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Suppose p is a prime, t is a positive integer, and f ∈Z[x] is a univariate polynomial of degree d with
coefficients of absolute value < pt. We show that for any fixed t , we can compute the number of roots
in Z/(pt ) of f in deterministic time (d log p)O(1). This fixed parameter tractability appears to be new
for t ≥ 3. A consequence for arithmetic geometry is that we can efficiently compute Igusa zeta func-
tions Z , for univariate polynomials, assuming the degree of Z is fixed.

1. Introduction

Given a prime p, and a univariate polynomial f ∈Z[x] of degree d with coefficients of absolute value< pt,
it is a basic problem to count the roots of f in Z/(pt). Aside from its natural number theoretic relevance,
counting roots in Z/(pt) is closely related to error correcting codes [3] and factoring polynomials over
the p-adic rationals Qp [8; 4; 16], and the latter problem is fundamental in polynomial-time factoring
over the rationals Q [23], the study of prime ideals in number fields [9, Chapters 4 and 6], elliptic curve
cryptography [21], the computation of zeta functions [5; 22; 29; 6], and the detection of rational points
on curves [26].

There is surprisingly little written about root counting in Z/(pt) for t ≥ 2: while an algorithm for
counting roots of f in Z/(pt) in time polynomial in d log p has been known in the case t = 1 for many
decades (just compute the degree of gcd(x p

− x, f ) in Fp[x]), the case t = 2 was first solved in 2017 by
some of our students [17]. The case t≥3, which we solve here, appeared to be completely open (see [27;
25; 28] for further background). One complication with t ≥ 2 is that polynomials in (Z/(pt))[x] do not
have unique factorization, thus obstructing a simple use of polynomial gcd.

However, certain basic facts can be established quickly. For instance, the number of roots can be
exponential in log p. (It is natural to use log p, among other parameters, to measure the size of a poly-
nomial since it takes O(dt log p) bits to write down f .) The quadratic polynomial x2

= 0, which has
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roots 0, p, 2p, . . . , (p− 1)p in Z/(p2), is such an example. This is why we focus on computing the
number of roots of f , instead of listing or searching for the roots in Z/(pt).

Let Nt( f ) denote the number of roots of f in Z/(pt) (setting N0( f ):=1). The Poincaré series for f
is P f (x) :=

∑
∞

t=0 Nt( f )x t . Assuming P f (x) is a rational function in x , one can reasonably recover
Nt( f ) for any t via standard generating function techniques. That P f (x) is in fact a rational function
of x (even for multivariate f ) was first proved in 1974 by Igusa (in the course of deriving a new class
of zeta functions [18]), applying resolution of singularities. Denef found a new proof (using p-adic cell
decomposition [10]) leading to more algorithmic approaches later. While this in principle gives us a way
to compute Nt( f ), there are few papers studying the computational complexity of Igusa zeta functions
[30]. Our work here thus also contributes in the direction of arithmetic geometry by significantly im-
proving upon results in [30], where P f is computed in the special case where f is univariate and splits
completely over Q.

To better describe our results, let us start with a naive description of the first key idea: how do roots
in Fp lift to roots in Z/(pt)? A simple root of f in Fp can be lifted uniquely to a root in Z/(pt),
according to the classical Hensel’s lemma (see, e.g., [14]). But a root with multiplicity ≥ 2 in Fp can
potentially be the image (under mod p reduction) of many roots in Z/(pt), as illustrated by our earlier
example f (x)=x2. Or a root may not be liftable at all, e.g., x2

+ p= 0 has no roots mod p2, even though
it has a root mod p. More to the point, if one wants a fast deterministic algorithm, one can not assume
that one has access to individual roots. This is because it is still an open problem to find the roots of
univariate polynomials modulo p in deterministic polynomial time (see, e.g., [11; 15]).

Nevertheless, we have overcome this difficulty and found a way to keep track of how to correctly lift
roots of any multiplicity.

Theorem 1.1. There is a deterministic algorithm that computes the number of roots of f in Z/(pt) in
time (d log(p)+ 2t)O(1), where the implied constant in the big O notation is absolute.

We prove Theorem 1.1 in Section 5. Note that Theorem 1.1 implies that if t = O(log log p) then there
is a deterministic (d log p)O(1) algorithm to count the roots of f in Z/(pt). We are unaware of any earlier
algorithm achieving this complexity bound, even if randomness is allowed. (A few weeks after our work
here was presented at ANTS XIII, an improved complexity bound was obtained in the preprint [20].)
It is worth noting that further speed-ups in terms of sparsity (e.g., polynomials with a fixed number of
monomial terms) may be difficult to derive: merely deciding the existence of roots in Fp or Qp is already
NP-hard (under BPP-reductions) with respect to the sparse encoding [1; 7]. An interesting open problem
in this direction is then the following: if c1, c2, c3, a, b∈{1, . . . , p2

− 1} with a<b< p2
− p, can one

decide if c1+ c2xa
+ c3xb has a root in Z/(p2) in time polynomial in log p?

Our main technical innovations are the following:

• We use ideals in the ring Zp[x1, . . . , xk] of multivariate polynomials over the p-adic integers to
keep track of the roots of f in Z/(pt). More precisely, from the expansion

f (x1+ px2+ · · ·+ pk xk−1)= g1(x1)+ pg2(x1, x2)+ p2g3(x1, x2, x3)+ · · · ,
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we build a collection of ideals in Zp[x1, . . . , xk], starting from (g1(x1)). We then decompose the
ideals according to multiplicity type and rationality. This process produces a tree of ideals which
ultimately encode the summands making up our final root count.

• The expansion above is not unique. (For example, adding p to g1 and subtracting 1 from g2 gives
us another expansion.) However, we manage to keep most of our computations within Fp, and
maintain uniformity for the roots of our intermediate ideals, by using Teichmüller lifting (described
in Section 4).

2. Overview of our approach

To count the number of roots in Z/(pt) of f ∈ Z[x], our algorithm follows a divide-and-conquer strategy.
First, partially factor f over Fp according to multiplicity and rationality as follows:

f = f1 f 2
2 f 3

3 · · · f l
l F (mod p), (1)

where each fi∈Fp[x] is monic and splits completely into a product of distinct linear factors over Fp, the fi

are pairwise relatively prime, and F is free of linear factors in Fp[x]. Such a factorization is classically
known to be doable in deterministic polynomial-time (see, e.g., [2, pp. 170–171]). For an element α ∈ Fp,
we call any element of its inverse image under the natural map Z→ Fp a lift of α to Z. Similarly, we can
define a lift of α to Zp or to Z/(pt), and we can naturally extend this concept to polynomials in Fp[x] as
well. The core of our algorithm counts how many roots of f in Z/(pt) are lifts of roots of fi in Fp, for
each i . For f1, by Hensel’s lifting lemma, the answer should be deg f1 for all t . For other fi , however,
Hensel’s lemma will not apply, so we run our algorithm on the pair ( f,m), where m is the lift of (a factor
of) fi to Z[x],1 for each i ∈ {2, . . . , l}, to see how many lifts (to roots of f in Z/(pt)) are produced by
the roots of the fi in Fp. The final count is then the summation of the results over all the fi , since the
roots of f in Z/(pt) are partitioned by the roots of the fi .

Remark 2.1. If one instead uses a randomized factorization algorithm (e.g., [19]) to find roots of f in Fp

in polynomial time then one may assume deg m=1, and greatly simplify the analysis of our algorithm.

Since m| f (and in fact m2
| f ) in Fp[x], we have f (x)= 0 (mod (m(x), p)) and, in Z[x1, x2], we have

the containment

f (x1+ px2) ∈ (m(x1), p).

If we have the refined containment f (x1+ px2) ∈ (m(x1), pt) then for any root r1 of m in Z/(pt), and
any integer 0 ≤ r2 < pt−1, f (r1+ pr2) = 0 (mod pt). Thus each root of m in Fp lifts to exactly pt−1

roots of f in Z/(pt), and the counting problem for ( f,m) is solved. Otherwise we can efficiently find
an integer s ∈ {1, . . . , t − 1} and a g∈Z[x1, x2] such that

f (x1+ px2)= ps g(x1, x2) (mod (m(x1), pt)), (2)

1All factors of all fi are ultimately exhausted.
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where degx2
g ≤ t − 1, degx1

g < deg m and g(x1, x2) 6= 0 (mod p,m(x1)). Let

g(x1, x2)=
∑

0≤ j<t

g j (x1)x
j
2 .

Then either g j = 0 (mod p) or gcd(m(x1), g j (x1))= 1 over Fp. (Otherwise, we apply the algorithm to
the pairs ( f, gcd(m, g j )) and ( f, m/gcd(m, g j )).)

If s = 1 then, since m2
| f over Fp, we must have

f (x1+ px2)= pg0(x1) (mod m(x1), p2).

Since gcd(m, g0)= 1 over Fp, none of the roots of m in Fp can be lifted to Z/p2. So from now on we
assume that 1< s < t .

The algorithm for t = 3. The only interesting case is when s = 2.

Theorem 2.2. The number of roots in Z/(p3) of f that are lifts of roots of m (mod p) is equal to p
times the number of roots in F2

p of the 2× 2 polynomial system

m(x1)= 0, g(x1, x2)= 0, (3)

and thus the number of roots can be calculated in deterministic polynomial time.

Proof. To calculate the number of the roots, we run the Euclidean algorithm to compute the gcd of two
polynomials,

g(x1, x2) and x p
2 − x2,

viewed as polynomials in x2 over Fp[x1]/(m(x1)). If we encounter a zero divisor of Fp[x1]/(m(x1))

during the computation, then we have a nontrivial factorization of m(x1)= m1m2. We recursively count
the Fp solutions of the equation system m1(x1)= 0 and g(x1, x2)= 0, and the system m2(x1)= 0 and
g(x1, x2)= 0, and output the sum of these two numbers.

Otherwise assume that the degree of the gcd (a monic polynomial in x2) is n2. The number of Fp-roots
of (3) is equal to n2 deg(m(x)).

Since the number of factors of m(x1) is at most deg(m(x)), and the Euclidean algorithm can be done
in deterministic polynomial time, the theorem follows. �

More details and generalization (to the Gröbner base computation) of the algorithm can be found in
Section 6. Note that since degx2

g ≤ 2 any root of m in Fp can be lifted to at most 2p roots in Z/(p3).
Assume that f ∈ Z[x] is not divisible by p. The preceding ideas are formalized in Algorithm 1.

A proposition for general t. Let r ∈ Fp be any root of m, let r ′ be the corresponding lifted root of m
in Zp, and let a ∈ Zp. We then have

f (r ′+ ap)= ps g(r ′, a) (mod pt).
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Algorithm 1: The case t = 3

1 function COUNT( f (x) ∈ Z[x], f (x) 6= 0 (mod p))
2 factor f as in (1)
3 count = deg f1 F Every root of f1 can be lifted uniquely.
4 push f2, f3, . . . , fl onto a stack S
5 while S 6=∅ do
6 pop a polynomial from the stack, find its lift to Z and denote it by m
7 if f (x1+ px2)= 0 (mod (m(x1), p3)) then
8 count← count+ p2 deg m
9 else

10 find s and g satisfying the conditions in (2)
11 if deg gcd(m, g j ) > 0 for some j then
12 push gcd(m, g j ) and m/ gcd(m, g j ) onto the stack
13 else
14 if s = 2 then
15 count← count+ p·(the number of solutions of (3) in F2

p)
16 return count

So r ′+ ap is a root in Z/(pt) for f if and only if

g(r ′, a)= 0 (mod pt−s).

The preceding argument leads us to the following result.

Proposition 2.3. The number of roots in Z/(pt) of f that are lifts of the roots of m (mod p) is equal
to ps−1 times the number of solutions in (Z/(pt−s))2 of the following 2× 2 polynomial system (in the
variables (x1, x2)):

m(x1)= 0, g(x1, x2)= 0. (4)

Since the root of m is liftable only when s > 1 (see the discussion at the beginning of the section),
this yields the following dichotomy:

Corollary 2.4. If m2
| f in Fp[x], and t ≥ 2, then any root of m in Fp is either not liftable to a root in

Z/(pt) of f , or can be lifted to at least p roots of f in Z/(pt).

3. From Taylor series to ideals

For any univariate polynomial m of degree n let us define

Tm, j (x, y)=
∑

1≤i≤ j

yi−1

i !
d i m
(dx)i

(x).

Note that if m ∈ Z[x] then 1
i ! d

i m/(dx)i (x), being a Taylor expansion coefficient, also lies in Z[x].
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So Tm, j is an integral multivariate polynomial for any j. Since Tm,1 does not depend on y, we abbreviate
Tm,1(x, y) by Tm(x). The following lemma follows from a simple application of Taylor expansion:

Lemma 3.1. Let m ∈ Z[x] be a polynomial that is irreducible in Z[x] but splits completely, without
repeated factors, into linear factors in Fp[x]. Let r ∈ Fp be any root of m and let r ′ ∈ Zp be the
corresponding p-adic integer root of m. Then

m(r ′+ ap)= apTm(r) (mod p2).

To put it in another way, we have the following congruence:

m(x1+ px2)≡ px2Tm(x1) (mod m(x1), p2)

in the ring Z[x1, x2].

That one can always associate an r ∈ Fp to a root r ′ ∈ Zp as Lemma 3.1 is an immediate consequence
of the classical Hensel’s Lemma [14]. More generally, we have the following stronger result:

Lemma 3.2. Let m ∈ Z[x] be a polynomial that is irreducible in Z[x] but splits completely, without
repeated factors, into linear factors in Fp[x]. Let r ∈ Fp be any root of m, and let r ′ ∈ Zp be the
corresponding p-adic integer root of m. Then for any positive integer u,

m(r ′+ ap)= apTm,u−1(r ′, ap) (mod pu).

Also, in the ring Z[x1, x2], we have

m(x1+ px2)= x2 pTm,deg(m)(x1, px2) (mod m(x1)).

Proof. By Taylor expansion:

m(r ′+ ap)= m(r ′)+
∑

1≤i<u

(ap)i

i !
d i m
(dx)i

(r ′) (mod pu)

=

∑
1≤i<u

(ap)i

i !
d i m
(dx)i

(r ′) (mod pu)= ap
∑

1≤i<u

(ap)i−1

i !
d i m
(dx)i

(r ′) (mod pu)

As observed earlier, 1
i ! d

i m/(dx)i (x) is an integral polynomial (even when i > p−1), so we are done. �

Note that in the setting of Lemma 3.2, Tm,u−1(r ′, ap)≡ Tm(r ′) 6= 0 (mod p).
The following theorem is a generalization of the preceding lemmas to ideals.

Theorem 3.3. Let I be an ideal in Zp[x1, . . . , xk−1]. Assume that I (mod p) is a zero-dimensional
radical ideal in Fp[x1, . . . , xk−1] whose zero set in Fk−1

p lies in Fk−1
p and lifts to Zp. Let f ∈Z[x1, . . . , xk]

satisfy degxk
f < p. If f (r1, . . . , rk)≡ 0 (mod ps) for every Zp-root (r1, . . . , rk−1) of I, and every integer

rk , then there must exist a polynomial g(x1, . . . , xk) such that

f (x1, . . . , xk)≡ ps g(x1, . . . , xk) (mod I ).
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Theorem 3.3 can be proved by induction on k. Lemma 3.2 is basically the special case of Theorem 3.3
when s = 1, k = 2, I = (m(x1)) and f (x1, x2)= m(x1+ px2). It is important in Theorem 3.3 that the
ideal I (mod p) be radical, just like in Lemma 3.2, where m is free of repeated factors over Fp.

4. The case t = 4 and the need for Teichmüller lifting.

Here we work on the case t = 4. Earlier, we saw that in the course of our algorithm, m is a lift of a factor
of fi to Z[x]. In this section we will show the need for Teichmüller lifting. We start with

f (x1+ px2)= ps g(x1, x2) (mod m(x1), p4),

where 1< s < 4. If s = 3 then we have the following root count, thanks to Proposition 2.3:

Theorem 4.1. The number of roots in Z/(p4) of f that are lifts of roots of m (mod p) is equal to p2

times the number of roots in F2
p of the 2× 2 polynomial system (in the variables (x1, x2)),

m(x1)= 0, g(x1, x2)= 0, (5)

which can be calculated in deterministic polynomial time.

The most interesting subcase is thus s = 2. From (3), we first build an ideal

(m(x1), g(x1, x2)) (mod p)⊂ Fp[x1, x2].

The leading coefficient of g(x1, x2), considered as a polynomial in x2, is assumed to be invertible in
Fp[x1]/(m(x1)). So g can be made monic (as a polynomial in x2). Thus we may assume that the ideal is
given as

(m(x1), xn2
2 + f2(x1, x2)),

where n2 ≤ 2 and degx2
f2 < n2. If (r, r2) is a root in Fp of the ideal, and r1 is the lift of r to the Zp-root

of m, then r1+ pr2 is a solution of f (mod p3). We compute the rational component of the ideal, and
find its radical over Fp. In the process, we may factor m in Fp[x]. If we lift naively a factor m1 of m
over Fp, the p-adic roots of m1 may not be p-adic roots of m. So how do we keep the information about
p-adic roots of m, a polynomial with integer coefficients?

Our solution to this problem is to use Teichmüller lifting: recall that for an element α in the prime field
F/p, the Teichmüller lifting of α is the unique p-adic integer w(α) ∈ Zp such that w(α)≡ α mod p and
w(α)p

= w(α). If a is any integer representative of α, the Teichmüller lifting of α can be computed via

w(α)= lim
k→∞

a pk
, w(α)≡ a pt

mod pt .

Although the full Teichmüller lifting cannot be computed in finite time, we will see momentarily how
its mod pt reduction can be computed in deterministic polynomial time.

Let us now review how the mod pt reduction of the Teichmüller lift can be computed in deterministic
polynomial time: if m ∈ Z[x] is a monic polynomial of degree d > 0 such that m mod p splits as a
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product of distinct linear factors,

m(x)≡
d∏

i=1

(x −αi ) mod p, αi ∈ Fp,

then the Teichmüller lifting of m mod p is defined to be the unique monic p-adic polynomial m̂ ∈ Zp[x]
of degree d such that the p-adic roots of m̂ are exactly the Teichmüller lifting of the roots of m mod p.
That is,

m̂(x)=
d∏

i=1

(x −w(αi )) ∈ Zp[x].

The Teichmüller lifting m̂ can be computed without factoring m mod p: Using the coefficients of m, one
forms a d × d companion matrix M with integer entries such that m(x)= det(x Id −M). Then, one can
show that

m̂(x)= lim
k→∞

det(x Id −M pk
), m̂(x)≡ det(x Id −M pt

) mod pt .

This construction and computation of Teichmüller lifting of a single polynomial m(x) mod p can be
extended to any triangular zero-dimensional radical ideal with only rational roots as follows.

Let I be a radical ideal of the form

I = (g1(x1), g2(x1, x2), . . . , gk(x1, . . . , xk))⊂ Fp[x1, . . . , xk],

having only rational roots, where gi ∈ Z[x1, . . . , xi ] is a monic polynomial in xi of the form

gi (x1, . . . , xi )= xni
i + fi (x1, . . . , xi ), ni ≥ 1,

satisfying degxi
fi < ni . Such a presentation of the ideal I is called triangular form. It is clear that such an

I is a zero-dimensional complete intersection. Using the companion matrix of a polynomial, we can eas-
ily find ni×ni matrices Mi−1(x1, . . . , xi−1) whose entries are polynomials with coefficients in Z such that

gi (x1, . . . , xi )≡ det(xi Ini −Mi (x1, . . . , xi−1)) mod p, 1≤ i ≤ k.

Recursively define the polynomial fi ∈ (Z/(pt))[x1, . . . , xi ] for 1≤ i ≤ k such that

f1(x1)≡ det(x1 In1 −M pt

0 ) mod pt ,

f2(x1, x2)≡ det(x2 In2 −M1(x1)
pt
) mod (pt , f1(x1)),

...

fk(x1, . . . , xk)≡ det(xk Ink −Mk−1(x1, . . . , xk−1)
pt
) mod (pt , f1, . . . , fk−1).

The ideal Î = ( f1, . . . , fk) ∈ (Z/(pt))[x1, . . . , xi ] is called the Teichmüller lifting mod pt of I. It is
independent of the choice of the auxiliary integral matrices Mi . The roots of Î over Z/pt Z are precisely
the Teichmüller liftings mod pt of the roots of I over Fp. In particular, each root (r1, . . . , rk) over Z/(pt)

of Î satisfies the condition r p
i ≡ ri mod pt .
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We require that m be the Teichmüller lift of (a factor of ) fi at the beginning of the algorithm. Then
we compute the Teichmüller lift of the ideal (m(x1), xn2

2 + f2(x1, x2)), which is an ideal in Zp[x1, x2].
We only need it modulo p4. Denote the ideal by I2. For every root (r1, r2) of I2, r1+ pr2 is a solution
of f (x) = 0 (mod p3). Namely, for any integer r3, we have f (r1 + pr2 + p2r3) = 0 (mod p3), since
f (x1+ px2)= 0 (mod I2, p3).

According to Theorem 3.3, there exists a polynomial G ∈ Z[x1, x2, x3] such that

f (x1+ px2+ p2x3)≡ p3G(x1, x2, x3) (mod I2),

since I2 (mod p) is radical. We have

f (x1+ px2+ p2x3)= g1(x1, x2)p3x3+ g0(x1, x2)p3 (mod (I2, p4)).

Hence if (r1, r2) is a root of I2, then r1+ pr2+ p2r3 is a root of f (mod p4) if and only if (r1, r2, r3)

satisfies
g1(r1, r2)r3+ g0(r1, r2)= 0.

Assume that g1 6≡ 0 (mod I2, p). We count the number of rational roots of

(I2, g1(x1, x2)x3+ g0(x1, x2)) (mod p)⊂ Fp[x1, x2, x3].

Multiplying the resulting count by p yields the number of roots of f in Z/(p4).

5. Generalization to arbitrary t ≥ 5

We now generalize the idea for the case of t = 4 to counting roots in Z/(pt) of f (x) when t ≥ 5 and f is
not identically 0 mod p. (We can of course divide f by p and reduce t by 1 to apply our methods here,
should p divide f .) In the algorithm, we build a tree of ideals. At level k, the ideals belong to the ring
(Z/(pt))[x1, . . . , xk]. The root of the tree (level 0) is {0} ⊂ Z/(pt), the zero ideal. At the next level the
ideals are of the form (m(x1)), where m is taken to be the Teichmüller lift of fi in (1). We study how
the roots in Zp of m can be lifted to roots of f in Z/(pt).

Let I0, I1, . . . , Ik be the ideals in a path from the root to a leaf. We require the following:

• I0 = {0} ⊂ Z/(pt) and Ii ⊂ (Z/(pt))[x1, . . . , xi ].

• Ii = Ii+1 ∩Z/(pt)[x1, . . . , xi ] for all 0≤ i ≤ k− 1.

• The ideal Ii (mod p) in Fp[x1, . . . , xi ] is zero-dimensional, radical, and has only rational roots for
all i ∈ {0, . . . , k}; furthermore, Ii can be written in the form

(Ii−1, xni
i + fi (x1, . . . , xi ))⊂ (Z/(pt))[x1, . . . , xi ], (6)

where degxi
fi < ni .

• The ideal Ii is the mod pt reduction of the Teichmüller lift of the mod p reduction of Ii .
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The basic strategy of the algorithm is to grow every branch of the tree until we reach a leaf whose
ideal allows a trivial count of solutions (in which case we output the count and terminate the branch).
Once all the branches terminate, we then compute the summation of the numbers on all the leaves as
the output of the algorithm. The tree of ideals contains all necessary information about the solutions of
f (mod pt) in the following sense:

• For any ideal Ii in the tree, there exists an integer s ∈ {i, . . . , t}, such that if (r1, . . . , ri ) is a solution
of Ii in (Z/(pt))i , then r1+ pr2+· · ·+ pi−1ri+ pir is a solution of f (x) (mod ps) for any integer r .
Denote the maximum such s by s(Ii ).

• If r ∈ Z/(pt) is a root of f (mod pt), then there exists a terminal leaf Ik in the tree such that

r ≡ r1+ pr2+ · · ·+ pk−1rk (mod pk)

for some root (r1, . . . , rk)(Z/(pt))k of Ik .

• The root sets of ideals from distinct leaves are disjoint.

Suppose that at the end of a branch we have an ideal Ik ⊂ (Z/(pt))[x1, . . . , xk]. The ideal Ik (mod p)
is zero-dimensional and radical in Fp[x1, . . . , xk], with only rational roots. There are two termination
conditions:

• If s(Ik) = t then each root of Ik in Zk
p produces exactly pt−k roots of f in Z/(pt). We can count

the number of roots in Fk
p of Ik , multiply it by pt−k, output the number, and terminate the branch.

• Let g be the polynomial satisfying

f (x1+ px2+ p2x3+ · · ·+ pk−1xk + pk xk+1)≡ ps(Ik)g(x1, . . . , xk+1) (mod Ik).

Such a polynomial exists according to Theorem 3.3. If g (mod p) is a constant polynomial in xk+1,
and its constant is an invertible element (mod Ik, p), then the count on this leaf is zero.

Example 5.1. Suppose t = 2. For the polynomials x2
= 0 and x2

+ p = 0, the ideal (x1) is a terminal
leaf with count p for the former polynomial, and with count 0 for the latter.

If none of the conditions hold then let

g =
∑
j≤t/k

g j (x1, . . . , xk)x
j
k+1 (mod p).

The degree bound t/k is due to the fact that pk j divides any term in the monomial expansion of

f (x1+ px2+ · · ·+ pk−1xk + pk xk+1)

that has a factor x j
k+1. If any of the g j vanish at some rational root of Ik in Fk

p then this allows Ik (mod p) to
be expressed as an intersection of simpler ideals. Otherwise, for the ideal (Ik, g)⊂ (Z/(pt))[x1, . . . , xk+1],
we compute its decomposition in Fp[x1, . . . , xk+1] according to multiplicity type, find the radicals of the
underlying ideals, and then lift them back to (Z/(pt))[x1, . . . , xk+1]. They become the children of Ik .
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Note that if (Ik, g) does not have rational roots, it means that none of the roots of Ik can be lifted to a
solution of f (mod ps+1), and thus the branch terminates with count 0.

Proof of Theorem 1.1. If p ≤ d then factoring polynomials over Fp can be done in time polynomial in d
by brute force, and all the ideals in the tree are maximal. The number of children that an ideal with
distance k from the root can have is bounded from above by t/k or the degree of g. (More precisely, the
number of nonterminal child nodes is bounded from above by t/(2k).) The complexity is determined by
the size of the tree, which is bounded from above by

d
t∏

k=1

(t/k)= d
t t

t !
< det .

If p > d then this upper bound on the tree size still holds. Since we use Teichmüller lifting during the
algorithm, the tree size will never decrease. The algorithm must stop once the tree size approaches the
upper bound bdet

c. For each tree size change, we either create new children, or split a node. We need
to compute in the ring Fp[x1, . . . , xk]/Ik . Observe that in (6), we must have ni < t/(i − 1) for i ≥ 2. So
the ring is a vector space over Fp of dimension at most

d
t∏

i=2

ni = d
t t−1

(t − 1)!
< det .

Theorem 1.1 follows from the fact that each tree size change involves a number of bit operations at most
polynomial in det log p. �

6. Computer algebra discussion

In this section, we explain how to split ideals over Fp into triangular form so that the Teichmüller lift
to Zp can be computed. We start with the one variable case: For any given ideal

I = ( f (x))⊂ Fp[x],

we can split f into the form

f = gd1
1 · · · g

dt
t g0,

where d1 > · · ·> dt > 0, the polynomials g1, . . . , gt ∈ Fp[x] are separable, pairwise coprime and each
splits completely over Fp, and g0 has no linear factors in Fp[x]. Such a factorization can be computed
deterministically in time polynomial in log(p) deg( f ). Note that, for 1≤ i ≤ t , each root of gi has multi-
plicity di in I. This means that we can count the number of Fp-rational roots of I, and their multiplicities,
in polynomial time. Also, the rational part of I (i.e., excluding the factor g0) is decomposed into t factors
g1, . . . , gt .

Now we show how to go from k variables to k+ 1 variables for any k ≥ 1. Suppose

J = (g1, . . . , gk)⊂ Fp[x1, . . . , xk]
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has triangular form:
g1 = xn1

1 + r1(x1),

g2 = xn2
2 + r2(x1, x2),

...

gk = xnk
k + rk(x1, x2, . . . , xk),

where gi is monic in xi (i.e., degxi
ri < ni ) for 1 ≤ i ≤ k. We further assume that J is radical and

splitting completely over Fp — that is, J has n1n2 · · · nk distinct solutions in Fk
p. In particular, g1(x1)

has n1 distinct roots in Fp and, for each root a1 ∈ Fp of g1, there are n2 distinct a2 ∈ F2 such that (a1, a2)

is a root of g2(x1, x2). In general, for 1 ≤ i < k, each root (a1, . . . , ai ) ∈ Fi
p of (g1, . . . , gi ) can be

extended to ni+1 distinct solutions (a1, . . . , ai , ai+1) ∈ Fi+1
p of gi+1. For convenience, any ideal with

these properties is called a splitting triangular ideal.
Let f ∈ Fp[x1, . . . , xk, xk+1] be any nonzero polynomial which is monic in xk+1, and let I = (J, f ) be

the ideal generated by J and f in Fp[x1, . . . , xk, xk+1]. We want to decompose I into splitting triangular
ideals, together with their multiplicities. More precisely, we want to decompose I into the form

I = (J1, hd1
1 )∩ (J2, hd2

2 )∩ · · · ∩ (Jm, hdm
m )∩ (J0, h0), (7)

where J = J1∩J2∩·· ·∩Jm∩J0, I0 = (J0, h0) has no solutions in Fk+1
p , and the ideals

Ii = (Ji , hi )⊂ Fp[x1, . . . , xk, xk+1],

1≤ i ≤ m, are splitting triangular ideals and are pairwise coprime (i.e., any pair of distinct Ii have no
roots in common).

To get the decomposition (7), we first compute

w := x p
k+1− xk+1 mod G,

where G={g1,g2, . . . ,gk, f } is a Gröbner basis under the lexicographical order with xk+1> xk>· · ·>x1.
Via the square-and-multiply method, w can be computed using O(log(p)3n2) bit operations where n =
deg( f )·n1 · · · nk is the degree of the ideal I. Next we compute the Gröbner basis B of {g1, g2, . . . , gk, f, w}
(under lex order with xk+1 > xk > · · ·> x1), which is radical and completely splitting (hence all of its
solutions are in Fk+1

p and are distinct). This means that we get rid of the nonlinear part (J0, h0) in (7). The
ideal (B) is now equal to the radical of the rational part of I. To decompose (B) into splitting triangular
ideals, we view each polynomial in B as a polynomial in xk+1 with coefficient in Fp[x1, . . . , xk]. Let
t0 = 0< t1 < · · ·< tv be the distinct degrees of xk+1 among the polynomials in B. For 0≤ i ≤ v, let Bi

denote the set of the leading coefficients of all g ∈ B with deg(g)≤ ti . We then have a chain of ideals

J ⊆ (B0)⊂ (B1)⊂ · · · ⊂ (Bv−1)⊂ (Bv)= Fp[x1, . . . , xk]

with the following properties:

(i) 1 ∈ Bv.
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(ii) Each Bi (1 ≤ i ≤ v) is automatically a Gröbner basis under the lex order with xk > · · ·> x1 (one
can remove some redundant polynomials from Bi ).

(iii) For 0 ≤ i < v, each solution of Bi that is not a solution of Bi+1 can be extended to exactly ti+1

distinct solutions of I.

We can compute a Gröbner basis Ci for the colon ideal (Bi+1) : (Bi ) for 0 ≤ i < v. These Ci give
us the different components of J that have different numbers of solution extensions. Together with B,
we get different components of (I, w). These components are completely splitting, but may not be in
triangular form (as stated above). We again use the Gröbner basis structure to further decompose them
until all are splitting triangular ideals (Ji , hi ). Note that computing Gröbner bases, for arbitrary ideals
in Q[x1, . . . , xn], has exponential worst-case complexity [24]. However, all of our ideals are of a special
form, so their Gröbner bases can be computed deterministically in polynomial-time via the incremental
method in [12] (see also [13]).

Finally, to get the multiplicity of each component (Ji , hi ), we compute the Gröbner basis for the ideal
(Ji , f, f ( j)) where f ( j) denotes the j-th derivative of f for j = 1, 2, . . . , deg( f ), until the Gröbner
basis is 1. These ideals may not be in triangular form, so they may split further, but the total number
of components is at most deg f . Hence the total number of bit operations used is still polynomial in
log(p) deg(I ).
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