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We revisit Christol’s theorem on algebraic power series in positive characteristic and propose yet another
proof for it. This new proof combines several ingredients and advantages of existing proofs, which make
it very well-suited for algorithmic purposes. We apply the construction used in the new proof to the
design of a new efficient algorithm for computing the N -th coefficient of a given algebraic power series
over a perfect field of characteristic p. It has several nice features: it is more general, more natural and
more efficient than previous algorithms. Not only is the arithmetic complexity of the new algorithm
linear in log N and quasilinear in p, but its dependency with respect to the degree of the input is much
smaller than in the previously best algorithm. Moreover, when the ground field is finite, the new approach
yields an even faster algorithm, whose bit complexity is linear in log N and quasilinear in

√
p.

1. Introduction

Given a perfect field k of characteristic p > 0, we address the following question: how quickly can one
compute the N -th coefficient fN of an algebraic power series

f (t)=
∑
n≥0

fntn
∈ k[[t]],

where N is assumed to be a large positive integer? This question was recognized as a very important one
in complexity theory, as well as in various applications to algorithmic number theory: Atkin–Swinnerton-
Dyer congruences, integer factorization, discrete logarithms and point-counting [10; 3].

As stated, the question is rather vague; both the data structure and the computation model have to be
defined more precisely. The algebraic series f will be specified in k[[t]] as some root of a polynomial
E(t, y) in k[t, y], of degree d = degy E ≥ 1 and of height h = degt E . To make this specification
unequivocally, we will need several assumptions. First, we assume that E is separable, that is, E and
its derivative Ey = ∂E/∂y are coprime in k(t)[y]. Second, we assume that E is irreducible1 in k(t)[y].

MSC2010: 11Y16, 11YXX, 12Y05, 68W30.
Keywords: algebraic power series, Christol’s theorem, algorithm, complexity.

1The first assumption is not always implied by the second one, as exemplified by E = y p
− t ∈ Fp[t, y], and in general by

any irreducible polynomial E in k[t, y p
].
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Note that both assumptions are satisfied if E is assumed to be the minimal polynomial of f and that
irreducibility implies separability as soon as we know that E has at least one root in k[[t]]. The polynomial
E might have several roots in k[[t]]. In order to specify uniquely its root f , we further assume that we
are given a nonnegative integer ρ together with f0, . . . , f2ρ in k such that

E(t, f0+ f1t + · · ·+ f2ρ t2ρ)≡ 0 (mod t2ρ+1),

Ey(t, f0+ f1t + · · ·+ fρ tρ) 6≡ 0 (mod tρ+1).

In other words, the data structure used to represent f is the polynomial E together with the initial coeffi-
cients f0, . . . , f2ρ . (Actually ρ+1 coefficients are enough to ensure the uniqueness of f . However 2ρ+1
coefficients are needed to ensure its existence; for this reason, we will always assume the coefficients of
f are given up to index 2ρ.) We observe that it is always possible to choose ρ less than or equal to the
t-adic valuation of the y-resultant of E and Ey , hence, a fortiori, ρ ≤ (2d−1)h.

Under these assumptions, the classical Newton iteration [16] allows the computation of the first N
coefficients of f in quasilinear complexity Õ(N ). Here, and in the whole article (with the notable
exception of Section 4), the algorithmic cost is measured by counting the number of basic arithmetic
operations (+,−,×,÷) and applications of the Frobenius map (x 7→ x p) and of its inverse (x 7→ x1/p)
in the ground field k. The soft-O notation Õ(·) indicates that polylogarithmic factors in the argument are
omitted. Newton’s iteration thus provides a quasioptimal algorithm to compute f0, . . . , fN . A natural
and important question is whether faster alternatives exist for computing the coefficient fN alone.

With the exception of the rational case (d = 1), where the N -th coefficient can be computed in com-
plexity O(log N ) by binary powering [13], the most efficient algorithm currently known to compute fN

in characteristic 0 has complexity Õ(
√

N ) [9]. It relies on baby step / giant step techniques, combined
with fast multipoint evaluation.

Surprisingly, in positive characteristic p, a radically different approach leads to a spectacular complex-
ity drop to O(log N ). However, the big-O term hides a (potentially exponential) dependency in p. The
good behavior of this estimate with respect to the index N results from two facts. First, if the index N
is written in radix p as (N`−1 · · · N1 N0)p, then the coefficient fN is given by the simple formula

fN = [(SN`−1 · · · SN1 SN0 f )(0)]p
`

, (1)

where the Sr (0≤ r < p) are the section operators defined by

Sr

∑
n≥0

gntn
=

∑
n≥0

g1/p
pn+r tn. (2)

Note that for the finite field Fp the exponents p` in (1) and 1/p in (2) are useless, since the Frobenius
map x 7→ x p is the identity map in this case.

Second, by Christol’s theorem [6; 7; 15], the coefficient sequence of an algebraic power series f over
a perfect field k of characteristic p > 0 is p-automatic: this means that f generates a finite-dimensional
k-vector space under the action of the section operators. Consequently, with respect to a fixed k-basis of
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this vector space, one can express f as a column vector C , the section operators Sr as square matrices Ar

(0≤ r < p), and the evaluation at 0 as a row vector R. Formula (1) then becomes

fN = [R AN`−1 · · · AN1 AN0C]p
`

. (3)

Since ` is about log N, and since the size of the matrices Ar does not depend on N, (3) yields an algo-
rithm of complexity O(log N ). This observation (for any p-automatic sequence) is due to Allouche and
Shallit [1, Corollary 4.5]. However, this last assertion hides the need to first find the linear representation
(R, (Ar )0≤r<p,C). As shown in [2, Example 5], already in the case of a finite prime field, translating
the p-automaticity in terms of linear algebra yields matrices Ar whose size can be about d2hp2d. Thus,
their precomputation has a huge impact on the cost with respect to the prime number p.

In the particular case of a prime field k = Fp, and under the assumption Ey(0, f0) 6= 0, this was
improved in [2] by building on an idea originally introduced by Christol in [6]: one can compute fN in
complexity Õ((h+ d)5hp)+ O((h+ d)2h2 log N ). Before now, this was the best complexity result for
this task.

Contributions. We further improve the complexity result from [2] down to Õ(d2hp+dωh)+O(d2h2 log N )
(Theorem 3.4, Section 3B). Here ω is the exponent of matrix multiplication. In the case where k is a
finite field, we propose an even faster algorithm, with bit complexity linear in log N and quasilinear
in
√

p (Theorem 4.1, Section 4). It is obtained by blending the approach in Section 3B with ideas and
techniques imported from the characteristic zero case [9]. All these successive algorithmic improvements
are consequences of our main theoretical result (Theorem 2.2, Section 2B), which can be thought of as
an effective version of Christol’s theorem (and in particular reproves it).

2. Effective version of Christol’s theorem

We keep the notation of the introduction. Christol’s theorem is stated as follows.

Theorem 2.1 (Christol). Let f (t) in k[[t]] be a formal power series that is algebraic over k(t), where k
is a perfect field with positive characteristic. Then there exists a finite-dimensional k-vector space con-
taining f (t) and stable by the section operators.

The aim of this section is to state and to prove an effective version of Theorem 2.1, on which our
forthcoming algorithms will be built. Our approach follows the initial treatment by Christol [6], which
is based on Furstenberg’s theorem [14, Theorem 2]. For the application we have in mind, it turns out
that the initial version of Furstenberg’s theorem will be inefficient; hence we will first need to strengthen
it, considering residues around the moving point f (t) instead of residues at 0. Another new input we
shall use is a globalization argument allowing us to compare section operators at 0 and at f (t). This
argument is formalized through Frobenius operators and is closely related to the Cartier operator used
in a beautiful geometric proof of Christol’s theorem due to Deligne [11] and Speyer [18], and further
studied by Bridy [5].
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2A. Frobenius and sections. Recall that the ground field k is assumed to be a perfect field of prime
characteristic p, for example a finite field Fq , where q = ps. Let K = k(t) be the field of rational
functions over k and let L = K [y]/(E).

Since k is a perfect field, the Frobenius endomorphism F : k→ k defined by x 7→ x p is an automorphism
of k. It extends to a ring homomorphism, still denoted by F, from L[t1/p

] to L which raises an element
of L[t1/p

] = L1/p to the power p. This homomorphism is an isomorphism and its inverse is denoted

F−1
=

p−1∑
r=0

tr/p Sr , (4)

where each Sr , with 0≤ r < p, maps L onto itself.
The use in (4) of the same notation as in (2) is not a mere coincidence. The algebraic series f provides

an embedding of L into the field of Laurent series k((t)), which is the evaluation of an element P(y)
of L at the point y = f (t). We will call eval f : L→ k((t)) the corresponding map, which sends P(y)
to P( f (t)). The Frobenius operator extends from L to k((t)), and the same holds for the sections Sr

(0≤ r < p). These extensions are exactly those of (2). The Sr ’s in (4) then appear as global variants of
the Sr ’s in (2). Moreover, global and local operators are compatible, in the sense that they satisfy

F ◦ eval f = eval f ◦ F, Sr ◦ eval f = eval f ◦ Sr . (5)

As for rational functions, the Frobenius operator and the section operators induce, respectively, a
ring isomorphism F from K [t1/p

] onto K and maps σ r (0 ≤ r < p) from K onto K such that F−1
=∑p−1

r=0 tr/p σ r . The operators F and Sr (0 ≤ r < p) are not K -linear but only k-linear. More precisely,
for any λ in K [t1/p

], µ in K , and z in L ,

F(λz)= F(λ) F(z) and Sr (µz)=
p−1∑
s=0

tb
r+s

p cσ s(µ) Sr−s(z). (6)

In other words both F and F−1 are actually semilinear.

2B. The key theorem. Let k[t, y]<h,<d be the set of polynomials P ∈ k[t, y] such that degt P < h and
degy P < d .

Theorem 2.2. For P ∈ k[t, y]<h,<d and for 0 ≤ r < p, there exists a (unique) polynomial Q in
k[t, y]<h,<d such that

Sr

( P
Ey

)
≡

Q
Ey

(mod E). (7)

The rest of this subsection is devoted to the proof of Theorem 2.2. Although mainly algebraic, the
proof is based on the rather analytic remark that any algebraic function in k(t)[ f ] can be obtained as
the residue at T = f of some rational function in k(t, T ) (see Lemma 2.3). This idea was already used
in Furstenberg [14], whose work has been inspiring for us. The main new insight of our proof is the
following: we replace several small branches around zero by a single branch around a moving point.
In order to make the argument work, we shall also need to relate the behavior of the section operators
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around 0 and around the aforementioned moving point. This is where the reinterpretation of the Sr ’s in
terms of Frobenius operators will be useful.

We consider the ring H = k((t))[[T ]] of power series over k((t)). Its fraction field is the field K =
k((t))((T )) of Laurent series over k((t)). There is an embedding k((t))[y] →H taking a polynomial in
y to its Taylor expansion around f . Formally, it is simply obtained by mapping the variable y to f+T.
It extends to a field extension k((t))(y)→ K. We will often write P(t, f+T ) for the image of P(t, y) ∈
k((t))(y) in K. The field K is moreover endowed with a residue map res : K → k((t)), defined by
res
(∑

∞

i=v ai T i
)
= a−1 (by convention, a−1 = 0 if v >−1). It is clearly k((t))-linear.

Lemma 2.3. For any polynomial P ∈ k((t))[y], the following equality holds:

res
(

P(t, f+T )
E(t, f+T )

)
=

P(t, f )
Ey(t, f )

.

Proof. Since f is a simple root of E , the series E(t, f+T ) has a simple zero at T = 0. This means that
it can be written E(t, f+T )= T · q(T ) with q ∈H, q(0) 6= 0. Taking the logarithmic derivative with
respect to T gives

Ey(t, f+T )
E(t, f+T )

=
1
T
+

q ′(T )
q(T )

,

akin to [14, Formula (15), p. 276], from which we derive

P(t, f+T )
E(t, f+T )

=
g(T )

T
+ g(T )

q ′(T )
q(T )

,

where g(T ) = P(t, f+T )/Ey(t, f+T ). Since Ey(t, f+T ) does not vanish at T = 0, the series g(T )
has no pole at 0. Therefore, the residue of g(T )/T is nothing but g(0). Besides the residue of the second
summand g(T ) q ′(T )/q(T ) vanishes. All in all, the residue of P(t, f+T )/E(t, f+T ) is g(0)+ 0 =
P(t, f )/Ey(t, f ). �

We now introduce analogues of section operators over K. For this, we first observe that the Frobenius
operator x 7→ x p defines an isomorphism F : K[t1/p, T 1/p

] → K. Moreover K[t1/p, T 1/p
] is a field

extension of K of degree p2. A basis of K[t1/p, T 1/p
] over K is, of course, (tr/p T s/p)0≤r,s<p, but it will

be more convenient for our purposes to use a different one. It is given by Lemma 2.4.

Lemma 2.4. The family (tr/p ( f+T )s/p)0≤r,s<p is a basis of K[t1/p, T 1/p
] over K.

Proof. For simplicity, we set y = f+T ∈ K. We have:(
1 y1/p

· · · y(p−1)/p
)
=
(
1 T 1/p

· · · T (p−1)/p
)
·U,

where U is the square matrix whose (i, j) entry (for 0≤ i, j < p) is
( j

i

)
f i/p. In particular, U is upper

triangular and all its diagonal entries are equal to 1. Thus U is invertible and the conclusion follows. �
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For r and s in {0, 1, . . . , p−1}, we define the section operators Sr,s : K→ K by

F−1
=

p−1∑
r=0

p−1∑
s=0

tr/p( f+T )s/p Sr,s .

(These operations look like those used in [2, §3.2], but they are not exactly the same.) Clearly Sr,0 extends
the operator Sr : k((t))→ k((t)) defined by (2) and Sr,s(g

p
1 g2)= g1 Sr,s(g2) for all g1, g2 ∈K. We observe

moreover that the Sr,s’s stabilize the subrings k((t))[y] and k[t, y], since y corresponds to f+T.

Proposition 2.5. The following commutation relation holds over K:

Sr ◦ res= res ◦ Sr,p−1 .

Proof. Let us write g ∈K as g =
∑
∞

i=v ai T i with v ∈ Z and ai ∈ k((t)) for all i ≥ v. Its image under F−1

can be expressed in two different ways as follows:

F−1(g)=
∞∑

i=v

F−1(ai ) T i/p
=

p−1∑
r=0

p−1∑
s=0

tr/p( f+T )s/p Sr,s(g).

We identify the coefficient in T−1/p. To do so, we observe that the terms obtained with s < p− 1 do not
contribute, while the contribution of the term tr/p( f+T )(p−1)/p Sr,p−1(g) is the residue of tr/p Sr,p−1(g).
We then get

F−1(a−1)=

p−1∑
r=0

res ◦ Sr,p−1(g) · tr/p.

Returning to the definition of Sr , we derive Sr (a−1)= res ◦ Sr,p−1(g), from which the lemma follows. �

Proof of Theorem 2.2. Let P ∈ k[t, y] and 0≤ r < p. We set Q = Sr,p−1(P E p−1) ∈ k[t, y]. Combining
Lemma 2.3 and Proposition 2.5, we derive the following equalities:

Sr

(
P(t, f )
Ey(t, f )

)
= Sr ◦ res

(
P(t, f+T )
E(t, f+T )

)
= res ◦ Sr,p−1

(
P(t, f+T )
E(t, f+T )

)
= res

(
Q(t, f+T )
E(t, f+T )

)
=

Q(t, f )
Ey(t, f )

(compare with [2, §3.2]). The stability of k[t, y]/E(t, y) under Sr follows using the fact that E is the
minimal polynomial of f over K = k(t). If we know in addition that P lies in k[t, y]<h,<d then P E p−1

is in k[t, y]<ph,≤p(d−1) and, therefore, Q falls in k[t, y]<h,<d as well. Theorem 2.2 is proved. �

Remark 2.6. It is possible to slightly vary the bounds on the degree and the height, and to thus de-
rive other stability statements. For example, starting from a polynomial P(t, y) with degt P ≤ h and
degy P ≤ d , we have:

Sr
P(t, f )
Ey(t, f )

=
Q(t, f )
Ey(t, f )

,

with degt Q ≤ h and degy P < d. Moreover degt Q < h provided that r > 0.
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Furthermore, if P has degree at most d−2, the section Sr,p−1(P E p−1) has degree at most d−2 for
any r ∈ {0, 1, . . . , p−1}. Indeed, P E p−1 has degree at most pd − 2< p(d−1)+ p− 1. In other words,
the subspace k[t, y]<h,≤d−2 is stable by the section operators Sr (0≤ r < p).

3. Application to algorithmics

Theorem 2.2 exhibits an easy-to-handle finite dimensional vector space which is stable under the section
operators. In this section, we derive from it two efficient algorithms that compute the N -th term of f
in time linear in log N. The first is less efficient, but easier to understand; we present it mainly for
pedagogical purposes.

3A. First algorithm: modular computations. The first algorithm we will design follows rather straight-
forwardly from Theorem 2.2. It consists of the following steps:

(1) Compute the matrix giving the action of the Frobenius F with respect to the “modified monomial
basis” B = (y j/Ey)0≤ j≤d−1.

(2) Deduce the matrix of F−1 with respect to B.

(3) Extract from it the matrices of the section operators Sr .

(4) Compute the N -th coefficient of f using (1).

Let us be a bit more precise (though we will not give full details because we will design in Section 3B
an even faster algorithm). Let M be the matrix of F in the basis B; its j -th column contains the coordinates
of the vector F(y j/Ey) = y pj/E p

y in the basis B, which are also the coordinates of y pj/E p−1
y in the

monomial basis (1, y, . . . , yd−1). It is easily seen that the matrix of F−1 with respect to B is F−1(M−1),
which is, by definition, the matrix obtained by applying F−1 to each entry of M−1.

We now discuss the complexity of the computation of M−1. Thanks to Theorem 2.2 and (4), we know
that its entries are polynomials of degree at most h(p−1). However, this bound is not valid for the entries
of M. Indeed, in full generality, the latter are rational fractions whose numerators and denominators have
degrees of magnitude dhp. In order to save the extra factor d , we rely on modular techniques: we choose
a polynomial B of degree h(p−1)+ 1 and perform all computations modulo B. To make the method
work, B must be chosen in such a way that both M and M−1 make sense modulo B, i.e., B must be
coprime with the denominators of the entries of M. The latter condition discards a small number of
choices, so that a random polynomial B will be convenient with high probability.

Using fast polynomial and matrix algorithms, the computation of M modulo B can be achieved within
Õ(d2hp) operations in k, while the inversion of M modulo B requires Õ(dωhp) operations in k, where
ω ∈ [2, 3] is the matrix multiplication exponent. Since we count an application of F−1

: k→ k as a unique
operation, the cost of the first two steps is Õ(dωhp) as well. The third step is free as it only consists
in reorganizing coefficients. As for the evaluation of (1), each application of Sr has a cost of O(d2h2)

operations in k. The total complexity of our algorithm is then Õ(dωhp)+O(d2h2 log N ) operations in k.
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M =


1+2t4

+4t5
+3t6

+2t7
+2t8

+2t12
+4t13

+3t14
+t15
+2t16

· · ·

t+2t2
+3t3

+4t5
+4t6

+3t7
+3t8

+3t9
+t10
+4t11

+t13
+2t15

+t16
· · ·

1+2t+3t2
+3t5

+2t6
+2t7

+t8
+t9
+3t10

+t11
+3t12

+3t14
+4t15

+3t16
· · ·

0 · · ·

 (mod t17)

M−1
=


1+3t4

+t8
+t12
+t13
+t16 t4

+2t8 t8
+t12 t12

2+2t+· · ·+t9
+3t12 3+2t+· · ·+2t13

+t16 3+4t+t5
+t8 1+4t4

+3t5
+2t9

+2t12

4+2t+· · ·+2t9
+4t12 4+2t+· · ·++2t9

+4t12 1+2t+· · ·+3t13
+t16 2+4t+· · ·+4t5

+2t8

0 0 0 1+4t+· · ·+4t13
+t16


Figure 1. Frobenius and its inverse in the “modified monomial basis”.

Remark 3.1. We do not actually need to apply the Frobenius inverse F−1
: k → k since, at the end

of the computation, we raise the last intermediate result to the power p`. The complexity Õ(dωhp)+
O(d2h2 log N ) can then be reached even if we do not count an application of F−1 as a single operation.

A detailed example. Consider k = F5 and the polynomial

E = (t4
+ t + 1)y4

+ y2
+ y− t4

∈ k[t, y].

It admits a unique root f in k[[t]] which is congruent to 0 modulo t .
The matrix M of the Frobenius F with respect to the basis B= (1/Ey, y/Ey, y2/Ey, y3/Ey) is written

as D−1
· M̃, where D and the largest entry of M̃ have degrees 55 and 39, respectively. However, by

Theorem 2.2, we know that M−1 has polynomial entries of degree at most 16. Noticing that 0 is not
a root of the resultant of E and Ey , we can compute M and its inverse modulo B(t) = t17. The result
of this computation is displayed partly in Figure 1. We observe that the maximal degree of the entries
of M−1 is 16 and reaches our bound h(p−1) (which is then tight for this example). We furthermore
observe that M is block triangular, as expected after Remark 2.6.

Let us now compute the images of y ∈ L under the section operators. Write y = E−1
y · (4t4

+2y+3y2)

in L . We then have to compute the product M−1
· (4t4 2 3 0)T. As a result, we obtain

t4
+4t8
+2t12

+4t16
+4t17

+4t20

t+3t4
+2t5
+t8
+3t9
+4t10

+3t12
+3t13

+4t16

1+2t2
+3t3
+4t4
+t5
+t6
+4t7
+4t8
+3t9
+2t10

+2t13
+4t16

0

 .
Rearranging the terms, we finally find that

S0(y)= E−1
y · (4t4

+ (2t + 4t2)y+ (1+ t + 2t2)y2),

S1(y)= E−1
y · (4t3

+ (1+ 4t3)y+ (t + 4t3)y2),

S2(y)= E−1
y · ((2t2

+ 4t3)+ 3t2 y+ (2+ 4t)y2),

S3(y)= E−1
y · (4t + (t + 3t2)y+ (3+ 4t + 2t2)y2),

S4(y)= E−1
y · (1+ (3+ 3t)y+ (4+ 3t)y2).
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To conclude this example, suppose that we want to compute the 70-th coefficient of f . Applying (1), we
find that it is equal to the constant coefficient of S2 S4 S0 f . Therefore we have to compute S2 S4 S0 y.
Repeating twice what we have done before, we end up with

S2 S4 S0 y = E−1
y · ((2+ t2)+ (4+ 3t + 3t3)y+ (2+ 4t2

+ 2t3)y2).

Plugging y = f into the above equality, we get S2 S4 S0 f = 2+ O(t), from which we conclude f70 = 2.

Remark 3.2. In the above example, only the constant coefficient of f was needed to carry out the
whole computation. This is related to the fact that Ey( f (t)) has t-adic valuation 0. More generally, if
Ey( f (t)) has t-adic valuation ρ, we will need the first ρ+1 coefficients of f since the final division by
Ey will induce a loss of t-adic precision of ρ “digits”. This does not change the complexity bound, since
ρ ≤ degt Resy(E, Ey) ∈ O(dh).

3B. Second algorithm: Hermite–Padé approximation. For obvious reasons related to the size of the
computed objects, we cannot hope to achieve a complexity lower than linear with respect to p using the
approach of Section 3A. However, the exponent on d still can be improved. In order to achieve this, we re-
turn to Theorem 2.2. The key idea is to leap efficiently from the polynomial P to the polynomial Q in (7).

Let P =
∑d−1

i=0 ai (t)yi in k[t, y]<h,<d and 0≤ r < p. By Theorem 2.2, there exists Q =
∑d−1

i=0 bi (t)yi

in k[t, y]<h,<d such that Sr (P/Ey)≡ Q/Ey (mod E), or, equivalently,

Sr

( d−1∑
i=0

ai (t)
f (t)i

Ey(t, f (t))

)
=

d−1∑
j=0

b j (t)
f (t) j

Ey(t, f (t))
. (8)

The algorithmic question is to recover efficiently the bi ’s starting from the ai ’s. Identifying coefficients
in (8) yields a linear system over k in the coefficients of the unknown polynomials bi . This system has
hd unknowns and an infinite number of linear equations. The point is that a truncated version of (8),

Sr

(d−1∑
i=0

ai (t)
f (t)i

Ey(t, f (t))

)
≡

d−1∑
j=0

b j (t)
f (t) j

Ey(t, f (t))
(mod t2dh), (9)

is sufficient to uniquely determine Q. This is a direct consequence of the following.

Lemma 3.3. If Q in k[t, y]<h,<d satisfies (Q/Ey)(t, f (t))≡ 0 (mod t2dh), then Q = 0.

Proof. The resultant r(t) of E(t, y) and Q(t, y) with respect to y is a polynomial of degree at most
d(h−1)+ h(d−1). On the other hand, we have a Bézout relation,

E(t, y) u(t, y)+ Q(t, y) v(t, y)= r(t),

where u(t, y) and v(t, y) are bivariate polynomials in k[t, y]. By evaluating the previous equality at
y = f (t) it follows that

r(t)≡ Q(t, f (t)) v(t, f (t))≡ 0 (mod t2dh)

holds in k((t)), and therefore r = 0. Thus E and Q have a nontrivial common factor; since E is irreducible,
it must divide Q. But degy Q < degy E , so Q = 0. �
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Solving (9) amounts to solving a Hermite–Padé approximation problem. In terms of linear algebra,
it translates to solving a linear system over k in the coefficients of the unknown polynomials bi . This
system has dh unknowns and N = 2dh linear equations. Moreover, it has a very special shape: it has
a quasi-Toeplitz structure, with displacement rank 1 = O(d). Therefore, it can be solved using fast
algorithms for structured matrices [17; 4] in Õ(1ω−1 N )= Õ(dωh) operations in k. These algorithms
first compute a (quasi)-inverse of the matrix encoding the homogenous part of the system, using a compact
data-structure called a displacement generator (or, 6LU representation); then, they apply it to the vector
encoding the inhomogeneous part. The first step has complexity Õ(1ω−1 N )= Õ(dωh), the second step
has complexity Õ(1N )= Õ(d2h).

In our setting, we will need to solve log N systems of this type, each corresponding to the current digit
of N in radix p. An important feature is that these systems share the same homogeneous part, which
only depends on the coefficients of the power series s j (t)= f j/(Ey(t, f (t))) occurring on the right-hand
side of (9). Only the inhomogeneous parts vary: they depend on the linear combination

∑d−1
i=0 ai (t)si (t).

Putting these facts together yields Algorithm A and the complexity result in Theorem 3.4.

Algorithm A: N-th coefficient via Hermite–Padé

Input: a polynomial E(t, y)= ed(t)yd
+ · · ·+ e0(t) and a truncation g = f0+ · · ·+ O(tρ+1) of a series f

such that E(t, g)= O(tρ+1)

Output: the N -th coefficient fN of the series f
1. Precompute the first 2pdh coefficients of the series expansions s j of f (t) j/Ey(t, f ), 0≤ j < d.
2. Precompute the quasi-inverse of the Toeplitz matrix corresponding to the Hermite–Padé
approximation problem.
3. Expand N = (N`−1 · · · N0)p with respect to the radix p.
4. Set g = y ∈ L written as E−1

y · (−de0− (d−1)e1 y− · · ·− ed−1 yd−1).

5. for i = 0, 1, . . . , `− 1 do
(a) Write g = P(t, f )/Ey(t, f ) as a linear combination of the s j ’s.
(b) Compute the section SNi (g) at precision O(t2dh).
(c) Recover Q such that SNi (g)= Q/Ey by Hermite–Padé.
(d) Redefine g as Q/Ey .

6. Replace y by f (t) in g and call g(t) the obtained result.
7. Expand g(t) at precision O(t).
8. Set g0 to the constant coefficient of g(t).
9. Return g p`

0 .

Theorem 3.4. Let k be a perfect field with characteristic p > 0. Let E(t, y) be an irreducible polynomial
in k[t, y] of height h and degree d. We assume that we are given a nonnegative integer ρ and a polynomial
f (t) such that E(t, f (t))≡ 0 (mod t2ρ+1) and Ey(t, f (t)) 6≡ 0 (mod tρ+1).

There exists a unique series f (t) congruent to f (t) modulo tρ+1 for which E(t, f (t))= 0. Moreover,
Algorithm A computes the N-th coefficient of f for a cost of Õ(d2hp+dωh)+O(d2h2 log N ) operations
in k.
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Proof. The first assertion is Hensel’s Lemma [12, Theorem 7.3].
The precomputation of s j (t) = f (t) j/(Ey(t, f (t))) modulo t2dhp for 0 ≤ j < d can be performed

using Newton iteration, for a total cost of Õ(d2hp) operations in k. As explained above, this is enough
to set up the homogeneous part of the quasi-Toeplitz system; its inversion has cost Õ(dωh).

Let us turn to the main body of the computation, which depends on the index N. For each p-digit
r = Ni of N, we first construct the inhomogeneous part of the system. For this, we extract the coefficients
of t pj+r in

∑d−1
i=0 ai (t)si (t), for 0 ≤ j < d, for a total cost of O(d2h2) operations in k. We then apply

the inverse of the system to it, for a cost of O(d2h2) (using a naive matrix vector multiplication2 ). This
is done `≈ log N times. The other steps of the algorithm have negligible cost. �

4. Improving the complexity with respect to p

As shown in Theorem 3.4, Algorithm A has a nice complexity with respect to the parameters d, h and
log N : it is polynomial with small exponents. However, the complexity with respect to p is not that
good, as it is exponential in log p, which is the relevant parameter. Thus, when p is large (say > 105),
Algorithm A runs slowly and is no longer usable.

For this reason, it is important to improve the complexity with respect to p. In this section, we
introduce some ideas to achieve this. More precisely, our aim is to design an algorithm whose complexity
with respect to p and N is Õ(

√
p) · log N, and remains polynomial in all other relevant parameters. In the

current state of knowledge, it seems difficult to decrease further the exponent on p; indeed, the question
addressed in this paper is related to other intensively studied questions (e.g., counting points via p-adic
cohomologies) for which the barrier Õ(

√
p) has not been overcome yet.

Notation and assumptions. We keep the notation of previous sections. We make one additional hypoth-
esis: the ground field k is a finite field. We assume that k is represented as (Z/pZ)[X ]/π(X) where π is
an irreducible monic polynomial over Z/pZ of degree s. We choose a monic polynomial π̂ ∈ Z[X ] of
degree s lifting π . We set W = Zp[X ]/π̂(X) where Zp is the ring of p-adic integers.

The algorithm we are going to design is not algebraic in the sense that it does not only perform
algebraic operations in the ground field k, but will sometimes work over W (or, more exactly, over finite
quotients of W ). For this reason, throughout this section, we will use bit complexity instead of algebraic
complexity.

We use the notation poly(n) to indicate a quantity whose growth is at most polynomial in n. The
precise result we will prove reads as follows.

Theorem 4.1. Under the assumptions of Theorem 3.4 and the above extra assumptions, there exists an
algorithm of bit complexity poly(dh)Õ(s

√
p) log N that computes the N-th coefficient of f .

If p is bounded by a (fixed) polynomial in d and h, then Theorem 4.1 has been proved already. In the
sequel, we will then always assume that p� d, h.

2One can actually achieve this step for a cost of Õ(d2h) operations in k using the quasi-Toeplitz structure; however this is
not that useful since the cost of the previous step was already O(d2h2).
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Overview of the strategy. We reuse the structure of Algorithm A but speed up the computation of the
SNi (g)’s. Precisely, in Algorithm A, the drawback was the computation of the f j/(Ey(t, f ))’s or, almost
equivalently, the computation of g = P(t, f )/(Ey(t, f )) at sufficient precision. However, only a few
(precisely 2dh) coefficients of g are needed, since we are only interested in one of its sections. A classical
method for avoiding this overhead is to find a (small) recurrence on the coefficients on g =

∑
∞

n=0 gi t i of
the form:

br (i)gi+r + br−1(i)gi+r−1+ · · ·+ b1(i)gi+1+ b0(i)gi = 0. (10)

We then unroll it using matrix factorials (for which fast algorithms are available in the literature [9]).
Unrolling the recurrence is straightforward as soon as the leading coefficient br (i) does not vanish. In
fact, when br (i)= 0, the value of gi+r cannot be deduced from the previous ones. Unfortunately, it turns
out that br (i) does sometimes vanish in our setting.

We tackle this issue by lifting everything over W and performing all computations over this ring.
Divisions by p then become possible but induce losses of precision. We then need to control the p-adic
valuation of the denominators, that are the p-adic valuations of the br (i)’s. We cannot expect to have
a good control on them in full generality; even worse, we can build examples where br (i) vanishes in
W for some i . There exists nevertheless a good situation — the so-called ordinary case — where we can
say a lot about the br (i)’s. With this extra input, we are able to lead our strategy to its end.

The general case reduces to the ordinary one using a change of origin, i.e., replacing t by u+α for
some α ∈ k. This change of origin does not seem to be harmless a priori. Indeed the Taylor expansion
of g around α (the one we shall compute) has in general nothing to do with the Taylor expansion of g
around 0 (the one we are interested in). The sections are nevertheless closely related (see Proposition 4.3).
This “miracle” is quite similar to what we have already observed in Proposition 2.5 and again can be
thought of as an avatar of the Cartier operator.

4A. From algebraic equations to recurrences. We consider a bivariate polynomial P(t, y) ∈ k[t, y]
with degt P < h and degy P < d. We fix an integer r in the range [0, p−1]. Our aim is to compute
Sr (P(t, f )/(Ey(t, f ))) at precision O(t2dh). Set g = P(t, f )/(Ey(t, f )) and write g =

∑
∞

i=0 gi t i. By
definition Sr (g)=

∑
∞

j=0 g1/p
r+pj t

j, so we have to compute the coefficients gr+pj for j < 2dh.
We let L be the leading coefficient of E(t, y) and R be the resultant of E and Ey . To begin with, we

make the following assumption (which will be relaxed in Section 4C):

(H1) Both L and R have t-adic valuation 0.

As explained above, we now lift the situation over W. We choose a polynomial Ê ∈ W [t, f ] of
bidegree (h, d) lifting E . We define Êt = ∂ Ê/∂t , Êy = ∂ Ê/∂y. The assumption (H1) implies that the
series f lifts uniquely to a series f̂ ∈W [[t]] such that Ê(t, f̂ )= 0. We define L̂ as the leading coefficient
of Ê(t, y) and set R̂ = Res(Ê, Êy). We introduce the ring WK =W [t, (L̂ R̂)−1

]. By (H1), WK embeds
canonically into W [[t]]. We pick a polynomial P̂ ∈W [t, y] lifting P such that degt P̂ < h and degy P̂ < d .
We set ĝ = P̂(t, f̂ ).
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We now compute a linear differential equation satisfied by ĝ. For this, we observe that the derivation
∂/∂t : W [[t]] → W [[t]] stabilizes the subring WL = WK [ f̂ ]. Indeed from the relation Ê(t, f̂ ) = 0, we
deduce that ∂ f̂ /∂t = −Êt(t, f̂ )/(Êy(t, f̂ )). Thus ∂ f̂ /∂t ∈ WL because Êy(t, f̂ ) is invertible in WL

thanks to (H1). Using additivity and the Leibniz relation, we finally deduce that ∂/∂t takes WL to itself.
In particular, all the successive derivatives of ĝ lie in WL . On the other hand, we notice that WL is free
of rank d over WK with basis (1, f̂ , . . . , f̂ d−1). Let M be the d × d matrix whose j-th column (for
0≤ j < d) contains the coordinates of ∂ j ĝ/∂t j with respect to the above basis. Similarly let C be the
column vector whose entries are the coordinates of ∂d ĝ/∂td . Let 1d = det M. We solve the system
M X = C using Cramer’s formulae and thus find a linear differential equation of the form:

1d
∂d ĝ
∂td +1d−1

∂d−1ĝ
∂td−1 + · · ·+11

∂ ĝ
∂t
+10ĝ = 0,

where the other 1i ’s are defined as determinants as well. In particular, they all lie in WK . Multiplying
by the appropriate power of L̂ R̂, we end up with a differential equation of the form:

âd
∂d ĝ
∂td + âd−1

∂d−1ĝ
∂td−1 + · · ·+ â1

∂ ĝ
∂t
+ â0ĝ = 0, (11)

where the âi ’s are polynomials in t . We can even be more precise. Indeed, following the above con-
structions, we find that all entries of M and C are rational functions whose degrees (of numerators
and denominators) stay within poly(dh). We then deduce that the degrees of the 1̂i ’s and âi ’s are in
poly(dh) as well. Furthermore, they can be computed for a cost of poly(dh) operations in k, that is
poly(dh)Õ(s log p) bit operations (recall that s denotes the degree of k over Fp)

We write ĝ =
∑
∞

i=0 g̃i t i/i !. The differential equation (11) translates to a recurrence relation on the
g̃i ’s of the form:

b̃0(n)g̃n + b̃1(n)g̃n−1+ b̃2(n)g̃n−2+ · · ·+ b̃r (n)g̃n−r = 0, for all n ≥ r, (12)

where the b̃i ’s are polynomials in n over W whose degrees are in poly(dh). Moreover r is at most
d +maxi deg âi . In particular, r ∈ poly(dh). Finally it is easy to write down explicitly b̃0: it is the
constant polynomial with value âd(0).

4B. The ordinary case. In order to take advantage of (12), we make the following extra assumption,
corresponding to the so-called ordinary case:

(H2) The value âd(0) does not vanish modulo p.

Under (H2), b̃0(n)= âd(0) is invertible in W and there is no obstruction to unrolling the recurrence (12).
Let us be more precise. We recall that we want to compute the values of gr+pj for j up to 2dh. Clearly
gn is the reduction modulo p of g̃n/n!. In order to get gr+pj , we need to compute g̃r+pj modulo pv+1

where v is the p-adic valuation of (r + 2dhp)!. Under our assumption that p is large enough compared
to d and h, we get v = 2dh. We will then work over the finite ring W ′ =W/p2dh+1W.
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We first compute the r first coefficients of f̂ modulo p2dh+1 by solving the equation Ê(t, f̂ ) = 0
(using a Newton iteration for example). Since r ∈ poly(dh), this computation can be achieved for a cost
of poly(dh) operations in W ′, that is, poly(dh)Õ(s log p) bit operations. We then build the companion
matrix:

M(n)=


1

. . .

1

−b̃r (n)
âd(0)

−b̃r−1(n)
âd(0)

· · ·
−b̃1(n)
âd(0)

 ∈ (W ′[n])r×r.

Obviously, (
g̃n−r+1 g̃n−r+2 · · · g̃n

)T
= M(n) ·M(n−1) · · ·M(r) ·

(
g̃0 g̃1 · · · g̃r−1

)T
,

and computing g̃n reduces to evaluating the matrix factorial M(n) ·M(n−1) · · ·M(r). Using [9], the latter
can be computed within poly(dh)Õ(

√
n) operations in W ′, that is, poly(dh)Õ(

√
n ·s log p) bit operations.

All in all, we find that the gr+pj ’s (0≤ j < 2dh) can all be computed for a cost of poly(dh)Õ(s
√

p) bit
operations.

Plugging this input into Algorithm A, we get an algorithm of bit complexity poly(dh)Õ(s
√

p) log N.
Theorem 4.1 is thus proved under the extra assumptions (H1) and (H2).

4C. Reduction to the ordinary case. We finally explain how (H1) and (H2) can be relaxed. The rough
idea is to translate the origin at some point where these two hypotheses hold simultaneously.

The case of complete vanishing. Before proceeding, we need to deal with the case where the whole
polynomial âd vanishes modulo p. This case is actually very special; this is shown by the next lemma,
whose proof relies on the fact that for a generic g, the minimal-order (homogeneous) linear differential
equation over k(t) satisfied by g has order exactly d [8].

Lemma 4.2. For a generic g ∈ L = k(t)[y]/E(t, y), the reduction of âd modulo p does not vanish.

We say that an element g ∈ L is good if the corresponding âd does not vanish modulo p. Lemma 4.2
ensures that goodness holds generically. It then holds with high probability since we have assumed that
the ground field k has a large cardinality. Consequently, even if we were unlucky and g was not good,
we could produce with high probability a decomposition g = g1+ g2 where g1 and g2 are both good (just
by sampling g1 at random). Since the section Sr is additive, we can recover Sr (g) as Sr (g1)+ Sr (g2).

For this reason, in what follows we will assume safely that g is good.

Change of origin. Let α̂ ∈W be such that L̂(α̂) 6≡ 0 (mod p), R̂(α̂) 6≡ 0 (mod p), âd(α̂) 6≡ 0 (mod p).
Such an element exists (since k is assumed to be large) and can be found for a cost of poly(dh) operations
in k (e.g., by enumerating its elements).

We denote by α ∈ k the reduction of α̂ modulo p and assume that α 6= 0 (otherwise, we are in the
ordinary case). We perform the change of variable τα : t 7→ u+α. Note that τα induces isomorphisms
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k(t)→ k(u) and k(t)[y]/E(t, y)→ k(u)[y]/E(u−α, y). Furthermore, the polynomial E(α, y)= 0 has d
simple roots in an algebraic closure of k. Let fα,0 be one of them. By construction, fα,0 lies in a finite
extension ` of k of degree at most d. Moreover, by Hensel’s Lemma, fα,0 lifts uniquely to a solution,

fα = fα,0+ fα,1u+ · · ·+ fα,i ui
+ · · · ∈ `[[u]],

to the equation E(u−α, y)= 0. We emphasize that the morphism k(t)[y]/E(t, y)→ k(u)[y]/E(u−α, y)
does not extend to a mapping k((t))→ `((u)) sending f to fα. The previous discussion is summarized
in the following diagram:

k(t) k(u)

k(t)[y]
E(t, y)

k(u)[y]
E(u−α, y)

k((t)) `((u))

τα

τα

Sr Sr,u

Here Sr and Sr,u refer to the section operators defined in the usual way. We observe that they stabilize
the subfields k(t)[y]/(E(t, y)) and k(u)[y]/(E(u+α, y)), respectively, since they can alternatively be
defined by the relations

F−1
=

p−1∑
r=0

tr/p Sr over
k(t)[y]
E(t, y)

,

F−1
=

p−1∑
r=0

ur/p Sr,u over
k(u)[y]

E(u−α, y)
,

(13)

where F is the Frobenius map (see also (4)).

Proposition 4.3. The commutation Sp−1,u ◦ τα = τα ◦ Sp−1 holds over k(t)[y]/(E(t, y)).

Proof. Clearly τα commutes with the Frobenius because it is a ring homomorphism. From the relations
in (13), we then derive

∑p−1
r=0 ur/p Sr,u ◦ τα =

∑p−1
r=0 (u+α)

r/p τα ◦ Sr . Identifying the coefficients in
u(p−1)/p, we get the announced result. �

We emphasize that the other section operators Sr,? (with r < p−1) do not commute with τα: the above
phenomenon is specific to the index p−1. However, we can relate Sr and Sp−1,u as follows.

Corollary 4.4. For all g ∈ k(t)[y]/(E(t, y)), we have Sr (g)= τ−1
α ◦ Sp−1,u ◦ τα(t p−1−r g).

Proof. This follows from Proposition 4.3 and from Sr (g)= Sp−1(t p−1−r g). �

A modified recurrence. In order to use Corollary 4.4, we need to check that τα(t p−1−r g) fits the ordinary
case. Recall the differential equation satisfied by ĝ,

âd
∂d ĝ
∂td + âd−1

∂d−1ĝ
∂td−1 + · · ·+ â1

∂ ĝ
∂t
+ â0ĝ = 0.
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We set r ′ = p− 1− r and Ĝ = tr ′ ĝ. Applying Leibniz’s formula to ĝ = t−r ′ Ĝ, we get

∂ j ĝ
∂t j =

j∑
i=0

(−1)i
(

j
i

)
r ′(r ′+ 1) · · · (r ′+ i − 1)t−r ′−i ∂

j Ĝ
∂t j−i ,

from which we derive the following differential equation satisfied by Ĝ:∑
0≤i≤ j≤d

(−1)i â j

(
j
i

)
r ′(r ′+ 1) · · · (r ′+ i − 1)t−r ′−i ∂

j−i Ĝ
∂t j−i .

Reorganizing the terms and multiplying by tr ′+d, we end up with

d∑
j=0

d− j∑
i=0

(−1)i âi+ j

(
i+ j

i

)
r ′(r ′+ 1) · · · (r ′+ i − 1)td−i ∂

j Ĝ
∂t j . (14)

Set WL ,u =W [u, y]/Ê(u+α, y) and define the ring homomorphism τα̂ :WL→WL ,u , t 7→ u+α̂, y 7→ y.
Clearly τα̂ lifts τα. Applying τα̂ to (14) and noticing that ∂/∂t = ∂/∂u, we obtain

d∑
j=0

d− j∑
i=0

(−1)i τ̂α̂(ai+ j )
(

i+ j
i

)
r ′(r ′+ 1) · · · (r ′+ i − 1)(u+α̂)d−i ∂

jτα̂(Ĝ)
∂u j .

Conclusion. The leading term of the latter differential equation (obtained only with j = d and i = 0) is
τα̂(âd) (u+α̂)d. Its value at u = 0 is then âd(α̂) α̂

d, which is not congruent to 0 modulo p by assumption.
Moreover the other coefficients are polynomials in u whose degrees stay within poly(dh). Therefore,
we can apply the techniques of Section 4B and compute Sp−1,u(ταG) at precision O(u2dh) for a cost
of poly(dh)Õ(s

√
p) bit operations. As explained in Section 3B, we can reconstruct Sp−1,u(ταG) as an

element of k[u, y]/E(u+α, y) for a cost of poly(dh) operations in k using Hermite–Padé approximations.
Thanks to Corollary 4.4, it now just remains to apply τ−1

α to get Sr (g). This last operation can be
performed for a cost of poly(dh) operations in k as well. All in all, we are able to compute Sr (g) for a
total bit complexity of poly(dh)Õ(s

√
p). Repeating this process log N times, we obtain the complexity

announced in Theorem 4.1.
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