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We give a new algorithm for constructing Picard curves over a finite field with a given endomorphism
ring. This has important applications in cryptography since curves of genus 3 allow one to work over
smaller fields than the elliptic curve case. For a sextic CM-field K containing the cube roots of unity, we
define and compute certain class polynomials modulo small primes and then use the Chinese remainder
theorem to construct the class polynomials over the rationals. We also give some examples.

1. Introduction

For cryptographic protocols whose security relies on the difficulty of the discrete log problem, one often
wants to find a group whose order is divisible by a large prime. One option is the group of points of an
elliptic curve over a finite field, or more generally, the group of points on the Jacobian of a curve over
a finite field. Thus, we are interested in the problem of finding curves over finite fields whose Jacobian
has a given number of points.

For elliptic curves, Atkin and Morain showed in [3] that one can use the theory of complex multipli-
cation to solve this problem. The approach taken in [3] involves computing the Hilbert class polynomial
with respect to an imaginary quadratic field by evaluating modular j-invariants at certain values. An
alternative method to construct the Hilbert class polynomial, used in [9] and [1], is to compute the poly-
nomial modulo several small primes and then reconstruct the polynomial using the Chinese remainder
theorem. In the genus 2 case, analogous to the construction of the Hilbert class polynomial, one wishes
to construct the so-called Igusa class polynomials. In this case, one can again use a Chinese remainder
theorem approach to construct the Igusa class polynomials as shown in [11; 12].

If one wishes to construct genus 3 curves with a given number of points, less is known. Genus 3
curves fall into two classes: hyperelliptic curves and nonhyperelliptic plane quartics. One difficulty in
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the case of genus 3 curves is that there is no theory of invariants which works for all genus 3 curves.
However, invariants do exist for the classes of hyperelliptic curves and nonhyperelliptic plane quartics
separately. By making restrictions on the type of genus 3 curves considered, algorithms for constructing
genus 3 curves with complex multiplication have been presented in [36; 23; 25; 4; 21]. All these papers
take a complex analytic approach to constructing genus 3 curves similar to the method in [3]. The
papers [36; 4] deal with constructing hyperelliptic genus 3 curves with complex multiplication. The
paper [23] and its improvement [25] deal with constructing Picard curves with complex multiplication,
while [21] deals with constructing plane quartics defined over Q with complex multiplication. Due to the
numerous improvements to the Chinese remainder theorem approach in the elliptic curve case [5; 33], it
is of interest to try to implement a Chinese remainder theorem approach for the construction of genus 3
curves. This is the aim of this paper.

As in [23], we will restrict our attention to Picard curves. These are genus 3 curves of the form
y3
= f (x) where deg( f )= 4 and f has no repeated roots over the algebraic closure. One advantage to

using these curves is that it is very simple to generate representatives for all isomorphism classes of Picard
curves over a finite field. Also, if K is a sextic CM-field that contains the cube roots of unity, then, by [23,
Lemma 1], all simple, principally polarized abelian varieties of dimension 3 with complex multiplication
by OK arise as the Jacobians of Picard curves, so we can use Picard curves in a CRT approach.

Statement of theorem. Let K be a sextic CM-field containing the cube roots of unity. Fix a primitive
CM-type 8 on the field K. Our first step will be to define suitable class polynomials for (K ,8). For
this we will require invariants for Picard curves.

We work with the set of invariants for Picard curves j1, j2, j3 defined in [20]. They are discussed in
more detail in Section 3.

We now wish to introduce class polynomials for Picard curves. Recall, the Hilbert class polynomial for
an imaginary quadratic field K has as roots the j -invariants of elliptic curves with complex multiplication
by the full ring of integers OK of K. Analogous to this situation, we would like the class polynomials
we define, for a sextic CM-field K containing the cube roots of unity, to have as roots the invariants of
Picard curves with complex multiplication by OK . A complication that does not arise in the genus 1 case
is that we will need to restrict to Picard curves whose Jacobian has a given primitive CM-type on K. In
genus 2, a restriction on the CM-type for class polynomials was discussed in [26].

We would like our class polynomials to be defined over Q. This will allow us to multiply by a large
enough integer to clear denominators and hence use the Chinese remainder theorem on the resulting
polynomials modulo various primes. For an abelian variety A of CM-type (K ,8) and for σ ∈Gal(Q/Q),
Aσ is of type (K , σ8). Thus, we define class polynomials for i = 1, . . . , 3 as

H8
i :=

∏
(X − ji (C)),

where the product runs over all isomorphism classes of Picard curves C/C whose Jacobian has complex
multiplication by OK of type σ8 for some σ ∈ Gal(Q/Q). These polynomials will be defined over Q.
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Should one want to reconstruct a Picard curve C/C such that End(Jac(C))∼=OK from the roots of the
class polynomials, it is more convenient to work with a different set of class polynomials, introduced
in [14] in the genus 2 setting. This is discussed more in Section 4.

We have the following theorem:

Theorem 1.1. The following algorithm takes as input a sextic CM-field K containing the cube roots of
unity and a primitive CM-type 8 on K. Assuming the bound B in Theorem 5.4 is known, the algorithm
outputs the class polynomials H8

i , where i = 1, . . . , 3, corresponding to the type (K ,8).

(i) Construct a set of rational primes S which satisfy

(a) 2 6∈ S.
(b) Each p ∈ S splits completely in K .
(c) Each p ∈ S splits completely into principal ideals in K ∗, the reflex field for the type (K ,8).
(d)

∏
p∈S p > B where B is the bound in Theorem 5.4.

(ii) Form the class polynomials H8
i modulo p for every p ∈ S. Let Hi,p := H8

i mod p. Then

Hi,p =
∏
(X − ji (C)),

where the product is over all Fp-isomorphism classes of Picard curves that arise as the reduction
of a Picard curve over C whose Jacobian has complex multiplication by OK of type σ8 for some
σ ∈ Gal(Q/Q).

(iii) Form the polynomials H8
i from the Hi,p, p ∈ S, using the Chinese remainder theorem.

We review background from the theory of complex multiplication in Section 2 and prove some results
we will need. In Section 3 we review invariants of Picard curves. In Section 4, we discuss reducing class
polynomials modulo primes. In Section 5 we show how to compute H8

i modulo a prime p and we prove
Theorem 1.1. Section 6 discusses the endomorphism ring computation, and in Section 7 we give some
examples.

2. Results from complex multiplication

Definition 2.1 (CM-type). Let K be a CM-field of degree 2g and let � be an algebraically closed field
of characteristic 0. Denote by Hom(K , �) = {φ1, φ2, . . . , φ2g} the set of embeddings of K into �.
Furthermore, let ρ denote the automorphism inducing complex conjugation on K. Then any subset of
these embeddings 8 satisfying the disjoint union 8t ρ ◦8= Hom(K , �) is called a CM-type on K.

Injectivity of the reduction map.

Definition 2.2. Let A be an abelian variety over a field k with complex multiplication by the maximal
order OK in a CM-field K, and let a be an ideal in OK . A surjective homomorphism λa : A→ Aa,
to an abelian variety Aa, is an a-multiplication if every homomorphism a : A→ A with a ∈ a factors
through λa, and λa is universal for this property, in the sense that, for every surjective homomorphism
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λ′ : A→ A′ with the same property, there is a homomorphism α : A′→ Aa, necessarily unique, such that
α ◦ λ′ = λa.

For abelian varieties A and B defined over a number field and with good reduction modulo a prime P,
the next proposition gives a condition under which A and B will be isomorphic provided that their
reductions modulo P are isomorphic. The fact that the conditions below are sufficient for an isomorphism
to lift was given for dimension 2 in [11, Theorem 2]. Here we give a general proof of this fact.

Proposition 2.3. Let (A, ι), (B, ι′) be simple, abelian varieties of type (K ,8) defined over a number
field k. Furthermore, assume that P is a prime of k such that A and B have good reduction modulo P and
denote by Ã and B̃ their reductions modulo P, respectively. If Ã and B̃ are simple with endomorphism
ring isomorphic to OK and γ : Ã→ B̃ is an isomorphism over Fp, then A and B are isomorphic over k.

Proof. As (A, ι), (B, ι′) have the same type then, by [30, Chapter II, Proposition 16], they are isogenous
via an a-multiplication, which we denote by λa. After possibly taking a field extension and picking a
prime above P, we can assume that λa and all endomorphisms are defined over k. The reduction λ̃a is
also an a-multiplication [28, Proposition 7.30]. Define an embedding ι̃ :OK → End( Ã) by ι̃(a)= ι̃(a).
This map is an isomorphism. Let a ∈ OK be such that ι̃(a) = γ−1

◦ λ̃a ∈ End( Ã). As ι̃(a) factors
through λ̃a, a ∈ a by [28, Corollary 7.24]. Also, ι(a) must factor through the a-multiplication, λa, that
is, ι(a)= γ1 ◦ λa for γ1 some isogeny from B to A.

Reducing modulo P, ι̃(a) = γ̃1 ◦ λ̃a. As λa is surjective, this implies γ−1
= γ̃1. Similarly, we can

find a γ2 such that γ̃2 = γ . Then γ̃1 ◦ γ̃2 = γ
−1
◦ γ = id. As the reduction map is injective, γ1 ◦ γ2 = id

and γ2 ◦ γ1 = id, thus A and B are isomorphic. �

The congruence relation. Let (A, ι)/C be of type (K ,8) with End(A) ∼= OK . Denote by (K ∗,8∗)
the reflex of (K ,8). Let k be a field of definition for (A, ι). As the Hilbert class field H of K ∗ is
a field of definition for (A, ι) (see [15, Proposition 2.1]), we may assume that k ⊆ H. Take L to be
a Galois extension of Q containing the field of definition k and the field K. Recall k contains K ∗ by
[24, Chapter III, Theorem 1.1]. Let P be a prime of k at which A has good reduction. Let PK ∗ be
the prime of K ∗ below P. Pick a prime PL of L above P and write 8−1

L for the set of elements ψ of
Gal(L/Q) such that (ψ−1)|K ∈8.

Let π ∈OK be such that ι̃(π) is the Nk/Q(P)-th power Frobenius on the reduction Ã. In Section 5 we
will use the following proposition, which is an easy consequence of the Shimura–Taniyama congruence
relation, to obtain a bijection between abelian varieties with CM by OK of type 8 and abelian varieties
over a finite field satisfying certain properties.

Proposition 2.4. Assume that p splits completely in K and splits completely into principal ideals in K ∗.
Also, let M be the Galois closure of the compositum of K and K ∗ and let PM be a prime above PK ∗ .
Write 8−1

M for the set of elements γ of Gal(M/Q) such that (γ−1)|K ∈8. Then πOM =
∏
γ∈8−1

M
(PM)

γ.

Proof. As p splits completely into principal ideals in K ∗, p splits completely in the Hilbert class
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field H of K ∗. Thus, as mentioned above, p splits completely in the field of definition k. Therefore,
f (PL/P)= 1, and by [24, Chapter 3, Theorem 3.3] we obtain

πOL =
∏

ψ∈8−1
L

P
ψ

L OL .

Using the splitting conditions on p and intersecting with OM on both sides, we get the desired result. �

Thus the CM-type determines the ideal generated by Frobenius. We will also need a version of this
statement over Qp. Fix an algebraic closure Qp of Qp. Let

Hw = {φ ∈ Hom(K ,Qp) : φ factors through K → Kw},

where Kw is the completion of K at the place w.

Proposition 2.5. Let (A, ι) be an abelian variety with CM by the full ring of integers OK and of CM-
type 0. Moreover, assume (A, ι) has a model over the p-adic integers Zp. If p splits completely in K,
0 = {φ : φ ∈ Hv, where v |πOK }.

Proof. By [34, Lemme 5], v(π)/v(q) = Card(0 ∩ Hv)/[Kv :Qp]. If p splits completely in K, then
[Kv :Qp] = 1 for all v | p and q = p. This gives v(π)= Card(0 ∩ Hv).

Also, as p splits completely in K, there is only one embedding K → Kv for every v | p. Thus
Card(Hv)= 0 or 1, and Card(0 ∩ Hv)= 1 if and only if v(π)= 1. �

3. Invariants of Picard curves

In this section, we discuss invariants for Picard curves. Recall, if y3
= f (x) where deg( f ) = 4 and f

has no repeated roots over the algebraic closure, then this defines a smooth curve known as a Picard
curve. Assume L is a field of characteristic not 2 or 3, and let C be a Picard curve over L . We can
express the curve C in the form y3

= x4
+ g2x2

+ g3x + g4. This is called the normal form of the curve
[18, Appendix 1, Definition 7.6].

As in [20, Section 1], we define the following three invariants for a Picard curve in normal form as
j1 := g3

2/g2
3, j2 := g2g4/g2

3, j3 := g3
4/g4

3 .
We can write down a model for the curve with given invariants as follows:

Case 1: If j1 6= 0, then C : y3
= x4
+ j1x2

+ j1x + j1 j2.

Case 2: If j1 = 0, j3 6= 0, then C : y3
= x4
+ j2

3 x + j3
3 .

Case 3: If j1 = 0, j2 = 0, j3 = 0, then C : y3
= x4
+ x .

If g3 = 0, then C is a double cover of an elliptic curve (see [20, Lemma 2.1 and Theorem 2.4]).
Thus the invariants for a Picard curve C whose Jacobian is simple are always defined. This gives us the
following proposition.

Proposition 3.1. Let C be a Picard curve over a field L of characteristic not 2 or 3 with Jac(C) simple.
Assume that the three invariants ji (C) are defined over a subfield k of L. Then C has a model as a Picard
curve over k.
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Goren and Lauter showed that for genus 2 curves which have CM by a given primitive, quartic, CM-
field K one can bound the primes occurring in the denominators of the Igusa class polynomials in terms of
a value depending on K [16]. They obtain this bound by relating the primes occurring in the denominators
to primes of bad reduction of the curves. For genus 3 curves with CM by a sextic CM-field K, a bound
on the primes of bad reduction in terms of a value depending on K was obtained in [8; 22]. A bound on
the primes occurring in the denominators of the above invariants of Picard curves was obtained in [20].

We will need the following condition for Picard curves.

Proposition 3.2. Let K =Q(µ) be a sextic CM-field,8 be a primitive CM-type on K and p be a rational
prime that splits completely in K. Let C be a genus 3 curve defined over a number field M with CM by
the maximal order OK of K and with type 8. Let P be a prime of M above p. Then C has potential
good reduction at P. Moreover, if C is a Picard curve then vP( ji (C))≥ 0 for all invariants ji .

Proof. Assume C has geometrically bad reduction modulo a prime P of M above the rational prime p.
After possibly extending M, we may assume that C has a stable model over M and Jac(C) has good reduc-
tion over M. The stable reduction C̃ has at least two irreducible components [8, Proposition 4.2]. J̃ac(C)
is isomorphic as a polarized abelian variety to the product of the Jacobians of the irreducible components
of C̃ . That is, J̃ac(C) is isomorphic as a principally polarized abelian variety to E × A [8, Corollary 4.3],
where E is an elliptic curve and A is a two-dimensional principally polarized abelian variety. However,
as p splits completely in K, the reduction modulo P of Jac(C) must be simple with CM by K by
[30, Chapter 3, Theorem 2]. By [32, Theorem 1.2] J̃ac(C) is ordinary, so End(J̃ac(C))⊗Q is unchanged
after base extension by [35, Theorem 7.2]. Therefore J̃ac(C) is geometrically simple as the endomor-
phism ring tensored with Q is a field. This is a contradiction, so C must have potential good reduction.

Now assume that C is a Picard curve and that vP( ji (C)) < 0 for some ji . After possibly extending M,
we may assume that Jac(C) has good reduction modulo P. Then the reduction of Jac(C) modulo P has
two nontrivial abelian subvarieties by [20, Lemma 2.1]. However, as p splits completely in K, we again
obtain a contradiction. �

Remark 3.3. It was pointed out to the authors by some of the anonymous referees and by Marco Streng
that a condition similar to the above proposition was given in [21, Proposition 4.1] when the field K/Q
is cyclic Galois.

Remark 3.4. To generate representatives for all distinct isomorphism classes, we use the invariants
described in [23, Section 4]. To see that this enumerates all isomorphism classes of Picard curves with
no repetitions, see [18, Appendix 1, Section 7.5].

4. Reduction of class polynomials

Fix a sextic CM-field K containing the cube roots of unity and a primitive CM-type 8 on K. In the
introduction we defined class polynomials H8

i for i = 1, . . . , 3,

H8
i :=

∏
(X − ji (C)),
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where the product runs over all isomorphism classes of Picard curves defined over C whose Jacobian has
complex multiplication by OK and of type σ8 for some σ ∈ Gal(Q/Q).

Remark 4.1. If one wants to use the class polynomials above to construct Picard curves over C with
End(Jac(C)) ∼= OK , then one needs to match up the roots of the three polynomials to obtain a triple
of roots ( j1, j2, j3) that corresponds to such a curve. In genus 2, alternate class polynomials were
proposed based on Lagrange interpolation that prescribe which roots of the second and third Igusa class
polynomials to choose once the first has been chosen [14, Section 3]. These polynomials only work if
the first Igusa class polynomial has simple roots. For a discussion of resolving this issue in genus 2 see
[31, Chapter III, Section 5].

We will show that under suitable restrictions on the prime p, the reduction modulo p of these polyno-
mials H8

i is
Hi,p :=

∏
(X − ji (C)),

where the product runs over all Fp-isomorphism classes of Picard curves C which arise as the reduction
of Picard curves over C that have complex multiplication by OK and type σ8 for some σ ∈ Gal(Q/Q).

First we describe when a principally polarized abelian variety is the Jacobian of a Picard curve.
In the following, whenever we assume that a field F contains the cube roots of unity, it is also implied

that F does not have characteristic 3.

Lemma 4.2. Let (A, C) be a simple, principally polarized abelian variety of dimension 3 over a perfect
field H which contains the cube roots of unity. In addition, assume (A, C) has complex multiplication by
K with Q(ζ3) ⊂ K. Then (A, C) is geometrically the Jacobian of a Picard curve C which has a model
over H.

Proof. By [23, Lemma 1], (A, C) is the Jacobian of a Picard curve C after we base change to a finite
extension L of H. After possibly another finite extension, we may assume L is Galois over H. Let
σ ∈ Gal(L/H), then Jac(Cσ )∼=L Jac(C)σ. As Jac(C) has a model over H, Jac(Cσ )∼=L Jac(C).

Hence by Torelli’s theorem, C ∼=L Cσ. So ji (C) = ji (Cσ ) = ji (C)σ, i = 1, . . . , 3. Therefore the
invariants ji (C) are defined over H. As the invariants ji (C) are defined over H, Proposition 3.1 implies
that C has a model over H. �

Before we discuss reductions of our class polynomials, we need the following.

Proposition 4.3. H8
1 , H8

2 , H8
3 are polynomials defined over Q.

Proof. Every abelian variety with CM by K has a model over a number field. Thus, by [29, Theorem 4],
the curve C is also defined over a number field. So if σ ∈Gal(Q/Q) is an automorphism, then the tuple of
invariants ji (C)σ corresponds to the curve Cσ. But if Jac(C) has CM-type (K ,8) under some embedding
ι : K ↪→ End(Jac(C))⊗Q, then Jac(Cσ ) has CM-type (K , σ8) by [24, Chapter 3, Theorem 1.2]. The
number of roots of the H8

i is finite as there are only finitely many principally polarized abelian varieties
with endomorphism ring isomorphic to OK of type σ8 [24, Chapter 3, Corollary 2.7], so the H8

i are
polynomials defined over Q. �
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We will use the abbreviation p.p.a.v. for a principally polarized abelian variety. For a CM-field K of
degree 2g over Q, let

CMK ,8 = {C-isomorphism classes of simple p.p.a.v. with CM by OK of type 8}.

The abelian varieties in this set are of dimension g. By [15, Proposition 2.1], every p.p.a.v. (A, C)
representing an isomorphism class in CMK ,8 has a model over the Hilbert class field H of the reflex
field K ∗ which has good reduction modulo any prime P of H. By [28, Chapter II, Proposition 6.7], the
reduction of the polarization C is a polarization on the reduced variety Ã. If p splits completely into
principal ideals in K ∗ then p splits completely into principal ideals in H. Thus, the reduction (AP, CP)
of (A, C) modulo P has a model over Fp. Denote by C̃MK ,8 the set of Fp-isomorphism classes occurring
in this way. That is,

C̃MK ,8 = {Fp-isomorphism classes of p.p.a.v.’s (AP, CP)/Fp | (A, C) ∈ CMK ,8}.

Proposition 4.4. Let σ ∈ Gal(Q/Q). If 8γ = σ8 for some γ ∈ Aut(K/Q), then CMK ,8 and CMK ,σ8

are equal. Otherwise, CMK ,8 and CMK ,σ8 are disjoint.

Proof. For the first statement see [31, page 22]. The second statement follows from [31, Chapter I,
Lemma 5.6]. �

For a sextic CM-field K containing the cube roots of unity, define

C8 := {Picard curves C over C | Jac(C) ∈ CMK ,8}/isomorphism over C,

and
C̃8 := {Picard curves C over Fp | Jac(C) ∈ C̃MK ,8}/isomorphism over Fp.

Let p > 3 be a rational prime that splits completely in K and splits completely into principal ideals in K ∗.

Proposition 4.5. The reduction of the polynomials H8
i modulo a prime satisfying the above conditions

gives H8
i mod p ≡

∏
(X − ji (C)), where the product is over all C such that C is in C̃σ8 for some

σ ∈ Gal(Q/Q).

Proof. As p splits completely into principal ideals in K ∗, the reflex field for (K ,8), it splits completely
in H. Let P be a prime of H above p. By [15, Proposition 2.1], Jac(C) is defined over H for any
curve C in C8. Then C itself also has a model over H by Lemma 4.2. C has potential good reduction by
Proposition 3.2, so let L be a finite extension over which C obtains good reduction. Furthermore, let PL

be a prime above P. Thus, the reduction CPL of C modulo PL will be defined over a finite extension
of Fp. However, as the invariants of C belong to H, the invariants of CPL belong to Fp so CPL has a
model over Fp. Thus, we get a map from C8 to C̃8. For any σ ∈ Gal(Q/Q), let K ∗σ be the reflex field
for the type (K , σ8). One can check that the reflex fields K ∗ and K ∗σ are isomorphic over Q. Therefore,
p splits completely into principal ideals in the reflex field of K ∗σ , so we also get a map from Cσ8 to C̃σ8

induced by reduction modulo PL . It remains to show that the reduction map induces a bijection. Taking
Jacobians of elements in C8 and C̃8 gives bijective maps into CMK ,8 and C̃MK ,8, respectively.
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The map CMK ,8 to C̃MK ,8 induced by reduction modulo P is injective by Proposition 5.2. By
definition, the map from CMK ,8 to C̃MK ,8 is surjective, so it follows that C8 is in bijection with the set
C̃8 under the reduction map. The sets CMK ,8 and CMK ,σ8 are either equal or distinct by Proposition 4.4.
The elements in C̃MK ,8 are simple with CM by OK by Proposition 5.1. Thus, the sets C̃MK ,8 and
C̃MK ,σ8 are equal if and only if CMK ,8 and CMK ,σ8 are equal by Proposition 2.3. Therefore, bijectivity
of the map from C8 to C̃8 suffices to prove the proposition. �

5. Computing H8
i modulo p

Let (K ,8) be a primitive CM-type. Denote by (K ∗,8∗) the reflex of (K ,8). Let H be the Hilbert
class field of K ∗ and M the normal closure of the compositum of K and K ∗. Let L be the Galois closure
of the compositum of H and M over Q. Take p to be a rational prime which splits completely into
principal ideals in K ∗ and splits completely in K. Denote by P a prime of H above p, by PL a prime
of L above P and by PM a prime of M below PL . Denote by 8−1

M the set of elements ψi of Gal(M/Q)
such that (ψ−1

i )|K ∈8.

An equivalent definition of C̃MK,8. In this subsection, we give an equivalent definition of C̃MK ,8

in terms of a condition on the Frobenius of the abelian varieties in C̃MK ,8. This new definition is
more suitable for computations. In particular, we will use it in computing the set C̃8 which occurs
in the description of the class polynomials H8

i modulo p in Proposition 4.5. For a CM-field K with
[K :Q] = 2g, recall the definitions of CMK ,8 and C̃MK ,8 from Section 4.

We will now define a set CMFr
K ,8 which we will show is equal to the set C̃MK ,8. The main tool

that allows us to give this equivalent description will be the Shimura–Taniyama congruence relation,
specifically the statement in Proposition 2.4, which relates the CM-type of an abelian variety defined
over a number field with CM to the ideal generated by Frobenius of the reduction of the abelian variety
modulo P. In genus 2, this idea was used in [26] to describe the set we refer to as C̃MK ,8.

With notation as above, denote by CMFr
K ,8 the set of all Fp-isomorphism classes of ordinary, simple,

principally polarized abelian varieties (A, C) of dimension g defined over Fp with CM by OK satisfying
the following condition: For (A, C) a representative of an Fp class as above, there exists an embedding
ι of K ↪→ End(A)⊗Q such that, under this embedding, the element π for which ι(π) is the Frobenius
endomorphism on A satisfies

πOM =
∏

φ∈8−1
M

P
φ
M . (5-1)

Recall, in the beginning of the section, we fixed a prime PL of L above the prime P of H and define
PM =PL ∩M. One can easily check that C̃MK ,8 does not depend on the choice of PL above P. We
now wish to show that the sets CMFr

K ,8 and C̃MK ,8 are equal. First we show the following:

Proposition 5.1. Every element in C̃MK ,8 is ordinary and geometrically simple with endomorphism ring
isomorphic to OK .
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Proof. Let (A, C) be a representative of a class in CMK ,8 such that it has good reduction modulo P

as above. Let AP be the reduction of A modulo P. The reduction map gives an inclusion End(A) ↪→
End(AP) [24, Theorem 3.2], thus, OK embeds into End(AP). By [30, Chapter 3, Theorem 2], the
abelian variety AP is simple and End(AP) = OK . Also, AP is ordinary by [32, Theorem 1.2]. Thus,
End(AP)⊗Q is unchanged after base extension by [35, Theorem 7.2]. Hence AP is geometrically simple
as the endomorphism ring tensored with Q is a field. �

The following two results are a generalization to arbitrary dimension of the dimension 2 case treated
in [11, Theorem 2].

Proposition 5.2. The reduction map CMK ,8→ C̃MK ,8 is injective.

Proof. Every element in C̃MK ,8 is simple with CM by OK by Proposition 5.1. Thus, the proposition
follows from applying Proposition 2.3. �

Theorem 5.3. With notation as above, the set C̃MK ,8 is equal to the set CMFr
K ,8.

Proof. We first show that C̃MK ,8 ⊂ CMFr
K ,8. Let (A, C) be a representative of a class in C̃MK ,8. By

Proposition 5.1, A is ordinary and geometrically simple with End(A) ∼= OK . As we remarked above,
p splits completely into principal ideals in K ∗, so the Frobenius of A satisfies (5-1) by Proposition 2.4.
Hence Ã ∈ CMFr

K ,8. This shows C̃MK ,8 ⊂ CMFr
K ,8. It remains to show the reverse inclusion.

To do this, we will show that the two sets have the same cardinality. Both sets are finite as there are
only finitely many isomorphism classes of principally polarized abelian varieties defined over Fp. We
know from the previous proposition that CMK ,8→ C̃MK ,8 is an injection. Thus, we have the inequality
of cardinalities: |CMK ,8| ≤ |C̃MK ,8| ≤ |CMFr

K ,8|.
It suffices to show |CMFr

K ,8| ≤ |CMK ,8|. Therefore, we will show that there is an injective map from
CMFr

K ,8 into CMK ,8. We define the map as follows: Let (A0, C0) be an abelian variety representing a
class in CMFr

K ,8. Since A0 is ordinary, we can consider its Serre–Tate canonical lift [27, pages 172-173,
Theorem 3.3] to Zp which we will call (A, C).

As (A0, C0) ∈ CMFr
K ,8 we have πOM =

∏
φα∈8

−1
M
(PM)

φα. Let {ψw} be the set of all embeddings of M
into Qp induced by completion at a prime Pw for Pw |πOM . By Proposition 2.5, the embeddings
induced by completion at primes occurring in the decomposition of the ideal generated by π give the
CM-type of A. Under some embedding ρ : Qp ↪→ C, we can verify that ρ(A) has type (K , σ8) for
some σ ∈ Gal(M/Q). By [37, Theorem 7], modifying ρ by an automorphism of C, we can arrange that
ρ(A) has CM-type (K ,8). As the choice of ρ does not depend on A, this gives us the injection from
CMFr

K ,8 to CMK ,8. Hence CMFr
K ,8 = C̃MK ,8. �

Correctness proof for the main algorithm. We must now show that the Chinese remainder theorem may
be used to reconstruct the class polynomials from sufficiently many of the Hi,p. This is accomplished
by Theorem 5.4 whose proof is identical to that of [11, Theorem 3]:

Theorem 5.4. Let M be the least common multiple of the denominators of the class polynomials and
let N be the maximum absolute value of the coefficients of the class polynomials. Let B = 2NM. Then if
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S is a set of primes satisfying the conditions in Theorem 1.1, we can use the Chinese remainder theorem
on the polynomials {Hi,p}p∈S , with i from 1 to 3, to reconstruct the polynomials H8

i .

Remark 5.5. A definition of class polynomials for Picard curves and a bound on the primes occurring
in the denominators are given in [22, Theorem 1.3], and the class polynomials we define divide them. In
genus 2, bounds on the denominators of the Igusa class polynomials were obtained in [17].

Proof of Theorem 1.1. Using Proposition 4.5, we see that Hi,p :=
∏
(X − ji (C)), where the product runs

over representatives for elements in C̃σ8 for all σ ∈ Gal(Q/Q). We can enumerate all Fp isomorphism
classes of Picard curves defined over Fp using the invariants discussed in Remark 3.4. We can check
whether a curve is in C̃8 by checking whether Jac(C) is in CMFr

K ,8 by Theorem 5.3. This involves
checking that Jac(C) has complex multiplication by OK which can be accomplished using the algorithm
of Section 6. We then perform the CRT step using Theorem 5.4. �

6. Endomorphism ring computation

The algorithm of Theorem 1.1 requires us to check whether certain genus 3 curves C have complex
multiplication by a sextic CM-field K. An algorithm for checking whether the Jacobian of an ordinary
genus 2 curve (i.e., a curve whose Jacobian is ordinary) has complex multiplication by the full ring
of integers of a primitive quartic CM-field K was presented, under certain restrictions on the field K,
in [11]. Improvements to this algorithm were presented in [12] and [26]. We generalize these methods
to the genus 3 case.

Theorem 6.1. The following algorithm takes as input a sextic CM-field K and an ordinary genus 3
curve C over a field Fp where p splits completely in K. The algorithm outputs true if Jac(C) has
endomorphism ring the full ring of integers OK and false otherwise:

(i) Compute a list of all possible characteristic polynomials of Frobenius for ordinary, simple, abelian
varieties with complex multiplication by K. Output false if the characteristic polynomial of Jac(C)
is not in this list.

(ii) Compute a basis for OK .

(iii) For each element α of the basis in the previous step, use Proposition 6.2 to determine if it is an
endomorphism. If it is not, output false.

(iv) Output true.

The values for Frobenius in Step (i) satisfy ππ = p with π ∈OK , i.e., NK/K+(π)= p where K+ is
the maximal totally real subfield of K. This relative norm equation can be used to find all such values
of π . By the Honda–Tate theorem, every such π will arise as the Frobenius of some abelian variety A
over Fp. If the characteristic polynomial of π is irreducible, then A is simple and Q(π)∼= K. If p does
not divide the middle coefficient of the characteristic polynomial of Frobenius, then A is ordinary [19,
Definition 3.1]. By [34, page 97, Exemple b], the endomorphism ring of A is an order in K.
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Determining if an element is an endomorphism. Our approach in this subsection follows closely that
of [12, Section 3] and [26, Section 4] for genus 2. We discuss some changes which are required for
genus 3. To determine if End(Jac(C)) ∼= OK , we wish to check, for some Z-basis of OK , α1, . . . , α6,
whether each αi is an endomorphism. As Z[π ] is an order in K, for every α ∈OK , we can write

α = Pα(π)/n := (a0+ a1π + · · ·+ a5π
5)/n (6-1)

for some integer n. The next proposition lets us check if α ∈OK is an endomorphism of Jac(C):

Proposition 6.2. Let C be an ordinary curve of genus 3 over Fp with End(Jac(C)) ⊗ Q = K, and
suppose p splits completely in K. Let α = Pα(π)/n ∈OK with n =

∏
`

ei
i . Then α is an endomorphism

of Jac(C) if and only if Pα(π) is zero on the `ei
i -torsion for `i 6= p.

Proof. By [12, Lemma 3.2], it suffices to check that each Pα(π)/`
di
i is an endomorphism. If `i is coprime

to p, then by [11, Corollary 9], we can check whether Pα(π)/`
di
i is an endomorphism by determining if

Pα(π) is zero on the `di
i -torsion.

It remains to handle the case where `i = p. For a group A, denote the p-primary part of A by Ap.
Write [OK : Z[π ]] = [OK : Z[π, π ]] · [Z[π, π ] : Z[π ]]. It is not hard to see that [Z[π, π ] : Z[π ]] is a
power of p (see [12, Corollary 3.6]). As p splits completely in K, one can show, p - [OK : Z[π, π ]], thus
|(OK /Z[π ])p| = |(Z[π, π ]/Z[π ])p|. This follows from an argument similar to [12, Proposition 3.7].

But this implies for any β ∈ OK , if pkβ ∈ Z[π ] then β ∈ Z[π, π ]. Thus, any such element is an
endomorphism. �

Computing the `d-torsion and arithmetic. The algorithm of Couveignes [10] shows how to compute
the `d-torsion. Couveignes’ method works for a very general class of curves. However, we instead use
some algorithms specific to Picard curves. For a Picard curve C/k, where k is a finite field, Couveignes’
method requires the ability to choose random points in Jac(C)(k). This is easy to do if we represent
elements of Jac(C)(k) as formal sums of points on C . However, to do arithmetic on Jac(C)(k), it is
easier to represent elements as ideals in the affine coordinate ring of C . Thus, we need to be able to
switch between the two representations. First, we recall the following consequence of the Riemann–
Roch theorem:

Proposition 6.3. For C a Picard curve and P∞ the point at infinity for the affine model described above,
for any degree-0 divisor D there is a unique effective divisor E of minimal degree 0≤ m ≤ 3 such that
E −m P∞ is equivalent to D.

Proof. As Picard curves are nonsingular with a k-rational point, the proof follows from [13, Theorem 1]. �

We will call the unique divisor above the reduced representation of D. So to find a random point in
Jac(C)(k), we can just pick at most 3 random points on C .

A reduced divisor D for which all points in the effective part E lie in the same Gal(k/k)-orbit will be
called an irreducible divisor. Every degree-0 divisor can be expressed as a sum of irreducible divisors.
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We can also represent points on Jac(C) as elements of a particular class group. Denote the coordinate
ring k[x, y]/〈y3

− f (x)〉 of C by R. By [13, Proposition 2], R is the integral closure of k[x] in k(C).
Given an irreducible divisor P we can associate to it a prime ideal P of R. We can extend this to a

map ρ from effective divisors to ideals of R as

ρ
(∑

ni Pi

)
:=

∏
Pni

i ,

where the Pi are irreducible divisors and the Pi are the corresponding primes of R.

Proposition 6.4. For C a Picard curve over k and R the coordinate ring of C described above, the map ρ
induces an isomorphism Jac(C)(k)→ Cl(R), where Cl(R) is the class group of R.

Proof. This follows from applying [13, Proposition 3]. �

We refer to the image of a reduced divisor under the map ρ as a reduced ideal.

Proposition 6.5. Given a reduced divisor D, there is an algorithm to find generators u(x), w(x, y) for
the ideal ρ(D). Moreover, given an ideal I of R in the form I = 〈u(x), w(x, y)〉, we can compute ρ−1(I ).

Proof. As a reduced divisor is a sum of irreducible divisors, it suffices to associate to an irreducible
divisor Q the corresponding prime ideal. We can associate a prime ideal P in R by first considering the
polynomial u =

∏
(x − xi ), where the product is over all x-coordinates of points in Q. We then take a

polynomial w(x, y) such that the set of common roots of u, w is exactly the set of points of Q. If the xi

are all distinct, then we take the polynomial w = y− v(x), where v(x) is the polynomial interpolating
the points in Q. If the roots of u(x) are not distinct, then we can construct w in a way similar to the
interpolation polynomial. In the case where there are two distinct x-coordinates x1, x2, let y1 and y2 be
polynomials whose roots are the y-coordinates corresponding to x1 and x2, respectively. Then

w(x, y) :=
x − x2

x1− x2
y1(y)+

x − x1

x2− x1
y2(y).

If there is only a single x-coordinate, then we can write w(x, y) =
∏
(y − yi ), where the yi are the

y-coordinates in the Galois orbit. The corresponding prime ideal in R is then the ideal generated by u
and w.

We will now show how to explicitly find the inverse of ρ. Let D=
∏

Pni
i be the ideal decomposition of

D. Write Pi =〈u(x), w(x, y)〉. We can find the set of common zeroes of Pi by finding all roots xn of u(x)
and all roots yn,m of w(xn, y). Then the divisor (Pi ) equals

∑
(xn, yn,m). Thus we have constructed the

inverse of the map ρ on a prime divisor P. By linearity, we can explicitly find the inverse of any reduced
ideal D. �

There are several algorithms which perform arithmetic on Jac(C)(k) using the representation of points
on Jac(C)(k) as ideals in the class group, for example, [13; 2]. We will use the algorithm of [2] for the
examples we compute. To add two elements P, Q of Jac(C)(k), one multiplies the corresponding ideals
to get an ideal D. One then wishes to get a reduced ideal D′, to have a unique representative for the
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point D. The algorithm of [2] gives a function g such that D′ = D+ (g). The function g is necessary
for the computation of the Weil pairing in the algorithm of Couveignes for computing torsion.

7. Examples

All examples were run on a computer with four Intel Xeon quad-core processors and 64 GB of RAM.
Let K = K+(ζ3), where K+ is obtained by adjoining to Q a root of x3

− x2
− 2x + 1. We can verify

that K is Galois with Galois group Z/6Z and choose a primitive CM-type on K. All types on K are
equivalent, so our choice does not matter. We count the expected degree of our class polynomials using
[30, page 112, Note 3]. This is equivalent to counting the number of elements in the polarized class
group (see [6]), for which there is a function in the AVIsogenies package [7]. We find that the degree of
the class polynomials for K as above is 1. The first four primes satisfying the conditions of Theorem 1.1
are 13, 43, 97, 127. For p = 127, our algorithm took 7 hours and 9 minutes of clock time and found one
Picard curve in C̃8, that is, one Picard curve whose Jacobian is in CMFr

K ,8:

y3
= x4
+ 75x2

+ 37x + 103.

The Picard curve C with CM by OK , for K as above, was computed in [23]. However, the authors
of [23] could not verify that the curve they produce has CM by OK . Our output agrees with the result
of their paper reduced modulo 127. Furthermore, assuming the curve they compute is correct, we get
a bound as in Theorem 5.4 for the denominators and size of coefficients in the class polynomials H8

i .
In particular, N = 212 and M = 7 work for the values in Theorem 5.4. Using these values, we ran the
CRT algorithm of Theorem 1.1 to construct the class polynomials H8

i defined over Q. The algorithm
took 8 hours, 55 minutes to run. We only needed to reduce modulo the four primes 13, 43, 97, 127. Our
result agrees with the result of [23; 25]. Thus, our algorithm can compute the class polynomials H8

i

given that one can compute the bound in Theorem 5.4. If we compare the algorithms on the small
example we computed above, the algorithm in [25] performs much faster; it was able to compute the
class polynomials in seconds. However, since there are no known bounds, yet, on the denominators
of the class polynomials, no complexity analysis has been done for our algorithm or the algorithms in
[23; 25], so it is not clear how they would compare asymptotically.

Now let K = K+(ζ3), where K+ is the field obtained by adjoining to Q a root of x3
+ x2
− 3x − 1.

This field is non-Galois, and the Galois group of the normal closure over Q is S3×Z/2Z. We also pick a
CM-type 8 on K. Our computations predicted that our class polynomials would have degree 3 using the
polarized class group. We picked p = 67, which satisfies the conditions of Theorem 1.1. Our algorithm
ran in 2 hours and 23 minutes, and we got 3 Picard curves over Fp whose Jacobians lie in CMFr

K ,σ8 for
some σ ∈ Gal(Q/Q):

y3
= x4
+ 8x2

+ 64x + 61,

y3
= x4
+ 62x2

+ 25x + 6,

y3
= x4
+ 54x + 54.
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