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Class field theory is an important tool in number theory. We discuss improvements to the computation
of ray class groups, congruence subgroups and class fields, which are fundamental building blocks of
constructive class field theory. As an application and to illustrate the power of our new techniques, we
find new fields with minimal discriminant having prescribed Galois group and signature.

1. Introduction

Class field theory of algebraic number fields is one of the main achievements of algebraic number theory
from the first half of the 20th century. Building upon Kummer theory, it gives a complete description of
abelian extensions of a number field K in terms of objects “inside” K. As a corollary, one obtains a fairly
simple parametrization of all abelian extensions of K, similar to the parametrization of abelian extensions
of Q provided by the theorem of Kronecker and Weber. With a growing interest in algorithmic aspects of
algebraic number theory and the availability of computational resources, the existence theorem of class
field theory was made constructive, resulting in efficient algorithms for working with ray class groups
and constructing class fields; see [Has64; DP95; DP98; Poh99; CDyDO96; CDyDO98; Coh99; CS08].

The aim of this paper is to describe new methods for computing class fields with an emphasis on
the problem of tabulating extensions of number fields. While the overall strategy is the same as in
[CDyDO98] and [DP95], we show how the individual steps can be improved tremendously. The theoret-
ical improvements are accompanied by an efficient implementation allowing computations in situations
which were out of reach before. To illustrate this, we have computed new minimal discriminants of
number fields with various Galois groups. For a number field K denote by dK the absolute discriminant
of K. If G is a transitive permutation group of degree n and r ∈ Z, 0≤ r ≤ n, we set d0(n, r,G) to be
the smallest value of |dK |, where [K :Q] = n, K has r real embeddings, and if L is the Galois closure
of K over Q, then Gal(L/Q)∼= G as a permutation group on the embeddings of K in L .
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German Research Foundation (DFG).
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We let Cn denote the cyclic group of order n, Dn denote the dihedral group of order 2n and Sn denote
the symmetric group on n letters. Using our algorithm we obtain the following minimal discriminants.

Theorem 1. The following hold:

(1) d0(15, 1, D15)= 2397,

(2) d0(15, 3, D5×C3)= 712
· 176,

(3) d0(15, 5, S3×C5)= 210
· 1113,

(4) d0(36, 36,C9 oC4)= 112927,

(5) d0(36, 0,C9 oC4)= 388
· 2927.

In all five cases the value of the minimal possible discriminant was not known (see the database of
Klüners and Malle [KM01] for the first three cases).

Finally, note that we only consider the problem of computing abelian extensions of arbitrary number
fields K, with a focus on normal extensions. For various base fields, there are special methods; for
example, complex multiplication for K imaginary quadratic or (conjectural) Stark units for totally real
fields.

2. Class field theory and enumeration of abelian extensions

In this section, we briefly recall the main theorem of class field theory and its application to the construc-
tion of number fields or complete tables of number fields with specific properties. We refer the reader to
[Jan96] or [Lan94] for a detailed description of the topic.

Let K be a number field with ring of integers OK . For a nonzero prime ideal p of OK , we denote by
vp the p-adic valuation. A modulus m of K is a pair (m0,m∞) consisting of a nonzero ideal m0 of OK

and a set of real embeddings of K. In this case we also write m = m0m∞. For a modulus m = m0m∞

we define Im to be the group of fractional ideals of K generated by the prime ideals not dividing m0.
Moreover, for x ∈ K we define x ≡ 1 mod m if and only if vp(x − 1) ≥ vp(m0) for all prime ideals p

dividing m0 and σ(x) > 0 for σ ∈m∞. We define the ray group Pm = {x K | x ≡ 1 mod m} ⊆ Im and call
the finite abelian group Clm = Im/Pm the ray class group of K modulo m. A subgroup Pm ⊆ A ⊆ Im is
called a congruence subgroup modulo m. By abuse of notation, we will also call A= A/Pm a congruence
subgroup. The smallest modulus n with Im ∩ Pn ⊆ A is the conductor of A.

Let L/K be an abelian extension. For every prime ideal p of K, which is unramified in L/K, there
exists a unique map Frobp,L/K ∈ Gal(L/K ) with Frobp,L/K (x) ≡ xN(p) mod pOL for all x ∈ OL . We
call Frobp,L/K the Frobenius automorphism of p. If m is a modulus divisible by the prime ideals rami-
fying in L/K, there exists a unique morphism ϕL/K : Im→ Gal(L/K ), called the Artin map, such that
ϕL/K (p) = Frobp,L/K for all nonzero prime ideals p not dividing m0. Any modulus f such that ϕL/K

factors through Clf is called an admissible modulus of L/K. The smallest modulus with this property is
called the conductor of L/K.
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Theorem 2. If L/K is an abelian extension of conductor f, then there exists a congruence subgroup
Af ⊆ Clf of conductor f such that the Artin map induces an isomorphism ψL/K : Clf/Af→ Gal(L/K ).
If Af is a congruence subgroup of conductor f, then there exists an abelian extension L/K such that the
Artin map induces an isomorphism ψL/K : Clf/Af→ Gal(L/K ).

Now assume K is a number field, G an abelian group and X ∈ R>0. We fix an algebraic closure K of
K. For a finite extension L/K we let dL/K = N(dL/K ) be the norm of the relative discriminant. To find

{K ⊆ L ⊆ K | Gal(L/K )∼= G and dL/K ≤ X},

we can proceed as follows:

(1) Find a set F containing all possible conductors f.

(2) For every conductor f ∈ F compute the ray class group Clf and all subgroups A ⊆ Clf of conductor
f with Clf/A ∼= G.

(3) Let L be an abelian extension of K corresponding to a pair (f, A) of Step (2). If dL/K ≤ X, compute
a defining polynomial for L .

We discuss Step (2) in Section 3 and Step (3) in Section 4. In many applications, one is only interested
in field extensions with specific properties. While sieving after Step (3) is always possible, it is not an
optimal strategy since the computation of the defining polynomials is usually the most expensive step.
Very often, the situation allows one to make improvements already in Steps (2) or (3). For example, since
the ramification of L/K is intimately connected to the conductor of this extension, restrictions on the
ramification allow us to reduce the set of possible conductors in Step (1). In other common situations, K
itself is a normal extension of some subfield K0 and one is only interested in extensions L/K with Galois
group G, such that L/K0 is also normal. We will address the latter problem in Section 5.

3. Quotients of ray class groups

Let K be an algebraic number field and suppose that we are searching for abelian extensions of K with
Galois group of exponent n. As described in Section 2, the fields we are looking for correspond to
congruence subgroups H of ray class groups Clm with conductor m = m0m∞, such that Clm/A is of
exponent n, that is, to subgroups A with Clnm ⊆ A⊆ Clm. Therefore we do not need the whole group Clm,
but only the quotient Clm/Clnm.

The standard algorithm (see [CDyDO96]) to compute the ray class group Clm relies on the exact
sequence

O×K → (OK /m)
×
→ Clm→ Cl→ 0, (1)

where O×K are the units of OK and Cl is the class group of K. In particular, if {ui }, {mi }, {ci } are generators
of the groups O×K, (OK /m)

× and Cl, respectively, then we can choose as generators of Clm the union
of the images of the mi and preimages of the ci . Computing the relations between the generators of
Cl and (OK /m)

×, as well as the generators coming from O×K, requires the computation of generators of
principal ideals and of discrete logarithms in (OK /m)

×. Note that the latter problem can be expensive. For
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every prime ideal p dividing m0, computing the discrete logarithm in (OK /m)
× requires the computation

of a discrete logarithm in the multiplicative group (OK /p)
× of the residue field. This quickly becomes

a bottleneck if N(p)− 1 is hard to factor or divisible by large primes.
To avoid these problems, we show how to directly construct the quotient Clm/Clnm of the ray class

group. For clarity of exposition, we will only consider the case when n is a prime power, that is, n = ps

for some prime p ∈ Z>0. Indeed, if n factors as n =
∏r

i=1 pei
i , we get

Clm/Clnm ∼=
r∏

i=1

Clm/Cl
p

ei
i

m .

While for finite abelian groups the functor A 7→ A/ps A is in general only right exact, we can use the
exact sequence (1) together with the following lemma to construct the quotient directly.

Lemma 3. Let 0→ A→ B→ C→ 0 be an exact sequence of finite abelian groups of exponents e1, e2

and e3 respectively. Let p ∈ Z>0 be a prime number and k ∈ Z>0 with k ≥ vp(ei ) for i = 1, 2, 3. Then
the sequence

0→ A/pk A→ B/pk B→ C/pkC→ 0

is exact.

Now let ñ = ps̃ with s̃ = vp(#(OK /m)
×)+vp(#Cl). The lemma shows that we can construct Clm/Clñm

by working only with Cl/Clñ and with (OK /m)
×/(OK /m)

×ñ (by applying it to 1→ (OK /m)
×/ι(O×K )→

Clm→Cl→ 1). In particular, the number of generators of the quotient can be smaller than the number of
generators of the entire class group. Since for every generator we have to perform expensive operations,
this improves performance.

The lemma also affects the construction of the unit group. Let q be a prime ideal divisor of m0

and l = vq(m0). Recall that by [Coh00, Proposition 4.2.4] we have

(OK /q
l)× ∼= (OK /q)

×
× (1+ q)/(1+ ql).

We distinguish two cases:

• If l = 1, we need to compute a generator of U/ñU, where U = (OK /q)
×. This is much easier than the

computation of a generator of the whole group U, which would require the factorization of #U = N (q)−1.
We can assume that p | N (q)− 1, otherwise m cannot be the conductor of such an extension ([Coh00,
Proposition 3.3.21]). Let e = vp(N (q)− 1). Finding a generator of the group U/ñU is equivalent to
finding an element of U of order divisible by pe. Such an element can be found with high probability
by picking random elements. Indeed, let g be an element of U and let s = (N (q)− 1)/pe. Then g is a
generator of U/ñU if gspe−1

is not trivial. The probability of finding an element of order divisible by pe

is ϕ(pe)/pe
= (p− 1)/p, which is always greater than or equal to 1/2.

• If l > 1, then p - N (q)− 1 and we can avoid computing the multiplicative group of the residue field
altogether, since its order is not divisible by p.

Since in this way we have constructed the quotient V = Clm/Clñm, as a final step we just have to
compute V/nV.
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4. Ray class fields

Let L/K be an abelian extension of degree n and suppose that we have computed an admissible modulus
f = f0f∞ of L/K divisible only by the ramifying primes, and a congruence subgroup Af such that the
Artin map induces an isomorphism Clf/Af→ Gal(L/K ). While various invariants can be computed
from only f and Af, finding explicit defining polynomials for the extension L/K is sometimes relevant,
for example when constructing towers of number fields. This problem is usually solved using either
Hecke’s theorem or the Artin map; see [Coh00, Section 5.5.5] for a comparison of both methods. Here
we follow in principle the Artin map approach, but we show how to improve it significantly. We will
repeatedly make use of the following key result from [Fie01, Section 3]; see also [Coh00, Section 5.4.1].

Proposition 4. Assume that K contains the n-th roots of unity and L = K ( n
√
α) is a Kummer extension.

Then, for almost all prime ideals p of K, we can efficiently find k ∈ Z with Frobp( n
√
α) = ζ k

n
n
√
α doing

only computations in K.

4.1. Reduction to the prime power case. Using the fundamental theorem of finite abelian groups, we
may decompose Clf/Af into a product of cyclic groups of prime power order. Accordingly, L/K is the
compositum of linearly disjoint cyclic extensions of K of prime power degree. Thus, from now on we
assume that Gal(L/K )∼= Z/`mZ is a cyclic extension of prime power degree n = `m for some prime `.
Furthermore we assume that we have computed an explicit isomorphism 9 : Clf/Af→ Z/`mZ.

4.2. Using Kummer theory. Let E = K (ζn) and F = L E = L(ζn). Then F/E is again an abelian
extension and, since NE/K (PfOE )⊆ Pf, we know that the lift fE = fOE is an admissible modulus for the
abelian extension F/E by [Jan96, Chapter III, Section 3]. Our aim is to find a defining polynomial for
the field extension F/E , which is now a Kummer extension. To this end, we compute ClE and a finite
set S of primes of E containing the infinite primes such that

(1) F/E is unramified outside of S, that is, S contains all primes dividing fE ,

(2) ClE/ClnE is generated by the classes of the finite primes in S.

We consider then the group US of S-units of E . By Dirichlet’s unit theorem it is isomorphic to µE×Z#S−1.
Let ε0 ∈ O×E be a torsion unit with 〈ε0〉 = µE . Denoting r = #S − 1, we can compute r elements
ε1, . . . , εr ∈ E such that ε0, ε1, . . . , εr generate US . Since F/E is of exponent n and E contains the
n-th roots of unity, by Kummer theory we know that F = E( n

√
WF ), where WF = E× ∩ F×n. By [CS08,

Lemma 5.4], condition (1) implies that WF/E×n
⊆ (US · E×n)/E×n and therefore E ⊆ F ⊆ N, where

N = E( n
√

US). Since F/E is a cyclic subextension of N/E , Kummer theory asserts that there exists an
element α = εn0

0 ε
n1
1 · · · ε

nr
r such that F = E( n

√
α). Our aim is to determine such an element α ∈ US or,

equivalently, suitable exponents n0, . . . , nr ∈ Z.
Let fN be an admissible modulus for N/E and ClfN /AfN be the corresponding quotient of the ray class

group; the latter is isomorphic to Gal(N/E) via the Artin map. Since

N = E( n
√

US)= E( n
√
ε0, . . . ,

n
√
εr ),



244 CLAUS FIEKER, TOMMY HOFMANN, AND CARLO SIRCANA

the Galois group Gal(N/E) is isomorphic to (Z/nZ)r+1 via

8 : σ 7→ (m0, . . . ,mr ), where σ( n
√
εi )= ζ

mi
n ·

n
√
εi for 0≤ i ≤ r .

We therefore get the following commutative diagram:

IfN ClfN /AfN Gal(N/E) (Z/nZ)r+1

Z/nZ Clf/Af Gal(L/K ) Gal(F/E)

ϕN/E

NE/K

ψN/E

NE/K
π

8

4

9 ψL/K res

Since F is the fixed field of Gal(N/F) ⊆ Gal(N/E), we want to search for elements v1, . . . , vl in
(Z/nZ)r+1 such that 〈8−1(v1), . . . ,8

−1(vl)〉=Gal(N/F), that is, 〈v1, . . . ,vl〉=8(Gal(N/F)). Through
diagram chasing, we see that

Gal(N/F)= ker(π)= ker(ψ−1
L/K ◦ res ◦π)

= ker(NE/K ◦ψ
−1
N/E)= ψN/E(ker(NE/K ))

=8−1(ker(4)).

Thus it is sufficient to compute the kernel of the Z/nZ-linear map 4. Once we have generators for
the kernel, we can read off exponents n0, . . . , nr such that α = εn0

0 · · · ε
nr
r using linear algebra. The

following lemma shows that it is not necessary to directly compute the map 4 in order to find ker(4)
or 8−1(ker(4)).

Lemma 5. Let T be a finite set of finite primes q of E such that q does not divide fN and (Frobq)q∈T

generates Gal(N/E). For M = (9(NE/K ([q])))q∈T ∈ (Z/mZ)#T×1 the following holds: If v1, . . . , vl ∈

(Z/nZ)#T generate the right kernel ker(M), then∑
q∈T

vi,q ·8(Frobq), 1≤ i ≤ l,

are generators for 8(Gal(N/F)).

Remark 6. This is quite different from the original approach in [Fie01, Section 3]. There, an admissible
modulus fN was explicitly constructed using bounds due to Hasse [Has67]. This was then followed by the
computation of a generating set for the kernel ker(NE/K )⊆ ClfN and the application of ψN/E ◦8. Since
the valuations of fN obtained by Hasse can be very large, the necessary discrete logarithms in the ray
class group ClfN tended to be quite costly. We circumvent this by avoiding any computation with ClfN .
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4.3. Descent to L/K. Suppose now that we have found α ∈ E such that F = E( n
√
α). We aim to

find a defining polynomial for L/K. As a first step, we compute µ ∈ F such that F = K (µ). Since
E( n
√
α)= K (ζn,

n
√
α), we can find µ as µ= n

√
α+ kζn for a suitable k ∈ Z. Note that k can be found by

trying small elements in Z. As the coefficients of the minimal polynomial f µL of µ over L generate the
cyclic extension L/K, it is sufficient to determine

f µL =
∏

σ∈Gal(F/L)

(X − σ(µ)) ∈ L[X ].

Hence the problem of finding a defining polynomial is reduced to the problem of computing an explicit
description of Gal(F/L) on n

√
α and ζn . Since F/K is the compositum of E and L , it is abelian with

admissible modulus fF = nOK ∩ fN . Denote by AfF the corresponding congruence subgroup of Cl fF .
We have the following commutative diagram:

IfF ClfF /AfF Gal(F/K )

Z/nZ Clf/Af Gal(L/K )

ϕF/K

ψF/K

res

9

ψL/K

First, note that we can easily compute a generating set for Gal(F/K ). As the group Gal(E/K ) =
Gal(K (ζn)/K ) is a subgroup of (Z/nZ)× and n is a prime power, we can find r, s ∈ Z such that
Gal(E/K ) is generated by ζn 7→ ζ r

n and ζn 7→ ζ s
n . Using [Fie01, Lemma 4.1], we can determine extensions

f, g : F→ F of both morphisms, which together with F→ F, n
√
α 7→ ζn

n
√
α, generate Gal(F/K ). We

now need to find Gal(F/L)= ker(res : Gal(F/K )→ Gal(L/K )).

Lemma 7. Let T be a finite set of finite primes q of K such that q does not divide fF and (Frobq)q∈T

generates Gal(F/K ). Let M = (9([q]))q∈T ∈ (Z/nZ)#T×1. If v1, . . . , vl ∈ (Z/mZ)#T generate the right
kernel ker(M), then ∏

q∈T

(Frobq)vi,q, 1≤ i ≤ l,

are generators for Gal(F/L).

To compute Frobq in F/K, we can proceed as follows. Since we already know Gal(F/K ), if we pick a
prime p of F lying over q, we can find Frobq as the unique σ ∈Gal(F/K ) such that σ(ζn)≡ ζ

N(p)
n mod q

and σ( n
√
α)≡ ( n

√
α)N(p) mod q.

Remark 8. If n = ` is prime, even fewer steps are necessary. Since [K (ζn) : K ] is a divisor of `− 1, it
is coprime to ` and thus Gal(F/L) is the unique subgroup of Gal(F/K ) of order `. If f is the lift of a
generator of Gal(K (ζn)/K ) to Gal(F/K ), then f ` will be a generator of Gal(F/L).

Remark 9. In [Fie01, Section 4], the set Gal(F/L) is also computed as the kernel of the restriction map
res :Gal(F/K)→Gal(L/K). More precisely, Gal(F/L) is computed as the image of ker(ι :ClfF→Clf/Af))
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under ψF/K . This is a costly operation due to discrete logarithms in ray class groups. In our approach
this is circumvented by the use of the Artin map on sufficiently many prime ideals.

4.4. Reduction of generators. In the computation of a defining polynomial of the class field, we find
a generator of a Kummer extension. Depending on the situation, this is either the final result or this
computation is followed by the descent. To improve the overall performance, it is beneficial to find
a “small” generator for the Kummer extension. More precisely, let K be an algebraic number field;
given α ∈ K×, we want to find a “small” representative for α · K×n , that is, we want to find β ∈ K× such
that βn

·α is “small”. To this end, we will describe how to compute a so-called compact representation

α = α0α
n
1α

n2

2 · · ·α
nk

k

with small elements αi ∈OK . Once we have found this, α0 will be a small representative in the coset of
α modulo K×n.

Note that the notion of compact representations was used in [Thi95] in connection with the computa-
tion of units and principal ideal generators; see also [BF14]. Here we give a different algorithm, which
uses a similar approach to [BF14], but which also works for elements which are not units. As the value
of the presented algorithms comes from the practicality, we will refrain from giving precise statements
about the size of the objects. Note that it is possible to obtain rigorous estimates using Remarks 11
and 13.

The first step of a compact representation is a reduction at the finite places. We let

αOK =

l∏
i=1

pni
i

be the prime ideal factorization of αOK and set N =maxi ni .

Algorithm 10. Let k = blogn(N )c. The following steps return small (with respect to the T2-norm)
elements α0, . . . , αk and a of small norm with

αOK = (α0α
n
1α

n2

2 · · ·α
nk

k ) · a.

(1) Define ak+1 = 1.

(2) For j = k, . . . , 0 define b j =

l∏
i=1

p
b(ni mod n j+1)/n j

c

i .

(3) For j = k, . . . , 0 find α j ∈ (a
n
j+1b j )

−1 such that the ideal a j := α
−1
j an

j+1b j has small norm.

(4) Return α0, . . . , αk and a= a0.

Remark 11. Finding α j in Steps (1) and (3) is the well known problem of finding small representatives in
ideal classes. The solution involves computing a small basis of the inverse ideal using a lattice reduction.
If one uses LLL reduction ([LLL82]), the ideals a j will have a small norm bounded by O(2d2√

|dK |)

(see also [BFH17, 4.3]).
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We now assume that we have an element α ∈OK such that |N(α)| is small and for which we want to
compute a compact representation. To do so, we need the following notion. Let b be a nonzero integral
ideal of OK . We define

b
n
√
bc =

∏
p

pbvp(b)/nc,

to be the n-th root of b. Here the product runs over all nonzero prime ideals of OK . Note that b n
√
bc is

an integral ideal such that b n
√
bcn divides b.

Let σ1, . . . , σd : K → C be the complex embeddings of K. For an element v = (vi )1≤i≤d ∈ Rd we
denote max1≤i≤d |vi | by ‖v‖∞. Recall that the T2,v-norm is defined to be T2,v(β) =

∑d
i=1 v

2
i |σi (β)|

2

for β ∈ K.

Algorithm 12 (compact representation for elements of small norm). Let α ∈OK with |N(α)| small. The
following steps return small elements α0, . . . , αk such that

α = α0α
n
1α

n2

2 · · ·α
nk

k .

(1) Define v = (v j )1≤ j≤d = (log(|σ j (α)|))1≤ j≤d ∈Rd and k = blogn(‖v‖∞)c so that nk
≤ ‖v‖∞ ≤ nk+1.

We set α̃k+1 = α.

(2) For i = k, . . . , 1, we set w = (exp(n−iv j ))1≤ j≤d and then compute bi =
⌊

ni√
α̃i+1OK

⌋
. Next, use

lattice reduction to find an element γi ∈ b
−1
i which is small with respect to T2,w, and set αi = γ

−1
i

and α̃i = α̃i+1 · γ
ni

i .

(3) Define α0 = α̃1 and return α0, . . . , αk .

Remark 13. The size of the elements γ1, . . . , γk of the algorithm is bounded in T2-norm in terms of
n and

√
dK/Q. Assume that we are in the i-th iteration of the algorithm; using the same notation as in

Algorithm 12, the element γi ∈ b
−1
i obtained by the LLL-algorithm has small T2,w-norm:

T2,w(γi )≤ C
(

d1/2
K/Q N (bi )

−1
d∏

j=1

w j

)2/d

≤ C
(

d1/2
K/Q N (α)1/n

i
)2/d

,

where C is the explicit constant of the reduction algorithm and the last inequality comes from the fact
that

(
N (bi )

−1∏d
j=1w j

)ni

= N (α)N (bi )
−ni

is integral, hence bounded by N (α). Clearly, αγ ni

i ∈ OK

and we have the following bound on its size:

T2(αγ
ni

i )=

d∑
s=1

(w−2ni

s |σs(α)|
2)(w2ni

s |σs(γ
ni

i )|
2)=

d∑
s=1

w2ni

s |σs(γ
ni

i )
2
|

≤

( d∑
s=1

w2
s |σs(γi )|

2
)ni

= T2,w(γi )
ni
≤ Cni

N (α)2/ddni/d
K/Q.

Thus
‖v‖∞ ≤ log T2(αγ

ni

i )≤ ni log
(
C N (α)2/dd1/d

K/Q

)
.
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Now, w−1
i = exp(−n−ivi )≤ exp(n−i

‖v‖∞)≤ C N (α)2/ ld1/d
K/Q and

T2(γi )=

d∑
s=1

w−2
s w2

s |σs(γi )|
2
≤ ‖w−1

‖
2
2T2,w(γk)≤ dC3d3/d

K/Q N (α)4/d+2/(dni )

is bounded as well.

Summarizing, to reduce an element α ∈ K modulo K×n , we first apply Algorithm 10 to obtain
α0, . . . , αk ∈ K and an ideal a of bounded norm such that αOK = (α0α

n
1α

n2

2 · · ·α
nk

k ) · a. Thus the
element α̃ defined by

α̃ = α(α−1
0 α−n

1 · · ·α
−nk

k )

is an element of small norm. This is followed by an application of Algorithm 12 to α̃, which yields
α̃0, . . . , α̃l with

α̃ = α̃0α̃
n
1 · · · α̃

nk

k .

Since

α =

max(k,l)∏
i=0

(αi α̃i )
ni
,

(where we set αi = 1 and α̃i = 1 for i > k and i > l, respectively), we see that α ≡ α0α̃0 mod K×n. By
construction, α0α̃0 is a small element.

4.5. Computation of Galois groups. Let L/K be an abelian extension of degree n, for which we have
computed a polynomial f ∈ K [X ] with L ∼= K [X ]/( f ). Denote by γ ∈ L a root of f in L . Our
aim is to show how to compute Gal(L/K ) using the objects which showed up during the computation
of the defining polynomial f . By computing Gal(L/K ), we mean the computation of the image of γ
under the elements of Gal(L/K ). As in Section 4 we may assume that L/K is cyclic. Recall that
F = L(ζn) = K (ζn)(

n
√
β) = E( n

√
β). Assume first that L and K (ζn) are linearly disjoint. Then the

restriction Gal(F/E)→ Gal(L/K ) is an isomorphism and, since F/E is a Kummer extension with
generator n

√
β, we have

Gal(F/E)= 〈σ : F→ F : n
√
β 7→ ζn

n
√
β〉.

In particular, σ |L is a generator of Gal(L/K ) and a0, . . . , an−1 ∈ K with

σ |L(γ )= σ(γ )=

n−1∑
i=0

aiγ
i

can be found using linear algebra.
In the general case, the restriction map Gal(F/E)→Gal(L/K ) is not surjective. But as the restriction

map Gal(F/K )→ Gal(L/K ) is always surjective, we can solve the problem by restricting generators
of Gal(F/K ) to Gal(L/K ). This can be done using linear algebra as above. Since we have already
constructed Gal(F/K ) in the descent step, we do not need to recompute the automorphisms of this
extension.
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Assume that K/K0 and L/K0 are normal extensions; this occurs frequently when constructing towers
of normal extensions with more than two layers. In this case, it makes sense to compute the “absolute”
Galois group Gal(L/K0). The naive way of computing Gal(L/K0) would be to write L/K0 as a simple
extension and to find the roots of the defining polynomial. While this works well for small degrees, it
quickly becomes unfeasible.

Alternatively, note that Gal(L/K0) = 〈σ1, . . . , σr ,Gal(L/K )〉, where σ1, . . . , σr are extensions of
generators of Gal(K/K0) to L . By the first part, we know how to compute generators of Gal(L/K ), thus
it is sufficient to show how to extend an automorphism σ ∈ Gal(K/K0) to an element of Gal(L/K0).
Let ` be a prime dividing [L : K ] and denote by L`/K the largest subextension such that [L : L`] is
coprime to `. As Gal(L`/K ) is isomorphic to the `-Sylow subgroup of Gal(L/K ), L`/K0 is also normal.
Since L/K is the compositum of the linearly disjoint L`/K, where ` divides [L : K ], we may assume that
L = L` is an abelian `-extension of K. In particular, L itself is the compositum of linearly disjoint cyclic
extensions L i = K (γi ) of prime power degree `mi. Recall that we have constructed the extension L i/K
by passing to the Kummer extension L i (ζ`mi )/K (ζ`mi ), for which we computed an element βi ∈ K (ζ`mi )

with L i (ζ`mi )= K (ζ`mi , mi
√
βi ). For simplicity we assume that mi =m for all i = 1, . . . , r and set n = `m,

E = K (ζn). We have the following lattices of number fields:

K (ζn)

K K0(ζn)

K ∩ K0(ζn)

E( m
√
β1, . . . ,

m
√
βr )= M

L E = K (ζn)

K

The idea is to extend σ ∈ Gal(K/K0) to an automorphism of

M = E( n
√
β1, . . . ,

n
√
βr )

and then to restrict this to L . As the first step, we extend σ to K (ζn). Denote by K1 the intersection
K0(ζn)∩ K. Then K (ζn)/K1 is the compositum of the linearly disjoint extensions K/K1 and K0(ζn)/K1.
Thus it is straightforward to extend σ to an automorphism of K (ζn), which we also denote by σ .

In the next step, we extend σ to an automorphism σ̂ of M by determining σ̂ ( n
√
βi ) for all i = 1, . . . , r ,

using the Frobenius automorphisms. We now fix i ∈ {1, . . . , r}. Since M/E is a Kummer extension,
there exist unique 1≤ n j ≤ n and µ ∈ K (ζn) such that

σ̂ ( n
√
βi )= µ · (

n
√
β1)

n1( n
√
β2)

n2 · · · ( n
√
βr )

nr . (2)

Our aim is to determine the n j as well as µ. As σ̂ extends σ , we may assume that σ̂ ( n
√
βi ) =

n
√
σ(βi ).

For a finite prime p of E , unramified in M/E , there exist ep, ep,1, . . . , ep,r ∈ Z/nZ such that

Frobp,M/E(
n
√
β j )= Frobp,E( n

√
β j )/E

(
ζ

ep, j
n

n
√
β j
)
,

Frobp,M/E
(

n
√
σ(βi )

)
= Frobp,E( n√σ(βi ))/E

(
n
√
σ(βi )

)
= ζ

ep
n

n
√
σ(βi ).
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Since Frobp,M/E(µ)= µ, applying Frobp,M/E to (2) yields

ζ
ep
n = ζ

n1ep,1
n · · · ζ

nr ep,r
n , that is, 0= ep−

r∑
i=1

ni ep,i in Z/nZ.

Thus, for each prime we get a linear equation over Z/nZ of which n1, . . . , nr is a solution. Since
Gal(M/E) is generated by Frobp,M/E , p a finite prime of K, we know that using sufficiently many primes
(n1, . . . , nr ) will be the unique solution of the simultaneous equations. Hence we can use Proposition 4
to compute n1, . . . , nr . Once this is done, we can recover µ by extracting an n-th root of

σ(βi )

β
n1
1 · · ·β

nr
r
= µn.

5. Invariant subgroups

5.1. Normal extensions. Let K be a number field which is normal over the base field K0 with Galois
group G = Gal(K/K0). In this section we describe how to compute abelian extensions of K, which are
also normal over K0.

The action of G on K extends to an action on the places of K and, in particular, on the set of moduli
of K. Let m be a modulus which is invariant under the action of G, that is, σ(m)=m for every σ ∈ G.
In this case G acts on the ray class group Clm by sending [I ] to [σ(I )].

Remark 14. Let L be an abelian extension of K with conductor m and let σ : L→Q be an embedding.
Then σ(m) is the conductor of σ(L) over σ(K ). To see this it is enough to consider the compositum of
the Artin map with σ .

Proposition 15. Let m be a modulus of K which is invariant under the action of G. Every subgroup H of
Clm which is invariant under the action of G corresponds to an abelian extension L/K, such that L/K0

is normal. Conversely, let L be an abelian extension of K which is normal over K0. Then the conductor
f of L/K as well as the corresponding congruence subgroup are invariant under the action of G.

Proof. Firstly, we prove that if m is an invariant modulus, the statement is true for H = {1} and the
corresponding extension L . Let σ be an embedding of L into Q such that σ |K0 = id. Then σ(K )= K
since K is normal over K0 and σ(L) is an abelian extension of K with admissible modulus σ(m).
As σ(m)=m, we get σ(L)⊆ L and thus L/K0 is normal.

Now, let H be an invariant subgroup of Clm corresponding to an extension L and let F be the ray
class field corresponding to {1}< Clm. We want to show that L is normal over K0, or, equivalently, that
Gal(F/L) is normal in Gal(F/K0). In this setting, we have the exact sequence

1→ Gal(F/K )→ Gal(F/K0)→ Gal(K/K0)→ 1.

In particular, Gal(F/K0) is generated by a set of generators of Gal(F/K ) and preimages of genera-
tors of Gal(K/K0). Obviously, Gal(F/L) is invariant under conjugation by elements of Gal(F/K ) in
Gal(F/K0) since F/K is abelian. By the properties of the Artin map, Clm ' Gal(F/K ) and the action
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of G on Clm corresponds to conjugation in the group Gal(F/K0). Since H is invariant, this means
that Gal(F/L) is invariant under conjugation by generators of Gal(K/K0) and therefore it is a normal
subgroup.

On the other hand, let L be an abelian extension of K which is normal over K0. The conductor being
invariant follows from the observation above. Furthermore, we know that the field L corresponding
to {1}< Clf is normal over K0. Since L is normal, it corresponds to a normal subgroup of Gal(F/K0),
so it is invariant under conjugation by elements of this group. By the properties of the Artin map, the
action of Gal(K/K0) on Gal(F/K ) is given by conjugation in Gal(F/K0). Since L is normal, the
corresponding subgroup is invariant. �

Consequently, if we are searching for abelian extensions of K which are also normal over K0, we can
restrict to invariant subgroups of the ray class groups.

5.2. Computing invariant subgroups. Let M be a finite abelian group of exponent n and G a finite
group acting on M. We now describe how to compute the set of all G-invariant subgroups of M. While
one could of course first compute the set of all subgroups of M using a theorem of Butler [But94], the
following example shows that this is in general not a useful approach.

Example 16. We consider the abelian group M = (Z/25Z)11 with the symmetric group G= S11 acting via
σ(a1, . . . , a11)= (aσ(1), . . . , aσ(11)) for σ ∈ S11 and (a1, . . . , a11)∈M. Then the number of subgroups of
M with quotient isomorphic to Z/25Z is 119209287109375, and only one of these subgroups is invariant.

Denote by Z[G] the integral group ring of G. Since G-invariant subgroups of M are the same as Z[G]-
submodules of M and nZ acts trivially on M, it is sufficient to determine the (Z/nZ)[G]-submodules
of M.

By induction, it is enough to find all the irreducible (Z/nZ)[G]-submodules of M. Since this task can
be easily solved in case the exponent n of M is a prime number using the meat-axe (see [Par84] and
[HEO05, Section 7.4]), we will focus on the nonprime case. As usual we can assume that the exponent n
is a prime power: indeed, for every prime number q dividing the order of M, the q-Sylow subgroup of M
is invariant and they generate the whole group M. This means that every simple (Z/nZ)[G]-submodule
of M must be contained in one of the Sylow subgroups of M. As the q-Sylow subgroup of M is naturally
a (Z/qvq (n)Z)[G]-module, we may assume that n = ps is a prime power.

Proposition 17. Let N be a simple (Z/psZ)[G]-module. Then the exponent of N is p.

Thus all minimal submodules are contained in the submodule Mp = {m ∈ M | pm = 0}, which is
naturally an Fp[G]-module. Thus to find the (Z/psZ)[G]-submodules, we just have to apply the method
for the prime case and iterate. In particular, we have an efficient algorithm to determine the G-invariant
subgroups of an abelian group M.

Remark 18. Assume we want to compute only G-invariant subgroups N of M such that the quotient
M/N has exponent m. As mM itself is G-invariant, the group G also acts on M/mM and the G-invariant
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subgroups of M with quotient of exponent m correspond to the G-invariant subgroups of M/mM. In the
situation where M = Clm is the ray class group, this implies that again it is sufficient to only compute
the quotient Clm/Clmm instead of the whole ray class group.

5.3. Duality. While the previous section provides a solution to the problem of finding G-invariant sub-
groups of M, it can be very inefficient if we are looking only for subgroups N with small index in M,
since it can be necessary to repeat the procedure for finding minimal submodules multiple times.

In this case, we can use duality to translate the problem of finding submodules of small index into
the one of finding submodules of small order. Recall that the dual group M∗ of M is the group
HomZ(M,Z/psZ), which is isomorphic to M. In practice, an isomorphism can be written explicitly
after a choice of a basis. In our case, we assume that M has exponent ps and is given in Smith normal
form, that is, M = Z/pn1Z×· · ·×Z/pnwZ with 1≤ n1 ≤ · · · ≤ nw = s. Let e1, . . . , ew be the canonical
generators of M. Then we define elements of the dual

e∗i : M→ Z/psZ, e j 7→ δi j
ps

ord(ei )
,

where δi j is the Kronecker delta and ord(ei ) denotes the order of ei . The dual is again in Smith normal
form with respect to this generating set.

Every endomorphism ϕ of M induces a dual morphism

ϕ∗ : M∗→ M∗, f 7→ f ◦ϕ.

In particular every element g ∈ G acts on M∗, endowing M∗ with the structure of a (Z/psZ)[G]-module.
The action of G on the dual group just defined preserves the inclusion-reversing correspondence exist-
ing between subgroups of M and subgroups of M∗. Given a subgroup H of M, define the orthogonal
complement of H as

H⊥ = {ϕ ∈ M∗ | H ⊆ ker(ϕ)}.

Proposition 19. There is an inclusion-reversing bijection between submodules of M and M∗:

{(Z/psZ)[G]-submodules of M} → {(Z/psZ)[G]-submodules of M∗},

H 7→ H⊥.

Furthermore, for every submodule H of M, we have H⊥ ' G/H.

Thus if we want to search for submodules of small index, we can instead search for submodules of
the dual module of small order and then use duality. In order to make this computationally effective,
we need to understand how to obtain the action on the dual group M∗ given the one on the group M.
As above, we assume that M is given in Smith normal form with generators ei and we consider the
corresponding element of the dual e∗i . Let ϕ ∈ Aut(M) be the automorphism of M induced by g ∈ G.
We want to compute the matrix A = (ai j ) associated to ϕ∗ with respect to the basis e∗i . Note that by
definition, ϕ∗(e∗i )= e∗i ◦ϕ. Let B be the matrix representing ϕ with respect to the elements ei and let di
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be the valuation of the order of ei at p. Then

ϕ∗(e∗i )(e j )= e∗i (ϕ(e j ))= e∗i

(∑
k

b jkek

)
= b j i e∗i (ei )= b j i ps−di .

On the other hand,

ϕ∗(e∗i )(e j )=

(∑
k

aike∗k

)
(e j )= ai j e∗j (e j )= ai j ps−d j .

Therefore, it is enough to choose ai j satisfying the relation ai j ps−d j = b j i ps−di.

6. Application: fields with minimal discriminant

The algorithms outlined in the previous sections have been implemented in the number theory package
Hecke [FHHJ17].1 As an application, we used our implementation to find number fields K having
Galois closure L over Q with prescribed Galois group and such that K has minimal discriminant among
all fields with this property. We chose to consider the following cases:

• K of degree 15 with Gal(L/Q)' D15 and signature (1, 7).

• K of degree 15 with Gal(L/Q)' D5×C3 and signature (3, 6).

• K of degree 15 with Gal(L/Q)' S3×C5 and signature (5, 5).

• K of degree 36 with Gal(L/Q)' C9 oC4 and signatures (36, 0), (0, 18).

All together the computations took 12 hours on an Intel i7-4790 with 3.6 GHz. The results of the
computation are given in Theorem 1.

6.1. Nonnormal extensions of degree 15. In this section, we consider number fields K of degree 15
over Q having Galois closure L over Q with Galois group Gal(L/Q) ∼= G ∈ {D15, D5×C3, S3×C5}.
Our strategy is to compute the normal closure L (of degree 30) of K and then use the trace and norm to
find the corresponding field K (as in Section 4.3). Since G has a normal cyclic subgroup of degree 15,
we can construct L as a relative cyclic extension of degree 15 over a quadratic field F2. A crucial point
is the choice for the bound on the discriminant of the Galois closure L given a bound on the field K of
degree 15. Since L is the compositum of F2 and K we have dL/Q ≤ d15

F2/Q
· d2

K/Q. Thus, we need to find
a bound for the field F2 given the one on K. For this, we have to distinguish the cases corresponding to
the different groups.

• If G = D15, we can apply [Coh00, Theorem 9.2.6] to obtain the bound dF2/Q ≤ d1/7
K/Q.

• If G = D5 × C3, then K has an intermediate subfield K1 of degree 5 and dK1/Q ≤ d1/3
K/Q by the

behavior of the discriminant in towers of extensions. Now, the Galois closure of K1 has Galois
group D5 and so we apply again [Coh00, Theorem 9.2.6] to obtain dF2/Q ≤ d1/2

K1/Q
≤ d1/6

K/Q.

1Available at https://github.com/thofma/Hecke.jl

https://github.com/thofma/Hecke.jl
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• If G = S3×C5, we use the same strategy as in the case of D5×C3. Here K has an intermediate
subfield K1 of degree 3 whose Galois closure is an S3-extension of Q and dK1/Q ≤ d1/5

K/Q. Therefore
dF2/Q ≤ dK1/Q ≤ d1/5

K/Q.

Thus, we need to list the imaginary quadratic fields up to these bounds, since we are searching for fields K
with nonreal embeddings. By Proposition 15, the possible conductors are invariant under the action of
the Galois group of F2. For every possible conductor m, we need to search for invariant subgroups of
index 15 in the group R =Clm/Cl15

m . Before computing the defining polynomial, we check that the action
of G on the quotient by any subgroup corresponds to the correct group extension. More precisely, let H
be a congruence subgroup of Clm and let σ be the generator of Gal(F2/Q). Then:

• For the D15-extensions, σ must send every element of Clm/H to its inverse.

• For the D5×C3-extensions, σ must fix the 3-Sylow subgroup of Clm/H and act on the 5-Sylow by
sending every element to its inverse.

• For the S3×C5-extensions, σ must fix the 5-Sylow subgroup of Clm/H and act on the 3-Sylow by
sending every element to its inverse.

6.2. Extensions of degree 36. For G = C9 oC4, we construct these fields as a tower of a normal field
of degree 4 and a field of degree 9 on top of it. In this example, the tools we developed in the previous
sections are fundamental, since we are dealing with extensions having nonsquarefree degree.
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