
THE OPEN BOOK SERIES 2

ANTS XIII
Proceedings of the Thirteenth
Algorithmic Number Theory Symposium

msp

Higher-dimensional sieving for the number field sieve algorithms
Laurent Grémy

THE OPEN BOOK SERIES 2 (2019)

Thirteenth Algorithmic Number Theory Symposium
dx.doi.org/10.2140/obs.2019.2.275

msp

Higher-dimensional sieving for the number field sieve algorithms

Laurent Grémy

Since 2016 and the introduction of the exTNFS (extended tower number field sieve) algorithm, the secu-
rity of cryptosystems based on nonprime finite fields, mainly the pairing- and torus-based ones, is being
reassessed. The feasibility of the relation collection, a crucial step of the NFS variants, is especially
investigated. It usually involves polynomials of degree 1, i.e., a search space of dimension 2. However,
exTNFS uses bivariate polynomials of at least four coefficients. If sieving in dimension 2 is well described
in the literature, sieving in higher dimensions has received significantly less attention. We describe and
analyze three different generic algorithms to sieve in any dimension for the NFS algorithms. Our imple-
mentation shows the practicability of dimension-4 sieving, but the hardness of dimension-6 sieving.

1. Introduction

Nowadays, an important part of the deployed asymmetric cryptosystems bases its security on the hardness
of two main number theory problems: the factorization of large integers and the computation of discrete
logarithms in a finite cyclic group. In such a group (G, ·) of order ` and generator g, the discrete
logarithm problem (DLP) is, given a ∈ G, to find x ∈ [0, `) such that gx

= a. Usual choices of group are
groups of points on elliptic curves or multiplicative subgroups of finite fields.

In this article, we focus on discrete logarithms in finite fields of the form Fpn , where p is a prime
and n is relatively small, namely the medium and large characteristics situation studied in [21]. Com-
puting discrete logarithms in this type of field can affect torus-based [29; 36] or pairing-based [12]
cryptography. The best-known algorithm to achieve computations in such groups is the number field
sieve (NFS) algorithm. It has a subexponential complexity, often expressed with the L(α) notation
L pn (α, c) = exp[(c+ o(1)) log(pn)α log log(pn)1−α], where α = 1

3 for all the variants of NFS. For the
general setting in medium characteristic, the first L

(1
3

)
algorithm was reached with c = 2.43 [21], im-

proved to 2.21 [4] and now to 1.93 with exTNFS [23], the same complexity as NFS in large characteristic.
In some specific context, exTNFS even reaches a lower complexity. However, theoretical complexities
are not enough to estimate what a real attack would cost, since practical improvements can be hidden

Laurent Grémy was supported by the ERC Starting Grant ERC-2013-StG-335086-LATTAC. His work was started in the
CARAMBA team of Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France and completed in the AriC team.
MSC2010: 11T71.
Keywords: discrete logarithm, finite fields, sieve algorithms, medium characteristic.

275

http://msp.org/obs
http://dx.doi.org/10.2140/obs.2019.2-1
http://dx.doi.org/10.2140/obs.2019.2.275
http://msp.org

276 LAURENT GRÉMY

in the o(1) term [1; 30; 7]. Experimental results are then needed to assess the concrete limits of known
algorithms.

On the practical side, there has been a lot of effort to compute discrete logarithms in prime fields,
culminating in a 768-bit record [27]. Although the records for Fp2 are smaller than the ones in prime
fields, the computations turned out to be faster than expected [4]. However, when n is a small composite
and p fits for Fpn to be in the medium characteristic case (typically n = 6 [16] and n = 12 [18]), the
records are smaller, even with a comparable amount of time spent during the computation. A way to fill
the gap between medium and large characteristics is to implement exTNFS, since the computations in
medium characteristic were, until now, performed with a predecessor of exTNFS.

Since exTNFS is a relatively new algorithm, there remain many theoretical and practical challenges
to be solved before a practical computation can be reached. One of the major challenges concerns the
sieve algorithms which efficiently perform the relation collection, one of the most costly steps of NFS.
However, if there exist sieve algorithms in dimensions 2 and 3, these sieves are not efficient for higher
dimensions and exTNFS needs to sieve in even dimension larger than or equal to 4.

Our contributions. We describe three new generic sieve algorithms which deal with any dimension,
especially those addressed by exTNFS. Instantiating these algorithms in dimension 2 or 3 may allow to
recover the existing sieve algorithms. Since these new sieves do not ensure completeness of the enumera-
tion, unlike most of the existing sieve algorithms, we describe workarounds to ensure a trade-off between
the completeness and the running-time efficiency. Finally, we analyze some quality criteria of these sieve
algorithms and show the feasibility of sieving in dimension 4, but the hardness of dimension-6 sieving.

2. Overview of the NFS algorithms

Let ` be a large prime factor of the order 8n(p) of F∗pn that is coprime to 8k(p) for all prime factors k
of n: the Pohlig–Hellman algorithm allows one to reduce the DLP in F∗pn to the DLP in all its subgroups,
especially the one of order `. The NFS algorithms can be split into four main steps: polynomial selection,
relation collection, linear algebra and individual logarithm. The first step defines in a convenient way
the field Fpn . The next two steps find the discrete logarithms of a subset of small to medium elements
of Fpn , where sizes of the elements will be defined later. The last step computes the discrete logarithm
of a large element of Fpn . The overall complexity of NFS is dominated by the relation collection and the
linear algebra.

2A. Polynomial selection. Let n = ηκ; the field Fpn can be represented as a degree-κ extension of Fpη .
Let h be an integer polynomial of degree η irreducible over Fp and ι be a root of h. Let Fpη be defined by
R/pR, where R is the ring Z[y]/h(y). There exist two ring homomorphisms from R[x] = Z[ι][x] to Fpn ;
they involve a number field K0 or K1 defined by f0 or f1 respectively. The polynomials f0 and f1 are
irreducible over R and share a common irreducible factor φ of degree κ modulo p. This setting allows
one to define Fpn = F(pη)κ ≈ (R/pR)[x]/φ(x). This provides the commutative diagram of Figure 1. The
different polynomial selections defining f0 and f1 are given in Figure 2.

HIGHER-DIMENSIONAL SIEVING FOR THE NUMBER FIELD SIEVE ALGORITHMS 277

K0 ⊃ R[x]/ f0(x) R[x]/ f1(x)⊂ K1

R[x]

(R/pR)[x]/φ(x)≈ Fpn
mod (p, φ(x)) mod (p, φ(x))

Figure 1. The NFS diagram to compute discrete logarithms in Fpn .

Base-m
[8; 31; 25; 26; 1]

JL [20] GJL [4] A [39] B [40] C [37]

D [38]Conj [4] gConj [24]

JLSV0 [21] JLSV2 [21] gJLSV2 [24]

JLSV1 [21]

κ = 1
κ > 1

d = 0

W = 0

D = 0

Figure 2. Polynomial selections: a link a→ b means that a is a particular case of b (how to get a from b
is written if this is not explicit in the articles); a dashed link means that the selection strategies in a and b
strongly resemble each other. Polynomial selections in the gray area allow one to build polynomials with
algebraic coefficients.

2B. Relation collection. Since the diagram of Figure 1 is the same for all the NFS variants, we use in
the following the name NFSη to cover all the variants (see Table 1 for their names) or NFS when the
parameter η does not matter.

2B1. Relation. A relation in NFS is given by a polynomial a(x, y) in R[x] of degree µ in x , often set to
µ= 1 to reach the best complexity (see Table 1), and η−1 in y. Since there are t = (µ+1)η coefficients
to define a polynomial a, the relation collection is done in dimension t . A polynomial a gives a relation
when the ideal factorizations of a mapped in both number fields involve prime ideals of norms smaller
than two L

(1
3

)
smoothness bounds B0 and B1 respectively. Such ideals are elements of the so-called

factor bases F0 and F1 respectively; see [21; 5; 23].
Since the factorization of a in prime ideals and the factorization of the norm of a are strongly linked,

the relation collection looks for polynomials a of norms B0-smooth in K0 and B1-smooth in K1. To
ensure the best probability of smoothness, the t-coefficients a of a are taken into a t-search space S
containing L

(1
3

)
elements. Since an upper bound of the norm of a involves its infinity norm [6], the

search spaces are usually cuboids of form S = [Sm
0 , SM

0)× [S
m
1 , SM

1)× · · · × [S
m
t−1, SM

t−1), where 0 is
in S, all the [Sm

i , SM
i) are integer intervals and SM

i = −Sm
i , where i is in [0, t). Theoretically, all the

κ = 1 κ ≥ 1

η = 1 NFS NFS-HD
η ≥ 1 TNFS exTNFS

κ = 1 κ ≥ 1

η = 1 µ= 1 µ≥ 1
η ≥ 1 µ= 1 µ= 1

Table 1. The different variants of NFS. Left: names of the NFS variants. Right: optimal degrees.

278 LAURENT GRÉMY

SM
i are equal but practically, the skewness of the polynomials f0 and f1 must be taken into account

[31; 25; 26; 1], implying a skew search space. Since −a and a give the same relation, Sm
t−1 = 0. By

abuse of notation, we denote by a both the polynomial and the list a of its t-coefficients.

2B2. Practical considerations. To ensure the best running time for the relation collection, the polyno-
mials f0 and f1 must be chosen carefully. However, the two usual quality criteria, especially the α but
also the Murphy-E functions [31], are only defined for NFS1 and µ≤ 3 [14]. Finding good polynomials
for NFS>1, even by settling for integer coefficients to define f0 and f1, is yet a challenge.

The goal of the relation collection is to produce more relations than the number of ideals in both factor
bases. A classical algorithm, used to analyze theoretically NFS, tests the smoothness of the norms of a in
S by using the elliptic curve method (ECM) algorithm. However, if this algorithm is almost memory-free,
the practical running time of such a task is prohibitive.

Instead, the common practical way is to perform ECM only on promising polynomials a, i.e., polyno-
mials whose norms have many small factors. Finding these small factors is efficiently performed thanks
to arithmetic sieve algorithms. However, sieve algorithms need a huge memory-footprint, since they
need to store the norms of all the elements of S. This problem was tackled in [33], allowing moreover
a high-level parallelization, by considering many subsets of polynomials; in one number field, say K0,
the factorization into prime ideals of these polynomials involved at least an enforced ideal of medium
size. Let Q be such an ideal, called special-Q. Polynomials a such that Q appears into their ideal
factorization in K0 are elements of a lattice, called Q-lattice, a basis of which is given by the rows of the
matrix MQ. To consider only polynomials fitting into S, sieves look for elements c in the intersection of
the Q-lattice and a t-search space H=[H m

0 , H M
0)×[H

m
1 , H M

1)×· · ·×[0, H M
t−1); a is obtained from cMQ.

If theoretically H should depend on Q, it is often the same for all the special-Qs. In this intersection,
sieve algorithms remove the contribution of small ideals. Let R be such an ideal of prime norm r . Except
for a tiny number of such ideals, a basis of the R-lattice in the Q-lattice can be of the form

{(r,0,0, . . . ,0), (λ0,Q,R,1,0,0, . . . ,0), (λ1,Q,R,0,1,0,0, . . . ,0), . . . , (λt−2,Q,R,0,0, . . . ,0,1)}

= {b0,b1,b2, . . . ,bt−1}, (1)

where the λi,Q,R are integers in [0, r). Briefly, the different steps of the relation collection with the
special-Q-method and sieving algorithms are as follows:

(1) For all the possible special-Qs:

(a) For both sides i in [0, 1]:

(i) Compute the norms Ni [c] of a = cMQ, where c is in H.
(ii) For all the ideals R to be sieved, enumerate the elements c in H∩3QR and remove the

contribution of R from Ni [c].

(b) If both N0[c] and N1[c] are sufficiently small to have a chance to give a relation, factor the
norms of a and report a if a gives a relation.

HIGHER-DIMENSIONAL SIEVING FOR THE NUMBER FIELD SIEVE ALGORITHMS 279

However, if there exist generic sieve algorithms in any dimension (see Section 3), they are not very
efficient when t ≥ 4, which especially arises with NFS>1. We propose algorithms for these cases in
Section 4. Note that we will use the term sieve algorithms, but we only focus on the enumeration part
of them, which is Step 1(a)ii without updating the array Ni . Step 1(a)i is briefly addressed in Section 5.

2C. Linear algebra and individual logarithm. Let θ0 and θ1 be roots of f0 and f1 respectively. Let
a be a polynomial that gives a relation; i.e., 〈a(θk, ι)〉 =

∏
R∈Fk

RvalR(a(θk ,ι)), where k is in [0, 1] and
val denotes the valuation: the factorizations of the norms of a must be translated into such a factoriza-
tion of ideals [9]. A relation can be transformed into a linear relation involving the virtual logarithms
(vlog) of the ideals [42]. To be valid, this linear relation must involve the Schirokauer maps εk [41], as∑

R∈F0
valR(a(θk, ι)) vlog(R)+ ε0(a)=

∑
R∈F1

valR(a(θk, ι)) vlog(R)+ ε1(a) mod `. In this equation,
the virtual logarithms are unknowns, the valuations are small integers and the Schirokauer maps are large
integers, close to `. These large elements negatively impact the usual algorithms to solve sparse systems,
but the cost of these heavy parts can be significantly decreased thanks to a modification of the block
Wiedemann algorithm [10; 22; 13].

The last step of the computation is the computation of a large, say L(1), unknown logarithm. This
computation is achieved by rewriting the (virtual) logarithm of the target in terms of logarithms of smaller
elements; these smaller elements are again rewritten in terms of smaller elements until the logarithm of
the target has been rewritten using only the precomputed logarithms given by the relation collection and
the linear algebra. This descent step uses different algorithms depending on the size of the rewritten
element: the target is rewritten in elements up to L

(2
3

)
thanks to the so-called initial splitting (booting

step) [34; 20; 2; 17; 45]; for elements in
[
L
(1

3

)
, L
(2

3

))
, the special-Q-method is used. The theoretical

analysis of [13, Appendix A.2] shows that the descent by special-Q may be more efficient by considering
polynomials of degree not restricted to µ= 1.

3. A framework to study existing sieve algorithms

Let Q be a special-Q and R be an ideal to be sieved such that the lattice 3QR is given by a basis as
in (1).1 There exist different sieve algorithms proposed for NFS that allow one to enumerate the elements
in the intersection of 3QR and a search space H. Their efficiency depends on the dimension of 3QR and
the density of the lattice in H. This density is formally defined thanks to the level of a sieve algorithm in
Definition 3.1, a key notion for the rest of the description and especially for Section 4. All the existing
sieve algorithms used in NFS are reported in Table 2. These algorithms can be described by the following
two-step algorithm. The vectors produced in Step (2) will be called transition-vectors:

(1) Compute an adapted set B of spanning vectors of 3QR with respect to H.

(2) Start from 0 and use the vectors of B or an (often small) linear combination of them to enumerate
elements in the intersection of 3QR and H.

1Sieve algorithms can deal with other basis shapes of lattices, but this one occurs the most.

280 LAURENT GRÉMY

Definition 3.1 (level). Let 3 be a lattice and H be a search space. The level of a sieve algorithm
with respect to 3 and H is the minimal integer value ` < t such that the intersections of the cuboids
[H m

0 , H M
0)×[H

m
1 , H M

1)×· · ·×[H
m
` , H M

`)×{c`+1}×{c`+2}×· · ·×{ct−1}, where (c`+1, c`+2, . . . , ct−1)

are in [H m
`+1, H M

`+1)× [H
m
`+2, H M

`+2) × · · · × [H
m
t−1, H M

t−1), and the lattice 3 contains more than one
element on average. In the case when H contains less than one element on average, `= t − 1.

3A. Exhaustive sieve algorithms. The first use of a sieve algorithm in an index calculus context is
attributed to Schroeppel and was successfully used by Pomerance [35; 28]. They used the 1-dimensional
sieve of Eratosthenes as a factoring algorithm instead of a prime-detecting one. It was extended to any
dimension and called line sieve; see for example its use in dimension 3 in [44]. In dimension 2, the
line sieve is known to be inefficient when there is at most one element in a line, an intersection of
3QR and [H m

0 , H M
0)×{c1} where c1 is in Z: the 0-level line sieve is used as a 1-level sieve algorithm.

Pollard designed in this sense the sieve by vectors [33], now subsumed by the lattice sieve of Franke
and Kleinjung [11]. Based on this sieve algorithm, the plane sieve [14] and the 3-dimensional lattice
sieve [19] were proposed for similar densities in three dimensions. The plane sieve was turned into a
generic sieve algorithm in CADO-NFS [43] (see Section 4D).

The completeness of all these sieve algorithms comes from special procedures that compute transition-
vectors. They are defined thanks to the t-extended search spaces: let k be in [0, t) and H be a t-search
space; the t-extended search space Hk is the set [H m

0 , H M
0)×[H

m
1 , H M

1)× · · ·× [H
m
k , H M

k)×Zt−(k+1).

Definition 3.2 (transition-vector). Let k be in [0, t) and H be a t-search space. A k-transition-vector is
an element v 6= 0 of a lattice 3 such that there exist c and d in the intersection of 3 and the t-extended
search space Hk , where d = c+ v is such that the last t − 1− k coordinates of c and d are equal and the
coordinate d[k] is the smallest possible larger than c[k].

With such sieve algorithms, the small factors of both norms of all the considered polynomials a are
known: this allows one to be close to the expected number of relations at the end of the relation collection.
But, the number of relations is not the only efficiency criterion of the relation collection. Indeed, in
dimension 2, the lattice sieve is used since it allows one to maintain the same number of relations but
decrease the time per relation. The same occurs in dimension 3, switching from the line to the plane or
the 3-dimensional lattice sieves. However, these sieves have some drawbacks, highlighted when there is
less than one element on average in each plane [H m

0 , H M
0)×[H

m
1 , H M

1)×{c2}, where c2 is in [H m
2 , H M

2).
The plane sieve is essentially the use of the lattice sieve on each plane: even if there is no element in a
plane, the lattice sieve is used to report nothing instead of using it only on nonempty planes. There is
no alternative to avoid these useless uses without losing completeness. The 3-dimensional lattice sieve
does not have this drawback, but the procedure to generate the spanning list B and the one to enumerate
seem difficult to analyze and may be costly for skewed lattices or skewed search spaces.

3B. Heuristic sieve algorithms. Because of these drawbacks and especially the penalty in terms of run-
ning time, the designers of the plane sieve proposed a heuristic sieve algorithm, the space sieve [14]. Its

HIGHER-DIMENSIONAL SIEVING FOR THE NUMBER FIELD SIEVE ALGORITHMS 281

line lattice 3-dimensional plane space this
sieve sieve [11] lattice sieve [19] sieve [14] sieve [14] work

t=2 3 3 7 7 7 3

t=3 3 7 3 3 3 3

t>3 3 7 7 3 7 3

level `=0 `=1 `=1 and `=2 `=1 `=2 any
completeness

3 3 3 3 7 7of enumeration

Table 2. Characteristics of the sieve algorithms proposed for NFS.

use allows one to decrease the running time by 45% for the 240-bit example of [14], while at the same
time lose less than 6% of the relations. This corresponds to decreasing the time per relation by 42%.

The space sieve focuses on enumerating a large portion of the elements instead of all of them, which
is helpful for multiple reasons. First, all the sieve algorithms, both exhaustive and heuristic, allow one
to enumerate the t-extended search space Ht−2 instead of the search space H =Ht−1. For exhaustive
sieves, it implies that the spanning set B is qualitatively too accurate because it allows one to generate
transition-vectors that will never be used. If this accuracy implies a costly computation to find an adapted
set B, the time per relation can be drastically impacted. Secondly, completeness is not always useful,
since this reports hits on polynomials a that may or may not give relations; missing some hits may not
affect the number of relations in some circumstances. Furthermore, if the computation can be completed,
the expected gain in the time per relation must be considered to compare heuristic and exhaustive sieves,
even if the relation collection misses some relations. Finally, in dimension larger than 3, the use of a
heuristic sieve seems unavoidable; to the best of our knowledge, producing all the transition-vectors can
only be done by the exhaustive sieve algorithms, all of them being inefficient when there is less than one
element in [H m

0 , H M
0)×[H

m
1 , H M

1)×[H
m
2 , H M

2)×{c3}× {c4}× · · ·× {ct−1}, where ci is in [H m
i , H M

i).
Yielding to produce some transition-vectors can be done by computing the Graver basis of the lattice:
these transition-vectors may lead to building a generic exhaustive sieve algorithm from the heuristic one
described in Section 4. However, computing the Graver basis is often too costly in our context [15; 32].

In the following, we propose globalntv, localntv and sparsentv, three heuristic sieves which
perform the enumeration in any dimension and level.

4. Sieve algorithms in higher dimensions

Using transition-vectors implies the sieve enumerations are exhaustive. Since completeness is not the main
target of globalntv, localntv and sparsentv, the vectors used in Step (2) of Section 3, called here
nearly-transition-vectors, will be weakened by removing from Definition 3.2 the strong condition about d[k].

Definition 4.1 (nearly-transition-vector). Let k be in [0, t) and H be a t-search space. A k-nearly-
transition-vector is an element v 6= 0 of a lattice 3 such that there exist c and d in the intersection

282 LAURENT GRÉMY

of 3 and the t-extended search space Hk , where d = c+ v is such that the last t − 1− k coordinates of
c and d are equal and the coordinate d[k] is larger than c[k].2

The three generic sieve algorithms will take place in a general framework, described by allowing the
report of duplicated elements for simplicity in Algorithm 1. It is purposely vague, to be as general as
possible: instantiation examples of Initialization, Step (c) and Step (d) will be given in the following.

The addition of a possible nearly-transition-vector (Step (c)) is likewise performed for all the three
sieve algorithms. Like the addition of a 2-nearly-transition-vector in the space sieve [14], a loop iterates
the list of k-nearly-transition-vectors, beforehand sorted by increasing coordinate k (see Section 4C). We
also choose to use the same fall-back strategy (Step (d)); this choice is justified in Section 4B. Therefore,
the difference between the three sieve algorithms only comes from the initialization processes, described
in Section 4A.

4A. Initializations. To define the three initialization processes, we introduce two new notions: the shape
of the nearly-transition-vectors and the skew-small-vectors.

4A1. Preliminaries. Even if the three initialization processes are different, the shapes of the nearly-
transition-vectors are the same. The shape represents the expected magnitude of the coefficients of the
nearly-transition-vectors with respect to a search space H and 3QR. In this paragraph, the O(j) notation
will denote a value smaller than or almost equal to j . Let us recall the shape of the transition-vectors of the
`-level sieve algorithms in three dimensions. Let Ii be the length of the interval [H m

i , H M
i). When `= 0,

the shape is equal to (O(r), O(1), O(1)); the one for `= 1 is (O(I0), O(r/I0), O(1)); the one for `= 2
is (O(I0), O(I1), O(r/(I0 I1))). This shape is generalized, as (I0, I1, . . . , I`−1, r/(I0× I1× · · ·× I`−1),

1, 1, . . . , 1), given a level ` of a sieve algorithm and removing the O(·) for clarity.
The initialization processes of the three sieve algorithms do not ensure that the produced vectors are

nearly-transition-vectors. They build skew-small-vectors, that are lattice vectors whose coefficients try
to follow the shape. Even if Definition 4.2 does not capture it, skew-small-vectors are built to be almost
nearly-transition-vectors: a k-skew-small-vector v is a k-nearly-transition-vector if |v[i]|< Ii .

Definition 4.2 (skew-small-vector). Let k be in [0, t). A k-skew-small-vector is an element v 6= 0 of a
lattice 3 such that there exist c and d in 3, where d = c+ v is such that the last t − 1− k coordinates
of c and d are equal and the coordinate d[k] is larger than c[k].

4A2. Three initialization processes. The three initialization processes try to generate a large number of
nearly-transition-vectors, given the level ` of the sieve algorithms. They begin by building a basis B of
3QR whose basis vectors are skew-small-vectors. Nearly-transition-vectors are afterwards built thanks
to small linear combination of the basis vectors. The major difference between globalntv on the one
hand, and localntv and sparsentv on the other, is in the coefficients of the k-skew-small-vectors,

2Note that transition vectors of [14, Definition 5] are 2-nearly-transition-vectors.

HIGHER-DIMENSIONAL SIEVING FOR THE NUMBER FIELD SIEVE ALGORITHMS 283

Initialization: Call a procedure that returns nearly-transition-vectors with respect to a search space H
and a lattice 3QR described as in (1).

Set c to 0 and k to t − 1.
Enumeration:

(1) While c[k]< H M
k :

(a) Report c.
(b) If k > 0, call this enumeration procedure recursively with inputs c and k− 1.
(c) Find a k-nearly-transition-vector v from the one computed during Initialization, such that

adding v to c lands in the extended search space Hk−1 and c[k] is the smallest possible.
(d) If there does not exist such a k-nearly-transition-vector v, call a fall-back strategy that tries

to produce a new element c in 3QR ∩H, and therefore a new k-nearly-transition-vector.

(2) Recover c as it was when the procedure was called.
(3) While c[k] ≥ H m

k , perform Steps (a)–(d) by considering c− v instead of c+ v.

Algorithm 1. Framework for globalntv, localntv and sparsentv.

where k > `. In localntv and sparsentv, the coordinate k is enforced to 1, and even to 0 for the
coordinates `+ 1 to k − 1 in sparsentv. This comes from a crude interpretation of the magnitude
of the coefficients given by the shape. To build the k-skew-small-vectors, where k ≤ ` for localntv
and sparsentv or all of them for globalntv, the initialization processes compute a skew basis of a
(sub)lattice, which is a basis formed by skew-small-vectors. The basis B is built thanks to

• a skew basis reduction of {b0, b1, . . . , bt−1} for globalntv;

• a skew basis reduction of {b0, b1, . . . , b`} followed by, for k in [`+ 1, t), a reduction of bk by its
closest vector in {b0, b1, . . . , bk−1} for localntv;

• a skew basis reduction of {b0, b1, . . . , b`} followed by, for k in [`+ 1, t), a reduction of bk by its
closest vector in {b0, b1, . . . , b`} for sparsentv.

To build possible nearly-transition-vectors, linear combinations of the skew basis vectors are per-
formed, as well as computations of some vectors close to bk in the corresponding sublattice instead of
one for localntv and sparsentv. The patterns of the skew-small-vectors produced by the different
initializations follow necessarily the ones reported in Table 3. Note that, when `= t − 2, localntv and
sparsentv have the same initialization processes. When `= t − 1, the three initialization processes are
the same.

4B. A common fall-back strategy. At this step, all the additions to c in3QR∩H of a k-nearly-transition-
vector fail to land in Hk−1. The additions of v, a k-skew-small-vector, are necessarily out of Hk−1. Since
no k-skew-small-vector makes it possible to stay in Hk−1, a potential k-nearly-transition-vector must
have some smaller coordinates. Vectors close to c+ v in the sublattice formed by {b0, b1, . . . , bk−1} may

284 LAURENT GRÉMY

k globalntv localntv sparsentv

0 (> 0, 0, 0, 0, 0) (> 0, 0, 0, 0, 0) (> 0, 0, 0, 0, 0)
1 (· , > 0, 0, 0, 0) (· , > 0, 0, 0, 0) (· , > 0, 0, 0, 0)
2 (· , · , > 0, 0, 0) (· , · , > 0, 0, 0) (· , ·, > 0, 0, 0)
3 (· , · , · , > 0, 0) (· , · , · , 1, 0) (· , · , · , 1, 0)
4 (· , · , · , · , > 0) (· , · , · , · , 1) (· , · , · , 0, 1)

Table 3. Patterns of the k-skew-small-vectors, where `= 2 and t = 5.

make it possible from c+v to obtain such a k-nearly-transition-vector. Let e be such a vector; subtracting
e from c+ v will shrink the k first coefficients of c+ v. If c+ v− e fits in the search space, v− e is a
new k-nearly-transition-vector. If not, set c to c+ v− e and rerun this procedure, until c+ v− e fits in H
or its coordinate k is larger than H M

k . The different steps of this fall-back strategy are, for c in 3QR ∩H
and k in [0, t):

(1) While c[k]< H M
k :

(a) For all k-skew-small-vectors v:

(i) Compute some vectors close to c+ v in the sublattice generated by {b0, b1, . . . , bk−1} and
store them in the list E .

(ii) For all e in E , return c+ v− e if c+ v− e is in H.

(b) Set c to one of the vectors c+ v− e computed previously.

(2) Return fail.

If this procedure does not fail, the new element in H is the output of this procedure and v− e is the
new k-nearly-transition-vector, computed by the difference between the output and the input vectors of
the fall-back procedure and inserted in the lists of k-nearly-transition-vectors and k-skew-small-vectors
for further use.

This fall-back strategy is costly since it requires solving multiple closest vector problems in Step (ai),
iterating all the k-skew-small-vectors and looping while H M

k is not reached. The condition to use such
a strategy must therefore be carefully studied. If k ≤ `, the average number of elements with the same
last t − k− 1 coordinates is equal to 1, from the Definition 3.1 of the level. If no precomputed k-nearly-
transition-vectors allow one find a new element in H, then, most likely, there do not exist such elements.
However, if k > `, there are generally more chances that such an element exists. The fall-back strategy is
therefore applied only when k > `. This condition must be studied a little bit more carefully. If `= t − 1,
the first t − 1 coordinates of c+ v out of H must be shrunk, where v is a `-skew-small-vector. Therefore,
when k = t−1, the close vector e is a linear combination of {b0, b1, . . . , bt−2}. Since this strategy allows
one to modify the maximal number of coordinates without changing the last nonzero one, the strategy
allows one to increase the chance of finding a new element. Another strategy is proposed in Section 4D,
but is specific to sparsentv.

HIGHER-DIMENSIONAL SIEVING FOR THE NUMBER FIELD SIEVE ALGORITHMS 285

4C. Formal algorithms. The pseudocode of the addition of a nearly-transition-vector and the fall-back
strategy are given respectively in Function add and in Function fbadd. They return an element in the
intersection of 3QR and H or an element out of H to stop the enumeration of a subset of H. The
lists T and S consist of t lists containing respectively nearly-transition-vectors and skew-small-vectors
(e.g., k-nearly-transition-vectors are stored in T [k]). Each list T [k] and S[k] is sorted by increasing
coordinate k. Given an element c of 3QR and an integer i , the function CVA (close vectors around a
targeted element) returns a list of some lattice vectors close to c in the sublattice of 3QR generated by
{b0, b1, . . . , bi }.

FUNC. add(c, k, H, T , S, 3QR, `)
for v ∈ T [k] do

if c+ v ∈Hk−1 then
return c+ v;

if k > ` or k = t − 1 then
e← fbadd(c, k,H, S,3QR);
if e ∈H then

T [k] ← T [k] ∪ {e− c};
S[k] ← S[k] ∪ {e− c};

c← e;
else

c← (H M
0 , H M

1 , . . . , H M
t−1); // /∈H

return c;

FUNC. fbadd(c, k, H, S, 3QR)
while c[k]< H M

k do
L←∅;
for v ∈ S[k] do

E← CVA(c+ v, k− 1,3QR);
for e ∈ E do

if c+ v− e ∈H then
return c+ v− e;

L← L ∪ {c+ v− e};

set c to an element of L;

return c; // /∈H

4D. A specific fall-back strategy. Unlike the previous fall-back strategy, we describe here a specific
one which allows one to recover all the sieve algorithms of Section 3. This specific fall-back strategy is
designed for sparsentv by exploiting the specific patterns of the skew-small-vectors of sparsentv. It
can be more costly but can report a larger number of elements. To completely recover exhaustive sieve
algorithms, the k-skew-small-vectors used in the sieve algorithms must have their coordinate k equal to 1,
when k > `.

When the fall-back strategy is called, the coefficients of c+v, where c is in3QR∩H and v is a k-skew-
small-vector, are shrunk with vectors close to c+v in the sublattice generated by {b0, b1, . . . , b`} instead
of {b0, b1, . . . , bk−1}, to keep unchanged the coordinates `+1 to t−1 of c+v. Let e be a vector subtracted
from c+ v to shrink its coefficients. If c+ v− e fits in H, a new element in the intersection of 3QR and
H is found, as well as a new k-nearly-transition-vector.

If k > `+ 1, the coordinates `+ 1 to k− 1 of c have not been modified, and therefore, some cuboids
of dimension `+ 1 were not explored to try to find a new starting point: to explore them, this procedure
must be called with inputs one of the vectors generated previously and k− 1. If all the recursions fail to
find a new element in the intersection of the lattice and the search space, c is set to c+ v− e and this
procedure is redone with inputs c and k, until a generated element fits in H or its coordinate k is larger

286 LAURENT GRÉMY

than H M
k . The different steps of this generation are the same as the ones described in Section 4B, except

that after Step (b), the following instruction is added:

(1) While ct [k]< H M
k :

...

(c) If k−1> `, use this fall-back procedure (additive or subtractive case) with c and k−1 as inputs
and return the result if it does not fail.

(2) Return fail.

5. Analyses of the generic sieves

Practical generic sieve algorithms are of two types: exhaustive for the levels ` = 0 and ` = 1, and
heuristic for all levels.3 For levels `= 0 and `= 1, using heuristic algorithms makes almost no sense,
since generally, the exhaustive algorithms are optimal in term of running time. For larger levels, the
practical gain obtained by using the space sieve lets us expect an improvement since exhaustive sieves
are not adapted to such levels. However, heuristic sieves do not ensure completeness of the enumeration:
if substantially many relations are not reported, the time per relation can negatively be impacted and can
eventually be worse than with exhaustive sieves.

To evaluate the practicability of the three new sieve algorithms, we analyze them thanks to a Sage
implementation of the three sieves named ntv.sage (provided in CADO-NFS), mainly implemented
to test the accuracy of the enumeration processes; see Section 5A. Even if the implementation is not
optimized to test running time, we can extrapolate some tendencies about the efficiency of the sieves;
see Section 5B. The practical experiments were done on random lattices4 having the shape of (1), whose
volume is adapted to fit for the tested levels.

5A. Accuracy. The quality criteria to test accuracy reported in Table 4 are

• the number of produced skew-small-vectors, adjusted thanks to the number of the small linear com-
binations and close vectors,

• the number of iterations of the while loop in the fall-back strategy and

• the relative error between the expected number of elements to be enumerated (#H/r) and the number
of reported elements.

The relative error informs about the accuracy of the algorithm. A large relative error likely means that
the nearly-transition-vectors have coordinates that are too large. A few more linear combinations during
the initialization may solve this problem. The criterion about the fall-back strategy informs about the

3Combining the 3-dimensional lattice sieve [19] and Section 4D may lead to obtaining a 2-level exhaustive generic sieve
algorithm, but we did not manage to fully implement the 3-dimensional lattice sieve.

4From the point of view of a practical sieving procedure, lattices describing ideals of the same or different factor bases, or
random lattices, are treated similarly.

HIGHER-DIMENSIONAL SIEVING FOR THE NUMBER FIELD SIEVE ALGORITHMS 287

globalntv (`=2) localntv (`=2) globalntv (`=3)
min med max mean min med max mean min med max mean

#ssvs 40 41 40
#fbs 0 2.0 61 3.1 0 3.0 61 4.3 0 12.0 65 20.0
rel. err. 0.0 2.6 95.7 10.1 0.0 1.2 96.7 5.8 0.0 0.0 75.0 2.0

(A) Experiments on 214 lattices where H= [−26, 26)3×[0, 26) (t = 4, #H= 227).

globalntv (`=2) localntv (`=2) sparsentv (`=2)
min med max mean min med max mean min med max mean

#ssvs 364 69 37
#fbs 0 5.0 712 18.3 0 9.0 591 20.0 0 13.0 332 22.0
rel. err. 0.0 1.5 36.1 6.4 0.0 1.6 50.0 5.6 0.0 2.0 49.0 5.9

(B) Experiments on 27 lattices where H= [−24, 24)5×[0, 24) (t = 6, #H= 229).

globalntv (`=3) localntv (`=3) sparsentv (`=3)
min med max mean min med max mean min med max mean

#ssvs 364 88 72
#fbs 0 8.0 142 13.3 0 12.0 186 16.8 0 14.0 161 18.1
rel. err. 0.0 2.7 54.4 7.7 0.0 3.3 47.7 6.9 0.0 3.2 48.8 6.8

(C) Experiments on 27 lattices where H= [−24, 24)5×[0, 24) (t = 6, #H= 229).

globalntv (`=4) localntv (`=4) globalntv (`=5)
min med max mean min med max mean min med max mean

#ssvs 364 153 364
#fbs 0 1.0 10 1.8 0 3.0 10 3.3 0 8.5 17 8.3
rel. err. 0.0 6.4 60 11.3 0.0 5.2 52.9 9.8 0.0 0.0 66.7 2.0

(D) Experiments on 27 lattices where H= [−24, 24)5×[0, 24) (t = 6, #H= 229).

Table 4. Experiments on the three sieves: “#ssvs”, “#fbs” and “rel. err.” correspond to the criteria listed in Section 5A.

global effort on discovering new nearly-transition-vectors or stopping regularly the enumeration process,
as the number of generated skew-small-vectors about the global effort on the initialization. The combi-
nation of these three criteria is needed since, e.g., generating a huge amount of skew-small-vectors will
decrease quantitatively the two other criteria by putting solely too much effort on the initialization.

Since the patterns of the skew-small-vectors of localntv and sparsentv are constrained, their rela-
tive errors are expected to be better (i.e., smaller) than the one with globalntv. Since the initialization
is less under control with globalntv, the number of skew-small-vectors may be often (much) larger for
globalntv; however, the number of calls to the fall-back strategy is expected to be lower.

288 LAURENT GRÉMY

The accuracy of the algorithms seems more than sufficient for the majority of the lattices, both in
four and six dimensions. The maximal values of all the tables can be impressive, but occur only for a
sufficiently small number of skewed lattices; since the enumeration in such lattices may be costly, it can
be better to avoid them or at least, to be not too accurate.

In four dimensions, the accuracy is combined with a reasonable number of produced skew-small-
vectors. The criteria do not help to determine which of the 2-level localntv and globalntv is the
most suitable algorithm. The running time estimations may help to decide. At level `= 3, the number
of calls to the fall-back strategy can be an issue but may be under control in a careful implementation.

The situation is mitigated in dimension 6. Except for the 2-level sparsentv, the number of skew-
small-vectors is huge, which disqualifies with this setting all the sieves at any level. In addition, the
number of calls to the fall-back strategy at levels ` = 2 and ` = 3 indicates that the produced nearly-
transition-vectors are of poor quality. If dimension-6 sieving were feasible, it would need more investi-
gation; however, using cuboid search spaces is probably a constraint that implies a hardness, or even an
impossibility, for the sieving process. In addition, the initialization of the norms in higher dimensions
implemented in CADO-NFS [43] is actually too slow for dimensions larger than six because of preserving
a relative accuracy. It confirms the hardness of the relation collection above dimension 4.

5B. Running time. From the previous section, only 4-dimensional sieving seems to be an option. We
compare, at levels ` = 2 and ` = 3, the new sieves with the state-of-the-art sieve algorithms and also
between themselves.

Comparison with the plane sieve. The 2-level globalntv and localntv are compared with the most
efficient existing sieve algorithm, which is the (generalized) plane sieve. Our implementation of the plane
sieve is however a bit incomplete: we implement the fall-back strategy of Section 4D without enforcing
the coordinate k of the k-skew-small-vectors to be equal to 1. This implementation may be a bit faster
than a complete plane sieve. On 210 lattices, globalntv and localntv are faster than our generalized
plane sieve, with localntv slightly faster than globalntv. Since the accuracy of the two heuristic sieve
algorithms is quite good, both sieves must be considered as an alternative to the plane sieve.

Comparison of the new sieves. The 3-level globalntv is also compared with the 2-level globalntv and
localntv on 210 lattices. Unlike the previous comparisons, the results can be puzzling. Indeed, for lat-
tices where the 3-level globalntv is expected to be efficient, the 2-level localntv is less than 1.5 times
faster. Furthermore, the 2-level localntv is more than 3 times faster than the 2-level globalntv. Before
explaining these results, we first remark that, in this situation, the three studied sieve algorithms share
the same condition to use or not the fall-back strategy. The second remark comes from a detail of our
implementation. Since accuracy is our main concern, Step (b) of the fall-back strategy in Section 4B sets
c to one of the computed elements with the smallest coordinate k (i.e., the first element, since the list of
k-nearly-transition-vectors is sorted by increasing coordinate k).

The 2-level globalntv and localntv produce more or less the same nearly-transition-vectors, de-
spite having differently produced skew-small-vectors. The 3-skew-small-vectors are less numerous and

HIGHER-DIMENSIONAL SIEVING FOR THE NUMBER FIELD SIEVE ALGORITHMS 289

have smaller coordinates with localntv than with globalntv. Then, if the for loop on the k-skew-
small-vectors (Step 1(a)i) fails to find an element in H in both sieves, and if the coordinate k of the first
k-skew-small-vectors is the same for both sieves (these two situations often occur), localntv is faster
than globalntv.

Between the 3-level globalntv and the 2-level localntv, the situation shares some of the obser-
vations made previously. However, this time, globalntv produces nearly-transition-vectors and skew-
small-vectors of better quality than localntv: in some cases, globalntv is faster than localntv, but
if the situations become the same as in the previous analysis, localntv stays faster. We believe that a
careful study of the different parts (especially how the linear combinations can produce useful vectors
during the initialization of globalntv specialized in dimension 4) of the algorithms will lead to an
efficient implementation of the 3-level globalntv.

6. Conclusion

In this article we propose algorithms to sieve in any dimension in the intersection of a lattice and a cuboid,
which is one of the challenges we list to have a practical implementation of the NFS>1 algorithms.
These algorithms allow us to report a large portion of the elements in the intersection faster than the
previous generic sieve algorithms. We provide a reference implementation of these algorithms, allowing
us to highlight their advantages and drawbacks for the accuracy and efficiency of the enumeration, and
demonstrate the practicability of these sieves for dimension 4, and the hardness of sieving in dimension 6
and above.

In the near future, we plan to integrate these algorithms, specialized in dimension 4, in the existing
implementations of NFS1 in CADO-NFS [43] and extend it to NFS>1. It will help key size estimations
for pairings [30; 3]. However, since a practical computation of the relation collection with NFS>1 will
be possible only with good polynomials f0 and f1, we also plan to study quality criteria for such NFS
algorithms. Further work includes also enumeration in noncuboid search space.

Acknowledgments

The author is grateful to Pierrick Gaudry and Marion Videau for numerous discussions and reviews
of preliminary versions of this work, as well as Aurore Guillevic and Shashank Singh for numerous
discussions about NFS. He also thanks Damien Stehlé and the referees whose remarks helped to improve
the presentation of his results.

References

[1] Shi Bai, Cyril Bouvier, Alexander Kruppa, and Paul Zimmermann, Better polynomials for GNFS, Math. Comp. 85 (2016),
no. 298, 861–873. MR 3434885

[2] Razvan Barbulescu, Algorithmes de logarithmes discrets dans les corps finis, Ph.D. thesis, Université de Lorraine, 2013.

[3] Razvan Barbulescu and Sylvain Duquesne, Updating key size estimations for pairings, J. Cryptology (2018).

http://dx.doi.org/10.1090/mcom3048
http://msp.org/idx/mr/3434885
http://docnum.univ-lorraine.fr/public/DDOC_T_2013_0183_BARBULESCU.pdf
http://dx.doi.org/10.1007/s00145-018-9280-5

290 LAURENT GRÉMY

[4] Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François Morain, Improving NFS for the discrete logarithm
problem in non-prime finite fields, Advances in cryptology—EUROCRYPT 2015, I, Lecture Notes in Comput. Sci., no.
9056, Springer, 2015, pp. 129–155. MR 3344923

[5] Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung, The tower number field sieve, Advances in cryptology—
ASIACRYPT 2015, II, Lecture Notes in Comput. Sci., no. 9453, Springer, 2015, pp. 31–55. MR 3487762

[6] Yuval Bistritz and Alexander Lifshitz, Bounds for resultants of univariate and bivariate polynomials, Linear Algebra Appl.
432 (2010), no. 8, 1995–2005. MR 2599838

[7] Fabrice Boudot, On improving integer factorization and discrete logarithm computation using partial triangulation, Cryp-
tology ePrint Archive, report 2017/758, 2017.

[8] J. P. Buhler, H. W. Lenstra, Jr., and Carl Pomerance, Factoring integers with the number field sieve, The development of
the number field sieve, Lecture Notes in Math., no. 1554, Springer, 1993, pp. 50–94. MR 1321221

[9] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, no. 138, Springer,
2000.

[10] Don Coppersmith, Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm, Math. Comp. 62
(1994), no. 205, 333–350. MR 1192970

[11] Jens Franke and Thorsten Kleinjung, Continued fractions and lattice sieving, conference paper, 2005.

[12] David Freeman, Michael Scott, and Edlyn Teske, A taxonomy of pairing-friendly elliptic curves, J. Cryptology 23 (2010),
no. 2, 224–280. MR 2578668

[13] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé, A kilobit hidden SNFS discrete logarithm com-
putation, Advances in cryptology—EUROCRYPT 2017, I, Lecture Notes in Comput. Sci., no. 10210, Springer, 2017,
pp. 202–231. MR 3652104

[14] Pierrick Gaudry, Laurent Grémy, and Marion Videau, Collecting relations for the number field sieve in GF(p6), LMS J.
Comput. Math. 19 (2016), no. suppl. A, 332–350. MR 3540964

[15] Jack E. Graver, On the foundations of linear and integer linear programming, I, Math. Programming 9 (1975), no. 2,
207–226. MR 0386673

[16] Laurent Grémy, Aurore Guillevic, François Morain, and Emmanuel Thomé, Computing discrete logarithms in F(p6),
Selected Areas in Cryptography—SAC 2017, Lecture Notes in Comput. Sci., no. 10719, Springer, 2018, pp. 85–105.

[17] Aurore Guillevic, Faster individual discrete logarithms with the QPA and NFS variants, Math. Comp. (2018).

[18] Kenichiro Hayasaka, Kazumaro Aoki, Tetsutaro Kobayashi, and Tsuyoshi Takagi, An experiment of number field sieve
for discrete logarithm problem over GF(p12), Number theory and cryptography, Lecture Notes in Comput. Sci., no. 8260,
Springer, 2013, pp. 108–120. MR 3160838

[19] , A construction of 3-dimensional lattice sieve for number field sieve over Fpn , Cryptology ePrint Archive, report
2015/1179, 2015.

[20] Antoine Joux and Reynald Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields:
a comparison with the Gaussian integer method, Math. Comp. 72 (2003), no. 242, 953–967. MR 1954978

[21] Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren, The number field sieve in the medium prime
case, Advances in cryptology—CRYPTO 2006, Lecture Notes in Comput. Sci., no. 4117, Springer, 2006, pp. 326–344.
MR 2422170

[22] Antoine Joux and Cécile Pierrot, Nearly sparse linear algebra and application to discrete logarithms computations,
Contemporary developments in finite fields and applications, World Sci. Publ., Hackensack, NJ, 2016, pp. 119–144.
MR 3587261

[23] Taechan Kim and Razvan Barbulescu, Extended tower number field sieve: a new complexity for the medium prime case,
Advances in cryptology—CRYPTO 2016, I, Lecture Notes in Comput. Sci., no. 9814, Springer, 2016, pp. 543–571.
MR 3565295

[24] Taechan Kim and Jinhyuck Jeong, Extended tower number field sieve with application to finite fields of arbitrary composite
extension degree, Public-key cryptography—PKC 2017, I, Lecture Notes in Comput. Sci., no. 10174, Springer, 2017,
pp. 388–408. MR 3649119

http://dx.doi.org/10.1007/978-3-662-46800-5_6
http://dx.doi.org/10.1007/978-3-662-46800-5_6
http://msp.org/idx/mr/3344923
http://dx.doi.org/10.1007/978-3-662-48800-3_2
http://msp.org/idx/mr/3487762
http://dx.doi.org/10.1016/j.laa.2009.08.012
http://msp.org/idx/mr/2599838
https://eprint.iacr.org/2017/758
http://dx.doi.org/10.1007/BFb0091539
http://msp.org/idx/mr/1321221
http://dx.doi.org/10.1007/978-3-662-02945-9
http://dx.doi.org/10.2307/2153413
http://msp.org/idx/mr/1192970
http://www.hyperelliptic.org/tanja/SHARCS/talks/FrankeKleinjung.pdf
http://dx.doi.org/10.1007/s00145-009-9048-z
http://msp.org/idx/mr/2578668
http://msp.org/idx/mr/3652104
http://dx.doi.org/10.1112/S1461157016000164
http://msp.org/idx/mr/3540964
http://dx.doi.org/10.1007/BF01681344
http://msp.org/idx/mr/0386673
http://dx.doi.org/10.1090/mcom/3376
http://dx.doi.org/10.1007/978-3-642-42001-6_8
http://dx.doi.org/10.1007/978-3-642-42001-6_8
http://msp.org/idx/mr/3160838
https://eprint.iacr.org/2015/1179
http://dx.doi.org/10.1090/S0025-5718-02-01482-5
http://dx.doi.org/10.1090/S0025-5718-02-01482-5
http://msp.org/idx/mr/1954978
http://dx.doi.org/10.1007/11818175_19
http://dx.doi.org/10.1007/11818175_19
http://msp.org/idx/mr/2422170
http://msp.org/idx/mr/3587261
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://msp.org/idx/mr/3565295
http://msp.org/idx/mr/3649119

HIGHER-DIMENSIONAL SIEVING FOR THE NUMBER FIELD SIEVE ALGORITHMS 291

[25] Thorsten Kleinjung, On polynomial selection for the general number field sieve, Math. Comp. 75 (2006), no. 256, 2037–
2047. MR 2249770

[26] Thorsten Kleinjung, Polynomial selection, slides presented at the CADO workshop on integer factorization, 2008.

[27] Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine Priplata, and Colin Stahlke, Computation of a 768-bit prime
field discrete logarithm, Advances in cryptology—EUROCRYPT 2017, I, Lecture Notes in Comput. Sci., no. 10210,
Springer, 2017, pp. 185–201. MR 3652103

[28] Arjen K. Lenstra, General purpose integer factoring, Topics in computational number theory inspired by Peter L. Mont-
gomery, Cambridge Univ. Press, 2017, pp. 116–160. MR 3753110

[29] Arjen K. Lenstra and Eric R. Verheul, The XTR public key system, Advances in cryptology—CRYPTO 2000, Lecture
Notes in Comput. Sci., no. 1880, Springer, 2000, pp. 1–19. MR 1850033

[30] Alfred Menezes, Palash Sarkar, and Shashank Singh, Challenges with assessing the impact of NFS advances on the secu-
rity of pairing-based cryptography, Paradigms in cryptology—MYCRYPT 2016: malicious and exploratory cryptology,
Lecture Notes in Comput. Sci., no. 10311, Springer, 2017, pp. 83–108.

[31] B. Murphy, Polynomial selection for the number field sieve integer factorisation algorithm, Ph.D. thesis, The Australian
National University, 1999.

[32] Shmuel Onn, Theory and applications of n-fold integer programming, Mixed integer nonlinear programming, IMA Vol.
Math. Appl., no. 154, Springer, 2012, pp. 559–593. MR 3587645

[33] J. M. Pollard, The lattice sieve, The development of the number field sieve, Lecture Notes in Math., no. 1554, Springer,
1993, pp. 43–49. MR 1321220

[34] C. Pomerance, Analysis and comparison of some integer factoring algorithms, Computational methods in number theory,
I, Math. Centre Tracts, no. 154, Math. Centrum, Amsterdam, 1982, pp. 89–139. MR 700260

[35] Carl Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43 (1996), no. 12, 1473–1485. MR 1416721

[36] Karl Rubin and Alice Silverberg, Torus-based cryptography, Advances in cryptology—CRYPTO 2003, Lecture Notes in
Comput. Sci., no. 2729, Springer, 2003, pp. 349–365. MR 2093203

[37] Palash Sarkar and Shashank Singh, A general polynomial selection method and new asymptotic complexities for the tower
number field sieve algorithm, Advances in cryptology—ASIACRYPT 2016, I, Lecture Notes in Comput. Sci., no. 10031,
Springer, 2016, pp. 37–62. MR 3598073

[38] , A generalisation of the conjugation method for polynomial selection for the extended tower number field sieve
algorithm, Cryptology ePrint Archive, report 2016/537, 2016.

[39] , New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields, Advances in
Cryptology—EUROCRYPT 2016, Lecture Notes in Comput. Sci., no. 9665, Springer, 2016, pp. 429–458.

[40] , Tower number field sieve variant of a recent polynomial selection method, Cryptology ePrint Archive, report
2016/401, 2016.

[41] Oliver Schirokauer, Discrete logarithms and local units, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), no. 1676,
409–423. MR 1253502

[42] , Virtual logarithms, J. Algorithms 57 (2005), no. 2, 140–147. MR 2177621

[43] The CADO-NFS Development Team, CADO-NFS, an implementation of the number field sieve algorithm, 2018.

[44] Pavol Zajac, Discrete logarithm problem in degree six finite fields, Ph.D. thesis, Slovak University of Technology, 2008.

[45] Yuqing Zhu, Jincheng Zhuang, Chang Lv, and Dongdai Lin, Improvements on the individual logarithm step in extended
tower number field sieve, Cryptology ePrint Archive, report 2016/727, 2016.

Received 2 Mar 2018. Revised 18 May 2018.

LAURENT GRÉMY: laurent.gremy@inria.fr
Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007, Lyon, France

msp

http://dx.doi.org/10.1090/S0025-5718-06-01870-9
http://msp.org/idx/mr/2249770
http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf
http://msp.org/idx/mr/3652103
http://msp.org/idx/mr/3753110
http://dx.doi.org/10.1007/3-540-44598-6_1
http://msp.org/idx/mr/1850033
http://msp.org/idx/mr/3587645
http://dx.doi.org/10.1007/BFb0091538
http://msp.org/idx/mr/1321220
http://msp.org/idx/mr/700260
http://msp.org/idx/mr/1416721
http://dx.doi.org/10.1007/978-3-540-45146-4_21
http://msp.org/idx/mr/2093203
http://dx.doi.org/10.1007/978-3-662-53887-6_2
http://dx.doi.org/10.1007/978-3-662-53887-6_2
http://msp.org/idx/mr/3598073
https://eprint.iacr.org/2016/537
https://eprint.iacr.org/2016/537
http://dx.doi.org/10.1007/978-3-662-49890-3_17
https://eprint.iacr.org/2016/401
http://dx.doi.org/10.1098/rsta.1993.0139
http://msp.org/idx/mr/1253502
http://dx.doi.org/10.1016/j.jalgor.2004.11.004
http://msp.org/idx/mr/2177621
http://cado-nfs.gforge.inria.fr/
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
https://eprint.iacr.org/2016/727
https://eprint.iacr.org/2016/727
mailto:laurent.gremy@inria.fr
http://msp.org

VOLUME EDITORS

Renate Scheidler
University of Calgary
Calgary, AB T2N 1N4

Canada

Jonathan Sorenson
Butler University

Indianapolis, IN 46208
United States

The cover image is based on a design by Linh Chi Bui.

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/2
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.

ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-02-6 (print), 978-1-935107-03-3 (electronic)

First published 2019.

msp

MATHEMATICAL SCIENCES PUBLISHERS

798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840

contact@msp.org http: //msp.org

http://msp.org/obs/2
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org

THE OPEN BOOK SERIES 2

Thirteenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier inter-
national forum for research in computational number theory. ANTS is devoted to algorithmic aspects of
number theory, including elementary, algebraic, and analytic number theory, the geometry of numbers,
arithmetic algebraic geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the thirteenth ANTS meeting, held July 16-20, 2018, at the University
of Wisconsin-Madison. It includes revised and edited versions of 28 refereed papers presented at the
conference.

Edited by Renate Scheidler and Jonathan Sorenson

CONTRIBUTORS
Simon Abelard
Sonny Arora
Vishal Arul
Angelica Babei
Jens-Dietrich Bauch
Alex J. Best
Jean-François Biasse
Alin Bostan
Reinier Bröker
Nils Bruin
Xavier Caruso
Stephanie Chan
Qi Cheng
Gilles Christol
Owen Colman
Edgar Costa
Philippe Dumas
Kirsten Eisenträger
Claus Fieker
Shuhong Gao

Pierrick Gaudry
Alexandre Gélin
Alexandru Ghitza
Laurent Grémy
Jeroen Hanselman
David Harvey
Tommy Hofmann
Everett W. Howe
David Hubbard
Kiran S. Kedlaya
Thorsten Kleinjung
David Kohel
Wanlin Li
Richard Magner
Anna Medvedovsky
Michael Musty
Ha Thanh Nguyen Tran
Christophe Ritzenthaler
David Roe

J. Maurice Rojas
Nathan C. Ryan
Renate Scheidler
Sam Schiavone
Andrew Shallue
Jeroen Sijsling
Carlo Sircana
Jonathan Sorenson
Pierre-Jean Spaenlehauer
Andrew V. Sutherland
Nicholas Triantafillou
Joris van der Hoeven
Christine Van Vredendaal
John Voight
Daqing Wan
Lawrence C. Washington
Jonathan Webster
Benjamin Wesolowski
Yinan Zhang
Alexandre Zotine

A
N

T
S

X
III:

Thirteenth
A

lgorithm
ic

N
um

ber
Theory

Sym
posium

Scheidler,Sorenson
O

B
S

2

	1. Introduction
	2. Overview of the NFS algorithms
	2A. Polynomial selection
	2B. Relation collection
	2B1. Relation
	2B2. Practical considerations

	2C. Linear algebra and individual logarithm

	3. A framework to study existing sieve algorithms
	3A. Exhaustive sieve algorithms
	3B. Heuristic sieve algorithms

	4. Sieve algorithms in higher dimensions
	4A. Initializations
	4A1. Preliminaries
	4A2. Three initialization processes

	4B. A common fall-back strategy
	4C. Formal algorithms
	4D. A specific fall-back strategy

	5. Analyses of the generic sieves
	5A. Accuracy
	5B. Running time

	6. Conclusion
	Acknowledgments
	References
	
	

