Õ( ) notation.
We will therefore not mention this potential complication further.
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Another difficulty is that an evaluation / interpolation strategy assumes that the points of evaluation are
generic enough, so that all the degrees after evaluation are generic. This is again guaranteed by taking a
large enough base field. Still, the algorithm remains a Monte–Carlo one. However, the ultimate goal is to
construct kernel elements, which is an easily verified property. Turning this into a Las Vegas algorithm
can therefore be done with standard techniques.

Lemma 3 [30, Theorem 6.22 and Corollary 11.21]. Let P(x, y) and Q(x, y) be two polynomials whose
degrees in x and y are bounded by dx and dy respectively. Then, R(y)= Resx(P, Q) can be computed
in Õ(d2

x dy) field operations, and the degree of R is bounded by 2dx dy .

Lemma 4. Let P(x, y, z) and Q(x, y, z) be two polynomials whose degrees in each variable are bounded
by d. Then, R(y, z) = Resx(P, Q) can be computed in Õ(d5) field operations, and the degree of R in
each variable is bounded by 2d2.

Proof. The Sylvester matrix has at most 2d columns and its entries are bivariate polynomials whose
degrees in y and z are bounded by d. Thus, its determinant is a polynomial whose degrees in y and z
are bounded by 2d2.

We first perform a Kronecker substitution by considering P̃(x, y)= P(x, y, y2d2
+1) and Q̃(x, y)=

Q(x, y, y2d2
+1), which are polynomials of degrees ≤ d in x and ≤ 2d3

+ d in y. Note that the choice to
replace z by y2d2

+1 is made to be able to invert the Kronecker substitution after the resultant computation.
Next, we compute R̃(y) = Resx(P̃(x, y), Q̃(x, y)). By Lemma 3, it is a univariate polynomial of

degree at most 4d4
+2d2 and can be computed in Õ(d5) operations. We can then invert the Kronecker sub-

stitution to get R(y, z), which can be done in time linear in the number of monomials, that is, in O(d4). �

3.4. Nongeneric situations. Our analysis assumes in the first place that the `-torsion elements are generic
in a rather strong sense, see, e.g., [1, Definition 11] for details. This is expected to be the case with
overwhelming probability, when the base field is large enough and the curve is taken at random in a
large family. However, to obtain a proven complexity we must also consider the cases where there exist
`-torsion elements that are nongeneric. We follow the strategy of [1] where another polynomial system
is designed and solved for each nongeneric situation; for instance, the fact that an `-torsion divisor is of
weight less than 3, or that some points involved in the modeling are not distinct while they generically
are. We do not give all the details, but the number of polynomial systems to consider is bounded by a
constant, and each of these polynomial systems describes a situation that is smaller than the generic one
in the sense that it has either fewer variables or a lower degree, so the complexity bound is maintained.

4. Bounds on the coefficients of ψ

The system of equations (1) giving σ1, σ2 and σ3 in terms of a, b, c is homogeneous if we put weight 1/2
to a, b, c and σ1, weight 1 to q and σ2, weight 3/2 to σ3, and weight 0 to µ0, µ1, and µ2 so any polynomial
in a reduced Gröbner basis of the corresponding ideal will have the same property. Computing such a
Gröbner basis with the lexicographical ordering a > b > c > σ1 > σ2 > σ3 > µ0 > µ1 > µ2 > q (we did
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this computation with the Magma v2.23-4 software), we get a polynomial 9c of degree 6 in c that does
not involve a or b, and which has the form

9c(q, c, σ1, σ2, σ3, µ0, µ1, µ2)= D(µ0, µ1, µ2)
3 c6
+

5∑
i=0

ψ (i)c (q, σ1, σ2, σ3, µ0, µ1, µ2) ci ,

where D(µ0, µ1, µ2)=−27µ2
0+18µ0µ1µ2−4µ0µ

3
2−4µ3

1+µ
2
1µ

2
2 is the discriminant of the polynomial

T 3
+µ2 T 2

+µ1 T +µ0.
By computing Gröbner bases for other lexicographical orderings (with a> c> b>σ1>σ2>σ3>µ0>

µ1 >µ2 > q and b> c> a > σ1 > σ2 > σ3 >µ0 >µ1 >µ2 > q , respectively), we get that polynomials
of the following form also belong to the ideal generated by the polynomials in the system (1):

9b(q, b, σ1, σ2, σ3, µ0, µ1, µ2)= D(µ0, µ1, µ2)
3 b6
+

5∑
i=0

ψ
(i)
b (q, σ1, σ2, σ3, µ0, µ1, µ2) bi ,

9a(q, a, σ1, σ2, σ3, µ0, µ1, µ2)= D(µ0, µ1, µ2)
3 a6
+

5∑
i=0

ψ (i)a (q, σ1, σ2, σ3, µ0, µ1, µ2) ai .

The polynomials ψ (i)a , ψ (i)b and ψ (i)c are homogeneous of weighted degree 3− i/2 with respect to the
grading given above.

Lemma 5. The absolute values of the coefficients a, b, c of ψ = a + bη + cη2 are bounded above
by O(q1/2).

Proof. First, we consider the equation 9c = 0. We write c= c̃ q1/2, σ1 = σ̃1 q1/2, σ2 = σ̃2 q , σ3 = σ̃3 q3/2.
Since ψ (i)c is homogeneous and has weighted degree 3− i/2, a polynomial θ (i)c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2)

exists such that

ψ (i)c (q, σ1, σ2, σ3, µ0, µ1, µ2) · ci
= q3 c̃ i θ (i)c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2). (4)

Weil’s bounds imply that |σ̃i | = O(1) for i ∈ {1, 2, 3}. Therefore, for all i ∈ {0, . . . , 5}, we obtain that
|θ
(i)
c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2)| = O(1). For fixed µ0, µ1, µ2 ∈Q such that µ0+µ1T +µ2T 2

+ T 3 is the
minimal polynomial of a totally real algebraic number, the discriminant D(µ0, µ1, µ2) must be nonzero.
Equations 9c = 0 and (4) imply the following inequality:

|c̃|6−
5∑

i=0

|θ
(i)
c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2)|

|D(µ0, µ1, µ2)|3
|c̃|i ≤ 0.

Then |c̃| must be smaller than or equal to the largest root of this polynomial inequality, which can itself
be bounded, for instance, with Cauchy’s bound

|c̃| ≤ 1+ max
0≤i≤5

{
|θ
(i)
c (σ̃1, σ̃2, σ̃3, µ0, µ1, µ2)|

|D(µ0, µ1, µ2)|3

}
,

which shows that |c̃| = O(1), and hence |c| = O(q1/2). The proofs for the bounds on |a| and |b| are
similar, using the equations 9a = 0 and 9b = 0. �
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5. Small elements in ideals of Z[η]

We first recall that we consider only primes ` that do not divide the discriminant of the minimal polyno-
mial of η (condition (C2)). Hence, if Z[η] is not the maximal order of Q(η), this has no consequence on
the factorization properties of `.

Lemma 6. For any prime ` that splits completely in Z[η], each prime ideal pi above ` contains a nonzero
element αi of the form αi = ai +biη+ ciη

2, where |ai |, |bi | and |ci | are integers in O(`1/3), and the norm
of αi is in O(`).

Proof. The coefficients of the elements of the ideal pi represented by polynomials in η form a lattice. Ap-
plying Minkowski’s bound to this lattice, we obtain the existence of a nonzero element αi = ai+biη+ciη

2

in pi for which the L2-norm of (ai , bi , ci ) is in O(`1/3). From this bound on the L2-norm, we derive a
bound on the L∞-norm, and finally on the norm of αi as an algebraic number. At each step, the constant
hidden in the O( ) gets worse but still depends only on Z[η]. �

For any given η, it is not difficult to make the constants in the O( ) fully explicit. We do it in the
particular case of Z[η7], with η7 = 2 cos(2π/7), which is the RM used in our practical experiments.
Since Z[η7] is a principal ring, a more direct approach leads to bounds for a generator that are tighter
than what would be obtained by a naive application of Lemma 6.

Lemma 7. Every ideal pi of norm ` in Z[η7] has a generator αi of the form ai + biη7 + ciη
2
7, where

ai , bi , ci ∈ Z satisfy
|ai |< 2.415 · `1/3, |bi |< 1.850 · `1/3, |ci |< 1.764 · `1/3.

Proof. By abuse of notation, we identify Q(η7) with the algebraic number field Q[X ]/(X3
+X2
−2X−1)

and we let σ1, σ2, σ3 be the three real embeddings of Q(η7) in R. Let ε1 = 1− η2
7 and ε2 = 1+ η7 be a

pair of fundamental units, and let µi be a generator of pi . The logarithmic embedding

ϕ : x 7→ (log|σ1(x)|, log|σ2(x)|, log|σ3(x)|)

sends the set of generators of pi to the lattice generated by ϕ(ε1) and ϕ(ε2) translated by ϕ(µi ). Solving
a closest vector problem for the projection of ϕ(µi ) on the plane where the three coordinates sum-up
to 0, we deduce a unit ξi such that αi = ξiµi is a generator whose real embeddings are bounded by

|σ1(αi )| ≤ 2.247 · `1/3, |σ2(αi )| ≤ 1.803 · `1/3, |σ3(αi )| ≤ 2.247 · `1/3.

Writing αi = ai + biη7+ ciη
2
7, the real embeddings can also be expressed as (σ1(αi ), σ2(αi ), σ3(αi ))

T
=

V · (ai , bi , ci )
T, where V is the Vandermonde matrix of (σ1(η7), σ2(η7), σ3(η7)). A numerical evaluation

of its inverse allows the translation of the bounds on σ1(αi ), σ2(αi ), σ3(αi ) into the claimed bounds
on ai , bi , ci . �

6. Bounding the degrees of Cantor’s division polynomials in genus 3

The purpose of this section is to prove the following lemma on the Cantor’s division polynomials, which
are explicit formulas for the endomorphism corresponding to scalar multiplication [6].
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Lemma 8. In genus 3, the degrees of Cantor’s `-division polynomials are bounded by O(`2).

In [6], there are exact formulas for the degrees of the leading and the constant coefficients d3 and d0.
However, there is no formula or bound for the degrees of the other coefficients of the `-division polyno-
mials. Still, our proof strongly relies on [6] and we do not try to make it standalone: we assume that the
reader is familiar with that article, and all references to expressions, propositions or definitions in this
proof are taken from that paper.

For a polynomial P whose coefficients are themselves univariate polynomials, we denote by maxdeg(P)
the maximum of the degrees of its coefficients.

We first prove a bound on the degrees of the coefficients of the quantities αr and γr defined in [6],
from which the wanted bounds will follow. The key tools are the recurrence formulas (8.31) and (8.33)
that relate quantities at index r to quantities at index around r/2, in a similar fashion as for the division
polynomials of elliptic curves. More precisely, the following lemma shows that when the index r is
(roughly) doubled, maxdegαr and maxdeg γr are roughly multiplied by 4, which leads to the expected
quadratic growth.

Lemma 9. Let ` ≥ 12, and assume that for all i ≤ (`+ 9)/2 the degrees maxdegαi and maxdeg γi are
bounded by C , then maxdegα` and maxdeg γ` are bounded by 4C + 36`+ 108.

Proof. We first deal with the bound on maxdeg γ`. Let us consider r and s around `/2 such that ` =
r + s− 5: we take either r = s− 3= `/2+ 1 if ` is even, or r = s− 4= (`+ 1)/2 otherwise.

From (8.30) and (8.31), the degree of γ`[h]ψs−rψr−2ψs−2ψr−1ψs−1 is that of the determinant of the
matrix Ers[h], defined

Ers[h] =


αr−3αs[0] αr−3αs[1] ψr−3ψs γr−3γs[h]
αr−2αs−1[0] αr−2αs−1[1] ψr−2ψs−1 γr−2γs−1[h]
αr−1αs−2[0] αr−1αs−2[1] ψr−1ψs−2 γr−1γs−2[h]
αrαs−3[0] αrαs−3[1] ψrψs−3 γrγs−3[h]

.
Therefore we have an expression for the degrees of the coefficients of γ` in terms of objects at index

around r and s:
deg γ`[h] ≤ deg det Ers[h] − deg(ψr−2ψs−2ψr−1ψs−1).

In this last formula, the factor ψs−r has been omitted, because s− r is either 3 or 4, and by (8.17) this
has nonnegative degree in any case. Thus, we simply bounded it below by 0 in the previous inequality.
Before entering a more detailed analysis, we use (8.8) to rewrite the first column with expressions for
which we have exact formulas for the degree:

Ers[h] =


ψr−4ψs−1 αr−3αs[1] ψr−3ψs γr−3γs[h]
ψr−3ψs−2 αr−2αs−1[1] ψr−2ψs−1 γr−2γs−1[h]
ψr−2ψs−3 αr−1αs−2[1] ψr−1ψs−2 γr−1γs−2[h]
ψr−1ψs−4 αrαs−3[1] ψrψs−3 γrγs−3[h]

 .
The determinant of Ers[h] is the sum of products of four ψ factors and four α or γ factors. The

degrees of the former are explicitly known, while by hypothesis we have upper bounds on the latter,
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since all the indices are at most (`+ 9)/2. We can then deduce an upper bound on the degree of this
determinant. All the ψi have indices with i in the range [r − 4, s] (remember that r ≤ s), and since their
degrees increase with the indices, we can upper bound the degree of the products of the four ψ factors
by 4 degψs . Therefore we have

deg det Ers[h] ≤ 4(degψs +C).

In order to deduce an upper bound on maxdeg γ`, it remains to get a lower bound on the degree of the
deg(ψr−2ψs−2ψr−1ψs−1) term, and again by monotonicity of the degree in the index, we lower bound
it by 4 degψr−2. So finally, we get

maxdeg γ` ≤ 4C + (degψ4
s − degψ4

r−2).

Using (8.16) and (8.17), we deduce that for all k, we have deg(ψ2
k ) = 3(k2

− 9) and substituting this
value and the expression of r − 2 and s in terms of `, we obtain

degψ4
s − degψ4

r−2 =

{
30`+ 90 if ` is even,
36`+ 108 if ` is odd,

and the result follows for maxdeg γ`.
The proof for maxdegα` follows the same line. Using the matrix Frs[h] defined in (8.32) in a similar

way to which we used the matrix Ers[h], and with the help of the formula (8.33), we end up with the
bounds

maxdegα` ≤
{

4C + 30`− 30 if ` is even,
4C + 36`− 36 if ` is odd,

which are stricter than our target.
Finally, the bound `≥ 12 is necessary to ensure that the quantities r and s are at least 5, as required

in [6] to apply the formulas (8.31) and (8.33). �

We can now finish the proof of Lemma 8. We define two sequences (`i )i≥0 and (Ci )i≥0 as follows:
let `0 = 12 and let C0 be a bound on the degrees of the coefficients of all the αi and γi for i ≤ `0. Then
for all i ≥ 1, we define the sequences inductively by{

`i+1 = 2`i − 9,
Ci+1 = 4Ci + 36`i+1+ 108.

By Lemma 9, for all i and all ` ≤ `i , the degrees maxdegα` and maxdeg γ` are bounded by Ci . The
expression `i = (`0− 9)2i

+ 9 = 3 · 2i
+ 9 can be derived directly from the definition and substituted

in the recurrence formula of Ci+1 to get Ci+1 = 4Ci + 216 · 2i
+ 432. This recurrence can be solved by

setting 0i = Ci + 108 · 2i
+ 144, so that 0i+1 = 40i , and we obtain Ci = (C0+ 252) 4i

− 108 · 2i
− 144.

Finally, for any `, we select the smallest i such that ` ≤ `i . This value of i is dlog2((`− 9)/3)e. The
corresponding bound for maxdegα` and maxdeg γ` is then Ci , which grows like O(`2) (and we remark
that the effect of the ceiling can make the constant hidden in the O( ) expression grow by a factor of at
most 3).
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Using the expression (8.10), we have maxdeg δ` ≤maxdegα`+maxdeg γ`, and therefore the bound
O(`2) also applies to the degrees of the coefficients of δ`. Using the formula (8.13), the same holds for
the coefficients of ε`/y.

This concludes the proof of Lemma 8.

7. Experimental results

In order to evaluate the practicality of our algorithm, we have tested it on one of the families of genus-3
hyperelliptic curves having explicit RM given in [28, Theorem 1]. Formulas for their RM endomorphisms
are described in [20]: for t 6= ±2, the curve Ct with equation

y2
= x7
− 7x5

+ 14x3
− 7x + t,

admits an endomorphism given in Mumford representation by

η7(x, y)= 〈X2
+ 11 x X/2+ x2

− 16/9, y〉.

The fact that this expression has degree 2 while one would generically expect a degree 3 is no accident:
it comes from the construction in [28] of the endomorphism as a sum of two automorphisms on a double
cover of the curve. We have η3

7 + η
2
7 − 2η7 − 1 = 0, so the ring Z[η7] is isomorphic to the ring of

integers Z[2 cos(2π/7)] of the real subfield of the cyclotomic field Q(e2iπ/7). All the numerical data in
this section have been obtained for the parameter t = 42, on the prime field Fp with p = 264

− 59.
In our practical computations, the main differences to the theoretical description are the following:

we use Gröbner basis algorithms instead of resultants, we consider also small nonsplit primes ` and
small powers, and we finish the computation with a parallel collision search. The source code for our
experiments is available here: https://members.loria.fr/SAbelard/RMg3.tgz.

7.1. Computing modular information with Gröbner basis. Although the polynomial system resolution
using resultants has a complexity of Õ(`4), the real cost for small values of ` is already pretty large.
In the resolution method described in Section 3.2, each bivariate resultant is computed by evaluation
/ interpolation and hence requires the computation of many univariate resultants. We illustrate this
by counting the number of univariate resultants to perform and their degrees for the main step of the
resolution (the part that reaches the peak complexity). In the following table, we measure the cost of
such resultant computations using the NTL 10.5.0 and FLINT 2.5.2 libraries, both linked against GMP 6,
when the base field is F264−59. These costs do not include the evaluation / interpolation steps which might
also be problematic for large instances, because they are hard to parallelize.

` # res deg cost (NTL) cost (FLINT)

13 5.25 × 108 16,000 1,850 days 735 days
29 1.28 × 1010 80,000 310,000 days 190,000 days

We were more successful with the direct approach using Gröbner bases that we now describe. For
computing the kernel of a given endomorphism, we computed a Gröbner basis of (3) with some small

https://members.loria.fr/SAbelard/RMg3.tgz
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modifications. First, we observe that the only occurrences of y1 and y2 are within the monomial y1 y2.
Consequently, we can remove one variable by replacing each occurrence of y1 y2 by a fresh variable y.
Next, we need to make the system 0-dimensional by encoding the fact that d3(x3) and d̃3(x1, x2) are
nonzero. This is done by introducing another fresh variable t and by adding the polynomial S(x1, x2, x3)t−
1 to the system, where S(x1, x2, x3) is the squarefree part of d3(x3)d̃3(x1, x2). Finally, since each poly-
nomial is symmetric with respect to the transposition of the variables x1 and x2, we can rewrite the
equations using the symmetric polynomials s1 = x1+ x2 and s2 = x1 x2. This divides by 2 the degree in
x1 and x2 of the equations. We end up with a system in five variables.

The whole construction can be slightly modified to compute the preimage of a given divisor by the
endomorphism: to model α(D) = Q, we write D = P1 + P2 + P3 − 3∞ and solve for α(P1 −∞)+

α(P2−∞)= Q−α(P3−∞). In that case, the variable y3 gets involved in all the equations, so that we
get a system in six variables.

For `= 2, the 2-torsion elements are easily deduced from the factorization of f , and by computing a
preimage of a 2-torsion divisor, we get a point in J [4] from which we could deduce a, b, c mod 4. Divid-
ing again by 2 was too costly, due to the fact that the 4-torsion point was in an extension of degree 4. For
`= 3, which is an inert prime, we ran the kernel computation for the multiplication-by-3 endomorphism,
without using the RM property. The norm being 27, this is the largest modular computation that we
performed (and the most costly in terms of time and memory). The prime `= 7 ramifies in Z[η7] as the
cube of the ideal generated by α7=−2−η7+η

2
7. The kernel of α7 can be computed but it yields only one

linear relation in a, b, c mod 7. Dividing the kernel elements by α7 would give more information, but
this computation did not finish due to the field extension in which the divisors are defined. The first split
prime is `= 13. We use the following small generators: (13)= (2−η7−2η2

7)(−2+2η7+η
2
7)(3+η7−η

2
7),

which seem to produce the polynomial systems with the smallest degrees. For instance, the apparently
smaller element 1+ η2

7 of norm 13 yields equations of much higher degrees; 7, 71, 72, 73, 72. The next
split prime is 29, which would maybe have been feasible, but was not necessary for our setting. In the
following table, we summarize the data for these systems, which were obtained with Magma v2.23-4 on
a Xeon E7-4850v3 at 2.20GHz, with 1.5 TB RAM.1

mod `k #var degree of each eq. time memory a, b, c mod `k

2 — — — — 0, 0, 0
4 (inert2) 6 7, 7, 14, 15, 15, 10 1 min negl. 2, 2, 2
3 (inert) 5 7, 53, 54, 55, 26 14 days 140 GB 1, 2, 1
7= p3

1 5 7, 35, 36, 37, 36 3.5h 6.6 GB a+ 2b+ 4c ≡ 2
13= p1p2p3 5 7, 44, 45, 46, 52 3× 3 days 41 GB 12, 10, 9
29= p1p2p3 5 7, 92, 93, 94, 100 >3×2 weeks >0.8 TB —

1The F4 algorithm can be highly sensitive to the modeling of the problem and we refer to the source code. In particular,
thanks to serendipity, we saved a factor greater than 12 in the runtime for `= 7, 13 by forgetting to take the squarefree part of
the saturation polynomial. We have no explanation for this phenomenon.
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7.2. Parallel collision search for RM curves. The classical square-root-complexity search in genus 3
requires O(q) group operations [8]. For RM curves, this can be improved by searching for the coeffi-
cients a, b, c of ψ = π +π∨ in Z[η]. This readily yields a complexity of O(q3/4), using the equation
aD+ bη(D)+ cη2(D) = (q + 1)D, which must be satisfied for any rational divisor D. While a baby-
step, giant-step approach is straightforward to design, it needs O(q3/4) space and this is the bottleneck.
A low-memory, parallel version of this search can be obtained with the algorithm of [12]. There the
details are given only for a 2-dimensional problem, while here we have a 3-dimensional problem, but
we did not encounter any unexpected issues when adapting the parameters to our case. Also, just like
in [12], including some anterior modular knowledge is straightforward: if a, b, c are known modulo m,
the expected time is O(q3/4/m3/2).

We wrote a dedicated C implementation with a few lines of assembly to speed up the addition and mul-
tiplication in Fp, taking advantage of the special form of p. This implementation performs 10.7 million
operations in the Jacobian per second using 32 (hyperthreaded) threads of a 16-core bi-Xeon E5-2650
at 2 GHz. We used the knowledge of ψ modulo 156 but not of the known relation modulo 7 for simplicity
(there is no obstruction to using it and saving an additional 71/2 factor).

After computing about 190,000 chains of average length 32,000,000, we got a collision, from which
we deduced

ψ = 2551309006+ 2431319810 η7− 847267802 η2
7,

and the coefficients of the characteristic polynomial χπ of the Frobenius are then

σ1 = 986268198, σ2 = 35389772484832465583, σ3 = 10956052862104236818770212244.

The number of group operations that were done is slightly less than 43 (p3/4/1563/2). This factor 43
is close to the average that we observed in our numerous experiments with smaller sizes. Scaled on a
single (physical) core, we can estimate the cost of this collision search to be 105 core-days.
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