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We give two algorithms to compute layers of the anticyclotomic Z3-extension of an imaginary quadratic
field. The first is based on complex multiplication techniques for nonmaximal orders; the second is based
on Kummer theory. As an illustration of our results, we use the mirroring principle to derive results on
the structure of class groups of nonmaximal orders.

1. Introduction

Let K be an imaginary quadratic field, with fixed algebraic closure K , and for a fixed odd prime p,
let K p

⊂ K be the compositum of all Zp-extensions. The Galois group of K p/K is isomorphic to Z2
p,

and there are two “natural” Zp-extensions of K inside K p. The cyclotomic Zp-extension K cycl
p is the

p-part of the extension
⋃

n≥1 K (ζpn ) ⊂ K . The extension K cycl
p /Q is procyclic. The anticyclotomic

Zp-extension K anti
p is implicitly defined by the property that K anti

p ⊂ K is the unique Zp-extension of K
that is prodihedral over Q, meaning that we have

Gal(K anti
p /Q)∼= Zp oZ/2Z,

where the generator of Gal(K/Q)∼= Z/2Z acts by inversion on Zp.
The fields K cycl

p and K anti
p are linearly disjoint over K , and their compositum equals K p. Since both

have Galois group Zp, both extensions are unramified outside of p by [16, Proposition 13.2]. This article
focuses on explicitly computing layers of K anti

3 for the case where 3 is ramified in K . By computing, we
mean that on input of a positive integer k, we want to compute an irreducible polynomial f ∈ K [x] of
degree 3k with

Kk = K [x]/( f (x))⊂ K anti
3 .

The Galois group Gal(Kk/K ) is cyclic of order 3k .
Although we believe that most of our techniques can be generalized to arbitrary p and arbitrary split-

ting behavior of p, our restrictions to p = 3 and to the case that 3 ramifies in K allow us to highlight
the technical considerations that arise in those cases. Furthermore, we can use the mirror principle (see
Section 5) to obtain a criterion for when the 3-parts of certain class groups are cyclic.
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The main result of this paper is that we have explicit algorithms to compute Kk . We use complex
multiplication (CM) techniques in Sections 2 and 3, and Kummer techniques in Section 6. The CM
technique works for any K ; the Kummer technique is more restricted.

Previous attempts to compute initial layers of anticyclotomic Zp-extensions of an imaginary quadratic
field include [3; 6; 11; 15]. These papers use a mix of class field theory and decomposition laws of primes.

Perhaps not surprisingly, the run times of our algorithms are inherently exponential. Not only are the
outputs of the algorithms polynomials of degree 3k , but the CM approach computes, as intermediate step,
a polynomial whose degree and logarithmic height of its coefficients are both Õ(|disc(K )|1/23k). For the
Kummer approach, we need a polynomial of degree O(3k) over an auxiliary extension of degree O(3k);
furthermore, the coefficients are themselves symmetric expressions in O(3k

|disc(K )|) terms.
Both approaches have their merits. Indeed, whereas the CM method requires the full class group of K

as intermediate step, the Kummer method only looks at the prime 3. If the class group is large, then the
Kummer method is better for small n. However, the Kummer method requires working over auxiliary
extensions and this makes the method slower for larger n.

We detail various techniques we can use to reduce the size of the generating polynomial for Kk in
Section 4. We illustrate our techniques with a variety of examples. All examples were done using the
computer algebra package Magma [2] and the CM software package [9].

2. Anticyclotomic extension and ring class fields

Throughout this section, let K = Q(
√

D) be a fixed imaginary quadratic field of discriminant D in
which 3 is ramified. We let O be the maximal order of K . For any integer k ≥ 1, the k-th layer Kk of the
anticyclotomic Z3-extension of K is a generalized dihedral extension of Q. Hence, by Bruckner’s result
(see [5] or [8, Theorem 9.18]), we know that Kk is contained in a ring class field for K . Since Kk is
unramified outside 3, it follows that Kk is contained in a ring class field for an order ON = Z+ 3N O of
index 3N for some N ≥ 1.

In order to bound the exponent, we analyze ring class fields. We let HN be the ring class field for the
order ON . With this notation, H0 is the Hilbert class field of K . The extension HN/K is abelian and
unramified outside 3. The Artin map gives an isomorphism Pic(ON )−→

∼ Gal(HN/K ), with Pic(ON ) the
Picard group of ON . We have a natural exact sequence

1→ (O/3N O)∗/ Im(O∗)(Z/3N Z)∗→ Pic(ON )→ Pic(O)→ 1,

where the last map is given by [I ] 7→ [I · O]. The kernel of the map Pic(ON )→ Pic(O) is naturally
isomorphic to Gal(HN/H0); the following lemma gives the structure of this group.

Lemma 2.1. With the notation from the previous paragraph, we have

Gal(HN/H0)∼=


Z/3N−1Z if D =−3,
Z/3Z×Z/3N−1Z if D 6= −3 and D ≡−3 mod 9,
Z/3N Z if D ≡ 3 mod 9

for N ≥ 1.
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Proof. Let p | (3) be the ideal of norm 3 in O. We have (O/p2N )∗ ∼= (A/p2N )∗, where A denotes the
completion of O at p. The ring A is a tamely ramified quadratic extension of Z3, and it well known that
there are only two such rings up to isomorphism. For D ≡−3 mod 9, we have A = Z3[

√
−3] = Z3[ζ3],

and A = Z3[
√

3] for D ≡ 3 mod 9. We analyze both cases separately.
The unit group of A = Z3[ζ3] equals

A∗ = 〈−ζ3〉× (1+ p2),

and 1+ p2 is torsion free. Hence, 1+ p2 is a free Z3-module of rank 2. We get

(A/3N A)∗ ∼= 〈−ζ3〉× (1+ p2)/(1+ p2N )∼= Z/6Z× (Z/3N−1Z)2,

and hence

(A/3N A)∗/(Z/3N Z)∗ ∼= Z/3Z×Z/3N−1Z.

For A = Z3[
√

3], we have

A∗ = 〈−1〉× (1+ p),

and since ζ3 is not contained in A, the Z3-module 1+ p is torsion free and hence a free rank 2 module.
By iteratively applying the “cubing isomorphism” 1+ pk

−→∼ 1+ pk+2 we see that

(A/3N A)∗ ∼= 〈−1〉× (1+ p)/(1+ p2N )∼= Z/2Z×Z/3N Z×Z/3N−1Z

holds. Since the module 1+ p is generated over Z3 by 1+ 3 and 1+
√

3, we get

(A/3N A)∗/(Z/3N Z)∗ ∼= Z/3N Z.

We have O∗ = {±1} for D <−3, and the only case where the local cube root of unity exists globally
is D =−3. Quotienting by Im(O∗) gives the lemma. �

For D ≡−3 mod 9 with D <−3, we let αN ∈ O be an element that is congruent to ζ3 ∈ A modulo 3N .
(As in the proof of Lemma 2.1, A denotes the completion of O at p.) This element αN determines an
Artin symbol

(
αN

HN /H0

)
∈ Gal(HN/H0). We let H ′N be the fixed field of the order 3 subgroup

〈(
αN

HN /H0

)〉
and put

H∞ =
{⋃

N≥1 H ′N/H0 for D ≡−3 mod 9 and D 6= −3,⋃
N≥1 HN/H0 otherwise.

Theorem 2.2. Let Kk be the k-th layer of the anticyclotomic Z3-extension of K . Then Kk is contained
in the ring class field for the order Ok+1 = Z+ 3k+1O of index 3k+1.

Proof. It is clear that HN/Q is generalized dihedral. From Lemma 2.1 and the relation

ON ⊆ OM =⇒ HM ⊆ HN

from class field theory, also known as the Anordnungssatz for ring class fields, we see that

Gal(H∞/H0)∼= Z3.

An inspection of the sizes in Lemma 2.1 now gives that the compositum Kk H0 is contained in Hk+1. The
theorem follows. �
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The theory of complex multiplication provides us with a means of explicitly computing the extension
HN/K . This theory is usually only developed for maximal orders, but it generalizes to nonmaximal
orders without too much difficulty. Indeed, by [8, Theorem 11.1] we know that

HN = K [x]/( fN (x)),

with fN ∈ Z[x] the minimal polynomial of the j -invariant of the complex elliptic curve C/ON . There are
various algorithms to compute fN ; we refer to [1] and the references therein for an overview. However,
since the proven upper bound Õ(|disc(ON )

2
|) (see, e.g., [1, §5]) on the bit size of fN is believed to

be the actual size of fN , these algorithms are inherently exponential. We will give various practical
improvements in Section 4 to this basic approach.

3. Selecting the right subfield

As before, let K be a fixed imaginary quadratic field in which 3 is ramified. We have seen that the k-th
layer Kk of the anticyclotomic Z3-extension of K is contained in the ring class field Hk+1. In this section
we explain a method to compute Kk as a subfield of Hk+1. To keep the sizes of the generating polyno-
mials small, the examples given in this section already use the algorithmic improvements explained in
Section 4. The online supplement at http://msp.org/obs/2019/2-1/obs-v2-n1-x09-Examples.txt provides
Magma code to compute the examples.

We first assume that K has trivial 3-Hilbert class field. In this case, we have

[Hk : Kk] = # Pic(O) for D ≡ 3 mod 9

and Kk is the unique subfield of Hk that has degree 3k over K . For K = Q(
√
−3), Kk is the unique

subfield of degree 3k of Hk+1. For other D ≡ −3 mod 9, we proceed as follows. As in the discussion
preceding Theorem 2.2, we let αk+1 ∈ O be locally congruent to ζ3 modulo 3k+1. The fixed field H ′k+1

of the automorphism
(

αk+1
Hk+1/H0

)
has a unique subfield of degree 3k over K ; this field is the field Kk that

we are after.

Example 3.1. The field K = Q(
√
−21) has class group isomorphic to (Z/2Z)2. The index 4 subfield

of the ring class field H1 is generated by a root of x3
− 6x − 12, but it is not part of the anticyclotomic

Z3-extension.
The index 4 subfield K̃1 of the ring class field H2 is obtained by adjoining a root of

x9
+ 12x6

+ 81x5
+ 144x4

+ 30x3
− 324x2

− 504x − 336

to K . The Galois group K̃1/K is isomorphic to (Z/3Z)2. To obtain the first layer, we compute that
α2 = 1 +

√
−21 is locally congruent to ζ3 modulo 9. We take the fixed field of the Artin symbol

corresponding to α2. We find that K1 is generated by a root of

x3
+ 9x − 12

over K .

http://msp.org/obs/2019/2-1/obs-v2-n1-x09-Examples.txt
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For the general case, we let H0,3 be the 3-Hilbert class field of K . The extension H∞/H0 naturally
defines a Z3-extension H∞,3/H0,3. The sequence

1→ Gal(H∞,3/H0,3)→ Gal(H∞,3/K )→ Gal(H0,3/K )→ 1 (1)

need not split in general. If it does split, then H0,3 is not contained in the anticyclotomic Z3-extension and
finding the layers proceeds as before. Determining whether the sequence splits is often easy. In Section 5,
we will give a simple criterion (Theorem 5.1) under which H0,3 is not contained in the anticyclotomic Z3-
extension. Furthermore, the following examples show that it is computationally very easy to determine
if H0,3 lies in the anticyclotomic Z3-extension or not.

Example 3.2. Fix K =Q(
√
−87). The class group of O is cyclic of order 6. The order O1 of index 3 has

cyclic Picard group of order 18. We may replace H∞,3 with H1,3 in sequence (1) to obtain the nonsplit
sequence

1→ Z/3Z→ Z/9Z→ Z/3Z→ 1.

Hence, the 3-part of the Hilbert class field of K is the first layer of the anticyclotomic Z3-extension.
Explicitly, we have

K1 = K [x]/(x3
− x2
+ 2x + 1).

The index 2 subfield of the ring class field for O1 gives the second layer of the anticyclotomic Z3 extension.
It is generated by a root of

x9
+ 3x8

+ 6x7
+ 14x6

+ 9x5
+ 21x4

+ 6x3
+ 12x2

+ 3.

For K =Q(
√
−771) we obtain the split sequence

1→ Z/3Z→ Z/3Z×Z/3Z→ Z/3Z→ 1

and the Hilbert class field is not contained in the anticyclotomic Z3-extension.

If the 3-part of Pic(O) is different from Z/3Z, the situation is slightly more involved. In the remainder
of this section we explain how to split the 3-part Pic(O)3 into a part “inside” and a part “outside” of the
anticyclotomic Z3-extension.

We let Smax ⊆ Pic(O)3 be the largest subgroup (with respect to inclusion) for which the sequence

1→ Gal(H∞,3/H0,3)→ Gal(H∞,3/H Smax
0,3 )→ Smax→ 1

splits. Here, H Smax
0,3 is the fixed field of H0,3 for Smax. This fixed field is the largest subfield of H0,3 that

is contained in the anticyclotomic Z3-extension.
For ease of notation, we restrict to the case D ≡ 3 mod 9 so H∞,3 is the inverse limit of the 3-parts

Pic(ON )3 of the ring class field for ON . Let 〈p〉 ⊂ Pic(O)3 be a subgroup of 3-power order with p coprime
to 3. The ideal p∩ON is an invertible ON -ideal whose class in Pic(ON )3 maps to the class of p in Pic(O)3.
The other preimages are (p∩ON )I , with I ranging over the kernel of Pic(ON )3→ Pic(O)3. We compute
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the order inside Pic(ON )3 for each of the preimages of p, and check if one of those equals the order of
[p] ∈ Pic(O)3. If it does, the sequence

1→ Gal(HN ,3/H0,3)→ Gal(HN ,3/H 〈p〉0,3)→ 〈p〉 → 1

splits; otherwise it does not.

Example 3.3. Fix K =Q(
√
−6789). We have Pic(O)∼= Z/2Z×Z/6Z×Z/6Z and Pic(O1)∼= Z/2Z×

Z/6Z×Z/18Z. The kernel of the map Pic(O1)→ Pic(O) is generated by the class of the O1-ideal

I = O1(9, 3
√
−6789− 3)

of norm 9. There are four subgroups of Pic(O) of index 3; elements of order 6 in these subgroups are
ideals of norm 5, 7, 11, and 97, respectively. The ideal p5 has order 6 in Pic(O), but I k(p ∩ O1) has
order 18 for k = 0, 1, 2 and likewise for p7 and p97. On the other hand, the ideal (p11 ∩O1) has order 6.

The fixed field of H0 under the subgroup of Pic(O) generated by p11 (of order 6), p3
5 (of order 2), and

p2 = O1(2, 3
√
−6789+ 1) (of order 2) equals the first layer K1 of the anticyclotomic Z3-extension of K .

To find a generating polynomial, we compute the maximal real subfield of H0 using CM theory and
compute its 4 degree 3 subfields L1, . . . , L4. We now check whether the Artin symbol corresponding to
p11 acts trivially on K L i/K . As expected, it does so for a unique field. In the end, we find that a root of

x3
− x2
+ 8x + 124

generates K1/K .

4. Practical improvements

The techniques described yield generating polynomials that are much larger than necessary. The reason
for this is that the j-function is not the right function to use from a practical perspective to compute a
ring class field. For every given discriminant, a suitably chosen class invariant can be used instead. The
use of class invariants dates back to Weber’s days, and modern treatments rely on Shimura reciprocity.
We refer to [14; 12] for good descriptions and give the main result that we need.

Theorem 4.1. Let D < 0 be a discriminant, and choose a quadratic generator τ for the imaginary order
of discriminant D. Then there exists a modular function f of level n > 1 such that f (τ ) generates the ring
class field; furthermore, the minimal polynomial of f (τ ) over K =Q(

√
D) can be explicitly computed

in time Õ(|D|).

Proof. We refer to [12, Theorem 4; 10, Corollary 3.1] for two classes of functions. �

The size of the generating polynomial for the ring class field depends on the choice of the function f
in the theorem. To compute the “reduction factor”, we let 9( j, f ) = 0 be the irreducible polynomial
relation between j and f and put

r( f )=
deg f (9( f, j))

deg j (9( f, j))
∈Q>0.
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As in [4, §4], we expect the logarithmic height of the coefficients of the minimal polynomial of f (τ ) to
be a factor r( f ) smaller than the corresponding coefficients for j (τ ). By [4, Theorem 4.1], we have

r( f )≤ 800/7≈ 114.28.

If 2 splits in O, then the cube of the Weber-f can be used. This function satisfies (f24
− 16)3− j f24

= 0
and has reduction factor 72/3= 24. If 2 is inert, we can use a suitably chosen double η-quotient. The
exact reduction factor depends on the choice of the η-quotient; we refer to [10] for details. We can use
the CM software package [9] by Enge to compute the necessary ring class fields. This package can select
the modular function, so that only the discriminant D is required.

Example 4.2. Let K =Q(
√
−3). To obtain the first nontrivial layer of the anticyclotomic Z3-extension,

we compute the ring class field for the order O2. If we use the j-function, we obtain a cubic polynomial
with constant term

245
· 3 · 59

· 113
· 233.

In this case, a suitably chosen double η-quotient yields a class invariant. Using the package [9], we
obtain the polynomial

x3
− 12x2

− 6x − 1.

We stress that by class invariants, we can only gain a constant factor in the size of the coefficients,
and that our method is inherently exponential in log|D|. To push the range of examples further, we
can employ lattice basis reduction. Indeed, if we have computed a polynomial f (x) that generates the
ring class field, we can view the order defined by f as a lattice in Euclidean space. If the degree and
the coefficients of f are not too big, we can compute a short basis for this lattice and obtain a “better”
polynomial.

Example 4.3. For K =Q(
√
−3), the polynomial f ∈ Z[x] for O3 given by Enge’s program has coeffi-

cients between −24930 and 29559. We view Z[x]/( f ) as a lattice and after lattice basis reduction, we
obtain the polynomial

x9
+ 9x6

+ 27x3
+ 3.

Using the same technique, we find the polynomial

x27
+ 27x24

+ 324x21
+ 1980x18

+ 5022x15
− 8262x12

− 30348x9
+ 304236x6

+ 1365417x3
+ 3

for the third layer of the anticyclotomic Z3-extension.

5. Mirror principle

In this section we give an application of the mirror principle that relates the class groups of the imaginary
quadratic field Q(

√
D) and the real quadratic field Q(

√
−D/3). This allows us to prove the following

theorem that was alluded to in Example 3.2.
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Theorem 5.1. Let D ≡ 3 mod 9 be a negative discriminant, and assume that 3 does not divide the class
number of the real quadratic field Q(

√
−D/3). Then the 3-Hilbert class field of K =Q(

√
D) is contained

in the anticyclotomic Z3-extension of K .

The proof of the theorem relies on the following lemma. The proof of this lemma is very similar to
the proof of Scholz’s mirror theorem [13].

Lemma 5.2. Let D ≡ 3 mod 9 be a negative discriminant, and assume that 3 does not divide the class
number of the real quadratic field Q(

√
−D/3). Then, there exists exactly one degree 3 extension of

Q(
√

D) that is unramified outside 3 and dihedral over Q.

Proof. Let K =Q(
√

D) and let L/K be a degree 3 extension that is unramified outside 3 and dihedral
over Q. The field L fits inside

L(ζ3)

L V = K (ζ3)

K Q(ζ3) F =Q(
√
−D/3)

Q

τ

τ

ϕ

σ

σ ϕ

This diagram also defines automorphisms τ , σ , and ϕ. By abuse of notation, τ denotes both a generator
of Gal(L/K ) and its unique lift to Gal(L(ζ3)/V ) and likewise for σ and ϕ. Because L(ζ3)/V is a
Kummer extension, we can write L(ζ3)= V ( 3

√
α) with α ∈ V .

Any such L(ζ3) will have ϕ acting trivially on the corresponding τ as well as have σ acting as −1 on τ .
Our proof proceeds by showing that both the field of definition and the norm of α are very restricted.

First we show that α can be taken to lie in the real quadratic field F = Q(
√
−D/3). The Kummer

pairing
〈α〉/〈α3

〉× 〈τ 〉 → µ3

is Galois equivariant, and since σ acts on ζ3 as −1 and on τ as −1, we see that σ acts as +1 on
α mod (V ∗)3. We deduce that σ(α)= α ·β3 for some β ∈ V ∗, and hence

NV/F (α)= ασ(α)≡ α
2 mod cubes.

Since α and α2 generate the same extension, this shows that we may assume that α lies in F .
Since the extension L(ζ3)/V is unramified outside 3, we have (α) = I J 3 for ideals I, J with I a

product of primes lying over (3)⊂ Z. The assumption that 3 does not divide the class number of F now
implies that we may assume that α is 3-unit. Furthermore, the assumption D ≡ 3 mod 9 implies that 3 is
inert in Q(

√
−D/3). We get that α is a unit times 3a for some a. Since ϕ(α) is congruent to α−1 modulo

cubes, we must have a ≡ 0 mod 3. Therefore, we may take α =±ε, with ε a fundamental unit of F . �
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Proof of Theorem 5.1. Since K has a unique cubic extension that is unramified outside 3 and dihedral
over Q, the class group of O has 3-rank at most 1. We write Pic(O)3 = Z/3nZ for some n ≥ 0. We need
to prove that the 3-Hilbert class field H3(K ) coincides with the n-th level Kn .

Suppose that we have H3(K ) ∩ Kn = Kk for some k < n. The Galois group of the compositum
H3(K )Kn over K then has 3-rank 2. This means that there is more than one cubic extension of K
contained in H3(K )Kn . All these extensions are unramified outside 3 and dihedral over Q however,
which is a contradiction. �

Lemma 5.2 allows us to deduce a simple sufficient criterion for when the 3-parts Pic(ON )3 are cyclic.

Theorem 5.3. Assume that 3 does not divide the class number of the real quadratic field Q(
√
−D/3).

For D ≡ 3 mod 9, the 3-part Pic(ON )3 is cyclic for all N ≥ 0.

Proof. By Theorem 5.1, the sequence

1→ (O/3N O)∗/ Im(O∗)(Z/3N Z)∗→ Pic(ON )3→ Pic(O)3→ 1

does not split for any N . Since the first and last terms are cyclic, this means that the middle term is
cyclic. �

6. Generators via Kummer theory

In computational class field theory, the “standard” way to compute an abelian extension of prescribed
conductor of a number field K depends on whether K has the appropriate roots of unity. If it does, we
can use Kummer theory. If it does not, we adjoin the right root of unity ζn to K and compute the right
abelian extension of K (ζn) first. Afterwards, we “descend” down to K . We refer to [7] for a detailed
description.

If K is imaginary quadratic, we can use complex multiplication techniques instead and bypass the
general method. This is the technique we used in Section 2. However, we can make the Kummer theory
approach very explicit in our setting. As before, K =Q(

√
D) is an imaginary quadratic field in which

3 ramifies. Throughout this section, we assume 3 does not divide the class number of the real quadratic
field F = Q(

√
−D/3); we also assume that 3 remains inert in F . This last restriction is essential in

Lemma 6.4; the split case appears to be much harder.

Theorem 6.1. Assume that 3 ramifies in K = Q(
√

D) and that 3 is inert in F = Q(
√
−D/3). If ,

furthermore, 3 does not divide the class number of F , then the expression for κn given in Definition 6.7
gives a Kummer generator for Kn(ζ3n )/K (ζ3n ) for n ≥ 1.

Once κn is computed, we can use the technique from [7, pp. 514–515] to descend from Kn(ζ3n )/K (ζ3n )

down to Kn/K .
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The following diagram defines the various fields we will work in and explains the inclusion relations
between them:

Kn(ζ3n ) L =Q(ζ3nd)

K (ζ3n )

Kn Fn = K (ζ3n )+ Q(ζ3n )

Tn =Q(ζ3n )+

K =Q(
√

D) F =Q(
√

d)

Q

〈σc〉

〈σc〉

In this diagram, the + notation indicates the maximal real subfield. We write d =−D/3, so that F =Q

for D = −3 and F is real quadratic otherwise. If F is quadratic, we let χ be the associated quadratic
character of conductor d .

All the base fields we consider are subfields of L =Q(ζ3nd); we identify Gal(L/Q) with (Z/3ndZ)∗

and for an integer b with gcd(b, 3d)= 1, we let σb be the automorphism satisfying σb(ζ3nd)= ζ
b
3nd . For

d 6= 1, we fix an integer c ≡−1 mod 3n with χ(c)=−1; we identify Gal(Fn/Tn)∼= Gal(F/Q)∼= 〈σc〉

in this case. (For d = 1, all statements about σc play no role and should be ignored.)

Lemma 6.2. The class number of Fn is coprime to 3.

Proof. By assumption, 3 remains inert in F/Q. As the extension Fn/F has only one ramified prime and
is totally ramified, the lemma follows from [16, Theorem 10.4]. �

The techniques of the proof of Lemma 5.2 show that we may assume that the desired element κn lies
in Fn . Furthermore, since the class number of Fn is coprime to 3, this proof also shows that κn is a 3-unit
in Fn .

Furthermore, we claim that we may assume that σc inverts κn . To see this, note that K (ζ3nd)/K is
disjoint from K∞/K , and σc therefore acts trivially on Gal(Kn(ζ3n )/K (ζ3n )). It also acts by inversion
on ζ3n . Therefore, the Kummer pairing tells us that σc acts by inversion on κn modulo 3n-th powers;
i.e., we have κσc

n = κ
−1
n γ 3n

for some γ . But then κ1−σc
n = κ2

nγ
−3n

generates the same extension and is
inverted by σc since σ 2

c = 1 on K (ζ3n ).
Let En be the group of 3-units of Fn . Let E−n denote the subgroup consisting of elements that are

inverted by σc, and E+n denote those that are fixed (and hence lie in Tn). We compute a valid κn as a
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product of suitably chosen 3-units in E−n . For n ≥ 1, we define

ξn =
∏

1≤a≤3nd
a≡±1 mod 3n

(a,d)=1

(1− ζ a
3nd)

χ(a).

The product is over values of a representing elements of Gal(L/Tn). We claim that ξn lies in Fn . Indeed,
for σb ∈ Gal(L/Fn) we have b ≡±1 mod 3n and χ(b)= 1. The computation

σb(ξn)=
∏

1≤a≤3nd
a≡±1 mod 3n

(a,d)=1

(1− ζ ab
3nd)

χ(a)
=

∏
1≤a≤3nd

a≡±1 mod 3n

(a,d)=1

(1− ζ a
3nd)

χ(a/b)
= ξn

gives ξn ∈ Fn .

Lemma 6.3. (a) ξn ∈ E−n .

(b) The norm of ξn from Fn to Fn−1 is ξn−1.

Proof. For part (a), a simple computation shows that σc(ξn)= ξ
−1
n . If d 6= 1, every factor 1− ζ a

3nd is a
unit, so ξn is a unit. If d = 1, then each factor is a 3-unit. Therefore, ξn ∈ E−n .

For (b), we note that the Galois conjugates of ζ3n for L/Q(ζ3n−1d) are ζ3nζ i
3 for i = 0, 1, 2. Therefore,

the norm of the factor (1− ζ a
3nd) is∏
i=0,1,2

(1− ζ a
3ndζ

i
3)= (1− ζ

3a
3nd)= (1− ζ

a
3n−1d),

and the result follows. �

Lemma 6.4. The σ j (ξn) for σ j ∈ Gal(Fn/F) are independent 3-units and generate a subgroup of E−n of
index prime to 3.

Proof. We need some preliminary work. Since keeping track of powers of 2 is irrelevant for what we do,
for numbers a and b we use the notation a ≈ b to say that a/b is a power of 2, up to sign. When a, b are
groups, a ≈ b means that a and b are subgroups of some larger group G with [G : a]/[G : b] equal to a
power of 2.

Since σ 2
c = 1 on Fn , the identity x2

= x1−σc x1+σc implies

En ≈ E−n ⊕ E+n .

Let {u1, . . . , u3n−1} be a basis for E−n and {v1, . . . , v3n−1−1} be a basis for E+n mod {±1}. The Galois
group of Fn/Q is given by the elements σ j and σcσ j , where σ j runs through Gal(Fn/F). These can be
used to calculate the regulator Rn of Fn , up to powers of 2. Let

R−n = (log|σ j (ui )| j,i ) and R+n = (log|σ j (vi )| j,i ).
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Then Rn , up to powers of 2, is the absolute value of the determinant of the matrix(
R−n R+n
−R−n R+n

)
with the last row deleted. Adding the top rows to the corresponding bottom rows yields a 0-block in the
lower left and twice R+n in the lower right. Therefore,

Rn ≈ det(R−n ) det(R+n ).

Note that det(R+n ) is, up to powers of 2, the regulator of Tn .
We define the regulator

Rξn = |det(log|σ jσ
−1
i ξn|)|, i, j ∈ Gal(Fn/F),

of the Gal(Fn/F)-conjugates of ξn . We claim that

det(R−n )≈
h(Fn)Rξn

h(Tn)

holds. (Here, h( · ) denotes the class number.) Since Rξn/ det(R−n ) is the index in E−n of the subgroup
generated by the conjugates of ξn , the lemma then follows from the observation that both Tn and Fn have
class number coprime to 3.

The value Rξn is a group determinant, and by [16, Lemma 5.26] we have

Rξn =±

∏
ψ

∑
j

ψ(σ j ) log|σ jξn|,

where ψ ranges over the Dirichlet characters for Gal(Fn/F)'Gal(Tn/Q), and σ j ranges over Gal(Fn/F).
We have ∑

j

ψ( j) log|σ jξn| =
∑

j

ψ( j)
∑

a

χ(a) log|1− ζ aj
3nd |,

where 1≤ a ≤ 3nd , (a, d)= 1, and a ≡±1 mod 3n . This equals∑
1≤a≤3nd, (a,3d)=1

ψ(a)χ(a) log|1− ζ a
3nd |.

Recall that if ψ has conductor 3m with m ≥ 1, then

L(1, ψχ)=−
g(ψχ)

3md

∑
1≤a≤3md, (a,3d)=1

ψ(a)χ(a) log|1− ζ a
3md |,

where g(ψχ) is a Gauss sum. Since the values of ψ(a) depend only on a mod 3m , we have, for fixed a0

with 3 - a0, ∑
1≤a≤3nd

a≡a0 mod 3md

ψ(a) log|1− ζ a
3nd | = ψ(a0) log|1− ζ a0

3md |,
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where we have used the identity
∏
ω3n−m

=1(1−ωx)= 1− x3n−m
. Therefore,∑

j

ψ( j) log|σ jξn| =
3md

g(ψχ)
L(1, ψχ).

If ψ is trivial, then ∑
j

log|σ jξn| = log|NormFn/F1ξn| = log|ξ1|

=

∑
1≤a≤3d
(a,3d)=1

χ(a) log|1− ζ a
3d |.

For fixed a0, ∑
a≡a0 mod d

1≤a≤3d, (a,3d)=1

log|1− ζ a
3d | = log|1− ζ 3a0

3d | − log|1− ζ 3a1
3d |,

where 3a1 ≡ a0 mod d and 1≤ 3a1 ≤ 3d . Therefore,∑
j

log|σ jξn| =
∑

1≤a0≤d
(a0,d)=1

χ(a0) log|1− ζ a0
d | −

∑
1≤a1≤d
(a1,d)=1

χ(3a1) log|1− ζ a1
d |

= (1−χ(3))
−d

g(χ)
L(1, χ).

Using that 3 is inert in F/Q, we compute 1−χ(3)= 2.
From the analytic class number formula, we derive

h(Fn)Rn
√

disc(Fn)

√
disc(Rn)

h(Tn)R+n
≈

∏
ψ

L(1, ψχ),

where h denotes the class number of the indicated field. By [16, Theorem 3.11 and Corollary 4.6], the
Gauss sums, the discriminants, and the conductor 3md factors cancel, and we obtain

det(R−n )≈
h(Fn)Rξn

h(Tn)
. �

As a byproduct of the calculation with ψ = 1, we obtain the following:

Lemma 6.5. If d 6= 1, then ξ1 = ε
−4h(F)
0 , where h(F) and ε0 are the class number and fundamental unit

of F. If d = 1, then ξ1 = 3.

Proof. Up to sign, the case d 6= 1 results from keeping track of the factors of 2. In the definition of ξ1,
we can pair the factors for a and 3d − a to see that ξ1 is totally positive. When d = 1, the result follows
directly from the definition of ξ1. �

We have almost done all the preparatory work to construct κn . Indeed, by Lemma 6.4 we know that κn

is a product of Galois conjugates of ξn . To pin down the product, we need the following standard result.
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Lemma 6.6. Let m ≥ 1. Let M be a number field, let ζm be a primitive m-th root of unity, and let
α ∈ M(ζm)

×. Let M(ζm, α
1/m)/M(ζm) be a cyclic extension of degree m. Define a map

ω : Gal(M(ζm)/M)→ Z/mZ

by τ(ζm)= ζ
ω(τ)
m . Then F(ζm, α

1/m)/M is Galois with abelian Galois group if and only if

ατ−ω(τ) ∈ (M(ζm)
×)m

holds for all τ ∈ Gal(M(ζm)/M).

Proof. The proof is a standard calculation with the Kummer pairing. See for instance the proof of [16,
Theorem 14.7]. �

Choose τ ∈ Gal(Fn/F) satisfying τ(ζ3n )= ζ 4
3n . We have

κn =

3n−1
−1∏

j=0

τ j (ξn)
c j ,

for some integers c j . Therefore, taking indices mod 3n−1, we have

κτn =

3n−1∏
j=1

τ j (ξn)
c j−1 .

Lemma 6.6 says that κτ−4
n is a 3n-th power, and since the elements τ j (ξn) are multiplicatively indepen-

dent, we must have

c j−1− 4c j ≡ 0 mod 3n, 1≤ j ≤ 3n−1.

This implies that each c j is uniquely determined mod 3n by the value of c0. Therefore, κn is uniquely
determined up to an integral power and mod 3n-th powers. Therefore, if we find κn ∈ Fn such that

(1) κτ−4
n is a 3nth power and

(2) κn is not a cube in Fn ,

then we have a Kummer generator for Kn(ζ3n )/K (ζ3n ).
For i ≥ 1, define

Bi =

i−1∏
j=1

(
1+ 43 j−1

+ 163 j−1

3

)
.

Let

bi = (1− Bi )/3,

which is an integer for all i ≥ 1. Finally, for i ≥ 2, let

Di (x)=
3(bi (x − 1)− 1)− (1+ x3i−1

+ x2·3i−1
)(bi−1(x − 1)− 1)

x − 4
.
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Note that the numerator of Di (x) evaluated at x = 4 is

3(3bi − 1)− (1+ 43i−1
+ 163i−1

)(3bi−1− 1)= 3(−Bi )+ (1+ 43i−1
+ 163i−1

)Bi−1 = 0,

so Di has integer coefficients. For example, D2(x)= x − 1.
Let

δi = ξ
Di (τ )
i for i ≥ 2, βi = ξ

bi (τ−1)−1
i for i ≥ 1.

Then ξi , βi , δi ∈ Fi , and

δτ−4
i =

β3
i

βi−1

for i ≥ 2. Moreover,

β1 = ξ
b1(τ−1)−1
1 = ξ−1

1 .

Definition 6.7. Let κ1 = ξ1, and for n ≥ 2 let

κn = ξ1δ
3
2 · · · δ

3n−1

n ∈ Fn ⊂ K (ζ3n ).

We have

κτ−4
n = ξ−3

1
β9

2

β3
1

β27
3

β9
2

· · ·
β3n

n

β3n−1

n−1

= β3n

n .

Lemma 6.8. κn is not a cube in K (ζ3n ).

Proof. The lemma is equivalent to ξ1 not being a cube in Q(ζ3n ). Our assumption 3 - h(F) implies that
ξ1 = ε

−4h(F)
0 is not a cube in F (when d 6= 1; the case d = 1 is trivial), so x3

− ξ1 generates a non-Galois
cubic extension of F that must be disjoint from every abelian extension. Therefore, 3

√
ξ1 6∈ K (ζ3n ). �

Proof of Theorem 6.1. Lemma 6.8 implies that

K (ζ3n )( 3n√
κn)/K (ζ3n )

is cyclic of order 3n . Since κτ−4
n is a 3n-th power and κn is real, it is the desired Kummer generator for

Kn(ζ3n )/K (ζ3n ). �

Example 6.9. For K =Q(
√
−3), we have κ1 = 3 and hence K1 =Q(

√
−3, 31/3).

To obtain the second layer, we compute D2(x)= x − 1 and

κ2 = 3
(
(1− ζ 4

9 )(1− ζ
−4
9 )

(1− ζ9)(1− ζ−1
9 )

)3

= 3
(

1− cos(8π/9)
1− cos(2π/9)

)3

.

We compute that κ2 is a root of x3
− 1710x2

+ 513x − 27, and κ1/9
2 is therefore a root of

x27
− 1710x18

+ 513x9
− 27.
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Having found the extension K (ζ9)(κ
1/9
2 )/K (ζ9), we proceed as in [7, pp. 514–515] to descend to the

extension K2/K . We compute that K2 is generated over K by a root of

x9
− 59049x3

+ 4251528
√
−3.

Example 6.10. Fix K =Q(
√
−87). For the first layer, we compute that κ1 is a root of x2

− 727x + 1.
Instead of following the descent procedure from [7], we can also use the following argument to compute
K1/K . We replace x by x3 and take the compositum with x2

+3 to obtain a degree 12 polynomial defining
K (ζ9)(κ

1/3
1 )/Q. This field has 7 subfields of degree 6. We test these fields pairwise for isomorphism,

and compute that there is a unique field that is not isomorphic to another field. Hence, this is the unique
field that is Galois over Q and must equal K1. Applying lattice basis reduction to the default generator
of K1/Q gives the polynomial

x6
− 3x5

+ 13x4
− 21x3

+ 43x2
− 33x + 9.

To obtain K2, we compute that κ2 is a root of

x6
− 3298753006106830814034741x5

+ 8591489279598602990016127145116806x4

− 28320363968461011184065689777889416199793x3

+ 8591489279598602990016127145116806x2

− 3298753006106830814034741x + 1.

The same technique as for K1 gives that there are two subfields of K1(ζ9)(κ
1/9)/Q that are Galois over Q.

Since one of them is the known field K1T1, we select the field K2 to be the other subfield that is Galois
over Q. A generating polynomial is given in Example 3.2.

Acknowledgement

We thank the referees for valuable suggestions on an earlier version of this paper.

References

[1] Juliana Belding, Reinier Bröker, Andreas Enge, and Kristin Lauter, Computing Hilbert class polynomials, Algorithmic
number theory (Alfred J. van der Poorten and Andreas Stein, eds.), Lecture Notes Comput. Sci., no. 5011, Springer, 2008,
pp. 282–295. MR 2467854

[2] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system, I: The user language, J. Symbolic
Comput. 24 (1997), no. 3-4, 235–265. MR 1484478

[3] David Brink, Prime decomposition in the anti-cyclotomic extension, Math. Comp. 76 (2007), no. 260, 2127–2138.

[4] Reinier Bröker and Peter Stevenhagen, Constructing elliptic curves of prime order, Computational arithmetic geometry
(Kristin E. Lauter and Kenneth A. Ribet, eds.), Contemp. Math., no. 463, Amer. Math. Soc., 2008, pp. 17–28. MR 2459986

[5] Gottfried Bruckner, Charakterisierung der galoisschen Zahlkörper, deren zerlegte Primzahlen durch binäre quadratische
Formen gegeben sind, Math. Nachr. 32 (1966), 317–326. MR 0217043

[6] J. E. Carroll and H. Kisilevsky, Initial layers of Zl -extensions of complex quadratic fields, Compositio Math. 32 (1976),
no. 2, 157–168. MR 0406970

http://doi.org/10.1007/978-3-540-79456-1_19
http://msp.org/idx/mr/2467854
http://doi.org/10.1006/jsco.1996.0125
http://msp.org/idx/mr/1484478
http://doi.org/10.1090/S0025-5718-07-01964-3
http://doi.org/10.1090/conm/463/09043
http://msp.org/idx/mr/2459986
http://doi.org/10.1002/mana.19660320604
http://doi.org/10.1002/mana.19660320604
http://msp.org/idx/mr/0217043
http://www.numdam.org/item?id=CM_1976__32_2_157_0
http://msp.org/idx/mr/0406970


EXPLICIT COMPUTATIONS IN IWASAWA THEORY 153

[7] Henri Cohen and Peter Stevenhagen, Computational class field theory, Algorithmic number theory: lattices, number fields,
curves and cryptography (J. P. Buhler and P. Stevenhagen, eds.), Math. Sci. Res. Inst. Publ., no. 44, Cambridge University,
2008, pp. 497–534. MR 2467555

[8] David A. Cox, Primes of the form x2
+ ny2: Fermat, class field theory, and complex multiplication, 2nd ed., Wiley, 2013.

MR 3236783

[9] Andreas Enge, CM: complex multiplication of elliptic curves, 2016, version 0.3, distributed under GPL V3+.

[10] Andreas Enge and Reinhard Schertz, Constructing elliptic curves over finite fields using double eta-quotients, J. Théor.
Nombres Bordeaux 16 (2004), no. 3, 555–568. MR 2144957

[11] Jae Moon Kim and Jangheon Oh, Defining polynomial of the first layer of anti-cyclotomic Z3-extension of imaginary
quadratic fields of class number 1, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 3, 18–19. MR 2046261

[12] Reinhard Schertz, Weber’s class invariants revisited, J. Théor. Nombres Bordeaux 14 (2002), no. 1, 325–343. MR 1926005

[13] Arnold Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander, J. Reine Angew. Math. 166
(1932), 201–203. MR 1581309

[14] Peter Stevenhagen, Hilbert’s 12th problem, complex multiplication and Shimura reciprocity, Class field theory: its cente-
nary and prospect (Katsuya Miyake, ed.), Adv. Stud. Pure Math., no. 30, Math. Soc. Japan, 2001, pp. 161–176. MR 1846457

[15] Yannick Van Huele, On T-semisimplicity of Iwasawa modules and some computations with Z3-extensions, Ph.D. thesis,
University of Washington, 2016. MR 3597700

[16] Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Grad. Texts Math., no. 83, Springer, 1997. MR 1421575

Received 19 Feb 2018. Revised 9 Sep 2018.

REINIER BRÖKER: rmbroke@idaccr.org
Center for Communications Research, Princeton, NJ, United States

DAVID HUBBARD: dhubbard@erols.com
Hamilton, NJ, United States

LAWRENCE C. WASHINGTON: lcw@math.umd.edu
Department of Mathematics, University of Maryland, College Park, MD, United States

msp

http://msp.org/idx/mr/2467555
http://doi.org/10.1002/9781118400722
http://msp.org/idx/mr/3236783
http://cm.multiprecision.org/
http://doi.org/10.5802/jtnb.460
http://msp.org/idx/mr/2144957
http://doi.org/10.3792/pjaa.80.18
http://doi.org/10.3792/pjaa.80.18
http://msp.org/idx/mr/2046261
http://doi.org/10.5802/jtnb.361
http://msp.org/idx/mr/1926005
http://doi.org/10.1515/crll.1932.166.201
http://msp.org/idx/mr/1581309
http://doi.org/10.2969/aspm/03010161
http://msp.org/idx/mr/1846457
https://search.proquest.com/docview/1844059621
http://msp.org/idx/mr/3597700
http://doi.org/10.1007/978-1-4612-1934-7
http://msp.org/idx/mr/1421575
mailto:rmbroke@idaccr.org
mailto:dhubbard@erols.com
mailto:lcw@math.umd.edu
http://msp.org




VOLUME EDITORS

Renate Scheidler
University of Calgary
Calgary, AB T2N 1N4

Canada

Jonathan Sorenson
Butler University

Indianapolis, IN 46208
United States

The cover image is based on a design by Linh Chi Bui.

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/2
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-02-6 (print), 978-1-935107-03-3 (electronic)

First published 2019.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

http://msp.org/obs/2
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org


THE OPEN BOOK SERIES 2

Thirteenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier inter-
national forum for research in computational number theory. ANTS is devoted to algorithmic aspects of
number theory, including elementary, algebraic, and analytic number theory, the geometry of numbers,
arithmetic algebraic geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the thirteenth ANTS meeting, held July 16-20, 2018, at the University
of Wisconsin-Madison. It includes revised and edited versions of 28 refereed papers presented at the
conference.

Edited by Renate Scheidler and Jonathan Sorenson

CONTRIBUTORS
Simon Abelard
Sonny Arora
Vishal Arul
Angelica Babei
Jens-Dietrich Bauch
Alex J. Best
Jean-François Biasse
Alin Bostan
Reinier Bröker
Nils Bruin
Xavier Caruso
Stephanie Chan
Qi Cheng
Gilles Christol
Owen Colman
Edgar Costa
Philippe Dumas
Kirsten Eisenträger
Claus Fieker
Shuhong Gao

Pierrick Gaudry
Alexandre Gélin
Alexandru Ghitza
Laurent Grémy
Jeroen Hanselman
David Harvey
Tommy Hofmann
Everett W. Howe
David Hubbard
Kiran S. Kedlaya
Thorsten Kleinjung
David Kohel
Wanlin Li
Richard Magner
Anna Medvedovsky
Michael Musty
Ha Thanh Nguyen Tran
Christophe Ritzenthaler
David Roe

J. Maurice Rojas
Nathan C. Ryan
Renate Scheidler
Sam Schiavone
Andrew Shallue
Jeroen Sijsling
Carlo Sircana
Jonathan Sorenson
Pierre-Jean Spaenlehauer
Andrew V. Sutherland
Nicholas Triantafillou
Joris van der Hoeven
Christine Van Vredendaal
John Voight
Daqing Wan
Lawrence C. Washington
Jonathan Webster
Benjamin Wesolowski
Yinan Zhang
Alexandre Zotine

A
N

T
S

X
III:

Thirteenth
A

lgorithm
ic

N
um

ber
Theory

Sym
posium

Scheidler,Sorenson
O

B
S

2


	1. Introduction
	2. Anticyclotomic extension and ring class fields
	3. Selecting the right subfield
	4. Practical improvements
	5. Mirror principle
	6. Generators via Kummer theory
	Acknowledgement
	References
	
	

