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We prove that n-bit integers may be multiplied in O(n log n 4log∗ n) bit operations. This complexity
bound had been achieved previously by several authors, assuming various unproved number-theoretic
hypotheses. Our proof is unconditional and is based on a new representation for integers modulo a
fixed modulus, which we call the θ-representation. The existence of such representations is ensured by
Minkowski’s theorem concerning lattice vectors in symmetric convex sets.

1. Introduction

Let M(n) denote the number of bit operations required to multiply two n-bit integers, where “bit op-
erations” means the number of steps on a deterministic Turing machine with a fixed, finite number of
tapes [23] (our results also hold in the Boolean circuit model). Let log∗ x denote the iterated natural
logarithm, i.e., log∗ x :=min{ j ∈ N : log◦ j x 6 1}, where log◦ j x := log · · · log x (iterated j times). The
main result of this paper is an algorithm achieving the following bound.

Theorem 1.1. M(n)= O(n log n 4log∗ n).

The first complexity bound for M(n) of the form O(n log n K log∗ n) was established by Fürer [10; 11],
for an unspecified constant K > 1. His algorithm reduces a multiplication of size n to many multiplica-
tions of size exponentially smaller than n, which are then handled recursively. The number of recursion
levels is log∗ n+ O(1), and the constant K measures the “expansion factor” at each recursion level.

The first explicit value for K , namely K = 8, was given by Harvey, van der Hoeven, and Lecerf [16].
Their method is somewhat different from Fürer’s, but still carries out an exponential size reduction at
each recursion level. One may think of the constant K = 8 as being built up of three factors of 2, each
coming from a different source.

The first factor of 2 arises from the need to perform both forward and inverse DFTs (discrete Fourier
transforms) at each recursion level. This is a feature common to all of the post-Fürer algorithms, sug-
gesting that significantly new ideas will be needed to do any better than O(n log n 2log∗ n).
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The second factor of 2 arises from coefficient growth: a product of polynomials with k-bit integer
coefficients has coefficients with at least 2k bits. This factor of 2 also seems difficult to completely
eliminate, although Harvey and van der Hoeven have recently made some progress [14]: they achieve
K = 4

√
2≈ 5.66 by arranging that, in effect, the coefficient growth only occurs at every second recursion

level. This was the best known unconditional value of K prior to the present paper.1

The final factor of 2 occurs because the algorithm works over C: when multiplying complex coeffi-
cients with say β significant bits, the algorithm first computes a full 2β-bit product, and then truncates to
β bits. More precisely, after splitting the β-bit inputs into m exponentially smaller chunks, and encoding
them into polynomials of degree m, the algorithm must compute the full product of degree 2m, even
though essentially only m coefficients are needed to resolve β significant bits of the product. Again, this
factor of 2 has been the subject of a recent attack: Harvey has shown [13] that it is possible to work
modulo a polynomial of degree only m, at the expense of increasing the working precision by a factor
of 3/2. This leads to an integer multiplication algorithm achieving K = 6.

Another way of attacking this last factor of 2 is to replace the coefficient ring C by a finite ring Z/qZ

for a suitable integer q. A Fürer-type complexity bound (with no attempt to optimize the value of K )
was first obtained using this approach in [9]. By choosing q with some special structure, it may become
possible to convert a multiplication modulo q directly into a polynomial multiplication modulo some
polynomial of degree m, rather than 2m. Three algorithms along these lines have been proposed.

First, Harvey, van der Hoeven, and Lecerf suggested using Mersenne primes, i.e., primes of the form
q = 2k

− 1, where k is itself prime [16, §9]. They convert multiplication in Z/qZ to multiplication in
Z[y]/(ym

− 1), where m is a power of two. Because k is not divisible by m, the process of splitting an
element of Z/qZ into m chunks is somewhat involved, and depends on a variant of the Crandall–Fagin
algorithm [8].

Covanov and Thomé [7] later proposed using generalized Fermat primes, i.e., primes of the form
q = rm

+ 1, where m is a power of two and r is a small even integer. Here, multiplication in Z/qZ is
converted to multiplication in Z[y]/(ym

+ 1). The splitting procedure consists of rewriting an element
of Z/qZ in base r , via fast radix-conversion algorithms.

Finally, Harvey and van der Hoeven [15] proposed using FFT primes, i.e., primes of the form q =
a · 2k

+ 1, where a is small. They reduce multiplication in Z/qZ to multiplication in Z[y]/(ym
+ a) via

a straightforward splitting of the integers into m chunks, where m is a power of two. Here the splitting
process is trivial, as k may be chosen to be divisible by m.

These three algorithms all achieve K = 4, subject to plausible but unproved conjectures on the dis-
tribution of the relevant primes. Unfortunately, in all three cases, it is not even known that there are

1 The main feature that the preprint [14] has in common with the present paper is that it inherits the overall algorithm
structure (decompose into exponentially smaller DFTs and apply Bluestein’s trick) from [16]. The main novelty of the present
paper (use of θ -representations and short lattice vectors) does not appear in [14]. Besides integer multiplication, it is noteworthy
to mention that [14] proves an analogous complexity bound for polynomial multiplication over finite fields, again with K = 4.
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infinitely many primes of the required form, let alone that there exists a sufficiently high density of them
to satisfy the requirements of the algorithm.

The main technical novelty of the present paper is a splitting procedure that works for an almost
arbitrary modulus q. The core idea is to introduce an alternative representation for elements of Z/qZ:
we represent them as expressions a0+ a1θ + · · ·+ am−1θ

m−1, where θ is some fixed 2m-th root of unity
in Z/qZ, and where the ai are small integers, of size roughly q1/m . Essentially the only restriction on q
is that Z/qZ must contain an appropriate 2m-th root of unity. We will see that Linnik’s theorem is strong
enough to construct suitable such moduli q .

In Section 2 we show that the cost of multiplication in this representation is only a constant factor
worse than for the usual representation. The key ingredient is Minkowski’s theorem on lattice vectors
in symmetric convex sets. We also give algorithms for converting between this representation and the
standard representation. The conversions are not as fast as one might hope — in particular, we do not
know how to carry them out in quasilinear time — but surprisingly this turns out not to affect the overall
complexity, because in the main multiplication algorithm we perform the conversions only infrequently.

Then in Sections 3 and 4 we prove Theorem 1.1, using an algorithm that is structurally very similar
to [15]. We make no attempt to minimize the implied big-O constant in Theorem 1.1; our goal is to give
the simplest possible proof of the asymptotic bound, without any regard for questions of practicality.

An interesting question is whether it is possible to combine the techniques of the present paper with
those of [14] to obtain an algorithm achieving K = 2

√
2≈ 2.83. Our attempts in this direction have so

far been unsuccessful. One might also ask if the techniques of this paper can be transferred to the case
of multiplication of polynomials of high degree in Fp[x]. However, this is not so interesting, because an
unconditional proof of the bound corresponding to K = 4 in the polynomial case is already known [14].
One may finally wonder whether any algorithms along these lines may be useful for practical purposes.
We refer to [20; 17; 26] for some recent work on this theme.

Throughout the paper we use the following notation. We write lg n := dlog2 ne for n > 2, and
for convenience put lg 1 := 1. We define MSS(n) = Cn lg n lg lg n, where C > 0 is some constant so
that the Schönhage–Strassen algorithm multiplies n-bit integers in at most MSS(n) bit operations [25].
This function satisfies nMSS(m) 6 MSS(nm) for any n,m > 1, and also MSS(dm) = O(MSS(m)) for
fixed d. An n-bit integer may be divided by an m-bit integer, producing quotient and remainder, in
time O(MSS(max(n,m))) [27, Chapter 9]. We may transpose an n×m array of objects of bit size b in
O(bnm lg min(n,m)) bit operations [4, Appendix]. Finally, we occasionally use Xylouris’s refinement
of Linnik’s theorem [28], which states that for any relatively prime positive integers a and n, the least
prime in the arithmetic progression p = a (mod n) satisfies p = O(n5.2).

2. θ -representations

In this section, fix an integer q > 2 and a power of two m > 2 such that

m 6
log2 q
(lg lg q)2

, or equivalently, q1/m > 2(lg lg q)2, (2-1)
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and such that we are in addition given some θ ∈ Z/qZ with θm
=−1. (In Section 3, we will ensure that

q and m are chosen so that a suitable θ exists.)
For a polynomial F = F0+ F1 y+ · · · + Fm−1 ym−1

∈ Z[y]/(ym
+ 1), define ‖F‖ := maxi |Fi |. This

norm satisfies ‖FG‖6 m‖F‖‖G‖ for any F,G ∈ Z[y]/(ym
+ 1).

Definition 2.1. Let u ∈ Z/qZ. A θ-representation for u is a polynomial U ∈ Z[y]/(ym
+ 1) such that

U (θ)= u (mod q) and ‖U‖6 mq1/m .

Example 2.2. Let m = 4 and

q = 3141592653589793238462833,

θ = 2542533431566904450922735 (mod q),

u = 2718281828459045235360288 (mod q).

(For reasons of legibility, the choice of q in this running example is somewhat smaller than what is
required by (2-1).) The coefficients in a θ-representation must not exceed mq1/m

≈ 5325341.46. Two
examples of θ -representations for u are

U (y)= 3366162y3
+ 951670y2

− 5013490y− 3202352,

U (y)=−4133936y3
+ 1849981y2

− 5192184y+ 1317423.

By (2-1), the number of bits required to store U (y) is at most

m(log2(mq1/m)+ O(1))= lg q + O(m lg m)=
(

1+
O(1)
lg lg q

)
lg q,

so a θ -representation incurs very little overhead in space compared to the standard representation by an
integer in the interval 06 x < q .

Our main tool for working with θ-representations is the reduction algorithm stated in Lemma 2.9
below. Given a polynomial F ∈ Z[y]/(ym

+ 1), whose coefficients are up to about twice as large as
allowed in a θ-representation, the reduction algorithm computes a θ-representation for F(θ) (up to a
certain scaling factor, discussed further below). The basic idea of the algorithm is to precompute a
nonzero polynomial P(y) such that P(θ)= 0 (mod q), and then to subtract an appropriate multiple of
P(y) from F(y) to make the coefficients small.

After developing the reduction algorithm, we are able to give algorithms for basic arithmetic on ele-
ments of Z/qZ given in θ -representation (Proposition 2.15), a more general reduction algorithm for inputs
of arbitrary size (Proposition 2.17), and algorithms for converting between standard and θ -representation
(Propositions 2.18 and 2.21).

We begin with two results that generate certain precomputed data necessary for the main reduction step.

Lemma 2.3. In q1+o(1) bit operations, we may compute a nonzero polynomial P ∈ Z[y]/(ym
+ 1) such

that P(θ)= 0 (mod q) and ‖P‖6 q1/m .
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Proof. We first establish existence of a suitable P(y). Let θ i denote a lift of θ i to Z, and consider the
lattice 3⊂ Zm spanned by the rows of the m×m integer matrix

A =


q 0 0 0
−θ 1 0 · · · 0
−θ2 0 1 0
...

. . .

−θm−1 0 0 · · · 1

 .

Every vector (a0, . . . , am−1) ∈3 satisfies the equation a0+ · · ·+ am−1θ
m−1
= 0 (mod q). The volume

of the fundamental domain of 3 is det A = q. The volume of the closed convex symmetric set

6 := {(x1, . . . , xm) ∈ Rm
: |x1|, . . . , |xm |6 q1/m

}

is (2q1/m)m = 2mq , so by Minkowski’s theorem (see for example [18, Chapter V, Theorem 3]), there exists
a nonzero vector (a0, . . . , am−1) in 3∩6. The corresponding polynomial P(y) := a0+· · ·+ am−1 ym−1

then has the desired properties.
To actually compute P(y), we simply perform a brute-force search. By (2-1) there are at most

(2q1/m
+ 1)m 6 (3q1/m)m = 3mq < q1+o(1) candidates to test. Enumerating them in lexicographical

order, we can easily evaluate P(θ) (mod q) in an average of O(lg q) bit operations per candidate. �

Example 2.4. Continuing Example 2.2, the coefficients of P(y) must not exceed q1/m
≈ 1331335.36.

A suitable polynomial P(y) is given by

P(y)=−394297y3
− 927319y2

+ 1136523y− 292956.

Remark 2.5. The computation of P(y) is closely related to the problem of finding an element of small
norm in the ideal of the ring Z[ζ2m] generated by q and ζ2m − θ , where ζ2m denotes a primitive 2m-th
root of unity.

Remark 2.6. The poor exponential-time complexity of Lemma 2.3 can probably be improved, by taking
advantage of more sophisticated lattice reduction or shortest vector algorithms, but we were not easily
able to extract a suitable result from the literature. For example, LLL is not guaranteed to produce a
short enough vector [19], and the Micciancio–Voulgaris exact shortest vector algorithm [21] solves the
problem for the Euclidean norm rather than the uniform norm. In any case, this has no effect on our
main result.

Lemma 2.7. Assume that P(y) has been precomputed as in Lemma 2.3. Let r be the smallest prime
exceeding 2m2q1/m such that r - q and such that P(y) is invertible in (Z/rZ)[y]/(ym

+ 1). Then r =
O(m2q1/m), and in q1+o(1) bit operations we may compute r and a polynomial J ∈ Z[y]/(ym

+ 1) such
that J (y)P(y)= 1 (mod r) and ‖J‖6 r .
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Proof. Let R ∈ Z be the resultant of P(y) (regarded as a polynomial in Z[y]) and ym
+ 1. The primes r

dividing R are exactly the primes for which P(y) fails to be invertible in (Z/rZ)[y]/(ym
+1). Therefore,

our goal is to find a prime r > 2m2q1/m such that r - Rq.
Since m is a power of two, ym

+ 1 is a cyclotomic polynomial and hence irreducible in Q[y]. Thus,
ym
+ 1 and P(y) have no common factor, and so R 6= 0. Also, we have R =

∏
α P(α) where α runs over

the complex roots of ym
+1. These roots all lie on the unit circle, so |P(α)|6m‖P‖6mq1/m . From (2-1)

we obtain m log2 m < (log2 q/(lg lg q)2) log2 log2 q 6 log2 q and so |Rq|6 (mq1/m)mq = mmq2 < q3.
On the other hand, let ϑ(x) :=

∑
p6x log p (sum taken over primes) be the standard Chebyshev

function. Combining Theorems 9, 10, and 18 of [24], one deduces the explicit estimate x/4< ϑ(x) < 2x
for all x > 8. Therefore, ∑

2x<p620x

log2 p =
1

log 2
(ϑ(20x)−ϑ(2x)) > x, x > 4.

Taking x := m2q1/m > 4, again by (2-1) we get∑
2m2q1/m<p620m2q1/m

log2 p > m2q1/m > 3 · 2(lg lg q)2 > 3 lg q > log2(q
3).

In particular, there must be at least one prime in the interval 2m2q1/m 6 r 6 20m2q1/m that does not
divide Rq.

To find the smallest such r , we first make a list of all primes up to 20m2q1/m in (m2q1/m)1+o(1) <

q1+o(1) bit operations. Then for each prime r between 2m2q1/m and 20m2q1/m , we check whether r di-
vides q in (lg q)1+o(1) bit operations, and attempt to invert P(y) in (Z/rZ)[y]/(ym

+1) in (m lg r)1+o(1)
=

(lg q)1+o(1) bit operations [27, Chapter 11]. �

Example 2.8. Continuing Example 2.2, we have r = 42602761 and

J (y)= 17106162y3
+ 6504907y2

+ 30962874y+ 8514380.

Now we come to the main step of the reduction algorithm, which is inspired by Montgomery’s method
for modular reduction [22].

Lemma 2.9. Assume that P(y), r , and J (y) have been precomputed as in Lemmas 2.3 and 2.7. Given as
input F ∈Z[y]/(ym

+1) with ‖F‖6m3(q1/m)2, we may compute a θ -representation for F(θ)/r (mod q)
in O(MSS(lg q)) bit operations.

Proof. We first compute the “quotient” Q := F J (mod r), normalized so that ‖Q‖6 r/2. This is done
by means of Kronecker substitution [27, Chapter 8]; i.e., we pack the polynomials F(y) and J (y) into
integers, multiply the integers, unpack the result, and reduce the result modulo ym

+1 and modulo r . The
packed integers have at most m(lg‖F‖+ lg r + lg m) bits, where the lg m term accounts for coefficient
growth in Z[y]. By (2-1) and Lemma 2.7, this simplifies to O(lg q) bits, so the integer multiplication
step costs O(MSS(lg q)) bit operations. This bound also covers the cost of the reductions modulo r .
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Next we compute Q P , again at a cost of O(MSS(lg q)) bit operations using Kronecker substitution.
Since ‖Q‖6 r/2 and ‖P‖6 q1/m , we have ‖Q P‖6 1

2rmq1/m .
By construction of J we have Q P = F (mod r). In particular, all the coefficients of F − Q P ∈

Z[y]/(ym
+ 1) are divisible by r . The last step is to compute the “remainder” G := (F − Q P)/r ; again,

this step costs O(MSS(lg q)) bit operations. Since r > 2m2q1/m , we have

‖G‖6
‖F‖

r
+
‖Q P‖

r
6

m3(q1/m)2

2m2q1/m +
mq1/m

2
6 mq1/m .

Finally, since P(θ)= 0 (mod q), and all arithmetic throughout the algorithm has been performed modulo
ym
+ 1, we see that G(θ)= F(θ)/r (mod q). �

Using the above reduction algorithm, we may give preliminary addition and multiplication algorithms
for elements of Z/qZ in θ -representation.

Lemma 2.10. Assume that P(y), r , and J (y) have been precomputed as in Lemmas 2.3 and 2.7. Given
as input θ-representations for u, v ∈ Z/qZ, we may compute θ-representations for uv/r and (u± v)/r
in O(MSS(lg q)) bit operations.

Proof. Let the θ-representations be given by U, V ∈ Z[y]/(ym
+ 1). We may compute F∗ := U V

in Z[y]/(ym
+ 1) using Kronecker substitution in O(MSS(lg q)) bit operations, and F± := U ± V in

O(lg q) bit operations. Note that ‖F∗‖6m‖U‖‖V ‖6m3(q1/m)2, and ‖F±‖6 ‖U‖+‖V ‖6 2mq1/m 6

m3(q1/m)2, so we may apply Lemma 2.9 to obtain the desired θ -representations. �

Example 2.11. Continuing Example 2.2, we walk through an example of computing a product of ele-
ments in θ -representation. Let

u = 1414213562373095048801689 (mod q),

v = 1732050807568877293527447 (mod q).

Suppose we are given as input the θ -representations

U (y)= 3740635y3
+ 3692532y2

− 3089740y+ 4285386,

V (y)= 4629959y3
− 4018180y2

− 2839272y− 3075767.

We first compute the product of U (y) and V (y) modulo ym
+ 1:

F(y)=U (y)V (y)= 10266868543625y3
−37123194804209y2

−4729783170300y+26582459129078.

We multiply F(y) by J (y) and reduce modulo r to obtain the quotient

Q(y)= 3932274y3
− 14729381y2

+ 20464841y− 11934644.

Then the remainder

(F(y)− P(y)Q(y))/r = 995963y3
− 1814782y2

+ 398819y+ 777998

is a θ -representation for uv/r (mod q).
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The following precomputation will assist in eliminating the spurious 1/r factor appearing in Lemmas
2.9 and 2.10.

Lemma 2.12. Assume that P(y), r , and J (y) have been precomputed as in Lemmas 2.3 and 2.7. In
q1+o(1) bit operations, we may compute a polynomial D ∈ Z[y]/(ym

+ 1) such that ‖D‖ 6 mq1/m and
D(θ)= r2 (mod q).

Proof. We may easily compute the totient function ϕ(q) in q1+o(1) bit operations, by first factoring q.
Since (r, q) = 1, we have r−(ϕ(q)−2)

= r2 (mod q). Repeatedly using the identity r−i−1
= (r−i

· 1)/r ,
we may compute θ-representations for r−1, r−2, . . . , r−(ϕ(q)−2) by successively applying Lemma 2.10.
Here we notice that we may use U = 1 as the θ -representation for 1. �

Remark 2.13. Assuming the factorization of q is known (which will always be the case in the application
in Section 3), the complexity of Lemma 2.12 may be improved to O(MSS(lg q) lg q) bit operations by
using a modified “repeated squaring” algorithm.

Example 2.14. Continuing Example 2.2, we may take

D(y)=−1918607y3
− 3680082y2

+ 2036309y− 270537.

Henceforth, we write P(q,m, θ) for the tuple (P(y), r, J (y), D(y)) of precomputed data generated
by Lemmas 2.3, 2.7, and 2.12. Given q , m, and θ as input, the above results show that we may compute
P(q,m, θ) in q1+o(1) bit operations. With these precomputations out of the way, we may state complexity
bounds for the main operations on θ -representations.

Proposition 2.15. Assume that P(q,m, θ) has been precomputed. Given as input θ-representations for
u, v ∈ Z/qZ, we may compute θ -representations for uv and u± v in O(MSS(lg q)) bit operations.

Proof. For the product, we first use Lemma 2.10 to compute a θ-representation for uv/r (mod q), and
then we use Lemma 2.10 again to multiply by D(y), to obtain a θ-representation for (uv/r)(r2)/r =
uv (mod q). The sum and difference are handled similarly. �

Remark 2.16. We suspect that the complexity bound for u± v can be improved to O(lg q), but we do
not currently know how to achieve this. This question seems closely related to Remark 2.23 below.

Proposition 2.17. Assume that P(q,m, θ) has been precomputed. Given as input a polynomial F ∈
Z[y]/(ym

+ 1) (with no restriction on ‖F‖), we may compute a θ-representation for F(θ) (mod q) in
time O(dm lg‖F‖/ lg qeMSS(lg q)).

Proof. Let b := lgdq1/m
e and n := d2m lg‖F‖/ lg qe, so that

2nb > (q1/m)n > (q1/m)2m lg‖F‖/ lg q
= 2lg‖F‖(2 log2 q/ lg q) > 2lg‖F‖.

We may therefore decompose the coefficients of F into n chunks of b bits; i.e., we may compute polyno-
mials F0, . . . , Fn−1 ∈Z[y]/(ym

+1) such that F = F0+2b F1+· · ·+2(n−1)b Fn−1 and ‖Fi‖6 2b 6 2q1/m .
(This step implicitly requires an array transposition of cost O(bmn lg m)= O(n lg q lg lg q).) Now we
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use Proposition 2.15 repeatedly to compute a θ-representation for F via Horner’s rule; i.e., first we
compute a θ -representation for 2b Fn−1+ Fn−2, then for 2b(2b Fn−1+ Fn−2)+ Fn−3, and so on. Here we
notice that 2b is already in θ -representation, since 2b 6 2q1/m 6 mq1/m . �

Proposition 2.18. Assume that P(q,m, θ) has been precomputed. Given as input an element u ∈ Z/qZ

in standard representation, we may compute a θ -representation for u in O(mMSS(lg q)) bit operations.

Proof. Simply apply Proposition 2.17 to the constant polynomial F(y)= u, noting that ‖F‖6 q . �

Corollary 2.19. Every u ∈ Z/qZ admits a θ -representation.

Remark 2.20. It would be interesting to have a direct proof of the corollary that does not rely on the
reduction algorithm. A related question is whether it is possible to tighten the bound in the definition
of θ-representation from mq1/m to q1/m . We do not know whether such a representation exists for all
u ∈ Z/qZ.

Proposition 2.21. Given as input an element u ∈Z/qZ in θ -representation, we may compute the standard
representation for u in O(mMSS(lg q)) bit operations.

Proof. Let U ∈Z[y]/(ym
+1) be the input polynomial. The problem amounts to evaluating U (θ) in Z/qZ.

Again we may simply use Horner’s rule. �

Remark 2.22. In both Propositions 2.18 and 2.21, the input and output have bit size O(lg q), but the
complexity bounds given are not quasilinear in lg q. It is possible to improve on the stated bounds, but
we do not know a quasilinear time algorithm for the conversion in either direction.

Remark 2.23. In the reduction algorithm, the reader may wonder why we go to the trouble of introducing
the auxiliary prime r . Why not simply precompute an approximation to a real inverse for P(y), i.e.,
the inverse in R[y]/(ym

+ 1), and use this to clear out the high-order bits of each coefficient of the
dividend? In other words, why not replace the Montgomery-style division with the more natural Barrett-
style division [2]?

The reason is that we cannot prove tight enough bounds on the size of the coefficients of this inverse:
it is conceivable that P(y) might accidentally take on a very small value near one of the complex roots
of ym

+ 1, or equivalently, that the resultant R in the proof of Lemma 2.7 might be unusually small. For
the same reason, we cannot use a more traditional 2-adic Montgomery inverse to clear out the low-order
bits of the dividend, because again P(y) may take a 2-adically small value near one of the 2-adic roots
of ym

+ 1, or equivalently, the resultant R might be divisible by an unusually large power of 2.

3. Integer multiplication: the recursive step (Transform)

In this section we present the recursive routine that lies is at the heart of the overall multiplication
algorithm given in Section 4. We describe first its input and output, then give an overview of the steps
and finally a complexity analysis.
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3A. Transform: the interface. Transform takes as input a (sufficiently large) power-of-two transform
length L , a prime p = 1 (mod L), a prime power q = pα such that

lg L 6 lg q 6 3 lg L lg lg L , (3-1)

a principal L-th root of unity ζ ∈ Z/qZ (i.e., an L-th root of unity whose reduction modulo p is a
primitive L-th root of unity in the field Z/pZ), certain precomputed data depending on L , q , and ζ (see
below), and a polynomial F ∈ (Z/qZ)[x]/(x L

− 1). Its output is the DFT of F with respect to ζ , that is,
the vector

F̂ := (F(1), F(ζ ), . . . , F(ζ L−1)) ∈ (Z/qZ)L .

The coefficients of both F and F̂ are given in standard representation.
The precomputed data consists of the tuple P(q,m, θ) defined in Section 2, where m and θ are defined

as follows.
First, (3-1) implies that lg q > 2(lg lg L)2 lg lg lg L for sufficiently large L , so we may take m to be

the unique power of two lying in the interval

lg q
(lg lg L)2 lg lg lg L

6 m <
2 lg q

(lg lg L)2 lg lg lg L
. (3-2)

Observe that (2-1) is certainly satisfied for this choice of m (for large enough L), as (3-1) implies that
lg lg L ∼ lg lg q .

Next, note that 2m | L , because (3-1) and (3-2) imply that m = o(lg L) = o(L); therefore, we may
take θ := ζ L/2m , so that θm

= ζ L/2
=−1.

We remark that the role of the parameter α is to give us enough control over the bit size of q, to
compensate for the fact that Linnik’s theorem does not give us sufficiently fine control over the bit size
of p (see Lemma 3.5).

3B. Transform: overview of the structure. Our implementation of Transform uses one of two algo-
rithms, depending on the size of L . If L is below some threshold, say L0, then it uses any convenient base-
case algorithm. Above this threshold, it reduces the given DFT problem to a collection of exponentially
smaller DFTs of the same type, via a series of reductions that may be summarized as follows.

(i) Use the conversion algorithms from Section 2 to reduce to a transform over Z/qZ where the input
and output coefficients are given in θ -representation. (During steps (ii) and (iii) below, all elements
of Z/qZ are stored and manipulated entirely in θ -representation.)

(ii) Reduce the “long” transform of length L over Z/qZ to many “short” transforms of exponentially
small length S := 2(lg lg L)2 over Z/qZ, via the Cooley–Tukey decomposition.

(iii) Reduce each short transform from step (ii) to a product in (Z/qZ)[x]/(x S
− 1), i.e., a cyclic convo-

lution of length S, using Bluestein’s algorithm.
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(iv) Use the definition of θ-representation to reinterpret each product from step (iii) as a product in
Z[x, y]/(x S

− 1, ym
+ 1), where the coefficients in Z are exponentially smaller than the original

coefficients in Z/qZ.

(v) Embed each product from (iv) into (Z/q ′Z)[x, y]/(x S
− 1, ym

+ 1) for a suitable prime power q ′

that is exponentially smaller than q, and large enough to resolve the coefficients of the products
over Z.

(vi) Reduce each product from (v) to a collection of forward and inverse DFTs of length S over Z/q ′Z,
and recurse.

The structure of this algorithm is very similar to that of [15]. The main difference is that it is not
necessary to explicitly split the coefficients into chunks in step (iv); this happens automatically as a
consequence of storing the coefficients in θ-representation. In effect, the splitting (and reassembling)
work has been shunted into the conversions in step (i).

3C. Transform: details and complexity analysis. We now consider each of the above steps in more
detail. We write T(L , q) for the running time of Transform. We always assume that L0 is increased
whenever necessary to accommodate statements that hold only for large L .

Step (i): convert between representations. Let Tlong(L , q) denote the time required to compute a DFT of
length L over Z/qZ with respect to ζ , assuming that the coefficients of the input F and the output F̂ are
given in θ -representation, and assuming that P(q,m, θ) is known.

Lemma 3.1. T(L , q) < Tlong(L , q)+ O(L lg L lg q).

Proof. We first convert F from standard to θ -representation using Proposition 2.18; we then compute F̂
from F (working entirely in θ -representation); at the end, we convert F̂ back to standard representation
using Proposition 2.21. By (3-1) and (3-2), the total cost of the conversions is

O(LmMSS(lg q))= O
(

L
lg q

(lg lg L)2 lg lg lg L
lg q lg lg q lg lg lg q

)
= O

(
L

lg L lg lg L
(lg lg L)2 lg lg lg L

lg q lg lg L lg lg lg L
)

= O(L lg L lg q). �

Henceforth, all elements of Z/qZ are assumed to be stored in θ-representation, and we will always
use Proposition 2.15 to perform arithmetic operations on such elements in O(MSS(lg q)) bit operations.

Step (ii): reduce to short DFTs. Let S := 2(lg lg L)2 . Given as input polynomials F1, . . . , FL/S ∈

(Z/qZ)[x]/(x S
−1) (presented sequentially on tape), let Tshort(L , q) denote the time required to compute

the transforms F̂1, . . . , F̂L/S ∈ (Z/qZ)S with respect to the principal S-th root of unity ω := ζ L/S . (Here
and below, we continue to assume that P(q,m, θ) is known.)

Lemma 3.2. Tlong(L , q) < (lg L/(lg lg L)2)Tshort(L , q)+ O(L lg L lg q).



304 DAVID HARVEY AND JORIS VAN DER HOEVEN

Proof. Let d := blg L/ lg Sc, so that lg L = d lg S + d ′ where 0 6 d ′ < lg S. Applying the Cooley–
Tukey method [6] to the factorization L = Sd2d ′ , the given transform of length L may be decomposed
into d∼ lg L/(lg lg L)2 layers, each consisting of L/S transforms of length S (with respect to ω), followed
by d ′ layers, each consisting of L/2 transforms of length 2. Between each of these layers, we must
perform O(L) multiplications by “twiddle factors” in Z/qZ, which are given by certain powers of ζ .
(For further details of the Cooley–Tukey decomposition, see for example [16, §2.3].)

The total cost of the twiddle factor multiplications, including the cost of computing the twiddle factors
themselves, is

O((d + d ′)LMSS(lg q))= O
((

lg L
(lg lg L)2

+ (lg lg L)2
)

L lg q lg lg q lg lg lg q
)

= O
(

lg L
(lg lg L)2

L lg q lg lg L lg lg lg L
)
= O(L lg L lg q).

This bound also covers the cost of the length 2 transforms (“butterflies”), each of which requires one
addition and one subtraction in Z/qZ.

In the Turing model, we must also account for the cost of rearranging data so that the inputs for each
layer of short DFTs are stored sequentially on tape. The cost per layer is O(L lg S lg q) bit operations,
so O(L lg L lg q) altogether (see [16, §2.3] for further details). �

Step (iii): reduce to short convolutions. Given polynomials G1, . . . ,GL/S, H ∈ (Z/qZ)[x]/(x S
− 1) as

input, let Mshort(L , q) denote the time required to compute the products G1 H, . . . ,GL/S H .

Lemma 3.3. Tshort(L , q) <Mshort(L , q)+ O(L(lg lg L)2 lg q).

Proof. We use Bluestein’s method [3], which reduces the problem of computing the DFT of F ∈
(Z/qZ)[x]/(x S

−1) to the problem of computing the product of certain polynomials G, H ∈ (Z/qZ)[x]/
(x S
−1), plus O(S) auxiliary multiplications in Z/qZ (for further details see [16, §2.5]). Here G depends

on F and ζ , but H depends only on ζ . The total cost of the auxiliary multiplications is

O((L/S)SMSS(lg q))= O(L lg q lg lg q lg lg lg q)= O(L(lg lg L)2 lg q). �

Step (iv): reduce to bivariate products over Z. Given as input the polynomials G̃1, . . . , G̃L/S, H̃ ∈
Z[x, y]/(x S

−1, ym
+1), all whose coefficients are bounded in absolute value by mq1/m , let Mbivariate(L , q)

denote the cost of computing the products G̃1 H̃ , . . . , G̃L/S H̃ .

Lemma 3.4. Mshort(L , q) <Mbivariate(L , q)+ O(L(lg lg L)2 lg q).

Proof. We are given as input polynomials G1, . . . ,GL/S, H ∈ (Z/qZ)[x]/(x S
− 1). Since their coeffi-

cients are given in θ -representation, we may immediately reinterpret them as polynomials G̃1, . . . , G̃L/S,

H̃ ∈ Z[x, y]/(x S
− 1, ym

+ 1), with coefficients bounded by mq1/m . By definition of θ-representation,
we have H̃(x, θ)= H(x) (mod q), and similarly for the Gi .
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After computing the products G̃i H̃ for i = 1, . . . , L/S, suppose that

(G̃i H̃)(x, y)=
S−1∑
j=0

Ai j (y)x j , Ai j ∈ Z[y]/(ym
+ 1).

Then we have (Gi H)(x) = (G̃i H̃)(x, θ) =
∑

j Ai j (θ)x j (mod q) for each i . Therefore, to compute
the desired products Gi H with coefficients in θ-representation, it suffices to apply Proposition 2.17 to
each Ai j , to compute θ -representations for all of the Ai j (θ).

Let us estimate the cost of the invocations of Proposition 2.17. We have ‖Ai j‖ 6 Sm(mq1/m)2 =

Sm3(q1/m)2, so

lg‖Ai j‖6
2 lg q

m
+ lg S+ 3 lg m <

2 lg q
m
+ (lg lg L)2+ O(lg lg L).

From (3-2) we have (lg q)/m > 1
2(lg lg L)2 lg lg lg L , so for large L ,

lg‖Ai j‖<

(
2+

3
lg lg lg L

)
lg q
m
. (3-3)

The cost of applying Proposition 2.17 for all Ai j is thus

O
(
(L/S)S

⌈
m lg‖Ai j‖

lg q

⌉
MSS(lg q)

)
= O(LMSS(lg q))= O(L(lg lg L)2 lg q). �

Step (v): reduce to bivariate products over Z/q ′Z. Let p′ be the smallest prime such that p′ = 1 (mod S);
by Linnik’s theorem we have p′ = O(S5.2). Put q ′ := (p′)α

′

where

α′ :=

⌈(
2+

4
lg lg lg L

)
lg q
m

/
lgbp′/2c

⌉
.

We have the following bounds for q ′.

Lemma 3.5. Let Ai j be as in the proof of Lemma 3.4, for i = 1, . . . , L/S and j = 0, . . . , S− 1. Then
q ′ > 4‖Ai j‖ and

lg q ′ <
(

2+
O(1)

lg lg lg L

)
lg q
m
.

Proof. In what follows, we frequently use the fact that (lg q)/m � (lg lg L)2 lg lg lg L (see (3-2)). Now,
observe that log2 q ′ = α′ log2 p′ > α′ lgbp′/2c, so by (3-3),

log2 q ′ >
(

2+
4

lg lg lg L

)
lg q
m
>

(
2+

3
lg lg lg L

)
lg q
m
+ 2> lg‖Ai j‖+ 2.

Thus, q ′ > 4‖Ai j‖. For the other direction, since lg p′ � lg S = (lg lg L)2, we have

lg q ′ 6 α′ lg p′ 6
[
(2+ 4/(lg lg lg L))(lg q)/m

lgbp′/2c
+ 1

]
lg p′ <

(
2+

O(1)
lg lg lg L

)
lg q
m
·

lg p′

lgbp′/2c
,

and lg p′/ lgbp′/2c< 1+ O(1)/ lg p′ < 1+ O(1)/(lg lg L)2. �
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Now, given as input polynomials g1, . . . , gL/S, h ∈ (Z/q ′Z)[x, y]/(x S
−1, ym

+1), let M′bivariate(L , q)
denote the cost of computing the products g1h, . . . , gL/Sh, where all input and output coefficients
in Z/q ′Z are in standard representation.

Lemma 3.6. Mbivariate(L , q) <M′bivariate(L , q)+ O(L lg q).

Proof. We may locate p′ by testing S+1, 2S+1, . . . , in SO(1)
=2O((lg lg L)2)

=O(L) bit operations, and we
may easily compute α′ and q ′ within the same time bound. Now, given input G̃1, . . . , G̃L/S, H̃ ∈Z[x, y]/
(x S
− 1, ym

+ 1), we first convert them to polynomials g1, . . . , gL/S, h ∈ (Z/q ′Z)[x, y]/(x S
− 1, ym

+ 1)
(in linear time), and then multiply them in the latter ring. The bound q ′ > 4‖Ai j‖ in Lemma 3.5 shows
that the products over Z may be unambiguously recovered from those over Z/q ′Z; again, this lifting can
be done in linear time. �

Step (vi): reduce to DFTs over Z/q ′Z. In this step we will call Transform recursively to handle cer-
tain transforms of length S over Z/q ′Z. To check that these calls are permissible, we must verify the
precondition corresponding to (3-1), namely lg S 6 lg q ′ 6 3 lg S lg lg S. The first inequality is clear
since q ′ > p′ > S. The second inequality follows from (3-2), Lemma 3.5, and the observation that
lg S lg lg S > (lg lg L)2 lg lg lg L .

Lemma 3.7. M′bivariate(L , q) < (2L/S+ 1)mT(S, q ′)+ O(L(lg lg L)2 lg q).

Proof. We start by computing various data needed for the recursive calls. We may compute a primitive
S-th root of unity in Z/p′Z in (p′)O(1)

= O(L) bit operations, and then Hensel lift it to a principal S-th
root of unity ζ ′ ∈ Z/q ′Z in (lg p′ lg q ′)O(1)

= O(L) bit operations. For q (whence q ′ and S) sufficiently
large, we have lg q ′ > lg S > 2(lg lg S)2 lg lg lg S. Just as before, this allows us to define m′ to be the
unique power of two in the interval

lg q ′

(lg lg S)2 lg lg lg S
6 m′ <

2 lg q ′

(lg lg S)2 lg lg lg S
, (3-4)

and set θ ′ := (ζ ′)S/2m′ . Using Lemmas 2.3, 2.7, and 2.12, we may compute P(q ′,m′, θ ′) in (q ′)1+o(1)
=

2O((lg lg L)2 lg lg lg L)
= O(L) bit operations.

Now suppose we wish to compute the products g1h, . . . , gL/Sh, for polynomials g1, . . . , gL/S, h ∈
(Z/q ′Z)[x, y]/(x S

− 1, ym
+ 1). We use the following algorithm.

First we use Transform to transform all L/S+ 1 polynomials with respect to x ; that is, we compute
gi ((ζ

′) j , y) and h((ζ ′) j , y) as elements of (Z/q ′Z)[y]/(ym
+1), for i = 1, . . . , L/S and j = 0, . . . , S−1.

Since Transform must be applied separately to every coefficient 1, y, . . . , ym−1, the total number of calls
is (L/S+ 1)m. Accessing the coefficient of each yk also implies a number of array transpositions whose
total cost is O((L/S)Sm lg m lg q ′)= O(L lg lg L lg q).

Next we compute the (L/S)S = L pointwise products gi ((ζ
′) j , y)h((ζ ′) j , y). Using Kronecker substi-

tution, each such product in (Z/q ′Z)[y]/(ym
+1) costs O(MSS(lg q)) bit operations, as m(lg q ′+ lg m)=

O(lg q).
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Finally, we perform (L/S)m inverse transforms with respect to x . It is well known that these may
be computed by the same algorithm as the forward transform, with ζ ′ replaced by (ζ ′)−1, followed by a
division by S. The division may be accomplished by simply multiplying through by S−1 (mod q ′); this
certainly costs no more than the pointwise multiplication step. �

Corollary 3.8. T(L , q) < ((lg L)/(lg lg L)2)(2L/S+ 1)mT(S, q ′)+ O(L lg L lg q).

Proof. This follows immediately by chaining together Lemmas 3.1, 3.2, 3.3, 3.4, 3.6, and 3.7. �

Define
T(L) :=maxq T(L , q)/(L lg L lg q),

where the maximum is taken over all prime powers q satisfying (3-1). (For large L , at least one such q
always exists. For example, take α := 1 and take q = p to be the smallest prime satisfying p= 1 (mod L);
then Linnik’s theorem implies that (3-1) holds for this q .)

Proposition 3.9. T(L) < (4+ O(1)/(lg lg lg L))T(2(lg lg L)2)+ O(1).

Proof. Dividing the bound in Corollary 3.8 by L lg L lg q yields

T(L , q)
L lg L lg q

<

(
2+

S
L

)
m lg q ′

lg q
·

T(S, q ′)
S lg S lg q ′

+ O(1).

Applying Lemma 3.5 and the estimate S/L < O(1)/ lg lg lg L yields

T(L , q)
L lg L lg q

<

(
4+

O(1)
lg lg lg L

)
T(S)+ O(1).

Taking the maximum over allowable q yields the desired bound. �

Corollary 3.10. T(L)= O(4log∗ L).

Proof. This follows by applying the “master theorem” [16, Proposition 8] to the recurrence in Proposition
3.9. Alternatively, it follows by the same method used to deduce [15, Corollary 3] from [15, Proposition 2].
The key point is that 2(lg lg L)2 is dominated by a “logarithmically slow” function of L , such as 8(x) :=
2(log log x)3 [16, §5]. �

Remark 3.11. When working with θ-representations, one may multiply an element of Z/qZ by any
power of θ in linear time, by simply permuting the coefficients. In other words, we have available “fast
roots of unity” in the sense of Fürer. Notice however that the algorithm presented in this section makes
no use of this fact!

This raises the question of whether one can design an integer multiplication algorithm that uses these
fast roots in the same way as in Fürer’s original algorithm, instead of our appeal to Bluestein’s trick.
This is indeed possible, and one does obtain a bound of the form O(n lg n K log∗ n). In this algorithm,
instead of the running time being dominated by the short transforms, it is dominated by the twiddle factor
multiplications, just as in Fürer’s algorithm. Unfortunately, this leads to a worse value of K , because of
the implied constant in Proposition 2.15.
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4. Integer multiplication: the top level

The only complication in building an integer multiplication algorithm on top of the Transform routine
is ensuring that the precomputations do not dominate the complexity. We achieve this by means of a
multivariate Kronecker-style splitting, as follows.

Proof of Theorem 1.1. Suppose that we wish to compute the product of two n-bit integers u and v,
for some sufficiently large n > 729. Let b := lg n and t := ddn/be1/6e, so that t6b > n and t 6 n1/6.
Decompose u into t6 chunks of b bits, say

u = u0+ u12b
+ · · ·+ ut6−12(t

6
−1)b,

where 06 ui < 2b for each i , and similarly for v. Let

U (x0, . . . , x5) :=

t−1∑
i0=0

· · ·

t−1∑
i5=0

ui0+ti1+···+t5i5 x i0
0 · · · x

i5
5 ∈ Z[x0, . . . , x5],

so that u =U (2b, 2tb, . . . , 2t5b), and define V (x0, . . . , x5) similarly. We store multivariate polynomials
in Z[x0, . . . , x5] using the recursive dense representation. The product U V has degree less than 2t in
each variable, so at most 64t6 terms altogether, and its coefficients are bounded by 22bt6 6 22bn 6 4n3.
We may therefore reconstruct uv from U V using a straightforward overlap-add procedure (essentially,
evaluating at (2b, 2tb, . . . , 2t5b)) in O(t6 lg n)= O(n) bit operations.

Now we consider the computation of U V . Let L be the unique power of two in the interval 2t 6 L < 4t ;
then it suffices to compute the product U V in the ring Z[x0, . . . , x5]/(x L

0 − 1, . . . , x L
5 − 1).

For i = 1, . . . , 19, let qi be the least prime such that qi = 1 (mod L) and qi = i (mod 23). Then the qi

are distinct, and by Linnik’s theorem they satisfy qi = O(L5.2)= O(t5.2)= O(n0.9), so we may locate
the qi in n0.9+o(1) bit operations. They certainly satisfy (3-1), since qi > L and lg qi 6 5.2 lg L + O(1)6
3 lg L lg lg L for large L . Moreover, for large n we have q1 · · · q19> L19> 219t19> 219(n/ lg n)19/6> 4n3,
so to compute U V it suffices to compute U V (mod qi ) for each i and then reconstruct U V by the
Chinese remainder theorem. The cost of this reconstruction is (lg n)1+o(1) bit operations per coefficient,
so (n/ lg n)(lg n)1+o(1)

= n(lg n)o(1) altogether.
We have therefore reduced to the problem of computing a product in the ring

(Z/qi Z)[x0, . . . , x5]/(x L
0 − 1, . . . , x L

5 − 1)

for each i = 1, . . . , 19. To do this, we use Transform to perform forward DFTs of length L with respect
to a suitable primitive L-th root of unity ζi in Z/qi Z (with the notations from Section 3, this means that
we take p = q = qi and ζ = ζi ) for each variable x0, . . . , x5 successively; then we multiply pointwise
in Z/qi Z; finally we perform inverse DFTs and scale the results. The necessary precomputations for
each prime qi (finding ζi , mi , and θi , and computing P(qi ,mi , θi )) require only q1+o(1)

i = n0.9+o(1) bit
operation per prime. Since one FFT-multiplication in (Z/qi Z)[x0, . . . , x5]/(x L

0 − 1, . . . , x L
5 − 1) requires

two direct multivariate transforms and one inverse multivariate transform, the total number of calls to
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Transform for each prime is 6 · (2+ 1)L5
= 18L5. The total cost of the pointwise multiplications is

n(lg n)o(1). By Corollary 3.10, this yields

M(n)= O
(

L5
19∑

i=1

T(L , qi )

)
+ n(lg n)o(1)

= O
(

L6
19∑

i=1

T(L) lg L lg qi

)
+ n(lg n)o(1)

= O((n/ lg n)4log∗ L lg n lg n)+ n(lg n)o(1)

= O(n lg n 4log∗ n). �

Postscript

During and after the conference, Dan Bernstein and Laurent Imbert pointed out to us that several authors
have previously described systems for modular arithmetic that are closely related to our θ -representation:
see [1; 5; 12].
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