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We give equations for 13 genus-2 curves over Q, with models over Q, whose unpolarized Jacobians are
isomorphic to the square of an elliptic curve with complex multiplication by a maximal order. If the
generalized Riemann hypothesis is true, there are no further examples of such curves. More generally,
we prove under the generalized Riemann hypothesis that there exist exactly 46 genus-2 curves over Q

with field of moduli Q whose Jacobians are isomorphic to the square of an elliptic curve with complex
multiplication by a maximal order.

1. Introduction

For g > 1, let Mg and Ag be the moduli spaces classifying absolutely irreducible projective smooth
curves of genus g and principally polarized abelian varieties of dimension g, respectively, over Q. These
spaces are quasiprojective varieties defined over Q, linked by the Torelli map, which associates to a curve
its Jacobian. To explain the modular interpretation of rational points on these spaces, we must define
the terms field of definition and field of moduli. If X is a curve or polarized abelian variety over Q, we
say that a field F ⊆Q is a field of definition of X if there exists a variety X0/F — called a model of X
over F — such that X0 'Q X . Since Q is a field of characteristic 0, by [Koi72, Corollary 3.2.2, p. 54]
we can define the field of moduli of X to be either

• the field fixed by the subgroup {σ ∈ Gal(Q/Q) | X ' Xσ
}, or

• the intersection of the fields of definition of X .

With these terms defined, we can say that the rational points on Mg and Ag correspond to the isomor-
phism classes of curves and principally polarized abelian varieties, respectively, over Q that have field
of moduli Q [Bai62].
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There are a number of interesting sets of rational points on Ag, but the complex multiplication (CM)
abelian varieties — that is, the principally polarized abelian varieties having endomorphism rings contain-
ing an order in a number field of degree 2g over Q — have attracted the most interest. When such a point
on Ag lies in the image of Mg, the corresponding curve is called a CM-curve. For g= 2, the set of simple
CM-abelian varieties with field of moduli Q is known, and for those varieties that are Jacobians explicit
equations have been computed for the corresponding curves [Spa94; vW99; MU01; KS15; BS17]; for
g = 3 the similar set of possible CM maximal orders is determined in [Kıl16] and conjectural equations
for the curves are given in [Wen01; KW05; BILV16; LS16; KLL+18]. (And while we have avoided the
case g = 1 in the discussion above for technical reasons, it is still of course true that the CM-elliptic
curves with rational j-invariants are known as well [Sil94, Appendix A.3].)

In this article we consider genus-2 curves whose Jacobians are nonsimple CM-abelian surfaces. Every
such surface is isogenous to the square of a CM-elliptic curve, but we restrict our attention in two ways:
first, we look only at surfaces that are isomorphic (and not just isogenous) to E2 for a CM-elliptic curve E ,
and second, we only consider E that have CM by a maximal order. The second restriction is not essential
to our methods, and we impose it here in order to simplify some of our calculations. Note that if the
elliptic curve E has no CM — i.e., End(E) ' Z — then E2 cannot be isomorphic to the Jacobian of a
genus-2 curve, because E2 has no indecomposable principal polarizations [Lan06, Corollary 4.2, p. 159].

Main contributions. We prove under the generalized Riemann hypothesis that there exist exactly 46
genus-2 curves over Q with field of moduli Q whose Jacobians are isomorphic to the square of an
elliptic curve with CM by a maximal order. We show that among these 46 curves exactly 13 can be
defined over Q, and we give explicit equations for them. In order to accomplish this, we develop an
algorithm to compute, for an imaginary quadratic maximal order O, canonical forms for all positive
definite unimodular Hermitian forms on O×O. Such Hermitian forms correspond to principal polariza-
tions ϕ on E2, and our algorithm computes the automorphism group of the polarized variety (E2, ϕ) and
identifies the polarizations that come from genus-2 curves.

Related work. Hayashida and Nishi [HN65] consider in particular when a product of two elliptic curves,
with CM by the same maximal order O, is the Jacobian of a curve over C, and they find that this happens
if and only if the discriminant of O is different from −1, −3, −7, and −15. Hayashida [Hay68] gives
the number of indecomposable principal polarizations on E2 where E/C is an elliptic curve with CM by
a maximal order. More recently, Kani [Kan14; Kan16] gives existence results on Jacobians isomorphic
to the product of two elliptic curves with control on the polarization, and Schuster [Sch89] and Lange
[Lan06] study generalizations to higher dimensions. Rodriguez-Villegas [RV00] considers the same
situation as Hayashida and Nishi, and in the case where O has class number 1 and odd discriminant,
he gives an algorithm (relying on quaternion algebras) for producing curves with field of moduli Q.
Note finally that Fité and Guitart [FG18] determine when there exists an abelian surface A/Q that is
Q-isogenous to E2, with E/Q a CM-curve.
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Outline. Torelli’s theorem [Ser01] implies that our genus-2 curve C has field of moduli Q if and only
if its principally polarized Jacobian (E2, ϕ) has field of moduli Q. We therefore need to find all elliptic
curves E with CM by a maximal order O and all polarizations ϕ of E2 such that (E2, ϕ) is isomorphic to
all of its Gal(Q/Q)-conjugates. Proposition 2.1 shows that if E2 is isomorphic to all of its Galois conju-
gates — even just as an abelian variety without polarization — then the class group of O has exponent at
most 2. Under the generalized Riemann hypothesis, this gives us an explicit finite list of possible orders
(Table 1). For each of these orders O, one can identify the indecomposable principal polarizations ϕ
on E2 and describe them as certain 2-by-2 matrices M with coefficients in O (Proposition 3.1). Tables of
such matrices were computed by Hoffmann [Hof91] and Schiemann [Sch98] and were published online,1

but they only include a fraction of the discriminants that we must consider. We therefore describe an
algorithm, using a method different from that of Hoffmann and Schiemann, that we use to recompute
these tables of matrices (Section 3B). Given such a matrix M , we find explicit algebraic conditions on M
for the principally polarized abelian surface (E2, ϕ) to have field of moduli Q (Section 3C). We check
whether these conditions are satisfied for each M on our list.

We conclude the article with three more results: we heuristically compute the Cardona–Quer invariants
[CQ05] of the associated curves C and see that the factorization of their denominators reveals interesting
patterns; we show that the field of moduli is a field of definition if and only if C has a nontrivial group
of automorphisms (i.e., of order greater than 2; see Proposition 4.1); and for curves C defined over Q,
we compute equations and prove that they are correct.

Notation. In the following, E is an elliptic curve over Q with complex multiplication by a maximal
order O of discriminant 1 and with fraction field K , which we sometimes call the CM-field.

2. Condition on E2

We are interested in the field of moduli M of a principally polarized abelian surface (E2, ϕ). As outlined
above, we first consider the abelian surface E2 alone and we give a necessary condition for M to be
contained in the CM-field K . If M ⊆ K then in particular we have E2

' (Eσ )2 for all σ ∈Gal(Q/K ). The
class group Cl(O) acts simply transitively on the set of elliptic curves with CM by O [Sil94, Proposition
1.2, p. 99]. Since End(Eσ )= End(E)= O, for each σ ∈ Gal(Q/K ), there exists a unique class of ideals
Iσ ∈ Cl(O) such that Eσ ' E/Iσ .

Using a result of Kani [Kan11, Proposition 65, p. 335], we get that, for E , σ , and Iσ defined as above,

E2
' (E/Iσ )2 ⇐⇒ I 2

σ = [O],

where the last equality is in Cl(O). Note that since we only work with maximal orders, the conditions on
the conductors in Kani’s result are trivially satisfied. Moreover by [Sil94, Theorem 4.3, p. 122], since
for any I ∈ Cl(O) there exists σ ∈ Gal(Q/K ) (actually even in Gal(K ( j (E))/K )) such that E/I = Eσ ,
we get the following proposition.

1Available at https://www.math.uni-sb.de/ag/schulze/Hermitian-lattices/.

https://www.math.uni-sb.de/ag/schulze/Hermitian-lattices/
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# Cl(O) Discriminants 1

20
−3, −4, −7, −8, −11, −19, −43, −67, −163

21
−15, −20, −24, −35, −40, −51, −52, −88, −91, −115,
−123, −148, −187, −232, −235, −267, −403, −427

22
−84, −120, −132, −168, −195, −228, −280, −312,
−340, −372, −408, −435, −483, −520, −532, −555,
−595, −627, −708, −715, −760, −795, −1012, −1435

23
−420, −660, −840, −1092, −1155, −1320, −1380,
−1428, −1540, −1848, −1995, −3003, −3315

24
−5460

Table 1. Discriminants 1 of the imaginary quadratic maximal orders O of exponent at most 2, conditional
on the generalized Riemann hypothesis.

Proposition 2.1. A necessary condition for M ⊆ K is that the class group of O has exponent at most 2.

Louboutin [Lou90] shows that under the assumption of the generalized Riemann hypothesis, the
discriminant 1 of an imaginary quadratic field whose class group is of exponent at most 2 satisfies
|1| ≤ 2 · 107. In Table 1 we list the 65 fundamental discriminants satisfying this bound that give class
groups of exponent at most 2.

3. Polarized abelian surfaces

3A. Polarizations on the square of an elliptic curve. We now consider the principal polarizations on
the product surface A= E2. A principal polarization on A is, in particular, an isogeny of degree 1 from A
to the dual Â of A, but not every isomorphism A→ Â is a principal polarization; other properties must
be satisfied as well [BL92, §4.1]. One such polarization is the product polarization ϕ0 = ϕE ×ϕE . Given
any other principal polarization ϕ, we can consider the automorphism M = ϕ−1

0 ϕ of A, which (in light
of the isomorphism A = E2) we view as a matrix2 in GL2(O). Our first result characterizes the matrices
that arise in this way; the statement is not new, but we provide a proof here because it introduces some of
the ideas used in the sequel. (Recall [Hal58, Exercise 7, p. 134] that two matrices M1 and M2 in GL2(O)

are said to be congruent if there exists a matrix P ∈ GL2(O) such that P∗M1 P = M2, where P∗ is the
conjugate transpose of P .)

Proposition 3.1. The map M 7→ ϕ0 ·M defines a bijection between the positive definite unimodular Her-
mitian matrices with coefficients in O and the principal polarizations on A. Two principal polarizations
are isomorphic to one another if and only if their associated matrices are congruent to one another.

Proof. By [BL92, Theorem 5.2.4, p. 121], the matrices M corresponding to principal polarizations are
totally positive symmetric endomorphisms of norm 1. Here the symmetry is with respect to the Rosati

2All matrices in this paper act on the left.
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involution of End(A) associated to the polarization ϕ0, which is the conjugate-transpose involution under
the identification End(A)= M2(O). Thus, the matrices M corresponding to principal polarizations are
exactly the positive definite unimodular Hermitian matrices.

Let ϕ1 and ϕ2 be two principal polarizations on A, corresponding to matrices M1 and M2. The
polarizations ϕ1 and ϕ2 are isomorphic to one another if and only if there exists an automorphism α :

A→ A such that α̂ϕ1α = ϕ2, where α̂ : Â→ Â is the dual of α. This last condition is equivalent to
(ϕ−1

0 α̂ϕ0)(ϕ
−1
0 ϕ1α)= ϕ

−1
0 ϕ2. Now, ϕ−1

0 α̂ϕ0 is nothing other than the Rosati involute of α, so if we write
α as a matrix P ∈ GL2(O), the condition that determines whether ϕ1 and ϕ2 are isomorphic is simply
P∗M1 P = M2. �

The principal polarizations on A come in two essentially different types.

Definition 3.2. A polarization ϕ on an abelian variety A over a field k is said to be geometrically de-
composable if there exist two abelian varieties A1 and A2 over k of positive dimension, together with
polarizations ϕ1 and ϕ2, such that (A, ϕ) and (A1× A2, ϕ1×ϕ2) are isomorphic over k. A polarization
that is not geometrically decomposable is geometrically indecomposable. For brevity’s sake, in this
paper we drop the adjective geometrically and simply use the terms decomposable and indecomposable
for these concepts.

Results in [Wei57; Hoy63; OU73] show that a principally polarized abelian surface is the Jacobian of a
curve if and only if the polarization is indecomposable. In the remainder of this section we show how we
can easily compute representatives for the congruence classes of matrices representing the decomposable
polarizations on E2; we focus on the indecomposable polarizations in later sections.

Proposition 3.3. If ϕ is a decomposable polarization on E2, then there exist elliptic curves F and F ′

that have CM by O such that ϕ is the pullback to E2 of the product polarization on F × F ′ via some
isomorphism E2

' F × F ′. The pair (F, F ′) giving rise to a given decomposable polarization is unique
up to interchanging F and F ′ and up to isomorphism for each elliptic curve. Moreover, for every F with
CM by O there exists an F ′ with CM by O such that E2

' F × F ′.

Proof. First we note that by definition, if ϕ is a decomposable polarization on E2 there must exist elliptic
curves F and F ′, isogenous to E , such that ϕ is the pullback of the product polarization on F × F ′

under some isomorphism E2
' F × F ′. Now, the center of End(E2) is End(E)= O, while the center of

End(F × F ′) is End(F)∩End(F ′); since O is a maximal order, F and F ′ both have CM by O.
If (α, β) : G→ F × F ′ is an embedding of an elliptic curve G into F × F ′, then the pullback of the

product polarization to G is the morphism[
α̂ β̂

] [1 0
0 1

] [
α

β

]
= α̂α+ β̂β = deg(α)+ deg(β);

that is, the pullback is the multiplication-by-d map, with d = deg(α)+ deg(β). It follows that if ϕ is
the pullback to E2 of the product polarization on F × F ′ via some isomorphism E2

' F × F ′, then the
set of elliptic curves G for which there exists an embedding ε : G→ E2 such that ε∗ϕ is a principal
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polarization is simply {F, F ′}. Thus, for a given decomposable principal polarization, the pair (F, F ′)
is unique up to order and isomorphism.

As we noted at the beginning of Section 2, the set of elliptic curves with CM by O is a principal
homogenous space for the class group of O. Given an F with CM by O, let I ∈ Cl(O) be the ideal class
that takes E to F . If F ′ is an elliptic curve with CM by O, say corresponding to an ideal class I ′ ∈ Cl(O),
then E2

' F × F ′ if and only if I ′ is the inverse of I [Kan11, Proposition 65, p. 335]. This proves the
final statement of the proposition. �

Corollary 3.4. Let h denote the class number of O, and let t denote the size of the 2-torsion subgroup of
the class group. The number of decomposable polarizations on E2 is equal to (h+ t)/2.

Proof. The proof of Proposition 3.3 shows that the unordered pairs (F, F ′) with E2
' F × F ′ correspond

to unordered pairs (I, I−1), where I ∈ Cl(O). The number of such pairs is (h+ t)/2. �

Let F be an elliptic curve with CM by O, and let I be the ideal class that takes E to F . Let a be an ideal
of O representing I , such that a is not divisible by any nontrivial ideal of Z. We may write a= (n, α),
where n = Norm(a) ∈ Z and where α ∈ a is chosen so that the ideal αa−1 is coprime to nO; then there
exist x, y ∈ Z such that xn2

− y Norm(α)= n. Let F ′ be the elliptic curve such that E2
' F × F ′. We

prove the following corollary in Section 3C.

Corollary 3.5. In the notation of the paragraph above, the isomorphism class of the decomposable
polarization on E2 obtained from pulling back the product polarization on F × F ′ is represented by the
congruence class of the matrix(

n+Norm(α)/n (x+y)α
(x+y)α x2n+y2 Norm(α)/n

)
.

3B. How to find the polarizations? In Section 2, we identified 65 orders O for which we need to compute
the set of indecomposable principal polarizations, or equivalently, representatives of the congruence
classes of indecomposable positive definite unimodular Hermitian matrices with coefficients in O. In this
section we describe how we computed these representatives.

Fix an embedding ε0 of K into the complex numbers. For any α ∈ O, we write α > 0 if either the trace
of α is positive, or the trace of α is 0 and ε0(α) has positive imaginary part. Then for α, β ∈ O we write
α > β if α−β > 0. Clearly this gives us a total ordering on O.

Let H denote the set of positive definite unimodular Hermitian matrices with coefficients in O. Let
χ :H→ N×N×O be the map that sends a matrix M =

(a
b

b
d

)
to the triple (a, d, b). We define a total

ordering on H by saying that M1 < M2 if χ(M1) < χ(M2) in the lexicographic ordering on N×N×O.
Given any M ∈ H, we say that M is reduced if M ≤ M ′ for all M ′ congruent to M . Clearly every

M ∈H is congruent to a unique reduced matrix. The following algorithm produces the reduced matrix
that is congruent to a given M .
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Algorithm 3.6.

Input: A positive definite unimodular Hermitian matrix M with coefficients in O, specified by a, d ∈ Z

and b ∈ O such that M =
(a

b
b
d

)
.

Output: The reduced matrix congruent to M.

(1) Set a′ = 1.

(2) Compute the set A′ of vectors x = (x1, x2) ∈ O2 such that x∗M x = a′ and such that x1 and x2

generate the unit ideal of O. If A′ =∅, increment a′ and repeat.

(3) Set d ′ = a′.

(4) Compute the set D′ of vectors y = (y1, y2) ∈ O2 such that y∗M y = d ′ and such that y1 and y2

generate the unit ideal of O. If D′ =∅, increment d ′ and repeat.

(5) Initialize M to be the empty set.

(6) For each x ∈ A′ and y ∈ D′ such that x and y generate O2 as an O-module, let M ′ be the matrix
representing the Hermitian form M written on the basis x, y of O2, and add M ′ to the set M.

(7) If M is empty, increment d ′ and return to Step (4).

(8) Find the smallest element M ′ of M under the ordering of H defined above.

(9) Output M ′.

Remark 3.7. In Steps (2) and (4) of Algorithm 3.6, we need to find vectors in O2 of a given length under
the quadratic form specified by M . We note that this is a finite computation: if x = (x1, x2) satisfies
x∗M x = n, with M =

(a
b

b
d

)
, then

Norm(ax1+ bx2)+Norm(x2)= an.

Thus, to solve x∗M x = n, we can simply enumerate all pairs (u, v) ∈ O2 with Norm(u)+Norm(v)= an,
and keep those pairs for which u− bv is divisible by a.

Note that solving x∗M x = n can be done more quickly when the value of a is small. Thus, in
Algorithm 3.6, once one finds a short vector x = (x1, x2) with x1 and x2 coprime, it is worthwhile to
compute any vector y such that x and y generate O, and to replace M with the congruent form obtained
by rewriting M on the basis x, y.

Theorem 3.8. Algorithm 3.6 terminates with the correct result.

Proof. Let M ′ =
(a′

b′
b′
d ′
)

be the reduced matrix congruent to M . If P =
( x1

x2

y1
y2

)
is an element of GL2(O)

such that P∗M P = M ′, and if we set x = (x1, x2) and y= (y1, y2), then a′ = x∗M x and d ′ = y∗M y. By
the very definition of the ordering on H, then, we want to find vectors x and y, each with coordinates that
are coprime to one another, such that x∗M x is as small as possible and y∗M y is as small as possible,
given that x and y generate O2 as an O-module. This is what the algorithm does. Finally, among all
possible such pairs (x, y), we simply need to choose the one that gives the smallest matrix. �
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Hayashida [Hay68] gives a formula for the number of isomorphism classes of indecomposable prin-
cipal polarizations on E2 in the case where E has CM by a maximal order.3 Hayashida’s proof does not
immediately lead to a constructive method of finding polarizations representing the isomorphism classes,
but simply knowing the number of isomorphism classes is the key to a straightforward algorithm for
producing such representatives.

Algorithm 3.9.

Input: A fundamental discriminant 1< 0.

Output: A list of reduced matrices representing the distinct congruence classes of positive definite uni-
modular Hermitian matrices with entries in the order O of discriminant 1, separated into the
decomposable and indecomposable classes.

(1) Compute the number N of indecomposable polarizations on E2 using Hayashida’s formula.

(2) Compute the set D of reduced matrices representing decomposable polarizations, using Corollary 3.5
and Algorithm 3.6.

(3) Initialize I to be the empty set and set P = 0.

(4) Increment P , and compute the set S of elements of O of norm P − 1.

(5) For every divisor a of P with a ≤ P/a, and for every b ∈ S:

(a) Compute the reduced form M of the matrix
(a

b
b

P/a

)
.

(b) If M is not contained in D∪I, then add M to the set I.

(6) If #I< N , then return to Step (4).

(7) Return D and I.

Of course, for our goal of producing genus-2 curves over Q with Jacobians isomorphic to E2, we only
need the indecomposable polarizations.

Theorem 3.10. Algorithm 3.9 terminates with the correct result.

Proof. The algorithm is very straightforward. Every isomorphism class of principal polarization appears
somewhere on the countable list that we are considering, and we simply enumerate the polarizations and
compute their reduced forms until we have found the right number of isomorphism classes. �

Remark 3.11. In our applications, when the class group of O has exponent at most 2, we can speed
up our algorithm as follows: once we have a principal polarization M on E2, we can view the same
matrix as giving a polarization on F2 for any elliptic curve F with CM by O. Since the class group
has exponent at most 2, there exists an isomorphism E2

→ F2, and pulling M back to E2 via such an
isomorphism gives a new positive definite unimodular Hermitian matrix M ′. Each time we find a new

3There is a typographical error in Hayashida’s paper. In the second line of page 43, the term (1/4)(1− (−1))(m
2
−1)/8

should be (1/4)(1− (−1)(m
2
−1)/8)h. Note that the correction involves both moving a parenthesis and adding an instance of

the variable h.
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reduced polarization M , we compute the reduced forms of the polarizations M ′ associated to all the
curves F isogenous to E , and add these reduced forms to the set D if they are new.

If ϕ is a principal polarization on E2 and M is the corresponding Hermitian matrix, then the automor-
phism group of the polarized abelian variety (E2, ϕ), denoted by Aut(E2, ϕ), is isomorphic to the group
{P ∈ GL2(O) | P∗M P = M}. Note that if ϕ is indecomposable, so that (E2, ϕ) is the polarized Jacobian
of a curve C , then Torelli’s theorem [Ser01] shows that this group is also isomorphic to Aut(C). In any
case, computing Aut(E2, ϕ) is straightforward:

Algorithm 3.12.

Input: A positive definite unimodular Hermitian matrix M =
(a

b
b
d

)
with entries in an imaginary qua-

dratic maximal order O.

Output: A list of all matrices P ∈ GL2(O) such that P∗M P = M.

(1) Compute the set A of vectors x = (x1, x2)∈ O2 such that x∗M x = a and such that x1 and x2 generate
the unit ideal of O.

(2) Compute the set D of vectors y= (y1, y2)∈ O2 such that y∗M y= d and such that y1 and y2 generate
the unit ideal of O.

(3) Initialize A to be the empty set.

(4) For each x ∈ A and y ∈ D such that x and y generate O2 as an O-module:

(a) Compute b′ = x∗M y.
(b) If b′ = b then add the matrix

( x1
x2

y1
y2

)
to the set A.

(5) Output A.

(See Remark 3.7 for an explanation of how to implement the two first steps.)

Theorem 3.13. Algorithm 3.12 terminates with the correct result.

Proof. If P =
( x1

x2

y1
y2

)
∈ GL2(O) satisfies P∗M P = M , then x = (x1, x2) and y = (y1, y2) are vectors

in O2 such that x∗M x = a and y∗M y = d and x∗M y = b. The algorithm simply enumerates all x and y
that meet the first two conditions, and checks to see whether they meet the third. �

3C. Conditions on the polarization. Throughout this section, E is an elliptic curve with CM by a max-
imal order O of an imaginary quadratic field K whose class group has exponent at most 2. Also ϕ is
a principal polarization on E2 corresponding (as in Proposition 3.1) to a positive definite unimodular
Hermitian matrix M with entries in O and M is the field of moduli of the polarized abelian variety
(E2, ϕ). We resume our analysis of the condition that M =Q.

Proposition 3.14. Let a1, . . . , ah be ideals of O representing all of the elements of the class group of O,
and for each i let ni ∈ Z>0 generate Norm(ai ). Then M = Q if and only if for every i there exists a
matrix Pi ∈ GL2(K ), with entries in ai , such that ni M = P∗i M Pi .
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Proof. Lemma 3.15 below shows that M =Q if and only if M ⊆ K , and this is the case if and only if
for every σ ∈ Gal(Q/K ) there exists an isomorphism ασ : (E2, ϕ)→ ((Eσ )2, ϕσ ). To understand this
condition, we use the classical theory of complex multiplication of abelian varieties; the book of Shimura
and Taniyama [ST61] is one possible reference, especially Chapter II.

Under the embedding ε0 : K → C we chose earlier, the isomorphism classes of elliptic curves over
Q ⊂ C with CM by O correspond to the lattices ε0(a) up to scaling, for fractional ideals a of O. Since
the class group of the order O is 2-torsion, we have E2

' F2 for every E and F with CM by O, so we
may as well choose our E so that it corresponds to the trivial ideal O.

Let 1 be the discriminant of O and let δ ∈ O be a square root of 1, chosen so that ε0(δ) is positive
imaginary. Note that the trace dual a† of an arbitrary fractional O-ideal a is (1/δ)a−1. If F is the
elliptic curve corresponding to a, then the dual of F is the elliptic curve corresponding to the complex
conjugate of a†, and the canonical principal polarization of F is the isomorphism a→ (1/δ)a−1 given
by x 7→ x/(nδ), where n ∈Q is the positive generator of Norm(a). (See [ST61, §6.3] for more details.)

Let ϕ0 be the product polarization on E2. For ασ : E2
→ (Eσ )2 to give an isomorphism between

(E2, ϕ) and ((Eσ )2, ϕσ ), the following diagram must be commutative:

E2 M
//

ασ
��

E2 ϕ0
// Ê2

(Eσ )2 M
// (Eσ )2

ϕσ0
// (Êσ )2

α̂σ

OO

To express this diagram in terms of lattices, we let a be an ideal corresponding to Eσ , we let n=Norm(a),
and we let Pσ be the matrix in GL2(K ) corresponding to ασ . Then the preceding diagram becomes

O×O
M

//

Pσ
��

O×O
1/δ

// (1/δ)(O×O)

a× a
M

// a× a
1/(nδ)

// (1/δ)(a−1
× a−1)

P∗σ

OO

Thus, there exists an isomorphism (E2, ϕ)→ ((Eσ )2, ϕσ ) of polarized varieties if and only if there exists
a matrix P , with entries in a, such that nM = P∗M P . Since the Galois group of Q/K acts transitively
on the set of elliptic curves with CM by O, the field of moduli of (E2, ϕ) is contained in K if and only
if we can find such a matrix P for each of the ideals a1, . . . , ah . �

Lemma 3.15. Let E , ϕ, and M be as mentioned at the beginning of this section. Then M = Q if and
only if M ⊆ K .

Proof. Let us assume that M ⊆ K ; we must show that M =Q. Since O has a class group of exponent
at most 2, [Shi71, Exercise 5.8, p. 124] implies that Q( j (E)) is totally real. Let ι be any complex
conjugation in Gal(Q/Q), so that ι acts trivially on Q( j (E)) and nontrivially on K . Given any element
σ ∈ Gal(Q/Q), we want to show that (E2, ϕ)' ((Eσ )2, ϕσ ).
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If σ acts trivially on K , then such an isomorphism exists, because M ⊆ K . Otherwise, σ ι acts trivially
on K , and we have (E2, ϕ)' ((Eσ ι)2, ϕσ ι), and therefore ((E ι)2, ϕι)' ((Eσ )2, ϕσ ). So it is enough for
us to show that (E2, ϕ)' ((E ι)2, ϕι). If we choose our model of E to be defined over Q( j (E)), then
E ι = E , and we simply need to show that there exists an element P of GL2(O) such that M = P∗M P .
If M =

(a
b

b
d

)
, we can simply take P =

( b
−a

d
−b

)
. �

At this point, we have reviewed enough CM theory to prove Corollary 3.5.

Proof of Corollary 3.5. We are given an ideal a= (n, α) of O, where n ∈ Z is the norm of a and where
α ∈ O, and we have x, y ∈ Z such that xn2

− y Norm(α)= n. The complex conjugate a of a represents
the inverse of the class of a in Cl(O), and the matrix P =

( n
α

yα
xn

)
takes the lattice O×O⊂ K 2 onto the

lattice a× a. The dual lattice for a× a is (nδ)−1
· (a× a) (where δ is the positive imaginary square

root of 1 as in the proof of Proposition 3.14) and the product polarization from a× a to its dual is
simply multiplication by 1/(nδ). Pulling this polarization back to O×O via P gives us the polarization
(nδ)−1 P∗P . Since the product polarization on O× O is 1/δ, the pullback polarization is represented
by the endomorphism (1/n)P∗P of O× O, and we compute that (1/n)P∗P is the matrix given in the
statement of the corollary. �

We close this section by indicating how we can check the criterion given in Proposition 3.14: namely,
given the polarization matrix M and an ideal a with Norm(a)= nZ, how can we determine whether there
exists a matrix P ∈ M2(a) that satisfies nM = P∗M P?

Suppose there exists such a matrix P . If M =
(a

b
b
d

)
let us take L =

(a
0

b
1

)
, so that L∗L = aM . Let

Q = L P L−1. Then the condition nM = P∗M P becomes the condition n Id= Q∗Q. This equality can
only hold if Q is of the form

Q =
(

x y
z t

)
∈ GL2(K )

where x, y, z, t ∈ K satisfy Norm(x)+Norm(z)= Norm(y)+Norm(t)= n and x y+ zt = 0. Since we
have

P = L−1 QL =
(

x − bz (bx + y− b2z− bt)/a
az bz+ t

)
∈ M2(a),

we see that we must have x = X/a, y = Y/a, z = Z/a, and t = T/a with X, Y, Z , T ∈ a.
Therefore, to check whether a matrix P with the desired properties exists, it suffices to compute and

store all solutions (X, Z) ∈ a× a to the norm equation Norm(X)+Norm(Z)= a2n (which can be done
efficiently). Then, for every two solutions (X, Z) and (Y, T ) satisfying XY + Z T = 0, we can check
whether the corresponding matrix P lies in M2(a). If we obtain such a P for each of the ideals ai from
Proposition 3.14, then the field of moduli for (E2, ϕ) is Q. In fact, we need only find a P for each ai in
a set that generates the class group of O.

3D. Results. We have implemented the algorithms described in the previous sections. We were able
to test all polarizations on the 65 possible orders identified in Section 2. The results are presented in
Table 2.
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h 1 #ϕ #C h 1 #ϕ #C h 1 #ϕ #C

1 −3 0 0 4 −84 2 0 8 −420 10 0
−4 0 0 −120 5 3 −660 16 0
−7 0 0 −132 3 1 −840 22 0
−8 1 1 −168 4 0 −1092 22 0
−11 1 1 −195 8 0 −1155 32 0
−19 1 1 −228 5 1 −1320 36 0
−43 2 2 −280 14 0 −1380 34 0
−67 3 3 −312 11 1 −1428 28 0
−163 7 7 −340 14 0 −1540 46 0

−372 8 0 −1848 46 0
2 −15 0 0 −408 14 0 −1995 56 0
−20 1 1 −435 16 0 −3003 72 0
−24 1 1 −483 12 0 −3315 128 0
−35 2 0 −520 25 3
−40 2 2 −532 14 0 16 −5460 128 0
−51 2 0 −555 20 0
−52 2 2 −595 28 2
−88 4 2 −627 16 0
−91 4 0 −708 15 1
−115 6 0 −715 36 0
−123 4 0 −760 41 1
−148 5 3 −795 28 2
−187 8 0 −1012 28 0
−232 9 5 −1435 64 0
−235 12 0
−267 8 0
−403 18 0
−427 16 0

Table 2. The number of indecomposable principal polarizations ϕ and the number of isomorphism classes
of curves C with field of moduli Q for each discriminant 1, grouped by class number h.

There exist 1226 indecomposable polarizations, in total. Our algorithms, implemented in Magma on
a laptop with a 2.50 GHz Intel Core i7-4710MQ processor, took less than 21 minutes to compute all of
the polarizations; about 10 minutes of that time was spent on the largest discriminant. The computation
required about 2.8 GB of memory.

Once we computed the polarizations, it took about 26 minutes (on the same laptop) to check the
conditions of Proposition 3.14. For this calculation, the largest discriminant represented more than two-
thirds of the computation time.

In the end, we obtained exactly 46 polarizations ϕ such that the principally polarized abelian surface
(E2, ϕ) is isomorphic to the Jacobian of a curve C with field of moduli Q. These 46 curves are obtained
only from orders whose class groups have order 1, 2, or 4.
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4. Computation of invariants and final remarks

4A. Invariants of the genus-2 curves C. A genus-2 curve C has field of moduli Q if and only if all of
its absolute invariants are defined over Q (see for example [LRS13, §3]). This is in particular true for the
triplet (g1, g2, g3) of invariants defined by Cardona and Quer in [CQ05], which characterizes a genus-2
curve up to Q-isomorphism and enables one to find an equation y2

= f (x) for the curve. We quickly
review here a strategy for obtaining the Cardona–Quer invariants for the 46 curves whose invariants are
Q-rational.

The first quantity we are able to derive is a Riemann matrix τ , using the same method as [Rit10, §3.3].
Starting with the positive definite unimodular Hermitian matrix M corresponding to the polarization
ϕ = ϕ0 ·M , we obtain the Riemann matrix τ associated to ϕ and the CM-elliptic curve E ' C/(Z+Zω)

where ω = (1+
√
1)/2 if 1 is odd and ω =

√
1 otherwise.

This matrix we get is defined up to the action of the symplectic group Sp4(Z). One then works out
a matrix τ0 in the orbit of τ for which the computation of the theta constants (θi )0≤i≤9 at τ0 is fast (see
[Lab16] for instance).

A complex model of a curve C : y2
= x(x − 1)(x − λ1)(x − λ2)(x − λ3) with Riemann matrix τ0 can

then be classically approximated using Rosenhain’s formulas [Ros51, p. 417]

λ1 =
θ2

0 θ
2
2

θ2
1 θ

2
3
, λ2 =

θ2
2 θ

2
7

θ2
3 θ

2
9
, and λ3 =

θ2
0 θ

2
7

θ2
1 θ

2
9
.

By computing the theta constants to higher and higher precision, we are able to get a sufficiently good
approximation of the Cardona–Quer invariants to recognize them as rationals. The numbers we get are
a priori only heuristic as there is no bound known for the denominators of these rationals; however, we
can sometimes prove that these heuristic values are correct, as follows.

Given a set of Cardona–Quer invariants that we suspect are equal to the invariants of a curve whose
Jacobian is isomorphic to E2 for an E with complex multiplication, we can easily produce a curve C
having those invariants. Then we can use the techniques of [CMSV18] to provably compute the endo-
morphism ring of the Jacobian of C . If this endomorphism ring is isomorphic to the ring M2(End E),
then we have provably found a curve of the type we are looking for.

We computed heuristic values for the Cardona–Quer invariants of our 46 principally polarized abelian
surfaces, and the list of these invariants is available on authors’ web pages,4 together with all the programs
to compute them. We are grateful to J. Sijsling for computing the endomorphism rings for the Jacobians
of 13 of our 46 curves; he is currently developing a faster and more robust algorithm which should be
able to handle the remaining cases. For each of these 13 curves, the endomorphism ring was M2(End E),
so the heuristic values of the Cardona–Quer invariants of these curves are provably correct.

We observe that for the 13 provably correct sets of invariants, all the denominators are smooth integers.
It would be very interesting, in the same spirit as [GL07; LV15] for the CM genus-2 case, to find formulas

4Available at https://alexgelin.github.io/, http://ewhowe.com, and https://perso.univ-rennes1.fr/christophe.ritzenthaler/.

https://alexgelin.github.io/
http://ewhowe.com
https://perso.univ-rennes1.fr/christophe.ritzenthaler/
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1 M Cardona–Quer invariants [g1, g2, g3]

−8
(

2 ω+1
−ω+1 2

)
[24
· 55, 2 · 3 · 54,−53

]

−11
(

2 ω

−ω+1 2

) [
195

22 ,
32
· 11 · 193

25 ,−
192
· 47

26

]
−19

(
2 ω

−ω+1 3

) [
55
· 295

22 · 37 ,
53
· 7 · 293

· 31 · 73
25 · 38 ,−

52
· 17 · 292

· 2719
26 · 310

]
−20

(
2 ω

−ω 3

) [
55
· 75

22 ,
55
· 73
· 11

25 ,−
3 · 53
· 72

26

]
−24

(
2 ω+1

−ω+1 4

) [
24
· 235

3
,

2 · 233
· 421

32 ,−
232
· 37

34

]
−40

(
2 ω+1

−ω+1 6

) [
24
· 55
· 435

37 ,
2 · 54
· 433
· 6977

38 ,−
54
· 13 · 432

310

]
−52

(
2 ω

−ω 7

) [
55
· 1735

22 · 37 ,
54
· 1733

· 112061
25 · 38 ,−

53
· 7 · 37 · 1732

26 · 310

]
Table 3. Cardona–Quer invariants for seven of the 46 genus-2 curves with field of moduli Q whose Ja-
cobians are isomorphic to E2, where E has CM by a maximal order O. The discriminant of O is 1, the
corresponding principal polarization on E2 is ϕ0 ·M , and ω denotes either

√
1/2 or (1+

√
1)/2, depending

on whether 1 is even or odd.

to explain the prime powers dividing these denominators. An example of such a closed formula appears
in the introduction of [RV00] without any details. The denominators of the 33 sets of invariants that we
have not proven to be correct also are smooth, which provides some further heuristic evidence that the
values are correct.

We present in Table 3 the invariants for a few of the curves we could provably compute.

4B. When is Q also a field of definition for C? To conclude let us consider any of the 46 pairs (A, ϕ).
We know that there exists a genus-2 curve C/Q with field of moduli Q such that (Jac(C), j)'Q (A, ϕ),
where j is the canonical polarization on Jac(C). If the order of Aut(A, ϕ)'Aut(C) is larger than 2, then
it is known [CQ05] that the field of moduli of C is a field of definition and that there exists a genus-2
curve C0 : y2

= f (x) with f ∈Q[x] such that (Jac(C0), j0)'Q (A, ϕ). In particular Q is also a field of
definition for (A, ϕ).

Proposition 4.1 (compare [RV00, §4]). The field Q is a field of definition of C — and thus of (A, ϕ)— if
and only if the order of Aut(A, ϕ)' Aut(C) is greater than 2.

Proof. It remains to prove that when Aut(A, ϕ)= {±1}, there is no model of (A, ϕ) over Q. Actually we
show there is even no model (B, µ) over R. Indeed, an isomorphism ψ : (A, ϕ)/C→ (B, µ)/R, defined
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1 M d equation for C

−8
(

2 ω+1
−ω+1 2

)
1 y2

= x5
+ x

−11
(

2 ω

−ω+1 2

)
(−11)1/3 y2

= 2x6
+ 11x3

− 2 · 11

−19
(

2 ω

−ω+1 3

)
−19

y2
= x6
+ 1026x5

+ 627x4
+ 38988x3

− 627 · 19x2
+ 1026 · 192x − 193

−43
(

2 ω

−ω+1 6

)
−43

y2
= x6
+ 48762x5

+ 1419x4
+ 4193532x3

− 1419 · 43x2
+ 48762 · 432x − 433

−67
(

2 ω

−ω+1 9

)
−67

y2
= x6
+ 785106x5

+ 2211x4
+ 105204204x3

− 2211 · 67x2
+ 785106 · 672x − 673

−163
(

2 ω

−ω+1 21

)
−163

y2
= x6
+ 1635420402x5

+ 5379x4

+ 533147051052x3
− 5379 · 163x2

+ 1635420402 · 1632x − 1633

−20
(

2 ω

−ω 3

)
√

5 y2
= x5
+ 5x3

+ 5x

−24
(

2 ω+1
−ω+1 4

)
√

2 y2
= 3x5

+ 8x3
+ 3 · 2x

−40
(

2 ω+1
−ω+1 6

)
√

5 y2
= 9x5

+ 40x3
+ 9 · 5x

−52
(

2 ω

−ω 7

)
√

13 y2
= 9x5

+ 65x3
+ 9 · 13x

−88
(

2 ω+1
−ω+1 12

)
√

2 y2
= 99x5

+ 280x3
+ 99 · 2x

−148
(

2 ω

−ω 19

)
√

37 y2
= 441x5

+ 5365x3
+ 441 · 37x

−232
(

2 ω+1
−ω+1 30

)
√

29 y2
= 9801x5

+ 105560x3
+ 9801 · 29x

Table 4. Genus-2 curves defined over Q with Jacobian isomorphic over Q to E2, where E has CM by a
maximal order O. The discriminant of O is 1, the corresponding principal polarization on E2 is ϕ0 ·M , and
ω denotes either

√
1/2 or (1+

√
1)/2, depending on whether 1 is even or odd. This list is complete if the

generalized Riemann hypothesis holds. Each curve is a double cover of its corresponding E (as can be seen
by the fact that the upper-left entry of each polarization matrix is 2), and the associated involution of C is
given by (x, y) 7→ (d/x, d3/2 y/x3) for the value of d given in the third column.

over C, would induce an isomorphism

αι = (ψ
−1)ι ◦ψ : (A, ϕ)→ (A, ϕ)ι,
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for the complex conjugation ι, such that αιι ◦αι = ((ψ−1) ◦ψ ι) ◦ ((ψ−1)ι ◦ψ)= Id.
Since we have seen that E ι = E , the isomorphism αι can be represented as a matrix P ∈ GL2(O) such

that P P = Id. Moreover the commutativity of the diagram

E2 ϕ
//

αι
��

Ê2

E2 ϕι
// Ê2

α̂ι

OO

translates into the equality P∗M P = M . If we denote M = (a
b

b
d ), then it is easy to see that the matrix

P0 =
( b
−a

d
−b

)
satisfies the last equality. Any other P = P0 R differs from P0 by an automorphism R

of (A, ϕ) since R∗P∗M P R = R∗M R = M . Because the automorphism group of (A, ϕ) is {±1}, this
means that the only possible P are ±P0. It is easy to check that P0 P0 = (−P0)(−P0) = − Id, so the
condition P P = Id cannot be satisfied. �

4C. Provably correct equations for the curves defined over Q. Using Proposition 4.1 we found that
exactly 13 of our curves can be defined over Q, and these 13 are precisely the curves for which we
could provably compute the invariants. This is no coincidence, as having an equation over Q definitely
simplifies the computation. We present these curves in Table 4.
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