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We give an interim report on some improvements and generalizations of the Abbott–Kedlaya–Roe
method to compute the zeta function of a nondegenerate ample hypersurface in a projectively normal
toric variety over Fp in linear time in p. These are illustrated with a number of examples including
K3 surfaces, Calabi–Yau threefolds, and a cubic fourfold. The latter example is a nonspecial cubic four-
fold appearing in the Ranestad–Voisin coplanar divisor on moduli space; this verifies that the coplanar
divisor is not a Noether–Lefschetz divisor in the sense of Hassett.

1. Introduction

We consider the problem of computing the zeta function Z(X , t) of an explicitly specified variety X
over a finite field Fq of characteristic p. For curves and abelian varieties, Schoof’s method and variants
[Sch85; Pil90; GS04; GKS11; GS12] can compute Z(X , t) in time and space polynomial in log q and
exponential in the genus/dimension; these have only been implemented for genus/dimension at most 2.
Such methods may be characterized as `-adic, as they access the `-adic cohomology (for ` 6= p prime)
of the variety via torsion points; there also exist p-adic methods which compute approximations of the
Frobenius action on p-adic cohomology (Monsky–Washnitzer cohomology), and which have proven
to be more viable in practice for large genus. Early examples include Kedlaya’s algorithm [Ked01] for
hyperelliptic curves, in which the time/space dependence is polynomial in the genus and quasilinear in p,
and Harvey’s algorithm [Har07], which improves the dependence on p to p1/2+ε. These methods have
been subsequently generalized [GG01; DV06a; DV06b; Har12], notably by Tuitman’s algorithm [Tui16;
Tui17], which applies to (almost) all curves while keeping the quasilinear dependence on p. In another
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direction, Harvey [Har14] has shown that when computing the zeta functions of reductions of a fixed
hyperelliptic curve over a number field, p-adic methods can achieve average polynomial time in log p
and the genus; this has been implemented in small genus [HS14; HS16].

One advantage of p-adic methods over `-adic ones is that they scale much better to higher-dimensional
varieties. For example, there are several p-adic constructions that apply to arbitrary varieties with reason-
able asymptotic complexity [LW08; Har15], although we are not aware of any practical implementations.
Various algorithms, and some implementations, have been given using Lauder’s deformation method of
computing the Frobenius action on the Gauss–Manin connection of a pencil [Lau04a; Lau04b; Ger07;
Hub08; PT15; Tui19].

In this paper, we build on an algorithm of Abbott, Kedlaya and Roe [AKR10] which adapts the original
approach of [Ked01] to smooth projective hypersurfaces. Here, we add two key improvements:

• We use controlled reduction in de Rham cohomology, as described in some lectures of Harvey
[Har10a; Har10b; Har10c], to preserve sparsity of certain polynomials, thus reducing the time (re-
spectively, space) dependence on p from polynomial to quasilinear (respectively, O(log p)). The
resulting controlled AKR method was implemented, with further improvements, in Costa’s Ph.D.
thesis [Cos15], with examples of generic surfaces and threefolds over Fp for p ∼ 106 [Cos15, §1.6];
by contrast, the largest p used in [AKR10] is 29. Costa and Harvey are currently preparing a paper
on this method; meanwhile, Costa’s GPL-licensed code is available on GitHub [Cos] and is slated
to be integrated into SageMath [Sag].

• We also generalize to toric hypersurfaces, subject to a standard genericity condition called nondegen-
eracy. This greatly increases the applicability of the method while preserving much of its efficiency.
Some previous attempts have been made to compute zeta functions in this setting, such as work of
Castryck, Denef and Vercauteren [CDV06] for curves and Sperber and Voight [SV13] in general; it
is the combination with controlled reduction that makes our approach the most practical to date.

It may be possible to improve the dependence on p to square-root (as in [Har07]) or average polynomial
time (as in [Har14]), but we do not attempt to do so here.

For reasons of space, we give only a summary of the algorithm, with further details to appear elsewhere.
In lieu of these details, we present a number of worked examples in dimensions 2-4 that demonstrate
the practicality of this algorithm in a wide range of cases. The results are based on an implementation
in C++, using NTL [Sho] for the underlying arithmetic operations. Our examples in dimensions 2 and 3
were computed on one core of a desktop machine with an Intel Core i5-4590 3.30GHz processor; our
sole example in dimension 4 was computed on one core of a server with an AMD Opteron 6378 1.6GHz
processor. (We have not yet optimized our vector-matrix multiplications in any way; as a consequence,
we observe a serious performance hit whenever the working moduli exceeds 262.)

In dimensions 2 and 3, our examples are Calabi–Yau varieties, i.e., smooth, proper, simply connected
varieties with trivial canonical bundle. In dimension 1, these are simply elliptic curves. In dimension 2,
they are K3 surfaces, whose zeta functions are of computational interest for various reasons. For instance,



ZETA FUNCTIONS OF NONDEGENERATE HYPERSURFACES IN TORIC VARIETIES 223

these zeta functions can (potentially) be used to establish the infinitude of rational curves on a K3 surface
(see the introduction to [CT14] for discussion); there has also been recent work on analogues of the
Honda–Tate theorem, establishing conditions under which particular zeta functions are realized by K3
surfaces [Tae16; Ito16].

As for Calabi–Yau threefolds, much of the interest in their zeta functions can be traced back to mir-
ror symmetry in mathematical physics. An early example is the work of Candelas, de la Ossa and
Rodriguez Villegas [CdlORV03] on the Dwork pencil; a more recent example is [DKS+16], in which
(using p-adic cohomology) certain mirror families of Calabi–Yau threefolds are shown to have related
zeta functions.

Our four-dimensional example is a cubic projective fourfold. Such varieties occupy a boundary region
between rational and irrational varieties; it is expected that a rational cubic fourfold is special in the sense
of having a primitive cycle class in codimension 2. The geometry of special cubic fourfolds is in turn
closely linked to that of K3 surfaces; in many cases, the Hodge structure of a K3 surface occurs (up to
a twist) inside the Hodge structure of a special cubic fourfold, and (modulo standard conjectures) this
implies a similar relationship between zeta functions. See [Has16] for further discussion.

The specific example we consider is related to the geometry of the moduli space of cubic fourfolds
over C. On this space, there exist various divisors consisting entirely of special cubic fourfolds; Hassett
calls these Noether–Lefschetz divisors (by analogy with the case of surfaces). Recently, Ranestad and
Voisin [RV17] exhibited four divisors which they believed not to be Noether–Lefschetz, but only checked
this in one case. Addington and Auel [AA17] checked two more cases by finding in these divisors some
cubic fourfolds over Q with good reduction at 2 such that the zeta functions over F2 show no primitive
Tate classes in codimension 2. By replacing the brute-force point counts of Addington and Auel with
p-adic methods, we are able to work modulo a larger prime to find an example showing that the fourth
Ranestad–Voisin divisor is not Noether–Lefschetz.

To sum up, the overall goal of this project is to vastly enlarge the collection of varieties for which
computing the zeta function is practical. It is our hope that doing so will lead to a rash of new insights,
conjectures, and theorems of interest to a broad range of number theorists and algebraic geometers.

2. Toric hypersurfaces

We begin by reviewing the construction of a projective toric variety from a lattice polytope. For more
details we recommend [CLS11].

Let n ≥ 1 be an integer. For any commutative ring R, let R[x±] denote the Laurent polynomial ring
in n variables x1, . . . , xn with coefficients in R. For α := (αi ) ∈ Zn , we write xα for the monomial
xα1

1 · · · x
αn
n . We denote the R-torus by Tn

R := Spec(R[x±]).
Let 1⊂ Rn be the convex hull of a finite subset of Zn that is not contained in any hyperplane, so that

dim1= n. For r ∈ R, let r1 be the r -fold dilation of 1. For an integer d ≥ 0, let

Pd := 〈xα : α ∈ d1∩Zn
〉R and P Int

d := 〈x
α
: α ∈ Int(d1)∩Zn

〉R
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be the free R-modules on the sets of monomials with exponents in d1∩Zn and Int(d1)∩Zn respectively.
Define the R-graded algebras

P1 :=
+∞⊕
d=0

Pd and P Int
1 :=

+∞⊕
d=0

P Int
d

with the usual multiplication in R[x±]. We define the polarized toric variety associated to 1 as the
pair (P1,O1), where P1 := Proj P1 and O1 is the ample line bundle on P1 associated to the graded
P1-module P1(1). Note that P1 and P Int

1 admit n commuting degree-preserving differential operators
∂i := xi (∂/∂xi ) for i = 1, . . . , n.

In order to suppress some expository and algorithmic complexity, we make the simplifying assumption
that 1 is a normal polytope; that is, the map

(1∩Zn)d → d1∩Zn, (x1, . . . , xd) 7→ x1+ · · ·+ xd ,

is surjective for d ≥ 1. This corresponds to the pair (P1,O1) being projectively normal; this will be the
case in our examples. As a consequence, we have that O1 is indeed very ample.

Example 2.1. Let 1 be the regular n-simplex, the convex hull of 0, e1, . . . , en . We may then identify
Pd with the set of homogeneous polynomials of degree d in x0, . . . , xn , by identifying xα ∈ P1,d with
the monomial xd−α1−···−αn

0 xα1
1 · · · x

αn
n ; then (P1,O1) is isomorphic to (Pn

R,O(1)).
We obtain the weighted projective space P(w0, . . . , wn) by taking

1=
{
(x0, . . . , xn) ∈ Rn+1

:
∑n

i=0wi xi = w0 · · ·wn
}
;

see [Dol82, 1.2.5].
We obtain Pk

R ×R Pr
R by taking 1 to be the Cartesian product of the regular k-simplex by the regular

r -simplex [CLS11, §2.4].

We now turn our attention to toric hypersurfaces over R = Fq , the finite field with q = pa elements
and characteristic p. Let Y be the hypersurface in Tn

Fq
defined by a Laurent polynomial f ∈ Fq [x±],

Y := V ( f )⊂ Tn
Fq

. Let

supp f = {α ∈ Zn
: cα 6= 0}

be the support of f in Rn; the convex hull of supp f is the Newton polytope of f , which we denote by 1.
We will work under the hypothesis that f is (1-)nondegenerate:1 for all faces τ ⊆1 (including 1 itself),
the system of equations

f �τ = ∂1 f �τ = · · · = ∂n f �τ = 0

has no solution in F×n
q , where Fq denotes an algebraic closure of Fq . Furthermore, nondegeneracy im-

plies quasismoothness; see [BC94, Definition 3.1 and Proposition 4.15]. For fixed normal 1 over an

1This condition was introduced by Dwork [Dwo62] without a name; the term nondegenerate first appears in [Kou76; Var76].
Synonyms include 1-regular [Bat93, § 4] and schön [Tev07].
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infinite field, this condition holds for generic f . Others have given point-counting algorithms under this
assumption [CDV06; SV13].

Let X := Proj P1/( f ) denote the closure of Y in P1 (placing f in degree 1) and set U := Tn
\Y . Let

H i
rig denote the i-th rigid cohomology group in the sense of Berthelot [Ber97]. The Lefschetz hyperplane

theorem, combined with Poincaré duality, shows that the map

H i
rig(P1)→ H i

rig(X )

induced by the inclusion X ↪→ P1 is an isomorphism for i 6= n − 1 [BC94, Proposition 10.8]. This
implies that the “interesting” part of the cohomology of X occurs in dimension n− 1 and consists of
those classes that do not come from P1. Denote by PH n−1

rig (X ) the primitive cohomology group of X ,
defined by the (Frobenius-equivariant) exact sequence

0→ H n−1
rig (P1)→ H n−1

rig (X )→ PH n−1
rig (X )→ 0.

With this notation, we may write

Z(X , t)= Z(P1, t)Q(t)(−1)n ,

where
Q(t) := det(1− t Frobq |PH n−1

rig (X )).

Thus given f , we would like to compute Q(t).
The cohomology group PH n−1

rig (X ) is closely related to H n
rig(P1\X ). For example, if P1 is a (weighted)

projective space, as in [AKR10; Cos15], the two cohomology groups are isomorphic; see [BC94, Propo-
sition 10.11].

3. de Rham cohomology of toric hypersurfaces

In preparation for our use of p-adic cohomology to compute Q(t), we give an explicit description of the
algebraic de Rham cohomology of a nondegenerate toric hypersurface in characteristic zero. We take R
to be the ring Zq , that is, the ring of integers of Qq , which is the unramified extension of Qp with residue
field Fq .

Let f ∈ Zq [x±] be a lift of f to characteristic zero with the same support as f (it will also be
nondegenerate). Consider Y := V ( f )⊂ T := TQq and X , the closure of Y in P1. Write U := T\Y, and
V := P1\X ' Spec(A), where A is the coordinate ring of V ; explicitly,

A '
+∞⋃
d=0

f −d Pd .

Let I f be the ideal in P1 generated by f , ∂1 f , . . . , ∂n f . We call I f the toric Jacobian ideal and the
quotient ring Jf := P1/I f the toric Jacobian ring. Since f is nondegenerate, the ideal I f is irrelevant in
P1 and rankZq Jf = n! Vol(1); furthermore, (J f )d = 0 for d > n [Bat93, §4]. If O1 is not very ample,
then I f might not be generated in degree 1 and we might have (J f )d = 0 only for d � n.
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Let �• denote the logarithmic de Rham complex of V with poles along P1\T. Let H• be the cohomol-
ogy groups of�•; these are naturally isomorphic to H•dR(V ∩T=T\Y =U ) and H•rig(TFq\Y=U) [Kat89].

We now provide an explicit description of the group H n, as in [Bat93, §§6 and 7], in which we will
compute Q(t). Set

ω :=
dx1

x1
∧ · · · ∧

dxn

xn
∈�n,

and define the ascending filtration in �n by

Fild �n
:= {g f −dω : g ∈ Pd}.

The associated graded ring

�n
:=

∞⊕
d=0

Grd �n, Grd �n
:= Fild �n/Fild−1�n,

is then isomorphic to P1/( f ) (again placing f in degree 1).
Equip H n with the filtration induced from�n, and view H n as the quotient of�n by the Qq -submodule

generated by the relations

g
f d ω−

g f
f d+1ω and

∂i (g)
f d ω−

dg∂i ( f )
f d+1 ω (3-1)

for each i = 1, . . . , n, each nonnegative integer d , and each g ∈ Pd . From these relations, we see that

Gr1 H n
' P1/( f ) and Grd H n

' (Jf )d (d > 1).

This gives a way to compute explicitly in H n: for any h ∈ (Jf )d+1 with d > n, we can find a relation of
the form

d
h

f d+1ω = d
g0 f +

∑n
i=1 gi∂i f

f d+1 ω ≡
dg0+

∑n
i=1 ∂i gi

f d ω (3-2)

because Pd ⊂ (I f )d , so in H n we can reduce the pole order of any form to at most n. This process
was introduced for smooth projective hypersurfaces in [Gri69a; Gri69b] and attributed to Dwork; it is
commonly known as Griffiths–Dwork reduction.

With the above representation of H n, we may also identify PH n−1
dR (X) with (P Int

1 + I f )/I f ⊂ H n,
where the filtration by pole order is the Hodge filtration; see [Bat93; BC94, §§9 and 11].

We now introduce a variation of Griffiths–Dwork reduction, called controlled reduction. This will be
crucial for our application to p-adic cohomology, as careless application of Griffiths–Dwork reduction
to a sparse form will easily lead to a dense form. For d = 1, . . . , n+ 1, choose a Zq -linear splitting Pd ≈

(J ′f )d ⊕Cd , where (J ′f )d is a lift of (J f )d into Pd . Let ρd : Pd→ (J ′f )d and πd,0, . . . , πd,n : Pd→ Pd−1

be Zq -linear maps such that

g = ρd(g)+πd,0(g) · f +
n∑

i=1

πd,i (g) · ∂i f, g ∈ Pd .

These maps may be constructed one monomial at a time.



ZETA FUNCTIONS OF NONDEGENERATE HYPERSURFACES IN TORIC VARIETIES 227

Proposition 3.1 (controlled reduction). Let xν ∈ P1 and xµ ∈ Pd be two monomials and define the
Zq -linear maps

Rµ,ν(g): = (d + n)πn+1,0(xνg)+
n∑

i=1

(∂i +µi )(πn+1,i (xνg)),

Sν(g): = πn+1,0(xνg)+
n∑

i=1

νiπn+1,i (xνg).

Then for any g ∈ Pn and any nonnegative integer j , in H n we have

g
x ( j+1)ν+µ

f d+n+ j+1ω ≡ (d + n+ j)−1(Rµ,ν(g)+ j Sν(g))
x jν+µ

f d+n+ j ω.

Proof. This is straightforward from (3-1) and (3-2). �

Note that Proposition 3.1 enables us to reduce the pole order of a differential form from d + n+ j + 1
to d + n+ j without increasing its total number of monomials; we can thus reduce the pole order of a
sparse form without making it dense.

Corollary 3.2. With notation as in Proposition 3.1, let k be a positive integer. Then for any g ∈ Pn ,

g
xµ+kν

f d+n+k ω ≡

∏k−1
j=0(Rµ,ν + j Sν)(g)∏k−1

j=0(d + n+ j)

xµ

f d+nω,

forming the composition product from left to right.

Using Proposition 3.1 amounts to performing linear algebra on matrices of size #(n1∩Zn)∼nn Vol(1).
One can reduce this by a factor of nn/n! ∼ en at the expense of making the expression for the reduction
matrix more convoluted; compare [Cos15, Remark 1.17 and Proposition 1.18].

4. Monsky–Washnitzer cohomology

We now indicate how Monsky–Washnitzer cohomology, as introduced in [MW68; Mon68; Mon71],
provides a crucial link between algebraic de Rham cohomology and p-adic rigid cohomology, by trans-
ferring to the former the canonical Frobenius action on the latter; see also [vdP86]. To simplify, we
assume p >max{n, 2}.

Let A† denote the weak p-adic completion of A, the ring consisting of formal sums
∑
+∞

d=0 gd f −d such
that for some a, b> 0, gd ∈ pmax{0,bad−bc}Pd for all d ≥ 0. We define the associated logarithmic de Rham
complex �†,• by �†,i

:=�i
⊗A A†; denote the cohomology groups of this complex by H †,•. We may then

obtain p-adic Monsky–Washnitzer cohomology groups H †,•
⊗Zq Qq . The map�•⊗Zq Qq→�†,•

⊗Zq Qq

is a quasi-isomorphism [Mon70; vdP86; Kat89]; that is, the induced maps H i
⊗Zq Qq → H †,i

⊗Zq Qq

are isomorphisms. We can thus identify the algebraic de Rham cohomology of U with the Monsky–
Washnitzer cohomology of U .

On the other hand, we also have H †,•
⊗Zq Qq ' H•rig(U) and the latter object is functorial with respect to

geometry in characteristic p [Ber97]. In this way, H †,i receives an action of the Frobenius automorphism,
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which we can make explicit by constructing a lift σ of the p-th power Frobenius on Fq to A†. To do so,
we take the Witt vector Frobenius on Zq and set σ(µ)=µp for any monomial µ ∈ P1. We then extend σ
to A† by the formula

σ

(
g
f d

)
:= σ(g)σ ( f )−d

= σ(g)
∑
i≥0

(
−d
i

)(σ ( f )− f p)i

f p(d+i) . (4-1)

The above series converges (because p divides σ( f )− f p) and the definitions ensure that σ is a semi-
linear (with respect to the Witt vector Frobenius) endomorphism of A†. We finally extend σ to �†,• by
σ(g dh) := σ(g) d(σ (h)).

5. Sketch of the algorithm

We now indicate briefly how to use controlled reduction to compute the Frobenius action on the coho-
mology of nondegenerate toric hypersurfaces. We start as in [Har07, Proposition 4.1], by rewriting the
Frobenius action in a sparser form.

Lemma 5.1. For any positive integers d, N and g ∈ Pd , in A† we have

σ

(
g
f d

)
≡

N−1∑
j=0

(
−d

j

)(d+N−1
d+ j

)
σ(g f j ) f −p(d+ j) (mod pN ).

Proof. This follows from (4-1) by truncating the sum and then rewriting it formally; see [Cos15,
Lemma 1.10]. �

In order to compute a p-adic approximation of the Frobenius action on PH n−1(X ), we must first
fix a basis of the latter; we do this by constructing a monomial basis for PH n−1

dR (X) via explicit linear
algebra. We then apply Frobenius to each basis element in the sparse truncated form given by Lemma 5.1,
recursively reduce the pole order using Corollary 3.2 (using k = p as much as possible), and project to the
chosen monomial basis. The dominant step is controlled reduction, which amounts to O(pnN Vol(1))
matrix multiplications of size n! Vol(1) per basis element.

We will not address precision estimates in this report, except to note that the machinery of [AKR10,
§3.4] applies. In general, if we want N digits of p-adic accuracy, we must apply Lemma 5.1 with N
replaced by N ′ = N +O(n+ log N ) and work modulo pO(N ′). Hence, with respect to p alone, we expect
our algorithm to run in quasilinear time in p and use O(log p) space.

6. K3 surfaces

We now turn our attention to examples, starting with K3 surfaces. For X a K3 surface, dim H 2(X)= 22 and
the Hodge numbers are (1, 20, 1). A common example of a K3 surface is a smooth quartic surface in P3; but
they also occur in other ways, such as hypersurfaces in weighted projective spaces. Using a criterion of Miles
Reid [Rei80], Yonemura [Yon90] found the complete list of (polarized) weighted projective spaces in
which a generic hypersurface is a K3 surface; there are 95 of these. For toric varieties, the corresponding
classification is that of reflexive 3-dimensional polytopes, of which there are 4,319 in all [KS98].
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In the following examples, we worked modulo p4 in order to obtain Q(t) with two p-adic significant
digits. As a result, we observe a performance hit for p > 216.

Example 6.1. Consider the projective quartic surface X ⊂ P3
Fp

defined by

x4
+ y4
+ z4
+w4

+ λxyzw = 0;

it is a member of the Dwork pencil. For p = 220
− 3 and λ= 1, using the controlled AKR algorithm in

22h 7m we compute that

Z(X , t)−1
= (1− t)(1− pt)16(1+ pt)3(1− p2t)Q(t),

where the “interesting” factor is

Q(t)= (1+ pt)(1− 1688538t + p2t2).

For this family, the remaining factors, apart from Q(t), could have also been deduced by a p-adic formula
of de la Ossa and Kadir [Kad04, Chapter 6]. In this context, the Hodge numbers of PH 2(X ) are (1, 19, 1).

A similar runtime would be expected if we used our current implementation to com-
pute Z(X , t) with 1 being the 3-simplex (tetrahedron), as indicated by the
outer polytope at right. Instead, we observe that the monomials defining X
generate a sublattice of index 42 in Z3; hence, we can instead run our algorithm
with a polytope of significantly smaller volume (32/3≈ 10.66 versus 2/3≈ 0.66),
as indicated by the inner polytope at right. This leads to a dramatic speedup: with our
current implementation, we computed Q(t) in 1m 33s. We present the running times for
other p in Table 1; memory usage was about 16MB.

In the new framework, X is given by the closure (in P1) of the affine surface defined by the Laurent
polynomial

x4 y−1z−1
+ λx + y+ z+ 1,

p CHK time PT time p CHK time

28
− 5 0.03s 1.65s 217

− 1 11.9s
29
− 3 0.04s 3.64s 218

− 5 23.4s
210
− 3 0.04s 7.39s 219

− 1 46.9s
211
− 9 0.06s 14.65s 220

− 3 1m 33s
212
− 3 0.08s 34.80s 221

− 9 3m 6s
213
− 1 0.13s 34.80s 222

− 3 6m 15s
214
− 3 0.22s 2m 33s

215
− 19 0.41s 6m 43s

216
− 15 5.72s 14m 14s

Table 1. The second and fifth columns use our current implementation to compute Q(t). The third column
uses the Pancratz–Tuitman implementation [PT15] to compute Z(X , t).
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and the Hodge numbers of PH 2(X ) are (1, 1, 1), which explains why deg Q(t)= 3.
Since the Dwork pencil is a “small” deformation of the Fermat quartic, we may also use the Pancratz–

Tuitman implementation of the deformation method [PT15] to compute Z(X , t). We did this and verified
that our results agree; we compare running times in Table 1. To interpret these fairly, note that Pancratz
and Tuitman work in P3 and so compute the whole numerator of Z(X , t) rather than just Q(t). (Note
that the algorithm of [Tui19] has a square-root dependence on p, as in [Har07].)

Example 6.2. Consider the projective quartic surface X ⊂ P3
Fp

defined by

x3 y+ y4
+ z4
+w4

− 12xyzw,

which contains a hypergeometric motive; see [DKS+16, §5]. For p = 215
− 19, using the controlled AKR

algorithm, in 27m 12s we compute that

Z(X , t)−1
= (1− t)(1− pt)2(1+ pt)2(1− pt + p2t2)2(1− p2t2

+ p4t4)2(1− p2t)Q(t),

where the “interesting” factor is (up to rescaling)

pQ(t/p)= p+ 20508t1
− 18468t2

− 26378t3
− 18468t4

+ 20508t5
+ pt6.

As in the previous example, the Newton polytope has volume 8, but the defin-
ing monomials generate a sublattice of index 4 in Z3; we may thus work

instead with a polytope of volume 2 (depicted at left) and observe a
significant speedup. In this setting, the Hodge numbers of PH 2(X ) are

(1, 4, 1). With our current implementation we computed Q(t) in 4s. We present
the running times for other p in Table 2, where the memory footprint was about 52MB.

Alternatively, one could try to use Magma [BCP97] to confirm Q(t). Unfortunately, Magma is only
able to confirm the linear coefficient:

> C2F2 := HypergeometricData([6,12], [1,1,1,2,3]);
> EulerFactor(C2F2, 2^10 * 3^6, 2^15 - 19: Degree:=1);
1 + 20508*$.1 + O($.1^2)

p time p time p time

28
− 5 0.20s 213

− 1 1.12s 218
− 5 4m 54s

29
− 3 0.23s 214

− 3 2.08s 219
− 1 9m 46s

210
− 3 0.29s 215

− 19 4.00s 220
− 3 19m 32s

211
− 9 0.41s 216

− 15 1m 11s 221
− 9 38m 58s

212
− 3 0.64s 217

− 1 2m 30s 222
− 3 1h 18m

Table 2. Running times for Example 6.2.
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p time p time p time

27
− 1 6.46s 210

− 3 18.93s 213
− 1 1m 46s

28
− 5 9.50s 211

− 9 31.34s 214
− 3 3m 24s

29
− 3 12.64s 212

− 3 56.23s 215
− 19 6m 20s

Table 3. Running times for Example 6.3.

Example 6.3. Consider the closure X in P1 (which in this case is not a weighted projective space) of
the affine surface defined by the Laurent polynomial

3x + y+ z+ x−2 y2z+ x3 y−6z−2
+ 3x−2 y−1z−2

− 2− x−1 y− y−1z−1
− x2 y−4z−1

− xy−3z−1
;

it is a K3 surface of geometric Picard rank 6, and the Hodge numbers of PH 2(X ) are (1, 14, 1). For
p = 215

− 19, using our current implementation, in 6m 20s we obtain the “interesting” factor of Z(X , t)

pQ(t/p)= (1− t)(1+ t)
(

p+ 33305t1
+ 1564t2

− 14296t3
− 11865t4

+ 5107t5
+ 27955t6

+ 25963t7
+ 27955t8

+ 5107t9

− 11865t10
− 14296t11

+ 1564t12
+ 33305t13

+ pt14).
We present the running times for other p in Table 3, where the peak memory usage was about 144MB.
The vertices of the associated polytope correspond to the first six terms displayed;

the remaining terms are interior points. We depict this polytope of volume 8
at right.

We know of no previous algorithm that can compute Z(X , t) for p in this
range. The defining polynomial is “dense” from the point of the Sperber–
Voight algorithm [SV13], which is based on Dwork cohomology and scales
with the number of monomials away from the vertices of the Newton polytope.

Example 6.4. Let X be the smooth projective surface in P3 defined by the fully dense, randomly chosen
quartic polynomial

−9x4
− 10x3 y− 9x2 y2

+ 2xy3
− 7y4

+ 6x3z+ 9x2 yz− 2xy2z+ 3y3z

+8x2z2
+ 6y2z2

+ 2xz3
+ 7yz3

+ 9z4
+ 8x3w+ x2 yw− 8xy2w

−7y3w+ 9x2zw− 9xyzw+ 3y2zw− xz2w− 3yz2w+ z3w− x2w2

−4xyw2
− 3xzw2

+ 8yzw2
− 6z2w2

+ 4xw3
+ 3yw3

+ 4zw3
− 5w4

;

then 1 is the 3-simplex (tetrahedron) of volume 32/3≈ 10.66. For this example, we have PH 2(X )'
H 3(P3

\X ), the Hodge numbers are (1, 19, 1), and

Z(X , t)−1
= (1− t)(1− pt)(1− p2t)Q(t),
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p time p time p time

27
− 1 25.41s 210

− 3 1m 30s 213
− 1 9m 26s

28
− 17 37.73s 211

− 9 2m 37s 214
− 3 18m 42s

29
− 3 55.82s 212

− 3 4m 50s 215
− 19 36m 29s

Table 4. Running times for Example 6.4.

where deg Q(t)= 21. For p = 215
− 19, we obtain

pQ(t/p)= (1+ t)
(

p− 53159t1
+ 10023t2

− 3204t3
+ 49736t4

− 56338t5
+ 43086t6

− 48180t7
+ 44512t8

− 42681t9
+ 47794t10

− 42681t11
+ 44512t12

− 48180t13

+ 43086t14
− 56338t15

+ 49736t16
− 3204t17

+ 10023t18
− 53159t19

+ pt20)
using the controlled AKR algorithm in 38m 27s; our current implementation takes roughly the same time.
We present the running times for other p in Table 4. The memory footprint was about 230MB.

Unfortunately, the deformation method is not suitable for dense quartics with p in this range. For
example, for p = 31 the running time was 2h 8m and its memory footprint was around 7GB, and both
time and space should scale linearly with p.

7. Calabi–Yau threefolds

We next consider Calabi–Yau threefolds. Unlike for K3 surfaces, the middle Betti numbers of Calabi–Yau
threefolds are not a priori bounded; the largest value of which we are aware is 984 (found in [KS00]).

A common example is a smooth quintic surface in P4. Again, additional constructions arise from
generic hypersurfaces in weighted projective spaces, of which there are 7,555 in all, or more generally
from toric varieties corresponding to reflexive 4-dimensional polytopes, of which there are 473,800,776
in all [KS00].

In all of the following examples, we worked modulo p6 in order to obtain Q(t) and our memory
footprint ranged between 100MB and 270MB.

Example 7.1. Consider the projective quintic threefold X ⊂ P3
Fp

defined by

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 + x0x1x2x3x4 = 0;

it is a member of the Dwork pencil. We have

Z(X , t)=
R1(pt)20 R2(pt)30 Q(t)

(1− t)(1− pt)(1− p2t)(1− p3t)
,

where R1 and R2 are the numerators of the zeta functions of certain curves given by a formula of Candelas,
de la Ossa and Rodriguez Villegas [CdlORV03].

As it is presented, we would work with P1 = P4, where 1 is the 4-simplex of volume 625/24. As in
Example 6.1, the monomials of the equation generate a sublattice of index 53 in Z4, so we may instead



ZETA FUNCTIONS OF NONDEGENERATE HYPERSURFACES IN TORIC VARIETIES 233

p time p time p time

28
− 5 0.73s 213

− 1 6.41s 218
− 5 2m 50s

29
− 3 0.77s 214

− 3 11.61s 219
− 1 5m 38s

210
− 3 0.80s 215

− 19 21.98s 220
− 3 11m 18s

211
− 9 2.54s 216

− 15 43.07s 221
− 9 22m 41s

212
− 3 3.80s 217

− 1 1m 25s 222
− 3 52m 37s

Table 5. Running times for Example 7.1.

work with a polytope whose volume is smaller by a factor of 53. For p = 220
− 3, we compute the

“interesting” factor

Q(t)= 1− 1576492860t1
+ 2672053179370pt2

− 1576492860p3t3
+ p6t4

in 11m 18s; if we instead had tried to apply the controlled AKR algorithm to compute Q(t) (and not the
other factors) we extrapolate that it would take us at least 120 days. We present the running times for
other p in Table 5.

Since this is a “small” perturbation of the Fermat threefold, we again attempted to confirm these results
using the deformation method; however, this was again hampered by the fact that the Pancratz–Tuitman
implementation works in P1 instead of P3. For p= 7, it took 5h 4m and its memory footprint was around
12GB.

Example 7.2. Let X be the threefold defined by

x8
0 + x5

1 x2+ x2
0 x2

1 x2x3+ x1x3
2 x3+ x2

1 x3
3 + x0x1x2x3x4+ x2x3x2

4

in the weighted projective space P(1, 14, 18, 20, 25). The Newton polytope has volume 11/3 ≈ 3.67;
by changing the lattice we may instead work with a polytope of volume 1/3≈ 0.33. In this setting, the
Hodge numbers of PH 3(X ) are (1, 1, 1, 1).

For p = 220
− 3, we compute the “interesting” factor of Z(X , t)

1− 618297672t1
+ 390956360946pt2

− 618297672p3t3
+ p6t4

in 32m 33s. We present the running times for other p in Table 6.

p time p time p time

28
− 5 1.90s 213

− 1 18.2s 218
− 5 8m 0s

29
− 3 1.96s 214

− 3 32.9s 219
− 1 16m 8s

210
− 3 2.06s 215

− 19 1m 6s 220
− 3 32m 33s

211
− 9 7.48s 216

− 15 2m 4s 221
− 9 1h 5m

212
− 3 10.9s 217

− 1 4m 3s 222
− 3 2h 23m

Table 6. Running times for Example 7.2.
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p time p time p time

28
− 5 4.47s 213

− 1 1m 8s 218
− 5 32m 25s

29
− 3 4.60s 214

− 3 2m 8s 219
− 1 1h 5m

210
− 3 4.96s 215

− 19 4m 6s 220
− 3 2h 10m

211
− 9 25.8s 216

− 15 8m 18s 221
− 9 4h 17m

212
− 3 39.1s 217

− 1 16m 31s 222
− 3 9h 33m

Table 7. Running times for Example 7.3.

Example 7.3. Let X be the threefold defined by

x7
1 + x5

0 x1x2+ x2
0 x2

1 x2x3+ x4
0 x2x4+ x0x3

2 x3+ x2
0 x3

3 + x0x1x2x3x4+ x2x3x2
4

in the weighted projective space P(10, 11, 16, 19, 21). Again, by choosing the right lattice, we reduce
the volume of the Newton polytope from 55/12 ≈ 4.58 to 11/24 ≈ 0.46, and the Hodge numbers of
PH 3(X ) are (1, 2, 2, 1). For p = 220

− 3, we computed the “interesting” factor of Z(X , t)

1− 2068001468t1
+ 3449674041773pt2

− 3772715295733197p2t3

+ 3449674041773p4t4
− 2068001468p6t5

+ p9t6

in 2h 10m. We present the running times for other p in Table 7.

Example 7.4. Let X be the closure in P1 (which is not a weighted projective space) of the threefold
defined by the Laurent polynomial

xyz2w3
+ x + y+ z− 1+ y−1z−1

+ x−2 y−1z−2w−3
= 0.

Choosing the correct lattice reduces the volume of the Newton polytope from 9/8≈ 1.12 to 3/8≈ 0.38,
and the Hodge numbers of PH 3(X ) are (1, 2, 2, 1). For p = 220

− 3, we computed the “interesting”
factor of Z(X , t)

(1+ 718pt + p3t2)(1+ 1188466826t1
+ 1915150034310pt2

+ 1188466826p3t3
+ p6t4)

in 1h 15m. We present the running times for other p in Table 8.

p time p time p time

28
− 5 2.74s 213

− 1 39.28s 218
− 5 18m 34s

29
− 3 2.80s 214

− 3 1m 13s 219
− 1 38m 8s

210
− 3 3.00s 215

− 19 1m 21s 220
− 3 1h 15m

211
− 9 14.86s 216

− 15 4m 45s 221
− 9 2h 32m

212
− 3 22.32s 217

− 1 9m 12s 222
− 3 5h 39m

Table 8. Running times for Example 7.4.
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8. Cubic fourfolds

For our final example, we consider a cubic fourfold. For X a smooth cubic fourfold in P5, dim H 4(X)=
23 and the Hodge numbers are (0, 1, 21, 1, 0).

In this example, we worked modulo p6 in order to obtain Q(t).

Example 8.1. Let X be the smooth projective cubic fourfold in P5
Fp

defined by

x3
0 + x3

1 + x3
2 + (x0+ x1+ 2x2)

3
+ x3

3 + x3
4 + x3

5 + 2(x0+ x3)
3
+ 3(x1+ x4)

3
+ (x2+ x5)

3
;

it is nondegenerate in P5. For p = 31, in 21h 31m we computed

Z(X , t)−1
= (1− t)(1− pt)(1− p2t)(1− p3t)(1− p4t)Q(t),

where the “interesting” factor is an irreducible Weil polynomial given by

pQ(t/p2)= p− 7t1
+ 21t2

− 52t3
− 8t4

− 28t5
+ 21t6

+ 35t7
+ 39t9

+ 62t10
+ 23t11

+ 62t12
+ 39t13

+ 35t15
+ 21t16

− 28t17
− 8t18

− 52t19
+ 21t20

− 7t21
+ pt22

;

the coefficient of t1 may be confirmed independently by counting X (Fp) using the Sage function
count_points. For p = 127 the running time was 23h 15m and for p = 499 it was 24h 55m; in both
cases, the “interesting” factor is an irreducible Weil polynomial. In these computations, the memory
footprint was around 36.5GB.

In dimension 4, the bottleneck seems to be the linear algebra required to set up controlled reduction.
For p = 31, more than half of the running time (15h 32m) is spent solving a linear problem of size
15,504× 37,128 modulo p6. With careful handling of this step (e.g., avoiding Hensel lifts) we would
expect a significant speedup.

Note that the defining equation for X is quite sparse. To assess the effect of this sparsity, as well as
to cross-check the answer, we recomputed Z(X , t) after applying a random linear change of variables to
obtain a dense defining equation. For p = 31, in 27h 55m and using about 41GB we obtained the same
value for Z(X , t) as above.

Recall from the Introduction that a cubic fourfold is coplanar if it is defined by an expression
∑10

i=1 a3
i

in which each ai is a linear form and some four of the ai are linearly dependent. Ranestad and Voisin
[RV17] showed that the Zariski closure Dcopl of the coplanar locus is a divisor on the moduli space
of cubic fourfolds. Example 8.1 is a nonspecial coplanar cubic fourfold: the existence of a primitive
codimension-2 cycle class would imply2 that pQ(t/p2) has a cyclotomic factor. This shows (modulo
detailed analysis of the algorithm) that Dcopl is not a Noether–Lefschetz divisor.
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