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Let L =Q(
√

d1, . . . ,
√

dn) be a real multiquadratic field and S be a set of prime ideals of L . In this paper,
we present a heuristic algorithm for the computation of the S-class group and the S-unit group that runs
in time Poly(log(1),Size(S))eÕ(

√
ln d) where d =

∏
i≤n di and 1 is the discriminant of L . We use this

method to compute the ideal class group of the maximal order OL of L in time Poly(log(1))eÕ(
√

log d).
When log(d) ≤ log(log(1))c for some constant c < 2, these methods run in polynomial time. We
implemented our algorithm using Sage 7.5.1.

1. Introduction

Let L =Q(
√

d1, . . . ,
√

dn) be a real multiquadratic number field, and S be a set of prime ideals of L . The
S-unit group US of L is the set of elements α ∈ L such that there is Ee ∈ Z|S| satisfying αOL =

∏
p∈S p

ep

where OL is the maximal order of L . The computation of the S-unit group is a fundamental problem in
computational number theory with many applications.

In this paper, we present an original algorithm for the computation of certain S-unit groups in real
multiquadratic fields. The main motivation for the development of this algorithm is the computation of
the ideal class group of OL . The computation of Cl(OL) can be trivially deduced from the knowledge of
an S-unit group where the classes of the elements of S generate Cl(OL). The computation of the ideal
class group is one of the four major tasks in computational number theory postulated by Zassenhaus [23,
p. 2] (together with the computation of the unit group, the Galois group, and the ring of integers). In
1968, Shanks [26; 27] proposed an algorithm relying on the baby-step giant-step method to compute
the class number and the regulator of a quadratic number field in time O(|1|1/4+ε), or O(|1|1/5+ε)
under the extended Riemann hypothesis [21]. Then, a subexponential strategy for the computation of the
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group structure of the class group of an imaginary quadratic field was described in 1989 by Hafner and
McCurley [20]. The expected running time of this method is

L1(1/2,
√

2+ o(1))= e(
√

2+o(1))
√

ln|1| ln ln|1|.

Buchmann [15] generalized this result to the case of infinite classes of number fields with fixed degree.
Practical improvements to Buchmann’s algorithm were presented in [18] by Cohen, Diaz y Diaz, and
Olivier. Biasse [6] described an algorithm for computing the ideal class group and the unit group of
O = Z[θ ] in heuristic complexity bounded by L1(1/3, c) for some c > 0 valid in certain classes of
number fields. In [7; 10], Biasse and Fieker showed that there was a heuristic subexponential algorithm
for the computation of the ideal class group in all classes of number fields. The methods of [10] can be
specialized to the case of cyclotomic fields for a better asymptotic complexity [8]. The computation of
the ideal class group is also the subject of study in the context of quantum computing. It was recently
proved (under the GRH) by Biasse and Song that there is a quantum polynomial time algorithm for the
computation of the ideal class group of an arbitrary field [13]. The most efficient practical implementa-
tions of algorithms for the computation of the ideal class group are either based on the quadratic sieve [12;
5; 4; 11] for quadratic fields or on the number field sieve [9] for number fields of higher degree.

The computation of S-units is also instrumental in the resolution of norm equations [28]. Indeed, it is
the bottleneck of the resolution in x of NL/K (x)= a for a given a ∈ K where L/K is a Galois extension.
This computational problem is closely related to Hilbert’s 10th problem, for which there is no efficient
general solution.

Contributions. Let L =Q(
√

d1, . . . ,
√

dn) be a real multiquadratic number field. We define d =
∏

i≤n di

and 1= disc(L).

• We describe an algorithm to compute Cl(OL) in heuristic complexity Poly(log(1))eÕ(
√

log d).

• We describe a heuristic algorithm for the computation of the S-class group and the S-unit group
of L in time Poly(log(1),Size(S))eÕ(

√
log d).

• We report on the performance of an implementation of our algorithms.

Our recursive approach is based on the unit group computation of [3] which we extended to the more
general problem of the computation of the S-unit group. In the case where d is small compared to 1,
our method for computing class groups, S-class groups, and S-unit groups runs in heuristic polynomial
time in log(1) (and in the size of S) where log(x) is the bit size of the integer x . This is ensured when
log(d)≤ log(log(1))c for some constant c < 2. For example, this is the case when the di are the first n
consecutive primes. This is the first nonquantum algorithm that runs in polynomial time on infinite classes
of number fields. The main ingredient of our recursion strategy is not restricted to multiquadratic fields.
We can take advantage of computations in subfields whenever there are two different σ, τ ∈ Gal(L/Q)
of order two. General subfields might not enjoy the same general recursive structure as multiquadratic
fields, but we expect that the reduction to the computation in subfields will improve the performance of
class group algorithms. The application of these methods to more general fields was left for future work.
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2. Preliminaries

2A. Number fields. A number field K is a finite extension of Q. Its ring of integers OK has the structure
of a lattice of degree n = [K :Q]. A number field has r1 ≤ n real embeddings (σi )i≤r1 and 2r2 complex
embeddings (σi )r1<i≤2r2 (coming as r2 pairs of conjugates). The pair (r1, r2) is the signature of K . The
field K is isomorphic to OK ⊗Q. The norm of an element x ∈ K is defined by N (x)=

∏
i σi (x). Let

(αi )i≤n such that OK =
⊕

i Zαi ; then the discriminant of K is 1(K ) := det2(T2(αi , α j )), where T2 is
defined by T2(x, x ′) :=

∑
i σi (x)σi (x ′). When there is no ambiguity, we simply denote it by 1.

2B. Units of OK . Elements u ∈OK that are invertible in OK are called units. Equivalently, they are the
elements u ∈ K such that (u) := (u)OK =OK . The unit group of OK where K is a real multiquadratic field
has rank r =n−1 and has the form O∗K =µ×〈ε1〉×· · ·×〈εr 〉where µ are roots of unity (torsion units) and
the εi are nontorsion units. Such (εi )i≤r are called a system of fundamental units of OK . Units generate
a lattice L of rank r in Rr+1 via the embedding x ∈ K 7→Log(x) := (ln(|σ1(x)|), . . . , ln(|σr+1(x)|)). The
volume R of L is an invariant of K called the regulator. The regulator R and the class number h satisfy
h R = (|µ|

√
|1|/(2r1(2π)r2)) lims→1((s− 1)ζK (s)), where ζK (s)=

∑
a 1/N (a)s is the usual ζ -function

associated to K and |µ| is the cardinality of µ the group of torsion units. This allows us to derive a
bound h∗ in polynomial time under GRH that satisfies h∗ ≤ h R < 2h∗ [2].

2C. Multiquadratic fields. In this paper, we focus on towers of quadratic extensions.

Definition 2.1. Let d1, . . . , dn be squarefree integers that are multiplicatively independent modulo squares
(i.e., they are independent in Q×/(Q×)2). Then L =Q(

√
d1, . . . ,

√
dn) is called a multiquadratic field

and N := [L :Q] = 2n . Its Galois group Gal(L/Q) := {Automorphisms of L that fix Q} is isomorphic
to (Z/2Z)n .

When n = 1, the field L = Q(
√

d1) is simply called a quadratic field. In this paper, we focus on
real multiquadratic fields, that is, those that satisfy di > 0 for all i ≤ n. The discriminant of a real
multiquadratic field is given to us by an explicit formula. This is useful for the computation of its
maximal order.

Lemma 2.2. Let L =Q(
√

d1, . . . ,
√

dn) a multiquadratic field as given above and
∏s

j=1 pm j
j with p1 <

p2 < · · ·< ps be the factorization of
∏n

i=1 di . Then 1(L)= (2a p1 · p2 · · · ps)
2n−1

where

a =


0 if di ≡ 1 mod 4 (for all 1≤ i ≤ n),
2 if p1 = 2 and pi ≡ 1 mod 4 (for all 2≤ i ≤ n),

or p1 6= 2 and there exists i such that pi ≡ 3 mod 4,
3 otherwise.

Proof. This follows from Theorem 2.1 of [25]. �

If we take d1, d2, . . . , dn to be the first n primes, then their product is the primorial pn#≈ e(1+o(1))n log n .
Combining this with Lemma 2.2 gives ln1(L)≈ 1

2 Nn log n = 1
2 N log N log log N .
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2D. Class groups. Elements of the form I/d where I⊆OK is an ideal of the ring of integers of K and
d > 0 are called fractional ideals. Ideals of OK are also referred to as integral ideals. Fractional ideals
have the structure of a Z-lattice of degree n = [K :Q], and they form a multiplicative group I. Elements
of I admit a unique decomposition as a product of nonzero prime ideals of OK (with possibly negative
exponents). The norm of integral ideals is given by N (I) := [OK : I], which extends to fractional
ideals by N (I/J) :=N (I)/N (J). The norm of a principal (fractional) ideal agrees with the norm of its
generator N (xOK )= |N (x)|. The principal fractional ideals P of K are a subgroup of I and the ideal
class group of OK is defined by Cl(OK ) := I/P . We denote by [a] the class of a fractional a in Cl(OK )

and by h the cardinality of Cl(OK ) which is a finite group. Let a, b be two fractional ideals of K . We
have [a] = [b] if and only if there is α ∈ K such that a= (α)b. We also denote this property by a∼ b.

2E. How to compute class groups. The best asymptotic algorithms to compute the ideal class group
of OK follow the general framework deriving from the algorithm of Hafner and McCurley [20] (subse-
quently generalized by Buchmann [15] and Biasse and Fieker [10]). Let B > 0 be a bound and define
a factor base as B := {nonzero prime ideals p with N (p)≤ B}. We refer to B as the smoothness bound.
We compute a generating set of the lattice 3 of all the vectors (e1, . . . , em) ∈ Zm with m := |B| such that
there exists α ∈ K with (α)= pe1

1 · · · p
em
m .

Definition 2.3 (relations). Let S = {p1, . . . , ps} be a set of nonzero prime ideals of K . For each S-
unit α ∈ K with Ee = (e1, . . . , es) such that (α) =

∏
i p

ei
i , we define the relation associated with α by

RS,K (α) := (α, Ee). The relations of K for the set S form a group denoted by RelS(K ).

When B > 12 ln2
|1|, the classes of ideals in B generate Cl(OK ) under the GRH [1, Theorem 4].

Therefore, (B,3) is a presentation of the group Cl(OK ) and the search for a generating set of the relations
RelS(K ) for S = B is equivalent to computing the group structure of Cl(OK ). Indeed, the morphism

Zm ϕ
−→ I π

−→ Cl(OK ),

(e1, . . . , em) −→
∏
i
pei

i −→
∏
i
[pi ]

ei

is surjective, and the class group Cl(OK ) is isomorphic to Zm/ ker(π ◦ϕ)= Zm/3.

2F. S-class groups and S-unit groups. Let S= {p1, . . . , ps} be a finite set of prime ideals of the number
field K . We say that x ∈ K is an S-integer if vp(x) ≥ 0 for all p /∈ S. The set of S-integers is a ring
denoted by OK ,S . We define the S-unit group UK ,S (or US if the field of definition is understood) as
the elements x ∈ K such that vp(x) = 0 for all p /∈ S. The group of S-units is finitely generated:
US = µ(K )×〈η1〉× · · · × 〈ηr+s〉 where µ(K ) is the set of the roots of unity of K , and η1, . . . , ηs+r are
torsion-free generators. The rank of its torsion-free part equals r + s where r is the rank of the torsion-
free part of the unit group UK . Let IS be the group of fractional ideals of OK ,S , and PS its subgroup of
principal ideals. We define the S-class group by ClS(OK ,S)= IS/PS .
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3. S-units of quadratic fields

In this section, we assume that L = Q(
√

d) for d > 0 a squarefree integer. The calculation of the
S-unit group for S a set of prime ideals of L is done by using the approach of Simon [28, §I.1.2].
Together with the subexponential strategy for computing the ideal class group derived from the Hafner–
McCurley algorithm [20], the S-unit group of L can be computed in time Poly(Size(S)) · eÕ(

√
log d).

These algorithms have been extensively studied, in particular in [20; 15; 10; 28]. Therefore, we only
give a brief sketch of the algorithm and will focus on the run time and the format of the output.

3A. Computing the class group. First, let B ∈ eÕ(
√

log d) be a large enough smoothness bound such that
the nonzero prime ideals p1, . . . , pk of L with norm less than B generate Cl(OL). Note that k ∈ eÕ(

√
log d).

The computation of Cl(OL) starts with the collection of δ1, . . . , δl for some l ∈ Õ(k) such that for all
i ≤ l there exist (ai,1, . . . , ai,k) with (δi )=

∏
j p

ai, j
j . The δi and the ai, j are all polynomial size in log(d).

Then there are unimodular matrices U ∈ GLl(Z) and V ∈ GLk(Z) such that

SNF(A)=U AV =



d1 (0)
. . .

(0) dk

(0)


,

where SNF(A) denotes the Smith normal form of A. The unimodular matrices U, V can be found in
polynomial time [29] (in the dimension and the bit size of the entries of A), and their entries have polyno-
mial size in the dimension of A and the bit size of its coefficients. This means that log(|U |), log(|V |) ∈
eÕ(
√

log d) where |U | denotes a bound on the absolute values of the entries of U . Let L⊆ Zk be the lattice
generated by the rows of A. Then

Cl(OL)' Zk/L' Z/d1Z⊕ · · ·⊕Z/dkZ.

Let g j :=
∏

i≤k p
vi, j
i ; we have Cl(OL)' 〈[g1]〉× · · · × 〈[gk]〉. In addition, let βi :=

∏
j≤l δ

ui, j
j , for i ≤ k.

We do not evaluate this product. We have gdi
i = (βi ). Overall, the complexity of this calculation is in

eÕ(
√

log d).

3B. Computing the S-unit group. Let S be a set of primes q1, . . . , qs of L . To get the S-class group
and the S-unit group we add extra relations to L. More specifically, we need to identify the classes of
Cl(OL) that are represented by a product of primes in S with the trivial class of ClS(OL ,S). The ideal
class of each of the elements of S can be represented as a product of the classes of the gi . In time
eÕ(
√

log d) (and polynomial in log(N (qi ))), one can find polynomial size x1, . . . , xk and βi+k ∈ L such
that qi = (βi+k)

∏
j p

x j
j with standard methods derived from [20]. Then for each j , p j =

∏
i≤k g

v′i, j
i where

the v′i, j are the coefficients of V−1, we readily find vectors Eei ∈ Zk with entries having polynomial size
in k (that is in eÕ(

√
log d)) such that qi = (βi+k)

∏
j≤k g

ei, j
j . The vectors Eei are precisely the new additions



108 JEAN-FRANÇOIS BIASSE AND CHRISTINE VAN VREDENDAAL

needed to expand L. We get a new relation matrix

B =



d1 (0)
. . .

(0) dk

e1,1 . . . e1,k
...

...

es,1 . . . es,k


.

As for the computation of Cl(OL), the SNF of B gives the elementary divisors of the cyclic decomposition
of ClS(OK ,S). Meanwhile, let Ew1, . . . , Ew1+s be a basis for the left kernel of B (in general the dimension
is r + s where r is the rank of the unit group of L). This kernel is found in polynomial time in the
dimension of B and the size of its entries, that is in time Poly(s) · eÕ(

√
log d). The entries of the kernel

vectors have size in Poly(s) ·eÕ(
√

log d), and US =µ×〈γ1〉×· · ·×〈γ1+s〉 where µ= {±1} are the torsion
units of OL and γi :=

∏
j≤k+s δ

wi, j
j .

Proposition 3.1. Let d > 0 be a squarefree integer, L = Q(
√

d), and S be a set of prime ideals of L
with |S| = s. Then the S-unit group algorithm of [28, §I.1.2] returns l ∈ eÕ(

√
log d) polynomial size

elements δi ∈ L and s + 1 vectors Eci with entries of size in Poly(s) · eÕ(
√

log d) such that the s + 1
elements γi :=

∏
j≤l δ

ci, j
j generate the S-unit group of L. The overall complexity of this procedure is in

Poly(Size(S)) · eÕ(
√

log d) where the size of S is in O(s ·maxp∈S log(N (p))).

4. Recursive computation of S-units

Let S be a set of nonzero prime ideals in L that is invariant under the action of Gal(L/Q) (that is, for
all p ∈ S and all σ ∈ Gal(L/Q), pσ ∈ S). In this section, we introduce a recursive method for finding
a generating set of RelS(L) which is the group of elements of the form RS,L(α) = (α, Ee) such that
(α) =

∏
pi∈S p

ei
i . Our strategy consists of deriving the S-unit group in L from that of three subfields

of L . When we reach the leaves of this recursion tree, we use the methods of Section 3 for computing
the S-unit group directly on the quadratic field.

4A. High-level description of the algorithms. Let L be a multiquadratic number field and let σ, τ be
two distinct nontrivial automorphisms of L . Let στ := σ ◦ τ and K` be the subfield of L fixed by
` ∈ {σ, τ, στ }. Let S be a set of prime ideals of the ring of integers OL with L stable by the action of
Gal(L/Q), and for each ` ∈ {σ, τ, στ } let us define S` := {p∩K` | p ∈ S}. We recover a generating set of
RelS(L) from generating sets of RelSσ (Kσ ), RelSτ (Kτ ), and σ(RelSστ (Kστ )). Our result follows from
two crucial observations.

(1) The subgroup U of RelS(L) generated by the lifts of RelSσ (Kσ ), RelSτ (Kτ ), and σ(RelSστ (Kστ ))

contains all the squares of relations in RelS(L).

(2) There is an algorithm that efficiently produces elements of U that are square of relations in RelS(L),
and then computes their square root.
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Algorithm 1: High-level description of recursive S-unit computation of L

Input: Real multiquadratic field L , ring of integers OL of L , set of primes S of OL stable under the action
of Gal(L/Q).

Result: A basis for RelS(L).
1 if [L :Q] = 2 then
2 Use the method of [28, §I.1.2] to compute a basis 3 of RelS(L).
3 return 3
4 σ, τ ← distinct nonidentity automorphisms of L .
5 for ` ∈ {σ, τ, στ } do
6 K`← fixed field of `.
7 3`← basis of RelS`(K`).
8 3←3σ ∪3τ ∪ σ(3στ ).
9 Find a basis 32 of the lattice of relations generated by 3 that are squares.

10 32← square roots of the elements in 32.
11 3← basis of the lattice generated by 3∪32.
12 return 3

When the recursive tree reaches a quadratic subfield K` of L , it uses the subexponential algorithm of
Simon [28, §I.1.2] to return the S`-unit group. The high-level description of this strategy is summarized
in Algorithm 1. Note that the ring of integers OL is part of the input. In general, the computation of OL

is as hard as the factorization of the discriminant of L , but in the particular case of multiquadratic fields,
there is an efficient algorithm for this task [17].

4B. Lifting relations. To compute RelS(L), we use the relations from RelSσ (Kσ ), RelSτ (Kτ ), and
σ(RelSστ (Kστ )) where σ, τ ∈Gal(L/Q) and S`, K` are defined in Section 4A. Therefore, given relations
in a subfield Kσ of L , we need to be able to efficiently compute the corresponding relations in L .

Theorem 4.1. Let L = Q(
√

d1, . . . ,
√

dn) be a multiquadratic field. Let Kσ be the (multi)quadratic
subfield of L fixed by σ ∈ Gal(L/Q), Sσ = {pi }i≤s where pi are prime ideals of Kσ , and S = {Pk ⊂ L |
there exists i ≤ s such that Pk ∩ Kσ = pi }. Let RSσ ,Kσ

(α) = (α, Ee) be a relation in RelSσ (Kσ ). Then
(α, EeL) :=RS,L(α) ∈RelS(L) with EeL = (e1 Ef1 | e2 Ef2 | · · · | es Efs), where Efi satisfy piOL =

∏
j≤gi

P
fi, j
ki, j

.

Proof. Let α ∈ Kσ such that (α)=
∏

pi∈S p
ei
i . Each prime ideal pi ∈ Kσ factors as piOL =

∏
j≤gi

P
fi, j
ki, j

,
where the Pki, j are the prime ideals of L such that Pki, j ∩ Kσ = pi and the fi, j are the corresponding
ramification indices. Therefore, we have

(α)OL =
∏
pi∈S

pei
i OL =

∏
pi∈S

∏
j≤gi

P
ei fi, j
ki, j

.

Thus, (α, (e1 Ef1 | e2 Ef2 | · · · | es Efs)) is the relation corresponding to α in RelS(L). �
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Given the straightforward correspondence between RSσ ,Kσ
(α) ∈RelS(Kσ ) and its lift in RelS(L), we

identify these two elements. The set RelS(L) is also equipped with a natural group structure given by
(α1, Ee1)+ (α2, Ee2) := (α1 ·α2, Ee1+ Ee2). We define the index of a subgroup U of RelS(L) as that of the
subgroup of US of the α such that there exists Ee with (α, Ee) ∈U .

Lemma 4.2. Let L = Q(
√

d1, . . . ,
√

dn) be a multiquadratic field and let S be a set of prime ideals
of L that is invariant under the action of Gal(L/Q). Let σ, τ ∈ Gal(L/Q) be two different nonidentity
isomorphisms, and define S`, K` of ` ∈ {σ, τ, στ } as in Section 4A. Let U be the group generated by
RelSσ (Kσ )∪RelSτ (Kτ )∪ σ(RelSστ (Kστ )) where

σ(RelSστ (Kστ )) := {RSτ ,Kτ
(σ (α)) | there exists Ee such that (α, Ee) ∈RelSστ (Kστ )}.

Then (RelS(L))2 ⊆ U ⊆ RelS(L), where (RelS(L))2 denotes the relations of the form (α2, 2Ee) where
(α, Ee) ∈RelS(L).

Proof. From Theorem 4.1, we know that the relations in RelSσ (Kσ ), RelSτ (Kτ ), and RelSστ (Kστ ) lift
naturally to relations in RelS(L). Moreover, σ maps elements of Kστ to Kτ , and since S is invariant
under the action of σ , a relation is mapped to another relation (modulo a permutation of the coefficients
of the exponent vector). So the action of σ on RelSστ (Kστ ) is well defined, and U ⊆RelS(L).

For the other inclusion, let (α, Ee) ∈RelS(L). For each ` ∈ {σ, τ, στ }, α ·`(α) decomposes as a product
of ideals in S`. Therefore, there are vectors Ee` such that for each `, (α · `(α), Ee`) ∈RelS`(K`). Moreover,

NL:Kσ
(α)NL:Kτ

(α)

σ (NL:Kστ
(α))

=
α · σ(α) ·α · τ(α)

σ (α · στ(α))
= α2
;

hence, (α2, 2Ee) = (σ (α), Eeσ ) + (τ (α), Eeτ ) − σ((στ)(α), Eeστ ) is a linear combination of relations in
Rel(Kσ ),Rel(Kτ ) and σ(Rel(Kστ )), so (Rel(L))2 ⊆U . �

4C. Representation of elements and square roots. The lift U of the relations in three different subfields
yields a set of relations containing all the squares of the relations in RelS(L). We need to solve two tasks:

(1) identification of a generating set of the squares of U and,

(2) for each square (α2, 2Ee) found in (1), computation of (α, Ee).

p-th roots with saturation. Let us identify U ⊆RelS(L) with the elements α ∈US such that there exists Ee,
(α, Ee)∈U . Let b> 0 such that (US :U )= b. For any prime p | b there is some α ∈US\U such that α p

∈U .
The saturation technique of Biasse and Fieker [9] can be used to find elements in US that are not in U .
Let us fix the prime p. For any residue degree 1 prime ideal Q /∈ S with Q :=N (Q) such that p | Q− 1
we define the map φQ :U→ F∗Q/(F

∗

Q)
p mapping S-units into the multiplicative group of the residue class

field FQ :=OL/Q modulo p-th powers. The Chebotarev theorem [31] guarantees that if α ∈U is not a p-
th power, there will be some Q such that φQ(α) is nontrivial, i.e., α is not a p-th power modulo Q. To find
p-th powers, we now simply intersect kerφQ for sufficiently many Q. The elements α ∈U/

(⋂
kerφQ

)
will have a p-th root in US but not in U . Suppose (α, Ee) ∈U with α ∈U/

(⋂
kerφQ

)
; then ( p

√
α, Ee/p)

is a new relation that reduces the index of the lattice of currently found relations in RelS(L).
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Using quadratic characters for p = 2. When looking for square roots, we can use quadratic characters
to find elements in elements α ∈U/

(⋂
kerφQ

)
by following the approach of [3]. More specifically, in [3,

§4.1], the map

φQ : Z[x1, . . . , xn]/(x2
1 − d1, . . . , x2

n − dn)' Z[
√

d1, . . . ,
√

dn] → FQ,

where Q is a residue degree 1 prime ideal and Q = N (Q), is defined by xi 7→ si where si is a square
root of di modulo Q. Elements of US have nonnegative valuation at Q since it satisfies Q /∈ S. We can
use the characters defined in [3, §4.1] by χQ(α) := (φQ(α)/Q) ∈ {−1, 0, 1}. When α is a square, we
have χQ(α) = 1. To find squares, we find the α ∈ U such that χQi (α) = 1 for i ≤ m where m is large
enough. This boils down to the search for a kernel element of the linear map

US
X
−−→ Z/2Z× · · ·×Z/2Z,

α −−→ (log−1(χQ1(α)), . . . , log−1(χQm (α))),

where for each x ∈ {−1, 1}, log−1(x) denotes the discrete logarithm of x in base −1. If α is a square, then
necessarily X (α)= (0, . . . , 0). On the other hand, if X (α)= (0, . . . , 0), there is a nonzero probability
that α might not be a square. Given generators α1, . . . , αk of U , we can find a generating set of the squares
of elements of US . This contains the squares of elements αk+1, . . . , αk+l of US such that α1, . . . , αk+l

generate US . We obtain these squares by finding the kernel of the matrix A = (X (αi )) ∈ Zk×m .

Representation of the elements. We compute S-units in the quadratic fields by directly applying the
subexponential algorithm of [28, §I.1.2]. As we saw in Section 3, the output of the computation in each
quadratic field Kl :=Q(

√
dKl ) for l ≤ 2n

:= N is a set of s+1 elements γi that are represented by vectors
of exponents Eei and k elements α j such that γi =

∏
j≤k δ

ei, j
j . The δ j have polynomial size in log(dKl ),

while k ∈ eÕ(
√

log(dKl )) and the entries of Eei have size in Poly(s) · eÕ(
√

log(dl )). In our algorithm these
products are never evaluated in L . Indeed, the representation of such elements on the integral basis has
exponential size, thus making any calculation on them prohibitively expensive.

To avoid this issue, we use the so-called compact representation described by Thiel [30]. Given η ∈ K ,
we can find polynomial size (in the logarithm of the field discriminant) elements η0, η1, . . . , ηv such that
η = η0η

2
1 · · · η

2v
v . Given an element η in compact representation, we can easily perform the operations

• compute X (η)= X (η0),

• compute
√
η =±

√
η0 · η1 · η

2
2 · · · η

2v−1

v , and

• compute σ(η)= σ(η0)σ (η1)
2
· · · σ(ηv)

2v for σ ∈ Gal(L/Q).

The original compact representation of Thiel [30] can be adapted to run in polynomial time with respect
to the input. In particular, if η is given as a product η = η′1

e1
· · · η′v′

ev′ , then we can find a compact
representation of η in polynomial time in maxi (Size(η′i )), maxi log(ei ), and v′ [10, §5; 19, §4.4]. We
compute the compact representation of the γi at the beginning of the recursion, and after each subsequent
operation.
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Algorithm 2: SUnitGivenSubgroup(K , α1, . . . , αk)

Input: Real multiquadratic field K ⊆Q(
√

d1, . . . ,
√

dn), α1, . . . , αk such that U 2
K ,S ⊆ 〈α1, . . . , αk〉.

Result: Generators of UK ,S/{±1}.
1 χ1, . . . , χm← characters defined by Qi for i ≤ m.
2 A← [log−1(χi (α j ))]i≤m, j≤k ∈ Fm×k

2 .
3 V ← basis of the left kernel of A.
4 for i = 1, . . . , #V do
5 vi ←

∏
j α

Vi j
j .

6 βi ←
√
vi .

7 return α1, . . . , αk, β1, . . . , β#V

By linearity, one can evaluate the characters X (γi )=
∑

j≤k ei, j X (δ j ) in time k ·Poly(maxi, j Size(ei, j ))·

Poly(maxi Size(X (δ j ))). As Size(X (δ j )) is bounded by m ·maxi log(N (Qi )), the resulting complexity

is in Poly(s,m, log Q) ·eÕ(
√

log(d)) where Q :=maxi N (Qi ) and d :=
∏

l≤n dl . Using the compact repre-
sentation, the product of two elements, the image under a morphism σ ∈ Gal(L/Q), and the computation
of the square root are straightforward operations with complexity in Poly(s, log(1)) · eÕ(

√
log(d)).

In the description of Algorithm 2, we identify field elements and their representation described above.
As previously mentioned, all squares must map to elements of LeftKernel(A), but there is a chance that
elements from LeftKernel(A) do not arise as the map of a square in K . In this case, the element si

calculated in Step 5 is not a square, and the (formal) square root computed in Step 6 does not correspond
to any element in K . The probability of success of Algorithm 2 is derived from a standard heuristic
used for the computation of square roots in the number field sieve algorithm [16, §8]. This argument
was also used for computing units of multiquadratic fields in [3, §4.2]. Let U := 〈α1, . . . , αk〉/{±1}.
The rank of U/(U ∩ K 2) is at most s + r where r is the rank of the unit group of K and s := |S|.
Therefore, the dual Hom(U/(U ∩ K 2), F2) is an F2 vector space of dimension at most r + s. Assuming
that log−1 χQ1, . . . , log−1 χQm are independent uniform random elements of this dual, they span the dual
with probability at least 1− 1/2m−r−s by [16, Lemmma 8.2]. In that case, X (α)= 0 implies α ∈U ∩ K 2.

Heuristic 4.3. Let K be a multiquadratic subfield of L = Q(
√

d1, . . . ,
√

dn), and let S be a set of
prime ideals of K . Let α1, . . . , αk be elements generating U 2

K ,S and let U := 〈α1, . . . , αk〉/{±1} Then
morphisms of the form log−1 χQi are uniformly distributed in Hom(U/(U ∩ K 2), F2).

Proposition 4.4. Let K be a multiquadratic subfield of L = Q(
√

d1, . . . ,
√

dn), and let S be a set of
prime ideals of K . Let α1, . . . , αk be elements generating U 2

K ,S . Let r be the rank of the unit group of K

and let s := |S|. Then the run time of Algorithm 2 is in Poly(s,m, log(1), log Q) · eÕ(
√

log d) where m is
the number of characters, N = 2n , Q =maxi≤m Qi , and d =

∏
i≤n di . Algorithm 2 returns a generating

set of UK ,S with probability at least 1− 1/2m−r−s under Heuristic 4.3.
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Remark 4.5. The only subroutine that we have not formally analyzed is the creation of the χ1, . . . , χm .
For that, we directly rely on the algorithm GoodPrime of [3]. It returns each prime in time O(N ). Thus,
the calculation of χ1, . . . , χm is in O(m N ).

4D. Overall procedure. We now have all the ingredients to specify the details of our recursive method
to compute the S-unit group of L = Q(

√
d1, . . . ,

√
dn) for a set of prime ideals S invariant under the

action of the Galois group of L .

Theorem 4.6. Let L = Q(
√

d1, . . . ,
√

dn) be a real multiquadratic field of degree N and S be a set
of prime ideals of L stable under Gal(L/Q) that does not contain any ideal above 2. Then under
Heuristic 4.3, the elements β1, . . . , βr+s returned by Algorithm 3 generate the torsion-free part of US with
probability 1− 1/2N . The asymptotic complexity of Algorithm 3 is in Poly(Size(S), log(1)) · eÕ(

√
log d)

where Size(S)= s ·maxp∈S log(N (p)), 1= disc(L), and d :=
∏

i≤n di .

Proof. Algorithm 3 is called 3n
∈ Poly(N ) times. The run time of Algorithm 3 is essentially ruled by that

of Algorithm 2 and by the cost of Steps 12 and 14. Moreover, the cost of the ideal arithmetic involved in
the lifting of the relations is in Poly(Size(S), log(1)). The probability of success of the overall algorithm
is at least (1− 1/2m−r−s)N

∼ 1− N/2m−r−s where r is the rank of the unit group of L . Therefore, a
choice of m ∈ Poly(N , s) can ensure that the probability of success is at least 1− 1/2N . With such

Algorithm 3: MQSUnits for S stable under Gal(L/Q)

Input: Real multiquadratic field L , ring of integers OL of L , and set of prime ideals S of OL stable under
Gal(L/Q).

Result: A basis of the relations RelS(L).
1 S0← {p1, . . . , ps} where for all i ≤ s, there exists p ∈ S such that pi | p.
2 if [L :Q] = 2 then
3 3← basis of RelS(L) using [28, Algorithm I.1.2].
4 return 3
5 σ, τ ← distinct nonidentity automorphisms of L .
6 for ` ∈ {σ, τ, στ } do
7 K`← fixed field of `.
8 S← {p⊆ K` | there exists e ∈ Z and p ∈ S0 such that N (p)= pe

}.
9 3`←MQSUnits(K`, S).

10 3U ←3σ ∪3τ ∪ σ(3στ ).
11 3 := {(α1, Ee1), . . . , (αk, Eek)} ← SUnitGivenSubgroup(L ,3U ) (Algorithm 2).
12 A← (Eei )i≤k . Compute U ∈ GLk(Z) such that U A =

( H
(0)

)
is the HNF of A.

13 For i = 1, . . . , s: βi ←
∏

j≤k α
Ui, j
j .

14 Compute a basis Ew1, . . . , Ewr of the left kernel of A.
15 For i = 1, . . . , r , βs+i ←

∏
j≤k α

wi, j
j .

16 return (β1, EH1), . . . , (βs, EHs), (βs+1, E0), . . . , (βs+r , E0)
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a choice of m, we can also ensure that Q ∈ Poly(N , s). Finally, in Steps 12 and 14, the coefficients
of U and of the Ewi are in Poly(s, log(1)) · eÕ(

√
log d). This allows us to bound the run time of the field

operations of Steps 13 and 15 (in compact representation). Moreover, the run time of Steps 12 and 14 is
also in Poly(s, log(1)) · eÕ(

√
log d), which proves the statement. �

The result of Algorithm 3 can be certified in polynomial time under the generalized Riemann hypoth-
esis if the prime ideals in S generate the ideal class group of L . This is the case in all the applications
that are considered in Section 5, including the computation of arbitrary S-unit groups. The only way
Algorithm 3 can fail is if Algorithm 2 identifies nonsquares as squares. If this is the case, then the set of
relations returned by Algorithm 3 contains elements that are not in RelS(L). Let h0 := det(H) and R0

be the volume of the lattice generated by Log(βi ) for i = s+ 1, . . . , s+ r . If the result is correct, then
h0 = h the class number of OL while R0 = R the regulator of L . If not, then h0 R0 ≤

1
2 h R (i.e., RelS(L)

is a finite index subgroup of the output of Algorithm 3). An estimate for h R can be found in polynomial
time under the GRH by using the methods of [2].

Proposition 4.7. Under the GRH, the result of Algorithm 3 can be certified in polynomial time if S
includes a generating set of the ideal class group of OL .

5. Applications of the S-unit computation algorithm

The S-unit group computation of Section 4 can be used to compute ideal class groups, S-class groups,
and (arbitrary) S-unit groups.

5A. Ideal class group computation. As explained in Section 2E, the computation of Cl(OL) can be
done by searching for a basis of the relations between a generating set of the classes of Cl(OL). Once
such a generating set is found, then the strategy is the same as in [20], which was sketched in Section 3.

Proposition 5.1. Let L =Q(
√

d1, . . . ,
√

dn) be a real multiquadratic field of degree N an discriminant1.
Under the GRH, Algorithm 4 successfully returns the ideal class group of OL with probability 1−1/2N in
time Poly(log(1)) ·eÕ(

√
log d) where d =

∏
i≤n di . The result of Algorithm 4 can be certified in polynomial

time in log(1).

Algorithm 4: Computation of Cl(OL)

Input: Ring of integers OL of a real multiquadratic field L of degree N and discriminant 1.
Result: Class group of OL .

1 Compute S := {p |N (p)≤ 12 ln2(1)}.
2 (α1, EH1), . . . , (αs, EHs), (αs+1, E0), . . . , (αs+r , E0)← output of Algorithm 3.
3 diag(d1, . . . , ds)← SNF(H).
4 return Z/d1Z× . . .×Z/dsZ
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[L :Q] Algorithm 4 Magma Sage Cl(OL)

8 81.3 1.18 0.02 trivial
16 455 14.4 0.87 C4×C4

32 3738 3971 68.9 C2×C4×C4
8

64 3.79 · 104 > 8.5 · 105 C9
2 ×C3

4 ×C8×C4
16×C48×C240

128 5.42 · 105 C10
2 ×C16

4 ×C13
8 ×C2

16×C6
48×C3

96×C48×C960

Table 1. Comparison of class group routine run time.

Corollary 5.2. When d=
∏

i≤n di satisfies log(d)< log(log(1))c for some constant c<2, then Algorithm
4 returns the ideal class group of OL with probability 1− 1/2N in polynomial time in log(1).

We showcase the effect of our algorithm on classes of multiquadratic fields with small di by computing
the class group of the degree 128 multiquadratic field L =Q(

√
5,
√

13,
√

17,
√

29,
√

37,
√

41,
√

53) and
its subfields

Q(
√

5,
√

13,
√

17), . . . ,Q(
√

5,
√

13,
√

17,
√

29,
√

37,
√

41).

We implemented Algorithm 4 and ran experiments on a single core of an Intel Xeon E5-2650 v3 2.30 GHz
processor with 512 GB of RAM running version 7.5.1 of Sage [24]. For the low level multiquadratic
arithmetic, we used the methods of [3]. For the Sage experiments the class_group(proof = False) method
was used. Note that Sage’s class group routine directly calls that of Pari/GP [22]. We also ran the class
group routine of Magma V.2.24 on the same fields. Magma [14] works at a higher level of rigor by only re-
turning results that are at least certified under GRH (we ran the command ClassGroup(K:Proof:="GRH")).
Therefore, the comparison with Sage is not entirely relevant. In degree 64, the computation with Magma
had to be terminated after 24 hours since it had exhausted the machine’s memory.

Although slower for small degrees, our method is the only implementation that is able to compute the
class group of multiquadratic fields of degree more than 32. We can see on Table 1 that the run time
(in CPU seconds) of Algorithm 4 is consistent with a polynomial run time in log(1). Our algorithm is
parallelizable on several levels: subtrees of the recursion tree are independent, as well as computations
modulo the (Qi )i≤m . Therefore, we anticipate that a parallel version of our algorithm could reach degrees
256 and 512.

5B. S-class group and S-unit group computation. Algorithm 3 computes the S-unit group with the
restriction that S contains all conjugates of any p ∈ S under the action of Gal(L/Q). As shown in
Section 3, the S-class group boils down to the search for the lattice of relations between the generators
(gi )i≤s0 of Cl(OL) which we enlarge with new relations of the form q j ∼

∏
i≤s0

g
xi, j
i . The SNF of this

enlarged relation lattice gives the elementary divisors of the S-class group while its kernel reveal the
S-unit group.
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Algorithm 5: S-class group and S-unit group computation

Input: Real multiquadratic field L of degree N , ring of integers OL of L , and a set S of prime ideals of OL .
Result: S-unit group and S-class group of L .

1 Compute S0 := {p |N (p)≤ 12 ln2(1)} for 1= disc(L).
2 S0← S ∪ {qσ | q ∈ S, σ ∈ Gal(L/Q)}.
3 (α1, EH1), . . . , (αs0 ,

EHs0), (αs0+1, E0), . . . , (αs0+r , E0)← output of Algorithm 3.
4 Compute U, V such that U

( H
(0)

)
V =

( SNF(H)
(0)

)
with SNF(H)= diag(di )i≤s0 .

5 For j ≤ s0, define g j :=
∏

i≤s0
p

Vi, j
i (here, Cl(OL)'

⊕
i≤k〈[gi ]〉).

6 V ′← V−1.
7 For each j ≤ s, find j0 ≤ s0 such that q j = p j0 .

8 Ex j ← (V ′1, j0
, . . . , V ′s0, j0

) (here q j =
∏

i≤s0
g

xi, j0
i ).

9 Let M =
( H
(Exi )i≤s

)
.

10 diag(d ′i )i≤s0 ← SNF(M). Compute a basis Ew1, . . . , Ews of the left kernel of M .
11 For i ≤ s, α′i ←

∏
j≤s0

α
wi, j
j .

12 For 1≤ i ≤ r , α′i+s← αs0+i (the (α′i )s<i≤r+s generate UL ).
13 return 〈α′1〉× · · · × 〈α

′
s+r 〉,Z/d ′1Z⊕ · · ·⊕Z/d ′s0

.

Proposition 5.3. Algorithm 5 is correct and returns the S-class group and the S-unit group with prob-
ability 1− 1/2N where N = [L;Q] in time Poly(Size(S), log(1)) · eÕ(

√
log d) where 1 = disc(L), and

d :=
∏

i≤n di .
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