
THE OPEN BOOK SERIES 2

ANTS XIII
Proceedings of the Thirteenth
Algorithmic Number Theory Symposium

msp

Explicit Coleman integration in larger characteristic
Alex J. Best

THE OPEN BOOK SERIES 2 (2019)

Thirteenth Algorithmic Number Theory Symposium
dx.doi.org/10.2140/obs.2019.2.85

msp

Explicit Coleman integration in larger characteristic

Alex J. Best

We describe a more efficient algorithm to compute p-adic Coleman integrals on odd degree hyperelliptic
curves for large primes p. The improvements come from using fast linear recurrence techniques when
reducing differentials in Monsky–Washnitzer cohomology, a technique introduced by Harvey when com-
puting zeta functions. The complexity of our algorithm is quasilinear in

√
p and is polynomial in the

genus and precision. We provide timings comparing our implementation with existing approaches.

1. Introduction

In 2001, Kedlaya introduced an algorithm for computing the action of Frobenius on the Monsky–Washnitzer
cohomology of odd degree hyperelliptic curves over Qp [Ked01]. This has been used to compute zeta
functions of the reduction modulo p of such curves, and, starting with the work of Balakrishnan, Brad-
shaw and Kedlaya [BBK10], to evaluate Coleman integrals between points on them. Computation of
Coleman integrals requires more information to be retained throughout the execution of the algorithm
than is needed to compute only the way Frobenius acts on cohomology, which is all that is needed to
compute zeta functions.

Harvey [Har07] introduced a variant of Kedlaya’s algorithm; its run time in terms of p alone is
Õ(
√

p) := O(
√

p logk√p) for some k ∈ Z. In [BBK10] the authors asked if it is possible to use
Harvey’s techniques when computing Coleman integrals.

Here we show that one can obtain the same efficiency improvements in Kedlaya’s algorithm as Harvey
did, whilst retaining enough information to compute Coleman integrals. Specifically, we obtain the
following result.

I would like to thank Jennifer Balakrishnan, for suggesting this as something that might be possible, and for many subsequent
helpful conversations and comments. Additional thanks are due to Jan Tuitman for remarking that ramified extensions should
be avoided, by using Lemma 3.2. I have had many interesting conversations with Sachi Hashimoto about Coleman integration.
Finally I would like to thank the reviewers for their suggestions. I am grateful for support from the Simons Foundation as part
of the Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation #550023.
MSC2010: primary 11G20; secondary 11Y16, 14F30.
Keywords: Coleman integration, hyperelliptic curves, Kedlaya’s algorithm.

85

http://msp.org/obs
http://dx.doi.org/10.2140/obs.2019.2-1
http://dx.doi.org/10.2140/obs.2019.2.85
http://msp.org

86 ALEX J. BEST

Theorem 1.1. Let X/Zp be a genus g, odd degree hyperelliptic curve. Let M be the matrix of Frobe-
nius acting on H 1

dR(X), using the basis {ωi = x i dx/2y}2g−1
i=0 , and N ∈ N be such that X and points

P, Q ∈ X (Qp) are known to precision pN . Assume p > (2N −1)(2g+1). Then, if multiplying two g× g
matrices requires O(gω) ring operations, the vector of Coleman integrals

(∫ Q
P ωi

)2g−1
i=0 can be computed

in time Õ
(
gω
√

pN 5/2
+ N 4g4 log p

)
to absolute p-adic precision N − vp(det(M − I)).

As surveyed in [BBK10] there are many applications of Coleman integration in arithmetic geometry,
notably they are central to the method of Chabauty, Coleman and Kim. This method has been made
explicit in some cases, such as in [BD18, Example 2]. There, and in general, when working over number
fields it is useful to work only with p that split. This is an additional condition on p, which often results
in having to take larger p, which gives one motivation for the current work.

In Section 2 and Section 3 we recall the setup for Coleman integration, and, most importantly, exactly
what data is needed to compute Coleman integrals on hyperelliptic curves. In Section 4 we examine
the reduction procedure used by Harvey in more detail. We then come to our main new ideas, creating
an appropriate recurrence that computes the data necessary for Coleman integration. In Section 5 we
introduce a modification of the linear recurrence algorithm used by Harvey, which is specialised to
the type of recurrences we obtained. This is useful when computing Coleman integrals between many
endpoints simultaneously. In Section 6 we describe the main algorithm in detail. In Section 7 and
Section 8 we analyse its correctness and complexity. Finally in Section 9 and Section 10 we give some
timings and examples obtained with a SageMath/C++ implementation, showing its practical use.

2. Setup and notation

Throughout we work with a fixed prime p and an odd degree hyperelliptic curve X/Zp, of genus g ≥ 1,
given as y2

= Q(x) with Q(x) ∈ Zp[x], where Q(x)= x2g+1
+ P(x) with deg(P)≤ 2g. We assume that

the reduction of Q(x) to Fp[x] has no multiple roots. We fix a desired p-adic precision N ≥ 1 such that

p > (2N − 1)(2g+ 1). (2-1)

Let ι denote the hyperelliptic involution, given on the finite affine chart as (x, y) 7→ (x,−y); the fixed
points of this involution are called Weierstrass points.

We will make use of several notions from rigid geometry. Points of X (Qp) which reduce to the same
point in XFp(Fp) are said to lie in the same residue disk. A residue disk that contains a Weierstrass point
is a Weierstrass residue disk.

3. Coleman integration

Coleman integration is a p-adic (line) integration theory developed by Robert Coleman in the 1980s
[Col82; Col85; CdS88]. Here we briefly summarise the setup for this theory (for more precise details,
see, for example, [Bes12]). We also recall the key inputs, which are obtained from Kedlaya’s algorithm,
for performing explicit Coleman integration on hyperelliptic curves, as described in [BBK10].

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 87

The setting for Coleman integration as we will use it is via the Monsky–Washnitzer weak completion of
the coordinate ring of the curve minus its Weierstrass points. So, letting A = Zp[x, y, y−1

]/(y2
− Q(x)),

its weak completion is the space A† of series
∑
∞

i=−∞ Ri (x)y−i with Ri ∈ Zp[x], deg Ri ≤ 2g subject
to the condition that lim inf|i |→∞ vp(Ri)/|i |> 0. The p-power Frobenius on A = A/p can be lifted to
a function φ : A†

→ A† by sending x 7→ x p and y 7→ y−p ∑∞
k=0

(
−1/2

k

)
(φ(Q(x))− Q(x)p)k/y2pk . We

will consider differentials in �1
A† = A† dx ⊕ A† dy/(2y dy− Q′(x) dx)) with d the exterior derivative

d : A†
→�1

A†;

∞∑
i=−∞

Ri (x)
yi 7→

∞∑
i=−∞

R′i (x)y
−i dx − Ri (x)iy−i−1 dy. (3-1)

We will say that f is a primitive of the exact differential d f . We then define the Monsky–Washnitzer
cohomology of A to be H 1

MW(A) = �
1
A† ⊗Qp/ d(A†

⊗Qp). The action of Frobenius and of the hy-
perelliptic involution can be extended to �1

A† and to H 1
MW(A) and the actions of φ and ι commute. In

particular we have an eigenspace decomposition of all of these spaces under ι into even and odd parts;
the odd part will be denoted with a − superscript. Let Aloc(X) denote the Qp-valued functions on X (Qp)

which are given by a power series on each residue disk.

Theorem 3.1 (Coleman). There is a unique (up to a global constant of integration) Qp-linear integration
map

∫
:�1

A† ⊗Qp→ Aloc(X) satisfying

(1) Frobenius equivariance,
∫
φ∗ω = φ∗

∫
ω,

(2) the fundamental theorem of calculus, d ◦
∫

is the identity on �1
A† ⊗Qp,

(3) and
∫
◦ d is the natural map A†

→ Aloc/(constant functions).

Given points P, Q ∈ X (Qp) the definite integral
∫ Q

P ω is then defined as
(∫
ω
)
(Q)−

(∫
ω
)
(P), which is

a well-defined function of P, Q.

After fixing a basis {ωi }
2g−1
i=0 of H 1

MW(A)
−
= H 1

dR(X), any 1-form of the second kind ω ∈�1
A† can be

expressed as ω = d f +
∑2g−1

i=0 aiωi , f ∈ A†, so by Theorem 3.1 we see that for some ai ∈Qp,∫ Q

P
ω = f (Q)− f (P)+

2g−1∑
i=0

ai

∫ Q

P
ωi . (3-2)

We can therefore reduce to the case of integrating only the basis differentials ωi and evaluating the
primitive f . The complexity of reducing to this case depends on how ω is presented. For example, if ω
has many terms, the total run time can be dominated by finding f and evaluating f (Q)− f (P) in the
above. So we will focus on computing

{∫ Q
P ωi

}2g−1
i=0 . In many applications, all that we need to integrate

are Qp-linear combinations of the basis differentials.
The work of Balakrishnan, Bradshaw and Kedlaya [BBK10] describes how to explicitly compute

Coleman integrals for differentials on odd degree hyperelliptic curves. They describe how to reduce the
problem of computing general Coleman integrals between two points to that of finding a matrix M and

88 ALEX J. BEST

fi ∈ A† such that
φ∗ωi = d fi +

∑
j

Mi jω j ∈�
1
A† . (3-3)

Before stating a form of their algorithm, we recall a useful result which allows us to deal with the
difficulties arising when the endpoints of the integral are Weierstrass. This can be problematic, as we
need to evaluate primitives as in (3-2); if the endpoints are in Weierstrass residue disks, these power
series may not converge.

Lemma 3.2 [BBK10, Lemma 16]. Let P, Q ∈ X (Qp) with Q Weierstrass and let ω ∈ �1,−
A† be an odd

differential without poles at P, Q. Then
∫ Q

P ω = 1
2

∫ ι(P)
P ω.

In particular, if P is also a Weierstrass point, then the integral is zero.

Lemma 3.2 allows us to express general integrals as linear combinations of integrals between two
points in non-Weierstrass residue disks and integrals between two points in the same residue disk (known
as tiny integrals). Evaluating tiny integrals uses formal integration of power series; see [BBK10, Algo-
rithm 8].

Note that∞ is a Weierstrass point so Lemma 3.2 applies with Q =∞; integrals based at∞ can be
rewritten as a linear combination of a tiny integral and an integral between two non-Weierstrass points.
Specifically, for a Teichmüller point P , if we know the matrix M expressing the action of Frobenius on
the basis differentials ωi , we can use the Frobenius equivariance of the Coleman integral to deduce

...∫
∞

P ωi
...

= 1
2


...∫ ι(P)

P ωi
...

= (M − I)−1

2


...

fi (P)− fi (ι(P))
...

= (M − I)−1


...

fi (P)
...

 . (3-4)

The last equality holds as we are using odd differentials, so the d fi must also be odd, so from the
expansion of (3-1) we see that the fi must also be odd (up to the constant term, which cancels).

So we will fix∞ as our basepoint and compute only integrals of the form
∫
∞

P ω; general integrals
can be obtained by subtracting two of the above type. We will use the following algorithm; see [BBK10,
Remark 15].

Algorithm 3.3. Input: P ∈ X (Qp), the matrix of Frobenius M , and if P is not in a Weierstrass residue
disk, { fi (P ′)}

2g−1
i=0 for the unique Teichmüller point P ′ in the same residue disk as P , and fi as in (3-3).

Output:
{∫
∞

P ωi
}

for 0≤ i ≤ 2g− 1.

(1) If P is in a Weierstrass residue disk: Let P ′ be the Weierstrass point in the same residue disk, so
that

∫
∞

P ′ ωi = 0 for all i .
Else: Let P ′ be the (unique) Teichmüller point in the same residue disk as P . Then compute the
vector of

∫
∞

P ′ ωi using (3-4).

(2) For each i , compute the tiny integral
∫ P ′

P ωi , as in [BBK10, Algorithm 8].

(3) For each i , sum the result of Steps 1 and 2 to get
∫
∞

P ωi =
∫ P ′

P ωi +
∫
∞

P ′ ωi .

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 89

Variants of this algorithm are possible; see [BBK10, Algorithm 11]. From the version stated above, it
is clear that, beyond solving a linear system and computing tiny integrals, the matrix of Frobenius and
evaluations of the primitives fi at Teichmüller points in non-Weierstrass residue disks are all the input
data that is needed to compute arbitrary Coleman integrals. We shall refer to this data as the Coleman
data. To compute Coleman integrals efficiently, we require an efficient way of computing this data,
possibly for several disks of interest.

Remark 3.4. We do not need to compute the fi themselves to compute integrals, only evaluations at
Teichmüller points in prescribed non-Weierstrass residue disks. This simplification is key to our ability
to write down a suitable recurrence. Moreover, once the Coleman data is computed, it can be saved and
will not need to be recomputed if integrals between other points in the same residue disks are required.

4. Reductions in cohomology

Kedlaya’s algorithm and Harvey’s work. Kedlaya’s algorithm computes the action of Frobenius on
Monsky–Washnitzer cohomology up to a specified precision. The general strategy is to begin with a finite
p-adic approximation of φ∗ω as a (Laurent) polynomial in x and y multiplied by the differential dx/2y.
This is reduced step-by-step via cohomologous differentials of lower polynomial degree, by subtracting
appropriate exact forms dg for polynomials g. This process is continued until one is left with a Qp-linear
combination of basis elements, and we have an expression of the form (3-3). For a given basis {ωi } of
H 1

MW(A)
−, writing each φ∗ωi in terms of this basis results in a matrix of Frobenius acting on H 1

MW(A)
−.

The innovation in [Har07] is to express the reduction process as a linear recurrence, where the coeffi-
cients are linear polynomials in the index of the recurrence. A term several steps later in such recurrences
can then be found more efficiently than the straightforward sequential approach, via the algorithm of
Bostan, Gaudry and Schost [BGS07, Theorem 15]. Here we also ultimately appeal to these methods,
and so we must examine in more detail the polynomials g used in the reduction steps. We will describe
the sum of the evaluations of these g at points of interest as a linear recurrence, so that they may be
computed along with the reductions.

We use the basis of H 1
MW(A)

− consisting of ωi = x i dx/2y for 0≤ i ≤ 2g−1. This differs by a factor
of 2 from the basis used by Harvey and Kedlaya; this choice reduces the number of 2’s appearing in our
formulae and so appears more natural here. Changing the basis by a scalar multiple has no effect on the
matrix of Frobenius, only the exact differentials. An approximation to φ∗ωi is given in [Har07, (4.1)] by
letting C j,r be the coefficient of xr in Q(x) j and

B j,r = pφ(C j,r)

N−1∑
k= j

(−1)k+ j
(
−1/2

k

)(
k
j

)
∈ Zp,

so that

φ∗ωi ≡

N−1∑
j=0

(2g+1) j∑
r=0

B j,r x p(i+r+1)−1 y−p(2 j+1)+1 dx
2y

(mod pN). (4-1)

90 ALEX J. BEST

In (4-1), there are only

(2g+ 1)N (N−1)
2

+ N

terms in total and the exponents of x and y that appear are always congruent to −1 or 1 mod p, respec-
tively.

As in [Har07, Section 5], we work with finite-dimensional vector spaces over Qp,

Ws,t =

{
f (x)x s y−2t dx

2y
: deg f ≤ 2g

}
=

〈
x i x s y−2t dx

2y

〉2g

i=0
(4-2)

for s ≥ −1, t ≥ 0, where, in addition, we restrict W−1,t to be the subspace of the above for which the
coefficient of x−1 is zero (i.e., for which f (0)= 0).

Notice that W−1,0 is naturally identified with H 1
MW(A)

− with the basis chosen above, so that ωi is
the i-th basis element of W−1,0. In order to derive an expression for φ∗ωi as a linear combination of
the other basis elements, we begin with the approximation of φ∗ωi from (4-1). Then starting with the
terms of highest degree in x , which are each inside of some Ws,t , we reduce “horizontally”, finding a
cohomologous element of Ws−1,t by subtracting an appropriate exact differential. This process is repeated
until s =−1, but whenever we reach a space Ws,t containing a term from (4-1), we add it to the current
differential under consideration. We do this for each t appearing as an exponent for a monomial in the
original approximation, and for each such t we obtain an element of W−1,t . We then reduce “vertically”:
beginning with the largest t we have, we subtract appropriate exact differentials to reduce the element
of each W−1,t to a cohomologous one in W−1,t−1 while t ≥ 1. This is continued until we have reduced
everything to the space W−1,0, and we have obtained a linear combination of the basis differentials that
is cohomologous to φ∗ωi up to the specified precision.

Note that many horizontal rows will not be considered at all. When p is large enough, most steps
simply involve reducing terms we already have, as there are comparatively few terms in (4-1) compared
to the total degree. Doing multiple reduction steps quickly will therefore improve the run time of this
procedure, even though we have to add new terms occasionally. This is where Harvey applies linear
recurrence techniques to speed up this reduction process. We now state the reductions we will use;
compared to [Har07, (5.2) and (5.3)] we must be more explicit about the exact form we are subtracting,
as this data is important for us.

Horizontal reduction. To reduce horizontally from Ws,t to Ws−1,t , we express the highest order basis el-
ement x2gx s y−2t dx/2y ∈Ws,t as a cohomologous term in Ws−1,t . The other basis elements are naturally
basis elements for Ws−1,t just with their indices shifted by 1.

Lemma 4.1 (horizontal reduction). We have

x2gx s y−2t dx
2y
−

−1
(2t − 1)(2g+ 1)− 2s

d(x s y−2t+1)=
2s P(x)− (2t − 1)x P ′(x)
(2t − 1)(2g+ 1)− 2s

x s−1 y−2t dx
2y

∈Ws−1,t . (4-3)

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 91

Proof. We directly compute

d(x s y−2t+1)

= sx s−1 y−2t+1 dx + (−2t + 1)x s y−2t dy

=

(
sx s−1 y−2t+1

+
1
2
(−2t + 1)x s y−2t−1 Q′(x)

)
dx

= (2s Q(x)− (2t − 1)x Q′(x))x s−1 y−2t dx
2y

= (2s− (2t − 1)(2g+ 1))x2g+1x s−1 y−2t dx
2y
+ (2s P(x)− (2t − 1)x P ′(x))x s−1 y−2t dx

2y
. (4-4)

Therefore, by subtracting
1

2s− (2t − 1)(2g+ 1)
d(x s y−2t+1)

from x2gx s y−2t dx/2y, the remaining terms are all as stated, and of lower degree. �

Vertical reduction. In order to reduce vertically from W−1,t to W−1,t−1, we express the 2g basis elements
x i y−2t dx/2y ∈W−1,t as cohomologous terms in W−1,t−1.

Lemma 4.2 (vertical reduction). Let Ri (x), Si (x) ∈ Zp(x) be such that x i
= Ri (x)Q(x)+ Si (x)Q′(x)

with deg Ri ≤ 2g− 1, deg Si ≤ 2g. Then

x i y−2t dx
2y
−
−1

2t−1
d(Si (x)y−2t+1)=

(2t − 1)Ri (x)+ 2S′i (x)
2t − 1

y−2(t−1) dx
2y
∈W−1,t−1.

Proof. We have that

x i y−2t dx
2y
= (Ri (x)Q(x)+ Si (x)Q′(x))y−2t dx

2y
= Ri (x)y−2t+2 dx

2y
+ Si (x)y−2t dy,

and also that d(Si (x)y−2t+1) = S′i (x)y
−2t+1 dx + (−2t + 1)Si (x)y−2t dy. Therefore, by subtracting

1
−2t+1 d(Si (x)y−2t+1) from x i y−2t dx/2y, we see that

x i y−2t dx
2y
∼ Ri (x)y−2t+2 dx

2y
+

1
2t−1

S′i (x)y
−2t+1 dx =

(2t − 1)Ri (x)+ 2S′i (x)
2t − 1

y−2(t−1) dx
2y
, (4-5)

as required. �

Towards a faster algorithm. In order to make use of the same linear recurrence techniques as Harvey,
we express the reduction process as we descend through the indices s, t as a linear recurrence with
coefficients linear polynomials in s, t . We describe such a recurrence that retains enough information to
compute Coleman integrals. By working with a number of evaluations of the primitives on prescribed
points on the curve, rather than the primitives themselves as power series, we only have to deal with a
vector of fixed size at each step. This is preferable to maintaining a power series as we reduce, adding
terms at each step.

92 ALEX J. BEST

We will now give an idea of the approach, giving the details in the next section. Let us first consider
the end result of one row of the horizontal reduction process. Fixing a row t , after the reduction we have
an equality of the form

∑
s≥0

as x s y−2t dx
2y
− d

(∑
s≥0

cs x s y−2t+1
)
=

2g−1∑
i=0

mi x i y−2t dx
2y
∈W−1,t , (4-6)

in which the terms of the exact differential were found in decreasing order as the reductions are performed.
Unfortunately, adding each new term as it is obtained is not a linear recurrence in the index s, as we
have s appearing in the exponent of x in each term. Instead we observe that we can express the exact
differential as

d
(
(c0+ x(c1+ x(· · · + x(cr))))y−2t+1). (4-7)

In essence, we are applying the Horner scheme for polynomial evaluation.
Now we specialise to the case of computing the evaluation fi (P) of the primitive for some point

P = (x(P), y(P)). We can, at each step, compute a further bracketed term starting from the innermost;
using the given x, y values, we get a recurrence whose final term is the same as the original evaluation.
So we can compute the terms of a recurrence of the form

fi,0 = 0, fi,n = x(P) fi,n−1−
1

(2t − 1)(2g+ 1)− 2s
di,n, (4-8)

where s= smax−n decreases from its maximum value, and di,n is the coefficient of the monomial removed
in the n-th step of the reduction process. Multiplying the result of this recurrence by the factor y−2t+1

(which is constant along the row) will result in the evaluation of the primitive for the row. At each step
we will no longer have an evaluation of the primitive so far, it is only after completing all the reduction
steps that each term will have the correct power of x .

We may use the same technique for the vertical reductions; here we have

∑
t≥0

2g−1∑
i=0

mi x i y−2t dx
2y
− d

(∑
t≥1

2g∑
i=0

dti Si (x)y−2t+1
)
=

2g−1∑
i=0

Mi x i dx
2y
∈W−1,0,

where now writing dt =
∑2g−1

i=0 dt,i Si (x), the exact differential can be expressed as

d
(
y−1(d1+ y−2(d2+ y−2(· · · (dr−1+ y−2(dr)) · · ·)))

)
. (4-9)

Remark 4.3. The factor y−2t+1 appears in every term in the primitive in row t . It is the same factor in
the primitive for the vertical reduction from row t to row 0. So we can initialise the vertical recurrence
from W−1,t with both the differential and the evaluations obtained from horizontal reduction along row t ,
and let the vertical reduction steps multiply the evaluation of the row primitives by this factor.

Now we write down the recurrences for both horizontal and vertical reductions precisely using matrices
acting on appropriate vector spaces.

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 93

The recurrence. We will now switch to working with a Qp vector ht(s)∈Ws,t×QL
p of length 2g+1+L

in the horizontal case, and v(t) ∈ W−1,t ×QL
p of length 2g + L in the vertical case. The first entries

represent the current differential we have reduced to, with respect to the basis given in (4-2). The last L
entries will contain the evaluations of the terms of the primitive picked up so far, one for each of the L
points P1, . . . , PL ∈ X (Qp) we want evaluations at.

When we horizontally reduce, using the result of Lemma 4.1, the two terms we are interested in, the
exact differential and the reduction, have a common denominator of Dt

H (s) = (2t − 1)(2g + 1)− 2s.
Similarly, in the vertical case, the two terms of interest in Lemma 4.2 have a common denominator
of DV (t)= 2t − 1.

Writing out the result of a single reduction step in terms of these vectors, we see that we need to
compute the terms of the recurrence given by ht(s) = Rt

H (s + 1)ht(s + 1) in the horizontal case, for
Rt

H (s) defined by

Dt
H (s)R

t
H (s)= M t

H (s)=



0 · · · 0 pt
0

Dt
H (s) · · · 0 pt

1
...

. . .
...

...

0 · · · Dt
H (s) pt

2g

0 · · · 0 −1 x(P1)Dt
H (s) · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 −1 0 · · · x(PL)Dt
H (s)


, (4-10)

where pt
i is the linear function of s obtained as the coefficient of x i in 2s P(x)− (2t − 1)x P ′(x). To

divide through by Dt
H (s) we must multiply some terms by Dt

H (s).
For the vertical reductions we use RV (t) defined by DV (t)RV (t)= MV (t), where MV (t) is

(2t−1)r0,0+2s ′0,0 · · · (2t−1)r2g−1,0+2s ′2g−1,0
...

. . .
...

(2t−1)r0,2g−1+2s ′0,2g−1 · · · (2t−1)r2g−1,2g−1+2s ′2g−1,2g−1

−S0(x(P1)) · · · −S2g−1(x(P1)) y(P1)
−2 DV (t) · · · 0

...
. . .

...
...

. . .
...

−S0(x(PL)) · · · −S2g−1(x(PL)) 0 · · · y(PL)
−2 DV (t)


, (4-11)

where ri, j is the coefficient of x j in Ri (x) and s ′i, j is the coefficient of x j in S′i (x). Once again we have
multiplied the rightmost block by DV (t) to extract the common denominator. We do this to express the
reduction steps as linear recurrences with linear polynomial coefficients, rather than rational function
coefficients.

Introducing the notation

M t
H (a, b)= M t

H (a+ 1) · · ·M t
H (b− 1)M t

H (b)

(and the analogous MV (a, b)), we can write the upshot of the above in the following theorem.

94 ALEX J. BEST

Theorem 4.4. Let ht(s) = (ω, 0) ∈ Ws,t ×QL
p , and f : X (Qp)→ Qp. Write c(f) for the correction

factor, the linear endomorphism of Ws,t ×QL
p that is the identity on Ws,t and scales each component of

QL
p by f (P`) for the corresponding P`. Then the reduced vector

c(y−1)RV (0, t)c(y2)Rt
H (−1, s)ht(s) ∈W−1,0×QL

p

is such that the projection onto W−1,0 is some ω̃ with ω̃ = ω− d(g) for some g ∈ A†, and the projection
onto QL

p is (g(P1), . . . , g(PL)).

As the approximation in (4-1) has summands that occur in several different Ws,t ’s, we cannot simply
find the product matrix and apply it to a single vector. Instead, we must work through the various
subspaces doing as many reductions as possible before we reach a new monomial from the original
approximation. As DH and DV are scalar matrices, we can commute them past the MV ’s and MH ’s.
This separates out the components so we can work just with products of matrices of linear polynomials.
This reduces the problem to finding several of the products MV (a, b) and M t

H (a, b). In practice, to use
as little p-adic precision as we can, we must not allow too many runs of multiplications by p and then
divisions by p, so that the relative precision stays as large as possible. This will be addressed in Section 7.

5. Linear recurrence algorithms

In this section, we recall and adapt some methods for finding subsequent terms of linear recurrences with
linear polynomial coefficients. The setup is that we are given an m×m matrix M(x) with entries that
are linear polynomials over a ring R and wish to obtain several products

M(x, y)= M(y)M(y− 1) · · ·M(x + 1)

for x < y integers. We let MM(m, n) be the number of ring operations used when multiplying an n×m
matrix by an m×m matrix, both with entries in R. Then MM(m)=MM(m,m) is the cost of multiplying
two m ×m matrices. We will not say much about these functions here, as modern theoretical bounds
for these functions do not affect the point of our main result; however, see [LG12] for some recent
work on the topic. Using naive matrix multiplication, we have MM(m, n)= O(m2n), which cannot be
improved upon asymptotically if m2

= o(n). Whenever n ≥ m we can partition an n×m matrix into
roughly n/m blocks each of size m×m. These blocks can then be multiplied individually for a run time
of MM(m, n) = O(MM(m)n/m). We will also let M(n) be the number of ring operations needed to
multiply two polynomials of degree n with coefficients in R.

The method of Bostan, Gaudry and Schost requires that certain elements of R be invertible. Moreover,
they assume as input a product D(α, β, k) of several of these inverses. We will apply these methods in
Z/pN Z, where the cost of computing inverses is negligible compared to the rest of the algorithm, so we
will take this step for granted; see [BGS07] for more details.

With the above setup, Harvey [Har07, Theorem 6.2] adjusts the algorithm of Bostan, Gaudry and
Schost [BGS07, Theorem 15] to prove the following theorem.

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 95

Theorem 5.1. Let M(x) be an m × m matrix with entries that are linear polynomials in R[x], let
0 ≤ K1 < L1 ≤ K2 < L2 ≤ · · · ≤ Kr < Lr ≤ K be integers, and let s = blog4 K c. Suppose
that 2, 3, . . . , 2s

+ 1 are invertible in R. Suppose also that r < K (1/2)−ε , with 0 < ε < 1/2. Then
M(K1, L1), . . . ,M(Kr , Lr) can be computed using O(MM(m)

√
K +m2M(

√
K)) ring operations in R.

In order to apply this theorem to the above recurrences for computing the Coleman data, we introduce
a variant better suited to the recurrences we obtained in Section 4. If we simply applied the same
algorithm/result as Harvey naively, we would not get as good a run time in general.

Theorem 5.2. Assume the same setup as in Theorem 5.1, except that now let M(x) be instead an
(m + n)× (m + n) block lower triangular matrix with 4 blocks, with top left block an m ×m matrix
and bottom right block a diagonal matrix 

A 0

B
d1

. . .

dn

 . (5-1)

Then the interval products M(K1, L1), . . . ,M(Kr , Lr) can be computed using only

O
(
(MM(m)+MM(m, n))

√
K + (m2

+mn)M(
√

K)
)

ring operations in R.

Proof. The algorithm to do this is the same as the one given for Theorem 5.1 in [Har07, Theorem 6.2],
only adjusted to take advantage of the fact that the matrices used are of a more restricted form as follows.

First, note that a product of matrices of the assumed form is again of the same shape, so one can work
only with matrices of this form throughout. Such matrices should then be stored without keeping track
of the entries that are always 0, as a pair of matrices A, B of size m ×m and n×m respectively, and
a list containing the n bottom right diagonal entries. Now the algorithm of Harvey and Bostan, Gaudry
and Schost should be applied using this fixed representation.

The complexity of this algorithm is dominated by two main subtasks: shifting evaluations of the matri-
ces and matrix multiplication. During the shifting step, we need only interpolate the nonzero entries; there
are (m+n)m+n of these. The number of ring operations required for this is then O((m2

+mn)M(
√

K)).
For the matrix multiplication steps, the restricted form of the matrix once again allows us to use a

specialised matrix multiplication routine. Here we can evaluate the block matrix product more efficiently,
multiplying only the nonzero blocks, and using the fact that multiplying an n×m matrix on the right by
a square diagonal matrix stored as a list uses only O(nm) operations. Therefore the total complexity of
multiplying two matrices of this form is O(MM(m, n)+MM(m)). As we do not modify the algorithm
in any other way, the result follows. �

96 ALEX J. BEST

The conditions on the matrix in Theorem 5.2 are precisely those satisfied by the matrices M t
H (s)

and MV (t) from Section 4. So we may use this algorithm for computing block horizontal and vertical
reductions for certain intervals.

Remark 5.3. As well as utilising the polynomial structure of our matrices, for any row with sufficiently
many terms compared to the desired precision, it is also possible to interpolate p-adically. This idea is
due to Kedlaya and is explained in [Har07, Section 7.2.1]. Using this allows us to compute fewer interval
products using Theorem 5.2 by interpolating the remaining ones.

If we could compute to infinite precision, it would be optimal to reduce as far as possible at each
reduction step, i.e., until we get to index of a new term that needs adding. However, in practice, we
should divide by p as soon as possible, in order to reduce the number of extra p-adic digits needed
throughout. Therefore analysing when divisions by p occur informs which interval products are found.

6. The algorithm

In this section we describe the complete algorithm derived in the previous sections. The flow of the
algorithm is the same as that of Harvey, only we use our larger matrices throughout and have to make
some small adjustments to the evaluations. Care should be taken in all steps where division occurs; see
Section 7.

Algorithm 6.1 (computation of Coleman data).

Input: A list of points {P`}1≤`≤L in non-Weierstrass residue disks, precision N .

Output: The matrix of Frobenius M , modulo pN , such that ωi = d fi +
∑

j Mi jω j , evaluations fi (P`)
modulo pN for all i, ` also.

(1) For each row index t = (p(2 j + 1)− 1)/2 for 0≤ j ≤ N − 1 do:

(a) Compute the horizontal reduction matrices

M t
H ((k− 1)p, kp− 2g− 2), Dt

H ((k− 1)p, kp− 2g− 2)

for 0 ≤ k ≤ (2g+ 1)(j + 1)− 1 using Theorem 5.2, and the p-adic interpolation outlined in
[Har07, 7.2.1], for k > N .

(b) For each basis differential ωi , 0≤ i ≤ 2g− 1 do:

(i) Initialise a vector hi j ∈ (Z/pN+1Z)
2g+1+L .

(ii) For each column index s = p(i + r + 1)− 1 for r = (2g+ 1) j down to 0 do:

(A) Add the x s y−2t term of (4-1) to hi j .
(B) Set hi j = Rt

H (kp− 2g− 2, kp)hi j by doing 2g+ 2 matrix-vector products.
(C) Set hi j = Rt

H ((k− 1)p, kp− 2g− 2)hi j .
(D) Set hi j = Rt

H ((k− 1)p)hi j .

(2) Initialise a 2g× L matrix for the evaluations E and a 2g× 2g matrix for the action of Frobenius M .

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 97

(3) Compute the vertical reduction matrices

MV (0, (p− 1)/2), MV ((p− 1)/2+ j p, (p− 1)/2+ (j + 1)p)

for 1 ≤ j < N and the corresponding DV (t)’s to precision pN+1 using Theorem 5.2, and divide
through to obtain the corresponding RV ’s; label them R j .

(4) For each basis differential ωi , 0≤ i ≤ 2g− 1:

(a) Initialise a zero vector vi ∈ (Z/pN Z)2g+L .
(b) For each row index t = (p(2 j + 1)− 1)/2 for j = N − 1 down to 0 do:

(i) Add the last 2g+ L entries of hi j to vi , correcting the last L entries as in Theorem 4.4.
(ii) Set vi = R jvi .

(c) Set the i-th column of M to be the first 2g entries of vi .
(d) Set the i-th row of E to be the last L entries of vi , correcting them to be evaluations as in

Theorem 4.4.

(5) Output the matrix of Frobenius M and the matrix of evaluations E .

Remark 6.2. We have not used the fact that in Algorithm 3.3 we only needed to evaluate at Teichmüller
points. Using Teichmüller points only serves to make the description of Coleman integration a little
simpler, and provides a convenient set of points corresponding to residue disks. This allows one to store
the output of Algorithm 6.1 for further computations involving the same set of residue disks.

One simpler variant of this algorithm is to compute evaluations for one point at a time, rerunning the
whole procedure including finding the matrix of Frobenius once for each point. The advantage of this
method is not needing a specialised version of the linear recurrence algorithms as in Theorem 5.2. While
this would result in the same theoretical run time if g2

∈ o(p), recomputing the matrix of Frobenius
would be a duplication of work and inefficient in many parameter ranges.

7. Precision

In this section we examine the level of p-adic precision that needs to be maintained throughout, in
order to compute the matrix of Frobenius and evaluations of primitives to precision O(pN). We follow
Harvey’s approach in [Har07, Section 7] and prove that analogous results hold for our recurrence.

Lemma 7.1. During horizontal reduction, the evaluations of the primitives remain integral. Moreover,
if the calculations are performed with initial data known to absolute precision pN and intermediate com-
putations are performed with an absolute precision cap of pN+1, then whenever division by p occurs, the
dividend is known to absolute precision pN+1, so that the quotient is known to absolute precision O(pN).

Proof. As we begin with evaluation 0, we must show that if the evaluations are integral, they remain
so after several reduction steps. Any point P = (x, y) that we are evaluating at is assumed to not be in
a Weierstrass residue disk and in particular not in the residue disk at infinity. Hence x is integral and
multiplication by it will never reduce p-adic valuation.

98 ALEX J. BEST

In the horizontal reduction matrix (4-10), the only nonzero terms in the bottom left block are the −1’s
in the rightmost column, which will not disturb integrality.

When Dt
H (s)≡ 0 (mod p), it is shown in [Har07, Claim 7.3], using the assumptions on p in (2-1), that

the vector currently being reduced has its (2g+ 1)-component divisible by p and is correct to absolute
precision pN+1. Thus this can be divided by Dt

H (s) while keeping absolute precision pN . Every column
of M t

H (s) other than the (2g+ 1)-st has Dt
H (s) as a factor, so the division can be performed.

All other steps follow directly from the work of Harvey. �

Lemma 7.2. During vertical reduction, the evaluations of the primitives remain integral. Moreover, if
the calculations are performed with initial data known to absolute precision pN and intermediate com-
putations are performed with an absolute precision cap of pN+1, then whenever division by p occurs, the
dividend is known to absolute precision pN+1, so that the quotient is known to absolute precision O(pN).

Proof. Any point P = (x, y) that we are evaluating at is assumed not to be in a Weierstrass residue disk
and in particular not in the residue disk at infinity. Hence y is a unit and multiplying or dividing by it
will not change p-adic valuation.

We check that the analysis in [Har07, Lemmas 7.7 and 7.9] may be adjusted to apply with our ex-
tended MV (t). Assume that t ≡ 1/2 (mod p) so that DV (t) ≡ 0 (mod p); in this case vp(DV (t)) = 1,
as (2-1) implies DV (t) < p2. Unlike in [Har07, Lemma 7.7], our matrix MV (t) will not have integral
inverse as DV (t) appears in the bottom right block, so MV (t) is singular mod p. Instead, the inverse of
the block lower triangular MV (t) has integral top left block, and the bottom two blocks have valuation
at least −1. Now letting t0 = (p − 1)/2 and X = DV (t0, t0 + p + 1)−1 MV (t0, t0 + p + 1), the argu-
ment in [Ked01, Lemma 2] implies that pX is integral. The argument says that taking ω ∈W−1,t0+p+1

with integral coefficients, the primitive g of Xω− ω becomes integral after multiplication by p, and
hence the evaluation of pg at a point in a non-Weierstrass residue disk is integral. The entries in
the bottom left block of X are evaluations of this form up to a power of y(P), which will not affect
integrality. The bottom right block of X is integral already as it is simply a power of the diagonal
matrix diag((y(P`)−2)`). So each term of the block matrix product (pX)MV (t0+ p+ 1) is integral, and
MV (t0, t0+ p)= DV (t0, t0+ p+ 1)X MV (t0+ p+ 1)−1 is divisible by p. �

Remark 7.3. Multiplying by (M − I)−1, as in (3-4), will lose vp(det(M − I)) digits of absolute p-adic
precision. As vp(det(M − I)) = vp(Jac(X)(Fp)[p]), this is at most g in the anomalous case, and in
general we expect that it is 0, so if g = O(N) the whole computation can be repeated with the extra
precision required at no extra asymptotic cost.

8. Run time analysis

Having described the algorithm in detail, we now analyse its run time, in order to prove Theorem 1.1.
First of all we analyse each step of Algorithm 6.1.

The main step is the computation of the reduction matrices via Theorem 5.2. In this case, we have
m = 2g (+1 in the horizontal case) and n = L . When reducing horizontally, for each row the largest

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 99

index is bounded by K = O(Np). When reducing vertically our index is also at most O(Np). As there
are N rows in total, we obtain a total of

O
(
N
(
(MM(g)+MM(g, L))

√
Np+ (g2

+ gL)M(
√

Np)
))

(8-1)

ring operations to compute the matrices. Using that M(d)∈ Õ(d), that MM(m)=mω for some 2≤ω≤ 3,
and the above discussion of MM(m, n), we simplify to O

(
(gω + Lgω−1)

√
pN 3/2

)
ring operations, bit

complexity Õ
(
(gω+ Lgω−1)

√
pN 5/2

)
.

The remaining operations are exactly as analysed by Harvey in [Har07, Section 7.4]. With our larger,
but still sparse, horizontal reduction matrices, each reduction step without Theorem 5.2 uses O(g+ L)
rather than O(g) ring operations, for a total of O(N 3g3(g+L)) ring operations, or Õ(N 4g3(g+L) log p)
bit operations. We then have a total time complexity of

Õ
(
(gω+ Lgω−1)

√
NpN 2

+ N 4g3(g+ L) log p
)
. (8-2)

Now we turn to the algorithm for computing Coleman integrals, obtained by running Algorithm 6.1
once and then Algorithm 3.3 once for each point. The analysis here is the same as that in [BBK10, Sec-
tion 4.2], where, by using Algorithm 6.1 instead of Kedlaya’s algorithm, we may replace the Õ(pN 2g2)

in their complexity analysis with (8-2). The remaining steps to complete the Coleman integration are
logarithmic in p and are dominated by the logarithmic in p term of (8-2).

If L is fixed (for example L = 2 when computing integrals between two points) the complexity is as
in [Har07, Theorem 1.1]. This finishes the proof of Theorem 1.1.

Remark 8.1. The version of Kedlaya’s algorithm used in [BBK10, Algorithm 10] seems to have an
advantage in that it outputs the power series of the fi ’s. This could of course be reused later to evaluate
at further points without rerunning Kedlaya’s algorithm. However, for p large enough, this series has so
many terms that it is faster asymptotically to recompute everything with the algorithm given here, than
it is to evaluate the power series at one point.

9. Implementation

We have implemented this algorithm in C++ as an extension of David Harvey’s hypellfrob package.
This extension has been wrapped and can be easily used from within Sage [Sag18]. The implementation
is included as part of the supplementary materials to this paper. This implementation uses naive matrix
multiplication (for which ω = 3) and does not take into account the special form of the matrices, as in
Theorem 5.2; so the run time of this implementation will not have the asymptotic behaviour stated in
(8-2) for the parameter L .

In Table 1, we list some timings obtained using this implementation in genus 3, for various primes p
and p-adic precision bounds N . For comparison, we also list timings for the functionality for comput-
ing Coleman integrals in Sage 8.0. The implementation in Sage is written in Python, rather than C++,
so we would expect some speed-up even if a superior algorithm was not used. Specifically we have

100 ALEX J. BEST

p N = 1 N = 3 N = 5 N = 7 N = 9

131 1.14/0.01 3.67/0.02 9.36/0.07 16.90/0.12 20.06/0.49
257 1.96/0.01 8.90/0.03 20.83/0.07 30.91/0.18 63.14/0.68
521 4.73/0.01 19.23/0.03 39.18/0.08 86.49/0.62 162.81/0.91

Table 1. Timings for genus 3: Sage 8.0 time/new time (sec).

compared the time to compute the Coleman data only, and do not include any of the time spent doing
the linear algebra and tiny integral steps of Coleman integration, which should be comparatively fast.
As such, we only time the components that will differ between the old and new approaches. For the
existing Sage code we have timed both finding the matrix of Frobenius and the primitives (by calling
monsky_washnitzer.matrix_of_frobenius_hyperelliptic), and the time to evaluate the result-
ing primitive at one point. This is compared with the time taken by the new implementation, called from
its Sage wrapper with one point specified; this outputs the matrix of Frobenius and the evaluations at that
point. All timings and examples are on a single 16 AMD Opteron 8384 2.7 GHz processor on a machine
with 16 cores and 82 GB RAM. While this table is mostly intended to show practicality, in the N = 9
column the square root dependence on p can be seen. The large jump in the timings between p ≈ 256
and p ≈ 512 for N = 7 could be explained by the fact that this is the cut off between when an element
of Z/pN Z is representable in one machine word.

10. Examples

In this section we give an explicit example of a computation we can perform with this technique, demon-
strating how large we can feasibly take the parameters. We compare our implementation to the existing
functionality for Coleman integration in Sage 8.0 for this example.

The current implementation uses the basis x i dx/y, to remain consistent with Harvey’s notation. As
the existing functionality for Coleman integration in Sage 8.0 uses the basis x i dx/2y for cohomology, we
must divide the obtained evaluations by 2 to compare them to those returned by Sage or Algorithm 6.1.

Example 10.1. Let C : y2
= x5

+
33
16 x4
+

3
4 x3
+

3
8 x2
−

1
4 x + 1

16 be Leprévost’s curve, as in [BBK10,
Example 21]. Then letting P = (−1, 1), Q =

(
0, 1

4

)
and p = 245

+ 59 = 35184372088891, using our
implementation we can compute the matrix of Frobenius M to 1 p-adic digit of precision, and also that

f0(P)− f0(Q)= O(p), f1(P)− f1(Q)= O(p),

f2(P)− f2(Q)= 7147166195043+ O(p), f3(P)− f3(Q)= 9172338112529+ O(p).

Computing this (and finding (M − 1)−1) takes a total of 27.8 minutes (with a peak memory usage of
2.9 GB). Evaluating Coleman integrals for such a large prime is far out of the range of what was possible
to compute in a reasonable amount of time using the previous implementation. In fact, even when
p = 214

+ 27, the existing Sage functionality takes 53.2 minutes, and uses a larger volume of memory
(12 GB).

EXPLICIT COLEMAN INTEGRATION IN LARGER CHARACTERISTIC 101

As we have used only 1 digit of p-adic precision, the points P and Q are congruent up to this pre-
cision to the corresponding Teichmüller point in their residue disk. So, for this example, we do not
need to worry about computing tiny integrals; the vector of Coleman integrals

∫ P
Q ωi can be obtained

from the above vector of evaluations by multiplying by (M − 1)−1. Doing this gives us the vector
(O(p), O(p), 9099406574713+ O(p), 7153144612900+ O(p)) reflecting the holomorphicity of the
first two basis differentials only. We have also run the same example with precision N = 3; this took
22.5 hours and used a peak of 50 GB of memory.

11. Future directions

The assumptions on the size of p allow us to use at most one extra digit of p-adic precision; it should
be possible to relax this assumption somewhat, using a more complicated algorithm instead. Similarly it
should be possible to work over extensions of Qp, or remove the assumption that Q(x) is monic.

Kedlaya’s algorithm has been generalised to other curves and varieties, e.g., [Har12; GG01; Gon15;
Tui17] and Harvey’s techniques have also been generalised to some of these cases [Min10; ABC+18].
Moreover, explicit Coleman integration has also been carried out in some of these settings, for even
degree hyperelliptic curves [Bal15], and for general curves [BT17]. It would be interesting to adapt
our techniques to those contexts. Iterated Coleman integrals are also of interest and have been made
computationally effective [Bal13]. Extending the algorithm presented here to compute iterated integrals
is another natural next step. Harvey has also described an average polynomial time algorithm for dealing
with many primes at once [Har14]. The author plans to explore the feasibility of analogous techniques
when computing Coleman integrals.

References

[ABC+18] V. Arul, A. J. Best, E. Costa, R. Magner, and N. Triantafillou, Computing zeta functions of cyclic covers in large
characteristic, ANTS XIII—Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book
Series, no. 2, Mathematical Sciences Publishers, Berkeley, 2018, p. [TO BE SUPPLIED].

[Bal13] J. S. Balakrishnan, Iterated Coleman integration for hyperelliptic curves, ANTS X—Proceedings of the Tenth
Algorithmic Number Theory Symposium, Open Book Series, no. 1, Mathematical Sciences Publishers, Berkeley,
2013, pp. 41–61. MR 3207407

[Bal15] , Coleman integration for even-degree models of hyperelliptic curves, LMS J. Comput. Math. 18 (2015),
no. 1, 258–265. MR 3349319

[BBK10] J. S. Balakrishnan, R. W. Bradshaw, and K. S. Kedlaya, Explicit Coleman integration for hyperelliptic curves,
Algorithmic number theory, Lecture Notes in Comput. Sci., no. 6197, Springer, 2010, pp. 16–31. MR 2721410

[BD18] J. S. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points, I: p–adic heights, Duke Math. J. 167
(2018), no. 11, 1981–2038. MR 3843370

[Bes12] A. Besser, Heidelberg lectures on Coleman integration, The arithmetic of fundamental groups—PIA 2010, Contrib.
Math. Comput. Sci., no. 2, Springer, 2012, pp. 3–52. MR 3220512

[BGS07] A. Bostan, P. Gaudry, and É. Schost, Linear recurrences with polynomial coefficients and application to integer
factorization and Cartier–Manin operator, SIAM J. Comput. 36 (2007), no. 6, 1777–1806. MR 2299425

[BT17] J. S. Balakrishnan and J. Tuitman, Explicit Coleman integration for curves, preprint, 2017. arXiv 1710.01673v2

https://msp.org/obs/2013/1-1/p03.xhtml
http://msp.org/idx/mr/3207407
http://doi.org/10.1112/S1461157015000029
http://msp.org/idx/mr/3349319
http://doi.org/10.1007/978-3-642-14518-6_6
http://msp.org/idx/mr/2721410
http://doi.org/10.1215/00127094-2018-0013
http://msp.org/idx/mr/3843370
http://doi.org/10.1007/978-3-642-23905-2_1
http://msp.org/idx/mr/3220512
http://doi.org/10.1137/S0097539704443793
http://doi.org/10.1137/S0097539704443793
http://msp.org/idx/mr/2299425
http://arxiv.org/abs/1710.01673v2

102 ALEX J. BEST

[CdS88] R. Coleman and E. de Shalit, p–adic regulators on curves and special values of p–adic L–functions, Invent. Math.
93 (1988), no. 2, 239–266. MR 948100

[Col82] R. Coleman, Dilogarithms, regulators and p–adic L–functions, Invent. Math. 69 (1982), no. 2, 171–208. MR 674400

[Col85] , Torsion points on curves and p–adic abelian integrals, Ann. of Math. 121 (1985), no. 1, 111–168.
MR 782557

[GG01] P. Gaudry and N. Gürel, An extension of Kedlaya’s point-counting algorithm to superelliptic curves, Advances in
cryptology—ASIACRYPT 2001 (Gold Coast), Lecture Notes in Comput. Sci., no. 2248, Springer, 2001, pp. 480–
494. MR 1934859

[Gon15] C. Gonçalves, A point counting algorithm for cyclic covers of the projective line, Algorithmic arithmetic, geometry,
and coding theory, Contemp. Math., no. 637, Amer. Math. Soc., 2015, pp. 145–172. MR 3364447

[Har07] D. Harvey, Kedlaya’s algorithm in larger characteristic, Int. Math. Res. Not. 2007 (2007), no. 22, art. id. rnm095.
MR 2376210

[Har12] M. C. Harrison, An extension of Kedlaya’s algorithm for hyperelliptic curves, J. Symbolic Comput. 47 (2012), no. 1,
89–101. MR 2854849

[Har14] D. Harvey, Counting points on hyperelliptic curves in average polynomial time, Ann. of Math. 179 (2014), no. 2,
783–803. MR 3152945

[Ked01] K. S. Kedlaya, Counting points on hyperelliptic curves using Monsky–Washnitzer cohomology, J. Ramanujan Math.
Soc. 16 (2001), no. 4, 323–338. MR 1877805

[LG12] F. Le Gall, Faster algorithms for rectangular matrix multiplication, 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science—FOCS 2012, IEEE Computer Soc., Los Alamitos, CA, 2012, pp. 514–523.
MR 3186639

[Min10] M. Minzlaff, Computing zeta functions of superelliptic curves in larger characteristic, Math. Comput. Sci. 3 (2010),
no. 2, 209–224. MR 2608297

[Sag18] Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.0.0), 2018.

[Tui17] J. Tuitman, Counting points on curves using a map to P1, II, Finite Fields Appl. 45 (2017), 301–322. MR 3631366

Received 2 Mar 2018. Revised 8 Jun 2018.

ALEX J. BEST: alex.j.best@gmail.com
Department of Mathematics and Statistics, Boston University, Boston, MA, United States

msp

http://doi.org/10.1007/BF01394332
http://msp.org/idx/mr/948100
http://doi.org/10.1007/BF01399500
http://msp.org/idx/mr/674400
http://doi.org/10.2307/1971194
http://msp.org/idx/mr/782557
http://doi.org/10.1007/3-540-45682-1_28
http://msp.org/idx/mr/1934859
http://doi.org/10.1090/conm/637/12754
http://msp.org/idx/mr/3364447
http://doi.org/10.1093/imrn/rnm095
http://msp.org/idx/mr/2376210
http://doi.org/10.1016/j.jsc.2011.08.019
http://msp.org/idx/mr/2854849
http://doi.org/10.4007/annals.2014.179.2.7
http://msp.org/idx/mr/3152945
http://msp.org/idx/mr/1877805
http://msp.org/idx/mr/3186639
http://doi.org/10.1007/s11786-009-0019-4
http://msp.org/idx/mr/2608297
http://www.sagemath.org
http://doi.org/10.1016/j.ffa.2016.12.008
http://msp.org/idx/mr/3631366
mailto:alex.j.best@gmail.com
http://msp.org

VOLUME EDITORS

Renate Scheidler
University of Calgary
Calgary, AB T2N 1N4

Canada

Jonathan Sorenson
Butler University

Indianapolis, IN 46208
United States

The cover image is based on a design by Linh Chi Bui.

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/2
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-02-6 (print), 978-1-935107-03-3 (electronic)

First published 2019.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

http://msp.org/obs/2
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org

THE OPEN BOOK SERIES 2

Thirteenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier inter-
national forum for research in computational number theory. ANTS is devoted to algorithmic aspects of
number theory, including elementary, algebraic, and analytic number theory, the geometry of numbers,
arithmetic algebraic geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the thirteenth ANTS meeting, held July 16-20, 2018, at the University
of Wisconsin-Madison. It includes revised and edited versions of 28 refereed papers presented at the
conference.

Edited by Renate Scheidler and Jonathan Sorenson

CONTRIBUTORS
Simon Abelard
Sonny Arora
Vishal Arul
Angelica Babei
Jens-Dietrich Bauch
Alex J. Best
Jean-François Biasse
Alin Bostan
Reinier Bröker
Nils Bruin
Xavier Caruso
Stephanie Chan
Qi Cheng
Gilles Christol
Owen Colman
Edgar Costa
Philippe Dumas
Kirsten Eisenträger
Claus Fieker
Shuhong Gao

Pierrick Gaudry
Alexandre Gélin
Alexandru Ghitza
Laurent Grémy
Jeroen Hanselman
David Harvey
Tommy Hofmann
Everett W. Howe
David Hubbard
Kiran S. Kedlaya
Thorsten Kleinjung
David Kohel
Wanlin Li
Richard Magner
Anna Medvedovsky
Michael Musty
Ha Thanh Nguyen Tran
Christophe Ritzenthaler
David Roe

J. Maurice Rojas
Nathan C. Ryan
Renate Scheidler
Sam Schiavone
Andrew Shallue
Jeroen Sijsling
Carlo Sircana
Jonathan Sorenson
Pierre-Jean Spaenlehauer
Andrew V. Sutherland
Nicholas Triantafillou
Joris van der Hoeven
Christine Van Vredendaal
John Voight
Daqing Wan
Lawrence C. Washington
Jonathan Webster
Benjamin Wesolowski
Yinan Zhang
Alexandre Zotine

A
N

T
S

X
III:

Thirteenth
A

lgorithm
ic

N
um

ber
Theory

Sym
posium

Scheidler,Sorenson
O

B
S

2

	1. Introduction
	2. Setup and notation
	3. Coleman integration
	4. Reductions in cohomology
	Kedlaya's algorithm and Harvey's work
	Horizontal reduction
	Vertical reduction
	Towards a faster algorithm
	The recurrence

	5. Linear recurrence algorithms
	6. The algorithm
	7. Precision
	8. Run time analysis
	9. Implementation
	10. Examples
	11. Future directions
	References
	
	

