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The standard approach to evaluate Hecke eigenvalues of a Siegel modular eigenform F is to determine a
large number of Fourier coefficients of F and then compute the Hecke action on those coefficients. We
present a new method based on the numerical evaluation of F at explicit points in the upper half-space
and of its image under the Hecke operators. The approach is more efficient than the standard method
and has the potential for further optimization by identifying good candidates for the points of evaluation,
or finding ways of lowering the truncation bound. A limitation of the algorithm is that it returns floating
point numbers for the eigenvalues; however, the working precision can be adjusted at will to yield as
close an approximation as needed.

1. Introduction

The explicit computation of classical modular forms and their associated L-functions has been very useful
to formulate and verify conjectures, to discover new phenomena and to prove theorems. There are a
variety of ways to effectively compute the Fourier coefficients of classical modular forms and, therefore,
their L-functions. Analogous work for Siegel modular forms of degree 2 is less well-developed for,
perhaps, two main reasons:

(1) the methods for computing Siegel modular forms are ad hoc and less efficient than those for com-
puting classical modular forms;

(2) computing Siegel modular forms does not immediately give you the associated L-functions since
the Hecke eigenvalues of Siegel modular forms, unlike in the classical case, are not equal to the
Fourier coefficients and because the Euler factors of the L-function involve knowing both the p-th
and the p2-th eigenvalues.

To give an idea of the difficulty of computing the L-function of a Siegel modular form, we consider
an example. Let ϒ20 be the unique normalized Siegel modular form of degree 2 and weight 20 that is a
Hecke eigenform and not a Saito–Kurokawa lift. Skoruppa [15] gave an explicit formula for ϒ20 in terms
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of the generators of the ring of Siegel modular forms of degree 2, and the largest calculation of ϒ20 has
been carried out by Kohnen and Kuss [7] (we point out that Kurokawa [9; 10] was the first to compute
ϒ20 but his computations were not very extensive). The computation that Kohnen and Kuss carried out
was enough to find the p-th eigenvalue for p ≤ 997 and the p2-th eigenvalue for p ≤ 79. They compute
Fourier coefficients indexed by quadratic forms with discriminant up to 3000000 and then use them to
determine the Hecke eigenvalues. An examination of the formulas on page 387 of [15] shows that to find
the eigenvalue λ(n) of Tn , for n = p2, requires the Fourier coefficients indexed by quadratic forms of
discriminant up to n2

= p4. This relation makes it infeasible to compute many more Fourier coefficients,
and thus Hecke eigenvalues, using this approach. Instead, in this paper, we propose a different approach.

Our method does not compute any of the Fourier coefficients of the Siegel modular form being studied.
Instead, we take suitable truncations of the Fourier expansions of the Igusa generators (whose coefficients
are inexpensive to compute) and use these truncations to evaluate our modular form numerically at points
in the upper half-space. This approach is based on work of Bröker and Lauter [3] in which they use such
techniques to evaluate Igusa functions. Using their method we find the eigenvalue λ(p) of an eigenform
F by doing the following:

• evaluate F at some point Z in the Siegel upper half-space;

• evaluate F |Tp at the same point Z ;

• take the ratio (F |Tp)(Z)/F(Z).

The conceptual shift that we are proposing is that, instead of representing the Siegel modular form F as
a list of Fourier coefficients, we represent F by its values at points in the Siegel upper half-space. The
idea is simple but its importance can be seen by virtue of the results. We remark that in [2] we describe
an implementation of the analogous method for classical modular forms and, in some cases, outperform
the standard method using modular symbols.

The potential to parallelize our algorithm stems from the fact that we sum over the coset decomposition
of the Hecke operators, and the computation of each summand is independent; these computations can
therefore be performed in parallel. Such approaches have been used in the past, for instance in deter-
mining the Hecke eigenvalues of paramodular forms; see [12; 4]. We thank the referees for pointing
this out, and note that the similarity ends at the level of the sum itself: Poor and Yuen specialize the
paramodular eigenform to a modular curve, then compute the summands (which are power series in one
variable) exactly. We work with the Siegel eigenform itself (as a power series in three variables) and
compute good numerical approximations to the summands.

It is important to emphasize that our method takes as input the expression of a Siegel eigenform as a
polynomial in the Igusa generators. Our objective is then to efficiently compute approximate values of
the Hecke eigenvalues. We do not claim to obtain further information about the Fourier coefficients of
the eigenform, nor that this is an efficient way of determining the exact value of the eigenvalues (unless
the latter happen to be integers).
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The paper is organized as follows. We begin by stating some numerical preliminaries used in our
method. Then, we give the relevant background on Siegel modular forms and discuss Bröker and Lauter’s
work and how to compute F |Tp both in theory and in practice. We conclude by presenting some results
of our computations, together with details of the implementation and ideas for further improvement.

2. Numerical preliminaries

Before we describe our algorithm to compute Hecke eigenvalues of Siegel modular forms analytically,
we begin by stating some results related to bounding the error introduced when we evaluate a given Siegel
modular form and its image under the Hecke operators Tp and Tp2 at a point in the upper half-plane.

2.1. Error in quotient. We have a quantity defined as

z = x
y

with x, y ∈ C.

The numerator and denominator can be approximated to xA and yA; we define z A := xA/yA. Given ε > 0,
what values of εx and εy ensure that

if |x − xA|< εx and |y− yA|< εy then |z− z A|< ε?

Lemma 1. With the above notation, let ex = x − xA and ey = y− yA. Then

z− z A =
ex − eyz A

yA+ ey
.

Proof. This follows from a straightforward calculation. �

Proposition 2. For any h ∈ (0, 1), if

εx <
hε|yA|

2
and εy <min

{
(1− h)ε|yA|

2|z A|
,
|yA|

2

}
,

then |z− z A|< ε.

Proof. Under the hypotheses, we have |yA+ ey|> |yA|/2 so

|z− z A|<
2
|yA|

(|ex | + |eyz A|) < hε+ (1− h)ε = ε. �

The value of the parameter h can be chosen in such a way that the calculations of xA and of yA are
roughly of the same level of difficulty.

In order to use the results of Proposition 2 in practice, we need a lower bound on |yA| and an upper
bound on |z A| (which can be obtained from the lower bound on |yA| and an upper bound on |xA|). How
do we bound |xA|? We compute a very coarse estimate x̃ to x , with ε̃x just small enough that |x̃ |−2ε̃x > 0.
(We can start with ε̃x = 0.1 and keep dividing by 10 until the condition holds.) Later we will make sure
that εx is smaller than ε̃x . Then we know that

|x̃ − x |< ε̃x and |xA− x |< εx ≤ ε̃x ,
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so ∣∣|xA| − |x̃ |
∣∣≤ |xA− x̃ |< 2ε̃x ⇒ 0< |x̃ | − 2ε̃x < |xA|< |x̃ | + 2ε̃x ,

giving us lower and upper bounds on |xA|. A similar argument works for |yA|.

3. Siegel modular forms

Let the symplectic group of similitudes of genus 2 be defined by

GSp(4) := {G ∈ GL(4) : t G J G = λ(G)J, λ(G) ∈ GL(1)}, where J =
[

I2

−I2

]
.

Let Sp(4) be the subgroup with λ(G)= 1. The group GSp+(4,R) := {G ∈ GSp(4,R) : λ(G) > 0} acts
on the Siegel upper half-space H2 := {Z ∈ M2(C) :

t Z = Z , Im(Z) > 0} by

G〈Z〉 := (AZ + B)(C Z + D)−1, where G =
[

A B
C D

]
∈ GSp+(4,R), Z ∈ H2. (1)

Let S(2)k be the space of holomorphic Siegel cusp forms of weight k and genus 2 with respect to
0(2) := Sp(4,Z). Then F ∈ S(2)k satisfies

F(γ 〈Z〉)= det(C Z + D)k F(Z)

for all γ =
[ A

C
B
D

]
∈ 0(2) and Z ∈ H2. This also can be written in terms of the slash operator: for

M ∈ GSp+(4,R) let (F |k M)(Z)= det(C Z + D)−k F(M〈Z〉). Then the functional equation satisfied by
a Siegel modular form can be written as

(F |k M)(Z)= F(z)

for all M ∈ Sp(4,Z).
Now we describe the Hecke operators acting on S(2)k . For M ∈GSp+(4,R)∩M4(Z), define the Hecke

operator T (0(2)M0(2)) on S(2)k as in [1, (1.3.3)]. For a positive integer m, we define the Hecke operator
Tm by

Tm :=
∑

λ(M)=m

T (0(2)M0(2)). (2)

See Section 5.1 for an explicit decomposition of the double cosets Tp and Tp2 into right cosets. Suppose

Tm =
∑

0(2)α

is a right coset decomposition of the Hecke operator Tm . Then the operator Tm acts on a Siegel modular
form F of weight k as

(F |k Tm)(Z)=
∑

(F |kα)(Z).

This action can be described in terms of the Fourier coefficients of the Siegel modular form F .
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Any Siegel modular form F of degree 2 has a Fourier expansion of the form

F(Z)=
∑

N

aN (F) exp(2π i Tr(NZ)), aN (F) ∈ C,

where the sum ranges over all positive semidefinite matrices

N =
(

a b/2
b/2 c

)
, with a, b, c ∈ Z.

The quadratic form N is often written [a, b, c] using Gauss’s notation. Using the decompositions of the
Hecke operators in Section 5.1 one can derive formulas for the action of Tp and Tp2 on a Siegel modular
form F . When these formulas are written down as in [15, p. 387] one can see that to compute λF (p),
the Hecke eigenvalue of F with respect to the Hecke operator Tp, one needs Fourier coefficients up to
discriminant of order p2. To compute λF (p2), the Hecke eigenvalue of F with respect to the Hecke
operator Tp2 , one needs Fourier coefficients up to discriminant p4. With current methods, computing
this number of coefficients of a Hecke eigenform that is not a Saito–Kurokawa lift has proven impossible.

A bottleneck to computing such a large number of coefficients is the fact that there is no known way
to compute individual coefficients in parallel. The determination of a single Fourier coefficient requires
knowledge of many other Fourier coefficients. Our method, described above, has approximately the same
number of steps to compute a new Hecke eigenvalue but these steps, in our method, are easily done in
parallel.

4. Evaluating Hecke eigenforms

4.1. Bounds on the coefficients of the Igusa generators.

Proposition 3. Let E4, E6, χ10 and χ12 denote the Igusa generators of the ring of even-weight Siegel
modular forms of genus 2 with respect to Sp(4,Z).

We have the following bounds on the Fourier coefficients of these forms:

|aN (E4)|< 19230 t5,

|aN (E6)|< 12169 t9,

|aN (χ10)|<
1

236
A(ε, 9) t9+ε,

|aN (χ12)|<
1

311
A(ε, 11) t11+ε,

where the last two hold for any ε > 0, t = Tr(N ), and the function A(ε, s) is defined by

A(ε, s)=
1

(2π)1/4
exp(9ε−123/ε/ log(2)) ζ(1+ ε) max

{
1,

√
0(s+ 1/2+ ε)
0(s− 1/2− ε)

}
.
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Proof. It follows directly from [3, Corollary 3.6 and Remark 3.7] that

|aN (E4)|< 19230(4ac− b2)5/2 ≤ 19230 Tr(N )5,

|an(E6)|< 12169(4ac− b2)9/2 ≤ 12169 Tr(N )9.

The second two inequalities follow from [3, Theorem 5.10] with γ = η = ε/3. �

Remark 4. The bounds for χ10 and χ12 in Proposition 3 allow for further optimization by choosing the
parameter ε appropriately.

Considering χ10, the factor t9+ε is of course dominant as t→∞, but choosing ε as small as possible
is counterproductive for practical computations, as the factor A(ε, 9) explodes for small ε.

In our computations, we use ε = 2, so the bounds can be summarized as

|aN (E4)|< 19230 t5, |aN (E6)|< 12169 t9,

|aN (χ10)|< 220439 t11, |aN (χ12)|< 287248 t13,

where t = Tr(N ).

4.2. The truncation error for Siegel modular forms. Let F be a Siegel modular form of degree 2, with
Fourier expansion

F(Z)=
∑

N

aN (F) exp(2πi Tr(NZ)).

Given a positive integer T , we truncate the Fourier expansion of F by considering only those indices N
whose trace is at most T :

FT (Z)=
∑

Tr(N )≤T

aN (F) exp(2π i Tr(NZ)).

Lemma 5. For any t ∈ N, the number of Fourier indices of trace t satisfies

#{N : Tr(N )= t} ≤ (t + 1)(2t + 1)= 2t2
+ 3t + 1≤ 6t2.

Proof. We have

#{N : Tr(N )= t} =
t∑

a=0

(
1+ 2

⌊
2
√

a(t − a)
⌋)
.

There are t + 1 terms in the sum, and the largest corresponds to a = t/2 (or a = (t − 1)/2 if t is odd). In
any case, every term in the sum is at most 1+ 2t . �

Suppose we have, like in Proposition 3, an upper bound on the Fourier coefficients of F :

|aN (F)| ≤ Ctd , where C ∈ R>0, d ∈ N and t = Tr(N ). (3)

We are interested in bounding the gap between the true value F(Z) and its approximation FT (Z).

Proposition 6. Suppose F is a Siegel modular form of degree 2 whose Fourier coefficients satisfy (3),
and Z ∈ H2. We wish to approximate the value F(Z) with error at most 10−h . It is then sufficient to use
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the truncation FT (Z) containing all terms of the Fourier expansion of F with indices of trace at most T ,
where

T > d+2
α(Z)

and 6C d+3
α(Z)

exp(−α(Z)T )T d+2 < 10−h .

Here
δ(Z)= sup{δ′ ∈ R : Im(Z)− δ′ I is positive semidefinite}

and α(Z)= 2πδ(Z).

Proof. Using [3, Lemma 6.1], we have

|F(Z)− FT (Z)| =
∣∣∣∣ ∑

Tr(N )>T

aN (F) exp(2πi Tr(NZ))
∣∣∣∣

≤

∑
Tr(N )>T

|aN (F)|| exp(2πi Tr(NZ))|

≤

∑
Tr(N )>T

|aN (F)| exp(−α(Z)Tr(N ))

<

∞∑
t=T+1

∑
Tr(N )=t

|aN (F)| exp(−α(Z)t)

≤

∞∑
t=T+1

6Ctd+2 exp(−α(Z)t)

≤ 6C
∫
∞

T
xd+2 exp(−α(Z)x) dx

= 6C exp(−α(Z)T )
d+2∑
j=0

(d + 2)!
j !α(Z)d− j+3 T j

<
6C(d + 3)
α(Z)

exp(−α(Z)T )T d+2,

where the last inequality holds if T is in the half-infinite interval on which the integrand is decreasing
(i.e., T > (d + 2)/α(Z)). �

Example 7. We determine T sufficient for computing E4(Z) within 10−20 at the point

z =
(

5i i
i 6i

)
.

We have
α(Z)= 27.5327,

so we are looking for T such that

exp(−α(Z)T )T 7 < 2.983 · 10−25,

which is easily seen (numerically) to hold as soon as T ≥ 3.
We proceed similarly to obtain the values in Table 1.
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T

error E4 E6 χ10 χ12

10−10 2 2 2 2
10−20 3 3 3 3
10−100 10 10 10 11
10−1000 86 86 87 87

Table 1. Truncation necessary for computing F(Z) within specified error

5. Our method

As described above, our method is rather straightforward. We fix a Z ∈ H2 and evaluate F(Z), using
methods in Section 4. Consider the double coset Tp =

∑
0(2)α and its action on F :

(F |k Tp)(Z)=
∑

(F |kα)(Z).

What is left to do, then, is to compute (F |kα)(Z) for α in the decomposition, that is, to be able to write
α as

[ A
C

B
D

]
and to be able to evaluate

det(C Z + D)−k F((AZ + B)(C Z + D)−1).

In Section 5.1 we present the desired decompositions for the Hecke operators Tp and Tp2 and we use the
methods of Section 4 to evaluate the Siegel modular form at the points (AZ + B)(C Z + D)−1

∈ H2.

5.1. Hecke action. Hecke operators are defined in terms of double cosets 0M0 and the action of such
an operator is determined by the right cosets that appear in the decomposition of these double cosets. For
a prime p we consider the double coset Tp = 0

(2) diag(1, 1, p, p)0(2). An explicit version of a formula,
due to Andrianov, for the right cosets that appear in the decomposition of Tp, is given by Cléry and van
der Geer as follows.

Proposition 8 [1; 5]. The double coset Tp admits the left coset decomposition

0(2)


p 0 0 0
0 p 0 0
0 0 1 0
0 0 0 1

+ ∑
0≤a,b,c≤p−1

0(2)


1 0 a b
0 1 b c
0 0 p 0
0 0 0 p


+

∑
0≤a≤p−1

0(2)


0 −p 0 0
1 0 a 0
0 0 0 −1
0 0 p 0

+ ∑
0≤a,m≤p−1

0(2)


p 0 0 0
−m 1 0 a

0 0 1 m
0 0 0 p

 ,
and the degree of Tp is p3

+ p2
+ p+ 1.

Thus, in particular, in order to find λp, then, p3
+ p2
+ p+ 1 independent evaluations of our Siegel

modular form F at points in H2 are required. This is why our method is so amenable to parallelization.
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Similarly, for a prime p define the operator Tp2 as a sum of double cosets:

Tp2 = 0(2)


p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

0(2)+0(2)


1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

0(2)+0(2)


1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

0(2).
Again, based on a result of Andrianov, Cléry and van der Geer give an explicit decomposition of the

operator Tp2 :

Proposition 9 [1; 5]. The Hecke operator Tp2 has degree p6
+ p5
+ 2p4

+ 2p3
+ p2
+ p+ 1 and admits

a known explicit left coset decomposition.

One can do better, however. We can reduce the number of summands at which we need to evaluate F
to be O(p4) instead of O(p6) by using some standard facts about the Hecke algebra for Siegel modular
forms of degree 2. The Hecke operator Tp2 is itself a linear combination of three double cosets:

Tp2,0 = 0
(2) diag(p, p; p, p)0(2),

Tp2,1 = 0
(2) diag(1, p; p2, p)0(2),

Tp2,2 = 0
(2) diag(1, 1; p2, p2)0(2).

(4)

The decomposition in Proposition 9 is itself the (disjoint) sum of the decomposition of three double
cosets Tp2,0, Tp2,1 and Tp2,2.

The p-part of the Hecke algebra is generated by the operators Tp, Tp2,0 and Tp2,1 and, in fact, in
[8; 17] it is shown that

(Tp)
2
= Tp2,0+ (p+ 1)Tp2,1+ (p

2
+ 1)(p+ 1)Tp2,2. (5)

To determine the eigenvalue λp2(F) for F ∈ S(2)k with respect to the Hecke operator Tp2 , using
Proposition 8, we first find the eigenvalue λp(F) for the operator Tp. Then, we find the eigenvalues
λp2,0(F) (known to be p−2k by the definitions in Section 3) and the eigenvalue λp2,1(F) for the operator
Tp2,1. Then using (5) we can find the eigenvalue λp2,2(F) for the operator Tp2,2. Putting it all together,
then, all we need is an explicit decomposition of Tp2,1 into left cosets, in order to compute λp2(F).

Proposition 10 [1]. The Hecke operator Tp2,1 admits the left coset decomposition

∑
0≤α<p

0(2)


p2 0 0 0
−pα p 0 0

0 0 1 α

0 0 0 p

0(2)


p 0 0 0
0 p2 0 0
0 0 p 0
0 0 0 1

+ ∑
0≤a,b,c<p

ac−b2
≡0 (mod p)

and not all zero

0(2)


p 0 a b
0 p b c
0 0 p 0
0 0 0 p



+

∑
0≤α,β<p
0≤C<p2

0(2)


p 0 0 pβ
−α 1 β αβ +C
0 0 p pα
0 0 0 p2

+ ∑
0≤β<p

0≤A<p2

0(2)


1 0 A β

0 p pβ 0
0 0 p2 0
0 0 0 p

0(2).
Thus the degree of Tp2,1 is p4

+ p3
+ p2
+ p.
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Remark 11. In the introduction, we discussed the difficulty of computing λp2(F) using the action of
Tp2 on the coefficients of the eigenform F . One might ask whether we could more efficiently compute
λp2(F) using the action of Tp2,1 on F as described in Proposition 10 and (5). It turns out, though, that
one still would require coefficients up to discriminant p4 using Tp2,1 and (5).

6. Some computations and implementation details

We describe some sample computations involving the eigenform of smallest weight that is not a lift from
lower rank groups, namely the cusp form ϒ20 mentioned in the introduction:

ϒ20 =−E2
4χ12− E4 E6χ10+ 1785600χ2

10.

As a gauge of the performance of the algorithm, we compared the timings to those required by the
implementation [16] of the standard method1 by Sho Takemori.

We implemented the method described in this paper in SageMath [13]; this implementation is available
at [6]. The benchmarks described below were performed using a single core of a Linux machine with an
i7-6700 CPU at 3.40 GHz and 64 GB of RAM, via the following helper functions:

def ups20_eigenvalue_numerical(p, prec, y11):
CRING = _initialise_rings(prec, 2*p)
Z = matrix(CRING, 2, 2, [y11*i, i, i, (y11+1)*i])
R.<a, b, c, d> = QQ[]
f = -a^2*d-a*b*c+1785600*c^2
return _eigenvalue_T_fixed_trace(f, Z, p, 2*p)

def ups20_eigenvalue_standard(p):
with degree2_number_of_procs(1):

a = eisenstein_series_degree2(4, p)
b = eisenstein_series_degree2(6, p)
c = x10_with_prec(p)
d = x12_with_prec(p)
f = -a^2*d-a*b*c+1785600*c^2
return f.hecke_eigenvalue(p)

For the standard algorithm, the most expensive step appears to be the multiplication of the q-expansions
of the Igusa generators. In the case of our numerical algorithm, the majority of the time is spent evaluating
truncations of the q-expansions of the Igusa generators at various points in the Siegel upper half-space.

1The only other publicly available implementation we are aware of is [14]. We did not compare against it for two reasons:
(a) at the moment, the computation of the Hecke image appears to be incorrect for primes that are congruent to 1 mod 4, and (b)
it uses Cython for the most expensive part of the computation, namely the multiplication of the q-expansions. Since both our
code and S. Takemori’s are pure Python, we deemed this to be a more useful comparison of the two algorithms.
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p y11 precision (bits) numerical (s) standard (s)

2 2.7 37 0 0
3 4.3 62 0 0
5 6.1 101 0 0
7 7.5 130 1 1

11 9.5 172 3 7
13 10.3 190 6 15
17 10.9 208 16 55
19 11.9 226 25 90
23 12.3 240 54 230
29 13.5 267 140 735
31 13.9 275 186 1185
37 14.5 295 406 2876

Table 2. Benchmarks comparing the numerical and standard algorithms for computing the Hecke eigenval-
ues of ϒ20. The timings are rounded to the nearest second. The working precision was chosen so that the
eigenvalue is the closest integer to the computed floating point number.

These functions are polynomials in the variables q1, q2, q3 and q−1
3 , where

Z =
(

z1 z3

z3 z2

)
and q j = e2πi z j .

To evaluate such functions efficiently at a large number of points, we implemented an iterative version
of Horner’s method; to illustrate what is involved, here is how the truncation of the Igusa generator χ10

at trace up to 3 is evaluated:

q1
(
q2(q−1

3 − 2+ q3+ q2(−2q−2
3 − 16q−1

3 + 36− 16q3− 2q2
3 ))

+ q1(q2(−2q−1
3 − 16q−1

3 + 36− 16q3− 2q2
3 ))
)
.

Many of the partial evaluations are repeated for different summands of the expression for the Hecke
operators. We take advantage of this phenomenon by caching the results of evaluations of polynomials in
q3 and q−1

3 . All the operations are performed using interval arithmetic (via the ComplexIntervalField
available in Sage). While this introduces a small overhead, it frees us from having to keep track of
precision loss due to arithmetic operations (and evaluations of the complex exponential function). Sage
gives the final approximation of the Hecke eigenvalue in the form

1.0555282184708004141101491800000000000000?e27 + 0.?e-13*I

from which we observe that the answer is most likely the integer

1055528218470800414110149180

which is indeed λ29(ϒ20). The question mark in the floating point number indicates that the last decimal
may be incorrect due to rounding errors (but all preceding decimals are guaranteed to be correct).
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There are certainly many variants of our choices that deserve further scrutiny and may lead to improved
performance. Here are some of the more interesting ones:

• For computing the eigenvalue λp, we chose to focus on the initial evaluation point

Z =
(

y11i i
i (y11+ 1)i

)
,

where the parameter y11 is (at the moment) determined by trial and error. The optimal values of y11

for ϒ20 and small p are listed in the second column of Table 2. We note that the dependence of this
optimal y11 on p appears to be linear in log(p).

The choice of Z is significant for another reason: the fact that Z is a “purely imaginary matrix”
gives an extra symmetry that allows to reduce the number of overall computations by almost a factor
of 2. Note that the timings listed in Table 2 do not incorporate this optimization.

• Our experiments indicate that computing the value of λp accurately using the choice of point Z
described above requires truncating the q-expansions of the Igusa generators at trace up to 2p. It
would be very interesting to see if this trace bound can be lowered; even a small improvement in
the trace can reduce the computation time significantly. We have observed such phenomena in the
case of classical modular forms (treated in [2]).

6.1. Summary of further computations. We performed similar numerical experiments with the follow-
ing forms:

ϒ22 = 61E3
4χ10− 30E4 E6χ12+ 5E2

6χ10− 80870400χ10χ12,

ϒ24a =−67E3
4χ12+ 78E2

4 E6χ10− 274492800E4χ
2
10+ 25E2

6χ12+ 71539200χ2
12,

ϒ24b =+70E3
4χ12− 69E2

4 E6χ10− 214341120E4χ
2
10+ 53E2

6χ12− 137604096χ2
12,

ϒ26a =−22E4
4χ10− 3E2

4 E6χ12+ 31E4 E2
6χ10− 96609024E4χ10χ12− 13806720E6χ

2
10,

ϒ26b = 973E4
4χ10+ 390E2

4 E6χ12− 1255E4 E2
6χ10+ 3927813120E4χ10χ12− 4438886400E6χ

2
10.

These have in common that they are all “interesting” forms (Skoruppa’s terminology and notation), not
arising as lifts from lower rank groups. They also all have rational coefficients (and are very likely the
only rational “interesting” forms in level one).

As we can see in Table 3, while the standard method slows down rapidly with the increase in the
weight, the numerical method seems unaffected by the weight (in this range).

As we increase the weight further, we encounter “interesting” eigenforms defined over number fields
of increasing degree. Our implementation treats these in the same way as the rational eigenforms; the
algebraic numbers appearing in the expression of an eigenform as a polynomial in the Igusa generators
are first embedded into the ComplexIntervalField with the working precision, and the computations
are then done exclusively with complex intervals.
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f numerical (s) standard (s) λ23( f )

ϒ20 57 240 −7159245922546757692913520
ϒ22 59 410 1288399464282335021926848240
ϒ24a 59 559 −5704707774363351635801133259440
ϒ24b 59 563 −2612738224352475069296861434032
ϒ26a 59 658 1723965639346061287785316101052080
ϒ26b 60 659 −2455694249118004577637986236157520

Table 3. Benchmarks comparing the numerical and standard algorithms for computing the Hecke eigen-
value λ23 of the rational “interesting” eigenforms. The timings are rounded to the nearest second.

f numerical (s) standard (s) integer closest to λ11( f )

ϒ28 5 42 −5759681178477373721671849774
ϒ30 5 55 255840273811994841300205675092
ϒ32 5 72 −62889079837500073468061496815555
ϒ34 5 99 439086084572485264922509970244600
ϒ36 5 145 −1085248116783567484088793200996441965
ϒ38 5 171 99082752899176432104304580529696472526
ϒ40 6 316 21639993149436935203941512756710465353890
ϒ42 6 405 1326433094276015828828131422320612505802642
ϒ44 6 697 −216254834133020533289657866886176910904279874
ϒ46 6 1156 3025010356797981861229021682270178023420599162
ϒ48 6 2147 3623681259607683701352889863246901251092385443364
ϒ50 6 3558 −50111326406849287661448298549933139673192742821477
ϒ52 6 7701 −33891727074702812676183940887995219801531644658145401
ϒ54 6 12205 −4324363734737815894771410628259133851153783375885366874
ϒ56 7 19290 807326143967818876211261524740739769895631903544298785221

Table 4. Benchmarks comparing the numerical and standard algorithms for computing the Hecke eigen-
value λ11 of a representative of the unique Galois orbit of “interesting” eigenforms in each of the listed
weights. The timings are rounded to the nearest second.

We illustrate this with a number of examples from the L-functions and Modular Forms Database [11]:
ϒ28, ϒ30, . . . , ϒ56, contributed by Nils-Peter Skoruppa. These are representatives of the unique Galois
orbit of “interesting” Siegel modular eigenforms of level one and weights given by the indices. We
computed the integer closest to the eigenvalues λ2, λ3, . . . , λ11 of these forms and verified the results
against Sho Takemori’s implementation.2 The timings for λ11 appear in Table 4. We note once again
that the change in weight has only a very minimal effect on the timings for the numerical approach. The
degree of the number field over which each eigenform is defined varies from 3 for ϒ28 to 29 for ϒ56.

2The LMFDB contains only λ2, λ3 and λ5 for the forms ϒ28, . . . , ϒ48. We are not aware of the other eigenvalues we
computed having been published anywhere.
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