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In 2016, Balakrishnan, Ho, Kaplan, Spicer, Stein and Weigandt produced a database of elliptic curves
over Q ordered by height in which they computed the rank, the size of the 2-Selmer group, and other
arithmetic invariants. They observed that after a certain point, the average rank seemed to decrease as the
height increased. Here we consider the family of elliptic curves over Q whose rational torsion subgroup
is isomorphic to Z=2Z � Z=8Z. Conditional on GRH and BSD, we compute the rank of 92% of the
202;461 curves with parameter height less than 103. We also compute the size of the 2-Selmer group and
the Tamagawa product, and prove that their averages tend to infinity for this family.

1. Introduction

Let E be an elliptic curve over Q. After a suitable choice of isomorphism, we can always express such
a curve in its short Weierstrass form:

E W y2
D x3

C a4xC a6;

with a4; a6 2 Z. Using this description, we define the naive height of the curve E as

h.E/ WDmaxf4ja4j
3; 27a2

6g:

In [1], the authors created an exhaustive database of isomorphism classes of elliptic curves with naive
height up to 2:7 �1010, which contained a total of 238;764;310 curves. For each elliptic curve in this data-
base, they computed the minimal model, the torsion subgroup, the conductor, the Tamagawa product, the
rank, and the size of the 2-Selmer group. They plotted the average rank of the curves up to a certain height.
Initially the average rank seemed to be an increasing function, but around a naive height of 109, they ob-
served a turnaround point, where the average rank seemed to start decreasing as the height was increasing.

In this database however, there were no elliptic curves recorded with rational torsion subgroup isomor-
phic to Z=2Z�Z=8Z, which is the largest possible torsion subgroup for elliptic curves over Q. The curve
with minimal naive height that has such a torsion group has Weierstrass form y2 D x3� 1386747xC

368636886 and its naive height is 10667230914617018892� 1:07 � 1019.
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In this paper, we describe a similar database for the family of elliptic curves over Q whose rational
torsion subgroup is isomorphic to Z=2Z�Z=8Z. We can parametrize this family in the following way:

F WD
�

E W y2
D x.xC 1/.xCu4/

ˇ̌̌̌
uD

2t

t2� 1
; t 2Q n f0; 1g

�
:

We call t the parameter of the curve and write t D a=b for coprime integers a, b. This particular
parametrization was provided by Bartosz Naskręcki, resulting from ideas in [16]. The family inherits
a height function from its parametrization. For any E 2 F , we define the parameter height H.E/ WD

maxfjaj; jbjg. For each isomorphism class of curves in this family, we will only consider the model in
F for which H is minimal. From now on, we will call the family of curves represented by elements of
F the .2; 8/-torsion family.

We use the parameter height, as it makes it easier to enumerate and compare curves in our family. The
naive height of the curves in our family is very large, as could already be seen in the example mentioned
above. We prove in Section 2 that

0:559 � h.E/1=48 <H.E/ < 0:672 � h.E/1=48:

We also show that the parameter height controls the size of the conductor N.E/:

N.E/ < 1:161 �H.E/10:

From now on, we will use the term height to refer to the parameter height.
There are several reasons to consider the .2; 8/-torsion family. First, based on the relation between the

parameter height and the naive height, restricting to this family allows us to quickly see curves of large
naive height. Another advantage is that the existence of the rational torsion structure makes it easier to
carry out 2-descent.

To provide an example, the 2000th curve in our database has parameter t D 98
99

, naive height 6:39 �10107

and conductor 6:65 � 1017. It would be more difficult to determine the rank for a curve of similar size
without any special structure, and currently it would not be feasible to carry out such calculations in bulk.

In our family, we enumerated all 202;461 isomorphism classes of curves with height less than 1000.
The average rank function seems to achieve its maximum at height 24, at the 121st curve, where the
average rank peaks at 0:744. Among these, we determined the rank for 186;876 classes, conditional on
GRH and BSD.

This particular family of elliptic curves was also studied in [7] and [12]. In [7], the authors were in
search of rank 4 curves, but were unable to find any. To date, no rank 4 curve has yet been found in
this family. In [12], the authors obtained statistical results on the 2-Selmer group, similar to our data in
Section 5B.

Main results. We found that curves with height up to 100 in the .2; 8/-torsion family have average rank
0:626 (Figure 2 in Section 5A) and with height up to 1000 have average rank between 0:508 and 0:663
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(Figure 3 in Section 5A). The first curves in the .2; 8/-torsion family with given rank r are

r D 0 W y2
Dx3

�1386747xC368636886
�
t D 1

2

�
;

r D 1 W y2
Dx3

�64052311707xC6090910426477494
�
t D 1

4

�
;

r D 2 W y2
Dx3

�42884506779312987xC3379377560795274084396534
�
t D 5

8

�
;

r D 3 W y2
Dx3

�20406728559954500484507xC1121060630379489735235148874483894
�
t D 12

17

�
:

We found that no rank-4 curves can exist with height below 1000.
The curve with rank 3 with the greatest height found in our database has parameter t D 841

1018
; its global

minimal model is

y2
CxyDx3

�1537294523297507321569249472559902413559297102550x

C733636624633313284630814852522791055015138014738294124679165680060100132:

This curve was found when we tried to compute the 2-Selmer rank of curves beyond height 1000. Cur-
rently, the curve with maximal height on the list of elliptic curves with high rank maintained by Dujella
[10] has parameter 352

1017
.

The average size of the 2-Selmer group seems to be increasing rather slowly, but steadily. We prove
the following theorem, which is an analogue of a result by Lemke Oliver and Klagsbrun for the family
of elliptic curves with 2-torsion [15].

Theorem 6.3. The average size of the 2-Selmer group tends to infinity in the .2; 8/-torsion family.

Similarly, observing the data on the average Tamagawa product suggested the following theorem that
we prove in Section 6A:

Theorem 6.1. The average Tamagawa product in the .2; 8/-torsion family up to height N has order of
magnitude .log N /33.

Outline of the paper. In Section 2, we provide some properties of the .2; 8/-torsion family related to our
parametrization. In Section 3, we recall general results and conjectures related to ranks of elliptic curves.
In Section 4, we discuss the computational methods we use. Section 5 contains the data we obtained and
our analysis of the data. In Section 6, we prove that the average Tamagawa product and the average size
of the 2-Selmer group tends to infinity for this family.

2. Some preliminary properties of the .2 ;8/-torsion family

In this section, we discuss the parametrization for the .2; 8/-torsion family. We also show how the
parameter height is related to the naive height and the conductor.

2A. The parametrization. By expressing the torsion points explicitly, one can check that any curve
with Z=2Z�Z=8Z-torsion can be described as an element of F . Conversely, given a curve in F , it is a
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straightforward calculation to verify that�
2u

.t C 1/2
;
4t.t2C 2t � 1/.t2C 1/

.t C 1/5.t � 1/3

�
is a point of order 8. Hence the torsion subgroup is isomorphic to Z=2Z�Z=8Z.

In each isomorphism class in F , there are exactly eight different choices of t . We get these representa-
tives using the transformations t 7! �t , t 7! 1=t and t 7! .1� t/=.1C t/. We choose the t corresponding
to a curve with minimal height. The maps t 7! �t and t 7! 1=t allow us to restrict t D a=b to the
range .0; 1/. Assuming a < b, if a � b � 1 mod 2, the map t 7! .1 � t/=.1C t/ allows us to take
parameter t 0 D a0=b0, where a0 D .b � a/=2 and b0 D .aC b/=2. Then t 0 would have a smaller height,
since a0 < b0 < b. Thus, choosing t D a=b 2 .0; 1/ with a and b coprime with different parity, we get a
unique representative for each isomorphism class.

With this choice of parameter, we see that the number of curves with height n is �.n/ if n is even and
�.n/=2 if n is odd, where �.n/ is the Euler totient function. By [19], we have for any � > 0, the estimateX

n�N

�.n/D
3

�2
N 2
CO.N.log N /2=3.log log N /4=3/:

Using the fact that �.2n/ is �.n/ if n is odd and 2�.n/ if n is even, one can show that the total number
of curves up to height N is

2

�2
N 2
CO.N.log N /2=3.log log N /4=3/:

2B. Naive height and parameter height. Let E be a curve given by the equation y2D x.xC1/.xCu4/

in F , where u D 2t=.t2 � 1/ and t D a=b are chosen as above. We show how the naive height and
parameter height are related.

Proposition 2.1. Let E=Q be an elliptic curve in F , with naive height h and parameter height H. We
have

0:559 � h1=48 <H < 0:672 � h1=48:

Proof. We start by giving a minimal Weierstrass model for our curve. Write S D 2ab and T D b2� a2,
so uD�S=T. It follows that S and T are coprime where S is even and T is odd. We write E in short
Weierstrass form y2 D x3�AxCB by putting

AD 27.S8
�S4T 4

CT 8/ and B D 27.S4
� 2T 4/.2S4

�T 4/.S4
CT 4/:

One can check that there exists no prime p such that p4 jA and p6 jB; therefore this Weierstrass
form is minimal. With this, the naive height of E is given by

hD 39T 24 maxf4j1�u4
Cu8
j
3; .1� 2u4/2.2�u4/2.1Cu4/2g:

Since this expression is symmetric in S and T, first assume S < T, so that u 2 .0; 1/. Bounding the
polynomials in u, we get 312 �T 24=16� h� 4 � 39 �T 24. Note also, max.S;T /Dmax.2ab; b2� a2/ 2
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Figure 1. Conductor of isomorphism classes in the .2; 8/-torsion family.

Œ2.
p

2� 1/H 2; 2H.H � 1/�. Therefore .
p

2� 1/24 � 312 � 220 �H 48 < h< 39 � 226 �H 48, which gives the
result. �

2C. Size of the conductor. Consider a curve in F with parameter t D a=b, where a and b are coprime
and of different parity. This curve is isomorphic to

E W y2
D x.xCS4/.xCT 4/;

where S D 2ab and T D b2� a2 are coprime. The discriminant of E is �E D 16S8T 8.T 4�S4/2. By
Tate’s algorithm [18], this curve has bad reduction precisely at the primes dividing �E , and the exponent
of the conductor is always 1. Therefore the conductor of E is the product of primes dividing

ab.b2
�a2/.a2

C b2/.a2
� 2ab� b2/.a2

C 2ab� b2/D b10t.1� t2/.1C t2/.t2
� 2t � 1/.t2

C 2t � 1/:

The absolute value of the polynomial in t is bounded from above in the interval .0; 1/ by approximately
1:160. Hence N.E/ < 1:161 �H.E/10. See Figure 1.

3. Background

Computing the rank of an elliptic curve over a number field is a difficult problem, and while there are a
number of techniques that work well in practice, there is no known algorithm to carry this out in general.
Here we review the main theorems and conjectures and discuss how they can be used to give conditional
results.

3A. The BSD conjecture. The most famous conjecture on ranks of elliptic curves is the Birch and
Swinnerton-Dyer conjecture (BSD) [4]. Let E be an elliptic curve defined over a number field with
L-function L.s;E/. The BSD conjecture states that the rank of E equals the order of vanishing of
L.s;E/ at s D 1, which is called the analytic rank of E. Assuming this conjecture allows us to obtain
an upper bound of the rank from the L-function.

3B. The minimalist conjecture and current results. It is believed that the root number, i.e., the sign
of the functional equation of L.s;E/, is 1 for half of all elliptic curves and �1 for the other half. The
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minimalist conjecture, initially formulated by Goldfeld [13] for the quadratic twists families, states that
with respect to any reasonable ordering, half of the elliptic curves have rank 0 and half have rank 1. This
would mean the average rank should tend to 1

2
, and 0% of elliptic curves have rank at least 2. One of

our main goals is to provide numerical evidence for this conjecture for the .2; 8/-torsion family.
The following result of Bhargava and Shankar [2] on the upper bound of the average rank of elliptic

curves provides strong evidence for the minimalist conjecture.

Theorem 3.1 (Bhargava and Shankar [2]). The average rank of all elliptic curves over Q ordered by
naive height is at most 0:885.

3C. The Selmer group and descent. For each integer n� 2, the n-Selmer group Seln.E/ of E over Q

fits into an exact sequence of abelian groups

0!E.Q/=nE.Q/! Seln.E/!X.E/Œn�! 0; (1)

where X.E/Œn� denotes the n-torsion subgroup of the Tate–Shafarevich group X.E/ of E over Q. If
p is a prime, then Selp.E/ is an elementary abelian p-group, whose dimension as an Fp-vector space
is called the p-Selmer rank of E, which is effectively computable and provides an upper bound on the
rank via (1).

Explicitly, an element in the n-Selmer group of E can be represented by a pair .C; �/, where C is a
genus-1 curve which is locally soluble and � is a map defined over Q that makes the following diagram
commute:

C

E E

�
'

Œn�

In this diagram, the vertical map C !E is an isomorphism defined over Q. Determining (a lower bound
for) the rank of E is equivalent to finding rational points on C. If no rational point of C can be found by
a search by height, we apply the method of descent repeatedly. More generally, given a rational isogeny
� WE!E0, there is a Selmer group associated to it, denoted as Sel�.E/. For the dual isogeny O� WE0!E

of �, we denote the corresponding Selmer group as Sel O�.E
0/. The following is a standard result, see for

example [17, Lemma 6.1].

Theorem 3.2. Let E and E0 be elliptic curves over Q. Suppose there exists � W E! E0 an isogeny of
degree 2. Then the following sequence is exact:

0!E0.Q/Œ O��=�.E.Q/Œ2�/! Sel�.E=Q/! Sel2.E=Q/! Sel O�.E
0=Q/:

For E 2 F , we have jE0.Q/Œ O��=�.E.Q/Œ2�/j D 1, which implies that

jSel�.E=Q/j � j Sel2.E=Q/j:
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Fisher [11] gives an efficient way to apply descent six times on elliptic curves with full 2-torsion
structure. Moreover, since the .2; 8/-torsion family has Z=2Z�Z=8Z torsion, there are two isogenous
curves with full 2-torsion structure. Applying Fisher’s method to all three isogenous curves allowed
us to determine the rank of more curves. Below is a picture of the isogenous curves and their torsion
structures:

E Etors.Q/Š Z=2Z�Z=8Z

E0 E0tors.Q/Š Z=2Z�Z=4Z

E00 E00tors.Q/Š Z=2Z�Z=2Z

There are also a number of recent results on the size of Selmer groups:

Theorem 3.3 (Bhargava and Shankar [3]). For n� 5, the average size of Seln.E/ for all elliptic curves
E=Q ordered by naive height is �.n/, the sum of divisors of n.

The theorem implies that the average size of the 2-Selmer group converges to �.2/ D 3. However,
this no longer holds for the family with nontrivial 2-torsion.

Theorem 3.4 (Klagsbrun and Lemke Oliver [15]). The average size of Sel2.E/ is unbounded for the
family of elliptic curves over Q with a torsion point of order 2 ordered by a parameter height.1

Our data suggests that the average size of the 2-Selmer group is also unbounded in the .2; 8/-torsion
family. In Section 6B, we give a proof of this fact.

3D. The Tamagawa number. Let E be an elliptic curve over Q. The Tamagawa number is the finite
index cp.E/ WD #.E.Qp/=E0.Qp//, where E0.Qp/ is the subgroup of points in E.Qp/ which have good
reduction. Each cp.E/ can be easily computed from the coefficients of E using Tate’s algorithm [18].
The Tamagawa product of E is

T .E/D
Y

p�1

cp.E/:

If there exists an isogeny � WE!E0 of degree 2, then the Tamagawa ratio of E is

T .E=E0/D
jSel�.E/j
jSel O�.E

0/j
:

Consider the exact sequence induced by the isogeny �:

0 ker.�/ E.Q/ E0.Q/ H 1.Q; ker.�// H 1.Q;E/ � � � :
� ı

Passing to a completion at a place p, we define

H 1
� .Qp; ker�/ WD ıp.E0.Qp/=�.E.Qp///�H 1.Qp; ker.�//:

1The parameter height used here for an elliptic curve with a 2-torsion point EA;B W y
2 D x3CAx2CBx is maxfjAj;B2g.
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Then the Tamagawa ratio can be related to the Tamagawa numbers as follows.

Theorem 3.5 (Cassels [8, Lemma 3.1]). The Tamagawa ratio decomposes into a product of local factors
as follows:

T .E=E0/D
Y

p�1

Tp.E=E
0/; where Tp.E=E

0/D 1
2
jH 1
� .Qp; ker�/j:

Theorem 3.6 (Dokchitser and Dokchitser [9, Lemmas 4.2 and 4.3]). For p ¤ 2 finite,

1
2
jH 1
� .Qp; ker�/j D

cp.E
0/

cp.E/
:

4. Computing ranks

4A. Enumerating curves. We produce a list of all isomorphism classes in F up to height N by comput-
ing the Farey sequence of order N to get a list of .a; b/, where a and b are coprime and have opposite
parities. Each pair .a; b/ gives a curve in F of minimal height in its isomorphism class. This gives us
202;462 ordered isomorphism classes of .2; 8/-torsion curves with height less than 1000.

4B. Procedure. To make our rank computations feasible, we assume two standard conjectures: the Birch
and Swinnerton-Dyer conjecture (BSD) and the generalized Riemann hypothesis (GRH). BSD allows
us to obtain an upper bound of the rank by computing the analytic rank numerically. GRH provides the
conjecturally best bound for the error term of the L-function attached to an elliptic curve, which improves
the efficiency of the analytic rank computation. An immediate consequence of the BSD conjecture is the
parity conjecture, which states that the root number agrees with the parity of the rank. This allows us to
determine the rank when the upper bound and lower bound we calculated for the rank differ by 1.

We computed the rank using a combination of Sage and Magma [6]. We first ran Cremona’s mwrank
in Sage, which carries out 2-descent and searches for rational points with low height. This function gave
us an upper bound and a lower bound for the rank of each curve in our database. If the bounds agreed,
this determined the rank. If the bounds differed by 1, the rank was obtained conditional on the parity
conjecture. This process determined the rank of 52:1% of the curves.

If the rank was not determined at this stage, we ran the Sage function analytic_rank_upper_bound,
which computes an upper bound on the analytic rank conditional on GRH and takes a parameter �, using
Bober’s method in [5]. The runtime is exponential in �, but a higher � potentially gives a better bound.
We ran the function repeatedly with increasing values of � up to at most 2:0, or until the rank’s upper
bound differed from the lower bound by at most 1. After this stage, we still had 44:2% curves with
unknown rank.

Because of the large number of curves remaining, it was computationally unfeasible to run with higher
� for all of them. Restricting to curves with H < 100, only 153 remained at this stage, and we were able
to continue the process up to �D 3:8. After this, only 15 curves were left with H < 100. Computing
the analytic rank becomes more difficult as the conductor increases. Since the parameter height appears
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to be positively correlated with the conductor, as is seen in Figure 1, it became more and more difficult
to determine the rank the further we got along.

A recent implementation of Fisher’s TwoPowerIsogenyDescentRankBound [11] in Magma is faster
and a better fit for our purposes since our curves have full rational 2-torsion. Using this, we were able
to determine the ranks of more than 90% of the curves up to H < 1000.

For the remaining curves, we returned to Sage. We ran analytic rank with higher values of �, up to
at least 3:2, and did a further point search using a higher bound in the mwrank function two_descent.
Altogether, the rank of 40:8% of the curves in our database was determined purely via descent, hence
unconditionally.

Initially there was one curve left with H < 100: this is the curve with parameter t D 66
97

. Thanks to
Klagsbrun for suggesting the use of AnalyticRank in Magma, we were able to show that this curve has
rank 0. The ranks of all curves with H < 100 were determined, conditional on GRH and BSD.

The list of high rank curves maintained by Dujella [10] contains 28 rank-3 curves, of which 26 have
H < 1000. Our computations recovered the rank of 17 of them. The rank of the remaining nine curves,
which were all discovered by Fisher, were included in our database for completeness. In addition to the
list, we found an extra rank-3 curve at t D 9

296
.

5. Results and analysis of computed data

5A. Rank. In the .2; 8/-torsion family, we very quickly observe a possible turnaround point in average
rank. The average rank seems to peak at H D 24 with value 0:744, after 121 curves are computed, then
steadily decreases to 0:626 at H D 99. See Figure 2.

Looking at all curves with H < 1000, the behaviour is less certain because of the number of curves
with undetermined ranks: we are only able to compute the rank of 186;876 curves, which is 92:3%. For
the remaining curves, we have upper bounds and lower bounds from our computations. None of these
upper bounds is greater than 3, so no rank-4 curve can exist with H < 1000. In Figure 3, we plot the
computed upper and lower bounds for the average rank.
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Figure 2. Average rank up to height 100 in the .2; 8/-torsion family.
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Figure 3. Average rank up to height 1000 in the .2; 8/-torsion family.

rank H<100 .%/ H<250 .%/ H<500 .%/ H<1000 .%/

0 865 .43:3/ 5689 .45:1/ 22160 .43:8/ 84763 .41:9/

1 1021 .51:1/ 6243 .49:5/ 25110 .49:7/ 101432 .50:1/

2 111 .5:6/ 307 .2:4/ 465 .0:9/ 652 .0:3/

3 3 .0:2/ 10 .0:1/ 24 .0:0/ 27 .0:0/

� 4 0 .0:0/ 0 .0:0/ 0 .0:0/ 0 .0:0/

unknown 0 .0:0/ 358 .2:8/ 2806 .5:5/ 15585 .7:7/

total 2000 .100:0/ 12607 .100:0/ 50565 .100:0/ 202461 .100:0/

average 0.626 [0.546, 0.604] [0.516, 0.628] [0.508,0.663]

Table 1. Rank distribution up to different heights.

5B. Size of the 2-Selmer group. To get a clearer picture of the behaviour of the average size of the
2-Selmer group, we computed data beyond height 1000, and it seems to be divergent (see Figure 4). In
Section 6B, we prove that this is indeed the case.

5C. Tamagawa product. The average Tamagawa product in the .2; 8/-torsion family also behaves dif-
ferently from the one in [1]. In their data, the average Tamagawa product peaks at 1:84 at naive
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Figure 4. Average size of the 2-Selmer group in the .2; 8/-torsion family.
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rank Sel2.E/ H<100 .%/ H<1000 .%/ H<2000 .%/ H<4000 .%/

2 346 .17:3/ 29943 .14:8/ 117397 .14:5/ 462688 .14:3/

3 799 .40:0/ 70856 .35:0/ 278930 .34:4/ 1107482 .34:2/

4 586 .29:3/ 62903 .31:1/ 252357 .31:1/ 1009839 .31:2/

5 222 .11:1/ 29287 .14:5/ 120373 .14:9/ 487277 .15:0/

6 44 .2:2/ 7934 .3:9/ 34104 .4:2/ 142043 .4:4/

7 3 .0:2/ 1386 .0:7/ 6329 .0:8/ 27823 .0:9/

8 0 .0:0/ 147 .0:1/ 811 .0:1/ 3743 .0:1/

9 0 .0:0/ 5 .0:0/ 51 .0:0/ 333 .0:0/

10 0 .0:0/ 0 .0:0/ 3 .0:0/ 28 .0:0/

� 11 0 .0:0/ 0 .0:0/ 0 .0:0/ 0 .0:0/

total 2000 .100/ 202461 .100/ 810352 .100/ 3241228 .100/

average jSel2.E/j 13.728 16.574 17.055 17.361

Table 2. 2-Selmer rank distribution up to different heights.
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Figure 5. Average Tamagawa product in log10 scale in the .2; 8/-torsion family.

root number H<100 .%/ H<1000 .%/ H<10000 .%/

1 976 .48:8/ 100927 .49:9/ 10125245 .50:0/

� 1 1024 .51:2/ 101534 .50:1/ 10136574 .50:0/

total 2000 .100/ 202461 .100/ 20261819 .100/

average �0:024000 �0:002998 �0:000559

Table 3. Root number distribution up to different heights.

height 6:3 � 105, then decreases with respect to the naive height. However in Figure 5, we see that it
is increasing in the .2; 8/-torsion family, and that its value is much larger than 1:84. In Section 6A, we
show that the average Tamagawa product is unbounded for this family.

5D. Root number. The average root number appears to converge to 0, as shown in Figure 6.
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Figure 6. Average root number in the .2; 8/-torsion family.

6. Proofs

6A. The average Tamagawa product is unbounded. To find the numbers cp.E/, we apply Tate’s algo-
rithm [18]. We look at the model

E W y2
�xy D x3

C
1
4
.S4
CT 4

� 1/x2
C

1
16

S4T 4x;

where S D 2ab and T D b2�a2. Again a and b are coprime and have opposite parities. The discriminant
of E is �E D

1
28 S8T 8.T 4 �S4/2. Note that S , T and .T 4 �S4/2 are pairwise coprime. By Tate’s

algorithm [18], we get

cp D

8<:
vp.�E/ if p jST or

�
p jT 4�S4 and

�
�1
p

�
D 1

�
;

2 if p jT 4�S4 and
�
�1
p

�
D�1;

1 otherwise:

Combining the local factors cp.E/, we get

T .E/D
Y
p

cp.E/D
Y

p jT 4�S4

.�1
p
/D�1

2
Y

pkk.T 4�S4/2

.�1
p
/D1

k
Y

pl k 1

28
S8T 8

l:

Theorem 6.1. The average Tamagawa product in the .2; 8/-torsion family up to height N has order of
magnitude .log N /33.

Proof. We estimate the sum

S.N / WD
X

a;b�N;2 ja
.a;b/D1

Y
p jT 4�S4

.�1
p
/D�1

2
Y

pkk.T 4�S4/2

.�1
p
/D1

k
Y

pl k 1

28
S8T 8

l:

Let H1.a; b/D .a
2� b2� 2ab/.a2� b2C 2ab/, H2.a; b/D a2C b2 and H3.a; b/D ab.b�a/.bCa/.

Note that the factors a2� b2� 2ab, a2� b2C 2ab, a2C b2, a, b, b� a; bC a are pairwise coprime.
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Let

f .H /D
Y

p jH

.�1
p
/D�1

2
Y

pkkH

.�1
p
/D1

k and g.H /D
Y

pl kH

l:

Let PC.x/ and P�.x/ denote the largest and smallest prime divisor of x respectively. Fix � > 0.
Factorize Hi.a; b/ into di and Hi.a; b/=di , so that P�.di/ < N �, and PC.Hi.a; b/=di/ � N �. Then
maxa;b�N fH1.a; b/

2H2.a; b/
4;H3.a; b/

8g �N 32, so H1.a; b/
2H2.a; b/

4 and H3.a; b/
8 each have at

most 32=� prime factors greater than N �. Therefore f .d2
1

d4
2
/� f .H1.a; b/

2H2.a; b/
4/�� f .d

2
1

d4
2
/.

Similarly g.d8
3
/� g.H3.a; b/

8/�� g.d8
3
/. We have

S.N /D
X

a;b�N;2 ja
.a;b/D1

f .H1.a; b/
2H2.a; b/

4/g.H3.a; b/
8/

�

X
d1;d2;d3

PC.di /<N �

f .d2
1 d4

2 /g.d
8
3 /

X
a;b�N; 2 ja; .a;b/D1

di jHi .a;b/
P�.Hi .a;b/=di /�N �

1:

Write aD ˛Cud1d2d3 and bDˇCvd1d2d3. Since H1, H2 and H3 are pairwise coprime, we only need
to look at coprime d1, d2 and d3. Since H1, H2 are odd and H3 is even, we consider only odd d1, d2

and even d3. Note that a; b jH3.a; b/ by construction. Suppose p j .a; b/; then p j d2 or p > N �. We
have X

a;b�N
9p�N �W p j .a;b/

1DO

� X
p�N �

�
N

p

�2�
DO.N 2��/:

We can exclude pairs of a and b with P�..a; b// >N � with a cost of O.N 2��/.X
a;b�N; 2 ja; .a;b/D1

di jHi .a;b/
P�.Hi .a;b/=di /�N �

1D
X

˛;ˇ<d1d2d3

2 j˛; di jHi .˛;ˇ/
p jd1d2d3).p−ˇ or p−˛/

X
u;v<N=.d1d2d3/

P�.Hi .a;b/=di /�N �

1CO.N 2��/:

By the small sieve [14, Theorem 2.6, p. 85] we have

X
u;v<N=.d1d2d3/

P�.Hi .a;b/=di /�N �

1�
N 2

d2
1

d2
2

d2
3

Y
p<N �

�
1�

7C
�
�1
p

�
C 2 �

�
2
p

�
p

�
�

N 2

d2
1

d2
2

d2
3
.log N /7

:

It remains to computeX
˛;ˇ<d1d2d3

2 j˛; di jHi .˛;ˇ/
p jd1d2d3).p−ˇ or p−˛/

1D
X

˛;ˇ<d1

d1 jH1.˛;ˇ/
p jd1).p−ˇ or p−˛/

1
X

˛;ˇ<d2

d2 jH2.˛;ˇ/
p jd2).p−ˇ or p−˛/

1
X

˛;ˇ<d3

2 j˛; d3 jH3.˛;ˇ/
p jd3).p−ˇ or p−˛/

1:
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By the Chinese remainder theorem, it suffices to count the number of solutions of Hi modulo pvkdi for
each prime p dividing di . We have

h1.p
v/ WD

X
˛;ˇ<pv

pv jH1.˛;ˇ/
p−ˇ or p−˛

1D

�
4�.pv/ if 2 is a square modulo pv;

0 otherwiseI

h2.p
v/ WD

X
˛;ˇ<pv

pv jH2.˛;ˇ/
p−ˇ or p−˛

1D

�
2�.pv/ if � 1 is a square modulo pv;

0 otherwiseI

h3.p
v/ WD

X
˛;ˇ<pv

pv jH3.˛;ˇ/
p−ˇ or p−˛

1D

�
4�.pv/ if p ¤ 2;

�.pv/ if p D 2:

We extend h1, h2 and h3 to multiplicative functions. Then the sum becomes

S.N /�
N 2

.log N /7

X
d1;d2;d3

PC.di /<N �

f .d2
1

d4
2
/g.d8

3
/h1.d1/h2.d2/h3.d3/

d2
1

d2
2

d2
3

�
N 2

.log N /7

Y
p<N �

�
1C

f .p2/h1.p/

p2

��
1C

f .p4/h2.p/

p2

��
1C

g.p8/h3.p/

p2

�

�
N 2

.log N /7

Y
p<N �

�
1C

1

p

�4�
1C

1

p

�4�
1C

1

p

�32

�N 2.log N /33:

The total number of curves up to height N has order of magnitude N 2 as discussed in Section 2A.
Therefore the average Tamagawa product is of the size .log N /33. �

6B. The average size of the 2-Selmer group is unbounded. We follow the approach in [15] to show the
average Tamagawa ratio diverges in the .2; 8/-torsion family, which implies that the average size of the
2-Selmer group is unbounded.

The curve obtained by the degree-2 isogeny � W E ! E0 corresponding to the rational subgroup
generated by the point .0; 0/ is

E0 W y2
�xy D x3

C
1
4
..S2

CT 2/2C 4S2T 2
� 1/x2

C
1
4
.S2T 2.S2

CT 2/2/x;

which has discriminant �E0 D
1
24 S4T 4.T 4�S4/4. Using Tate’s algorithm and looking at Table 1 in [9],

we find that the Tamagawa ratio for any finite prime p is

Tp.E=E
0/D

cp.E
0/

cp.E/
D

8<:
2 if p jS4�T 4 and

�
�1
p

�
D 1;

1
2

if p jST;

1 otherwise:

Since the discriminants �E and �0
E

are both positive, we have T1.E=E0/D 1.
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Theorem 6.2. The logarithmic Tamagawa ratio t.a; b/ WD log2 T .E=E0/ tends to a normal distribution
with mean �2 log log N CO.1/ and variance 6 log log N CO.1/.

Before we turn to the proof, let us look at the application of Theorem 6.2. We find that t.a; b/ log 2

tends to a normal distribution with mean � and variance �2 given by

� WD �2.log 2/.log log N /CO.1/; �2
WD 6.log 2/2 log log N CO.1/:

Hence T .E=E0/Dexp.t.a; b/ log 2/ tends to a log-normal distribution which has mean exp
�
�C1

2
�2
�
D

eO.1/.log N /.3 log 2�2/ log 2. Since 3 log 2�2> 0, the mean increases as N increases. From the discussion
in Section 3C, we know that jSel2.E/j � jSel�.E/j � T .E=E0/, so the following theorem is a corollary
of Theorem 6.2.

Theorem 6.3. The average size of the 2-Selmer group tends to infinity in the .2; 8/-torsion family.

Proof of Theorem 6.2. Let H1 D .a
2� b2� 2ab/.a2� b2C 2ab/.a2C b2/ and H2 D ab.b� a/.bC a/.

Throughout this proof, we will assume p is an odd prime as the contribution of the prime 2 can be taken
into the error term. Define

fp.H / WD 1p jH � 1.�1
p
/D1

and gp.H / WD 1p jH ;

where 1 denotes the indicator function. Then

t.a; b/D f .H1.a; b//�g.H2.a; b//; where f .H / WD
X
p

fp.H / and g.H / WD
X
p

gp.H /:

For any function F and any property P defined on the set

AN WD f.a; b/ W a; b �N; a and b coprime and have opposite paritiesg;

define

PN .P/D
P
.a;b/2AN

1P.a;b/

jAN j
and EN .F /D

P
.a;b/2AN

F.a; b/

jAN j
:

Fix � > 0. For p �N �, by counting the number of solutions of H1;H2 modulo p,

EN .fp.H1//D PN .H1 � 0 mod p/D

(
6

pC1
CO

�
1

N 2.1��/

�
if
�

2
p

�
D
�
�1
p

�
D 1;

2
pC1
CO

�
1

N 2.1��/

�
if
�

2
p

�
D�1;

�
�1
p

�
D 1I

EN .gp.H2//D PN .H2 � 0 mod p/D 4
pC1
CO

�
1

N 2.1��/

�
:

Since maxa;b�N fjH1.a; b/j; jH2.a; b/jg � N 6, each of H1 and H2 can only be divisible by at most
6=� prime factors larger than N �, so

P
p>N � fp.H1/ and

P
p>N � gp.H2/ are bounded above by 6=�.

Let F.N / WD
P

p�N � fp.H1/ and G.N / WD
P

p�N � gp.H2/. Then F.N /Df .H /CO.1/ and G.N /D

g.H /CO.1/ for .a; b/ 2AN .
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We define the following random variables to model fp.H1/ and gp.H2/:

Xp D

(
1 with probability 2

pC1

�
2C

�
2
p

��
;

0 with probability 1� 2
pC1

�
2C

�
2
p

�� if
�
�1
p

�
D 1;

Yp D

�
1 with probability 4

pC1
;

0 with probability 1� 4
pC1

;

so that fXpgp [ fYpgp are independent except P.Xp D 1 and Yp D 1/D 0. If
�
�1
p

�
¤ 1, then Xp D 0

with probability 1. Let X.N /D
P

p�N � Xp and Y .N /D
P

p�N � Yp. By the multidimensional central
limit theorem, X.N / and Y .N / converge to independent normal distributions as N !1. Note that
X.N / has mean and variance 2 log log N CO.1/; Y .N / has mean and variance 4 log log N CO.1/.

Since mixed moments determine the multinomial distribution, we want to show that the mixed mo-
ments of F.N / and G.N / converge to those of X.N / and Y .N /. We have by construction

EN .F.N /kG.N /l/D
X

p1;:::;pk�N �

q1;:::;ql�N �

PN .H1 � 0 mod pi and H2 � 0 mod qj /

D E.X.N /kY .N /l/CO

�
.4 log log N /kCl�1

N 2.1��/

�
:

From this we compute

EN

�
.F.N /� EN .F.N ///k.G.N /� EN .G.N ///l

�
D E

�
.X.N /� E.X.N ///k.Y .N /� E.Y .N ///l

�
CO

�
.4 log log N /kCl�1

N 2.1��/

�
:

This shows that the distributions of F.N / and G.N / tend to those of X.N / and Y .N / respectively. The
difference of two normal distribution is a normal distribution; hence f .H1/�g.H2/D F.N /�G.N /C

O.1/ tends to a normal distribution with mean and variance as claimed. �
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